1 /*
   2  * Copyright (c) 1998, 2020, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/assembler.inline.hpp"
  27 #include "asm/macroAssembler.inline.hpp"
  28 #include "code/compiledIC.hpp"
  29 #include "code/debugInfo.hpp"
  30 #include "code/debugInfoRec.hpp"
  31 #include "compiler/compileBroker.hpp"
  32 #include "compiler/compilerDirectives.hpp"
  33 #include "compiler/oopMap.hpp"
  34 #include "gc/shared/barrierSet.hpp"
  35 #include "gc/shared/c2/barrierSetC2.hpp"
  36 #include "memory/allocation.inline.hpp"
  37 #include "opto/ad.hpp"
  38 #include "opto/block.hpp"
  39 #include "opto/c2compiler.hpp"
  40 #include "opto/callnode.hpp"
  41 #include "opto/cfgnode.hpp"
  42 #include "opto/locknode.hpp"
  43 #include "opto/machnode.hpp"
  44 #include "opto/node.hpp"
  45 #include "opto/optoreg.hpp"
  46 #include "opto/output.hpp"
  47 #include "opto/regalloc.hpp"
  48 #include "opto/runtime.hpp"
  49 #include "opto/subnode.hpp"
  50 #include "opto/type.hpp"
  51 #include "runtime/handles.inline.hpp"
  52 #include "runtime/sharedRuntime.hpp"
  53 #include "utilities/macros.hpp"
  54 #include "utilities/powerOfTwo.hpp"
  55 #include "utilities/xmlstream.hpp"
  56 
  57 #ifndef PRODUCT
  58 #define DEBUG_ARG(x) , x
  59 #else
  60 #define DEBUG_ARG(x)
  61 #endif
  62 
  63 //------------------------------Scheduling----------------------------------
  64 // This class contains all the information necessary to implement instruction
  65 // scheduling and bundling.
  66 class Scheduling {
  67 
  68 private:
  69   // Arena to use
  70   Arena *_arena;
  71 
  72   // Control-Flow Graph info
  73   PhaseCFG *_cfg;
  74 
  75   // Register Allocation info
  76   PhaseRegAlloc *_regalloc;
  77 
  78   // Number of nodes in the method
  79   uint _node_bundling_limit;
  80 
  81   // List of scheduled nodes. Generated in reverse order
  82   Node_List _scheduled;
  83 
  84   // List of nodes currently available for choosing for scheduling
  85   Node_List _available;
  86 
  87   // For each instruction beginning a bundle, the number of following
  88   // nodes to be bundled with it.
  89   Bundle *_node_bundling_base;
  90 
  91   // Mapping from register to Node
  92   Node_List _reg_node;
  93 
  94   // Free list for pinch nodes.
  95   Node_List _pinch_free_list;
  96 
  97   // Latency from the beginning of the containing basic block (base 1)
  98   // for each node.
  99   unsigned short *_node_latency;
 100 
 101   // Number of uses of this node within the containing basic block.
 102   short *_uses;
 103 
 104   // Schedulable portion of current block.  Skips Region/Phi/CreateEx up
 105   // front, branch+proj at end.  Also skips Catch/CProj (same as
 106   // branch-at-end), plus just-prior exception-throwing call.
 107   uint _bb_start, _bb_end;
 108 
 109   // Latency from the end of the basic block as scheduled
 110   unsigned short *_current_latency;
 111 
 112   // Remember the next node
 113   Node *_next_node;
 114 
 115   // Use this for an unconditional branch delay slot
 116   Node *_unconditional_delay_slot;
 117 
 118   // Pointer to a Nop
 119   MachNopNode *_nop;
 120 
 121   // Length of the current bundle, in instructions
 122   uint _bundle_instr_count;
 123 
 124   // Current Cycle number, for computing latencies and bundling
 125   uint _bundle_cycle_number;
 126 
 127   // Bundle information
 128   Pipeline_Use_Element _bundle_use_elements[resource_count];
 129   Pipeline_Use         _bundle_use;
 130 
 131   // Dump the available list
 132   void dump_available() const;
 133 
 134 public:
 135   Scheduling(Arena *arena, Compile &compile);
 136 
 137   // Destructor
 138   NOT_PRODUCT( ~Scheduling(); )
 139 
 140   // Step ahead "i" cycles
 141   void step(uint i);
 142 
 143   // Step ahead 1 cycle, and clear the bundle state (for example,
 144   // at a branch target)
 145   void step_and_clear();
 146 
 147   Bundle* node_bundling(const Node *n) {
 148     assert(valid_bundle_info(n), "oob");
 149     return (&_node_bundling_base[n->_idx]);
 150   }
 151 
 152   bool valid_bundle_info(const Node *n) const {
 153     return (_node_bundling_limit > n->_idx);
 154   }
 155 
 156   bool starts_bundle(const Node *n) const {
 157     return (_node_bundling_limit > n->_idx && _node_bundling_base[n->_idx].starts_bundle());
 158   }
 159 
 160   // Do the scheduling
 161   void DoScheduling();
 162 
 163   // Compute the local latencies walking forward over the list of
 164   // nodes for a basic block
 165   void ComputeLocalLatenciesForward(const Block *bb);
 166 
 167   // Compute the register antidependencies within a basic block
 168   void ComputeRegisterAntidependencies(Block *bb);
 169   void verify_do_def( Node *n, OptoReg::Name def, const char *msg );
 170   void verify_good_schedule( Block *b, const char *msg );
 171   void anti_do_def( Block *b, Node *def, OptoReg::Name def_reg, int is_def );
 172   void anti_do_use( Block *b, Node *use, OptoReg::Name use_reg );
 173 
 174   // Add a node to the current bundle
 175   void AddNodeToBundle(Node *n, const Block *bb);
 176 
 177   // Add a node to the list of available nodes
 178   void AddNodeToAvailableList(Node *n);
 179 
 180   // Compute the local use count for the nodes in a block, and compute
 181   // the list of instructions with no uses in the block as available
 182   void ComputeUseCount(const Block *bb);
 183 
 184   // Choose an instruction from the available list to add to the bundle
 185   Node * ChooseNodeToBundle();
 186 
 187   // See if this Node fits into the currently accumulating bundle
 188   bool NodeFitsInBundle(Node *n);
 189 
 190   // Decrement the use count for a node
 191  void DecrementUseCounts(Node *n, const Block *bb);
 192 
 193   // Garbage collect pinch nodes for reuse by other blocks.
 194   void garbage_collect_pinch_nodes();
 195   // Clean up a pinch node for reuse (helper for above).
 196   void cleanup_pinch( Node *pinch );
 197 
 198   // Information for statistics gathering
 199 #ifndef PRODUCT
 200 private:
 201   // Gather information on size of nops relative to total
 202   uint _branches, _unconditional_delays;
 203 
 204   static uint _total_nop_size, _total_method_size;
 205   static uint _total_branches, _total_unconditional_delays;
 206   static uint _total_instructions_per_bundle[Pipeline::_max_instrs_per_cycle+1];
 207 
 208 public:
 209   static void print_statistics();
 210 
 211   static void increment_instructions_per_bundle(uint i) {
 212     _total_instructions_per_bundle[i]++;
 213   }
 214 
 215   static void increment_nop_size(uint s) {
 216     _total_nop_size += s;
 217   }
 218 
 219   static void increment_method_size(uint s) {
 220     _total_method_size += s;
 221   }
 222 #endif
 223 
 224 };
 225 
 226 
 227 PhaseOutput::PhaseOutput()
 228   : Phase(Phase::Output),
 229     _code_buffer("Compile::Fill_buffer"),
 230     _first_block_size(0),
 231     _handler_table(),
 232     _inc_table(),
 233     _oop_map_set(NULL),
 234     _scratch_buffer_blob(NULL),
 235     _scratch_locs_memory(NULL),
 236     _scratch_const_size(-1),
 237     _in_scratch_emit_size(false),
 238     _frame_slots(0),
 239     _code_offsets(),
 240     _node_bundling_limit(0),
 241     _node_bundling_base(NULL),
 242     _orig_pc_slot(0),
 243     _orig_pc_slot_offset_in_bytes(0),
 244     _buf_sizes(),
 245     _block(NULL),
 246     _index(0) {
 247   C->set_output(this);
 248   if (C->stub_name() == NULL) {
 249     _orig_pc_slot = C->fixed_slots() - (sizeof(address) / VMRegImpl::stack_slot_size);
 250   }
 251 }
 252 
 253 PhaseOutput::~PhaseOutput() {
 254   C->set_output(NULL);
 255   if (_scratch_buffer_blob != NULL) {
 256     BufferBlob::free(_scratch_buffer_blob);
 257   }
 258 }
 259 
 260 void PhaseOutput::perform_mach_node_analysis() {
 261   // Late barrier analysis must be done after schedule and bundle
 262   // Otherwise liveness based spilling will fail
 263   BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
 264   bs->late_barrier_analysis();
 265 
 266   pd_perform_mach_node_analysis();
 267 }
 268 
 269 // Convert Nodes to instruction bits and pass off to the VM
 270 void PhaseOutput::Output() {
 271   // RootNode goes
 272   assert( C->cfg()->get_root_block()->number_of_nodes() == 0, "" );
 273 
 274   // The number of new nodes (mostly MachNop) is proportional to
 275   // the number of java calls and inner loops which are aligned.
 276   if ( C->check_node_count((NodeLimitFudgeFactor + C->java_calls()*3 +
 277                             C->inner_loops()*(OptoLoopAlignment-1)),
 278                            "out of nodes before code generation" ) ) {
 279     return;
 280   }
 281   // Make sure I can find the Start Node
 282   Block *entry = C->cfg()->get_block(1);
 283   Block *broot = C->cfg()->get_root_block();
 284 
 285   const StartNode *start = entry->head()->as_Start();
 286 
 287   // Replace StartNode with prolog
 288   MachPrologNode *prolog = new MachPrologNode();
 289   entry->map_node(prolog, 0);
 290   C->cfg()->map_node_to_block(prolog, entry);
 291   C->cfg()->unmap_node_from_block(start); // start is no longer in any block
 292 
 293   // Virtual methods need an unverified entry point
 294 
 295   if( C->is_osr_compilation() ) {
 296     if( PoisonOSREntry ) {
 297       // TODO: Should use a ShouldNotReachHereNode...
 298       C->cfg()->insert( broot, 0, new MachBreakpointNode() );
 299     }
 300   } else {
 301     if( C->method() && !C->method()->flags().is_static() ) {
 302       // Insert unvalidated entry point
 303       C->cfg()->insert( broot, 0, new MachUEPNode() );
 304     }
 305 
 306   }
 307 
 308   // Break before main entry point
 309   if ((C->method() && C->directive()->BreakAtExecuteOption) ||
 310       (OptoBreakpoint && C->is_method_compilation())       ||
 311       (OptoBreakpointOSR && C->is_osr_compilation())       ||
 312       (OptoBreakpointC2R && !C->method())                   ) {
 313     // checking for C->method() means that OptoBreakpoint does not apply to
 314     // runtime stubs or frame converters
 315     C->cfg()->insert( entry, 1, new MachBreakpointNode() );
 316   }
 317 
 318   // Insert epilogs before every return
 319   for (uint i = 0; i < C->cfg()->number_of_blocks(); i++) {
 320     Block* block = C->cfg()->get_block(i);
 321     if (!block->is_connector() && block->non_connector_successor(0) == C->cfg()->get_root_block()) { // Found a program exit point?
 322       Node* m = block->end();
 323       if (m->is_Mach() && m->as_Mach()->ideal_Opcode() != Op_Halt) {
 324         MachEpilogNode* epilog = new MachEpilogNode(m->as_Mach()->ideal_Opcode() == Op_Return);
 325         block->add_inst(epilog);
 326         C->cfg()->map_node_to_block(epilog, block);
 327       }
 328     }
 329   }
 330 
 331   // Keeper of sizing aspects
 332   _buf_sizes = BufferSizingData();
 333 
 334   // Initialize code buffer
 335   estimate_buffer_size(_buf_sizes._const);
 336   if (C->failing()) return;
 337 
 338   // Pre-compute the length of blocks and replace
 339   // long branches with short if machine supports it.
 340   // Must be done before ScheduleAndBundle due to SPARC delay slots
 341   uint* blk_starts = NEW_RESOURCE_ARRAY(uint, C->cfg()->number_of_blocks() + 1);
 342   blk_starts[0] = 0;
 343   shorten_branches(blk_starts);
 344 
 345   ScheduleAndBundle();
 346   if (C->failing()) {
 347     return;
 348   }
 349 
 350   perform_mach_node_analysis();
 351 
 352   // Complete sizing of codebuffer
 353   CodeBuffer* cb = init_buffer();
 354   if (cb == NULL || C->failing()) {
 355     return;
 356   }
 357 
 358   BuildOopMaps();
 359 
 360   if (C->failing())  {
 361     return;
 362   }
 363 
 364   fill_buffer(cb, blk_starts);
 365 }
 366 
 367 bool PhaseOutput::need_stack_bang(int frame_size_in_bytes) const {
 368   // Determine if we need to generate a stack overflow check.
 369   // Do it if the method is not a stub function and
 370   // has java calls or has frame size > vm_page_size/8.
 371   // The debug VM checks that deoptimization doesn't trigger an
 372   // unexpected stack overflow (compiled method stack banging should
 373   // guarantee it doesn't happen) so we always need the stack bang in
 374   // a debug VM.
 375   return (UseStackBanging && C->stub_function() == NULL &&
 376           (C->has_java_calls() || frame_size_in_bytes > os::vm_page_size()>>3
 377            DEBUG_ONLY(|| true)));
 378 }
 379 
 380 bool PhaseOutput::need_register_stack_bang() const {
 381   // Determine if we need to generate a register stack overflow check.
 382   // This is only used on architectures which have split register
 383   // and memory stacks (ie. IA64).
 384   // Bang if the method is not a stub function and has java calls
 385   return (C->stub_function() == NULL && C->has_java_calls());
 386 }
 387 
 388 
 389 // Compute the size of first NumberOfLoopInstrToAlign instructions at the top
 390 // of a loop. When aligning a loop we need to provide enough instructions
 391 // in cpu's fetch buffer to feed decoders. The loop alignment could be
 392 // avoided if we have enough instructions in fetch buffer at the head of a loop.
 393 // By default, the size is set to 999999 by Block's constructor so that
 394 // a loop will be aligned if the size is not reset here.
 395 //
 396 // Note: Mach instructions could contain several HW instructions
 397 // so the size is estimated only.
 398 //
 399 void PhaseOutput::compute_loop_first_inst_sizes() {
 400   // The next condition is used to gate the loop alignment optimization.
 401   // Don't aligned a loop if there are enough instructions at the head of a loop
 402   // or alignment padding is larger then MaxLoopPad. By default, MaxLoopPad
 403   // is equal to OptoLoopAlignment-1 except on new Intel cpus, where it is
 404   // equal to 11 bytes which is the largest address NOP instruction.
 405   if (MaxLoopPad < OptoLoopAlignment - 1) {
 406     uint last_block = C->cfg()->number_of_blocks() - 1;
 407     for (uint i = 1; i <= last_block; i++) {
 408       Block* block = C->cfg()->get_block(i);
 409       // Check the first loop's block which requires an alignment.
 410       if (block->loop_alignment() > (uint)relocInfo::addr_unit()) {
 411         uint sum_size = 0;
 412         uint inst_cnt = NumberOfLoopInstrToAlign;
 413         inst_cnt = block->compute_first_inst_size(sum_size, inst_cnt, C->regalloc());
 414 
 415         // Check subsequent fallthrough blocks if the loop's first
 416         // block(s) does not have enough instructions.
 417         Block *nb = block;
 418         while(inst_cnt > 0 &&
 419               i < last_block &&
 420               !C->cfg()->get_block(i + 1)->has_loop_alignment() &&
 421               !nb->has_successor(block)) {
 422           i++;
 423           nb = C->cfg()->get_block(i);
 424           inst_cnt  = nb->compute_first_inst_size(sum_size, inst_cnt, C->regalloc());
 425         } // while( inst_cnt > 0 && i < last_block  )
 426 
 427         block->set_first_inst_size(sum_size);
 428       } // f( b->head()->is_Loop() )
 429     } // for( i <= last_block )
 430   } // if( MaxLoopPad < OptoLoopAlignment-1 )
 431 }
 432 
 433 // The architecture description provides short branch variants for some long
 434 // branch instructions. Replace eligible long branches with short branches.
 435 void PhaseOutput::shorten_branches(uint* blk_starts) {
 436   // Compute size of each block, method size, and relocation information size
 437   uint nblocks  = C->cfg()->number_of_blocks();
 438 
 439   uint*      jmp_offset = NEW_RESOURCE_ARRAY(uint,nblocks);
 440   uint*      jmp_size   = NEW_RESOURCE_ARRAY(uint,nblocks);
 441   int*       jmp_nidx   = NEW_RESOURCE_ARRAY(int ,nblocks);
 442 
 443   // Collect worst case block paddings
 444   int* block_worst_case_pad = NEW_RESOURCE_ARRAY(int, nblocks);
 445   memset(block_worst_case_pad, 0, nblocks * sizeof(int));
 446 
 447   DEBUG_ONLY( uint *jmp_target = NEW_RESOURCE_ARRAY(uint,nblocks); )
 448   DEBUG_ONLY( uint *jmp_rule = NEW_RESOURCE_ARRAY(uint,nblocks); )
 449 
 450   bool has_short_branch_candidate = false;
 451 
 452   // Initialize the sizes to 0
 453   int code_size  = 0;          // Size in bytes of generated code
 454   int stub_size  = 0;          // Size in bytes of all stub entries
 455   // Size in bytes of all relocation entries, including those in local stubs.
 456   // Start with 2-bytes of reloc info for the unvalidated entry point
 457   int reloc_size = 1;          // Number of relocation entries
 458 
 459   // Make three passes.  The first computes pessimistic blk_starts,
 460   // relative jmp_offset and reloc_size information.  The second performs
 461   // short branch substitution using the pessimistic sizing.  The
 462   // third inserts nops where needed.
 463 
 464   // Step one, perform a pessimistic sizing pass.
 465   uint last_call_adr = max_juint;
 466   uint last_avoid_back_to_back_adr = max_juint;
 467   uint nop_size = (new MachNopNode())->size(C->regalloc());
 468   for (uint i = 0; i < nblocks; i++) { // For all blocks
 469     Block* block = C->cfg()->get_block(i);
 470     _block = block;
 471 
 472     // During short branch replacement, we store the relative (to blk_starts)
 473     // offset of jump in jmp_offset, rather than the absolute offset of jump.
 474     // This is so that we do not need to recompute sizes of all nodes when
 475     // we compute correct blk_starts in our next sizing pass.
 476     jmp_offset[i] = 0;
 477     jmp_size[i]   = 0;
 478     jmp_nidx[i]   = -1;
 479     DEBUG_ONLY( jmp_target[i] = 0; )
 480     DEBUG_ONLY( jmp_rule[i]   = 0; )
 481 
 482     // Sum all instruction sizes to compute block size
 483     uint last_inst = block->number_of_nodes();
 484     uint blk_size = 0;
 485     for (uint j = 0; j < last_inst; j++) {
 486       _index = j;
 487       Node* nj = block->get_node(_index);
 488       // Handle machine instruction nodes
 489       if (nj->is_Mach()) {
 490         MachNode* mach = nj->as_Mach();
 491         blk_size += (mach->alignment_required() - 1) * relocInfo::addr_unit(); // assume worst case padding
 492         reloc_size += mach->reloc();
 493         if (mach->is_MachCall()) {
 494           // add size information for trampoline stub
 495           // class CallStubImpl is platform-specific and defined in the *.ad files.
 496           stub_size  += CallStubImpl::size_call_trampoline();
 497           reloc_size += CallStubImpl::reloc_call_trampoline();
 498 
 499           MachCallNode *mcall = mach->as_MachCall();
 500           // This destination address is NOT PC-relative
 501 
 502           mcall->method_set((intptr_t)mcall->entry_point());
 503 
 504           if (mcall->is_MachCallJava() && mcall->as_MachCallJava()->_method) {
 505             stub_size  += CompiledStaticCall::to_interp_stub_size();
 506             reloc_size += CompiledStaticCall::reloc_to_interp_stub();
 507 #if INCLUDE_AOT
 508             stub_size  += CompiledStaticCall::to_aot_stub_size();
 509             reloc_size += CompiledStaticCall::reloc_to_aot_stub();
 510 #endif
 511           }
 512         } else if (mach->is_MachSafePoint()) {
 513           // If call/safepoint are adjacent, account for possible
 514           // nop to disambiguate the two safepoints.
 515           // ScheduleAndBundle() can rearrange nodes in a block,
 516           // check for all offsets inside this block.
 517           if (last_call_adr >= blk_starts[i]) {
 518             blk_size += nop_size;
 519           }
 520         }
 521         if (mach->avoid_back_to_back(MachNode::AVOID_BEFORE)) {
 522           // Nop is inserted between "avoid back to back" instructions.
 523           // ScheduleAndBundle() can rearrange nodes in a block,
 524           // check for all offsets inside this block.
 525           if (last_avoid_back_to_back_adr >= blk_starts[i]) {
 526             blk_size += nop_size;
 527           }
 528         }
 529         if (mach->may_be_short_branch()) {
 530           if (!nj->is_MachBranch()) {
 531 #ifndef PRODUCT
 532             nj->dump(3);
 533 #endif
 534             Unimplemented();
 535           }
 536           assert(jmp_nidx[i] == -1, "block should have only one branch");
 537           jmp_offset[i] = blk_size;
 538           jmp_size[i]   = nj->size(C->regalloc());
 539           jmp_nidx[i]   = j;
 540           has_short_branch_candidate = true;
 541         }
 542       }
 543       blk_size += nj->size(C->regalloc());
 544       // Remember end of call offset
 545       if (nj->is_MachCall() && !nj->is_MachCallLeaf()) {
 546         last_call_adr = blk_starts[i]+blk_size;
 547       }
 548       // Remember end of avoid_back_to_back offset
 549       if (nj->is_Mach() && nj->as_Mach()->avoid_back_to_back(MachNode::AVOID_AFTER)) {
 550         last_avoid_back_to_back_adr = blk_starts[i]+blk_size;
 551       }
 552     }
 553 
 554     // When the next block starts a loop, we may insert pad NOP
 555     // instructions.  Since we cannot know our future alignment,
 556     // assume the worst.
 557     if (i < nblocks - 1) {
 558       Block* nb = C->cfg()->get_block(i + 1);
 559       int max_loop_pad = nb->code_alignment()-relocInfo::addr_unit();
 560       if (max_loop_pad > 0) {
 561         assert(is_power_of_2(max_loop_pad+relocInfo::addr_unit()), "");
 562         // Adjust last_call_adr and/or last_avoid_back_to_back_adr.
 563         // If either is the last instruction in this block, bump by
 564         // max_loop_pad in lock-step with blk_size, so sizing
 565         // calculations in subsequent blocks still can conservatively
 566         // detect that it may the last instruction in this block.
 567         if (last_call_adr == blk_starts[i]+blk_size) {
 568           last_call_adr += max_loop_pad;
 569         }
 570         if (last_avoid_back_to_back_adr == blk_starts[i]+blk_size) {
 571           last_avoid_back_to_back_adr += max_loop_pad;
 572         }
 573         blk_size += max_loop_pad;
 574         block_worst_case_pad[i + 1] = max_loop_pad;
 575       }
 576     }
 577 
 578     // Save block size; update total method size
 579     blk_starts[i+1] = blk_starts[i]+blk_size;
 580   }
 581 
 582   // Step two, replace eligible long jumps.
 583   bool progress = true;
 584   uint last_may_be_short_branch_adr = max_juint;
 585   while (has_short_branch_candidate && progress) {
 586     progress = false;
 587     has_short_branch_candidate = false;
 588     int adjust_block_start = 0;
 589     for (uint i = 0; i < nblocks; i++) {
 590       Block* block = C->cfg()->get_block(i);
 591       int idx = jmp_nidx[i];
 592       MachNode* mach = (idx == -1) ? NULL: block->get_node(idx)->as_Mach();
 593       if (mach != NULL && mach->may_be_short_branch()) {
 594 #ifdef ASSERT
 595         assert(jmp_size[i] > 0 && mach->is_MachBranch(), "sanity");
 596         int j;
 597         // Find the branch; ignore trailing NOPs.
 598         for (j = block->number_of_nodes()-1; j>=0; j--) {
 599           Node* n = block->get_node(j);
 600           if (!n->is_Mach() || n->as_Mach()->ideal_Opcode() != Op_Con)
 601             break;
 602         }
 603         assert(j >= 0 && j == idx && block->get_node(j) == (Node*)mach, "sanity");
 604 #endif
 605         int br_size = jmp_size[i];
 606         int br_offs = blk_starts[i] + jmp_offset[i];
 607 
 608         // This requires the TRUE branch target be in succs[0]
 609         uint bnum = block->non_connector_successor(0)->_pre_order;
 610         int offset = blk_starts[bnum] - br_offs;
 611         if (bnum > i) { // adjust following block's offset
 612           offset -= adjust_block_start;
 613         }
 614 
 615         // This block can be a loop header, account for the padding
 616         // in the previous block.
 617         int block_padding = block_worst_case_pad[i];
 618         assert(i == 0 || block_padding == 0 || br_offs >= block_padding, "Should have at least a padding on top");
 619         // In the following code a nop could be inserted before
 620         // the branch which will increase the backward distance.
 621         bool needs_padding = ((uint)(br_offs - block_padding) == last_may_be_short_branch_adr);
 622         assert(!needs_padding || jmp_offset[i] == 0, "padding only branches at the beginning of block");
 623 
 624         if (needs_padding && offset <= 0)
 625           offset -= nop_size;
 626 
 627         if (C->matcher()->is_short_branch_offset(mach->rule(), br_size, offset)) {
 628           // We've got a winner.  Replace this branch.
 629           MachNode* replacement = mach->as_MachBranch()->short_branch_version();
 630 
 631           // Update the jmp_size.
 632           int new_size = replacement->size(C->regalloc());
 633           int diff     = br_size - new_size;
 634           assert(diff >= (int)nop_size, "short_branch size should be smaller");
 635           // Conservatively take into account padding between
 636           // avoid_back_to_back branches. Previous branch could be
 637           // converted into avoid_back_to_back branch during next
 638           // rounds.
 639           if (needs_padding && replacement->avoid_back_to_back(MachNode::AVOID_BEFORE)) {
 640             jmp_offset[i] += nop_size;
 641             diff -= nop_size;
 642           }
 643           adjust_block_start += diff;
 644           block->map_node(replacement, idx);
 645           mach->subsume_by(replacement, C);
 646           mach = replacement;
 647           progress = true;
 648 
 649           jmp_size[i] = new_size;
 650           DEBUG_ONLY( jmp_target[i] = bnum; );
 651           DEBUG_ONLY( jmp_rule[i] = mach->rule(); );
 652         } else {
 653           // The jump distance is not short, try again during next iteration.
 654           has_short_branch_candidate = true;
 655         }
 656       } // (mach->may_be_short_branch())
 657       if (mach != NULL && (mach->may_be_short_branch() ||
 658                            mach->avoid_back_to_back(MachNode::AVOID_AFTER))) {
 659         last_may_be_short_branch_adr = blk_starts[i] + jmp_offset[i] + jmp_size[i];
 660       }
 661       blk_starts[i+1] -= adjust_block_start;
 662     }
 663   }
 664 
 665 #ifdef ASSERT
 666   for (uint i = 0; i < nblocks; i++) { // For all blocks
 667     if (jmp_target[i] != 0) {
 668       int br_size = jmp_size[i];
 669       int offset = blk_starts[jmp_target[i]]-(blk_starts[i] + jmp_offset[i]);
 670       if (!C->matcher()->is_short_branch_offset(jmp_rule[i], br_size, offset)) {
 671         tty->print_cr("target (%d) - jmp_offset(%d) = offset (%d), jump_size(%d), jmp_block B%d, target_block B%d", blk_starts[jmp_target[i]], blk_starts[i] + jmp_offset[i], offset, br_size, i, jmp_target[i]);
 672       }
 673       assert(C->matcher()->is_short_branch_offset(jmp_rule[i], br_size, offset), "Displacement too large for short jmp");
 674     }
 675   }
 676 #endif
 677 
 678   // Step 3, compute the offsets of all blocks, will be done in fill_buffer()
 679   // after ScheduleAndBundle().
 680 
 681   // ------------------
 682   // Compute size for code buffer
 683   code_size = blk_starts[nblocks];
 684 
 685   // Relocation records
 686   reloc_size += 1;              // Relo entry for exception handler
 687 
 688   // Adjust reloc_size to number of record of relocation info
 689   // Min is 2 bytes, max is probably 6 or 8, with a tax up to 25% for
 690   // a relocation index.
 691   // The CodeBuffer will expand the locs array if this estimate is too low.
 692   reloc_size *= 10 / sizeof(relocInfo);
 693 
 694   _buf_sizes._reloc = reloc_size;
 695   _buf_sizes._code  = code_size;
 696   _buf_sizes._stub  = stub_size;
 697 }
 698 
 699 //------------------------------FillLocArray-----------------------------------
 700 // Create a bit of debug info and append it to the array.  The mapping is from
 701 // Java local or expression stack to constant, register or stack-slot.  For
 702 // doubles, insert 2 mappings and return 1 (to tell the caller that the next
 703 // entry has been taken care of and caller should skip it).
 704 static LocationValue *new_loc_value( PhaseRegAlloc *ra, OptoReg::Name regnum, Location::Type l_type ) {
 705   // This should never have accepted Bad before
 706   assert(OptoReg::is_valid(regnum), "location must be valid");
 707   return (OptoReg::is_reg(regnum))
 708          ? new LocationValue(Location::new_reg_loc(l_type, OptoReg::as_VMReg(regnum)) )
 709          : new LocationValue(Location::new_stk_loc(l_type,  ra->reg2offset(regnum)));
 710 }
 711 
 712 
 713 ObjectValue*
 714 PhaseOutput::sv_for_node_id(GrowableArray<ScopeValue*> *objs, int id) {
 715   for (int i = 0; i < objs->length(); i++) {
 716     assert(objs->at(i)->is_object(), "corrupt object cache");
 717     ObjectValue* sv = (ObjectValue*) objs->at(i);
 718     if (sv->id() == id) {
 719       return sv;
 720     }
 721   }
 722   // Otherwise..
 723   return NULL;
 724 }
 725 
 726 void PhaseOutput::set_sv_for_object_node(GrowableArray<ScopeValue*> *objs,
 727                                      ObjectValue* sv ) {
 728   assert(sv_for_node_id(objs, sv->id()) == NULL, "Precondition");
 729   objs->append(sv);
 730 }
 731 
 732 
 733 void PhaseOutput::FillLocArray( int idx, MachSafePointNode* sfpt, Node *local,
 734                             GrowableArray<ScopeValue*> *array,
 735                             GrowableArray<ScopeValue*> *objs ) {
 736   assert( local, "use _top instead of null" );
 737   if (array->length() != idx) {
 738     assert(array->length() == idx + 1, "Unexpected array count");
 739     // Old functionality:
 740     //   return
 741     // New functionality:
 742     //   Assert if the local is not top. In product mode let the new node
 743     //   override the old entry.
 744     assert(local == C->top(), "LocArray collision");
 745     if (local == C->top()) {
 746       return;
 747     }
 748     array->pop();
 749   }
 750   const Type *t = local->bottom_type();
 751 
 752   // Is it a safepoint scalar object node?
 753   if (local->is_SafePointScalarObject()) {
 754     SafePointScalarObjectNode* spobj = local->as_SafePointScalarObject();
 755 
 756     ObjectValue* sv = sv_for_node_id(objs, spobj->_idx);
 757     if (sv == NULL) {
 758       ciKlass* cik = t->is_oopptr()->klass();
 759       assert(cik->is_instance_klass() ||
 760              cik->is_array_klass(), "Not supported allocation.");
 761       sv = new ObjectValue(spobj->_idx,
 762                            new ConstantOopWriteValue(cik->java_mirror()->constant_encoding()));
 763       set_sv_for_object_node(objs, sv);
 764 
 765       uint first_ind = spobj->first_index(sfpt->jvms());
 766       for (uint i = 0; i < spobj->n_fields(); i++) {
 767         Node* fld_node = sfpt->in(first_ind+i);
 768         (void)FillLocArray(sv->field_values()->length(), sfpt, fld_node, sv->field_values(), objs);
 769       }
 770     }
 771     array->append(sv);
 772     return;
 773   }
 774 
 775   // Grab the register number for the local
 776   OptoReg::Name regnum = C->regalloc()->get_reg_first(local);
 777   if( OptoReg::is_valid(regnum) ) {// Got a register/stack?
 778     // Record the double as two float registers.
 779     // The register mask for such a value always specifies two adjacent
 780     // float registers, with the lower register number even.
 781     // Normally, the allocation of high and low words to these registers
 782     // is irrelevant, because nearly all operations on register pairs
 783     // (e.g., StoreD) treat them as a single unit.
 784     // Here, we assume in addition that the words in these two registers
 785     // stored "naturally" (by operations like StoreD and double stores
 786     // within the interpreter) such that the lower-numbered register
 787     // is written to the lower memory address.  This may seem like
 788     // a machine dependency, but it is not--it is a requirement on
 789     // the author of the <arch>.ad file to ensure that, for every
 790     // even/odd double-register pair to which a double may be allocated,
 791     // the word in the even single-register is stored to the first
 792     // memory word.  (Note that register numbers are completely
 793     // arbitrary, and are not tied to any machine-level encodings.)
 794 #ifdef _LP64
 795     if( t->base() == Type::DoubleBot || t->base() == Type::DoubleCon ) {
 796       array->append(new ConstantIntValue((jint)0));
 797       array->append(new_loc_value( C->regalloc(), regnum, Location::dbl ));
 798     } else if ( t->base() == Type::Long ) {
 799       array->append(new ConstantIntValue((jint)0));
 800       array->append(new_loc_value( C->regalloc(), regnum, Location::lng ));
 801     } else if ( t->base() == Type::RawPtr ) {
 802       // jsr/ret return address which must be restored into a the full
 803       // width 64-bit stack slot.
 804       array->append(new_loc_value( C->regalloc(), regnum, Location::lng ));
 805     }
 806 #else //_LP64
 807 #ifdef SPARC
 808     if (t->base() == Type::Long && OptoReg::is_reg(regnum)) {
 809       // For SPARC we have to swap high and low words for
 810       // long values stored in a single-register (g0-g7).
 811       array->append(new_loc_value( C->regalloc(),              regnum   , Location::normal ));
 812       array->append(new_loc_value( C->regalloc(), OptoReg::add(regnum,1), Location::normal ));
 813     } else
 814 #endif //SPARC
 815     if( t->base() == Type::DoubleBot || t->base() == Type::DoubleCon || t->base() == Type::Long ) {
 816       // Repack the double/long as two jints.
 817       // The convention the interpreter uses is that the second local
 818       // holds the first raw word of the native double representation.
 819       // This is actually reasonable, since locals and stack arrays
 820       // grow downwards in all implementations.
 821       // (If, on some machine, the interpreter's Java locals or stack
 822       // were to grow upwards, the embedded doubles would be word-swapped.)
 823       array->append(new_loc_value( C->regalloc(), OptoReg::add(regnum,1), Location::normal ));
 824       array->append(new_loc_value( C->regalloc(),              regnum   , Location::normal ));
 825     }
 826 #endif //_LP64
 827     else if( (t->base() == Type::FloatBot || t->base() == Type::FloatCon) &&
 828              OptoReg::is_reg(regnum) ) {
 829       array->append(new_loc_value( C->regalloc(), regnum, Matcher::float_in_double()
 830                                                       ? Location::float_in_dbl : Location::normal ));
 831     } else if( t->base() == Type::Int && OptoReg::is_reg(regnum) ) {
 832       array->append(new_loc_value( C->regalloc(), regnum, Matcher::int_in_long
 833                                                       ? Location::int_in_long : Location::normal ));
 834     } else if( t->base() == Type::NarrowOop ) {
 835       array->append(new_loc_value( C->regalloc(), regnum, Location::narrowoop ));
 836     } else {
 837       array->append(new_loc_value( C->regalloc(), regnum, C->regalloc()->is_oop(local) ? Location::oop : Location::normal ));
 838     }
 839     return;
 840   }
 841 
 842   // No register.  It must be constant data.
 843   switch (t->base()) {
 844     case Type::Half:              // Second half of a double
 845       ShouldNotReachHere();       // Caller should skip 2nd halves
 846       break;
 847     case Type::AnyPtr:
 848       array->append(new ConstantOopWriteValue(NULL));
 849       break;
 850     case Type::AryPtr:
 851     case Type::InstPtr:          // fall through
 852       array->append(new ConstantOopWriteValue(t->isa_oopptr()->const_oop()->constant_encoding()));
 853       break;
 854     case Type::NarrowOop:
 855       if (t == TypeNarrowOop::NULL_PTR) {
 856         array->append(new ConstantOopWriteValue(NULL));
 857       } else {
 858         array->append(new ConstantOopWriteValue(t->make_ptr()->isa_oopptr()->const_oop()->constant_encoding()));
 859       }
 860       break;
 861     case Type::Int:
 862       array->append(new ConstantIntValue(t->is_int()->get_con()));
 863       break;
 864     case Type::RawPtr:
 865       // A return address (T_ADDRESS).
 866       assert((intptr_t)t->is_ptr()->get_con() < (intptr_t)0x10000, "must be a valid BCI");
 867 #ifdef _LP64
 868       // Must be restored to the full-width 64-bit stack slot.
 869       array->append(new ConstantLongValue(t->is_ptr()->get_con()));
 870 #else
 871       array->append(new ConstantIntValue(t->is_ptr()->get_con()));
 872 #endif
 873       break;
 874     case Type::FloatCon: {
 875       float f = t->is_float_constant()->getf();
 876       array->append(new ConstantIntValue(jint_cast(f)));
 877       break;
 878     }
 879     case Type::DoubleCon: {
 880       jdouble d = t->is_double_constant()->getd();
 881 #ifdef _LP64
 882       array->append(new ConstantIntValue((jint)0));
 883       array->append(new ConstantDoubleValue(d));
 884 #else
 885       // Repack the double as two jints.
 886     // The convention the interpreter uses is that the second local
 887     // holds the first raw word of the native double representation.
 888     // This is actually reasonable, since locals and stack arrays
 889     // grow downwards in all implementations.
 890     // (If, on some machine, the interpreter's Java locals or stack
 891     // were to grow upwards, the embedded doubles would be word-swapped.)
 892     jlong_accessor acc;
 893     acc.long_value = jlong_cast(d);
 894     array->append(new ConstantIntValue(acc.words[1]));
 895     array->append(new ConstantIntValue(acc.words[0]));
 896 #endif
 897       break;
 898     }
 899     case Type::Long: {
 900       jlong d = t->is_long()->get_con();
 901 #ifdef _LP64
 902       array->append(new ConstantIntValue((jint)0));
 903       array->append(new ConstantLongValue(d));
 904 #else
 905       // Repack the long as two jints.
 906     // The convention the interpreter uses is that the second local
 907     // holds the first raw word of the native double representation.
 908     // This is actually reasonable, since locals and stack arrays
 909     // grow downwards in all implementations.
 910     // (If, on some machine, the interpreter's Java locals or stack
 911     // were to grow upwards, the embedded doubles would be word-swapped.)
 912     jlong_accessor acc;
 913     acc.long_value = d;
 914     array->append(new ConstantIntValue(acc.words[1]));
 915     array->append(new ConstantIntValue(acc.words[0]));
 916 #endif
 917       break;
 918     }
 919     case Type::Top:               // Add an illegal value here
 920       array->append(new LocationValue(Location()));
 921       break;
 922     default:
 923       ShouldNotReachHere();
 924       break;
 925   }
 926 }
 927 
 928 // Determine if this node starts a bundle
 929 bool PhaseOutput::starts_bundle(const Node *n) const {
 930   return (_node_bundling_limit > n->_idx &&
 931           _node_bundling_base[n->_idx].starts_bundle());
 932 }
 933 
 934 //--------------------------Process_OopMap_Node--------------------------------
 935 void PhaseOutput::Process_OopMap_Node(MachNode *mach, int current_offset) {
 936   // Handle special safepoint nodes for synchronization
 937   MachSafePointNode *sfn   = mach->as_MachSafePoint();
 938   MachCallNode      *mcall;
 939 
 940   int safepoint_pc_offset = current_offset;
 941   bool is_method_handle_invoke = false;
 942   bool return_oop = false;
 943 
 944   // Add the safepoint in the DebugInfoRecorder
 945   if( !mach->is_MachCall() ) {
 946     mcall = NULL;
 947     C->debug_info()->add_safepoint(safepoint_pc_offset, sfn->_oop_map);
 948   } else {
 949     mcall = mach->as_MachCall();
 950 
 951     // Is the call a MethodHandle call?
 952     if (mcall->is_MachCallJava()) {
 953       if (mcall->as_MachCallJava()->_method_handle_invoke) {
 954         assert(C->has_method_handle_invokes(), "must have been set during call generation");
 955         is_method_handle_invoke = true;
 956       }
 957     }
 958 
 959     // Check if a call returns an object.
 960     if (mcall->returns_pointer()) {
 961       return_oop = true;
 962     }
 963     safepoint_pc_offset += mcall->ret_addr_offset();
 964     C->debug_info()->add_safepoint(safepoint_pc_offset, mcall->_oop_map);
 965   }
 966 
 967   // Loop over the JVMState list to add scope information
 968   // Do not skip safepoints with a NULL method, they need monitor info
 969   JVMState* youngest_jvms = sfn->jvms();
 970   int max_depth = youngest_jvms->depth();
 971 
 972   // Allocate the object pool for scalar-replaced objects -- the map from
 973   // small-integer keys (which can be recorded in the local and ostack
 974   // arrays) to descriptions of the object state.
 975   GrowableArray<ScopeValue*> *objs = new GrowableArray<ScopeValue*>();
 976 
 977   // Visit scopes from oldest to youngest.
 978   for (int depth = 1; depth <= max_depth; depth++) {
 979     JVMState* jvms = youngest_jvms->of_depth(depth);
 980     int idx;
 981     ciMethod* method = jvms->has_method() ? jvms->method() : NULL;
 982     // Safepoints that do not have method() set only provide oop-map and monitor info
 983     // to support GC; these do not support deoptimization.
 984     int num_locs = (method == NULL) ? 0 : jvms->loc_size();
 985     int num_exps = (method == NULL) ? 0 : jvms->stk_size();
 986     int num_mon  = jvms->nof_monitors();
 987     assert(method == NULL || jvms->bci() < 0 || num_locs == method->max_locals(),
 988            "JVMS local count must match that of the method");
 989 
 990     // Add Local and Expression Stack Information
 991 
 992     // Insert locals into the locarray
 993     GrowableArray<ScopeValue*> *locarray = new GrowableArray<ScopeValue*>(num_locs);
 994     for( idx = 0; idx < num_locs; idx++ ) {
 995       FillLocArray( idx, sfn, sfn->local(jvms, idx), locarray, objs );
 996     }
 997 
 998     // Insert expression stack entries into the exparray
 999     GrowableArray<ScopeValue*> *exparray = new GrowableArray<ScopeValue*>(num_exps);
1000     for( idx = 0; idx < num_exps; idx++ ) {
1001       FillLocArray( idx,  sfn, sfn->stack(jvms, idx), exparray, objs );
1002     }
1003 
1004     // Add in mappings of the monitors
1005     assert( !method ||
1006             !method->is_synchronized() ||
1007             method->is_native() ||
1008             num_mon > 0 ||
1009             !GenerateSynchronizationCode,
1010             "monitors must always exist for synchronized methods");
1011 
1012     // Build the growable array of ScopeValues for exp stack
1013     GrowableArray<MonitorValue*> *monarray = new GrowableArray<MonitorValue*>(num_mon);
1014 
1015     // Loop over monitors and insert into array
1016     for (idx = 0; idx < num_mon; idx++) {
1017       // Grab the node that defines this monitor
1018       Node* box_node = sfn->monitor_box(jvms, idx);
1019       Node* obj_node = sfn->monitor_obj(jvms, idx);
1020 
1021       // Create ScopeValue for object
1022       ScopeValue *scval = NULL;
1023 
1024       if (obj_node->is_SafePointScalarObject()) {
1025         SafePointScalarObjectNode* spobj = obj_node->as_SafePointScalarObject();
1026         scval = PhaseOutput::sv_for_node_id(objs, spobj->_idx);
1027         if (scval == NULL) {
1028           const Type *t = spobj->bottom_type();
1029           ciKlass* cik = t->is_oopptr()->klass();
1030           assert(cik->is_instance_klass() ||
1031                  cik->is_array_klass(), "Not supported allocation.");
1032           ObjectValue* sv = new ObjectValue(spobj->_idx,
1033                                             new ConstantOopWriteValue(cik->java_mirror()->constant_encoding()));
1034           PhaseOutput::set_sv_for_object_node(objs, sv);
1035 
1036           uint first_ind = spobj->first_index(youngest_jvms);
1037           for (uint i = 0; i < spobj->n_fields(); i++) {
1038             Node* fld_node = sfn->in(first_ind+i);
1039             (void)FillLocArray(sv->field_values()->length(), sfn, fld_node, sv->field_values(), objs);
1040           }
1041           scval = sv;
1042         }
1043       } else if (!obj_node->is_Con()) {
1044         OptoReg::Name obj_reg = C->regalloc()->get_reg_first(obj_node);
1045         if( obj_node->bottom_type()->base() == Type::NarrowOop ) {
1046           scval = new_loc_value( C->regalloc(), obj_reg, Location::narrowoop );
1047         } else {
1048           scval = new_loc_value( C->regalloc(), obj_reg, Location::oop );
1049         }
1050       } else {
1051         const TypePtr *tp = obj_node->get_ptr_type();
1052         scval = new ConstantOopWriteValue(tp->is_oopptr()->const_oop()->constant_encoding());
1053       }
1054 
1055       OptoReg::Name box_reg = BoxLockNode::reg(box_node);
1056       Location basic_lock = Location::new_stk_loc(Location::normal,C->regalloc()->reg2offset(box_reg));
1057       bool eliminated = (box_node->is_BoxLock() && box_node->as_BoxLock()->is_eliminated());
1058       monarray->append(new MonitorValue(scval, basic_lock, eliminated));
1059     }
1060 
1061     // We dump the object pool first, since deoptimization reads it in first.
1062     C->debug_info()->dump_object_pool(objs);
1063 
1064     // Build first class objects to pass to scope
1065     DebugToken *locvals = C->debug_info()->create_scope_values(locarray);
1066     DebugToken *expvals = C->debug_info()->create_scope_values(exparray);
1067     DebugToken *monvals = C->debug_info()->create_monitor_values(monarray);
1068 
1069     // Make method available for all Safepoints
1070     ciMethod* scope_method = method ? method : C->method();
1071     // Describe the scope here
1072     assert(jvms->bci() >= InvocationEntryBci && jvms->bci() <= 0x10000, "must be a valid or entry BCI");
1073     assert(!jvms->should_reexecute() || depth == max_depth, "reexecute allowed only for the youngest");
1074     // Now we can describe the scope.
1075     methodHandle null_mh;
1076     bool rethrow_exception = false;
1077     C->debug_info()->describe_scope(safepoint_pc_offset, null_mh, scope_method, jvms->bci(), jvms->should_reexecute(), rethrow_exception, is_method_handle_invoke, return_oop, locvals, expvals, monvals);
1078   } // End jvms loop
1079 
1080   // Mark the end of the scope set.
1081   C->debug_info()->end_safepoint(safepoint_pc_offset);
1082 }
1083 
1084 
1085 
1086 // A simplified version of Process_OopMap_Node, to handle non-safepoints.
1087 class NonSafepointEmitter {
1088     Compile*  C;
1089     JVMState* _pending_jvms;
1090     int       _pending_offset;
1091 
1092     void emit_non_safepoint();
1093 
1094  public:
1095     NonSafepointEmitter(Compile* compile) {
1096       this->C = compile;
1097       _pending_jvms = NULL;
1098       _pending_offset = 0;
1099     }
1100 
1101     void observe_instruction(Node* n, int pc_offset) {
1102       if (!C->debug_info()->recording_non_safepoints())  return;
1103 
1104       Node_Notes* nn = C->node_notes_at(n->_idx);
1105       if (nn == NULL || nn->jvms() == NULL)  return;
1106       if (_pending_jvms != NULL &&
1107           _pending_jvms->same_calls_as(nn->jvms())) {
1108         // Repeated JVMS?  Stretch it up here.
1109         _pending_offset = pc_offset;
1110       } else {
1111         if (_pending_jvms != NULL &&
1112             _pending_offset < pc_offset) {
1113           emit_non_safepoint();
1114         }
1115         _pending_jvms = NULL;
1116         if (pc_offset > C->debug_info()->last_pc_offset()) {
1117           // This is the only way _pending_jvms can become non-NULL:
1118           _pending_jvms = nn->jvms();
1119           _pending_offset = pc_offset;
1120         }
1121       }
1122     }
1123 
1124     // Stay out of the way of real safepoints:
1125     void observe_safepoint(JVMState* jvms, int pc_offset) {
1126       if (_pending_jvms != NULL &&
1127           !_pending_jvms->same_calls_as(jvms) &&
1128           _pending_offset < pc_offset) {
1129         emit_non_safepoint();
1130       }
1131       _pending_jvms = NULL;
1132     }
1133 
1134     void flush_at_end() {
1135       if (_pending_jvms != NULL) {
1136         emit_non_safepoint();
1137       }
1138       _pending_jvms = NULL;
1139     }
1140 };
1141 
1142 void NonSafepointEmitter::emit_non_safepoint() {
1143   JVMState* youngest_jvms = _pending_jvms;
1144   int       pc_offset     = _pending_offset;
1145 
1146   // Clear it now:
1147   _pending_jvms = NULL;
1148 
1149   DebugInformationRecorder* debug_info = C->debug_info();
1150   assert(debug_info->recording_non_safepoints(), "sanity");
1151 
1152   debug_info->add_non_safepoint(pc_offset);
1153   int max_depth = youngest_jvms->depth();
1154 
1155   // Visit scopes from oldest to youngest.
1156   for (int depth = 1; depth <= max_depth; depth++) {
1157     JVMState* jvms = youngest_jvms->of_depth(depth);
1158     ciMethod* method = jvms->has_method() ? jvms->method() : NULL;
1159     assert(!jvms->should_reexecute() || depth==max_depth, "reexecute allowed only for the youngest");
1160     methodHandle null_mh;
1161     debug_info->describe_scope(pc_offset, null_mh, method, jvms->bci(), jvms->should_reexecute());
1162   }
1163 
1164   // Mark the end of the scope set.
1165   debug_info->end_non_safepoint(pc_offset);
1166 }
1167 
1168 //------------------------------init_buffer------------------------------------
1169 void PhaseOutput::estimate_buffer_size(int& const_req) {
1170 
1171   // Set the initially allocated size
1172   const_req = initial_const_capacity;
1173 
1174   // The extra spacing after the code is necessary on some platforms.
1175   // Sometimes we need to patch in a jump after the last instruction,
1176   // if the nmethod has been deoptimized.  (See 4932387, 4894843.)
1177 
1178   // Compute the byte offset where we can store the deopt pc.
1179   if (C->fixed_slots() != 0) {
1180     _orig_pc_slot_offset_in_bytes = C->regalloc()->reg2offset(OptoReg::stack2reg(_orig_pc_slot));
1181   }
1182 
1183   // Compute prolog code size
1184   _method_size = 0;
1185   _frame_slots = OptoReg::reg2stack(C->matcher()->_old_SP) + C->regalloc()->_framesize;
1186 #if defined(IA64) && !defined(AIX)
1187   if (save_argument_registers()) {
1188     // 4815101: this is a stub with implicit and unknown precision fp args.
1189     // The usual spill mechanism can only generate stfd's in this case, which
1190     // doesn't work if the fp reg to spill contains a single-precision denorm.
1191     // Instead, we hack around the normal spill mechanism using stfspill's and
1192     // ldffill's in the MachProlog and MachEpilog emit methods.  We allocate
1193     // space here for the fp arg regs (f8-f15) we're going to thusly spill.
1194     //
1195     // If we ever implement 16-byte 'registers' == stack slots, we can
1196     // get rid of this hack and have SpillCopy generate stfspill/ldffill
1197     // instead of stfd/stfs/ldfd/ldfs.
1198     _frame_slots += 8*(16/BytesPerInt);
1199   }
1200 #endif
1201   assert(_frame_slots >= 0 && _frame_slots < 1000000, "sanity check");
1202 
1203   if (C->has_mach_constant_base_node()) {
1204     uint add_size = 0;
1205     // Fill the constant table.
1206     // Note:  This must happen before shorten_branches.
1207     for (uint i = 0; i < C->cfg()->number_of_blocks(); i++) {
1208       Block* b = C->cfg()->get_block(i);
1209 
1210       for (uint j = 0; j < b->number_of_nodes(); j++) {
1211         Node* n = b->get_node(j);
1212 
1213         // If the node is a MachConstantNode evaluate the constant
1214         // value section.
1215         if (n->is_MachConstant()) {
1216           MachConstantNode* machcon = n->as_MachConstant();
1217           machcon->eval_constant(C);
1218         } else if (n->is_Mach()) {
1219           // On Power there are more nodes that issue constants.
1220           add_size += (n->as_Mach()->ins_num_consts() * 8);
1221         }
1222       }
1223     }
1224 
1225     // Calculate the offsets of the constants and the size of the
1226     // constant table (including the padding to the next section).
1227     constant_table().calculate_offsets_and_size();
1228     const_req = constant_table().size() + add_size;
1229   }
1230 
1231   // Initialize the space for the BufferBlob used to find and verify
1232   // instruction size in MachNode::emit_size()
1233   init_scratch_buffer_blob(const_req);
1234 }
1235 
1236 CodeBuffer* PhaseOutput::init_buffer() {
1237   int stub_req  = _buf_sizes._stub;
1238   int code_req  = _buf_sizes._code;
1239   int const_req = _buf_sizes._const;
1240 
1241   int pad_req   = NativeCall::instruction_size;
1242 
1243   BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
1244   stub_req += bs->estimate_stub_size();
1245 
1246   // nmethod and CodeBuffer count stubs & constants as part of method's code.
1247   // class HandlerImpl is platform-specific and defined in the *.ad files.
1248   int exception_handler_req = HandlerImpl::size_exception_handler() + MAX_stubs_size; // add marginal slop for handler
1249   int deopt_handler_req     = HandlerImpl::size_deopt_handler()     + MAX_stubs_size; // add marginal slop for handler
1250   stub_req += MAX_stubs_size;   // ensure per-stub margin
1251   code_req += MAX_inst_size;    // ensure per-instruction margin
1252 
1253   if (StressCodeBuffers)
1254     code_req = const_req = stub_req = exception_handler_req = deopt_handler_req = 0x10;  // force expansion
1255 
1256   int total_req =
1257           const_req +
1258           code_req +
1259           pad_req +
1260           stub_req +
1261           exception_handler_req +
1262           deopt_handler_req;               // deopt handler
1263 
1264   if (C->has_method_handle_invokes())
1265     total_req += deopt_handler_req;  // deopt MH handler
1266 
1267   CodeBuffer* cb = code_buffer();
1268   cb->initialize(total_req, _buf_sizes._reloc);
1269 
1270   // Have we run out of code space?
1271   if ((cb->blob() == NULL) || (!CompileBroker::should_compile_new_jobs())) {
1272     C->record_failure("CodeCache is full");
1273     return NULL;
1274   }
1275   // Configure the code buffer.
1276   cb->initialize_consts_size(const_req);
1277   cb->initialize_stubs_size(stub_req);
1278   cb->initialize_oop_recorder(C->env()->oop_recorder());
1279 
1280   // fill in the nop array for bundling computations
1281   MachNode *_nop_list[Bundle::_nop_count];
1282   Bundle::initialize_nops(_nop_list);
1283 
1284   return cb;
1285 }
1286 
1287 //------------------------------fill_buffer------------------------------------
1288 void PhaseOutput::fill_buffer(CodeBuffer* cb, uint* blk_starts) {
1289   // blk_starts[] contains offsets calculated during short branches processing,
1290   // offsets should not be increased during following steps.
1291 
1292   // Compute the size of first NumberOfLoopInstrToAlign instructions at head
1293   // of a loop. It is used to determine the padding for loop alignment.
1294   compute_loop_first_inst_sizes();
1295 
1296   // Create oopmap set.
1297   _oop_map_set = new OopMapSet();
1298 
1299   // !!!!! This preserves old handling of oopmaps for now
1300   C->debug_info()->set_oopmaps(_oop_map_set);
1301 
1302   uint nblocks  = C->cfg()->number_of_blocks();
1303   // Count and start of implicit null check instructions
1304   uint inct_cnt = 0;
1305   uint *inct_starts = NEW_RESOURCE_ARRAY(uint, nblocks+1);
1306 
1307   // Count and start of calls
1308   uint *call_returns = NEW_RESOURCE_ARRAY(uint, nblocks+1);
1309 
1310   uint  return_offset = 0;
1311   int nop_size = (new MachNopNode())->size(C->regalloc());
1312 
1313   int previous_offset = 0;
1314   int current_offset  = 0;
1315   int last_call_offset = -1;
1316   int last_avoid_back_to_back_offset = -1;
1317 #ifdef ASSERT
1318   uint* jmp_target = NEW_RESOURCE_ARRAY(uint,nblocks);
1319   uint* jmp_offset = NEW_RESOURCE_ARRAY(uint,nblocks);
1320   uint* jmp_size   = NEW_RESOURCE_ARRAY(uint,nblocks);
1321   uint* jmp_rule   = NEW_RESOURCE_ARRAY(uint,nblocks);
1322 #endif
1323 
1324   // Create an array of unused labels, one for each basic block, if printing is enabled
1325 #if defined(SUPPORT_OPTO_ASSEMBLY)
1326   int *node_offsets      = NULL;
1327   uint node_offset_limit = C->unique();
1328 
1329   if (C->print_assembly()) {
1330     node_offsets = NEW_RESOURCE_ARRAY(int, node_offset_limit);
1331   }
1332   if (node_offsets != NULL) {
1333     // We need to initialize. Unused array elements may contain garbage and mess up PrintOptoAssembly.
1334     memset(node_offsets, 0, node_offset_limit*sizeof(int));
1335   }
1336 #endif
1337 
1338   NonSafepointEmitter non_safepoints(C);  // emit non-safepoints lazily
1339 
1340   // Emit the constant table.
1341   if (C->has_mach_constant_base_node()) {
1342     constant_table().emit(*cb);
1343   }
1344 
1345   // Create an array of labels, one for each basic block
1346   Label *blk_labels = NEW_RESOURCE_ARRAY(Label, nblocks+1);
1347   for (uint i=0; i <= nblocks; i++) {
1348     blk_labels[i].init();
1349   }
1350 
1351   // ------------------
1352   // Now fill in the code buffer
1353   Node *delay_slot = NULL;
1354 
1355   for (uint i = 0; i < nblocks; i++) {
1356     Block* block = C->cfg()->get_block(i);
1357     _block = block;
1358     Node* head = block->head();
1359 
1360     // If this block needs to start aligned (i.e, can be reached other
1361     // than by falling-thru from the previous block), then force the
1362     // start of a new bundle.
1363     if (Pipeline::requires_bundling() && starts_bundle(head)) {
1364       cb->flush_bundle(true);
1365     }
1366 
1367 #ifdef ASSERT
1368     if (!block->is_connector()) {
1369       stringStream st;
1370       block->dump_head(C->cfg(), &st);
1371       MacroAssembler(cb).block_comment(st.as_string());
1372     }
1373     jmp_target[i] = 0;
1374     jmp_offset[i] = 0;
1375     jmp_size[i]   = 0;
1376     jmp_rule[i]   = 0;
1377 #endif
1378     int blk_offset = current_offset;
1379 
1380     // Define the label at the beginning of the basic block
1381     MacroAssembler(cb).bind(blk_labels[block->_pre_order]);
1382 
1383     uint last_inst = block->number_of_nodes();
1384 
1385     // Emit block normally, except for last instruction.
1386     // Emit means "dump code bits into code buffer".
1387     for (uint j = 0; j<last_inst; j++) {
1388       _index = j;
1389 
1390       // Get the node
1391       Node* n = block->get_node(j);
1392 
1393       // See if delay slots are supported
1394       if (valid_bundle_info(n) && node_bundling(n)->used_in_unconditional_delay()) {
1395         assert(delay_slot == NULL, "no use of delay slot node");
1396         assert(n->size(C->regalloc()) == Pipeline::instr_unit_size(), "delay slot instruction wrong size");
1397 
1398         delay_slot = n;
1399         continue;
1400       }
1401 
1402       // If this starts a new instruction group, then flush the current one
1403       // (but allow split bundles)
1404       if (Pipeline::requires_bundling() && starts_bundle(n))
1405         cb->flush_bundle(false);
1406 
1407       // Special handling for SafePoint/Call Nodes
1408       bool is_mcall = false;
1409       if (n->is_Mach()) {
1410         MachNode *mach = n->as_Mach();
1411         is_mcall = n->is_MachCall();
1412         bool is_sfn = n->is_MachSafePoint();
1413 
1414         // If this requires all previous instructions be flushed, then do so
1415         if (is_sfn || is_mcall || mach->alignment_required() != 1) {
1416           cb->flush_bundle(true);
1417           current_offset = cb->insts_size();
1418         }
1419 
1420         // A padding may be needed again since a previous instruction
1421         // could be moved to delay slot.
1422 
1423         // align the instruction if necessary
1424         int padding = mach->compute_padding(current_offset);
1425         // Make sure safepoint node for polling is distinct from a call's
1426         // return by adding a nop if needed.
1427         if (is_sfn && !is_mcall && padding == 0 && current_offset == last_call_offset) {
1428           padding = nop_size;
1429         }
1430         if (padding == 0 && mach->avoid_back_to_back(MachNode::AVOID_BEFORE) &&
1431             current_offset == last_avoid_back_to_back_offset) {
1432           // Avoid back to back some instructions.
1433           padding = nop_size;
1434         }
1435 
1436         if (padding > 0) {
1437           assert((padding % nop_size) == 0, "padding is not a multiple of NOP size");
1438           int nops_cnt = padding / nop_size;
1439           MachNode *nop = new MachNopNode(nops_cnt);
1440           block->insert_node(nop, j++);
1441           last_inst++;
1442           C->cfg()->map_node_to_block(nop, block);
1443           // Ensure enough space.
1444           cb->insts()->maybe_expand_to_ensure_remaining(MAX_inst_size);
1445           if ((cb->blob() == NULL) || (!CompileBroker::should_compile_new_jobs())) {
1446             C->record_failure("CodeCache is full");
1447             return;
1448           }
1449           nop->emit(*cb, C->regalloc());
1450           cb->flush_bundle(true);
1451           current_offset = cb->insts_size();
1452         }
1453 
1454         // Remember the start of the last call in a basic block
1455         if (is_mcall) {
1456           MachCallNode *mcall = mach->as_MachCall();
1457 
1458           // This destination address is NOT PC-relative
1459           mcall->method_set((intptr_t)mcall->entry_point());
1460 
1461           // Save the return address
1462           call_returns[block->_pre_order] = current_offset + mcall->ret_addr_offset();
1463 
1464           if (mcall->is_MachCallLeaf()) {
1465             is_mcall = false;
1466             is_sfn = false;
1467           }
1468         }
1469 
1470         // sfn will be valid whenever mcall is valid now because of inheritance
1471         if (is_sfn || is_mcall) {
1472 
1473           // Handle special safepoint nodes for synchronization
1474           if (!is_mcall) {
1475             MachSafePointNode *sfn = mach->as_MachSafePoint();
1476             // !!!!! Stubs only need an oopmap right now, so bail out
1477             if (sfn->jvms()->method() == NULL) {
1478               // Write the oopmap directly to the code blob??!!
1479               continue;
1480             }
1481           } // End synchronization
1482 
1483           non_safepoints.observe_safepoint(mach->as_MachSafePoint()->jvms(),
1484                                            current_offset);
1485           Process_OopMap_Node(mach, current_offset);
1486         } // End if safepoint
1487 
1488           // If this is a null check, then add the start of the previous instruction to the list
1489         else if( mach->is_MachNullCheck() ) {
1490           inct_starts[inct_cnt++] = previous_offset;
1491         }
1492 
1493           // If this is a branch, then fill in the label with the target BB's label
1494         else if (mach->is_MachBranch()) {
1495           // This requires the TRUE branch target be in succs[0]
1496           uint block_num = block->non_connector_successor(0)->_pre_order;
1497 
1498           // Try to replace long branch if delay slot is not used,
1499           // it is mostly for back branches since forward branch's
1500           // distance is not updated yet.
1501           bool delay_slot_is_used = valid_bundle_info(n) &&
1502                                     C->output()->node_bundling(n)->use_unconditional_delay();
1503           if (!delay_slot_is_used && mach->may_be_short_branch()) {
1504             assert(delay_slot == NULL, "not expecting delay slot node");
1505             int br_size = n->size(C->regalloc());
1506             int offset = blk_starts[block_num] - current_offset;
1507             if (block_num >= i) {
1508               // Current and following block's offset are not
1509               // finalized yet, adjust distance by the difference
1510               // between calculated and final offsets of current block.
1511               offset -= (blk_starts[i] - blk_offset);
1512             }
1513             // In the following code a nop could be inserted before
1514             // the branch which will increase the backward distance.
1515             bool needs_padding = (current_offset == last_avoid_back_to_back_offset);
1516             if (needs_padding && offset <= 0)
1517               offset -= nop_size;
1518 
1519             if (C->matcher()->is_short_branch_offset(mach->rule(), br_size, offset)) {
1520               // We've got a winner.  Replace this branch.
1521               MachNode* replacement = mach->as_MachBranch()->short_branch_version();
1522 
1523               // Update the jmp_size.
1524               int new_size = replacement->size(C->regalloc());
1525               assert((br_size - new_size) >= (int)nop_size, "short_branch size should be smaller");
1526               // Insert padding between avoid_back_to_back branches.
1527               if (needs_padding && replacement->avoid_back_to_back(MachNode::AVOID_BEFORE)) {
1528                 MachNode *nop = new MachNopNode();
1529                 block->insert_node(nop, j++);
1530                 C->cfg()->map_node_to_block(nop, block);
1531                 last_inst++;
1532                 nop->emit(*cb, C->regalloc());
1533                 cb->flush_bundle(true);
1534                 current_offset = cb->insts_size();
1535               }
1536 #ifdef ASSERT
1537               jmp_target[i] = block_num;
1538               jmp_offset[i] = current_offset - blk_offset;
1539               jmp_size[i]   = new_size;
1540               jmp_rule[i]   = mach->rule();
1541 #endif
1542               block->map_node(replacement, j);
1543               mach->subsume_by(replacement, C);
1544               n    = replacement;
1545               mach = replacement;
1546             }
1547           }
1548           mach->as_MachBranch()->label_set( &blk_labels[block_num], block_num );
1549         } else if (mach->ideal_Opcode() == Op_Jump) {
1550           for (uint h = 0; h < block->_num_succs; h++) {
1551             Block* succs_block = block->_succs[h];
1552             for (uint j = 1; j < succs_block->num_preds(); j++) {
1553               Node* jpn = succs_block->pred(j);
1554               if (jpn->is_JumpProj() && jpn->in(0) == mach) {
1555                 uint block_num = succs_block->non_connector()->_pre_order;
1556                 Label *blkLabel = &blk_labels[block_num];
1557                 mach->add_case_label(jpn->as_JumpProj()->proj_no(), blkLabel);
1558               }
1559             }
1560           }
1561         }
1562 #ifdef ASSERT
1563           // Check that oop-store precedes the card-mark
1564         else if (mach->ideal_Opcode() == Op_StoreCM) {
1565           uint storeCM_idx = j;
1566           int count = 0;
1567           for (uint prec = mach->req(); prec < mach->len(); prec++) {
1568             Node *oop_store = mach->in(prec);  // Precedence edge
1569             if (oop_store == NULL) continue;
1570             count++;
1571             uint i4;
1572             for (i4 = 0; i4 < last_inst; ++i4) {
1573               if (block->get_node(i4) == oop_store) {
1574                 break;
1575               }
1576             }
1577             // Note: This test can provide a false failure if other precedence
1578             // edges have been added to the storeCMNode.
1579             assert(i4 == last_inst || i4 < storeCM_idx, "CM card-mark executes before oop-store");
1580           }
1581           assert(count > 0, "storeCM expects at least one precedence edge");
1582         }
1583 #endif
1584         else if (!n->is_Proj()) {
1585           // Remember the beginning of the previous instruction, in case
1586           // it's followed by a flag-kill and a null-check.  Happens on
1587           // Intel all the time, with add-to-memory kind of opcodes.
1588           previous_offset = current_offset;
1589         }
1590 
1591         // Not an else-if!
1592         // If this is a trap based cmp then add its offset to the list.
1593         if (mach->is_TrapBasedCheckNode()) {
1594           inct_starts[inct_cnt++] = current_offset;
1595         }
1596       }
1597 
1598       // Verify that there is sufficient space remaining
1599       cb->insts()->maybe_expand_to_ensure_remaining(MAX_inst_size);
1600       if ((cb->blob() == NULL) || (!CompileBroker::should_compile_new_jobs())) {
1601         C->record_failure("CodeCache is full");
1602         return;
1603       }
1604 
1605       // Save the offset for the listing
1606 #if defined(SUPPORT_OPTO_ASSEMBLY)
1607       if ((node_offsets != NULL) && (n->_idx < node_offset_limit)) {
1608         node_offsets[n->_idx] = cb->insts_size();
1609       }
1610 #endif
1611 
1612       // "Normal" instruction case
1613       DEBUG_ONLY( uint instr_offset = cb->insts_size(); )
1614       n->emit(*cb, C->regalloc());
1615       current_offset  = cb->insts_size();
1616 
1617       // Above we only verified that there is enough space in the instruction section.
1618       // However, the instruction may emit stubs that cause code buffer expansion.
1619       // Bail out here if expansion failed due to a lack of code cache space.
1620       if (C->failing()) {
1621         return;
1622       }
1623 
1624 #ifdef ASSERT
1625       if (n->size(C->regalloc()) < (current_offset-instr_offset)) {
1626         n->dump();
1627         assert(false, "wrong size of mach node");
1628       }
1629 #endif
1630       non_safepoints.observe_instruction(n, current_offset);
1631 
1632       // mcall is last "call" that can be a safepoint
1633       // record it so we can see if a poll will directly follow it
1634       // in which case we'll need a pad to make the PcDesc sites unique
1635       // see  5010568. This can be slightly inaccurate but conservative
1636       // in the case that return address is not actually at current_offset.
1637       // This is a small price to pay.
1638 
1639       if (is_mcall) {
1640         last_call_offset = current_offset;
1641       }
1642 
1643       if (n->is_Mach() && n->as_Mach()->avoid_back_to_back(MachNode::AVOID_AFTER)) {
1644         // Avoid back to back some instructions.
1645         last_avoid_back_to_back_offset = current_offset;
1646       }
1647 
1648       // See if this instruction has a delay slot
1649       if (valid_bundle_info(n) && node_bundling(n)->use_unconditional_delay()) {
1650         guarantee(delay_slot != NULL, "expecting delay slot node");
1651 
1652         // Back up 1 instruction
1653         cb->set_insts_end(cb->insts_end() - Pipeline::instr_unit_size());
1654 
1655         // Save the offset for the listing
1656 #if defined(SUPPORT_OPTO_ASSEMBLY)
1657         if ((node_offsets != NULL) && (delay_slot->_idx < node_offset_limit)) {
1658           node_offsets[delay_slot->_idx] = cb->insts_size();
1659         }
1660 #endif
1661 
1662         // Support a SafePoint in the delay slot
1663         if (delay_slot->is_MachSafePoint()) {
1664           MachNode *mach = delay_slot->as_Mach();
1665           // !!!!! Stubs only need an oopmap right now, so bail out
1666           if (!mach->is_MachCall() && mach->as_MachSafePoint()->jvms()->method() == NULL) {
1667             // Write the oopmap directly to the code blob??!!
1668             delay_slot = NULL;
1669             continue;
1670           }
1671 
1672           int adjusted_offset = current_offset - Pipeline::instr_unit_size();
1673           non_safepoints.observe_safepoint(mach->as_MachSafePoint()->jvms(),
1674                                            adjusted_offset);
1675           // Generate an OopMap entry
1676           Process_OopMap_Node(mach, adjusted_offset);
1677         }
1678 
1679         // Insert the delay slot instruction
1680         delay_slot->emit(*cb, C->regalloc());
1681 
1682         // Don't reuse it
1683         delay_slot = NULL;
1684       }
1685 
1686     } // End for all instructions in block
1687 
1688     // If the next block is the top of a loop, pad this block out to align
1689     // the loop top a little. Helps prevent pipe stalls at loop back branches.
1690     if (i < nblocks-1) {
1691       Block *nb = C->cfg()->get_block(i + 1);
1692       int padding = nb->alignment_padding(current_offset);
1693       if( padding > 0 ) {
1694         MachNode *nop = new MachNopNode(padding / nop_size);
1695         block->insert_node(nop, block->number_of_nodes());
1696         C->cfg()->map_node_to_block(nop, block);
1697         nop->emit(*cb, C->regalloc());
1698         current_offset = cb->insts_size();
1699       }
1700     }
1701     // Verify that the distance for generated before forward
1702     // short branches is still valid.
1703     guarantee((int)(blk_starts[i+1] - blk_starts[i]) >= (current_offset - blk_offset), "shouldn't increase block size");
1704 
1705     // Save new block start offset
1706     blk_starts[i] = blk_offset;
1707   } // End of for all blocks
1708   blk_starts[nblocks] = current_offset;
1709 
1710   non_safepoints.flush_at_end();
1711 
1712   // Offset too large?
1713   if (C->failing())  return;
1714 
1715   // Define a pseudo-label at the end of the code
1716   MacroAssembler(cb).bind( blk_labels[nblocks] );
1717 
1718   // Compute the size of the first block
1719   _first_block_size = blk_labels[1].loc_pos() - blk_labels[0].loc_pos();
1720 
1721 #ifdef ASSERT
1722   for (uint i = 0; i < nblocks; i++) { // For all blocks
1723     if (jmp_target[i] != 0) {
1724       int br_size = jmp_size[i];
1725       int offset = blk_starts[jmp_target[i]]-(blk_starts[i] + jmp_offset[i]);
1726       if (!C->matcher()->is_short_branch_offset(jmp_rule[i], br_size, offset)) {
1727         tty->print_cr("target (%d) - jmp_offset(%d) = offset (%d), jump_size(%d), jmp_block B%d, target_block B%d", blk_starts[jmp_target[i]], blk_starts[i] + jmp_offset[i], offset, br_size, i, jmp_target[i]);
1728         assert(false, "Displacement too large for short jmp");
1729       }
1730     }
1731   }
1732 #endif
1733 
1734   BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
1735   bs->emit_stubs(*cb);
1736   if (C->failing())  return;
1737 
1738 #ifndef PRODUCT
1739   // Information on the size of the method, without the extraneous code
1740   Scheduling::increment_method_size(cb->insts_size());
1741 #endif
1742 
1743   // ------------------
1744   // Fill in exception table entries.
1745   FillExceptionTables(inct_cnt, call_returns, inct_starts, blk_labels);
1746 
1747   // Only java methods have exception handlers and deopt handlers
1748   // class HandlerImpl is platform-specific and defined in the *.ad files.
1749   if (C->method()) {
1750     // Emit the exception handler code.
1751     _code_offsets.set_value(CodeOffsets::Exceptions, HandlerImpl::emit_exception_handler(*cb));
1752     if (C->failing()) {
1753       return; // CodeBuffer::expand failed
1754     }
1755     // Emit the deopt handler code.
1756     _code_offsets.set_value(CodeOffsets::Deopt, HandlerImpl::emit_deopt_handler(*cb));
1757 
1758     // Emit the MethodHandle deopt handler code (if required).
1759     if (C->has_method_handle_invokes() && !C->failing()) {
1760       // We can use the same code as for the normal deopt handler, we
1761       // just need a different entry point address.
1762       _code_offsets.set_value(CodeOffsets::DeoptMH, HandlerImpl::emit_deopt_handler(*cb));
1763     }
1764   }
1765 
1766   // One last check for failed CodeBuffer::expand:
1767   if ((cb->blob() == NULL) || (!CompileBroker::should_compile_new_jobs())) {
1768     C->record_failure("CodeCache is full");
1769     return;
1770   }
1771 
1772 #if defined(SUPPORT_ABSTRACT_ASSEMBLY) || defined(SUPPORT_ASSEMBLY) || defined(SUPPORT_OPTO_ASSEMBLY)
1773   if (C->print_assembly()) {
1774     tty->cr();
1775     tty->print_cr("============================= C2-compiled nmethod ==============================");
1776   }
1777 #endif
1778 
1779 #if defined(SUPPORT_OPTO_ASSEMBLY)
1780   // Dump the assembly code, including basic-block numbers
1781   if (C->print_assembly()) {
1782     ttyLocker ttyl;  // keep the following output all in one block
1783     if (!VMThread::should_terminate()) {  // test this under the tty lock
1784       // This output goes directly to the tty, not the compiler log.
1785       // To enable tools to match it up with the compilation activity,
1786       // be sure to tag this tty output with the compile ID.
1787       if (xtty != NULL) {
1788         xtty->head("opto_assembly compile_id='%d'%s", C->compile_id(),
1789                    C->is_osr_compilation()    ? " compile_kind='osr'" :
1790                    "");
1791       }
1792       if (C->method() != NULL) {
1793         tty->print_cr("----------------------- MetaData before Compile_id = %d ------------------------", C->compile_id());
1794         C->method()->print_metadata();
1795       } else if (C->stub_name() != NULL) {
1796         tty->print_cr("----------------------------- RuntimeStub %s -------------------------------", C->stub_name());
1797       }
1798       tty->cr();
1799       tty->print_cr("------------------------ OptoAssembly for Compile_id = %d -----------------------", C->compile_id());
1800       dump_asm(node_offsets, node_offset_limit);
1801       tty->print_cr("--------------------------------------------------------------------------------");
1802       if (xtty != NULL) {
1803         // print_metadata and dump_asm above may safepoint which makes us loose the ttylock.
1804         // Retake lock too make sure the end tag is coherent, and that xmlStream->pop_tag is done
1805         // thread safe
1806         ttyLocker ttyl2;
1807         xtty->tail("opto_assembly");
1808       }
1809     }
1810   }
1811 #endif
1812 }
1813 
1814 void PhaseOutput::FillExceptionTables(uint cnt, uint *call_returns, uint *inct_starts, Label *blk_labels) {
1815   _inc_table.set_size(cnt);
1816 
1817   uint inct_cnt = 0;
1818   for (uint i = 0; i < C->cfg()->number_of_blocks(); i++) {
1819     Block* block = C->cfg()->get_block(i);
1820     Node *n = NULL;
1821     int j;
1822 
1823     // Find the branch; ignore trailing NOPs.
1824     for (j = block->number_of_nodes() - 1; j >= 0; j--) {
1825       n = block->get_node(j);
1826       if (!n->is_Mach() || n->as_Mach()->ideal_Opcode() != Op_Con) {
1827         break;
1828       }
1829     }
1830 
1831     // If we didn't find anything, continue
1832     if (j < 0) {
1833       continue;
1834     }
1835 
1836     // Compute ExceptionHandlerTable subtable entry and add it
1837     // (skip empty blocks)
1838     if (n->is_Catch()) {
1839 
1840       // Get the offset of the return from the call
1841       uint call_return = call_returns[block->_pre_order];
1842 #ifdef ASSERT
1843       assert( call_return > 0, "no call seen for this basic block" );
1844       while (block->get_node(--j)->is_MachProj()) ;
1845       assert(block->get_node(j)->is_MachCall(), "CatchProj must follow call");
1846 #endif
1847       // last instruction is a CatchNode, find it's CatchProjNodes
1848       int nof_succs = block->_num_succs;
1849       // allocate space
1850       GrowableArray<intptr_t> handler_bcis(nof_succs);
1851       GrowableArray<intptr_t> handler_pcos(nof_succs);
1852       // iterate through all successors
1853       for (int j = 0; j < nof_succs; j++) {
1854         Block* s = block->_succs[j];
1855         bool found_p = false;
1856         for (uint k = 1; k < s->num_preds(); k++) {
1857           Node* pk = s->pred(k);
1858           if (pk->is_CatchProj() && pk->in(0) == n) {
1859             const CatchProjNode* p = pk->as_CatchProj();
1860             found_p = true;
1861             // add the corresponding handler bci & pco information
1862             if (p->_con != CatchProjNode::fall_through_index) {
1863               // p leads to an exception handler (and is not fall through)
1864               assert(s == C->cfg()->get_block(s->_pre_order), "bad numbering");
1865               // no duplicates, please
1866               if (!handler_bcis.contains(p->handler_bci())) {
1867                 uint block_num = s->non_connector()->_pre_order;
1868                 handler_bcis.append(p->handler_bci());
1869                 handler_pcos.append(blk_labels[block_num].loc_pos());
1870               }
1871             }
1872           }
1873         }
1874         assert(found_p, "no matching predecessor found");
1875         // Note:  Due to empty block removal, one block may have
1876         // several CatchProj inputs, from the same Catch.
1877       }
1878 
1879       // Set the offset of the return from the call
1880       assert(handler_bcis.find(-1) != -1, "must have default handler");
1881       _handler_table.add_subtable(call_return, &handler_bcis, NULL, &handler_pcos);
1882       continue;
1883     }
1884 
1885     // Handle implicit null exception table updates
1886     if (n->is_MachNullCheck()) {
1887       uint block_num = block->non_connector_successor(0)->_pre_order;
1888       _inc_table.append(inct_starts[inct_cnt++], blk_labels[block_num].loc_pos());
1889       continue;
1890     }
1891     // Handle implicit exception table updates: trap instructions.
1892     if (n->is_Mach() && n->as_Mach()->is_TrapBasedCheckNode()) {
1893       uint block_num = block->non_connector_successor(0)->_pre_order;
1894       _inc_table.append(inct_starts[inct_cnt++], blk_labels[block_num].loc_pos());
1895       continue;
1896     }
1897   } // End of for all blocks fill in exception table entries
1898 }
1899 
1900 // Static Variables
1901 #ifndef PRODUCT
1902 uint Scheduling::_total_nop_size = 0;
1903 uint Scheduling::_total_method_size = 0;
1904 uint Scheduling::_total_branches = 0;
1905 uint Scheduling::_total_unconditional_delays = 0;
1906 uint Scheduling::_total_instructions_per_bundle[Pipeline::_max_instrs_per_cycle+1];
1907 #endif
1908 
1909 // Initializer for class Scheduling
1910 
1911 Scheduling::Scheduling(Arena *arena, Compile &compile)
1912         : _arena(arena),
1913           _cfg(compile.cfg()),
1914           _regalloc(compile.regalloc()),
1915           _scheduled(arena),
1916           _available(arena),
1917           _reg_node(arena),
1918           _pinch_free_list(arena),
1919           _next_node(NULL),
1920           _bundle_instr_count(0),
1921           _bundle_cycle_number(0),
1922           _bundle_use(0, 0, resource_count, &_bundle_use_elements[0])
1923 #ifndef PRODUCT
1924         , _branches(0)
1925         , _unconditional_delays(0)
1926 #endif
1927 {
1928   // Create a MachNopNode
1929   _nop = new MachNopNode();
1930 
1931   // Now that the nops are in the array, save the count
1932   // (but allow entries for the nops)
1933   _node_bundling_limit = compile.unique();
1934   uint node_max = _regalloc->node_regs_max_index();
1935 
1936   compile.output()->set_node_bundling_limit(_node_bundling_limit);
1937 
1938   // This one is persistent within the Compile class
1939   _node_bundling_base = NEW_ARENA_ARRAY(compile.comp_arena(), Bundle, node_max);
1940 
1941   // Allocate space for fixed-size arrays
1942   _node_latency    = NEW_ARENA_ARRAY(arena, unsigned short, node_max);
1943   _uses            = NEW_ARENA_ARRAY(arena, short,          node_max);
1944   _current_latency = NEW_ARENA_ARRAY(arena, unsigned short, node_max);
1945 
1946   // Clear the arrays
1947   for (uint i = 0; i < node_max; i++) {
1948     ::new (&_node_bundling_base[i]) Bundle();
1949   }
1950   memset(_node_latency,       0, node_max * sizeof(unsigned short));
1951   memset(_uses,               0, node_max * sizeof(short));
1952   memset(_current_latency,    0, node_max * sizeof(unsigned short));
1953 
1954   // Clear the bundling information
1955   memcpy(_bundle_use_elements, Pipeline_Use::elaborated_elements, sizeof(Pipeline_Use::elaborated_elements));
1956 
1957   // Get the last node
1958   Block* block = _cfg->get_block(_cfg->number_of_blocks() - 1);
1959 
1960   _next_node = block->get_node(block->number_of_nodes() - 1);
1961 }
1962 
1963 #ifndef PRODUCT
1964 // Scheduling destructor
1965 Scheduling::~Scheduling() {
1966   _total_branches             += _branches;
1967   _total_unconditional_delays += _unconditional_delays;
1968 }
1969 #endif
1970 
1971 // Step ahead "i" cycles
1972 void Scheduling::step(uint i) {
1973 
1974   Bundle *bundle = node_bundling(_next_node);
1975   bundle->set_starts_bundle();
1976 
1977   // Update the bundle record, but leave the flags information alone
1978   if (_bundle_instr_count > 0) {
1979     bundle->set_instr_count(_bundle_instr_count);
1980     bundle->set_resources_used(_bundle_use.resourcesUsed());
1981   }
1982 
1983   // Update the state information
1984   _bundle_instr_count = 0;
1985   _bundle_cycle_number += i;
1986   _bundle_use.step(i);
1987 }
1988 
1989 void Scheduling::step_and_clear() {
1990   Bundle *bundle = node_bundling(_next_node);
1991   bundle->set_starts_bundle();
1992 
1993   // Update the bundle record
1994   if (_bundle_instr_count > 0) {
1995     bundle->set_instr_count(_bundle_instr_count);
1996     bundle->set_resources_used(_bundle_use.resourcesUsed());
1997 
1998     _bundle_cycle_number += 1;
1999   }
2000 
2001   // Clear the bundling information
2002   _bundle_instr_count = 0;
2003   _bundle_use.reset();
2004 
2005   memcpy(_bundle_use_elements,
2006          Pipeline_Use::elaborated_elements,
2007          sizeof(Pipeline_Use::elaborated_elements));
2008 }
2009 
2010 // Perform instruction scheduling and bundling over the sequence of
2011 // instructions in backwards order.
2012 void PhaseOutput::ScheduleAndBundle() {
2013 
2014   // Don't optimize this if it isn't a method
2015   if (!C->method())
2016     return;
2017 
2018   // Don't optimize this if scheduling is disabled
2019   if (!C->do_scheduling())
2020     return;
2021 
2022   // Scheduling code works only with pairs (16 bytes) maximum.
2023   if (C->max_vector_size() > 16)
2024     return;
2025 
2026   Compile::TracePhase tp("isched", &timers[_t_instrSched]);
2027 
2028   // Create a data structure for all the scheduling information
2029   Scheduling scheduling(Thread::current()->resource_area(), *C);
2030 
2031   // Walk backwards over each basic block, computing the needed alignment
2032   // Walk over all the basic blocks
2033   scheduling.DoScheduling();
2034 
2035 #ifndef PRODUCT
2036   if (C->trace_opto_output()) {
2037     tty->print("\n---- After ScheduleAndBundle ----\n");
2038     for (uint i = 0; i < C->cfg()->number_of_blocks(); i++) {
2039       tty->print("\nBB#%03d:\n", i);
2040       Block* block = C->cfg()->get_block(i);
2041       for (uint j = 0; j < block->number_of_nodes(); j++) {
2042         Node* n = block->get_node(j);
2043         OptoReg::Name reg = C->regalloc()->get_reg_first(n);
2044         tty->print(" %-6s ", reg >= 0 && reg < REG_COUNT ? Matcher::regName[reg] : "");
2045         n->dump();
2046       }
2047     }
2048   }
2049 #endif
2050 }
2051 
2052 // Compute the latency of all the instructions.  This is fairly simple,
2053 // because we already have a legal ordering.  Walk over the instructions
2054 // from first to last, and compute the latency of the instruction based
2055 // on the latency of the preceding instruction(s).
2056 void Scheduling::ComputeLocalLatenciesForward(const Block *bb) {
2057 #ifndef PRODUCT
2058   if (_cfg->C->trace_opto_output())
2059     tty->print("# -> ComputeLocalLatenciesForward\n");
2060 #endif
2061 
2062   // Walk over all the schedulable instructions
2063   for( uint j=_bb_start; j < _bb_end; j++ ) {
2064 
2065     // This is a kludge, forcing all latency calculations to start at 1.
2066     // Used to allow latency 0 to force an instruction to the beginning
2067     // of the bb
2068     uint latency = 1;
2069     Node *use = bb->get_node(j);
2070     uint nlen = use->len();
2071 
2072     // Walk over all the inputs
2073     for ( uint k=0; k < nlen; k++ ) {
2074       Node *def = use->in(k);
2075       if (!def)
2076         continue;
2077 
2078       uint l = _node_latency[def->_idx] + use->latency(k);
2079       if (latency < l)
2080         latency = l;
2081     }
2082 
2083     _node_latency[use->_idx] = latency;
2084 
2085 #ifndef PRODUCT
2086     if (_cfg->C->trace_opto_output()) {
2087       tty->print("# latency %4d: ", latency);
2088       use->dump();
2089     }
2090 #endif
2091   }
2092 
2093 #ifndef PRODUCT
2094   if (_cfg->C->trace_opto_output())
2095     tty->print("# <- ComputeLocalLatenciesForward\n");
2096 #endif
2097 
2098 } // end ComputeLocalLatenciesForward
2099 
2100 // See if this node fits into the present instruction bundle
2101 bool Scheduling::NodeFitsInBundle(Node *n) {
2102   uint n_idx = n->_idx;
2103 
2104   // If this is the unconditional delay instruction, then it fits
2105   if (n == _unconditional_delay_slot) {
2106 #ifndef PRODUCT
2107     if (_cfg->C->trace_opto_output())
2108       tty->print("#     NodeFitsInBundle [%4d]: TRUE; is in unconditional delay slot\n", n->_idx);
2109 #endif
2110     return (true);
2111   }
2112 
2113   // If the node cannot be scheduled this cycle, skip it
2114   if (_current_latency[n_idx] > _bundle_cycle_number) {
2115 #ifndef PRODUCT
2116     if (_cfg->C->trace_opto_output())
2117       tty->print("#     NodeFitsInBundle [%4d]: FALSE; latency %4d > %d\n",
2118                  n->_idx, _current_latency[n_idx], _bundle_cycle_number);
2119 #endif
2120     return (false);
2121   }
2122 
2123   const Pipeline *node_pipeline = n->pipeline();
2124 
2125   uint instruction_count = node_pipeline->instructionCount();
2126   if (node_pipeline->mayHaveNoCode() && n->size(_regalloc) == 0)
2127     instruction_count = 0;
2128   else if (node_pipeline->hasBranchDelay() && !_unconditional_delay_slot)
2129     instruction_count++;
2130 
2131   if (_bundle_instr_count + instruction_count > Pipeline::_max_instrs_per_cycle) {
2132 #ifndef PRODUCT
2133     if (_cfg->C->trace_opto_output())
2134       tty->print("#     NodeFitsInBundle [%4d]: FALSE; too many instructions: %d > %d\n",
2135                  n->_idx, _bundle_instr_count + instruction_count, Pipeline::_max_instrs_per_cycle);
2136 #endif
2137     return (false);
2138   }
2139 
2140   // Don't allow non-machine nodes to be handled this way
2141   if (!n->is_Mach() && instruction_count == 0)
2142     return (false);
2143 
2144   // See if there is any overlap
2145   uint delay = _bundle_use.full_latency(0, node_pipeline->resourceUse());
2146 
2147   if (delay > 0) {
2148 #ifndef PRODUCT
2149     if (_cfg->C->trace_opto_output())
2150       tty->print("#     NodeFitsInBundle [%4d]: FALSE; functional units overlap\n", n_idx);
2151 #endif
2152     return false;
2153   }
2154 
2155 #ifndef PRODUCT
2156   if (_cfg->C->trace_opto_output())
2157     tty->print("#     NodeFitsInBundle [%4d]:  TRUE\n", n_idx);
2158 #endif
2159 
2160   return true;
2161 }
2162 
2163 Node * Scheduling::ChooseNodeToBundle() {
2164   uint siz = _available.size();
2165 
2166   if (siz == 0) {
2167 
2168 #ifndef PRODUCT
2169     if (_cfg->C->trace_opto_output())
2170       tty->print("#   ChooseNodeToBundle: NULL\n");
2171 #endif
2172     return (NULL);
2173   }
2174 
2175   // Fast path, if only 1 instruction in the bundle
2176   if (siz == 1) {
2177 #ifndef PRODUCT
2178     if (_cfg->C->trace_opto_output()) {
2179       tty->print("#   ChooseNodeToBundle (only 1): ");
2180       _available[0]->dump();
2181     }
2182 #endif
2183     return (_available[0]);
2184   }
2185 
2186   // Don't bother, if the bundle is already full
2187   if (_bundle_instr_count < Pipeline::_max_instrs_per_cycle) {
2188     for ( uint i = 0; i < siz; i++ ) {
2189       Node *n = _available[i];
2190 
2191       // Skip projections, we'll handle them another way
2192       if (n->is_Proj())
2193         continue;
2194 
2195       // This presupposed that instructions are inserted into the
2196       // available list in a legality order; i.e. instructions that
2197       // must be inserted first are at the head of the list
2198       if (NodeFitsInBundle(n)) {
2199 #ifndef PRODUCT
2200         if (_cfg->C->trace_opto_output()) {
2201           tty->print("#   ChooseNodeToBundle: ");
2202           n->dump();
2203         }
2204 #endif
2205         return (n);
2206       }
2207     }
2208   }
2209 
2210   // Nothing fits in this bundle, choose the highest priority
2211 #ifndef PRODUCT
2212   if (_cfg->C->trace_opto_output()) {
2213     tty->print("#   ChooseNodeToBundle: ");
2214     _available[0]->dump();
2215   }
2216 #endif
2217 
2218   return _available[0];
2219 }
2220 
2221 void Scheduling::AddNodeToAvailableList(Node *n) {
2222   assert( !n->is_Proj(), "projections never directly made available" );
2223 #ifndef PRODUCT
2224   if (_cfg->C->trace_opto_output()) {
2225     tty->print("#   AddNodeToAvailableList: ");
2226     n->dump();
2227   }
2228 #endif
2229 
2230   int latency = _current_latency[n->_idx];
2231 
2232   // Insert in latency order (insertion sort)
2233   uint i;
2234   for ( i=0; i < _available.size(); i++ )
2235     if (_current_latency[_available[i]->_idx] > latency)
2236       break;
2237 
2238   // Special Check for compares following branches
2239   if( n->is_Mach() && _scheduled.size() > 0 ) {
2240     int op = n->as_Mach()->ideal_Opcode();
2241     Node *last = _scheduled[0];
2242     if( last->is_MachIf() && last->in(1) == n &&
2243         ( op == Op_CmpI ||
2244           op == Op_CmpU ||
2245           op == Op_CmpUL ||
2246           op == Op_CmpP ||
2247           op == Op_CmpF ||
2248           op == Op_CmpD ||
2249           op == Op_CmpL ) ) {
2250 
2251       // Recalculate position, moving to front of same latency
2252       for ( i=0 ; i < _available.size(); i++ )
2253         if (_current_latency[_available[i]->_idx] >= latency)
2254           break;
2255     }
2256   }
2257 
2258   // Insert the node in the available list
2259   _available.insert(i, n);
2260 
2261 #ifndef PRODUCT
2262   if (_cfg->C->trace_opto_output())
2263     dump_available();
2264 #endif
2265 }
2266 
2267 void Scheduling::DecrementUseCounts(Node *n, const Block *bb) {
2268   for ( uint i=0; i < n->len(); i++ ) {
2269     Node *def = n->in(i);
2270     if (!def) continue;
2271     if( def->is_Proj() )        // If this is a machine projection, then
2272       def = def->in(0);         // propagate usage thru to the base instruction
2273 
2274     if(_cfg->get_block_for_node(def) != bb) { // Ignore if not block-local
2275       continue;
2276     }
2277 
2278     // Compute the latency
2279     uint l = _bundle_cycle_number + n->latency(i);
2280     if (_current_latency[def->_idx] < l)
2281       _current_latency[def->_idx] = l;
2282 
2283     // If this does not have uses then schedule it
2284     if ((--_uses[def->_idx]) == 0)
2285       AddNodeToAvailableList(def);
2286   }
2287 }
2288 
2289 void Scheduling::AddNodeToBundle(Node *n, const Block *bb) {
2290 #ifndef PRODUCT
2291   if (_cfg->C->trace_opto_output()) {
2292     tty->print("#   AddNodeToBundle: ");
2293     n->dump();
2294   }
2295 #endif
2296 
2297   // Remove this from the available list
2298   uint i;
2299   for (i = 0; i < _available.size(); i++)
2300     if (_available[i] == n)
2301       break;
2302   assert(i < _available.size(), "entry in _available list not found");
2303   _available.remove(i);
2304 
2305   // See if this fits in the current bundle
2306   const Pipeline *node_pipeline = n->pipeline();
2307   const Pipeline_Use& node_usage = node_pipeline->resourceUse();
2308 
2309   // Check for instructions to be placed in the delay slot. We
2310   // do this before we actually schedule the current instruction,
2311   // because the delay slot follows the current instruction.
2312   if (Pipeline::_branch_has_delay_slot &&
2313       node_pipeline->hasBranchDelay() &&
2314       !_unconditional_delay_slot) {
2315 
2316     uint siz = _available.size();
2317 
2318     // Conditional branches can support an instruction that
2319     // is unconditionally executed and not dependent by the
2320     // branch, OR a conditionally executed instruction if
2321     // the branch is taken.  In practice, this means that
2322     // the first instruction at the branch target is
2323     // copied to the delay slot, and the branch goes to
2324     // the instruction after that at the branch target
2325     if ( n->is_MachBranch() ) {
2326 
2327       assert( !n->is_MachNullCheck(), "should not look for delay slot for Null Check" );
2328       assert( !n->is_Catch(),         "should not look for delay slot for Catch" );
2329 
2330 #ifndef PRODUCT
2331       _branches++;
2332 #endif
2333 
2334       // At least 1 instruction is on the available list
2335       // that is not dependent on the branch
2336       for (uint i = 0; i < siz; i++) {
2337         Node *d = _available[i];
2338         const Pipeline *avail_pipeline = d->pipeline();
2339 
2340         // Don't allow safepoints in the branch shadow, that will
2341         // cause a number of difficulties
2342         if ( avail_pipeline->instructionCount() == 1 &&
2343              !avail_pipeline->hasMultipleBundles() &&
2344              !avail_pipeline->hasBranchDelay() &&
2345              Pipeline::instr_has_unit_size() &&
2346              d->size(_regalloc) == Pipeline::instr_unit_size() &&
2347              NodeFitsInBundle(d) &&
2348              !node_bundling(d)->used_in_delay()) {
2349 
2350           if (d->is_Mach() && !d->is_MachSafePoint()) {
2351             // A node that fits in the delay slot was found, so we need to
2352             // set the appropriate bits in the bundle pipeline information so
2353             // that it correctly indicates resource usage.  Later, when we
2354             // attempt to add this instruction to the bundle, we will skip
2355             // setting the resource usage.
2356             _unconditional_delay_slot = d;
2357             node_bundling(n)->set_use_unconditional_delay();
2358             node_bundling(d)->set_used_in_unconditional_delay();
2359             _bundle_use.add_usage(avail_pipeline->resourceUse());
2360             _current_latency[d->_idx] = _bundle_cycle_number;
2361             _next_node = d;
2362             ++_bundle_instr_count;
2363 #ifndef PRODUCT
2364             _unconditional_delays++;
2365 #endif
2366             break;
2367           }
2368         }
2369       }
2370     }
2371 
2372     // No delay slot, add a nop to the usage
2373     if (!_unconditional_delay_slot) {
2374       // See if adding an instruction in the delay slot will overflow
2375       // the bundle.
2376       if (!NodeFitsInBundle(_nop)) {
2377 #ifndef PRODUCT
2378         if (_cfg->C->trace_opto_output())
2379           tty->print("#  *** STEP(1 instruction for delay slot) ***\n");
2380 #endif
2381         step(1);
2382       }
2383 
2384       _bundle_use.add_usage(_nop->pipeline()->resourceUse());
2385       _next_node = _nop;
2386       ++_bundle_instr_count;
2387     }
2388 
2389     // See if the instruction in the delay slot requires a
2390     // step of the bundles
2391     if (!NodeFitsInBundle(n)) {
2392 #ifndef PRODUCT
2393       if (_cfg->C->trace_opto_output())
2394         tty->print("#  *** STEP(branch won't fit) ***\n");
2395 #endif
2396       // Update the state information
2397       _bundle_instr_count = 0;
2398       _bundle_cycle_number += 1;
2399       _bundle_use.step(1);
2400     }
2401   }
2402 
2403   // Get the number of instructions
2404   uint instruction_count = node_pipeline->instructionCount();
2405   if (node_pipeline->mayHaveNoCode() && n->size(_regalloc) == 0)
2406     instruction_count = 0;
2407 
2408   // Compute the latency information
2409   uint delay = 0;
2410 
2411   if (instruction_count > 0 || !node_pipeline->mayHaveNoCode()) {
2412     int relative_latency = _current_latency[n->_idx] - _bundle_cycle_number;
2413     if (relative_latency < 0)
2414       relative_latency = 0;
2415 
2416     delay = _bundle_use.full_latency(relative_latency, node_usage);
2417 
2418     // Does not fit in this bundle, start a new one
2419     if (delay > 0) {
2420       step(delay);
2421 
2422 #ifndef PRODUCT
2423       if (_cfg->C->trace_opto_output())
2424         tty->print("#  *** STEP(%d) ***\n", delay);
2425 #endif
2426     }
2427   }
2428 
2429   // If this was placed in the delay slot, ignore it
2430   if (n != _unconditional_delay_slot) {
2431 
2432     if (delay == 0) {
2433       if (node_pipeline->hasMultipleBundles()) {
2434 #ifndef PRODUCT
2435         if (_cfg->C->trace_opto_output())
2436           tty->print("#  *** STEP(multiple instructions) ***\n");
2437 #endif
2438         step(1);
2439       }
2440 
2441       else if (instruction_count + _bundle_instr_count > Pipeline::_max_instrs_per_cycle) {
2442 #ifndef PRODUCT
2443         if (_cfg->C->trace_opto_output())
2444           tty->print("#  *** STEP(%d >= %d instructions) ***\n",
2445                      instruction_count + _bundle_instr_count,
2446                      Pipeline::_max_instrs_per_cycle);
2447 #endif
2448         step(1);
2449       }
2450     }
2451 
2452     if (node_pipeline->hasBranchDelay() && !_unconditional_delay_slot)
2453       _bundle_instr_count++;
2454 
2455     // Set the node's latency
2456     _current_latency[n->_idx] = _bundle_cycle_number;
2457 
2458     // Now merge the functional unit information
2459     if (instruction_count > 0 || !node_pipeline->mayHaveNoCode())
2460       _bundle_use.add_usage(node_usage);
2461 
2462     // Increment the number of instructions in this bundle
2463     _bundle_instr_count += instruction_count;
2464 
2465     // Remember this node for later
2466     if (n->is_Mach())
2467       _next_node = n;
2468   }
2469 
2470   // It's possible to have a BoxLock in the graph and in the _bbs mapping but
2471   // not in the bb->_nodes array.  This happens for debug-info-only BoxLocks.
2472   // 'Schedule' them (basically ignore in the schedule) but do not insert them
2473   // into the block.  All other scheduled nodes get put in the schedule here.
2474   int op = n->Opcode();
2475   if( (op == Op_Node && n->req() == 0) || // anti-dependence node OR
2476       (op != Op_Node &&         // Not an unused antidepedence node and
2477        // not an unallocated boxlock
2478        (OptoReg::is_valid(_regalloc->get_reg_first(n)) || op != Op_BoxLock)) ) {
2479 
2480     // Push any trailing projections
2481     if( bb->get_node(bb->number_of_nodes()-1) != n ) {
2482       for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
2483         Node *foi = n->fast_out(i);
2484         if( foi->is_Proj() )
2485           _scheduled.push(foi);
2486       }
2487     }
2488 
2489     // Put the instruction in the schedule list
2490     _scheduled.push(n);
2491   }
2492 
2493 #ifndef PRODUCT
2494   if (_cfg->C->trace_opto_output())
2495     dump_available();
2496 #endif
2497 
2498   // Walk all the definitions, decrementing use counts, and
2499   // if a definition has a 0 use count, place it in the available list.
2500   DecrementUseCounts(n,bb);
2501 }
2502 
2503 // This method sets the use count within a basic block.  We will ignore all
2504 // uses outside the current basic block.  As we are doing a backwards walk,
2505 // any node we reach that has a use count of 0 may be scheduled.  This also
2506 // avoids the problem of cyclic references from phi nodes, as long as phi
2507 // nodes are at the front of the basic block.  This method also initializes
2508 // the available list to the set of instructions that have no uses within this
2509 // basic block.
2510 void Scheduling::ComputeUseCount(const Block *bb) {
2511 #ifndef PRODUCT
2512   if (_cfg->C->trace_opto_output())
2513     tty->print("# -> ComputeUseCount\n");
2514 #endif
2515 
2516   // Clear the list of available and scheduled instructions, just in case
2517   _available.clear();
2518   _scheduled.clear();
2519 
2520   // No delay slot specified
2521   _unconditional_delay_slot = NULL;
2522 
2523 #ifdef ASSERT
2524   for( uint i=0; i < bb->number_of_nodes(); i++ )
2525     assert( _uses[bb->get_node(i)->_idx] == 0, "_use array not clean" );
2526 #endif
2527 
2528   // Force the _uses count to never go to zero for unscheduable pieces
2529   // of the block
2530   for( uint k = 0; k < _bb_start; k++ )
2531     _uses[bb->get_node(k)->_idx] = 1;
2532   for( uint l = _bb_end; l < bb->number_of_nodes(); l++ )
2533     _uses[bb->get_node(l)->_idx] = 1;
2534 
2535   // Iterate backwards over the instructions in the block.  Don't count the
2536   // branch projections at end or the block header instructions.
2537   for( uint j = _bb_end-1; j >= _bb_start; j-- ) {
2538     Node *n = bb->get_node(j);
2539     if( n->is_Proj() ) continue; // Projections handled another way
2540 
2541     // Account for all uses
2542     for ( uint k = 0; k < n->len(); k++ ) {
2543       Node *inp = n->in(k);
2544       if (!inp) continue;
2545       assert(inp != n, "no cycles allowed" );
2546       if (_cfg->get_block_for_node(inp) == bb) { // Block-local use?
2547         if (inp->is_Proj()) { // Skip through Proj's
2548           inp = inp->in(0);
2549         }
2550         ++_uses[inp->_idx];     // Count 1 block-local use
2551       }
2552     }
2553 
2554     // If this instruction has a 0 use count, then it is available
2555     if (!_uses[n->_idx]) {
2556       _current_latency[n->_idx] = _bundle_cycle_number;
2557       AddNodeToAvailableList(n);
2558     }
2559 
2560 #ifndef PRODUCT
2561     if (_cfg->C->trace_opto_output()) {
2562       tty->print("#   uses: %3d: ", _uses[n->_idx]);
2563       n->dump();
2564     }
2565 #endif
2566   }
2567 
2568 #ifndef PRODUCT
2569   if (_cfg->C->trace_opto_output())
2570     tty->print("# <- ComputeUseCount\n");
2571 #endif
2572 }
2573 
2574 // This routine performs scheduling on each basic block in reverse order,
2575 // using instruction latencies and taking into account function unit
2576 // availability.
2577 void Scheduling::DoScheduling() {
2578 #ifndef PRODUCT
2579   if (_cfg->C->trace_opto_output())
2580     tty->print("# -> DoScheduling\n");
2581 #endif
2582 
2583   Block *succ_bb = NULL;
2584   Block *bb;
2585   Compile* C = Compile::current();
2586 
2587   // Walk over all the basic blocks in reverse order
2588   for (int i = _cfg->number_of_blocks() - 1; i >= 0; succ_bb = bb, i--) {
2589     bb = _cfg->get_block(i);
2590 
2591 #ifndef PRODUCT
2592     if (_cfg->C->trace_opto_output()) {
2593       tty->print("#  Schedule BB#%03d (initial)\n", i);
2594       for (uint j = 0; j < bb->number_of_nodes(); j++) {
2595         bb->get_node(j)->dump();
2596       }
2597     }
2598 #endif
2599 
2600     // On the head node, skip processing
2601     if (bb == _cfg->get_root_block()) {
2602       continue;
2603     }
2604 
2605     // Skip empty, connector blocks
2606     if (bb->is_connector())
2607       continue;
2608 
2609     // If the following block is not the sole successor of
2610     // this one, then reset the pipeline information
2611     if (bb->_num_succs != 1 || bb->non_connector_successor(0) != succ_bb) {
2612 #ifndef PRODUCT
2613       if (_cfg->C->trace_opto_output()) {
2614         tty->print("*** bundle start of next BB, node %d, for %d instructions\n",
2615                    _next_node->_idx, _bundle_instr_count);
2616       }
2617 #endif
2618       step_and_clear();
2619     }
2620 
2621     // Leave untouched the starting instruction, any Phis, a CreateEx node
2622     // or Top.  bb->get_node(_bb_start) is the first schedulable instruction.
2623     _bb_end = bb->number_of_nodes()-1;
2624     for( _bb_start=1; _bb_start <= _bb_end; _bb_start++ ) {
2625       Node *n = bb->get_node(_bb_start);
2626       // Things not matched, like Phinodes and ProjNodes don't get scheduled.
2627       // Also, MachIdealNodes do not get scheduled
2628       if( !n->is_Mach() ) continue;     // Skip non-machine nodes
2629       MachNode *mach = n->as_Mach();
2630       int iop = mach->ideal_Opcode();
2631       if( iop == Op_CreateEx ) continue; // CreateEx is pinned
2632       if( iop == Op_Con ) continue;      // Do not schedule Top
2633       if( iop == Op_Node &&     // Do not schedule PhiNodes, ProjNodes
2634           mach->pipeline() == MachNode::pipeline_class() &&
2635           !n->is_SpillCopy() && !n->is_MachMerge() )  // Breakpoints, Prolog, etc
2636         continue;
2637       break;                    // Funny loop structure to be sure...
2638     }
2639     // Compute last "interesting" instruction in block - last instruction we
2640     // might schedule.  _bb_end points just after last schedulable inst.  We
2641     // normally schedule conditional branches (despite them being forced last
2642     // in the block), because they have delay slots we can fill.  Calls all
2643     // have their delay slots filled in the template expansions, so we don't
2644     // bother scheduling them.
2645     Node *last = bb->get_node(_bb_end);
2646     // Ignore trailing NOPs.
2647     while (_bb_end > 0 && last->is_Mach() &&
2648            last->as_Mach()->ideal_Opcode() == Op_Con) {
2649       last = bb->get_node(--_bb_end);
2650     }
2651     assert(!last->is_Mach() || last->as_Mach()->ideal_Opcode() != Op_Con, "");
2652     if( last->is_Catch() ||
2653         (last->is_Mach() && last->as_Mach()->ideal_Opcode() == Op_Halt) ) {
2654       // There might be a prior call.  Skip it.
2655       while (_bb_start < _bb_end && bb->get_node(--_bb_end)->is_MachProj());
2656     } else if( last->is_MachNullCheck() ) {
2657       // Backup so the last null-checked memory instruction is
2658       // outside the schedulable range. Skip over the nullcheck,
2659       // projection, and the memory nodes.
2660       Node *mem = last->in(1);
2661       do {
2662         _bb_end--;
2663       } while (mem != bb->get_node(_bb_end));
2664     } else {
2665       // Set _bb_end to point after last schedulable inst.
2666       _bb_end++;
2667     }
2668 
2669     assert( _bb_start <= _bb_end, "inverted block ends" );
2670 
2671     // Compute the register antidependencies for the basic block
2672     ComputeRegisterAntidependencies(bb);
2673     if (C->failing())  return;  // too many D-U pinch points
2674 
2675     // Compute intra-bb latencies for the nodes
2676     ComputeLocalLatenciesForward(bb);
2677 
2678     // Compute the usage within the block, and set the list of all nodes
2679     // in the block that have no uses within the block.
2680     ComputeUseCount(bb);
2681 
2682     // Schedule the remaining instructions in the block
2683     while ( _available.size() > 0 ) {
2684       Node *n = ChooseNodeToBundle();
2685       guarantee(n != NULL, "no nodes available");
2686       AddNodeToBundle(n,bb);
2687     }
2688 
2689     assert( _scheduled.size() == _bb_end - _bb_start, "wrong number of instructions" );
2690 #ifdef ASSERT
2691     for( uint l = _bb_start; l < _bb_end; l++ ) {
2692       Node *n = bb->get_node(l);
2693       uint m;
2694       for( m = 0; m < _bb_end-_bb_start; m++ )
2695         if( _scheduled[m] == n )
2696           break;
2697       assert( m < _bb_end-_bb_start, "instruction missing in schedule" );
2698     }
2699 #endif
2700 
2701     // Now copy the instructions (in reverse order) back to the block
2702     for ( uint k = _bb_start; k < _bb_end; k++ )
2703       bb->map_node(_scheduled[_bb_end-k-1], k);
2704 
2705 #ifndef PRODUCT
2706     if (_cfg->C->trace_opto_output()) {
2707       tty->print("#  Schedule BB#%03d (final)\n", i);
2708       uint current = 0;
2709       for (uint j = 0; j < bb->number_of_nodes(); j++) {
2710         Node *n = bb->get_node(j);
2711         if( valid_bundle_info(n) ) {
2712           Bundle *bundle = node_bundling(n);
2713           if (bundle->instr_count() > 0 || bundle->flags() > 0) {
2714             tty->print("*** Bundle: ");
2715             bundle->dump();
2716           }
2717           n->dump();
2718         }
2719       }
2720     }
2721 #endif
2722 #ifdef ASSERT
2723     verify_good_schedule(bb,"after block local scheduling");
2724 #endif
2725   }
2726 
2727 #ifndef PRODUCT
2728   if (_cfg->C->trace_opto_output())
2729     tty->print("# <- DoScheduling\n");
2730 #endif
2731 
2732   // Record final node-bundling array location
2733   _regalloc->C->output()->set_node_bundling_base(_node_bundling_base);
2734 
2735 } // end DoScheduling
2736 
2737 // Verify that no live-range used in the block is killed in the block by a
2738 // wrong DEF.  This doesn't verify live-ranges that span blocks.
2739 
2740 // Check for edge existence.  Used to avoid adding redundant precedence edges.
2741 static bool edge_from_to( Node *from, Node *to ) {
2742   for( uint i=0; i<from->len(); i++ )
2743     if( from->in(i) == to )
2744       return true;
2745   return false;
2746 }
2747 
2748 #ifdef ASSERT
2749 void Scheduling::verify_do_def( Node *n, OptoReg::Name def, const char *msg ) {
2750   // Check for bad kills
2751   if( OptoReg::is_valid(def) ) { // Ignore stores & control flow
2752     Node *prior_use = _reg_node[def];
2753     if( prior_use && !edge_from_to(prior_use,n) ) {
2754       tty->print("%s = ",OptoReg::as_VMReg(def)->name());
2755       n->dump();
2756       tty->print_cr("...");
2757       prior_use->dump();
2758       assert(edge_from_to(prior_use,n), "%s", msg);
2759     }
2760     _reg_node.map(def,NULL); // Kill live USEs
2761   }
2762 }
2763 
2764 void Scheduling::verify_good_schedule( Block *b, const char *msg ) {
2765 
2766   // Zap to something reasonable for the verify code
2767   _reg_node.clear();
2768 
2769   // Walk over the block backwards.  Check to make sure each DEF doesn't
2770   // kill a live value (other than the one it's supposed to).  Add each
2771   // USE to the live set.
2772   for( uint i = b->number_of_nodes()-1; i >= _bb_start; i-- ) {
2773     Node *n = b->get_node(i);
2774     int n_op = n->Opcode();
2775     if( n_op == Op_MachProj && n->ideal_reg() == MachProjNode::fat_proj ) {
2776       // Fat-proj kills a slew of registers
2777       RegMask rm = n->out_RegMask();// Make local copy
2778       while( rm.is_NotEmpty() ) {
2779         OptoReg::Name kill = rm.find_first_elem();
2780         rm.Remove(kill);
2781         verify_do_def( n, kill, msg );
2782       }
2783     } else if( n_op != Op_Node ) { // Avoid brand new antidependence nodes
2784       // Get DEF'd registers the normal way
2785       verify_do_def( n, _regalloc->get_reg_first(n), msg );
2786       verify_do_def( n, _regalloc->get_reg_second(n), msg );
2787     }
2788 
2789     // Now make all USEs live
2790     for( uint i=1; i<n->req(); i++ ) {
2791       Node *def = n->in(i);
2792       assert(def != 0, "input edge required");
2793       OptoReg::Name reg_lo = _regalloc->get_reg_first(def);
2794       OptoReg::Name reg_hi = _regalloc->get_reg_second(def);
2795       if( OptoReg::is_valid(reg_lo) ) {
2796         assert(!_reg_node[reg_lo] || edge_from_to(_reg_node[reg_lo],def), "%s", msg);
2797         _reg_node.map(reg_lo,n);
2798       }
2799       if( OptoReg::is_valid(reg_hi) ) {
2800         assert(!_reg_node[reg_hi] || edge_from_to(_reg_node[reg_hi],def), "%s", msg);
2801         _reg_node.map(reg_hi,n);
2802       }
2803     }
2804 
2805   }
2806 
2807   // Zap to something reasonable for the Antidependence code
2808   _reg_node.clear();
2809 }
2810 #endif
2811 
2812 // Conditionally add precedence edges.  Avoid putting edges on Projs.
2813 static void add_prec_edge_from_to( Node *from, Node *to ) {
2814   if( from->is_Proj() ) {       // Put precedence edge on Proj's input
2815     assert( from->req() == 1 && (from->len() == 1 || from->in(1)==0), "no precedence edges on projections" );
2816     from = from->in(0);
2817   }
2818   if( from != to &&             // No cycles (for things like LD L0,[L0+4] )
2819       !edge_from_to( from, to ) ) // Avoid duplicate edge
2820     from->add_prec(to);
2821 }
2822 
2823 void Scheduling::anti_do_def( Block *b, Node *def, OptoReg::Name def_reg, int is_def ) {
2824   if( !OptoReg::is_valid(def_reg) ) // Ignore stores & control flow
2825     return;
2826 
2827   Node *pinch = _reg_node[def_reg]; // Get pinch point
2828   if ((pinch == NULL) || _cfg->get_block_for_node(pinch) != b || // No pinch-point yet?
2829       is_def ) {    // Check for a true def (not a kill)
2830     _reg_node.map(def_reg,def); // Record def/kill as the optimistic pinch-point
2831     return;
2832   }
2833 
2834   Node *kill = def;             // Rename 'def' to more descriptive 'kill'
2835   debug_only( def = (Node*)((intptr_t)0xdeadbeef); )
2836 
2837   // After some number of kills there _may_ be a later def
2838   Node *later_def = NULL;
2839 
2840   Compile* C = Compile::current();
2841 
2842   // Finding a kill requires a real pinch-point.
2843   // Check for not already having a pinch-point.
2844   // Pinch points are Op_Node's.
2845   if( pinch->Opcode() != Op_Node ) { // Or later-def/kill as pinch-point?
2846     later_def = pinch;            // Must be def/kill as optimistic pinch-point
2847     if ( _pinch_free_list.size() > 0) {
2848       pinch = _pinch_free_list.pop();
2849     } else {
2850       pinch = new Node(1); // Pinch point to-be
2851     }
2852     if (pinch->_idx >= _regalloc->node_regs_max_index()) {
2853       _cfg->C->record_method_not_compilable("too many D-U pinch points");
2854       return;
2855     }
2856     _cfg->map_node_to_block(pinch, b);      // Pretend it's valid in this block (lazy init)
2857     _reg_node.map(def_reg,pinch); // Record pinch-point
2858     //regalloc()->set_bad(pinch->_idx); // Already initialized this way.
2859     if( later_def->outcnt() == 0 || later_def->ideal_reg() == MachProjNode::fat_proj ) { // Distinguish def from kill
2860       pinch->init_req(0, C->top());     // set not NULL for the next call
2861       add_prec_edge_from_to(later_def,pinch); // Add edge from kill to pinch
2862       later_def = NULL;           // and no later def
2863     }
2864     pinch->set_req(0,later_def);  // Hook later def so we can find it
2865   } else {                        // Else have valid pinch point
2866     if( pinch->in(0) )            // If there is a later-def
2867       later_def = pinch->in(0);   // Get it
2868   }
2869 
2870   // Add output-dependence edge from later def to kill
2871   if( later_def )               // If there is some original def
2872     add_prec_edge_from_to(later_def,kill); // Add edge from def to kill
2873 
2874   // See if current kill is also a use, and so is forced to be the pinch-point.
2875   if( pinch->Opcode() == Op_Node ) {
2876     Node *uses = kill->is_Proj() ? kill->in(0) : kill;
2877     for( uint i=1; i<uses->req(); i++ ) {
2878       if( _regalloc->get_reg_first(uses->in(i)) == def_reg ||
2879           _regalloc->get_reg_second(uses->in(i)) == def_reg ) {
2880         // Yes, found a use/kill pinch-point
2881         pinch->set_req(0,NULL);  //
2882         pinch->replace_by(kill); // Move anti-dep edges up
2883         pinch = kill;
2884         _reg_node.map(def_reg,pinch);
2885         return;
2886       }
2887     }
2888   }
2889 
2890   // Add edge from kill to pinch-point
2891   add_prec_edge_from_to(kill,pinch);
2892 }
2893 
2894 void Scheduling::anti_do_use( Block *b, Node *use, OptoReg::Name use_reg ) {
2895   if( !OptoReg::is_valid(use_reg) ) // Ignore stores & control flow
2896     return;
2897   Node *pinch = _reg_node[use_reg]; // Get pinch point
2898   // Check for no later def_reg/kill in block
2899   if ((pinch != NULL) && _cfg->get_block_for_node(pinch) == b &&
2900       // Use has to be block-local as well
2901       _cfg->get_block_for_node(use) == b) {
2902     if( pinch->Opcode() == Op_Node && // Real pinch-point (not optimistic?)
2903         pinch->req() == 1 ) {   // pinch not yet in block?
2904       pinch->del_req(0);        // yank pointer to later-def, also set flag
2905       // Insert the pinch-point in the block just after the last use
2906       b->insert_node(pinch, b->find_node(use) + 1);
2907       _bb_end++;                // Increase size scheduled region in block
2908     }
2909 
2910     add_prec_edge_from_to(pinch,use);
2911   }
2912 }
2913 
2914 // We insert antidependences between the reads and following write of
2915 // allocated registers to prevent illegal code motion. Hopefully, the
2916 // number of added references should be fairly small, especially as we
2917 // are only adding references within the current basic block.
2918 void Scheduling::ComputeRegisterAntidependencies(Block *b) {
2919 
2920 #ifdef ASSERT
2921   verify_good_schedule(b,"before block local scheduling");
2922 #endif
2923 
2924   // A valid schedule, for each register independently, is an endless cycle
2925   // of: a def, then some uses (connected to the def by true dependencies),
2926   // then some kills (defs with no uses), finally the cycle repeats with a new
2927   // def.  The uses are allowed to float relative to each other, as are the
2928   // kills.  No use is allowed to slide past a kill (or def).  This requires
2929   // antidependencies between all uses of a single def and all kills that
2930   // follow, up to the next def.  More edges are redundant, because later defs
2931   // & kills are already serialized with true or antidependencies.  To keep
2932   // the edge count down, we add a 'pinch point' node if there's more than
2933   // one use or more than one kill/def.
2934 
2935   // We add dependencies in one bottom-up pass.
2936 
2937   // For each instruction we handle it's DEFs/KILLs, then it's USEs.
2938 
2939   // For each DEF/KILL, we check to see if there's a prior DEF/KILL for this
2940   // register.  If not, we record the DEF/KILL in _reg_node, the
2941   // register-to-def mapping.  If there is a prior DEF/KILL, we insert a
2942   // "pinch point", a new Node that's in the graph but not in the block.
2943   // We put edges from the prior and current DEF/KILLs to the pinch point.
2944   // We put the pinch point in _reg_node.  If there's already a pinch point
2945   // we merely add an edge from the current DEF/KILL to the pinch point.
2946 
2947   // After doing the DEF/KILLs, we handle USEs.  For each used register, we
2948   // put an edge from the pinch point to the USE.
2949 
2950   // To be expedient, the _reg_node array is pre-allocated for the whole
2951   // compilation.  _reg_node is lazily initialized; it either contains a NULL,
2952   // or a valid def/kill/pinch-point, or a leftover node from some prior
2953   // block.  Leftover node from some prior block is treated like a NULL (no
2954   // prior def, so no anti-dependence needed).  Valid def is distinguished by
2955   // it being in the current block.
2956   bool fat_proj_seen = false;
2957   uint last_safept = _bb_end-1;
2958   Node* end_node         = (_bb_end-1 >= _bb_start) ? b->get_node(last_safept) : NULL;
2959   Node* last_safept_node = end_node;
2960   for( uint i = _bb_end-1; i >= _bb_start; i-- ) {
2961     Node *n = b->get_node(i);
2962     int is_def = n->outcnt();   // def if some uses prior to adding precedence edges
2963     if( n->is_MachProj() && n->ideal_reg() == MachProjNode::fat_proj ) {
2964       // Fat-proj kills a slew of registers
2965       // This can add edges to 'n' and obscure whether or not it was a def,
2966       // hence the is_def flag.
2967       fat_proj_seen = true;
2968       RegMask rm = n->out_RegMask();// Make local copy
2969       while( rm.is_NotEmpty() ) {
2970         OptoReg::Name kill = rm.find_first_elem();
2971         rm.Remove(kill);
2972         anti_do_def( b, n, kill, is_def );
2973       }
2974     } else {
2975       // Get DEF'd registers the normal way
2976       anti_do_def( b, n, _regalloc->get_reg_first(n), is_def );
2977       anti_do_def( b, n, _regalloc->get_reg_second(n), is_def );
2978     }
2979 
2980     // Kill projections on a branch should appear to occur on the
2981     // branch, not afterwards, so grab the masks from the projections
2982     // and process them.
2983     if (n->is_MachBranch() || (n->is_Mach() && n->as_Mach()->ideal_Opcode() == Op_Jump)) {
2984       for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
2985         Node* use = n->fast_out(i);
2986         if (use->is_Proj()) {
2987           RegMask rm = use->out_RegMask();// Make local copy
2988           while( rm.is_NotEmpty() ) {
2989             OptoReg::Name kill = rm.find_first_elem();
2990             rm.Remove(kill);
2991             anti_do_def( b, n, kill, false );
2992           }
2993         }
2994       }
2995     }
2996 
2997     // Check each register used by this instruction for a following DEF/KILL
2998     // that must occur afterward and requires an anti-dependence edge.
2999     for( uint j=0; j<n->req(); j++ ) {
3000       Node *def = n->in(j);
3001       if( def ) {
3002         assert( !def->is_MachProj() || def->ideal_reg() != MachProjNode::fat_proj, "" );
3003         anti_do_use( b, n, _regalloc->get_reg_first(def) );
3004         anti_do_use( b, n, _regalloc->get_reg_second(def) );
3005       }
3006     }
3007     // Do not allow defs of new derived values to float above GC
3008     // points unless the base is definitely available at the GC point.
3009 
3010     Node *m = b->get_node(i);
3011 
3012     // Add precedence edge from following safepoint to use of derived pointer
3013     if( last_safept_node != end_node &&
3014         m != last_safept_node) {
3015       for (uint k = 1; k < m->req(); k++) {
3016         const Type *t = m->in(k)->bottom_type();
3017         if( t->isa_oop_ptr() &&
3018             t->is_ptr()->offset() != 0 ) {
3019           last_safept_node->add_prec( m );
3020           break;
3021         }
3022       }
3023     }
3024 
3025     if( n->jvms() ) {           // Precedence edge from derived to safept
3026       // Check if last_safept_node was moved by pinch-point insertion in anti_do_use()
3027       if( b->get_node(last_safept) != last_safept_node ) {
3028         last_safept = b->find_node(last_safept_node);
3029       }
3030       for( uint j=last_safept; j > i; j-- ) {
3031         Node *mach = b->get_node(j);
3032         if( mach->is_Mach() && mach->as_Mach()->ideal_Opcode() == Op_AddP )
3033           mach->add_prec( n );
3034       }
3035       last_safept = i;
3036       last_safept_node = m;
3037     }
3038   }
3039 
3040   if (fat_proj_seen) {
3041     // Garbage collect pinch nodes that were not consumed.
3042     // They are usually created by a fat kill MachProj for a call.
3043     garbage_collect_pinch_nodes();
3044   }
3045 }
3046 
3047 // Garbage collect pinch nodes for reuse by other blocks.
3048 //
3049 // The block scheduler's insertion of anti-dependence
3050 // edges creates many pinch nodes when the block contains
3051 // 2 or more Calls.  A pinch node is used to prevent a
3052 // combinatorial explosion of edges.  If a set of kills for a
3053 // register is anti-dependent on a set of uses (or defs), rather
3054 // than adding an edge in the graph between each pair of kill
3055 // and use (or def), a pinch is inserted between them:
3056 //
3057 //            use1   use2  use3
3058 //                \   |   /
3059 //                 \  |  /
3060 //                  pinch
3061 //                 /  |  \
3062 //                /   |   \
3063 //            kill1 kill2 kill3
3064 //
3065 // One pinch node is created per register killed when
3066 // the second call is encountered during a backwards pass
3067 // over the block.  Most of these pinch nodes are never
3068 // wired into the graph because the register is never
3069 // used or def'ed in the block.
3070 //
3071 void Scheduling::garbage_collect_pinch_nodes() {
3072 #ifndef PRODUCT
3073   if (_cfg->C->trace_opto_output()) tty->print("Reclaimed pinch nodes:");
3074 #endif
3075   int trace_cnt = 0;
3076   for (uint k = 0; k < _reg_node.Size(); k++) {
3077     Node* pinch = _reg_node[k];
3078     if ((pinch != NULL) && pinch->Opcode() == Op_Node &&
3079         // no predecence input edges
3080         (pinch->req() == pinch->len() || pinch->in(pinch->req()) == NULL) ) {
3081       cleanup_pinch(pinch);
3082       _pinch_free_list.push(pinch);
3083       _reg_node.map(k, NULL);
3084 #ifndef PRODUCT
3085       if (_cfg->C->trace_opto_output()) {
3086         trace_cnt++;
3087         if (trace_cnt > 40) {
3088           tty->print("\n");
3089           trace_cnt = 0;
3090         }
3091         tty->print(" %d", pinch->_idx);
3092       }
3093 #endif
3094     }
3095   }
3096 #ifndef PRODUCT
3097   if (_cfg->C->trace_opto_output()) tty->print("\n");
3098 #endif
3099 }
3100 
3101 // Clean up a pinch node for reuse.
3102 void Scheduling::cleanup_pinch( Node *pinch ) {
3103   assert (pinch && pinch->Opcode() == Op_Node && pinch->req() == 1, "just checking");
3104 
3105   for (DUIterator_Last imin, i = pinch->last_outs(imin); i >= imin; ) {
3106     Node* use = pinch->last_out(i);
3107     uint uses_found = 0;
3108     for (uint j = use->req(); j < use->len(); j++) {
3109       if (use->in(j) == pinch) {
3110         use->rm_prec(j);
3111         uses_found++;
3112       }
3113     }
3114     assert(uses_found > 0, "must be a precedence edge");
3115     i -= uses_found;    // we deleted 1 or more copies of this edge
3116   }
3117   // May have a later_def entry
3118   pinch->set_req(0, NULL);
3119 }
3120 
3121 #ifndef PRODUCT
3122 
3123 void Scheduling::dump_available() const {
3124   tty->print("#Availist  ");
3125   for (uint i = 0; i < _available.size(); i++)
3126     tty->print(" N%d/l%d", _available[i]->_idx,_current_latency[_available[i]->_idx]);
3127   tty->cr();
3128 }
3129 
3130 // Print Scheduling Statistics
3131 void Scheduling::print_statistics() {
3132   // Print the size added by nops for bundling
3133   tty->print("Nops added %d bytes to total of %d bytes",
3134              _total_nop_size, _total_method_size);
3135   if (_total_method_size > 0)
3136     tty->print(", for %.2f%%",
3137                ((double)_total_nop_size) / ((double) _total_method_size) * 100.0);
3138   tty->print("\n");
3139 
3140   // Print the number of branch shadows filled
3141   if (Pipeline::_branch_has_delay_slot) {
3142     tty->print("Of %d branches, %d had unconditional delay slots filled",
3143                _total_branches, _total_unconditional_delays);
3144     if (_total_branches > 0)
3145       tty->print(", for %.2f%%",
3146                  ((double)_total_unconditional_delays) / ((double)_total_branches) * 100.0);
3147     tty->print("\n");
3148   }
3149 
3150   uint total_instructions = 0, total_bundles = 0;
3151 
3152   for (uint i = 1; i <= Pipeline::_max_instrs_per_cycle; i++) {
3153     uint bundle_count   = _total_instructions_per_bundle[i];
3154     total_instructions += bundle_count * i;
3155     total_bundles      += bundle_count;
3156   }
3157 
3158   if (total_bundles > 0)
3159     tty->print("Average ILP (excluding nops) is %.2f\n",
3160                ((double)total_instructions) / ((double)total_bundles));
3161 }
3162 #endif
3163 
3164 //-----------------------init_scratch_buffer_blob------------------------------
3165 // Construct a temporary BufferBlob and cache it for this compile.
3166 void PhaseOutput::init_scratch_buffer_blob(int const_size) {
3167   // If there is already a scratch buffer blob allocated and the
3168   // constant section is big enough, use it.  Otherwise free the
3169   // current and allocate a new one.
3170   BufferBlob* blob = scratch_buffer_blob();
3171   if ((blob != NULL) && (const_size <= _scratch_const_size)) {
3172     // Use the current blob.
3173   } else {
3174     if (blob != NULL) {
3175       BufferBlob::free(blob);
3176     }
3177 
3178     ResourceMark rm;
3179     _scratch_const_size = const_size;
3180     int size = C2Compiler::initial_code_buffer_size(const_size);
3181     blob = BufferBlob::create("Compile::scratch_buffer", size);
3182     // Record the buffer blob for next time.
3183     set_scratch_buffer_blob(blob);
3184     // Have we run out of code space?
3185     if (scratch_buffer_blob() == NULL) {
3186       // Let CompilerBroker disable further compilations.
3187       C->record_failure("Not enough space for scratch buffer in CodeCache");
3188       return;
3189     }
3190   }
3191 
3192   // Initialize the relocation buffers
3193   relocInfo* locs_buf = (relocInfo*) blob->content_end() - MAX_locs_size;
3194   set_scratch_locs_memory(locs_buf);
3195 }
3196 
3197 
3198 //-----------------------scratch_emit_size-------------------------------------
3199 // Helper function that computes size by emitting code
3200 uint PhaseOutput::scratch_emit_size(const Node* n) {
3201   // Start scratch_emit_size section.
3202   set_in_scratch_emit_size(true);
3203 
3204   // Emit into a trash buffer and count bytes emitted.
3205   // This is a pretty expensive way to compute a size,
3206   // but it works well enough if seldom used.
3207   // All common fixed-size instructions are given a size
3208   // method by the AD file.
3209   // Note that the scratch buffer blob and locs memory are
3210   // allocated at the beginning of the compile task, and
3211   // may be shared by several calls to scratch_emit_size.
3212   // The allocation of the scratch buffer blob is particularly
3213   // expensive, since it has to grab the code cache lock.
3214   BufferBlob* blob = this->scratch_buffer_blob();
3215   assert(blob != NULL, "Initialize BufferBlob at start");
3216   assert(blob->size() > MAX_inst_size, "sanity");
3217   relocInfo* locs_buf = scratch_locs_memory();
3218   address blob_begin = blob->content_begin();
3219   address blob_end   = (address)locs_buf;
3220   assert(blob->contains(blob_end), "sanity");
3221   CodeBuffer buf(blob_begin, blob_end - blob_begin);
3222   buf.initialize_consts_size(_scratch_const_size);
3223   buf.initialize_stubs_size(MAX_stubs_size);
3224   assert(locs_buf != NULL, "sanity");
3225   int lsize = MAX_locs_size / 3;
3226   buf.consts()->initialize_shared_locs(&locs_buf[lsize * 0], lsize);
3227   buf.insts()->initialize_shared_locs( &locs_buf[lsize * 1], lsize);
3228   buf.stubs()->initialize_shared_locs( &locs_buf[lsize * 2], lsize);
3229   // Mark as scratch buffer.
3230   buf.consts()->set_scratch_emit();
3231   buf.insts()->set_scratch_emit();
3232   buf.stubs()->set_scratch_emit();
3233 
3234   // Do the emission.
3235 
3236   Label fakeL; // Fake label for branch instructions.
3237   Label*   saveL = NULL;
3238   uint save_bnum = 0;
3239   bool is_branch = n->is_MachBranch();
3240   if (is_branch) {
3241     MacroAssembler masm(&buf);
3242     masm.bind(fakeL);
3243     n->as_MachBranch()->save_label(&saveL, &save_bnum);
3244     n->as_MachBranch()->label_set(&fakeL, 0);
3245   }
3246   n->emit(buf, C->regalloc());
3247 
3248   // Emitting into the scratch buffer should not fail
3249   assert (!C->failing(), "Must not have pending failure. Reason is: %s", C->failure_reason());
3250 
3251   if (is_branch) // Restore label.
3252     n->as_MachBranch()->label_set(saveL, save_bnum);
3253 
3254   // End scratch_emit_size section.
3255   set_in_scratch_emit_size(false);
3256 
3257   return buf.insts_size();
3258 }
3259 
3260 void PhaseOutput::install() {
3261   if (C->stub_function() != NULL) {
3262     install_stub(C->stub_name(),
3263                  C->save_argument_registers());
3264   } else {
3265     install_code(C->method(),
3266                  C->entry_bci(),
3267                  CompileBroker::compiler2(),
3268                  C->has_unsafe_access(),
3269                  SharedRuntime::is_wide_vector(C->max_vector_size()),
3270                  C->rtm_state());
3271   }
3272 }
3273 
3274 void PhaseOutput::install_code(ciMethod*         target,
3275                                int               entry_bci,
3276                                AbstractCompiler* compiler,
3277                                bool              has_unsafe_access,
3278                                bool              has_wide_vectors,
3279                                RTMState          rtm_state) {
3280   // Check if we want to skip execution of all compiled code.
3281   {
3282 #ifndef PRODUCT
3283     if (OptoNoExecute) {
3284       C->record_method_not_compilable("+OptoNoExecute");  // Flag as failed
3285       return;
3286     }
3287 #endif
3288     Compile::TracePhase tp("install_code", &timers[_t_registerMethod]);
3289 
3290     if (C->is_osr_compilation()) {
3291       _code_offsets.set_value(CodeOffsets::Verified_Entry, 0);
3292       _code_offsets.set_value(CodeOffsets::OSR_Entry, _first_block_size);
3293     } else {
3294       _code_offsets.set_value(CodeOffsets::Verified_Entry, _first_block_size);
3295       _code_offsets.set_value(CodeOffsets::OSR_Entry, 0);
3296     }
3297 
3298     C->env()->register_method(target,
3299                                      entry_bci,
3300                                      &_code_offsets,
3301                                      _orig_pc_slot_offset_in_bytes,
3302                                      code_buffer(),
3303                                      frame_size_in_words(),
3304                                      oop_map_set(),
3305                                      &_handler_table,
3306                                      inc_table(),
3307                                      compiler,
3308                                      has_unsafe_access,
3309                                      SharedRuntime::is_wide_vector(C->max_vector_size()),
3310                                      C->rtm_state());
3311 
3312     if (C->log() != NULL) { // Print code cache state into compiler log
3313       C->log()->code_cache_state();
3314     }
3315   }
3316 }
3317 void PhaseOutput::install_stub(const char* stub_name,
3318                                bool        caller_must_gc_arguments) {
3319   // Entry point will be accessed using stub_entry_point();
3320   if (code_buffer() == NULL) {
3321     Matcher::soft_match_failure();
3322   } else {
3323     if (PrintAssembly && (WizardMode || Verbose))
3324       tty->print_cr("### Stub::%s", stub_name);
3325 
3326     if (!C->failing()) {
3327       assert(C->fixed_slots() == 0, "no fixed slots used for runtime stubs");
3328 
3329       // Make the NMethod
3330       // For now we mark the frame as never safe for profile stackwalking
3331       RuntimeStub *rs = RuntimeStub::new_runtime_stub(stub_name,
3332                                                       code_buffer(),
3333                                                       CodeOffsets::frame_never_safe,
3334                                                       // _code_offsets.value(CodeOffsets::Frame_Complete),
3335                                                       frame_size_in_words(),
3336                                                       oop_map_set(),
3337                                                       caller_must_gc_arguments);
3338       assert(rs != NULL && rs->is_runtime_stub(), "sanity check");
3339 
3340       C->set_stub_entry_point(rs->entry_point());
3341     }
3342   }
3343 }
3344 
3345 // Support for bundling info
3346 Bundle* PhaseOutput::node_bundling(const Node *n) {
3347   assert(valid_bundle_info(n), "oob");
3348   return &_node_bundling_base[n->_idx];
3349 }
3350 
3351 bool PhaseOutput::valid_bundle_info(const Node *n) {
3352   return (_node_bundling_limit > n->_idx);
3353 }
3354 
3355 //------------------------------frame_size_in_words-----------------------------
3356 // frame_slots in units of words
3357 int PhaseOutput::frame_size_in_words() const {
3358   // shift is 0 in LP32 and 1 in LP64
3359   const int shift = (LogBytesPerWord - LogBytesPerInt);
3360   int words = _frame_slots >> shift;
3361   assert( words << shift == _frame_slots, "frame size must be properly aligned in LP64" );
3362   return words;
3363 }
3364 
3365 // To bang the stack of this compiled method we use the stack size
3366 // that the interpreter would need in case of a deoptimization. This
3367 // removes the need to bang the stack in the deoptimization blob which
3368 // in turn simplifies stack overflow handling.
3369 int PhaseOutput::bang_size_in_bytes() const {
3370   return MAX2(frame_size_in_bytes() + os::extra_bang_size_in_bytes(), C->interpreter_frame_size());
3371 }
3372 
3373 //------------------------------dump_asm---------------------------------------
3374 // Dump formatted assembly
3375 #if defined(SUPPORT_OPTO_ASSEMBLY)
3376 void PhaseOutput::dump_asm_on(outputStream* st, int* pcs, uint pc_limit) {
3377 
3378   int pc_digits = 3; // #chars required for pc
3379   int sb_chars  = 3; // #chars for "start bundle" indicator
3380   int tab_size  = 8;
3381   if (pcs != NULL) {
3382     int max_pc = 0;
3383     for (uint i = 0; i < pc_limit; i++) {
3384       max_pc = (max_pc < pcs[i]) ? pcs[i] : max_pc;
3385     }
3386     pc_digits  = ((max_pc < 4096) ? 3 : ((max_pc < 65536) ? 4 : ((max_pc < 65536*256) ? 6 : 8))); // #chars required for pc
3387   }
3388   int prefix_len = ((pc_digits + sb_chars + tab_size - 1)/tab_size)*tab_size;
3389 
3390   bool cut_short = false;
3391   st->print_cr("#");
3392   st->print("#  ");  C->tf()->dump_on(st);  st->cr();
3393   st->print_cr("#");
3394 
3395   // For all blocks
3396   int pc = 0x0;                 // Program counter
3397   char starts_bundle = ' ';
3398   C->regalloc()->dump_frame();
3399 
3400   Node *n = NULL;
3401   for (uint i = 0; i < C->cfg()->number_of_blocks(); i++) {
3402     if (VMThread::should_terminate()) {
3403       cut_short = true;
3404       break;
3405     }
3406     Block* block = C->cfg()->get_block(i);
3407     if (block->is_connector() && !Verbose) {
3408       continue;
3409     }
3410     n = block->head();
3411     if ((pcs != NULL) && (n->_idx < pc_limit)) {
3412       pc = pcs[n->_idx];
3413       st->print("%*.*x", pc_digits, pc_digits, pc);
3414     }
3415     st->fill_to(prefix_len);
3416     block->dump_head(C->cfg(), st);
3417     if (block->is_connector()) {
3418       st->fill_to(prefix_len);
3419       st->print_cr("# Empty connector block");
3420     } else if (block->num_preds() == 2 && block->pred(1)->is_CatchProj() && block->pred(1)->as_CatchProj()->_con == CatchProjNode::fall_through_index) {
3421       st->fill_to(prefix_len);
3422       st->print_cr("# Block is sole successor of call");
3423     }
3424 
3425     // For all instructions
3426     Node *delay = NULL;
3427     for (uint j = 0; j < block->number_of_nodes(); j++) {
3428       if (VMThread::should_terminate()) {
3429         cut_short = true;
3430         break;
3431       }
3432       n = block->get_node(j);
3433       if (valid_bundle_info(n)) {
3434         Bundle* bundle = node_bundling(n);
3435         if (bundle->used_in_unconditional_delay()) {
3436           delay = n;
3437           continue;
3438         }
3439         if (bundle->starts_bundle()) {
3440           starts_bundle = '+';
3441         }
3442       }
3443 
3444       if (WizardMode) {
3445         n->dump();
3446       }
3447 
3448       if( !n->is_Region() &&    // Dont print in the Assembly
3449           !n->is_Phi() &&       // a few noisely useless nodes
3450           !n->is_Proj() &&
3451           !n->is_MachTemp() &&
3452           !n->is_SafePointScalarObject() &&
3453           !n->is_Catch() &&     // Would be nice to print exception table targets
3454           !n->is_MergeMem() &&  // Not very interesting
3455           !n->is_top() &&       // Debug info table constants
3456           !(n->is_Con() && !n->is_Mach())// Debug info table constants
3457           ) {
3458         if ((pcs != NULL) && (n->_idx < pc_limit)) {
3459           pc = pcs[n->_idx];
3460           st->print("%*.*x", pc_digits, pc_digits, pc);
3461         } else {
3462           st->fill_to(pc_digits);
3463         }
3464         st->print(" %c ", starts_bundle);
3465         starts_bundle = ' ';
3466         st->fill_to(prefix_len);
3467         n->format(C->regalloc(), st);
3468         st->cr();
3469       }
3470 
3471       // If we have an instruction with a delay slot, and have seen a delay,
3472       // then back up and print it
3473       if (valid_bundle_info(n) && node_bundling(n)->use_unconditional_delay()) {
3474         // Coverity finding - Explicit null dereferenced.
3475         guarantee(delay != NULL, "no unconditional delay instruction");
3476         if (WizardMode) delay->dump();
3477 
3478         if (node_bundling(delay)->starts_bundle())
3479           starts_bundle = '+';
3480         if ((pcs != NULL) && (n->_idx < pc_limit)) {
3481           pc = pcs[n->_idx];
3482           st->print("%*.*x", pc_digits, pc_digits, pc);
3483         } else {
3484           st->fill_to(pc_digits);
3485         }
3486         st->print(" %c ", starts_bundle);
3487         starts_bundle = ' ';
3488         st->fill_to(prefix_len);
3489         delay->format(C->regalloc(), st);
3490         st->cr();
3491         delay = NULL;
3492       }
3493 
3494       // Dump the exception table as well
3495       if( n->is_Catch() && (Verbose || WizardMode) ) {
3496         // Print the exception table for this offset
3497         _handler_table.print_subtable_for(pc);
3498       }
3499       st->bol(); // Make sure we start on a new line
3500     }
3501     st->cr(); // one empty line between blocks
3502     assert(cut_short || delay == NULL, "no unconditional delay branch");
3503   } // End of per-block dump
3504 
3505   if (cut_short)  st->print_cr("*** disassembly is cut short ***");
3506 }
3507 #endif
3508 
3509 #ifndef PRODUCT
3510 void PhaseOutput::print_statistics() {
3511   Scheduling::print_statistics();
3512 }
3513 #endif