1 /*
   2  * Copyright (c) 1999, 2020, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // no precompiled headers
  26 #include "jvm.h"
  27 #include "asm/macroAssembler.hpp"
  28 #include "classfile/classLoader.hpp"
  29 #include "classfile/systemDictionary.hpp"
  30 #include "classfile/vmSymbols.hpp"
  31 #include "code/codeCache.hpp"
  32 #include "code/icBuffer.hpp"
  33 #include "code/vtableStubs.hpp"
  34 #include "interpreter/interpreter.hpp"
  35 #include "logging/log.hpp"
  36 #include "memory/allocation.inline.hpp"
  37 #include "os_share_linux.hpp"
  38 #include "prims/jniFastGetField.hpp"
  39 #include "prims/jvm_misc.hpp"
  40 #include "runtime/arguments.hpp"
  41 #include "runtime/extendedPC.hpp"
  42 #include "runtime/frame.inline.hpp"
  43 #include "runtime/interfaceSupport.inline.hpp"
  44 #include "runtime/java.hpp"
  45 #include "runtime/javaCalls.hpp"
  46 #include "runtime/mutexLocker.hpp"
  47 #include "runtime/osThread.hpp"
  48 #include "runtime/safepointMechanism.hpp"
  49 #include "runtime/sharedRuntime.hpp"
  50 #include "runtime/stubRoutines.hpp"
  51 #include "runtime/thread.inline.hpp"
  52 #include "runtime/timer.hpp"
  53 #include "services/memTracker.hpp"
  54 #include "utilities/align.hpp"
  55 #include "utilities/debug.hpp"
  56 #include "utilities/events.hpp"
  57 #include "utilities/vmError.hpp"
  58 
  59 // put OS-includes here
  60 # include <sys/types.h>
  61 # include <sys/mman.h>
  62 # include <pthread.h>
  63 # include <signal.h>
  64 # include <errno.h>
  65 # include <dlfcn.h>
  66 # include <stdlib.h>
  67 # include <stdio.h>
  68 # include <unistd.h>
  69 # include <sys/resource.h>
  70 # include <pthread.h>
  71 # include <sys/stat.h>
  72 # include <sys/time.h>
  73 # include <sys/utsname.h>
  74 # include <sys/socket.h>
  75 # include <sys/wait.h>
  76 # include <pwd.h>
  77 # include <poll.h>
  78 # include <ucontext.h>
  79 #ifndef AMD64
  80 # include <fpu_control.h>
  81 #endif
  82 
  83 #ifdef AMD64
  84 #define REG_SP REG_RSP
  85 #define REG_PC REG_RIP
  86 #define REG_FP REG_RBP
  87 #define SPELL_REG_SP "rsp"
  88 #define SPELL_REG_FP "rbp"
  89 #else
  90 #define REG_SP REG_UESP
  91 #define REG_PC REG_EIP
  92 #define REG_FP REG_EBP
  93 #define SPELL_REG_SP "esp"
  94 #define SPELL_REG_FP "ebp"
  95 #endif // AMD64
  96 
  97 address os::current_stack_pointer() {
  98   return (address)__builtin_frame_address(0);
  99 }
 100 
 101 char* os::non_memory_address_word() {
 102   // Must never look like an address returned by reserve_memory,
 103   // even in its subfields (as defined by the CPU immediate fields,
 104   // if the CPU splits constants across multiple instructions).
 105 
 106   return (char*) -1;
 107 }
 108 
 109 address os::Linux::ucontext_get_pc(const ucontext_t * uc) {
 110   return (address)uc->uc_mcontext.gregs[REG_PC];
 111 }
 112 
 113 void os::Linux::ucontext_set_pc(ucontext_t * uc, address pc) {
 114   uc->uc_mcontext.gregs[REG_PC] = (intptr_t)pc;
 115 }
 116 
 117 intptr_t* os::Linux::ucontext_get_sp(const ucontext_t * uc) {
 118   return (intptr_t*)uc->uc_mcontext.gregs[REG_SP];
 119 }
 120 
 121 intptr_t* os::Linux::ucontext_get_fp(const ucontext_t * uc) {
 122   return (intptr_t*)uc->uc_mcontext.gregs[REG_FP];
 123 }
 124 
 125 // For Forte Analyzer AsyncGetCallTrace profiling support - thread
 126 // is currently interrupted by SIGPROF.
 127 // os::Solaris::fetch_frame_from_ucontext() tries to skip nested signal
 128 // frames. Currently we don't do that on Linux, so it's the same as
 129 // os::fetch_frame_from_context().
 130 // This method is also used for stack overflow signal handling.
 131 ExtendedPC os::Linux::fetch_frame_from_ucontext(Thread* thread,
 132   const ucontext_t* uc, intptr_t** ret_sp, intptr_t** ret_fp) {
 133 
 134   assert(thread != NULL, "just checking");
 135   assert(ret_sp != NULL, "just checking");
 136   assert(ret_fp != NULL, "just checking");
 137 
 138   return os::fetch_frame_from_context(uc, ret_sp, ret_fp);
 139 }
 140 
 141 ExtendedPC os::fetch_frame_from_context(const void* ucVoid,
 142                     intptr_t** ret_sp, intptr_t** ret_fp) {
 143 
 144   ExtendedPC  epc;
 145   const ucontext_t* uc = (const ucontext_t*)ucVoid;
 146 
 147   if (uc != NULL) {
 148     epc = ExtendedPC(os::Linux::ucontext_get_pc(uc));
 149     if (ret_sp) *ret_sp = os::Linux::ucontext_get_sp(uc);
 150     if (ret_fp) *ret_fp = os::Linux::ucontext_get_fp(uc);
 151   } else {
 152     // construct empty ExtendedPC for return value checking
 153     epc = ExtendedPC(NULL);
 154     if (ret_sp) *ret_sp = (intptr_t *)NULL;
 155     if (ret_fp) *ret_fp = (intptr_t *)NULL;
 156   }
 157 
 158   return epc;
 159 }
 160 
 161 frame os::fetch_frame_from_context(const void* ucVoid) {
 162   intptr_t* sp;
 163   intptr_t* fp;
 164   ExtendedPC epc = fetch_frame_from_context(ucVoid, &sp, &fp);
 165   return frame(sp, fp, epc.pc());
 166 }
 167 
 168 frame os::fetch_frame_from_ucontext(Thread* thread, void* ucVoid) {
 169   intptr_t* sp;
 170   intptr_t* fp;
 171   ExtendedPC epc = os::Linux::fetch_frame_from_ucontext(thread, (ucontext_t*)ucVoid, &sp, &fp);
 172   return frame(sp, fp, epc.pc());
 173 }
 174 
 175 bool os::Linux::get_frame_at_stack_banging_point(JavaThread* thread, ucontext_t* uc, frame* fr) {
 176   address pc = (address) os::Linux::ucontext_get_pc(uc);
 177   if (Interpreter::contains(pc)) {
 178     // interpreter performs stack banging after the fixed frame header has
 179     // been generated while the compilers perform it before. To maintain
 180     // semantic consistency between interpreted and compiled frames, the
 181     // method returns the Java sender of the current frame.
 182     *fr = os::fetch_frame_from_ucontext(thread, uc);
 183     if (!fr->is_first_java_frame()) {
 184       // get_frame_at_stack_banging_point() is only called when we
 185       // have well defined stacks so java_sender() calls do not need
 186       // to assert safe_for_sender() first.
 187       *fr = fr->java_sender();
 188     }
 189   } else {
 190     // more complex code with compiled code
 191     assert(!Interpreter::contains(pc), "Interpreted methods should have been handled above");
 192     CodeBlob* cb = CodeCache::find_blob(pc);
 193     if (cb == NULL || !cb->is_nmethod() || cb->is_frame_complete_at(pc)) {
 194       // Not sure where the pc points to, fallback to default
 195       // stack overflow handling
 196       return false;
 197     } else {
 198       // in compiled code, the stack banging is performed just after the return pc
 199       // has been pushed on the stack
 200       intptr_t* fp = os::Linux::ucontext_get_fp(uc);
 201       intptr_t* sp = os::Linux::ucontext_get_sp(uc);
 202       *fr = frame(sp + 1, fp, (address)*sp);
 203       if (!fr->is_java_frame()) {
 204         assert(!fr->is_first_frame(), "Safety check");
 205         // See java_sender() comment above.
 206         *fr = fr->java_sender();
 207       }
 208     }
 209   }
 210   assert(fr->is_java_frame(), "Safety check");
 211   return true;
 212 }
 213 
 214 // By default, gcc always save frame pointer (%ebp/%rbp) on stack. It may get
 215 // turned off by -fomit-frame-pointer,
 216 frame os::get_sender_for_C_frame(frame* fr) {
 217   return frame(fr->sender_sp(), fr->link(), fr->sender_pc());
 218 }
 219 
 220 intptr_t* _get_previous_fp() {
 221 #if defined(__clang__)
 222   intptr_t **ebp;
 223   __asm__ __volatile__ ("mov %%" SPELL_REG_FP ", %0":"=r"(ebp):);
 224 #else
 225   register intptr_t **ebp __asm__ (SPELL_REG_FP);
 226 #endif
 227   // ebp is for this frame (_get_previous_fp). We want the ebp for the
 228   // caller of os::current_frame*(), so go up two frames. However, for
 229   // optimized builds, _get_previous_fp() will be inlined, so only go
 230   // up 1 frame in that case.
 231 #ifdef _NMT_NOINLINE_
 232   return **(intptr_t***)ebp;
 233 #else
 234   return *ebp;
 235 #endif
 236 }
 237 
 238 
 239 frame os::current_frame() {
 240   intptr_t* fp = _get_previous_fp();
 241   frame myframe((intptr_t*)os::current_stack_pointer(),
 242                 (intptr_t*)fp,
 243                 CAST_FROM_FN_PTR(address, os::current_frame));
 244   if (os::is_first_C_frame(&myframe)) {
 245     // stack is not walkable
 246     return frame();
 247   } else {
 248     return os::get_sender_for_C_frame(&myframe);
 249   }
 250 }
 251 
 252 // Utility functions
 253 
 254 // From IA32 System Programming Guide
 255 enum {
 256   trap_page_fault = 0xE
 257 };
 258 
 259 extern "C" JNIEXPORT int
 260 JVM_handle_linux_signal(int sig,
 261                         siginfo_t* info,
 262                         void* ucVoid,
 263                         int abort_if_unrecognized) {
 264   ucontext_t* uc = (ucontext_t*) ucVoid;
 265 
 266   Thread* t = Thread::current_or_null_safe();
 267 
 268   // Must do this before SignalHandlerMark, if crash protection installed we will longjmp away
 269   // (no destructors can be run)
 270   os::ThreadCrashProtection::check_crash_protection(sig, t);
 271 
 272   SignalHandlerMark shm(t);
 273 
 274   // Note: it's not uncommon that JNI code uses signal/sigset to install
 275   // then restore certain signal handler (e.g. to temporarily block SIGPIPE,
 276   // or have a SIGILL handler when detecting CPU type). When that happens,
 277   // JVM_handle_linux_signal() might be invoked with junk info/ucVoid. To
 278   // avoid unnecessary crash when libjsig is not preloaded, try handle signals
 279   // that do not require siginfo/ucontext first.
 280 
 281   if (sig == SIGPIPE || sig == SIGXFSZ) {
 282     // allow chained handler to go first
 283     if (os::Linux::chained_handler(sig, info, ucVoid)) {
 284       return true;
 285     } else {
 286       // Ignoring SIGPIPE/SIGXFSZ - see bugs 4229104 or 6499219
 287       return true;
 288     }
 289   }
 290 
 291 #ifdef CAN_SHOW_REGISTERS_ON_ASSERT
 292   if ((sig == SIGSEGV || sig == SIGBUS) && info != NULL && info->si_addr == g_assert_poison) {
 293     if (handle_assert_poison_fault(ucVoid, info->si_addr)) {
 294       return 1;
 295     }
 296   }
 297 #endif
 298 
 299   JavaThread* thread = NULL;
 300   VMThread* vmthread = NULL;
 301   if (os::Linux::signal_handlers_are_installed) {
 302     if (t != NULL ){
 303       if(t->is_Java_thread()) {
 304         thread = (JavaThread*)t;
 305       }
 306       else if(t->is_VM_thread()){
 307         vmthread = (VMThread *)t;
 308       }
 309     }
 310   }
 311 /*
 312   NOTE: does not seem to work on linux.
 313   if (info == NULL || info->si_code <= 0 || info->si_code == SI_NOINFO) {
 314     // can't decode this kind of signal
 315     info = NULL;
 316   } else {
 317     assert(sig == info->si_signo, "bad siginfo");
 318   }
 319 */
 320   // decide if this trap can be handled by a stub
 321   address stub = NULL;
 322 
 323   address pc          = NULL;
 324 
 325   //%note os_trap_1
 326   if (info != NULL && uc != NULL && thread != NULL) {
 327     pc = (address) os::Linux::ucontext_get_pc(uc);
 328 
 329     if (StubRoutines::is_safefetch_fault(pc)) {
 330       os::Linux::ucontext_set_pc(uc, StubRoutines::continuation_for_safefetch_fault(pc));
 331       return 1;
 332     }
 333 
 334 #ifndef AMD64
 335     // Halt if SI_KERNEL before more crashes get misdiagnosed as Java bugs
 336     // This can happen in any running code (currently more frequently in
 337     // interpreter code but has been seen in compiled code)
 338     if (sig == SIGSEGV && info->si_addr == 0 && info->si_code == SI_KERNEL) {
 339       fatal("An irrecoverable SI_KERNEL SIGSEGV has occurred due "
 340             "to unstable signal handling in this distribution.");
 341     }
 342 #endif // AMD64
 343 
 344     // Handle ALL stack overflow variations here
 345     if (sig == SIGSEGV) {
 346       address addr = (address) info->si_addr;
 347 
 348       // check if fault address is within thread stack
 349       if (thread->is_in_full_stack(addr)) {
 350         // stack overflow
 351         if (thread->in_stack_yellow_reserved_zone(addr)) {
 352           if (thread->thread_state() == _thread_in_Java) {
 353             if (thread->in_stack_reserved_zone(addr)) {
 354               frame fr;
 355               if (os::Linux::get_frame_at_stack_banging_point(thread, uc, &fr)) {
 356                 assert(fr.is_java_frame(), "Must be a Java frame");
 357                 frame activation =
 358                   SharedRuntime::look_for_reserved_stack_annotated_method(thread, fr);
 359                 if (activation.sp() != NULL) {
 360                   thread->disable_stack_reserved_zone();
 361                   if (activation.is_interpreted_frame()) {
 362                     thread->set_reserved_stack_activation((address)(
 363                       activation.fp() + frame::interpreter_frame_initial_sp_offset));
 364                   } else {
 365                     thread->set_reserved_stack_activation((address)activation.unextended_sp());
 366                   }
 367                   return 1;
 368                 }
 369               }
 370             }
 371             // Throw a stack overflow exception.  Guard pages will be reenabled
 372             // while unwinding the stack.
 373             thread->disable_stack_yellow_reserved_zone();
 374             stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW);
 375           } else {
 376             // Thread was in the vm or native code.  Return and try to finish.
 377             thread->disable_stack_yellow_reserved_zone();
 378             return 1;
 379           }
 380         } else if (thread->in_stack_red_zone(addr)) {
 381           // Fatal red zone violation.  Disable the guard pages and fall through
 382           // to handle_unexpected_exception way down below.
 383           thread->disable_stack_red_zone();
 384           tty->print_raw_cr("An irrecoverable stack overflow has occurred.");
 385 
 386           // This is a likely cause, but hard to verify. Let's just print
 387           // it as a hint.
 388           tty->print_raw_cr("Please check if any of your loaded .so files has "
 389                             "enabled executable stack (see man page execstack(8))");
 390         } else {
 391           // Accessing stack address below sp may cause SEGV if current
 392           // thread has MAP_GROWSDOWN stack. This should only happen when
 393           // current thread was created by user code with MAP_GROWSDOWN flag
 394           // and then attached to VM. See notes in os_linux.cpp.
 395           if (thread->osthread()->expanding_stack() == 0) {
 396              thread->osthread()->set_expanding_stack();
 397              if (os::Linux::manually_expand_stack(thread, addr)) {
 398                thread->osthread()->clear_expanding_stack();
 399                return 1;
 400              }
 401              thread->osthread()->clear_expanding_stack();
 402           } else {
 403              fatal("recursive segv. expanding stack.");
 404           }
 405         }
 406       }
 407     }
 408 
 409     if ((sig == SIGSEGV) && VM_Version::is_cpuinfo_segv_addr(pc)) {
 410       // Verify that OS save/restore AVX registers.
 411       stub = VM_Version::cpuinfo_cont_addr();
 412     }
 413 
 414     if (thread->thread_state() == _thread_in_Java) {
 415       // Java thread running in Java code => find exception handler if any
 416       // a fault inside compiled code, the interpreter, or a stub
 417 
 418       if (sig == SIGSEGV && SafepointMechanism::is_poll_address((address)info->si_addr)) {
 419         stub = SharedRuntime::get_poll_stub(pc);
 420       } else if (sig == SIGBUS /* && info->si_code == BUS_OBJERR */) {
 421         // BugId 4454115: A read from a MappedByteBuffer can fault
 422         // here if the underlying file has been truncated.
 423         // Do not crash the VM in such a case.
 424         CodeBlob* cb = CodeCache::find_blob_unsafe(pc);
 425         CompiledMethod* nm = (cb != NULL) ? cb->as_compiled_method_or_null() : NULL;
 426         bool is_unsafe_arraycopy = thread->doing_unsafe_access() && UnsafeCopyMemory::contains_pc(pc);
 427         if ((nm != NULL && nm->has_unsafe_access()) || is_unsafe_arraycopy) {
 428           address next_pc = Assembler::locate_next_instruction(pc);
 429           if (is_unsafe_arraycopy) {
 430             next_pc = UnsafeCopyMemory::page_error_continue_pc(pc);
 431           }
 432           stub = SharedRuntime::handle_unsafe_access(thread, next_pc);
 433         }
 434       }
 435       else
 436 
 437 #ifdef AMD64
 438       if (sig == SIGFPE  &&
 439           (info->si_code == FPE_INTDIV || info->si_code == FPE_FLTDIV)) {
 440         stub =
 441           SharedRuntime::
 442           continuation_for_implicit_exception(thread,
 443                                               pc,
 444                                               SharedRuntime::
 445                                               IMPLICIT_DIVIDE_BY_ZERO);
 446 #else
 447       if (sig == SIGFPE /* && info->si_code == FPE_INTDIV */) {
 448         // HACK: si_code does not work on linux 2.2.12-20!!!
 449         int op = pc[0];
 450         if (op == 0xDB) {
 451           // FIST
 452           // TODO: The encoding of D2I in i486.ad can cause an exception
 453           // prior to the fist instruction if there was an invalid operation
 454           // pending. We want to dismiss that exception. From the win_32
 455           // side it also seems that if it really was the fist causing
 456           // the exception that we do the d2i by hand with different
 457           // rounding. Seems kind of weird.
 458           // NOTE: that we take the exception at the NEXT floating point instruction.
 459           assert(pc[0] == 0xDB, "not a FIST opcode");
 460           assert(pc[1] == 0x14, "not a FIST opcode");
 461           assert(pc[2] == 0x24, "not a FIST opcode");
 462           return true;
 463         } else if (op == 0xF7) {
 464           // IDIV
 465           stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO);
 466         } else {
 467           // TODO: handle more cases if we are using other x86 instructions
 468           //   that can generate SIGFPE signal on linux.
 469           tty->print_cr("unknown opcode 0x%X with SIGFPE.", op);
 470           fatal("please update this code.");
 471         }
 472 #endif // AMD64
 473       } else if (sig == SIGSEGV &&
 474                  MacroAssembler::uses_implicit_null_check(info->si_addr)) {
 475           // Determination of interpreter/vtable stub/compiled code null exception
 476           stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
 477       }
 478     } else if ((thread->thread_state() == _thread_in_vm ||
 479                 thread->thread_state() == _thread_in_native) &&
 480                (sig == SIGBUS && /* info->si_code == BUS_OBJERR && */
 481                thread->doing_unsafe_access())) {
 482         address next_pc = Assembler::locate_next_instruction(pc);
 483         if (UnsafeCopyMemory::contains_pc(pc)) {
 484           next_pc = UnsafeCopyMemory::page_error_continue_pc(pc);
 485         }
 486         stub = SharedRuntime::handle_unsafe_access(thread, next_pc);
 487     }
 488 
 489     // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks in
 490     // and the heap gets shrunk before the field access.
 491     if ((sig == SIGSEGV) || (sig == SIGBUS)) {
 492       address addr = JNI_FastGetField::find_slowcase_pc(pc);
 493       if (addr != (address)-1) {
 494         stub = addr;
 495       }
 496     }
 497   }
 498 
 499 #ifndef AMD64
 500   // Execution protection violation
 501   //
 502   // This should be kept as the last step in the triage.  We don't
 503   // have a dedicated trap number for a no-execute fault, so be
 504   // conservative and allow other handlers the first shot.
 505   //
 506   // Note: We don't test that info->si_code == SEGV_ACCERR here.
 507   // this si_code is so generic that it is almost meaningless; and
 508   // the si_code for this condition may change in the future.
 509   // Furthermore, a false-positive should be harmless.
 510   if (UnguardOnExecutionViolation > 0 &&
 511       (sig == SIGSEGV || sig == SIGBUS) &&
 512       uc->uc_mcontext.gregs[REG_TRAPNO] == trap_page_fault) {
 513     int page_size = os::vm_page_size();
 514     address addr = (address) info->si_addr;
 515     address pc = os::Linux::ucontext_get_pc(uc);
 516     // Make sure the pc and the faulting address are sane.
 517     //
 518     // If an instruction spans a page boundary, and the page containing
 519     // the beginning of the instruction is executable but the following
 520     // page is not, the pc and the faulting address might be slightly
 521     // different - we still want to unguard the 2nd page in this case.
 522     //
 523     // 15 bytes seems to be a (very) safe value for max instruction size.
 524     bool pc_is_near_addr =
 525       (pointer_delta((void*) addr, (void*) pc, sizeof(char)) < 15);
 526     bool instr_spans_page_boundary =
 527       (align_down((intptr_t) pc ^ (intptr_t) addr,
 528                        (intptr_t) page_size) > 0);
 529 
 530     if (pc == addr || (pc_is_near_addr && instr_spans_page_boundary)) {
 531       static volatile address last_addr =
 532         (address) os::non_memory_address_word();
 533 
 534       // In conservative mode, don't unguard unless the address is in the VM
 535       if (addr != last_addr &&
 536           (UnguardOnExecutionViolation > 1 || os::address_is_in_vm(addr))) {
 537 
 538         // Set memory to RWX and retry
 539         address page_start = align_down(addr, page_size);
 540         bool res = os::protect_memory((char*) page_start, page_size,
 541                                       os::MEM_PROT_RWX);
 542 
 543         log_debug(os)("Execution protection violation "
 544                       "at " INTPTR_FORMAT
 545                       ", unguarding " INTPTR_FORMAT ": %s, errno=%d", p2i(addr),
 546                       p2i(page_start), (res ? "success" : "failed"), errno);
 547         stub = pc;
 548 
 549         // Set last_addr so if we fault again at the same address, we don't end
 550         // up in an endless loop.
 551         //
 552         // There are two potential complications here.  Two threads trapping at
 553         // the same address at the same time could cause one of the threads to
 554         // think it already unguarded, and abort the VM.  Likely very rare.
 555         //
 556         // The other race involves two threads alternately trapping at
 557         // different addresses and failing to unguard the page, resulting in
 558         // an endless loop.  This condition is probably even more unlikely than
 559         // the first.
 560         //
 561         // Although both cases could be avoided by using locks or thread local
 562         // last_addr, these solutions are unnecessary complication: this
 563         // handler is a best-effort safety net, not a complete solution.  It is
 564         // disabled by default and should only be used as a workaround in case
 565         // we missed any no-execute-unsafe VM code.
 566 
 567         last_addr = addr;
 568       }
 569     }
 570   }
 571 #endif // !AMD64
 572 
 573   if (stub != NULL) {
 574     // save all thread context in case we need to restore it
 575     if (thread != NULL) thread->set_saved_exception_pc(pc);
 576 
 577     os::Linux::ucontext_set_pc(uc, stub);
 578     return true;
 579   }
 580 
 581   // signal-chaining
 582   if (os::Linux::chained_handler(sig, info, ucVoid)) {
 583      return true;
 584   }
 585 
 586   if (!abort_if_unrecognized) {
 587     // caller wants another chance, so give it to him
 588     return false;
 589   }
 590 
 591   if (pc == NULL && uc != NULL) {
 592     pc = os::Linux::ucontext_get_pc(uc);
 593   }
 594 
 595   // unmask current signal
 596   sigset_t newset;
 597   sigemptyset(&newset);
 598   sigaddset(&newset, sig);
 599   sigprocmask(SIG_UNBLOCK, &newset, NULL);
 600 
 601   VMError::report_and_die(t, sig, pc, info, ucVoid);
 602 
 603   ShouldNotReachHere();
 604   return true; // Mute compiler
 605 }
 606 
 607 void os::Linux::init_thread_fpu_state(void) {
 608 #ifndef AMD64
 609   // set fpu to 53 bit precision
 610   set_fpu_control_word(0x27f);
 611 #endif // !AMD64
 612 }
 613 
 614 int os::Linux::get_fpu_control_word(void) {
 615 #ifdef AMD64
 616   return 0;
 617 #else
 618   int fpu_control;
 619   _FPU_GETCW(fpu_control);
 620   return fpu_control & 0xffff;
 621 #endif // AMD64
 622 }
 623 
 624 void os::Linux::set_fpu_control_word(int fpu_control) {
 625 #ifndef AMD64
 626   _FPU_SETCW(fpu_control);
 627 #endif // !AMD64
 628 }
 629 
 630 // Check that the linux kernel version is 2.4 or higher since earlier
 631 // versions do not support SSE without patches.
 632 bool os::supports_sse() {
 633 #ifdef AMD64
 634   return true;
 635 #else
 636   struct utsname uts;
 637   if( uname(&uts) != 0 ) return false; // uname fails?
 638   char *minor_string;
 639   int major = strtol(uts.release,&minor_string,10);
 640   int minor = strtol(minor_string+1,NULL,10);
 641   bool result = (major > 2 || (major==2 && minor >= 4));
 642   log_info(os)("OS version is %d.%d, which %s support SSE/SSE2",
 643                major,minor, result ? "DOES" : "does NOT");
 644   return result;
 645 #endif // AMD64
 646 }
 647 
 648 bool os::is_allocatable(size_t bytes) {
 649 #ifdef AMD64
 650   // unused on amd64?
 651   return true;
 652 #else
 653 
 654   if (bytes < 2 * G) {
 655     return true;
 656   }
 657 
 658   char* addr = reserve_memory(bytes, NULL);
 659 
 660   if (addr != NULL) {
 661     release_memory(addr, bytes);
 662   }
 663 
 664   return addr != NULL;
 665 #endif // AMD64
 666 }
 667 
 668 ////////////////////////////////////////////////////////////////////////////////
 669 // thread stack
 670 
 671 // Minimum usable stack sizes required to get to user code. Space for
 672 // HotSpot guard pages is added later.
 673 size_t os::Posix::_compiler_thread_min_stack_allowed = 48 * K;
 674 size_t os::Posix::_java_thread_min_stack_allowed = 40 * K;
 675 #ifdef _LP64
 676 size_t os::Posix::_vm_internal_thread_min_stack_allowed = 64 * K;
 677 #else
 678 size_t os::Posix::_vm_internal_thread_min_stack_allowed = (48 DEBUG_ONLY(+ 4)) * K;
 679 #endif // _LP64
 680 
 681 // return default stack size for thr_type
 682 size_t os::Posix::default_stack_size(os::ThreadType thr_type) {
 683   // default stack size (compiler thread needs larger stack)
 684 #ifdef AMD64
 685   size_t s = (thr_type == os::compiler_thread ? 4 * M : 1 * M);
 686 #else
 687   size_t s = (thr_type == os::compiler_thread ? 2 * M : 512 * K);
 688 #endif // AMD64
 689   return s;
 690 }
 691 
 692 /////////////////////////////////////////////////////////////////////////////
 693 // helper functions for fatal error handler
 694 
 695 void os::print_context(outputStream *st, const void *context) {
 696   if (context == NULL) return;
 697 
 698   const ucontext_t *uc = (const ucontext_t*)context;
 699   st->print_cr("Registers:");
 700 #ifdef AMD64
 701   st->print(  "RAX=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_RAX]);
 702   st->print(", RBX=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_RBX]);
 703   st->print(", RCX=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_RCX]);
 704   st->print(", RDX=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_RDX]);
 705   st->cr();
 706   st->print(  "RSP=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_RSP]);
 707   st->print(", RBP=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_RBP]);
 708   st->print(", RSI=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_RSI]);
 709   st->print(", RDI=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_RDI]);
 710   st->cr();
 711   st->print(  "R8 =" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_R8]);
 712   st->print(", R9 =" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_R9]);
 713   st->print(", R10=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_R10]);
 714   st->print(", R11=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_R11]);
 715   st->cr();
 716   st->print(  "R12=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_R12]);
 717   st->print(", R13=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_R13]);
 718   st->print(", R14=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_R14]);
 719   st->print(", R15=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_R15]);
 720   st->cr();
 721   st->print(  "RIP=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_RIP]);
 722   st->print(", EFLAGS=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_EFL]);
 723   st->print(", CSGSFS=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_CSGSFS]);
 724   st->print(", ERR=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_ERR]);
 725   st->cr();
 726   st->print("  TRAPNO=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_TRAPNO]);
 727 #else
 728   st->print(  "EAX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EAX]);
 729   st->print(", EBX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EBX]);
 730   st->print(", ECX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_ECX]);
 731   st->print(", EDX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EDX]);
 732   st->cr();
 733   st->print(  "ESP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_UESP]);
 734   st->print(", EBP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EBP]);
 735   st->print(", ESI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_ESI]);
 736   st->print(", EDI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EDI]);
 737   st->cr();
 738   st->print(  "EIP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EIP]);
 739   st->print(", EFLAGS=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EFL]);
 740   st->print(", CR2=" PTR64_FORMAT, (uint64_t)uc->uc_mcontext.cr2);
 741 #endif // AMD64
 742   st->cr();
 743   st->cr();
 744 
 745   intptr_t *sp = (intptr_t *)os::Linux::ucontext_get_sp(uc);
 746   st->print_cr("Top of Stack: (sp=" PTR_FORMAT ")", p2i(sp));
 747   print_hex_dump(st, (address)sp, (address)(sp + 8), sizeof(intptr_t));
 748   st->cr();
 749 
 750   // Note: it may be unsafe to inspect memory near pc. For example, pc may
 751   // point to garbage if entry point in an nmethod is corrupted. Leave
 752   // this at the end, and hope for the best.
 753   address pc = os::Linux::ucontext_get_pc(uc);
 754   print_instructions(st, pc, sizeof(char));
 755   st->cr();
 756 }
 757 
 758 void os::print_register_info(outputStream *st, const void *context) {
 759   if (context == NULL) return;
 760 
 761   const ucontext_t *uc = (const ucontext_t*)context;
 762 
 763   st->print_cr("Register to memory mapping:");
 764   st->cr();
 765 
 766   // this is horrendously verbose but the layout of the registers in the
 767   // context does not match how we defined our abstract Register set, so
 768   // we can't just iterate through the gregs area
 769 
 770   // this is only for the "general purpose" registers
 771 
 772 #ifdef AMD64
 773   st->print("RAX="); print_location(st, uc->uc_mcontext.gregs[REG_RAX]);
 774   st->print("RBX="); print_location(st, uc->uc_mcontext.gregs[REG_RBX]);
 775   st->print("RCX="); print_location(st, uc->uc_mcontext.gregs[REG_RCX]);
 776   st->print("RDX="); print_location(st, uc->uc_mcontext.gregs[REG_RDX]);
 777   st->print("RSP="); print_location(st, uc->uc_mcontext.gregs[REG_RSP]);
 778   st->print("RBP="); print_location(st, uc->uc_mcontext.gregs[REG_RBP]);
 779   st->print("RSI="); print_location(st, uc->uc_mcontext.gregs[REG_RSI]);
 780   st->print("RDI="); print_location(st, uc->uc_mcontext.gregs[REG_RDI]);
 781   st->print("R8 ="); print_location(st, uc->uc_mcontext.gregs[REG_R8]);
 782   st->print("R9 ="); print_location(st, uc->uc_mcontext.gregs[REG_R9]);
 783   st->print("R10="); print_location(st, uc->uc_mcontext.gregs[REG_R10]);
 784   st->print("R11="); print_location(st, uc->uc_mcontext.gregs[REG_R11]);
 785   st->print("R12="); print_location(st, uc->uc_mcontext.gregs[REG_R12]);
 786   st->print("R13="); print_location(st, uc->uc_mcontext.gregs[REG_R13]);
 787   st->print("R14="); print_location(st, uc->uc_mcontext.gregs[REG_R14]);
 788   st->print("R15="); print_location(st, uc->uc_mcontext.gregs[REG_R15]);
 789 #else
 790   st->print("EAX="); print_location(st, uc->uc_mcontext.gregs[REG_EAX]);
 791   st->print("EBX="); print_location(st, uc->uc_mcontext.gregs[REG_EBX]);
 792   st->print("ECX="); print_location(st, uc->uc_mcontext.gregs[REG_ECX]);
 793   st->print("EDX="); print_location(st, uc->uc_mcontext.gregs[REG_EDX]);
 794   st->print("ESP="); print_location(st, uc->uc_mcontext.gregs[REG_ESP]);
 795   st->print("EBP="); print_location(st, uc->uc_mcontext.gregs[REG_EBP]);
 796   st->print("ESI="); print_location(st, uc->uc_mcontext.gregs[REG_ESI]);
 797   st->print("EDI="); print_location(st, uc->uc_mcontext.gregs[REG_EDI]);
 798 #endif // AMD64
 799 
 800   st->cr();
 801 }
 802 
 803 void os::setup_fpu() {
 804 #ifndef AMD64
 805   address fpu_cntrl = StubRoutines::addr_fpu_cntrl_wrd_std();
 806   __asm__ volatile (  "fldcw (%0)" :
 807                       : "r" (fpu_cntrl) : "memory");
 808 #endif // !AMD64
 809 }
 810 
 811 #ifndef PRODUCT
 812 void os::verify_stack_alignment() {
 813 #ifdef AMD64
 814   assert(((intptr_t)os::current_stack_pointer() & (StackAlignmentInBytes-1)) == 0, "incorrect stack alignment");
 815 #endif
 816 }
 817 #endif
 818 
 819 
 820 /*
 821  * IA32 only: execute code at a high address in case buggy NX emulation is present. I.e. avoid CS limit
 822  * updates (JDK-8023956).
 823  */
 824 void os::workaround_expand_exec_shield_cs_limit() {
 825 #if defined(IA32)
 826   assert(Linux::initial_thread_stack_bottom() != NULL, "sanity");
 827   size_t page_size = os::vm_page_size();
 828 
 829   /*
 830    * JDK-8197429
 831    *
 832    * Expand the stack mapping to the end of the initial stack before
 833    * attempting to install the codebuf.  This is needed because newer
 834    * Linux kernels impose a distance of a megabyte between stack
 835    * memory and other memory regions.  If we try to install the
 836    * codebuf before expanding the stack the installation will appear
 837    * to succeed but we'll get a segfault later if we expand the stack
 838    * in Java code.
 839    *
 840    */
 841   if (os::is_primordial_thread()) {
 842     address limit = Linux::initial_thread_stack_bottom();
 843     if (! DisablePrimordialThreadGuardPages) {
 844       limit += JavaThread::stack_red_zone_size() +
 845         JavaThread::stack_yellow_zone_size();
 846     }
 847     os::Linux::expand_stack_to(limit);
 848   }
 849 
 850   /*
 851    * Take the highest VA the OS will give us and exec
 852    *
 853    * Although using -(pagesz) as mmap hint works on newer kernel as you would
 854    * think, older variants affected by this work-around don't (search forward only).
 855    *
 856    * On the affected distributions, we understand the memory layout to be:
 857    *
 858    *   TASK_LIMIT= 3G, main stack base close to TASK_LIMT.
 859    *
 860    * A few pages south main stack will do it.
 861    *
 862    * If we are embedded in an app other than launcher (initial != main stack),
 863    * we don't have much control or understanding of the address space, just let it slide.
 864    */
 865   char* hint = (char*)(Linux::initial_thread_stack_bottom() -
 866                        (JavaThread::stack_guard_zone_size() + page_size));
 867   char* codebuf = os::attempt_reserve_memory_at(page_size, hint);
 868 
 869   if (codebuf == NULL) {
 870     // JDK-8197429: There may be a stack gap of one megabyte between
 871     // the limit of the stack and the nearest memory region: this is a
 872     // Linux kernel workaround for CVE-2017-1000364.  If we failed to
 873     // map our codebuf, try again at an address one megabyte lower.
 874     hint -= 1 * M;
 875     codebuf = os::attempt_reserve_memory_at(page_size, hint);
 876   }
 877 
 878   if ((codebuf == NULL) || (!os::commit_memory(codebuf, page_size, true))) {
 879     return; // No matter, we tried, best effort.
 880   }
 881 
 882   MemTracker::record_virtual_memory_type((address)codebuf, mtInternal);
 883 
 884   log_info(os)("[CS limit NX emulation work-around, exec code at: %p]", codebuf);
 885 
 886   // Some code to exec: the 'ret' instruction
 887   codebuf[0] = 0xC3;
 888 
 889   // Call the code in the codebuf
 890   __asm__ volatile("call *%0" : : "r"(codebuf));
 891 
 892   // keep the page mapped so CS limit isn't reduced.
 893 #endif
 894 }
 895 
 896 int os::extra_bang_size_in_bytes() {
 897   // JDK-8050147 requires the full cache line bang for x86.
 898   return VM_Version::L1_line_size();
 899 }