--- old/src/hotspot/os_cpu/solaris_x86/os_solaris_x86.cpp 2020-05-01 02:30:04.868830378 -0700 +++ /dev/null 2020-03-09 18:57:19.455001459 -0700 @@ -1,946 +0,0 @@ -/* - * Copyright (c) 1999, 2020, Oracle and/or its affiliates. All rights reserved. - * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. - * - * This code is free software; you can redistribute it and/or modify it - * under the terms of the GNU General Public License version 2 only, as - * published by the Free Software Foundation. - * - * This code is distributed in the hope that it will be useful, but WITHOUT - * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or - * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License - * version 2 for more details (a copy is included in the LICENSE file that - * accompanied this code). - * - * You should have received a copy of the GNU General Public License version - * 2 along with this work; if not, write to the Free Software Foundation, - * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. - * - * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA - * or visit www.oracle.com if you need additional information or have any - * questions. - * - */ - -// no precompiled headers -#include "jvm.h" -#include "asm/macroAssembler.hpp" -#include "classfile/classLoader.hpp" -#include "classfile/systemDictionary.hpp" -#include "classfile/vmSymbols.hpp" -#include "code/codeCache.hpp" -#include "code/icBuffer.hpp" -#include "code/vtableStubs.hpp" -#include "interpreter/interpreter.hpp" -#include "logging/log.hpp" -#include "memory/allocation.inline.hpp" -#include "os_share_solaris.hpp" -#include "prims/jniFastGetField.hpp" -#include "prims/jvm_misc.hpp" -#include "runtime/arguments.hpp" -#include "runtime/extendedPC.hpp" -#include "runtime/frame.inline.hpp" -#include "runtime/interfaceSupport.inline.hpp" -#include "runtime/java.hpp" -#include "runtime/javaCalls.hpp" -#include "runtime/mutexLocker.hpp" -#include "runtime/osThread.hpp" -#include "runtime/safepointMechanism.hpp" -#include "runtime/sharedRuntime.hpp" -#include "runtime/stubRoutines.hpp" -#include "runtime/thread.inline.hpp" -#include "runtime/timer.hpp" -#include "utilities/align.hpp" -#include "utilities/events.hpp" -#include "utilities/vmError.hpp" - -// put OS-includes here -# include -# include -# include -# include -# include -# include -# include -# include -# include -# include -# include -# include -# include -# include -# include -# include -# include -# include -# include -# include -# include -# include // see comment in - -#ifndef AMD64 -// QQQ seems useless at this point -# define _STRUCTURED_PROC 1 // this gets us the new structured proc interfaces of 5.6 & later -#endif // AMD64 -# include // see comment in - - -#define MAX_PATH (2 * K) - -// Minimum usable stack sizes required to get to user code. Space for -// HotSpot guard pages is added later. -#ifdef _LP64 -// The adlc generated method 'State::MachNodeGenerator(int)' used by the C2 compiler -// threads requires a large stack with the Solaris Studio C++ compiler version 5.13 -// and product VM builds (debug builds require significantly less stack space). -size_t os::Posix::_compiler_thread_min_stack_allowed = 325 * K; -size_t os::Posix::_java_thread_min_stack_allowed = 48 * K; -size_t os::Posix::_vm_internal_thread_min_stack_allowed = 224 * K; -#else -size_t os::Posix::_compiler_thread_min_stack_allowed = 32 * K; -size_t os::Posix::_java_thread_min_stack_allowed = 32 * K; -size_t os::Posix::_vm_internal_thread_min_stack_allowed = 64 * K; -#endif // _LP64 - -#ifdef AMD64 -#define REG_SP REG_RSP -#define REG_PC REG_RIP -#define REG_FP REG_RBP -#else -#define REG_SP UESP -#define REG_PC EIP -#define REG_FP EBP -// 4900493 counter to prevent runaway LDTR refresh attempt - -static volatile int ldtr_refresh = 0; -// the libthread instruction that faults because of the stale LDTR - -static const unsigned char movlfs[] = { 0x8e, 0xe0 // movl %eax,%fs - }; -#endif // AMD64 - -char* os::non_memory_address_word() { - // Must never look like an address returned by reserve_memory, - // even in its subfields (as defined by the CPU immediate fields, - // if the CPU splits constants across multiple instructions). - return (char*) -1; -} - -// -// Validate a ucontext retrieved from walking a uc_link of a ucontext. -// There are issues with libthread giving out uc_links for different threads -// on the same uc_link chain and bad or circular links. -// -bool os::Solaris::valid_ucontext(Thread* thread, const ucontext_t* valid, const ucontext_t* suspect) { - if (valid >= suspect || - valid->uc_stack.ss_flags != suspect->uc_stack.ss_flags || - valid->uc_stack.ss_sp != suspect->uc_stack.ss_sp || - valid->uc_stack.ss_size != suspect->uc_stack.ss_size) { - DEBUG_ONLY(tty->print_cr("valid_ucontext: failed test 1");) - return false; - } - - if (thread->is_Java_thread()) { - if (!thread->is_in_full_stack_checked((address)suspect)) { - DEBUG_ONLY(tty->print_cr("valid_ucontext: uc_link not in thread stack");) - return false; - } - if (!thread->is_in_full_stack_checked((address) suspect->uc_mcontext.gregs[REG_SP])) { - DEBUG_ONLY(tty->print_cr("valid_ucontext: stackpointer not in thread stack");) - return false; - } - } - return true; -} - -// We will only follow one level of uc_link since there are libthread -// issues with ucontext linking and it is better to be safe and just -// let caller retry later. -const ucontext_t* os::Solaris::get_valid_uc_in_signal_handler(Thread *thread, - const ucontext_t *uc) { - - const ucontext_t *retuc = NULL; - - if (uc != NULL) { - if (uc->uc_link == NULL) { - // cannot validate without uc_link so accept current ucontext - retuc = uc; - } else if (os::Solaris::valid_ucontext(thread, uc, uc->uc_link)) { - // first ucontext is valid so try the next one - uc = uc->uc_link; - if (uc->uc_link == NULL) { - // cannot validate without uc_link so accept current ucontext - retuc = uc; - } else if (os::Solaris::valid_ucontext(thread, uc, uc->uc_link)) { - // the ucontext one level down is also valid so return it - retuc = uc; - } - } - } - return retuc; -} - -// Assumes ucontext is valid -ExtendedPC os::Solaris::ucontext_get_ExtendedPC(const ucontext_t *uc) { - return ExtendedPC((address)uc->uc_mcontext.gregs[REG_PC]); -} - -void os::Solaris::ucontext_set_pc(ucontext_t* uc, address pc) { - uc->uc_mcontext.gregs [REG_PC] = (greg_t) pc; -} - -// Assumes ucontext is valid -intptr_t* os::Solaris::ucontext_get_sp(const ucontext_t *uc) { - return (intptr_t*)uc->uc_mcontext.gregs[REG_SP]; -} - -// Assumes ucontext is valid -intptr_t* os::Solaris::ucontext_get_fp(const ucontext_t *uc) { - return (intptr_t*)uc->uc_mcontext.gregs[REG_FP]; -} - -address os::Solaris::ucontext_get_pc(const ucontext_t *uc) { - return (address) uc->uc_mcontext.gregs[REG_PC]; -} - -// For Forte Analyzer AsyncGetCallTrace profiling support - thread -// is currently interrupted by SIGPROF. -// -// The difference between this and os::fetch_frame_from_context() is that -// here we try to skip nested signal frames. -// This method is also used for stack overflow signal handling. -ExtendedPC os::Solaris::fetch_frame_from_ucontext(Thread* thread, - const ucontext_t* uc, intptr_t** ret_sp, intptr_t** ret_fp) { - - assert(thread != NULL, "just checking"); - assert(ret_sp != NULL, "just checking"); - assert(ret_fp != NULL, "just checking"); - - const ucontext_t *luc = os::Solaris::get_valid_uc_in_signal_handler(thread, uc); - return os::fetch_frame_from_context(luc, ret_sp, ret_fp); -} - -ExtendedPC os::fetch_frame_from_context(const void* ucVoid, - intptr_t** ret_sp, intptr_t** ret_fp) { - - ExtendedPC epc; - const ucontext_t *uc = (const ucontext_t*)ucVoid; - - if (uc != NULL) { - epc = os::Solaris::ucontext_get_ExtendedPC(uc); - if (ret_sp) *ret_sp = os::Solaris::ucontext_get_sp(uc); - if (ret_fp) *ret_fp = os::Solaris::ucontext_get_fp(uc); - } else { - // construct empty ExtendedPC for return value checking - epc = ExtendedPC(NULL); - if (ret_sp) *ret_sp = (intptr_t *)NULL; - if (ret_fp) *ret_fp = (intptr_t *)NULL; - } - - return epc; -} - -frame os::fetch_frame_from_context(const void* ucVoid) { - intptr_t* sp; - intptr_t* fp; - ExtendedPC epc = fetch_frame_from_context(ucVoid, &sp, &fp); - return frame(sp, fp, epc.pc()); -} - -frame os::fetch_frame_from_ucontext(Thread* thread, void* ucVoid) { - intptr_t* sp; - intptr_t* fp; - ExtendedPC epc = os::Solaris::fetch_frame_from_ucontext(thread, (ucontext_t*)ucVoid, &sp, &fp); - return frame(sp, fp, epc.pc()); -} - -bool os::Solaris::get_frame_at_stack_banging_point(JavaThread* thread, ucontext_t* uc, frame* fr) { - address pc = (address) os::Solaris::ucontext_get_pc(uc); - if (Interpreter::contains(pc)) { - // interpreter performs stack banging after the fixed frame header has - // been generated while the compilers perform it before. To maintain - // semantic consistency between interpreted and compiled frames, the - // method returns the Java sender of the current frame. - *fr = os::fetch_frame_from_ucontext(thread, uc); - if (!fr->is_first_java_frame()) { - // get_frame_at_stack_banging_point() is only called when we - // have well defined stacks so java_sender() calls do not need - // to assert safe_for_sender() first. - *fr = fr->java_sender(); - } - } else { - // more complex code with compiled code - assert(!Interpreter::contains(pc), "Interpreted methods should have been handled above"); - CodeBlob* cb = CodeCache::find_blob(pc); - if (cb == NULL || !cb->is_nmethod() || cb->is_frame_complete_at(pc)) { - // Not sure where the pc points to, fallback to default - // stack overflow handling - return false; - } else { - // in compiled code, the stack banging is performed just after the return pc - // has been pushed on the stack - intptr_t* fp = os::Solaris::ucontext_get_fp(uc); - intptr_t* sp = os::Solaris::ucontext_get_sp(uc); - *fr = frame(sp + 1, fp, (address)*sp); - if (!fr->is_java_frame()) { - // See java_sender() comment above. - *fr = fr->java_sender(); - } - } - } - assert(fr->is_java_frame(), "Safety check"); - return true; -} - -frame os::get_sender_for_C_frame(frame* fr) { - return frame(fr->sender_sp(), fr->link(), fr->sender_pc()); -} - -extern "C" intptr_t *_get_current_sp(); // in .il file - -address os::current_stack_pointer() { - return (address)_get_current_sp(); -} - -extern "C" intptr_t *_get_current_fp(); // in .il file - -frame os::current_frame() { - intptr_t* fp = _get_current_fp(); // it's inlined so want current fp - // fp is for os::current_frame. We want the fp for our caller. - frame myframe((intptr_t*)os::current_stack_pointer(), - (intptr_t*)fp, - CAST_FROM_FN_PTR(address, os::current_frame)); - frame caller_frame = os::get_sender_for_C_frame(&myframe); - - if (os::is_first_C_frame(&caller_frame)) { - // stack is not walkable - frame ret; // This will be a null useless frame - return ret; - } else { - // return frame for our caller's caller - return os::get_sender_for_C_frame(&caller_frame); - } -} - -#ifndef AMD64 - -// Detecting SSE support by OS -// From solaris_i486.s -extern "C" bool sse_check(); -extern "C" bool sse_unavailable(); - -enum { SSE_UNKNOWN, SSE_NOT_SUPPORTED, SSE_SUPPORTED}; -static int sse_status = SSE_UNKNOWN; - - -static void check_for_sse_support() { - if (!VM_Version::supports_sse()) { - sse_status = SSE_NOT_SUPPORTED; - return; - } - // looking for _sse_hw in libc.so, if it does not exist or - // the value (int) is 0, OS has no support for SSE - int *sse_hwp; - void *h; - - if ((h=dlopen("/usr/lib/libc.so", RTLD_LAZY)) == NULL) { - //open failed, presume no support for SSE - sse_status = SSE_NOT_SUPPORTED; - return; - } - if ((sse_hwp = (int *)dlsym(h, "_sse_hw")) == NULL) { - sse_status = SSE_NOT_SUPPORTED; - } else if (*sse_hwp == 0) { - sse_status = SSE_NOT_SUPPORTED; - } - dlclose(h); - - if (sse_status == SSE_UNKNOWN) { - bool (*try_sse)() = (bool (*)())sse_check; - sse_status = (*try_sse)() ? SSE_SUPPORTED : SSE_NOT_SUPPORTED; - } - -} - -#endif // AMD64 - -bool os::supports_sse() { -#ifdef AMD64 - return true; -#else - if (sse_status == SSE_UNKNOWN) - check_for_sse_support(); - return sse_status == SSE_SUPPORTED; -#endif // AMD64 -} - -bool os::is_allocatable(size_t bytes) { -#ifdef AMD64 - return true; -#else - - if (bytes < 2 * G) { - return true; - } - - char* addr = reserve_memory(bytes, NULL); - - if (addr != NULL) { - release_memory(addr, bytes); - } - - return addr != NULL; -#endif // AMD64 - -} - -extern "C" JNIEXPORT int -JVM_handle_solaris_signal(int sig, siginfo_t* info, void* ucVoid, - int abort_if_unrecognized) { - ucontext_t* uc = (ucontext_t*) ucVoid; - -#ifndef AMD64 - if (sig == SIGILL && info->si_addr == (caddr_t)sse_check) { - // the SSE instruction faulted. supports_sse() need return false. - uc->uc_mcontext.gregs[EIP] = (greg_t)sse_unavailable; - return true; - } -#endif // !AMD64 - - Thread* t = Thread::current_or_null_safe(); - - // Must do this before SignalHandlerMark, if crash protection installed we will longjmp away - // (no destructors can be run) - os::ThreadCrashProtection::check_crash_protection(sig, t); - - SignalHandlerMark shm(t); - - if(sig == SIGPIPE || sig == SIGXFSZ) { - if (os::Solaris::chained_handler(sig, info, ucVoid)) { - return true; - } else { - // Ignoring SIGPIPE/SIGXFSZ - see bugs 4229104 or 6499219 - return true; - } - } - - JavaThread* thread = NULL; - VMThread* vmthread = NULL; - - if (os::Solaris::signal_handlers_are_installed) { - if (t != NULL ){ - if(t->is_Java_thread()) { - thread = (JavaThread*)t; - } - else if(t->is_VM_thread()){ - vmthread = (VMThread *)t; - } - } - } - - if (sig == ASYNC_SIGNAL) { - if(thread || vmthread){ - OSThread::SR_handler(t, uc); - return true; - } else if (os::Solaris::chained_handler(sig, info, ucVoid)) { - return true; - } else { - // If ASYNC_SIGNAL not chained, and this is a non-vm and - // non-java thread - return true; - } - } - - if (info == NULL || info->si_code <= 0 || info->si_code == SI_NOINFO) { - // can't decode this kind of signal - info = NULL; - } else { - assert(sig == info->si_signo, "bad siginfo"); - } - - // decide if this trap can be handled by a stub - address stub = NULL; - - address pc = NULL; - - //%note os_trap_1 - if (info != NULL && uc != NULL && thread != NULL) { - // factor me: getPCfromContext - pc = (address) uc->uc_mcontext.gregs[REG_PC]; - - if (StubRoutines::is_safefetch_fault(pc)) { - os::Solaris::ucontext_set_pc(uc, StubRoutines::continuation_for_safefetch_fault(pc)); - return true; - } - - // Handle ALL stack overflow variations here - if (sig == SIGSEGV && info->si_code == SEGV_ACCERR) { - address addr = (address) info->si_addr; - if (thread->in_stack_yellow_reserved_zone(addr)) { - if (thread->thread_state() == _thread_in_Java) { - if (thread->in_stack_reserved_zone(addr)) { - frame fr; - if (os::Solaris::get_frame_at_stack_banging_point(thread, uc, &fr)) { - assert(fr.is_java_frame(), "Must be Java frame"); - frame activation = SharedRuntime::look_for_reserved_stack_annotated_method(thread, fr); - if (activation.sp() != NULL) { - thread->disable_stack_reserved_zone(); - if (activation.is_interpreted_frame()) { - thread->set_reserved_stack_activation((address)( - activation.fp() + frame::interpreter_frame_initial_sp_offset)); - } else { - thread->set_reserved_stack_activation((address)activation.unextended_sp()); - } - return true; - } - } - } - // Throw a stack overflow exception. Guard pages will be reenabled - // while unwinding the stack. - thread->disable_stack_yellow_reserved_zone(); - stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW); - } else { - // Thread was in the vm or native code. Return and try to finish. - thread->disable_stack_yellow_reserved_zone(); - return true; - } - } else if (thread->in_stack_red_zone(addr)) { - // Fatal red zone violation. Disable the guard pages and fall through - // to handle_unexpected_exception way down below. - thread->disable_stack_red_zone(); - tty->print_raw_cr("An irrecoverable stack overflow has occurred."); - } - } - - if ((sig == SIGSEGV) && VM_Version::is_cpuinfo_segv_addr(pc)) { - // Verify that OS save/restore AVX registers. - stub = VM_Version::cpuinfo_cont_addr(); - } - - if (thread->thread_state() == _thread_in_vm || - thread->thread_state() == _thread_in_native) { - if (sig == SIGBUS && info->si_code == BUS_OBJERR && thread->doing_unsafe_access()) { - address next_pc = Assembler::locate_next_instruction(pc); - if (UnsafeCopyMemory::contains_pc(pc)) { - next_pc = UnsafeCopyMemory::page_error_continue_pc(pc); - } - stub = SharedRuntime::handle_unsafe_access(thread, next_pc); - } - } - - if (thread->thread_state() == _thread_in_Java) { - // Support Safepoint Polling - if ( sig == SIGSEGV && SafepointMechanism::is_poll_address((address)info->si_addr)) { - stub = SharedRuntime::get_poll_stub(pc); - } - else if (sig == SIGBUS && info->si_code == BUS_OBJERR) { - // BugId 4454115: A read from a MappedByteBuffer can fault - // here if the underlying file has been truncated. - // Do not crash the VM in such a case. - CodeBlob* cb = CodeCache::find_blob_unsafe(pc); - if (cb != NULL) { - CompiledMethod* nm = cb->as_compiled_method_or_null(); - bool is_unsafe_arraycopy = thread->doing_unsafe_access() && UnsafeCopyMemory::contains_pc(pc); - if ((nm != NULL && nm->has_unsafe_access()) || is_unsafe_arraycopy) { - address next_pc = Assembler::locate_next_instruction(pc); - if (is_unsafe_arraycopy) { - next_pc = UnsafeCopyMemory::page_error_continue_pc(pc); - } - stub = SharedRuntime::handle_unsafe_access(thread, next_pc); - } - } - } - else - if (sig == SIGFPE && info->si_code == FPE_INTDIV) { - // integer divide by zero - stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO); - } -#ifndef AMD64 - else if (sig == SIGFPE && info->si_code == FPE_FLTDIV) { - // floating-point divide by zero - stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO); - } - else if (sig == SIGFPE && info->si_code == FPE_FLTINV) { - // The encoding of D2I in i486.ad can cause an exception prior - // to the fist instruction if there was an invalid operation - // pending. We want to dismiss that exception. From the win_32 - // side it also seems that if it really was the fist causing - // the exception that we do the d2i by hand with different - // rounding. Seems kind of weird. QQQ TODO - // Note that we take the exception at the NEXT floating point instruction. - if (pc[0] == 0xDB) { - assert(pc[0] == 0xDB, "not a FIST opcode"); - assert(pc[1] == 0x14, "not a FIST opcode"); - assert(pc[2] == 0x24, "not a FIST opcode"); - return true; - } else { - assert(pc[-3] == 0xDB, "not an flt invalid opcode"); - assert(pc[-2] == 0x14, "not an flt invalid opcode"); - assert(pc[-1] == 0x24, "not an flt invalid opcode"); - } - } - else if (sig == SIGFPE ) { - tty->print_cr("caught SIGFPE, info 0x%x.", info->si_code); - } -#endif // !AMD64 - - // QQQ It doesn't seem that we need to do this on x86 because we should be able - // to return properly from the handler without this extra stuff on the back side. - - else if (sig == SIGSEGV && info->si_code > 0 && - MacroAssembler::uses_implicit_null_check(info->si_addr)) { - // Determination of interpreter/vtable stub/compiled code null exception - stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL); - } - } - - // jni_fast_GetField can trap at certain pc's if a GC kicks in - // and the heap gets shrunk before the field access. - if ((sig == SIGSEGV) || (sig == SIGBUS)) { - address addr = JNI_FastGetField::find_slowcase_pc(pc); - if (addr != (address)-1) { - stub = addr; - } - } - } - - // Execution protection violation - // - // Preventative code for future versions of Solaris which may - // enable execution protection when running the 32-bit VM on AMD64. - // - // This should be kept as the last step in the triage. We don't - // have a dedicated trap number for a no-execute fault, so be - // conservative and allow other handlers the first shot. - // - // Note: We don't test that info->si_code == SEGV_ACCERR here. - // this si_code is so generic that it is almost meaningless; and - // the si_code for this condition may change in the future. - // Furthermore, a false-positive should be harmless. - if (UnguardOnExecutionViolation > 0 && - (sig == SIGSEGV || sig == SIGBUS) && - uc->uc_mcontext.gregs[TRAPNO] == T_PGFLT) { // page fault - int page_size = os::vm_page_size(); - address addr = (address) info->si_addr; - address pc = (address) uc->uc_mcontext.gregs[REG_PC]; - // Make sure the pc and the faulting address are sane. - // - // If an instruction spans a page boundary, and the page containing - // the beginning of the instruction is executable but the following - // page is not, the pc and the faulting address might be slightly - // different - we still want to unguard the 2nd page in this case. - // - // 15 bytes seems to be a (very) safe value for max instruction size. - bool pc_is_near_addr = - (pointer_delta((void*) addr, (void*) pc, sizeof(char)) < 15); - bool instr_spans_page_boundary = - (align_down((intptr_t) pc ^ (intptr_t) addr, - (intptr_t) page_size) > 0); - - if (pc == addr || (pc_is_near_addr && instr_spans_page_boundary)) { - static volatile address last_addr = - (address) os::non_memory_address_word(); - - // In conservative mode, don't unguard unless the address is in the VM - if (addr != last_addr && - (UnguardOnExecutionViolation > 1 || os::address_is_in_vm(addr))) { - - // Make memory rwx and retry - address page_start = align_down(addr, page_size); - bool res = os::protect_memory((char*) page_start, page_size, - os::MEM_PROT_RWX); - - log_debug(os)("Execution protection violation " - "at " INTPTR_FORMAT - ", unguarding " INTPTR_FORMAT ": %s, errno=%d", p2i(addr), - p2i(page_start), (res ? "success" : "failed"), errno); - stub = pc; - - // Set last_addr so if we fault again at the same address, we don't end - // up in an endless loop. - // - // There are two potential complications here. Two threads trapping at - // the same address at the same time could cause one of the threads to - // think it already unguarded, and abort the VM. Likely very rare. - // - // The other race involves two threads alternately trapping at - // different addresses and failing to unguard the page, resulting in - // an endless loop. This condition is probably even more unlikely than - // the first. - // - // Although both cases could be avoided by using locks or thread local - // last_addr, these solutions are unnecessary complication: this - // handler is a best-effort safety net, not a complete solution. It is - // disabled by default and should only be used as a workaround in case - // we missed any no-execute-unsafe VM code. - - last_addr = addr; - } - } - } - - if (stub != NULL) { - // save all thread context in case we need to restore it - - if (thread != NULL) thread->set_saved_exception_pc(pc); - // 12/02/99: On Sparc it appears that the full context is also saved - // but as yet, no one looks at or restores that saved context - os::Solaris::ucontext_set_pc(uc, stub); - return true; - } - - // signal-chaining - if (os::Solaris::chained_handler(sig, info, ucVoid)) { - return true; - } - - if (!abort_if_unrecognized) { - // caller wants another chance, so give it to him - return false; - } - - if (!os::Solaris::libjsig_is_loaded) { - struct sigaction oldAct; - sigaction(sig, (struct sigaction *)0, &oldAct); - if (oldAct.sa_sigaction != signalHandler) { - void* sighand = oldAct.sa_sigaction ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction) - : CAST_FROM_FN_PTR(void*, oldAct.sa_handler); - warning("Unexpected Signal %d occurred under user-defined signal handler %#lx", sig, (long)sighand); - } - } - - if (pc == NULL && uc != NULL) { - pc = (address) uc->uc_mcontext.gregs[REG_PC]; - } - - // unmask current signal - sigset_t newset; - sigemptyset(&newset); - sigaddset(&newset, sig); - sigprocmask(SIG_UNBLOCK, &newset, NULL); - - // Determine which sort of error to throw. Out of swap may signal - // on the thread stack, which could get a mapping error when touched. - address addr = (address) info->si_addr; - if (sig == SIGBUS && info->si_code == BUS_OBJERR && info->si_errno == ENOMEM) { - vm_exit_out_of_memory(0, OOM_MMAP_ERROR, "Out of swap space to map in thread stack."); - } - - VMError::report_and_die(t, sig, pc, info, ucVoid); - - ShouldNotReachHere(); - return false; -} - -void os::print_context(outputStream *st, const void *context) { - if (context == NULL) return; - - const ucontext_t *uc = (const ucontext_t*)context; - st->print_cr("Registers:"); -#ifdef AMD64 - st->print( "RAX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RAX]); - st->print(", RBX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RBX]); - st->print(", RCX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RCX]); - st->print(", RDX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RDX]); - st->cr(); - st->print( "RSP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RSP]); - st->print(", RBP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RBP]); - st->print(", RSI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RSI]); - st->print(", RDI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RDI]); - st->cr(); - st->print( "R8 =" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R8]); - st->print(", R9 =" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R9]); - st->print(", R10=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R10]); - st->print(", R11=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R11]); - st->cr(); - st->print( "R12=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R12]); - st->print(", R13=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R13]); - st->print(", R14=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R14]); - st->print(", R15=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R15]); - st->cr(); - st->print( "RIP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RIP]); - st->print(", RFLAGS=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RFL]); -#else - st->print( "EAX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EAX]); - st->print(", EBX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EBX]); - st->print(", ECX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[ECX]); - st->print(", EDX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EDX]); - st->cr(); - st->print( "ESP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[UESP]); - st->print(", EBP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EBP]); - st->print(", ESI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[ESI]); - st->print(", EDI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EDI]); - st->cr(); - st->print( "EIP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EIP]); - st->print(", EFLAGS=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EFL]); -#endif // AMD64 - st->cr(); - st->cr(); - - intptr_t *sp = (intptr_t *)os::Solaris::ucontext_get_sp(uc); - st->print_cr("Top of Stack: (sp=" PTR_FORMAT ")", sp); - print_hex_dump(st, (address)sp, (address)(sp + 8*sizeof(intptr_t)), sizeof(intptr_t)); - st->cr(); - - // Note: it may be unsafe to inspect memory near pc. For example, pc may - // point to garbage if entry point in an nmethod is corrupted. Leave - // this at the end, and hope for the best. - ExtendedPC epc = os::Solaris::ucontext_get_ExtendedPC(uc); - address pc = epc.pc(); - print_instructions(st, pc, sizeof(char)); - st->cr(); -} - -void os::print_register_info(outputStream *st, const void *context) { - if (context == NULL) return; - - const ucontext_t *uc = (const ucontext_t*)context; - - st->print_cr("Register to memory mapping:"); - st->cr(); - - // this is horrendously verbose but the layout of the registers in the - // context does not match how we defined our abstract Register set, so - // we can't just iterate through the gregs area - - // this is only for the "general purpose" registers - -#ifdef AMD64 - st->print("RAX="); print_location(st, uc->uc_mcontext.gregs[REG_RAX]); - st->print("RBX="); print_location(st, uc->uc_mcontext.gregs[REG_RBX]); - st->print("RCX="); print_location(st, uc->uc_mcontext.gregs[REG_RCX]); - st->print("RDX="); print_location(st, uc->uc_mcontext.gregs[REG_RDX]); - st->print("RSP="); print_location(st, uc->uc_mcontext.gregs[REG_RSP]); - st->print("RBP="); print_location(st, uc->uc_mcontext.gregs[REG_RBP]); - st->print("RSI="); print_location(st, uc->uc_mcontext.gregs[REG_RSI]); - st->print("RDI="); print_location(st, uc->uc_mcontext.gregs[REG_RDI]); - st->print("R8 ="); print_location(st, uc->uc_mcontext.gregs[REG_R8]); - st->print("R9 ="); print_location(st, uc->uc_mcontext.gregs[REG_R9]); - st->print("R10="); print_location(st, uc->uc_mcontext.gregs[REG_R10]); - st->print("R11="); print_location(st, uc->uc_mcontext.gregs[REG_R11]); - st->print("R12="); print_location(st, uc->uc_mcontext.gregs[REG_R12]); - st->print("R13="); print_location(st, uc->uc_mcontext.gregs[REG_R13]); - st->print("R14="); print_location(st, uc->uc_mcontext.gregs[REG_R14]); - st->print("R15="); print_location(st, uc->uc_mcontext.gregs[REG_R15]); -#else - st->print("EAX="); print_location(st, uc->uc_mcontext.gregs[EAX]); - st->print("EBX="); print_location(st, uc->uc_mcontext.gregs[EBX]); - st->print("ECX="); print_location(st, uc->uc_mcontext.gregs[ECX]); - st->print("EDX="); print_location(st, uc->uc_mcontext.gregs[EDX]); - st->print("ESP="); print_location(st, uc->uc_mcontext.gregs[UESP]); - st->print("EBP="); print_location(st, uc->uc_mcontext.gregs[EBP]); - st->print("ESI="); print_location(st, uc->uc_mcontext.gregs[ESI]); - st->print("EDI="); print_location(st, uc->uc_mcontext.gregs[EDI]); -#endif - - st->cr(); -} - - -#ifdef AMD64 -void os::Solaris::init_thread_fpu_state(void) { - // Nothing to do -} -#else -// From solaris_i486.s -extern "C" void fixcw(); - -void os::Solaris::init_thread_fpu_state(void) { - // Set fpu to 53 bit precision. This happens too early to use a stub. - fixcw(); -} - -// These routines are the initial value of atomic_xchg_entry(), -// atomic_cmpxchg_entry(), atomic_inc_entry() and fence_entry() -// until initialization is complete. -// TODO - replace with .il implementation when compiler supports it. - -typedef int32_t xchg_func_t (int32_t, volatile int32_t*); -typedef int32_t cmpxchg_func_t (int32_t, volatile int32_t*, int32_t); -typedef int64_t cmpxchg_long_func_t(int64_t, volatile int64_t*, int64_t); -typedef int32_t add_func_t (int32_t, volatile int32_t*); - -int32_t os::atomic_xchg_bootstrap(int32_t exchange_value, volatile int32_t* dest) { - // try to use the stub: - xchg_func_t* func = CAST_TO_FN_PTR(xchg_func_t*, StubRoutines::atomic_xchg_entry()); - - if (func != NULL) { - os::atomic_xchg_func = func; - return (*func)(exchange_value, dest); - } - assert(Threads::number_of_threads() == 0, "for bootstrap only"); - - int32_t old_value = *dest; - *dest = exchange_value; - return old_value; -} - -int32_t os::atomic_cmpxchg_bootstrap(int32_t exchange_value, volatile int32_t* dest, int32_t compare_value) { - // try to use the stub: - cmpxchg_func_t* func = CAST_TO_FN_PTR(cmpxchg_func_t*, StubRoutines::atomic_cmpxchg_entry()); - - if (func != NULL) { - os::atomic_cmpxchg_func = func; - return (*func)(exchange_value, dest, compare_value); - } - assert(Threads::number_of_threads() == 0, "for bootstrap only"); - - int32_t old_value = *dest; - if (old_value == compare_value) - *dest = exchange_value; - return old_value; -} - -int64_t os::atomic_cmpxchg_long_bootstrap(int64_t exchange_value, volatile int64_t* dest, int64_t compare_value) { - // try to use the stub: - cmpxchg_long_func_t* func = CAST_TO_FN_PTR(cmpxchg_long_func_t*, StubRoutines::atomic_cmpxchg_long_entry()); - - if (func != NULL) { - os::atomic_cmpxchg_long_func = func; - return (*func)(exchange_value, dest, compare_value); - } - assert(Threads::number_of_threads() == 0, "for bootstrap only"); - - int64_t old_value = *dest; - if (old_value == compare_value) - *dest = exchange_value; - return old_value; -} - -int32_t os::atomic_add_bootstrap(int32_t add_value, volatile int32_t* dest) { - // try to use the stub: - add_func_t* func = CAST_TO_FN_PTR(add_func_t*, StubRoutines::atomic_add_entry()); - - if (func != NULL) { - os::atomic_add_func = func; - return (*func)(add_value, dest); - } - assert(Threads::number_of_threads() == 0, "for bootstrap only"); - - return (*dest) += add_value; -} - -xchg_func_t* os::atomic_xchg_func = os::atomic_xchg_bootstrap; -cmpxchg_func_t* os::atomic_cmpxchg_func = os::atomic_cmpxchg_bootstrap; -cmpxchg_long_func_t* os::atomic_cmpxchg_long_func = os::atomic_cmpxchg_long_bootstrap; -add_func_t* os::atomic_add_func = os::atomic_add_bootstrap; - -extern "C" void _solaris_raw_setup_fpu(address ptr); -void os::setup_fpu() { - address fpu_cntrl = StubRoutines::addr_fpu_cntrl_wrd_std(); - _solaris_raw_setup_fpu(fpu_cntrl); -} -#endif // AMD64 - -#ifndef PRODUCT -void os::verify_stack_alignment() { -#ifdef AMD64 - assert(((intptr_t)os::current_stack_pointer() & (StackAlignmentInBytes-1)) == 0, "incorrect stack alignment"); -#endif -} -#endif - -int os::extra_bang_size_in_bytes() { - // JDK-8050147 requires the full cache line bang for x86. - return VM_Version::L1_line_size(); -}