1 /*
   2  * Copyright (c) 1998, 2020, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/assembler.inline.hpp"
  27 #include "asm/macroAssembler.inline.hpp"
  28 #include "code/compiledIC.hpp"
  29 #include "code/debugInfo.hpp"
  30 #include "code/debugInfoRec.hpp"
  31 #include "compiler/compileBroker.hpp"
  32 #include "compiler/compilerDirectives.hpp"
  33 #include "compiler/oopMap.hpp"
  34 #include "gc/shared/barrierSet.hpp"
  35 #include "gc/shared/c2/barrierSetC2.hpp"
  36 #include "memory/allocation.inline.hpp"
  37 #include "opto/ad.hpp"
  38 #include "opto/block.hpp"
  39 #include "opto/c2compiler.hpp"
  40 #include "opto/callnode.hpp"
  41 #include "opto/cfgnode.hpp"
  42 #include "opto/locknode.hpp"
  43 #include "opto/machnode.hpp"
  44 #include "opto/node.hpp"
  45 #include "opto/optoreg.hpp"
  46 #include "opto/output.hpp"
  47 #include "opto/regalloc.hpp"
  48 #include "opto/runtime.hpp"
  49 #include "opto/subnode.hpp"
  50 #include "opto/type.hpp"
  51 #include "runtime/handles.inline.hpp"
  52 #include "runtime/sharedRuntime.hpp"
  53 #include "utilities/macros.hpp"
  54 #include "utilities/powerOfTwo.hpp"
  55 #include "utilities/xmlstream.hpp"
  56 
  57 #ifndef PRODUCT
  58 #define DEBUG_ARG(x) , x
  59 #else
  60 #define DEBUG_ARG(x)
  61 #endif
  62 
  63 //------------------------------Scheduling----------------------------------
  64 // This class contains all the information necessary to implement instruction
  65 // scheduling and bundling.
  66 class Scheduling {
  67 
  68 private:
  69   // Arena to use
  70   Arena *_arena;
  71 
  72   // Control-Flow Graph info
  73   PhaseCFG *_cfg;
  74 
  75   // Register Allocation info
  76   PhaseRegAlloc *_regalloc;
  77 
  78   // Number of nodes in the method
  79   uint _node_bundling_limit;
  80 
  81   // List of scheduled nodes. Generated in reverse order
  82   Node_List _scheduled;
  83 
  84   // List of nodes currently available for choosing for scheduling
  85   Node_List _available;
  86 
  87   // For each instruction beginning a bundle, the number of following
  88   // nodes to be bundled with it.
  89   Bundle *_node_bundling_base;
  90 
  91   // Mapping from register to Node
  92   Node_List _reg_node;
  93 
  94   // Free list for pinch nodes.
  95   Node_List _pinch_free_list;
  96 
  97   // Latency from the beginning of the containing basic block (base 1)
  98   // for each node.
  99   unsigned short *_node_latency;
 100 
 101   // Number of uses of this node within the containing basic block.
 102   short *_uses;
 103 
 104   // Schedulable portion of current block.  Skips Region/Phi/CreateEx up
 105   // front, branch+proj at end.  Also skips Catch/CProj (same as
 106   // branch-at-end), plus just-prior exception-throwing call.
 107   uint _bb_start, _bb_end;
 108 
 109   // Latency from the end of the basic block as scheduled
 110   unsigned short *_current_latency;
 111 
 112   // Remember the next node
 113   Node *_next_node;
 114 
 115   // Use this for an unconditional branch delay slot
 116   Node *_unconditional_delay_slot;
 117 
 118   // Pointer to a Nop
 119   MachNopNode *_nop;
 120 
 121   // Length of the current bundle, in instructions
 122   uint _bundle_instr_count;
 123 
 124   // Current Cycle number, for computing latencies and bundling
 125   uint _bundle_cycle_number;
 126 
 127   // Bundle information
 128   Pipeline_Use_Element _bundle_use_elements[resource_count];
 129   Pipeline_Use         _bundle_use;
 130 
 131   // Dump the available list
 132   void dump_available() const;
 133 
 134 public:
 135   Scheduling(Arena *arena, Compile &compile);
 136 
 137   // Destructor
 138   NOT_PRODUCT( ~Scheduling(); )
 139 
 140   // Step ahead "i" cycles
 141   void step(uint i);
 142 
 143   // Step ahead 1 cycle, and clear the bundle state (for example,
 144   // at a branch target)
 145   void step_and_clear();
 146 
 147   Bundle* node_bundling(const Node *n) {
 148     assert(valid_bundle_info(n), "oob");
 149     return (&_node_bundling_base[n->_idx]);
 150   }
 151 
 152   bool valid_bundle_info(const Node *n) const {
 153     return (_node_bundling_limit > n->_idx);
 154   }
 155 
 156   bool starts_bundle(const Node *n) const {
 157     return (_node_bundling_limit > n->_idx && _node_bundling_base[n->_idx].starts_bundle());
 158   }
 159 
 160   // Do the scheduling
 161   void DoScheduling();
 162 
 163   // Compute the local latencies walking forward over the list of
 164   // nodes for a basic block
 165   void ComputeLocalLatenciesForward(const Block *bb);
 166 
 167   // Compute the register antidependencies within a basic block
 168   void ComputeRegisterAntidependencies(Block *bb);
 169   void verify_do_def( Node *n, OptoReg::Name def, const char *msg );
 170   void verify_good_schedule( Block *b, const char *msg );
 171   void anti_do_def( Block *b, Node *def, OptoReg::Name def_reg, int is_def );
 172   void anti_do_use( Block *b, Node *use, OptoReg::Name use_reg );
 173 
 174   // Add a node to the current bundle
 175   void AddNodeToBundle(Node *n, const Block *bb);
 176 
 177   // Add a node to the list of available nodes
 178   void AddNodeToAvailableList(Node *n);
 179 
 180   // Compute the local use count for the nodes in a block, and compute
 181   // the list of instructions with no uses in the block as available
 182   void ComputeUseCount(const Block *bb);
 183 
 184   // Choose an instruction from the available list to add to the bundle
 185   Node * ChooseNodeToBundle();
 186 
 187   // See if this Node fits into the currently accumulating bundle
 188   bool NodeFitsInBundle(Node *n);
 189 
 190   // Decrement the use count for a node
 191  void DecrementUseCounts(Node *n, const Block *bb);
 192 
 193   // Garbage collect pinch nodes for reuse by other blocks.
 194   void garbage_collect_pinch_nodes();
 195   // Clean up a pinch node for reuse (helper for above).
 196   void cleanup_pinch( Node *pinch );
 197 
 198   // Information for statistics gathering
 199 #ifndef PRODUCT
 200 private:
 201   // Gather information on size of nops relative to total
 202   uint _branches, _unconditional_delays;
 203 
 204   static uint _total_nop_size, _total_method_size;
 205   static uint _total_branches, _total_unconditional_delays;
 206   static uint _total_instructions_per_bundle[Pipeline::_max_instrs_per_cycle+1];
 207 
 208 public:
 209   static void print_statistics();
 210 
 211   static void increment_instructions_per_bundle(uint i) {
 212     _total_instructions_per_bundle[i]++;
 213   }
 214 
 215   static void increment_nop_size(uint s) {
 216     _total_nop_size += s;
 217   }
 218 
 219   static void increment_method_size(uint s) {
 220     _total_method_size += s;
 221   }
 222 #endif
 223 
 224 };
 225 
 226 
 227 PhaseOutput::PhaseOutput()
 228   : Phase(Phase::Output),
 229     _code_buffer("Compile::Fill_buffer"),
 230     _first_block_size(0),
 231     _handler_table(),
 232     _inc_table(),
 233     _oop_map_set(NULL),
 234     _scratch_buffer_blob(NULL),
 235     _scratch_locs_memory(NULL),
 236     _scratch_const_size(-1),
 237     _in_scratch_emit_size(false),
 238     _frame_slots(0),
 239     _code_offsets(),
 240     _node_bundling_limit(0),
 241     _node_bundling_base(NULL),
 242     _orig_pc_slot(0),
 243     _orig_pc_slot_offset_in_bytes(0),
 244     _buf_sizes(),
 245     _block(NULL),
 246     _index(0) {
 247   C->set_output(this);
 248   if (C->stub_name() == NULL) {
 249     _orig_pc_slot = C->fixed_slots() - (sizeof(address) / VMRegImpl::stack_slot_size);
 250   }
 251 }
 252 
 253 PhaseOutput::~PhaseOutput() {
 254   C->set_output(NULL);
 255   if (_scratch_buffer_blob != NULL) {
 256     BufferBlob::free(_scratch_buffer_blob);
 257   }
 258 }
 259 
 260 void PhaseOutput::perform_mach_node_analysis() {
 261   // Late barrier analysis must be done after schedule and bundle
 262   // Otherwise liveness based spilling will fail
 263   BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
 264   bs->late_barrier_analysis();
 265 
 266   pd_perform_mach_node_analysis();
 267 }
 268 
 269 // Convert Nodes to instruction bits and pass off to the VM
 270 void PhaseOutput::Output() {
 271   // RootNode goes
 272   assert( C->cfg()->get_root_block()->number_of_nodes() == 0, "" );
 273 
 274   // The number of new nodes (mostly MachNop) is proportional to
 275   // the number of java calls and inner loops which are aligned.
 276   if ( C->check_node_count((NodeLimitFudgeFactor + C->java_calls()*3 +
 277                             C->inner_loops()*(OptoLoopAlignment-1)),
 278                            "out of nodes before code generation" ) ) {
 279     return;
 280   }
 281   // Make sure I can find the Start Node
 282   Block *entry = C->cfg()->get_block(1);
 283   Block *broot = C->cfg()->get_root_block();
 284 
 285   const StartNode *start = entry->head()->as_Start();
 286 
 287   // Replace StartNode with prolog
 288   MachPrologNode *prolog = new MachPrologNode();
 289   entry->map_node(prolog, 0);
 290   C->cfg()->map_node_to_block(prolog, entry);
 291   C->cfg()->unmap_node_from_block(start); // start is no longer in any block
 292 
 293   // Virtual methods need an unverified entry point
 294 
 295   if( C->is_osr_compilation() ) {
 296     if( PoisonOSREntry ) {
 297       // TODO: Should use a ShouldNotReachHereNode...
 298       C->cfg()->insert( broot, 0, new MachBreakpointNode() );
 299     }
 300   } else {
 301     if( C->method() && !C->method()->flags().is_static() ) {
 302       // Insert unvalidated entry point
 303       C->cfg()->insert( broot, 0, new MachUEPNode() );
 304     }
 305 
 306   }
 307 
 308   // Break before main entry point
 309   if ((C->method() && C->directive()->BreakAtExecuteOption) ||
 310       (OptoBreakpoint && C->is_method_compilation())       ||
 311       (OptoBreakpointOSR && C->is_osr_compilation())       ||
 312       (OptoBreakpointC2R && !C->method())                   ) {
 313     // checking for C->method() means that OptoBreakpoint does not apply to
 314     // runtime stubs or frame converters
 315     C->cfg()->insert( entry, 1, new MachBreakpointNode() );
 316   }
 317 
 318   // Insert epilogs before every return
 319   for (uint i = 0; i < C->cfg()->number_of_blocks(); i++) {
 320     Block* block = C->cfg()->get_block(i);
 321     if (!block->is_connector() && block->non_connector_successor(0) == C->cfg()->get_root_block()) { // Found a program exit point?
 322       Node* m = block->end();
 323       if (m->is_Mach() && m->as_Mach()->ideal_Opcode() != Op_Halt) {
 324         MachEpilogNode* epilog = new MachEpilogNode(m->as_Mach()->ideal_Opcode() == Op_Return);
 325         block->add_inst(epilog);
 326         C->cfg()->map_node_to_block(epilog, block);
 327       }
 328     }
 329   }
 330 
 331   // Keeper of sizing aspects
 332   _buf_sizes = BufferSizingData();
 333 
 334   // Initialize code buffer
 335   estimate_buffer_size(_buf_sizes._const);
 336   if (C->failing()) return;
 337 
 338   // Pre-compute the length of blocks and replace
 339   // long branches with short if machine supports it.
 340   // Must be done before ScheduleAndBundle due to SPARC delay slots
 341   uint* blk_starts = NEW_RESOURCE_ARRAY(uint, C->cfg()->number_of_blocks() + 1);
 342   blk_starts[0] = 0;
 343   shorten_branches(blk_starts);
 344 
 345   ScheduleAndBundle();
 346   if (C->failing()) {
 347     return;
 348   }
 349 
 350   perform_mach_node_analysis();
 351 
 352   // Complete sizing of codebuffer
 353   CodeBuffer* cb = init_buffer();
 354   if (cb == NULL || C->failing()) {
 355     return;
 356   }
 357 
 358   BuildOopMaps();
 359 
 360   if (C->failing())  {
 361     return;
 362   }
 363 
 364   fill_buffer(cb, blk_starts);
 365 }
 366 
 367 bool PhaseOutput::need_stack_bang(int frame_size_in_bytes) const {
 368   // Determine if we need to generate a stack overflow check.
 369   // Do it if the method is not a stub function and
 370   // has java calls or has frame size > vm_page_size/8.
 371   // The debug VM checks that deoptimization doesn't trigger an
 372   // unexpected stack overflow (compiled method stack banging should
 373   // guarantee it doesn't happen) so we always need the stack bang in
 374   // a debug VM.
 375   return (UseStackBanging && C->stub_function() == NULL &&
 376           (C->has_java_calls() || frame_size_in_bytes > os::vm_page_size()>>3
 377            DEBUG_ONLY(|| true)));
 378 }
 379 
 380 bool PhaseOutput::need_register_stack_bang() const {
 381   // Determine if we need to generate a register stack overflow check.
 382   // This is only used on architectures which have split register
 383   // and memory stacks (ie. IA64).
 384   // Bang if the method is not a stub function and has java calls
 385   return (C->stub_function() == NULL && C->has_java_calls());
 386 }
 387 
 388 
 389 // Compute the size of first NumberOfLoopInstrToAlign instructions at the top
 390 // of a loop. When aligning a loop we need to provide enough instructions
 391 // in cpu's fetch buffer to feed decoders. The loop alignment could be
 392 // avoided if we have enough instructions in fetch buffer at the head of a loop.
 393 // By default, the size is set to 999999 by Block's constructor so that
 394 // a loop will be aligned if the size is not reset here.
 395 //
 396 // Note: Mach instructions could contain several HW instructions
 397 // so the size is estimated only.
 398 //
 399 void PhaseOutput::compute_loop_first_inst_sizes() {
 400   // The next condition is used to gate the loop alignment optimization.
 401   // Don't aligned a loop if there are enough instructions at the head of a loop
 402   // or alignment padding is larger then MaxLoopPad. By default, MaxLoopPad
 403   // is equal to OptoLoopAlignment-1 except on new Intel cpus, where it is
 404   // equal to 11 bytes which is the largest address NOP instruction.
 405   if (MaxLoopPad < OptoLoopAlignment - 1) {
 406     uint last_block = C->cfg()->number_of_blocks() - 1;
 407     for (uint i = 1; i <= last_block; i++) {
 408       Block* block = C->cfg()->get_block(i);
 409       // Check the first loop's block which requires an alignment.
 410       if (block->loop_alignment() > (uint)relocInfo::addr_unit()) {
 411         uint sum_size = 0;
 412         uint inst_cnt = NumberOfLoopInstrToAlign;
 413         inst_cnt = block->compute_first_inst_size(sum_size, inst_cnt, C->regalloc());
 414 
 415         // Check subsequent fallthrough blocks if the loop's first
 416         // block(s) does not have enough instructions.
 417         Block *nb = block;
 418         while(inst_cnt > 0 &&
 419               i < last_block &&
 420               !C->cfg()->get_block(i + 1)->has_loop_alignment() &&
 421               !nb->has_successor(block)) {
 422           i++;
 423           nb = C->cfg()->get_block(i);
 424           inst_cnt  = nb->compute_first_inst_size(sum_size, inst_cnt, C->regalloc());
 425         } // while( inst_cnt > 0 && i < last_block  )
 426 
 427         block->set_first_inst_size(sum_size);
 428       } // f( b->head()->is_Loop() )
 429     } // for( i <= last_block )
 430   } // if( MaxLoopPad < OptoLoopAlignment-1 )
 431 }
 432 
 433 // The architecture description provides short branch variants for some long
 434 // branch instructions. Replace eligible long branches with short branches.
 435 void PhaseOutput::shorten_branches(uint* blk_starts) {
 436   // Compute size of each block, method size, and relocation information size
 437   uint nblocks  = C->cfg()->number_of_blocks();
 438 
 439   uint*      jmp_offset = NEW_RESOURCE_ARRAY(uint,nblocks);
 440   uint*      jmp_size   = NEW_RESOURCE_ARRAY(uint,nblocks);
 441   int*       jmp_nidx   = NEW_RESOURCE_ARRAY(int ,nblocks);
 442 
 443   // Collect worst case block paddings
 444   int* block_worst_case_pad = NEW_RESOURCE_ARRAY(int, nblocks);
 445   memset(block_worst_case_pad, 0, nblocks * sizeof(int));
 446 
 447   DEBUG_ONLY( uint *jmp_target = NEW_RESOURCE_ARRAY(uint,nblocks); )
 448   DEBUG_ONLY( uint *jmp_rule = NEW_RESOURCE_ARRAY(uint,nblocks); )
 449 
 450   bool has_short_branch_candidate = false;
 451 
 452   // Initialize the sizes to 0
 453   int code_size  = 0;          // Size in bytes of generated code
 454   int stub_size  = 0;          // Size in bytes of all stub entries
 455   // Size in bytes of all relocation entries, including those in local stubs.
 456   // Start with 2-bytes of reloc info for the unvalidated entry point
 457   int reloc_size = 1;          // Number of relocation entries
 458 
 459   // Make three passes.  The first computes pessimistic blk_starts,
 460   // relative jmp_offset and reloc_size information.  The second performs
 461   // short branch substitution using the pessimistic sizing.  The
 462   // third inserts nops where needed.
 463 
 464   // Step one, perform a pessimistic sizing pass.
 465   uint last_call_adr = max_juint;
 466   uint last_avoid_back_to_back_adr = max_juint;
 467   uint nop_size = (new MachNopNode())->size(C->regalloc());
 468   for (uint i = 0; i < nblocks; i++) { // For all blocks
 469     Block* block = C->cfg()->get_block(i);
 470     _block = block;
 471 
 472     // During short branch replacement, we store the relative (to blk_starts)
 473     // offset of jump in jmp_offset, rather than the absolute offset of jump.
 474     // This is so that we do not need to recompute sizes of all nodes when
 475     // we compute correct blk_starts in our next sizing pass.
 476     jmp_offset[i] = 0;
 477     jmp_size[i]   = 0;
 478     jmp_nidx[i]   = -1;
 479     DEBUG_ONLY( jmp_target[i] = 0; )
 480     DEBUG_ONLY( jmp_rule[i]   = 0; )
 481 
 482     // Sum all instruction sizes to compute block size
 483     uint last_inst = block->number_of_nodes();
 484     uint blk_size = 0;
 485     for (uint j = 0; j < last_inst; j++) {
 486       _index = j;
 487       Node* nj = block->get_node(_index);
 488       // Handle machine instruction nodes
 489       if (nj->is_Mach()) {
 490         MachNode* mach = nj->as_Mach();
 491         blk_size += (mach->alignment_required() - 1) * relocInfo::addr_unit(); // assume worst case padding
 492         reloc_size += mach->reloc();
 493         if (mach->is_MachCall()) {
 494           // add size information for trampoline stub
 495           // class CallStubImpl is platform-specific and defined in the *.ad files.
 496           stub_size  += CallStubImpl::size_call_trampoline();
 497           reloc_size += CallStubImpl::reloc_call_trampoline();
 498 
 499           MachCallNode *mcall = mach->as_MachCall();
 500           // This destination address is NOT PC-relative
 501 
 502           mcall->method_set((intptr_t)mcall->entry_point());
 503 
 504           if (mcall->is_MachCallJava() && mcall->as_MachCallJava()->_method) {
 505             stub_size  += CompiledStaticCall::to_interp_stub_size();
 506             reloc_size += CompiledStaticCall::reloc_to_interp_stub();
 507 #if INCLUDE_AOT
 508             stub_size  += CompiledStaticCall::to_aot_stub_size();
 509             reloc_size += CompiledStaticCall::reloc_to_aot_stub();
 510 #endif
 511           }
 512         } else if (mach->is_MachSafePoint()) {
 513           // If call/safepoint are adjacent, account for possible
 514           // nop to disambiguate the two safepoints.
 515           // ScheduleAndBundle() can rearrange nodes in a block,
 516           // check for all offsets inside this block.
 517           if (last_call_adr >= blk_starts[i]) {
 518             blk_size += nop_size;
 519           }
 520         }
 521         if (mach->avoid_back_to_back(MachNode::AVOID_BEFORE)) {
 522           // Nop is inserted between "avoid back to back" instructions.
 523           // ScheduleAndBundle() can rearrange nodes in a block,
 524           // check for all offsets inside this block.
 525           if (last_avoid_back_to_back_adr >= blk_starts[i]) {
 526             blk_size += nop_size;
 527           }
 528         }
 529         if (mach->may_be_short_branch()) {
 530           if (!nj->is_MachBranch()) {
 531 #ifndef PRODUCT
 532             nj->dump(3);
 533 #endif
 534             Unimplemented();
 535           }
 536           assert(jmp_nidx[i] == -1, "block should have only one branch");
 537           jmp_offset[i] = blk_size;
 538           jmp_size[i]   = nj->size(C->regalloc());
 539           jmp_nidx[i]   = j;
 540           has_short_branch_candidate = true;
 541         }
 542       }
 543       blk_size += nj->size(C->regalloc());
 544       // Remember end of call offset
 545       if (nj->is_MachCall() && !nj->is_MachCallLeaf()) {
 546         last_call_adr = blk_starts[i]+blk_size;
 547       }
 548       // Remember end of avoid_back_to_back offset
 549       if (nj->is_Mach() && nj->as_Mach()->avoid_back_to_back(MachNode::AVOID_AFTER)) {
 550         last_avoid_back_to_back_adr = blk_starts[i]+blk_size;
 551       }
 552     }
 553 
 554     // When the next block starts a loop, we may insert pad NOP
 555     // instructions.  Since we cannot know our future alignment,
 556     // assume the worst.
 557     if (i < nblocks - 1) {
 558       Block* nb = C->cfg()->get_block(i + 1);
 559       int max_loop_pad = nb->code_alignment()-relocInfo::addr_unit();
 560       if (max_loop_pad > 0) {
 561         assert(is_power_of_2(max_loop_pad+relocInfo::addr_unit()), "");
 562         // Adjust last_call_adr and/or last_avoid_back_to_back_adr.
 563         // If either is the last instruction in this block, bump by
 564         // max_loop_pad in lock-step with blk_size, so sizing
 565         // calculations in subsequent blocks still can conservatively
 566         // detect that it may the last instruction in this block.
 567         if (last_call_adr == blk_starts[i]+blk_size) {
 568           last_call_adr += max_loop_pad;
 569         }
 570         if (last_avoid_back_to_back_adr == blk_starts[i]+blk_size) {
 571           last_avoid_back_to_back_adr += max_loop_pad;
 572         }
 573         blk_size += max_loop_pad;
 574         block_worst_case_pad[i + 1] = max_loop_pad;
 575       }
 576     }
 577 
 578     // Save block size; update total method size
 579     blk_starts[i+1] = blk_starts[i]+blk_size;
 580   }
 581 
 582   // Step two, replace eligible long jumps.
 583   bool progress = true;
 584   uint last_may_be_short_branch_adr = max_juint;
 585   while (has_short_branch_candidate && progress) {
 586     progress = false;
 587     has_short_branch_candidate = false;
 588     int adjust_block_start = 0;
 589     for (uint i = 0; i < nblocks; i++) {
 590       Block* block = C->cfg()->get_block(i);
 591       int idx = jmp_nidx[i];
 592       MachNode* mach = (idx == -1) ? NULL: block->get_node(idx)->as_Mach();
 593       if (mach != NULL && mach->may_be_short_branch()) {
 594 #ifdef ASSERT
 595         assert(jmp_size[i] > 0 && mach->is_MachBranch(), "sanity");
 596         int j;
 597         // Find the branch; ignore trailing NOPs.
 598         for (j = block->number_of_nodes()-1; j>=0; j--) {
 599           Node* n = block->get_node(j);
 600           if (!n->is_Mach() || n->as_Mach()->ideal_Opcode() != Op_Con)
 601             break;
 602         }
 603         assert(j >= 0 && j == idx && block->get_node(j) == (Node*)mach, "sanity");
 604 #endif
 605         int br_size = jmp_size[i];
 606         int br_offs = blk_starts[i] + jmp_offset[i];
 607 
 608         // This requires the TRUE branch target be in succs[0]
 609         uint bnum = block->non_connector_successor(0)->_pre_order;
 610         int offset = blk_starts[bnum] - br_offs;
 611         if (bnum > i) { // adjust following block's offset
 612           offset -= adjust_block_start;
 613         }
 614 
 615         // This block can be a loop header, account for the padding
 616         // in the previous block.
 617         int block_padding = block_worst_case_pad[i];
 618         assert(i == 0 || block_padding == 0 || br_offs >= block_padding, "Should have at least a padding on top");
 619         // In the following code a nop could be inserted before
 620         // the branch which will increase the backward distance.
 621         bool needs_padding = ((uint)(br_offs - block_padding) == last_may_be_short_branch_adr);
 622         assert(!needs_padding || jmp_offset[i] == 0, "padding only branches at the beginning of block");
 623 
 624         if (needs_padding && offset <= 0)
 625           offset -= nop_size;
 626 
 627         if (C->matcher()->is_short_branch_offset(mach->rule(), br_size, offset)) {
 628           // We've got a winner.  Replace this branch.
 629           MachNode* replacement = mach->as_MachBranch()->short_branch_version();
 630 
 631           // Update the jmp_size.
 632           int new_size = replacement->size(C->regalloc());
 633           int diff     = br_size - new_size;
 634           assert(diff >= (int)nop_size, "short_branch size should be smaller");
 635           // Conservatively take into account padding between
 636           // avoid_back_to_back branches. Previous branch could be
 637           // converted into avoid_back_to_back branch during next
 638           // rounds.
 639           if (needs_padding && replacement->avoid_back_to_back(MachNode::AVOID_BEFORE)) {
 640             jmp_offset[i] += nop_size;
 641             diff -= nop_size;
 642           }
 643           adjust_block_start += diff;
 644           block->map_node(replacement, idx);
 645           mach->subsume_by(replacement, C);
 646           mach = replacement;
 647           progress = true;
 648 
 649           jmp_size[i] = new_size;
 650           DEBUG_ONLY( jmp_target[i] = bnum; );
 651           DEBUG_ONLY( jmp_rule[i] = mach->rule(); );
 652         } else {
 653           // The jump distance is not short, try again during next iteration.
 654           has_short_branch_candidate = true;
 655         }
 656       } // (mach->may_be_short_branch())
 657       if (mach != NULL && (mach->may_be_short_branch() ||
 658                            mach->avoid_back_to_back(MachNode::AVOID_AFTER))) {
 659         last_may_be_short_branch_adr = blk_starts[i] + jmp_offset[i] + jmp_size[i];
 660       }
 661       blk_starts[i+1] -= adjust_block_start;
 662     }
 663   }
 664 
 665 #ifdef ASSERT
 666   for (uint i = 0; i < nblocks; i++) { // For all blocks
 667     if (jmp_target[i] != 0) {
 668       int br_size = jmp_size[i];
 669       int offset = blk_starts[jmp_target[i]]-(blk_starts[i] + jmp_offset[i]);
 670       if (!C->matcher()->is_short_branch_offset(jmp_rule[i], br_size, offset)) {
 671         tty->print_cr("target (%d) - jmp_offset(%d) = offset (%d), jump_size(%d), jmp_block B%d, target_block B%d", blk_starts[jmp_target[i]], blk_starts[i] + jmp_offset[i], offset, br_size, i, jmp_target[i]);
 672       }
 673       assert(C->matcher()->is_short_branch_offset(jmp_rule[i], br_size, offset), "Displacement too large for short jmp");
 674     }
 675   }
 676 #endif
 677 
 678   // Step 3, compute the offsets of all blocks, will be done in fill_buffer()
 679   // after ScheduleAndBundle().
 680 
 681   // ------------------
 682   // Compute size for code buffer
 683   code_size = blk_starts[nblocks];
 684 
 685   // Relocation records
 686   reloc_size += 1;              // Relo entry for exception handler
 687 
 688   // Adjust reloc_size to number of record of relocation info
 689   // Min is 2 bytes, max is probably 6 or 8, with a tax up to 25% for
 690   // a relocation index.
 691   // The CodeBuffer will expand the locs array if this estimate is too low.
 692   reloc_size *= 10 / sizeof(relocInfo);
 693 
 694   _buf_sizes._reloc = reloc_size;
 695   _buf_sizes._code  = code_size;
 696   _buf_sizes._stub  = stub_size;
 697 }
 698 
 699 //------------------------------FillLocArray-----------------------------------
 700 // Create a bit of debug info and append it to the array.  The mapping is from
 701 // Java local or expression stack to constant, register or stack-slot.  For
 702 // doubles, insert 2 mappings and return 1 (to tell the caller that the next
 703 // entry has been taken care of and caller should skip it).
 704 static LocationValue *new_loc_value( PhaseRegAlloc *ra, OptoReg::Name regnum, Location::Type l_type ) {
 705   // This should never have accepted Bad before
 706   assert(OptoReg::is_valid(regnum), "location must be valid");
 707   return (OptoReg::is_reg(regnum))
 708          ? new LocationValue(Location::new_reg_loc(l_type, OptoReg::as_VMReg(regnum)) )
 709          : new LocationValue(Location::new_stk_loc(l_type,  ra->reg2offset(regnum)));
 710 }
 711 
 712 
 713 ObjectValue*
 714 PhaseOutput::sv_for_node_id(GrowableArray<ScopeValue*> *objs, int id) {
 715   for (int i = 0; i < objs->length(); i++) {
 716     assert(objs->at(i)->is_object(), "corrupt object cache");
 717     ObjectValue* sv = (ObjectValue*) objs->at(i);
 718     if (sv->id() == id) {
 719       return sv;
 720     }
 721   }
 722   // Otherwise..
 723   return NULL;
 724 }
 725 
 726 void PhaseOutput::set_sv_for_object_node(GrowableArray<ScopeValue*> *objs,
 727                                      ObjectValue* sv ) {
 728   assert(sv_for_node_id(objs, sv->id()) == NULL, "Precondition");
 729   objs->append(sv);
 730 }
 731 
 732 
 733 void PhaseOutput::FillLocArray( int idx, MachSafePointNode* sfpt, Node *local,
 734                             GrowableArray<ScopeValue*> *array,
 735                             GrowableArray<ScopeValue*> *objs ) {
 736   assert( local, "use _top instead of null" );
 737   if (array->length() != idx) {
 738     assert(array->length() == idx + 1, "Unexpected array count");
 739     // Old functionality:
 740     //   return
 741     // New functionality:
 742     //   Assert if the local is not top. In product mode let the new node
 743     //   override the old entry.
 744     assert(local == C->top(), "LocArray collision");
 745     if (local == C->top()) {
 746       return;
 747     }
 748     array->pop();
 749   }
 750   const Type *t = local->bottom_type();
 751 
 752   // Is it a safepoint scalar object node?
 753   if (local->is_SafePointScalarObject()) {
 754     SafePointScalarObjectNode* spobj = local->as_SafePointScalarObject();
 755 
 756     ObjectValue* sv = sv_for_node_id(objs, spobj->_idx);
 757     if (sv == NULL) {
 758       ciKlass* cik = t->is_oopptr()->klass();
 759       assert(cik->is_instance_klass() ||
 760              cik->is_array_klass(), "Not supported allocation.");
 761       sv = new ObjectValue(spobj->_idx,
 762                            new ConstantOopWriteValue(cik->java_mirror()->constant_encoding()));
 763       set_sv_for_object_node(objs, sv);
 764 
 765       uint first_ind = spobj->first_index(sfpt->jvms());
 766       for (uint i = 0; i < spobj->n_fields(); i++) {
 767         Node* fld_node = sfpt->in(first_ind+i);
 768         (void)FillLocArray(sv->field_values()->length(), sfpt, fld_node, sv->field_values(), objs);
 769       }
 770     }
 771     array->append(sv);
 772     return;
 773   }
 774 
 775   // Grab the register number for the local
 776   OptoReg::Name regnum = C->regalloc()->get_reg_first(local);
 777   if( OptoReg::is_valid(regnum) ) {// Got a register/stack?
 778     // Record the double as two float registers.
 779     // The register mask for such a value always specifies two adjacent
 780     // float registers, with the lower register number even.
 781     // Normally, the allocation of high and low words to these registers
 782     // is irrelevant, because nearly all operations on register pairs
 783     // (e.g., StoreD) treat them as a single unit.
 784     // Here, we assume in addition that the words in these two registers
 785     // stored "naturally" (by operations like StoreD and double stores
 786     // within the interpreter) such that the lower-numbered register
 787     // is written to the lower memory address.  This may seem like
 788     // a machine dependency, but it is not--it is a requirement on
 789     // the author of the <arch>.ad file to ensure that, for every
 790     // even/odd double-register pair to which a double may be allocated,
 791     // the word in the even single-register is stored to the first
 792     // memory word.  (Note that register numbers are completely
 793     // arbitrary, and are not tied to any machine-level encodings.)
 794 #ifdef _LP64
 795     if( t->base() == Type::DoubleBot || t->base() == Type::DoubleCon ) {
 796       array->append(new ConstantIntValue((jint)0));
 797       array->append(new_loc_value( C->regalloc(), regnum, Location::dbl ));
 798     } else if ( t->base() == Type::Long ) {
 799       array->append(new ConstantIntValue((jint)0));
 800       array->append(new_loc_value( C->regalloc(), regnum, Location::lng ));
 801     } else if ( t->base() == Type::RawPtr ) {
 802       // jsr/ret return address which must be restored into a the full
 803       // width 64-bit stack slot.
 804       array->append(new_loc_value( C->regalloc(), regnum, Location::lng ));
 805     }
 806 #else //_LP64
 807     if( t->base() == Type::DoubleBot || t->base() == Type::DoubleCon || t->base() == Type::Long ) {
 808       // Repack the double/long as two jints.
 809       // The convention the interpreter uses is that the second local
 810       // holds the first raw word of the native double representation.
 811       // This is actually reasonable, since locals and stack arrays
 812       // grow downwards in all implementations.
 813       // (If, on some machine, the interpreter's Java locals or stack
 814       // were to grow upwards, the embedded doubles would be word-swapped.)
 815       array->append(new_loc_value( C->regalloc(), OptoReg::add(regnum,1), Location::normal ));
 816       array->append(new_loc_value( C->regalloc(),              regnum   , Location::normal ));
 817     }
 818 #endif //_LP64
 819     else if( (t->base() == Type::FloatBot || t->base() == Type::FloatCon) &&
 820              OptoReg::is_reg(regnum) ) {
 821       array->append(new_loc_value( C->regalloc(), regnum, Matcher::float_in_double()
 822                                                       ? Location::float_in_dbl : Location::normal ));
 823     } else if( t->base() == Type::Int && OptoReg::is_reg(regnum) ) {
 824       array->append(new_loc_value( C->regalloc(), regnum, Matcher::int_in_long
 825                                                       ? Location::int_in_long : Location::normal ));
 826     } else if( t->base() == Type::NarrowOop ) {
 827       array->append(new_loc_value( C->regalloc(), regnum, Location::narrowoop ));
 828     } else {
 829       array->append(new_loc_value( C->regalloc(), regnum, C->regalloc()->is_oop(local) ? Location::oop : Location::normal ));
 830     }
 831     return;
 832   }
 833 
 834   // No register.  It must be constant data.
 835   switch (t->base()) {
 836     case Type::Half:              // Second half of a double
 837       ShouldNotReachHere();       // Caller should skip 2nd halves
 838       break;
 839     case Type::AnyPtr:
 840       array->append(new ConstantOopWriteValue(NULL));
 841       break;
 842     case Type::AryPtr:
 843     case Type::InstPtr:          // fall through
 844       array->append(new ConstantOopWriteValue(t->isa_oopptr()->const_oop()->constant_encoding()));
 845       break;
 846     case Type::NarrowOop:
 847       if (t == TypeNarrowOop::NULL_PTR) {
 848         array->append(new ConstantOopWriteValue(NULL));
 849       } else {
 850         array->append(new ConstantOopWriteValue(t->make_ptr()->isa_oopptr()->const_oop()->constant_encoding()));
 851       }
 852       break;
 853     case Type::Int:
 854       array->append(new ConstantIntValue(t->is_int()->get_con()));
 855       break;
 856     case Type::RawPtr:
 857       // A return address (T_ADDRESS).
 858       assert((intptr_t)t->is_ptr()->get_con() < (intptr_t)0x10000, "must be a valid BCI");
 859 #ifdef _LP64
 860       // Must be restored to the full-width 64-bit stack slot.
 861       array->append(new ConstantLongValue(t->is_ptr()->get_con()));
 862 #else
 863       array->append(new ConstantIntValue(t->is_ptr()->get_con()));
 864 #endif
 865       break;
 866     case Type::FloatCon: {
 867       float f = t->is_float_constant()->getf();
 868       array->append(new ConstantIntValue(jint_cast(f)));
 869       break;
 870     }
 871     case Type::DoubleCon: {
 872       jdouble d = t->is_double_constant()->getd();
 873 #ifdef _LP64
 874       array->append(new ConstantIntValue((jint)0));
 875       array->append(new ConstantDoubleValue(d));
 876 #else
 877       // Repack the double as two jints.
 878     // The convention the interpreter uses is that the second local
 879     // holds the first raw word of the native double representation.
 880     // This is actually reasonable, since locals and stack arrays
 881     // grow downwards in all implementations.
 882     // (If, on some machine, the interpreter's Java locals or stack
 883     // were to grow upwards, the embedded doubles would be word-swapped.)
 884     jlong_accessor acc;
 885     acc.long_value = jlong_cast(d);
 886     array->append(new ConstantIntValue(acc.words[1]));
 887     array->append(new ConstantIntValue(acc.words[0]));
 888 #endif
 889       break;
 890     }
 891     case Type::Long: {
 892       jlong d = t->is_long()->get_con();
 893 #ifdef _LP64
 894       array->append(new ConstantIntValue((jint)0));
 895       array->append(new ConstantLongValue(d));
 896 #else
 897       // Repack the long as two jints.
 898     // The convention the interpreter uses is that the second local
 899     // holds the first raw word of the native double representation.
 900     // This is actually reasonable, since locals and stack arrays
 901     // grow downwards in all implementations.
 902     // (If, on some machine, the interpreter's Java locals or stack
 903     // were to grow upwards, the embedded doubles would be word-swapped.)
 904     jlong_accessor acc;
 905     acc.long_value = d;
 906     array->append(new ConstantIntValue(acc.words[1]));
 907     array->append(new ConstantIntValue(acc.words[0]));
 908 #endif
 909       break;
 910     }
 911     case Type::Top:               // Add an illegal value here
 912       array->append(new LocationValue(Location()));
 913       break;
 914     default:
 915       ShouldNotReachHere();
 916       break;
 917   }
 918 }
 919 
 920 // Determine if this node starts a bundle
 921 bool PhaseOutput::starts_bundle(const Node *n) const {
 922   return (_node_bundling_limit > n->_idx &&
 923           _node_bundling_base[n->_idx].starts_bundle());
 924 }
 925 
 926 //--------------------------Process_OopMap_Node--------------------------------
 927 void PhaseOutput::Process_OopMap_Node(MachNode *mach, int current_offset) {
 928   // Handle special safepoint nodes for synchronization
 929   MachSafePointNode *sfn   = mach->as_MachSafePoint();
 930   MachCallNode      *mcall;
 931 
 932   int safepoint_pc_offset = current_offset;
 933   bool is_method_handle_invoke = false;
 934   bool return_oop = false;
 935 
 936   // Add the safepoint in the DebugInfoRecorder
 937   if( !mach->is_MachCall() ) {
 938     mcall = NULL;
 939     C->debug_info()->add_safepoint(safepoint_pc_offset, sfn->_oop_map);
 940   } else {
 941     mcall = mach->as_MachCall();
 942 
 943     // Is the call a MethodHandle call?
 944     if (mcall->is_MachCallJava()) {
 945       if (mcall->as_MachCallJava()->_method_handle_invoke) {
 946         assert(C->has_method_handle_invokes(), "must have been set during call generation");
 947         is_method_handle_invoke = true;
 948       }
 949     }
 950 
 951     // Check if a call returns an object.
 952     if (mcall->returns_pointer()) {
 953       return_oop = true;
 954     }
 955     safepoint_pc_offset += mcall->ret_addr_offset();
 956     C->debug_info()->add_safepoint(safepoint_pc_offset, mcall->_oop_map);
 957   }
 958 
 959   // Loop over the JVMState list to add scope information
 960   // Do not skip safepoints with a NULL method, they need monitor info
 961   JVMState* youngest_jvms = sfn->jvms();
 962   int max_depth = youngest_jvms->depth();
 963 
 964   // Allocate the object pool for scalar-replaced objects -- the map from
 965   // small-integer keys (which can be recorded in the local and ostack
 966   // arrays) to descriptions of the object state.
 967   GrowableArray<ScopeValue*> *objs = new GrowableArray<ScopeValue*>();
 968 
 969   // Visit scopes from oldest to youngest.
 970   for (int depth = 1; depth <= max_depth; depth++) {
 971     JVMState* jvms = youngest_jvms->of_depth(depth);
 972     int idx;
 973     ciMethod* method = jvms->has_method() ? jvms->method() : NULL;
 974     // Safepoints that do not have method() set only provide oop-map and monitor info
 975     // to support GC; these do not support deoptimization.
 976     int num_locs = (method == NULL) ? 0 : jvms->loc_size();
 977     int num_exps = (method == NULL) ? 0 : jvms->stk_size();
 978     int num_mon  = jvms->nof_monitors();
 979     assert(method == NULL || jvms->bci() < 0 || num_locs == method->max_locals(),
 980            "JVMS local count must match that of the method");
 981 
 982     // Add Local and Expression Stack Information
 983 
 984     // Insert locals into the locarray
 985     GrowableArray<ScopeValue*> *locarray = new GrowableArray<ScopeValue*>(num_locs);
 986     for( idx = 0; idx < num_locs; idx++ ) {
 987       FillLocArray( idx, sfn, sfn->local(jvms, idx), locarray, objs );
 988     }
 989 
 990     // Insert expression stack entries into the exparray
 991     GrowableArray<ScopeValue*> *exparray = new GrowableArray<ScopeValue*>(num_exps);
 992     for( idx = 0; idx < num_exps; idx++ ) {
 993       FillLocArray( idx,  sfn, sfn->stack(jvms, idx), exparray, objs );
 994     }
 995 
 996     // Add in mappings of the monitors
 997     assert( !method ||
 998             !method->is_synchronized() ||
 999             method->is_native() ||
1000             num_mon > 0 ||
1001             !GenerateSynchronizationCode,
1002             "monitors must always exist for synchronized methods");
1003 
1004     // Build the growable array of ScopeValues for exp stack
1005     GrowableArray<MonitorValue*> *monarray = new GrowableArray<MonitorValue*>(num_mon);
1006 
1007     // Loop over monitors and insert into array
1008     for (idx = 0; idx < num_mon; idx++) {
1009       // Grab the node that defines this monitor
1010       Node* box_node = sfn->monitor_box(jvms, idx);
1011       Node* obj_node = sfn->monitor_obj(jvms, idx);
1012 
1013       // Create ScopeValue for object
1014       ScopeValue *scval = NULL;
1015 
1016       if (obj_node->is_SafePointScalarObject()) {
1017         SafePointScalarObjectNode* spobj = obj_node->as_SafePointScalarObject();
1018         scval = PhaseOutput::sv_for_node_id(objs, spobj->_idx);
1019         if (scval == NULL) {
1020           const Type *t = spobj->bottom_type();
1021           ciKlass* cik = t->is_oopptr()->klass();
1022           assert(cik->is_instance_klass() ||
1023                  cik->is_array_klass(), "Not supported allocation.");
1024           ObjectValue* sv = new ObjectValue(spobj->_idx,
1025                                             new ConstantOopWriteValue(cik->java_mirror()->constant_encoding()));
1026           PhaseOutput::set_sv_for_object_node(objs, sv);
1027 
1028           uint first_ind = spobj->first_index(youngest_jvms);
1029           for (uint i = 0; i < spobj->n_fields(); i++) {
1030             Node* fld_node = sfn->in(first_ind+i);
1031             (void)FillLocArray(sv->field_values()->length(), sfn, fld_node, sv->field_values(), objs);
1032           }
1033           scval = sv;
1034         }
1035       } else if (!obj_node->is_Con()) {
1036         OptoReg::Name obj_reg = C->regalloc()->get_reg_first(obj_node);
1037         if( obj_node->bottom_type()->base() == Type::NarrowOop ) {
1038           scval = new_loc_value( C->regalloc(), obj_reg, Location::narrowoop );
1039         } else {
1040           scval = new_loc_value( C->regalloc(), obj_reg, Location::oop );
1041         }
1042       } else {
1043         const TypePtr *tp = obj_node->get_ptr_type();
1044         scval = new ConstantOopWriteValue(tp->is_oopptr()->const_oop()->constant_encoding());
1045       }
1046 
1047       OptoReg::Name box_reg = BoxLockNode::reg(box_node);
1048       Location basic_lock = Location::new_stk_loc(Location::normal,C->regalloc()->reg2offset(box_reg));
1049       bool eliminated = (box_node->is_BoxLock() && box_node->as_BoxLock()->is_eliminated());
1050       monarray->append(new MonitorValue(scval, basic_lock, eliminated));
1051     }
1052 
1053     // We dump the object pool first, since deoptimization reads it in first.
1054     C->debug_info()->dump_object_pool(objs);
1055 
1056     // Build first class objects to pass to scope
1057     DebugToken *locvals = C->debug_info()->create_scope_values(locarray);
1058     DebugToken *expvals = C->debug_info()->create_scope_values(exparray);
1059     DebugToken *monvals = C->debug_info()->create_monitor_values(monarray);
1060 
1061     // Make method available for all Safepoints
1062     ciMethod* scope_method = method ? method : C->method();
1063     // Describe the scope here
1064     assert(jvms->bci() >= InvocationEntryBci && jvms->bci() <= 0x10000, "must be a valid or entry BCI");
1065     assert(!jvms->should_reexecute() || depth == max_depth, "reexecute allowed only for the youngest");
1066     // Now we can describe the scope.
1067     methodHandle null_mh;
1068     bool rethrow_exception = false;
1069     C->debug_info()->describe_scope(safepoint_pc_offset, null_mh, scope_method, jvms->bci(), jvms->should_reexecute(), rethrow_exception, is_method_handle_invoke, return_oop, locvals, expvals, monvals);
1070   } // End jvms loop
1071 
1072   // Mark the end of the scope set.
1073   C->debug_info()->end_safepoint(safepoint_pc_offset);
1074 }
1075 
1076 
1077 
1078 // A simplified version of Process_OopMap_Node, to handle non-safepoints.
1079 class NonSafepointEmitter {
1080     Compile*  C;
1081     JVMState* _pending_jvms;
1082     int       _pending_offset;
1083 
1084     void emit_non_safepoint();
1085 
1086  public:
1087     NonSafepointEmitter(Compile* compile) {
1088       this->C = compile;
1089       _pending_jvms = NULL;
1090       _pending_offset = 0;
1091     }
1092 
1093     void observe_instruction(Node* n, int pc_offset) {
1094       if (!C->debug_info()->recording_non_safepoints())  return;
1095 
1096       Node_Notes* nn = C->node_notes_at(n->_idx);
1097       if (nn == NULL || nn->jvms() == NULL)  return;
1098       if (_pending_jvms != NULL &&
1099           _pending_jvms->same_calls_as(nn->jvms())) {
1100         // Repeated JVMS?  Stretch it up here.
1101         _pending_offset = pc_offset;
1102       } else {
1103         if (_pending_jvms != NULL &&
1104             _pending_offset < pc_offset) {
1105           emit_non_safepoint();
1106         }
1107         _pending_jvms = NULL;
1108         if (pc_offset > C->debug_info()->last_pc_offset()) {
1109           // This is the only way _pending_jvms can become non-NULL:
1110           _pending_jvms = nn->jvms();
1111           _pending_offset = pc_offset;
1112         }
1113       }
1114     }
1115 
1116     // Stay out of the way of real safepoints:
1117     void observe_safepoint(JVMState* jvms, int pc_offset) {
1118       if (_pending_jvms != NULL &&
1119           !_pending_jvms->same_calls_as(jvms) &&
1120           _pending_offset < pc_offset) {
1121         emit_non_safepoint();
1122       }
1123       _pending_jvms = NULL;
1124     }
1125 
1126     void flush_at_end() {
1127       if (_pending_jvms != NULL) {
1128         emit_non_safepoint();
1129       }
1130       _pending_jvms = NULL;
1131     }
1132 };
1133 
1134 void NonSafepointEmitter::emit_non_safepoint() {
1135   JVMState* youngest_jvms = _pending_jvms;
1136   int       pc_offset     = _pending_offset;
1137 
1138   // Clear it now:
1139   _pending_jvms = NULL;
1140 
1141   DebugInformationRecorder* debug_info = C->debug_info();
1142   assert(debug_info->recording_non_safepoints(), "sanity");
1143 
1144   debug_info->add_non_safepoint(pc_offset);
1145   int max_depth = youngest_jvms->depth();
1146 
1147   // Visit scopes from oldest to youngest.
1148   for (int depth = 1; depth <= max_depth; depth++) {
1149     JVMState* jvms = youngest_jvms->of_depth(depth);
1150     ciMethod* method = jvms->has_method() ? jvms->method() : NULL;
1151     assert(!jvms->should_reexecute() || depth==max_depth, "reexecute allowed only for the youngest");
1152     methodHandle null_mh;
1153     debug_info->describe_scope(pc_offset, null_mh, method, jvms->bci(), jvms->should_reexecute());
1154   }
1155 
1156   // Mark the end of the scope set.
1157   debug_info->end_non_safepoint(pc_offset);
1158 }
1159 
1160 //------------------------------init_buffer------------------------------------
1161 void PhaseOutput::estimate_buffer_size(int& const_req) {
1162 
1163   // Set the initially allocated size
1164   const_req = initial_const_capacity;
1165 
1166   // The extra spacing after the code is necessary on some platforms.
1167   // Sometimes we need to patch in a jump after the last instruction,
1168   // if the nmethod has been deoptimized.  (See 4932387, 4894843.)
1169 
1170   // Compute the byte offset where we can store the deopt pc.
1171   if (C->fixed_slots() != 0) {
1172     _orig_pc_slot_offset_in_bytes = C->regalloc()->reg2offset(OptoReg::stack2reg(_orig_pc_slot));
1173   }
1174 
1175   // Compute prolog code size
1176   _method_size = 0;
1177   _frame_slots = OptoReg::reg2stack(C->matcher()->_old_SP) + C->regalloc()->_framesize;
1178 #if defined(IA64) && !defined(AIX)
1179   if (save_argument_registers()) {
1180     // 4815101: this is a stub with implicit and unknown precision fp args.
1181     // The usual spill mechanism can only generate stfd's in this case, which
1182     // doesn't work if the fp reg to spill contains a single-precision denorm.
1183     // Instead, we hack around the normal spill mechanism using stfspill's and
1184     // ldffill's in the MachProlog and MachEpilog emit methods.  We allocate
1185     // space here for the fp arg regs (f8-f15) we're going to thusly spill.
1186     //
1187     // If we ever implement 16-byte 'registers' == stack slots, we can
1188     // get rid of this hack and have SpillCopy generate stfspill/ldffill
1189     // instead of stfd/stfs/ldfd/ldfs.
1190     _frame_slots += 8*(16/BytesPerInt);
1191   }
1192 #endif
1193   assert(_frame_slots >= 0 && _frame_slots < 1000000, "sanity check");
1194 
1195   if (C->has_mach_constant_base_node()) {
1196     uint add_size = 0;
1197     // Fill the constant table.
1198     // Note:  This must happen before shorten_branches.
1199     for (uint i = 0; i < C->cfg()->number_of_blocks(); i++) {
1200       Block* b = C->cfg()->get_block(i);
1201 
1202       for (uint j = 0; j < b->number_of_nodes(); j++) {
1203         Node* n = b->get_node(j);
1204 
1205         // If the node is a MachConstantNode evaluate the constant
1206         // value section.
1207         if (n->is_MachConstant()) {
1208           MachConstantNode* machcon = n->as_MachConstant();
1209           machcon->eval_constant(C);
1210         } else if (n->is_Mach()) {
1211           // On Power there are more nodes that issue constants.
1212           add_size += (n->as_Mach()->ins_num_consts() * 8);
1213         }
1214       }
1215     }
1216 
1217     // Calculate the offsets of the constants and the size of the
1218     // constant table (including the padding to the next section).
1219     constant_table().calculate_offsets_and_size();
1220     const_req = constant_table().size() + add_size;
1221   }
1222 
1223   // Initialize the space for the BufferBlob used to find and verify
1224   // instruction size in MachNode::emit_size()
1225   init_scratch_buffer_blob(const_req);
1226 }
1227 
1228 CodeBuffer* PhaseOutput::init_buffer() {
1229   int stub_req  = _buf_sizes._stub;
1230   int code_req  = _buf_sizes._code;
1231   int const_req = _buf_sizes._const;
1232 
1233   int pad_req   = NativeCall::instruction_size;
1234 
1235   BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
1236   stub_req += bs->estimate_stub_size();
1237 
1238   // nmethod and CodeBuffer count stubs & constants as part of method's code.
1239   // class HandlerImpl is platform-specific and defined in the *.ad files.
1240   int exception_handler_req = HandlerImpl::size_exception_handler() + MAX_stubs_size; // add marginal slop for handler
1241   int deopt_handler_req     = HandlerImpl::size_deopt_handler()     + MAX_stubs_size; // add marginal slop for handler
1242   stub_req += MAX_stubs_size;   // ensure per-stub margin
1243   code_req += MAX_inst_size;    // ensure per-instruction margin
1244 
1245   if (StressCodeBuffers)
1246     code_req = const_req = stub_req = exception_handler_req = deopt_handler_req = 0x10;  // force expansion
1247 
1248   int total_req =
1249           const_req +
1250           code_req +
1251           pad_req +
1252           stub_req +
1253           exception_handler_req +
1254           deopt_handler_req;               // deopt handler
1255 
1256   if (C->has_method_handle_invokes())
1257     total_req += deopt_handler_req;  // deopt MH handler
1258 
1259   CodeBuffer* cb = code_buffer();
1260   cb->initialize(total_req, _buf_sizes._reloc);
1261 
1262   // Have we run out of code space?
1263   if ((cb->blob() == NULL) || (!CompileBroker::should_compile_new_jobs())) {
1264     C->record_failure("CodeCache is full");
1265     return NULL;
1266   }
1267   // Configure the code buffer.
1268   cb->initialize_consts_size(const_req);
1269   cb->initialize_stubs_size(stub_req);
1270   cb->initialize_oop_recorder(C->env()->oop_recorder());
1271 
1272   // fill in the nop array for bundling computations
1273   MachNode *_nop_list[Bundle::_nop_count];
1274   Bundle::initialize_nops(_nop_list);
1275 
1276   return cb;
1277 }
1278 
1279 //------------------------------fill_buffer------------------------------------
1280 void PhaseOutput::fill_buffer(CodeBuffer* cb, uint* blk_starts) {
1281   // blk_starts[] contains offsets calculated during short branches processing,
1282   // offsets should not be increased during following steps.
1283 
1284   // Compute the size of first NumberOfLoopInstrToAlign instructions at head
1285   // of a loop. It is used to determine the padding for loop alignment.
1286   compute_loop_first_inst_sizes();
1287 
1288   // Create oopmap set.
1289   _oop_map_set = new OopMapSet();
1290 
1291   // !!!!! This preserves old handling of oopmaps for now
1292   C->debug_info()->set_oopmaps(_oop_map_set);
1293 
1294   uint nblocks  = C->cfg()->number_of_blocks();
1295   // Count and start of implicit null check instructions
1296   uint inct_cnt = 0;
1297   uint *inct_starts = NEW_RESOURCE_ARRAY(uint, nblocks+1);
1298 
1299   // Count and start of calls
1300   uint *call_returns = NEW_RESOURCE_ARRAY(uint, nblocks+1);
1301 
1302   uint  return_offset = 0;
1303   int nop_size = (new MachNopNode())->size(C->regalloc());
1304 
1305   int previous_offset = 0;
1306   int current_offset  = 0;
1307   int last_call_offset = -1;
1308   int last_avoid_back_to_back_offset = -1;
1309 #ifdef ASSERT
1310   uint* jmp_target = NEW_RESOURCE_ARRAY(uint,nblocks);
1311   uint* jmp_offset = NEW_RESOURCE_ARRAY(uint,nblocks);
1312   uint* jmp_size   = NEW_RESOURCE_ARRAY(uint,nblocks);
1313   uint* jmp_rule   = NEW_RESOURCE_ARRAY(uint,nblocks);
1314 #endif
1315 
1316   // Create an array of unused labels, one for each basic block, if printing is enabled
1317 #if defined(SUPPORT_OPTO_ASSEMBLY)
1318   int *node_offsets      = NULL;
1319   uint node_offset_limit = C->unique();
1320 
1321   if (C->print_assembly()) {
1322     node_offsets = NEW_RESOURCE_ARRAY(int, node_offset_limit);
1323   }
1324   if (node_offsets != NULL) {
1325     // We need to initialize. Unused array elements may contain garbage and mess up PrintOptoAssembly.
1326     memset(node_offsets, 0, node_offset_limit*sizeof(int));
1327   }
1328 #endif
1329 
1330   NonSafepointEmitter non_safepoints(C);  // emit non-safepoints lazily
1331 
1332   // Emit the constant table.
1333   if (C->has_mach_constant_base_node()) {
1334     constant_table().emit(*cb);
1335   }
1336 
1337   // Create an array of labels, one for each basic block
1338   Label *blk_labels = NEW_RESOURCE_ARRAY(Label, nblocks+1);
1339   for (uint i=0; i <= nblocks; i++) {
1340     blk_labels[i].init();
1341   }
1342 
1343   // ------------------
1344   // Now fill in the code buffer
1345   Node *delay_slot = NULL;
1346 
1347   for (uint i = 0; i < nblocks; i++) {
1348     Block* block = C->cfg()->get_block(i);
1349     _block = block;
1350     Node* head = block->head();
1351 
1352     // If this block needs to start aligned (i.e, can be reached other
1353     // than by falling-thru from the previous block), then force the
1354     // start of a new bundle.
1355     if (Pipeline::requires_bundling() && starts_bundle(head)) {
1356       cb->flush_bundle(true);
1357     }
1358 
1359 #ifdef ASSERT
1360     if (!block->is_connector()) {
1361       stringStream st;
1362       block->dump_head(C->cfg(), &st);
1363       MacroAssembler(cb).block_comment(st.as_string());
1364     }
1365     jmp_target[i] = 0;
1366     jmp_offset[i] = 0;
1367     jmp_size[i]   = 0;
1368     jmp_rule[i]   = 0;
1369 #endif
1370     int blk_offset = current_offset;
1371 
1372     // Define the label at the beginning of the basic block
1373     MacroAssembler(cb).bind(blk_labels[block->_pre_order]);
1374 
1375     uint last_inst = block->number_of_nodes();
1376 
1377     // Emit block normally, except for last instruction.
1378     // Emit means "dump code bits into code buffer".
1379     for (uint j = 0; j<last_inst; j++) {
1380       _index = j;
1381 
1382       // Get the node
1383       Node* n = block->get_node(j);
1384 
1385       // See if delay slots are supported
1386       if (valid_bundle_info(n) && node_bundling(n)->used_in_unconditional_delay()) {
1387         assert(delay_slot == NULL, "no use of delay slot node");
1388         assert(n->size(C->regalloc()) == Pipeline::instr_unit_size(), "delay slot instruction wrong size");
1389 
1390         delay_slot = n;
1391         continue;
1392       }
1393 
1394       // If this starts a new instruction group, then flush the current one
1395       // (but allow split bundles)
1396       if (Pipeline::requires_bundling() && starts_bundle(n))
1397         cb->flush_bundle(false);
1398 
1399       // Special handling for SafePoint/Call Nodes
1400       bool is_mcall = false;
1401       if (n->is_Mach()) {
1402         MachNode *mach = n->as_Mach();
1403         is_mcall = n->is_MachCall();
1404         bool is_sfn = n->is_MachSafePoint();
1405 
1406         // If this requires all previous instructions be flushed, then do so
1407         if (is_sfn || is_mcall || mach->alignment_required() != 1) {
1408           cb->flush_bundle(true);
1409           current_offset = cb->insts_size();
1410         }
1411 
1412         // A padding may be needed again since a previous instruction
1413         // could be moved to delay slot.
1414 
1415         // align the instruction if necessary
1416         int padding = mach->compute_padding(current_offset);
1417         // Make sure safepoint node for polling is distinct from a call's
1418         // return by adding a nop if needed.
1419         if (is_sfn && !is_mcall && padding == 0 && current_offset == last_call_offset) {
1420           padding = nop_size;
1421         }
1422         if (padding == 0 && mach->avoid_back_to_back(MachNode::AVOID_BEFORE) &&
1423             current_offset == last_avoid_back_to_back_offset) {
1424           // Avoid back to back some instructions.
1425           padding = nop_size;
1426         }
1427 
1428         if (padding > 0) {
1429           assert((padding % nop_size) == 0, "padding is not a multiple of NOP size");
1430           int nops_cnt = padding / nop_size;
1431           MachNode *nop = new MachNopNode(nops_cnt);
1432           block->insert_node(nop, j++);
1433           last_inst++;
1434           C->cfg()->map_node_to_block(nop, block);
1435           // Ensure enough space.
1436           cb->insts()->maybe_expand_to_ensure_remaining(MAX_inst_size);
1437           if ((cb->blob() == NULL) || (!CompileBroker::should_compile_new_jobs())) {
1438             C->record_failure("CodeCache is full");
1439             return;
1440           }
1441           nop->emit(*cb, C->regalloc());
1442           cb->flush_bundle(true);
1443           current_offset = cb->insts_size();
1444         }
1445 
1446         // Remember the start of the last call in a basic block
1447         if (is_mcall) {
1448           MachCallNode *mcall = mach->as_MachCall();
1449 
1450           // This destination address is NOT PC-relative
1451           mcall->method_set((intptr_t)mcall->entry_point());
1452 
1453           // Save the return address
1454           call_returns[block->_pre_order] = current_offset + mcall->ret_addr_offset();
1455 
1456           if (mcall->is_MachCallLeaf()) {
1457             is_mcall = false;
1458             is_sfn = false;
1459           }
1460         }
1461 
1462         // sfn will be valid whenever mcall is valid now because of inheritance
1463         if (is_sfn || is_mcall) {
1464 
1465           // Handle special safepoint nodes for synchronization
1466           if (!is_mcall) {
1467             MachSafePointNode *sfn = mach->as_MachSafePoint();
1468             // !!!!! Stubs only need an oopmap right now, so bail out
1469             if (sfn->jvms()->method() == NULL) {
1470               // Write the oopmap directly to the code blob??!!
1471               continue;
1472             }
1473           } // End synchronization
1474 
1475           non_safepoints.observe_safepoint(mach->as_MachSafePoint()->jvms(),
1476                                            current_offset);
1477           Process_OopMap_Node(mach, current_offset);
1478         } // End if safepoint
1479 
1480           // If this is a null check, then add the start of the previous instruction to the list
1481         else if( mach->is_MachNullCheck() ) {
1482           inct_starts[inct_cnt++] = previous_offset;
1483         }
1484 
1485           // If this is a branch, then fill in the label with the target BB's label
1486         else if (mach->is_MachBranch()) {
1487           // This requires the TRUE branch target be in succs[0]
1488           uint block_num = block->non_connector_successor(0)->_pre_order;
1489 
1490           // Try to replace long branch if delay slot is not used,
1491           // it is mostly for back branches since forward branch's
1492           // distance is not updated yet.
1493           bool delay_slot_is_used = valid_bundle_info(n) &&
1494                                     C->output()->node_bundling(n)->use_unconditional_delay();
1495           if (!delay_slot_is_used && mach->may_be_short_branch()) {
1496             assert(delay_slot == NULL, "not expecting delay slot node");
1497             int br_size = n->size(C->regalloc());
1498             int offset = blk_starts[block_num] - current_offset;
1499             if (block_num >= i) {
1500               // Current and following block's offset are not
1501               // finalized yet, adjust distance by the difference
1502               // between calculated and final offsets of current block.
1503               offset -= (blk_starts[i] - blk_offset);
1504             }
1505             // In the following code a nop could be inserted before
1506             // the branch which will increase the backward distance.
1507             bool needs_padding = (current_offset == last_avoid_back_to_back_offset);
1508             if (needs_padding && offset <= 0)
1509               offset -= nop_size;
1510 
1511             if (C->matcher()->is_short_branch_offset(mach->rule(), br_size, offset)) {
1512               // We've got a winner.  Replace this branch.
1513               MachNode* replacement = mach->as_MachBranch()->short_branch_version();
1514 
1515               // Update the jmp_size.
1516               int new_size = replacement->size(C->regalloc());
1517               assert((br_size - new_size) >= (int)nop_size, "short_branch size should be smaller");
1518               // Insert padding between avoid_back_to_back branches.
1519               if (needs_padding && replacement->avoid_back_to_back(MachNode::AVOID_BEFORE)) {
1520                 MachNode *nop = new MachNopNode();
1521                 block->insert_node(nop, j++);
1522                 C->cfg()->map_node_to_block(nop, block);
1523                 last_inst++;
1524                 nop->emit(*cb, C->regalloc());
1525                 cb->flush_bundle(true);
1526                 current_offset = cb->insts_size();
1527               }
1528 #ifdef ASSERT
1529               jmp_target[i] = block_num;
1530               jmp_offset[i] = current_offset - blk_offset;
1531               jmp_size[i]   = new_size;
1532               jmp_rule[i]   = mach->rule();
1533 #endif
1534               block->map_node(replacement, j);
1535               mach->subsume_by(replacement, C);
1536               n    = replacement;
1537               mach = replacement;
1538             }
1539           }
1540           mach->as_MachBranch()->label_set( &blk_labels[block_num], block_num );
1541         } else if (mach->ideal_Opcode() == Op_Jump) {
1542           for (uint h = 0; h < block->_num_succs; h++) {
1543             Block* succs_block = block->_succs[h];
1544             for (uint j = 1; j < succs_block->num_preds(); j++) {
1545               Node* jpn = succs_block->pred(j);
1546               if (jpn->is_JumpProj() && jpn->in(0) == mach) {
1547                 uint block_num = succs_block->non_connector()->_pre_order;
1548                 Label *blkLabel = &blk_labels[block_num];
1549                 mach->add_case_label(jpn->as_JumpProj()->proj_no(), blkLabel);
1550               }
1551             }
1552           }
1553         }
1554 #ifdef ASSERT
1555           // Check that oop-store precedes the card-mark
1556         else if (mach->ideal_Opcode() == Op_StoreCM) {
1557           uint storeCM_idx = j;
1558           int count = 0;
1559           for (uint prec = mach->req(); prec < mach->len(); prec++) {
1560             Node *oop_store = mach->in(prec);  // Precedence edge
1561             if (oop_store == NULL) continue;
1562             count++;
1563             uint i4;
1564             for (i4 = 0; i4 < last_inst; ++i4) {
1565               if (block->get_node(i4) == oop_store) {
1566                 break;
1567               }
1568             }
1569             // Note: This test can provide a false failure if other precedence
1570             // edges have been added to the storeCMNode.
1571             assert(i4 == last_inst || i4 < storeCM_idx, "CM card-mark executes before oop-store");
1572           }
1573           assert(count > 0, "storeCM expects at least one precedence edge");
1574         }
1575 #endif
1576         else if (!n->is_Proj()) {
1577           // Remember the beginning of the previous instruction, in case
1578           // it's followed by a flag-kill and a null-check.  Happens on
1579           // Intel all the time, with add-to-memory kind of opcodes.
1580           previous_offset = current_offset;
1581         }
1582 
1583         // Not an else-if!
1584         // If this is a trap based cmp then add its offset to the list.
1585         if (mach->is_TrapBasedCheckNode()) {
1586           inct_starts[inct_cnt++] = current_offset;
1587         }
1588       }
1589 
1590       // Verify that there is sufficient space remaining
1591       cb->insts()->maybe_expand_to_ensure_remaining(MAX_inst_size);
1592       if ((cb->blob() == NULL) || (!CompileBroker::should_compile_new_jobs())) {
1593         C->record_failure("CodeCache is full");
1594         return;
1595       }
1596 
1597       // Save the offset for the listing
1598 #if defined(SUPPORT_OPTO_ASSEMBLY)
1599       if ((node_offsets != NULL) && (n->_idx < node_offset_limit)) {
1600         node_offsets[n->_idx] = cb->insts_size();
1601       }
1602 #endif
1603 
1604       // "Normal" instruction case
1605       DEBUG_ONLY( uint instr_offset = cb->insts_size(); )
1606       n->emit(*cb, C->regalloc());
1607       current_offset  = cb->insts_size();
1608 
1609       // Above we only verified that there is enough space in the instruction section.
1610       // However, the instruction may emit stubs that cause code buffer expansion.
1611       // Bail out here if expansion failed due to a lack of code cache space.
1612       if (C->failing()) {
1613         return;
1614       }
1615 
1616 #ifdef ASSERT
1617       if (n->size(C->regalloc()) < (current_offset-instr_offset)) {
1618         n->dump();
1619         assert(false, "wrong size of mach node");
1620       }
1621 #endif
1622       non_safepoints.observe_instruction(n, current_offset);
1623 
1624       // mcall is last "call" that can be a safepoint
1625       // record it so we can see if a poll will directly follow it
1626       // in which case we'll need a pad to make the PcDesc sites unique
1627       // see  5010568. This can be slightly inaccurate but conservative
1628       // in the case that return address is not actually at current_offset.
1629       // This is a small price to pay.
1630 
1631       if (is_mcall) {
1632         last_call_offset = current_offset;
1633       }
1634 
1635       if (n->is_Mach() && n->as_Mach()->avoid_back_to_back(MachNode::AVOID_AFTER)) {
1636         // Avoid back to back some instructions.
1637         last_avoid_back_to_back_offset = current_offset;
1638       }
1639 
1640       // See if this instruction has a delay slot
1641       if (valid_bundle_info(n) && node_bundling(n)->use_unconditional_delay()) {
1642         guarantee(delay_slot != NULL, "expecting delay slot node");
1643 
1644         // Back up 1 instruction
1645         cb->set_insts_end(cb->insts_end() - Pipeline::instr_unit_size());
1646 
1647         // Save the offset for the listing
1648 #if defined(SUPPORT_OPTO_ASSEMBLY)
1649         if ((node_offsets != NULL) && (delay_slot->_idx < node_offset_limit)) {
1650           node_offsets[delay_slot->_idx] = cb->insts_size();
1651         }
1652 #endif
1653 
1654         // Support a SafePoint in the delay slot
1655         if (delay_slot->is_MachSafePoint()) {
1656           MachNode *mach = delay_slot->as_Mach();
1657           // !!!!! Stubs only need an oopmap right now, so bail out
1658           if (!mach->is_MachCall() && mach->as_MachSafePoint()->jvms()->method() == NULL) {
1659             // Write the oopmap directly to the code blob??!!
1660             delay_slot = NULL;
1661             continue;
1662           }
1663 
1664           int adjusted_offset = current_offset - Pipeline::instr_unit_size();
1665           non_safepoints.observe_safepoint(mach->as_MachSafePoint()->jvms(),
1666                                            adjusted_offset);
1667           // Generate an OopMap entry
1668           Process_OopMap_Node(mach, adjusted_offset);
1669         }
1670 
1671         // Insert the delay slot instruction
1672         delay_slot->emit(*cb, C->regalloc());
1673 
1674         // Don't reuse it
1675         delay_slot = NULL;
1676       }
1677 
1678     } // End for all instructions in block
1679 
1680     // If the next block is the top of a loop, pad this block out to align
1681     // the loop top a little. Helps prevent pipe stalls at loop back branches.
1682     if (i < nblocks-1) {
1683       Block *nb = C->cfg()->get_block(i + 1);
1684       int padding = nb->alignment_padding(current_offset);
1685       if( padding > 0 ) {
1686         MachNode *nop = new MachNopNode(padding / nop_size);
1687         block->insert_node(nop, block->number_of_nodes());
1688         C->cfg()->map_node_to_block(nop, block);
1689         nop->emit(*cb, C->regalloc());
1690         current_offset = cb->insts_size();
1691       }
1692     }
1693     // Verify that the distance for generated before forward
1694     // short branches is still valid.
1695     guarantee((int)(blk_starts[i+1] - blk_starts[i]) >= (current_offset - blk_offset), "shouldn't increase block size");
1696 
1697     // Save new block start offset
1698     blk_starts[i] = blk_offset;
1699   } // End of for all blocks
1700   blk_starts[nblocks] = current_offset;
1701 
1702   non_safepoints.flush_at_end();
1703 
1704   // Offset too large?
1705   if (C->failing())  return;
1706 
1707   // Define a pseudo-label at the end of the code
1708   MacroAssembler(cb).bind( blk_labels[nblocks] );
1709 
1710   // Compute the size of the first block
1711   _first_block_size = blk_labels[1].loc_pos() - blk_labels[0].loc_pos();
1712 
1713 #ifdef ASSERT
1714   for (uint i = 0; i < nblocks; i++) { // For all blocks
1715     if (jmp_target[i] != 0) {
1716       int br_size = jmp_size[i];
1717       int offset = blk_starts[jmp_target[i]]-(blk_starts[i] + jmp_offset[i]);
1718       if (!C->matcher()->is_short_branch_offset(jmp_rule[i], br_size, offset)) {
1719         tty->print_cr("target (%d) - jmp_offset(%d) = offset (%d), jump_size(%d), jmp_block B%d, target_block B%d", blk_starts[jmp_target[i]], blk_starts[i] + jmp_offset[i], offset, br_size, i, jmp_target[i]);
1720         assert(false, "Displacement too large for short jmp");
1721       }
1722     }
1723   }
1724 #endif
1725 
1726   BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
1727   bs->emit_stubs(*cb);
1728   if (C->failing())  return;
1729 
1730 #ifndef PRODUCT
1731   // Information on the size of the method, without the extraneous code
1732   Scheduling::increment_method_size(cb->insts_size());
1733 #endif
1734 
1735   // ------------------
1736   // Fill in exception table entries.
1737   FillExceptionTables(inct_cnt, call_returns, inct_starts, blk_labels);
1738 
1739   // Only java methods have exception handlers and deopt handlers
1740   // class HandlerImpl is platform-specific and defined in the *.ad files.
1741   if (C->method()) {
1742     // Emit the exception handler code.
1743     _code_offsets.set_value(CodeOffsets::Exceptions, HandlerImpl::emit_exception_handler(*cb));
1744     if (C->failing()) {
1745       return; // CodeBuffer::expand failed
1746     }
1747     // Emit the deopt handler code.
1748     _code_offsets.set_value(CodeOffsets::Deopt, HandlerImpl::emit_deopt_handler(*cb));
1749 
1750     // Emit the MethodHandle deopt handler code (if required).
1751     if (C->has_method_handle_invokes() && !C->failing()) {
1752       // We can use the same code as for the normal deopt handler, we
1753       // just need a different entry point address.
1754       _code_offsets.set_value(CodeOffsets::DeoptMH, HandlerImpl::emit_deopt_handler(*cb));
1755     }
1756   }
1757 
1758   // One last check for failed CodeBuffer::expand:
1759   if ((cb->blob() == NULL) || (!CompileBroker::should_compile_new_jobs())) {
1760     C->record_failure("CodeCache is full");
1761     return;
1762   }
1763 
1764 #if defined(SUPPORT_ABSTRACT_ASSEMBLY) || defined(SUPPORT_ASSEMBLY) || defined(SUPPORT_OPTO_ASSEMBLY)
1765   if (C->print_assembly()) {
1766     tty->cr();
1767     tty->print_cr("============================= C2-compiled nmethod ==============================");
1768   }
1769 #endif
1770 
1771 #if defined(SUPPORT_OPTO_ASSEMBLY)
1772   // Dump the assembly code, including basic-block numbers
1773   if (C->print_assembly()) {
1774     ttyLocker ttyl;  // keep the following output all in one block
1775     if (!VMThread::should_terminate()) {  // test this under the tty lock
1776       // This output goes directly to the tty, not the compiler log.
1777       // To enable tools to match it up with the compilation activity,
1778       // be sure to tag this tty output with the compile ID.
1779       if (xtty != NULL) {
1780         xtty->head("opto_assembly compile_id='%d'%s", C->compile_id(),
1781                    C->is_osr_compilation()    ? " compile_kind='osr'" :
1782                    "");
1783       }
1784       if (C->method() != NULL) {
1785         tty->print_cr("----------------------- MetaData before Compile_id = %d ------------------------", C->compile_id());
1786         C->method()->print_metadata();
1787       } else if (C->stub_name() != NULL) {
1788         tty->print_cr("----------------------------- RuntimeStub %s -------------------------------", C->stub_name());
1789       }
1790       tty->cr();
1791       tty->print_cr("------------------------ OptoAssembly for Compile_id = %d -----------------------", C->compile_id());
1792       dump_asm(node_offsets, node_offset_limit);
1793       tty->print_cr("--------------------------------------------------------------------------------");
1794       if (xtty != NULL) {
1795         // print_metadata and dump_asm above may safepoint which makes us loose the ttylock.
1796         // Retake lock too make sure the end tag is coherent, and that xmlStream->pop_tag is done
1797         // thread safe
1798         ttyLocker ttyl2;
1799         xtty->tail("opto_assembly");
1800       }
1801     }
1802   }
1803 #endif
1804 }
1805 
1806 void PhaseOutput::FillExceptionTables(uint cnt, uint *call_returns, uint *inct_starts, Label *blk_labels) {
1807   _inc_table.set_size(cnt);
1808 
1809   uint inct_cnt = 0;
1810   for (uint i = 0; i < C->cfg()->number_of_blocks(); i++) {
1811     Block* block = C->cfg()->get_block(i);
1812     Node *n = NULL;
1813     int j;
1814 
1815     // Find the branch; ignore trailing NOPs.
1816     for (j = block->number_of_nodes() - 1; j >= 0; j--) {
1817       n = block->get_node(j);
1818       if (!n->is_Mach() || n->as_Mach()->ideal_Opcode() != Op_Con) {
1819         break;
1820       }
1821     }
1822 
1823     // If we didn't find anything, continue
1824     if (j < 0) {
1825       continue;
1826     }
1827 
1828     // Compute ExceptionHandlerTable subtable entry and add it
1829     // (skip empty blocks)
1830     if (n->is_Catch()) {
1831 
1832       // Get the offset of the return from the call
1833       uint call_return = call_returns[block->_pre_order];
1834 #ifdef ASSERT
1835       assert( call_return > 0, "no call seen for this basic block" );
1836       while (block->get_node(--j)->is_MachProj()) ;
1837       assert(block->get_node(j)->is_MachCall(), "CatchProj must follow call");
1838 #endif
1839       // last instruction is a CatchNode, find it's CatchProjNodes
1840       int nof_succs = block->_num_succs;
1841       // allocate space
1842       GrowableArray<intptr_t> handler_bcis(nof_succs);
1843       GrowableArray<intptr_t> handler_pcos(nof_succs);
1844       // iterate through all successors
1845       for (int j = 0; j < nof_succs; j++) {
1846         Block* s = block->_succs[j];
1847         bool found_p = false;
1848         for (uint k = 1; k < s->num_preds(); k++) {
1849           Node* pk = s->pred(k);
1850           if (pk->is_CatchProj() && pk->in(0) == n) {
1851             const CatchProjNode* p = pk->as_CatchProj();
1852             found_p = true;
1853             // add the corresponding handler bci & pco information
1854             if (p->_con != CatchProjNode::fall_through_index) {
1855               // p leads to an exception handler (and is not fall through)
1856               assert(s == C->cfg()->get_block(s->_pre_order), "bad numbering");
1857               // no duplicates, please
1858               if (!handler_bcis.contains(p->handler_bci())) {
1859                 uint block_num = s->non_connector()->_pre_order;
1860                 handler_bcis.append(p->handler_bci());
1861                 handler_pcos.append(blk_labels[block_num].loc_pos());
1862               }
1863             }
1864           }
1865         }
1866         assert(found_p, "no matching predecessor found");
1867         // Note:  Due to empty block removal, one block may have
1868         // several CatchProj inputs, from the same Catch.
1869       }
1870 
1871       // Set the offset of the return from the call
1872       assert(handler_bcis.find(-1) != -1, "must have default handler");
1873       _handler_table.add_subtable(call_return, &handler_bcis, NULL, &handler_pcos);
1874       continue;
1875     }
1876 
1877     // Handle implicit null exception table updates
1878     if (n->is_MachNullCheck()) {
1879       uint block_num = block->non_connector_successor(0)->_pre_order;
1880       _inc_table.append(inct_starts[inct_cnt++], blk_labels[block_num].loc_pos());
1881       continue;
1882     }
1883     // Handle implicit exception table updates: trap instructions.
1884     if (n->is_Mach() && n->as_Mach()->is_TrapBasedCheckNode()) {
1885       uint block_num = block->non_connector_successor(0)->_pre_order;
1886       _inc_table.append(inct_starts[inct_cnt++], blk_labels[block_num].loc_pos());
1887       continue;
1888     }
1889   } // End of for all blocks fill in exception table entries
1890 }
1891 
1892 // Static Variables
1893 #ifndef PRODUCT
1894 uint Scheduling::_total_nop_size = 0;
1895 uint Scheduling::_total_method_size = 0;
1896 uint Scheduling::_total_branches = 0;
1897 uint Scheduling::_total_unconditional_delays = 0;
1898 uint Scheduling::_total_instructions_per_bundle[Pipeline::_max_instrs_per_cycle+1];
1899 #endif
1900 
1901 // Initializer for class Scheduling
1902 
1903 Scheduling::Scheduling(Arena *arena, Compile &compile)
1904         : _arena(arena),
1905           _cfg(compile.cfg()),
1906           _regalloc(compile.regalloc()),
1907           _scheduled(arena),
1908           _available(arena),
1909           _reg_node(arena),
1910           _pinch_free_list(arena),
1911           _next_node(NULL),
1912           _bundle_instr_count(0),
1913           _bundle_cycle_number(0),
1914           _bundle_use(0, 0, resource_count, &_bundle_use_elements[0])
1915 #ifndef PRODUCT
1916         , _branches(0)
1917         , _unconditional_delays(0)
1918 #endif
1919 {
1920   // Create a MachNopNode
1921   _nop = new MachNopNode();
1922 
1923   // Now that the nops are in the array, save the count
1924   // (but allow entries for the nops)
1925   _node_bundling_limit = compile.unique();
1926   uint node_max = _regalloc->node_regs_max_index();
1927 
1928   compile.output()->set_node_bundling_limit(_node_bundling_limit);
1929 
1930   // This one is persistent within the Compile class
1931   _node_bundling_base = NEW_ARENA_ARRAY(compile.comp_arena(), Bundle, node_max);
1932 
1933   // Allocate space for fixed-size arrays
1934   _node_latency    = NEW_ARENA_ARRAY(arena, unsigned short, node_max);
1935   _uses            = NEW_ARENA_ARRAY(arena, short,          node_max);
1936   _current_latency = NEW_ARENA_ARRAY(arena, unsigned short, node_max);
1937 
1938   // Clear the arrays
1939   for (uint i = 0; i < node_max; i++) {
1940     ::new (&_node_bundling_base[i]) Bundle();
1941   }
1942   memset(_node_latency,       0, node_max * sizeof(unsigned short));
1943   memset(_uses,               0, node_max * sizeof(short));
1944   memset(_current_latency,    0, node_max * sizeof(unsigned short));
1945 
1946   // Clear the bundling information
1947   memcpy(_bundle_use_elements, Pipeline_Use::elaborated_elements, sizeof(Pipeline_Use::elaborated_elements));
1948 
1949   // Get the last node
1950   Block* block = _cfg->get_block(_cfg->number_of_blocks() - 1);
1951 
1952   _next_node = block->get_node(block->number_of_nodes() - 1);
1953 }
1954 
1955 #ifndef PRODUCT
1956 // Scheduling destructor
1957 Scheduling::~Scheduling() {
1958   _total_branches             += _branches;
1959   _total_unconditional_delays += _unconditional_delays;
1960 }
1961 #endif
1962 
1963 // Step ahead "i" cycles
1964 void Scheduling::step(uint i) {
1965 
1966   Bundle *bundle = node_bundling(_next_node);
1967   bundle->set_starts_bundle();
1968 
1969   // Update the bundle record, but leave the flags information alone
1970   if (_bundle_instr_count > 0) {
1971     bundle->set_instr_count(_bundle_instr_count);
1972     bundle->set_resources_used(_bundle_use.resourcesUsed());
1973   }
1974 
1975   // Update the state information
1976   _bundle_instr_count = 0;
1977   _bundle_cycle_number += i;
1978   _bundle_use.step(i);
1979 }
1980 
1981 void Scheduling::step_and_clear() {
1982   Bundle *bundle = node_bundling(_next_node);
1983   bundle->set_starts_bundle();
1984 
1985   // Update the bundle record
1986   if (_bundle_instr_count > 0) {
1987     bundle->set_instr_count(_bundle_instr_count);
1988     bundle->set_resources_used(_bundle_use.resourcesUsed());
1989 
1990     _bundle_cycle_number += 1;
1991   }
1992 
1993   // Clear the bundling information
1994   _bundle_instr_count = 0;
1995   _bundle_use.reset();
1996 
1997   memcpy(_bundle_use_elements,
1998          Pipeline_Use::elaborated_elements,
1999          sizeof(Pipeline_Use::elaborated_elements));
2000 }
2001 
2002 // Perform instruction scheduling and bundling over the sequence of
2003 // instructions in backwards order.
2004 void PhaseOutput::ScheduleAndBundle() {
2005 
2006   // Don't optimize this if it isn't a method
2007   if (!C->method())
2008     return;
2009 
2010   // Don't optimize this if scheduling is disabled
2011   if (!C->do_scheduling())
2012     return;
2013 
2014   // Scheduling code works only with pairs (16 bytes) maximum.
2015   if (C->max_vector_size() > 16)
2016     return;
2017 
2018   Compile::TracePhase tp("isched", &timers[_t_instrSched]);
2019 
2020   // Create a data structure for all the scheduling information
2021   Scheduling scheduling(Thread::current()->resource_area(), *C);
2022 
2023   // Walk backwards over each basic block, computing the needed alignment
2024   // Walk over all the basic blocks
2025   scheduling.DoScheduling();
2026 
2027 #ifndef PRODUCT
2028   if (C->trace_opto_output()) {
2029     tty->print("\n---- After ScheduleAndBundle ----\n");
2030     for (uint i = 0; i < C->cfg()->number_of_blocks(); i++) {
2031       tty->print("\nBB#%03d:\n", i);
2032       Block* block = C->cfg()->get_block(i);
2033       for (uint j = 0; j < block->number_of_nodes(); j++) {
2034         Node* n = block->get_node(j);
2035         OptoReg::Name reg = C->regalloc()->get_reg_first(n);
2036         tty->print(" %-6s ", reg >= 0 && reg < REG_COUNT ? Matcher::regName[reg] : "");
2037         n->dump();
2038       }
2039     }
2040   }
2041 #endif
2042 }
2043 
2044 // Compute the latency of all the instructions.  This is fairly simple,
2045 // because we already have a legal ordering.  Walk over the instructions
2046 // from first to last, and compute the latency of the instruction based
2047 // on the latency of the preceding instruction(s).
2048 void Scheduling::ComputeLocalLatenciesForward(const Block *bb) {
2049 #ifndef PRODUCT
2050   if (_cfg->C->trace_opto_output())
2051     tty->print("# -> ComputeLocalLatenciesForward\n");
2052 #endif
2053 
2054   // Walk over all the schedulable instructions
2055   for( uint j=_bb_start; j < _bb_end; j++ ) {
2056 
2057     // This is a kludge, forcing all latency calculations to start at 1.
2058     // Used to allow latency 0 to force an instruction to the beginning
2059     // of the bb
2060     uint latency = 1;
2061     Node *use = bb->get_node(j);
2062     uint nlen = use->len();
2063 
2064     // Walk over all the inputs
2065     for ( uint k=0; k < nlen; k++ ) {
2066       Node *def = use->in(k);
2067       if (!def)
2068         continue;
2069 
2070       uint l = _node_latency[def->_idx] + use->latency(k);
2071       if (latency < l)
2072         latency = l;
2073     }
2074 
2075     _node_latency[use->_idx] = latency;
2076 
2077 #ifndef PRODUCT
2078     if (_cfg->C->trace_opto_output()) {
2079       tty->print("# latency %4d: ", latency);
2080       use->dump();
2081     }
2082 #endif
2083   }
2084 
2085 #ifndef PRODUCT
2086   if (_cfg->C->trace_opto_output())
2087     tty->print("# <- ComputeLocalLatenciesForward\n");
2088 #endif
2089 
2090 } // end ComputeLocalLatenciesForward
2091 
2092 // See if this node fits into the present instruction bundle
2093 bool Scheduling::NodeFitsInBundle(Node *n) {
2094   uint n_idx = n->_idx;
2095 
2096   // If this is the unconditional delay instruction, then it fits
2097   if (n == _unconditional_delay_slot) {
2098 #ifndef PRODUCT
2099     if (_cfg->C->trace_opto_output())
2100       tty->print("#     NodeFitsInBundle [%4d]: TRUE; is in unconditional delay slot\n", n->_idx);
2101 #endif
2102     return (true);
2103   }
2104 
2105   // If the node cannot be scheduled this cycle, skip it
2106   if (_current_latency[n_idx] > _bundle_cycle_number) {
2107 #ifndef PRODUCT
2108     if (_cfg->C->trace_opto_output())
2109       tty->print("#     NodeFitsInBundle [%4d]: FALSE; latency %4d > %d\n",
2110                  n->_idx, _current_latency[n_idx], _bundle_cycle_number);
2111 #endif
2112     return (false);
2113   }
2114 
2115   const Pipeline *node_pipeline = n->pipeline();
2116 
2117   uint instruction_count = node_pipeline->instructionCount();
2118   if (node_pipeline->mayHaveNoCode() && n->size(_regalloc) == 0)
2119     instruction_count = 0;
2120   else if (node_pipeline->hasBranchDelay() && !_unconditional_delay_slot)
2121     instruction_count++;
2122 
2123   if (_bundle_instr_count + instruction_count > Pipeline::_max_instrs_per_cycle) {
2124 #ifndef PRODUCT
2125     if (_cfg->C->trace_opto_output())
2126       tty->print("#     NodeFitsInBundle [%4d]: FALSE; too many instructions: %d > %d\n",
2127                  n->_idx, _bundle_instr_count + instruction_count, Pipeline::_max_instrs_per_cycle);
2128 #endif
2129     return (false);
2130   }
2131 
2132   // Don't allow non-machine nodes to be handled this way
2133   if (!n->is_Mach() && instruction_count == 0)
2134     return (false);
2135 
2136   // See if there is any overlap
2137   uint delay = _bundle_use.full_latency(0, node_pipeline->resourceUse());
2138 
2139   if (delay > 0) {
2140 #ifndef PRODUCT
2141     if (_cfg->C->trace_opto_output())
2142       tty->print("#     NodeFitsInBundle [%4d]: FALSE; functional units overlap\n", n_idx);
2143 #endif
2144     return false;
2145   }
2146 
2147 #ifndef PRODUCT
2148   if (_cfg->C->trace_opto_output())
2149     tty->print("#     NodeFitsInBundle [%4d]:  TRUE\n", n_idx);
2150 #endif
2151 
2152   return true;
2153 }
2154 
2155 Node * Scheduling::ChooseNodeToBundle() {
2156   uint siz = _available.size();
2157 
2158   if (siz == 0) {
2159 
2160 #ifndef PRODUCT
2161     if (_cfg->C->trace_opto_output())
2162       tty->print("#   ChooseNodeToBundle: NULL\n");
2163 #endif
2164     return (NULL);
2165   }
2166 
2167   // Fast path, if only 1 instruction in the bundle
2168   if (siz == 1) {
2169 #ifndef PRODUCT
2170     if (_cfg->C->trace_opto_output()) {
2171       tty->print("#   ChooseNodeToBundle (only 1): ");
2172       _available[0]->dump();
2173     }
2174 #endif
2175     return (_available[0]);
2176   }
2177 
2178   // Don't bother, if the bundle is already full
2179   if (_bundle_instr_count < Pipeline::_max_instrs_per_cycle) {
2180     for ( uint i = 0; i < siz; i++ ) {
2181       Node *n = _available[i];
2182 
2183       // Skip projections, we'll handle them another way
2184       if (n->is_Proj())
2185         continue;
2186 
2187       // This presupposed that instructions are inserted into the
2188       // available list in a legality order; i.e. instructions that
2189       // must be inserted first are at the head of the list
2190       if (NodeFitsInBundle(n)) {
2191 #ifndef PRODUCT
2192         if (_cfg->C->trace_opto_output()) {
2193           tty->print("#   ChooseNodeToBundle: ");
2194           n->dump();
2195         }
2196 #endif
2197         return (n);
2198       }
2199     }
2200   }
2201 
2202   // Nothing fits in this bundle, choose the highest priority
2203 #ifndef PRODUCT
2204   if (_cfg->C->trace_opto_output()) {
2205     tty->print("#   ChooseNodeToBundle: ");
2206     _available[0]->dump();
2207   }
2208 #endif
2209 
2210   return _available[0];
2211 }
2212 
2213 void Scheduling::AddNodeToAvailableList(Node *n) {
2214   assert( !n->is_Proj(), "projections never directly made available" );
2215 #ifndef PRODUCT
2216   if (_cfg->C->trace_opto_output()) {
2217     tty->print("#   AddNodeToAvailableList: ");
2218     n->dump();
2219   }
2220 #endif
2221 
2222   int latency = _current_latency[n->_idx];
2223 
2224   // Insert in latency order (insertion sort)
2225   uint i;
2226   for ( i=0; i < _available.size(); i++ )
2227     if (_current_latency[_available[i]->_idx] > latency)
2228       break;
2229 
2230   // Special Check for compares following branches
2231   if( n->is_Mach() && _scheduled.size() > 0 ) {
2232     int op = n->as_Mach()->ideal_Opcode();
2233     Node *last = _scheduled[0];
2234     if( last->is_MachIf() && last->in(1) == n &&
2235         ( op == Op_CmpI ||
2236           op == Op_CmpU ||
2237           op == Op_CmpUL ||
2238           op == Op_CmpP ||
2239           op == Op_CmpF ||
2240           op == Op_CmpD ||
2241           op == Op_CmpL ) ) {
2242 
2243       // Recalculate position, moving to front of same latency
2244       for ( i=0 ; i < _available.size(); i++ )
2245         if (_current_latency[_available[i]->_idx] >= latency)
2246           break;
2247     }
2248   }
2249 
2250   // Insert the node in the available list
2251   _available.insert(i, n);
2252 
2253 #ifndef PRODUCT
2254   if (_cfg->C->trace_opto_output())
2255     dump_available();
2256 #endif
2257 }
2258 
2259 void Scheduling::DecrementUseCounts(Node *n, const Block *bb) {
2260   for ( uint i=0; i < n->len(); i++ ) {
2261     Node *def = n->in(i);
2262     if (!def) continue;
2263     if( def->is_Proj() )        // If this is a machine projection, then
2264       def = def->in(0);         // propagate usage thru to the base instruction
2265 
2266     if(_cfg->get_block_for_node(def) != bb) { // Ignore if not block-local
2267       continue;
2268     }
2269 
2270     // Compute the latency
2271     uint l = _bundle_cycle_number + n->latency(i);
2272     if (_current_latency[def->_idx] < l)
2273       _current_latency[def->_idx] = l;
2274 
2275     // If this does not have uses then schedule it
2276     if ((--_uses[def->_idx]) == 0)
2277       AddNodeToAvailableList(def);
2278   }
2279 }
2280 
2281 void Scheduling::AddNodeToBundle(Node *n, const Block *bb) {
2282 #ifndef PRODUCT
2283   if (_cfg->C->trace_opto_output()) {
2284     tty->print("#   AddNodeToBundle: ");
2285     n->dump();
2286   }
2287 #endif
2288 
2289   // Remove this from the available list
2290   uint i;
2291   for (i = 0; i < _available.size(); i++)
2292     if (_available[i] == n)
2293       break;
2294   assert(i < _available.size(), "entry in _available list not found");
2295   _available.remove(i);
2296 
2297   // See if this fits in the current bundle
2298   const Pipeline *node_pipeline = n->pipeline();
2299   const Pipeline_Use& node_usage = node_pipeline->resourceUse();
2300 
2301   // Check for instructions to be placed in the delay slot. We
2302   // do this before we actually schedule the current instruction,
2303   // because the delay slot follows the current instruction.
2304   if (Pipeline::_branch_has_delay_slot &&
2305       node_pipeline->hasBranchDelay() &&
2306       !_unconditional_delay_slot) {
2307 
2308     uint siz = _available.size();
2309 
2310     // Conditional branches can support an instruction that
2311     // is unconditionally executed and not dependent by the
2312     // branch, OR a conditionally executed instruction if
2313     // the branch is taken.  In practice, this means that
2314     // the first instruction at the branch target is
2315     // copied to the delay slot, and the branch goes to
2316     // the instruction after that at the branch target
2317     if ( n->is_MachBranch() ) {
2318 
2319       assert( !n->is_MachNullCheck(), "should not look for delay slot for Null Check" );
2320       assert( !n->is_Catch(),         "should not look for delay slot for Catch" );
2321 
2322 #ifndef PRODUCT
2323       _branches++;
2324 #endif
2325 
2326       // At least 1 instruction is on the available list
2327       // that is not dependent on the branch
2328       for (uint i = 0; i < siz; i++) {
2329         Node *d = _available[i];
2330         const Pipeline *avail_pipeline = d->pipeline();
2331 
2332         // Don't allow safepoints in the branch shadow, that will
2333         // cause a number of difficulties
2334         if ( avail_pipeline->instructionCount() == 1 &&
2335              !avail_pipeline->hasMultipleBundles() &&
2336              !avail_pipeline->hasBranchDelay() &&
2337              Pipeline::instr_has_unit_size() &&
2338              d->size(_regalloc) == Pipeline::instr_unit_size() &&
2339              NodeFitsInBundle(d) &&
2340              !node_bundling(d)->used_in_delay()) {
2341 
2342           if (d->is_Mach() && !d->is_MachSafePoint()) {
2343             // A node that fits in the delay slot was found, so we need to
2344             // set the appropriate bits in the bundle pipeline information so
2345             // that it correctly indicates resource usage.  Later, when we
2346             // attempt to add this instruction to the bundle, we will skip
2347             // setting the resource usage.
2348             _unconditional_delay_slot = d;
2349             node_bundling(n)->set_use_unconditional_delay();
2350             node_bundling(d)->set_used_in_unconditional_delay();
2351             _bundle_use.add_usage(avail_pipeline->resourceUse());
2352             _current_latency[d->_idx] = _bundle_cycle_number;
2353             _next_node = d;
2354             ++_bundle_instr_count;
2355 #ifndef PRODUCT
2356             _unconditional_delays++;
2357 #endif
2358             break;
2359           }
2360         }
2361       }
2362     }
2363 
2364     // No delay slot, add a nop to the usage
2365     if (!_unconditional_delay_slot) {
2366       // See if adding an instruction in the delay slot will overflow
2367       // the bundle.
2368       if (!NodeFitsInBundle(_nop)) {
2369 #ifndef PRODUCT
2370         if (_cfg->C->trace_opto_output())
2371           tty->print("#  *** STEP(1 instruction for delay slot) ***\n");
2372 #endif
2373         step(1);
2374       }
2375 
2376       _bundle_use.add_usage(_nop->pipeline()->resourceUse());
2377       _next_node = _nop;
2378       ++_bundle_instr_count;
2379     }
2380 
2381     // See if the instruction in the delay slot requires a
2382     // step of the bundles
2383     if (!NodeFitsInBundle(n)) {
2384 #ifndef PRODUCT
2385       if (_cfg->C->trace_opto_output())
2386         tty->print("#  *** STEP(branch won't fit) ***\n");
2387 #endif
2388       // Update the state information
2389       _bundle_instr_count = 0;
2390       _bundle_cycle_number += 1;
2391       _bundle_use.step(1);
2392     }
2393   }
2394 
2395   // Get the number of instructions
2396   uint instruction_count = node_pipeline->instructionCount();
2397   if (node_pipeline->mayHaveNoCode() && n->size(_regalloc) == 0)
2398     instruction_count = 0;
2399 
2400   // Compute the latency information
2401   uint delay = 0;
2402 
2403   if (instruction_count > 0 || !node_pipeline->mayHaveNoCode()) {
2404     int relative_latency = _current_latency[n->_idx] - _bundle_cycle_number;
2405     if (relative_latency < 0)
2406       relative_latency = 0;
2407 
2408     delay = _bundle_use.full_latency(relative_latency, node_usage);
2409 
2410     // Does not fit in this bundle, start a new one
2411     if (delay > 0) {
2412       step(delay);
2413 
2414 #ifndef PRODUCT
2415       if (_cfg->C->trace_opto_output())
2416         tty->print("#  *** STEP(%d) ***\n", delay);
2417 #endif
2418     }
2419   }
2420 
2421   // If this was placed in the delay slot, ignore it
2422   if (n != _unconditional_delay_slot) {
2423 
2424     if (delay == 0) {
2425       if (node_pipeline->hasMultipleBundles()) {
2426 #ifndef PRODUCT
2427         if (_cfg->C->trace_opto_output())
2428           tty->print("#  *** STEP(multiple instructions) ***\n");
2429 #endif
2430         step(1);
2431       }
2432 
2433       else if (instruction_count + _bundle_instr_count > Pipeline::_max_instrs_per_cycle) {
2434 #ifndef PRODUCT
2435         if (_cfg->C->trace_opto_output())
2436           tty->print("#  *** STEP(%d >= %d instructions) ***\n",
2437                      instruction_count + _bundle_instr_count,
2438                      Pipeline::_max_instrs_per_cycle);
2439 #endif
2440         step(1);
2441       }
2442     }
2443 
2444     if (node_pipeline->hasBranchDelay() && !_unconditional_delay_slot)
2445       _bundle_instr_count++;
2446 
2447     // Set the node's latency
2448     _current_latency[n->_idx] = _bundle_cycle_number;
2449 
2450     // Now merge the functional unit information
2451     if (instruction_count > 0 || !node_pipeline->mayHaveNoCode())
2452       _bundle_use.add_usage(node_usage);
2453 
2454     // Increment the number of instructions in this bundle
2455     _bundle_instr_count += instruction_count;
2456 
2457     // Remember this node for later
2458     if (n->is_Mach())
2459       _next_node = n;
2460   }
2461 
2462   // It's possible to have a BoxLock in the graph and in the _bbs mapping but
2463   // not in the bb->_nodes array.  This happens for debug-info-only BoxLocks.
2464   // 'Schedule' them (basically ignore in the schedule) but do not insert them
2465   // into the block.  All other scheduled nodes get put in the schedule here.
2466   int op = n->Opcode();
2467   if( (op == Op_Node && n->req() == 0) || // anti-dependence node OR
2468       (op != Op_Node &&         // Not an unused antidepedence node and
2469        // not an unallocated boxlock
2470        (OptoReg::is_valid(_regalloc->get_reg_first(n)) || op != Op_BoxLock)) ) {
2471 
2472     // Push any trailing projections
2473     if( bb->get_node(bb->number_of_nodes()-1) != n ) {
2474       for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
2475         Node *foi = n->fast_out(i);
2476         if( foi->is_Proj() )
2477           _scheduled.push(foi);
2478       }
2479     }
2480 
2481     // Put the instruction in the schedule list
2482     _scheduled.push(n);
2483   }
2484 
2485 #ifndef PRODUCT
2486   if (_cfg->C->trace_opto_output())
2487     dump_available();
2488 #endif
2489 
2490   // Walk all the definitions, decrementing use counts, and
2491   // if a definition has a 0 use count, place it in the available list.
2492   DecrementUseCounts(n,bb);
2493 }
2494 
2495 // This method sets the use count within a basic block.  We will ignore all
2496 // uses outside the current basic block.  As we are doing a backwards walk,
2497 // any node we reach that has a use count of 0 may be scheduled.  This also
2498 // avoids the problem of cyclic references from phi nodes, as long as phi
2499 // nodes are at the front of the basic block.  This method also initializes
2500 // the available list to the set of instructions that have no uses within this
2501 // basic block.
2502 void Scheduling::ComputeUseCount(const Block *bb) {
2503 #ifndef PRODUCT
2504   if (_cfg->C->trace_opto_output())
2505     tty->print("# -> ComputeUseCount\n");
2506 #endif
2507 
2508   // Clear the list of available and scheduled instructions, just in case
2509   _available.clear();
2510   _scheduled.clear();
2511 
2512   // No delay slot specified
2513   _unconditional_delay_slot = NULL;
2514 
2515 #ifdef ASSERT
2516   for( uint i=0; i < bb->number_of_nodes(); i++ )
2517     assert( _uses[bb->get_node(i)->_idx] == 0, "_use array not clean" );
2518 #endif
2519 
2520   // Force the _uses count to never go to zero for unscheduable pieces
2521   // of the block
2522   for( uint k = 0; k < _bb_start; k++ )
2523     _uses[bb->get_node(k)->_idx] = 1;
2524   for( uint l = _bb_end; l < bb->number_of_nodes(); l++ )
2525     _uses[bb->get_node(l)->_idx] = 1;
2526 
2527   // Iterate backwards over the instructions in the block.  Don't count the
2528   // branch projections at end or the block header instructions.
2529   for( uint j = _bb_end-1; j >= _bb_start; j-- ) {
2530     Node *n = bb->get_node(j);
2531     if( n->is_Proj() ) continue; // Projections handled another way
2532 
2533     // Account for all uses
2534     for ( uint k = 0; k < n->len(); k++ ) {
2535       Node *inp = n->in(k);
2536       if (!inp) continue;
2537       assert(inp != n, "no cycles allowed" );
2538       if (_cfg->get_block_for_node(inp) == bb) { // Block-local use?
2539         if (inp->is_Proj()) { // Skip through Proj's
2540           inp = inp->in(0);
2541         }
2542         ++_uses[inp->_idx];     // Count 1 block-local use
2543       }
2544     }
2545 
2546     // If this instruction has a 0 use count, then it is available
2547     if (!_uses[n->_idx]) {
2548       _current_latency[n->_idx] = _bundle_cycle_number;
2549       AddNodeToAvailableList(n);
2550     }
2551 
2552 #ifndef PRODUCT
2553     if (_cfg->C->trace_opto_output()) {
2554       tty->print("#   uses: %3d: ", _uses[n->_idx]);
2555       n->dump();
2556     }
2557 #endif
2558   }
2559 
2560 #ifndef PRODUCT
2561   if (_cfg->C->trace_opto_output())
2562     tty->print("# <- ComputeUseCount\n");
2563 #endif
2564 }
2565 
2566 // This routine performs scheduling on each basic block in reverse order,
2567 // using instruction latencies and taking into account function unit
2568 // availability.
2569 void Scheduling::DoScheduling() {
2570 #ifndef PRODUCT
2571   if (_cfg->C->trace_opto_output())
2572     tty->print("# -> DoScheduling\n");
2573 #endif
2574 
2575   Block *succ_bb = NULL;
2576   Block *bb;
2577   Compile* C = Compile::current();
2578 
2579   // Walk over all the basic blocks in reverse order
2580   for (int i = _cfg->number_of_blocks() - 1; i >= 0; succ_bb = bb, i--) {
2581     bb = _cfg->get_block(i);
2582 
2583 #ifndef PRODUCT
2584     if (_cfg->C->trace_opto_output()) {
2585       tty->print("#  Schedule BB#%03d (initial)\n", i);
2586       for (uint j = 0; j < bb->number_of_nodes(); j++) {
2587         bb->get_node(j)->dump();
2588       }
2589     }
2590 #endif
2591 
2592     // On the head node, skip processing
2593     if (bb == _cfg->get_root_block()) {
2594       continue;
2595     }
2596 
2597     // Skip empty, connector blocks
2598     if (bb->is_connector())
2599       continue;
2600 
2601     // If the following block is not the sole successor of
2602     // this one, then reset the pipeline information
2603     if (bb->_num_succs != 1 || bb->non_connector_successor(0) != succ_bb) {
2604 #ifndef PRODUCT
2605       if (_cfg->C->trace_opto_output()) {
2606         tty->print("*** bundle start of next BB, node %d, for %d instructions\n",
2607                    _next_node->_idx, _bundle_instr_count);
2608       }
2609 #endif
2610       step_and_clear();
2611     }
2612 
2613     // Leave untouched the starting instruction, any Phis, a CreateEx node
2614     // or Top.  bb->get_node(_bb_start) is the first schedulable instruction.
2615     _bb_end = bb->number_of_nodes()-1;
2616     for( _bb_start=1; _bb_start <= _bb_end; _bb_start++ ) {
2617       Node *n = bb->get_node(_bb_start);
2618       // Things not matched, like Phinodes and ProjNodes don't get scheduled.
2619       // Also, MachIdealNodes do not get scheduled
2620       if( !n->is_Mach() ) continue;     // Skip non-machine nodes
2621       MachNode *mach = n->as_Mach();
2622       int iop = mach->ideal_Opcode();
2623       if( iop == Op_CreateEx ) continue; // CreateEx is pinned
2624       if( iop == Op_Con ) continue;      // Do not schedule Top
2625       if( iop == Op_Node &&     // Do not schedule PhiNodes, ProjNodes
2626           mach->pipeline() == MachNode::pipeline_class() &&
2627           !n->is_SpillCopy() && !n->is_MachMerge() )  // Breakpoints, Prolog, etc
2628         continue;
2629       break;                    // Funny loop structure to be sure...
2630     }
2631     // Compute last "interesting" instruction in block - last instruction we
2632     // might schedule.  _bb_end points just after last schedulable inst.  We
2633     // normally schedule conditional branches (despite them being forced last
2634     // in the block), because they have delay slots we can fill.  Calls all
2635     // have their delay slots filled in the template expansions, so we don't
2636     // bother scheduling them.
2637     Node *last = bb->get_node(_bb_end);
2638     // Ignore trailing NOPs.
2639     while (_bb_end > 0 && last->is_Mach() &&
2640            last->as_Mach()->ideal_Opcode() == Op_Con) {
2641       last = bb->get_node(--_bb_end);
2642     }
2643     assert(!last->is_Mach() || last->as_Mach()->ideal_Opcode() != Op_Con, "");
2644     if( last->is_Catch() ||
2645         (last->is_Mach() && last->as_Mach()->ideal_Opcode() == Op_Halt) ) {
2646       // There might be a prior call.  Skip it.
2647       while (_bb_start < _bb_end && bb->get_node(--_bb_end)->is_MachProj());
2648     } else if( last->is_MachNullCheck() ) {
2649       // Backup so the last null-checked memory instruction is
2650       // outside the schedulable range. Skip over the nullcheck,
2651       // projection, and the memory nodes.
2652       Node *mem = last->in(1);
2653       do {
2654         _bb_end--;
2655       } while (mem != bb->get_node(_bb_end));
2656     } else {
2657       // Set _bb_end to point after last schedulable inst.
2658       _bb_end++;
2659     }
2660 
2661     assert( _bb_start <= _bb_end, "inverted block ends" );
2662 
2663     // Compute the register antidependencies for the basic block
2664     ComputeRegisterAntidependencies(bb);
2665     if (C->failing())  return;  // too many D-U pinch points
2666 
2667     // Compute intra-bb latencies for the nodes
2668     ComputeLocalLatenciesForward(bb);
2669 
2670     // Compute the usage within the block, and set the list of all nodes
2671     // in the block that have no uses within the block.
2672     ComputeUseCount(bb);
2673 
2674     // Schedule the remaining instructions in the block
2675     while ( _available.size() > 0 ) {
2676       Node *n = ChooseNodeToBundle();
2677       guarantee(n != NULL, "no nodes available");
2678       AddNodeToBundle(n,bb);
2679     }
2680 
2681     assert( _scheduled.size() == _bb_end - _bb_start, "wrong number of instructions" );
2682 #ifdef ASSERT
2683     for( uint l = _bb_start; l < _bb_end; l++ ) {
2684       Node *n = bb->get_node(l);
2685       uint m;
2686       for( m = 0; m < _bb_end-_bb_start; m++ )
2687         if( _scheduled[m] == n )
2688           break;
2689       assert( m < _bb_end-_bb_start, "instruction missing in schedule" );
2690     }
2691 #endif
2692 
2693     // Now copy the instructions (in reverse order) back to the block
2694     for ( uint k = _bb_start; k < _bb_end; k++ )
2695       bb->map_node(_scheduled[_bb_end-k-1], k);
2696 
2697 #ifndef PRODUCT
2698     if (_cfg->C->trace_opto_output()) {
2699       tty->print("#  Schedule BB#%03d (final)\n", i);
2700       uint current = 0;
2701       for (uint j = 0; j < bb->number_of_nodes(); j++) {
2702         Node *n = bb->get_node(j);
2703         if( valid_bundle_info(n) ) {
2704           Bundle *bundle = node_bundling(n);
2705           if (bundle->instr_count() > 0 || bundle->flags() > 0) {
2706             tty->print("*** Bundle: ");
2707             bundle->dump();
2708           }
2709           n->dump();
2710         }
2711       }
2712     }
2713 #endif
2714 #ifdef ASSERT
2715     verify_good_schedule(bb,"after block local scheduling");
2716 #endif
2717   }
2718 
2719 #ifndef PRODUCT
2720   if (_cfg->C->trace_opto_output())
2721     tty->print("# <- DoScheduling\n");
2722 #endif
2723 
2724   // Record final node-bundling array location
2725   _regalloc->C->output()->set_node_bundling_base(_node_bundling_base);
2726 
2727 } // end DoScheduling
2728 
2729 // Verify that no live-range used in the block is killed in the block by a
2730 // wrong DEF.  This doesn't verify live-ranges that span blocks.
2731 
2732 // Check for edge existence.  Used to avoid adding redundant precedence edges.
2733 static bool edge_from_to( Node *from, Node *to ) {
2734   for( uint i=0; i<from->len(); i++ )
2735     if( from->in(i) == to )
2736       return true;
2737   return false;
2738 }
2739 
2740 #ifdef ASSERT
2741 void Scheduling::verify_do_def( Node *n, OptoReg::Name def, const char *msg ) {
2742   // Check for bad kills
2743   if( OptoReg::is_valid(def) ) { // Ignore stores & control flow
2744     Node *prior_use = _reg_node[def];
2745     if( prior_use && !edge_from_to(prior_use,n) ) {
2746       tty->print("%s = ",OptoReg::as_VMReg(def)->name());
2747       n->dump();
2748       tty->print_cr("...");
2749       prior_use->dump();
2750       assert(edge_from_to(prior_use,n), "%s", msg);
2751     }
2752     _reg_node.map(def,NULL); // Kill live USEs
2753   }
2754 }
2755 
2756 void Scheduling::verify_good_schedule( Block *b, const char *msg ) {
2757 
2758   // Zap to something reasonable for the verify code
2759   _reg_node.clear();
2760 
2761   // Walk over the block backwards.  Check to make sure each DEF doesn't
2762   // kill a live value (other than the one it's supposed to).  Add each
2763   // USE to the live set.
2764   for( uint i = b->number_of_nodes()-1; i >= _bb_start; i-- ) {
2765     Node *n = b->get_node(i);
2766     int n_op = n->Opcode();
2767     if( n_op == Op_MachProj && n->ideal_reg() == MachProjNode::fat_proj ) {
2768       // Fat-proj kills a slew of registers
2769       RegMask rm = n->out_RegMask();// Make local copy
2770       while( rm.is_NotEmpty() ) {
2771         OptoReg::Name kill = rm.find_first_elem();
2772         rm.Remove(kill);
2773         verify_do_def( n, kill, msg );
2774       }
2775     } else if( n_op != Op_Node ) { // Avoid brand new antidependence nodes
2776       // Get DEF'd registers the normal way
2777       verify_do_def( n, _regalloc->get_reg_first(n), msg );
2778       verify_do_def( n, _regalloc->get_reg_second(n), msg );
2779     }
2780 
2781     // Now make all USEs live
2782     for( uint i=1; i<n->req(); i++ ) {
2783       Node *def = n->in(i);
2784       assert(def != 0, "input edge required");
2785       OptoReg::Name reg_lo = _regalloc->get_reg_first(def);
2786       OptoReg::Name reg_hi = _regalloc->get_reg_second(def);
2787       if( OptoReg::is_valid(reg_lo) ) {
2788         assert(!_reg_node[reg_lo] || edge_from_to(_reg_node[reg_lo],def), "%s", msg);
2789         _reg_node.map(reg_lo,n);
2790       }
2791       if( OptoReg::is_valid(reg_hi) ) {
2792         assert(!_reg_node[reg_hi] || edge_from_to(_reg_node[reg_hi],def), "%s", msg);
2793         _reg_node.map(reg_hi,n);
2794       }
2795     }
2796 
2797   }
2798 
2799   // Zap to something reasonable for the Antidependence code
2800   _reg_node.clear();
2801 }
2802 #endif
2803 
2804 // Conditionally add precedence edges.  Avoid putting edges on Projs.
2805 static void add_prec_edge_from_to( Node *from, Node *to ) {
2806   if( from->is_Proj() ) {       // Put precedence edge on Proj's input
2807     assert( from->req() == 1 && (from->len() == 1 || from->in(1)==0), "no precedence edges on projections" );
2808     from = from->in(0);
2809   }
2810   if( from != to &&             // No cycles (for things like LD L0,[L0+4] )
2811       !edge_from_to( from, to ) ) // Avoid duplicate edge
2812     from->add_prec(to);
2813 }
2814 
2815 void Scheduling::anti_do_def( Block *b, Node *def, OptoReg::Name def_reg, int is_def ) {
2816   if( !OptoReg::is_valid(def_reg) ) // Ignore stores & control flow
2817     return;
2818 
2819   Node *pinch = _reg_node[def_reg]; // Get pinch point
2820   if ((pinch == NULL) || _cfg->get_block_for_node(pinch) != b || // No pinch-point yet?
2821       is_def ) {    // Check for a true def (not a kill)
2822     _reg_node.map(def_reg,def); // Record def/kill as the optimistic pinch-point
2823     return;
2824   }
2825 
2826   Node *kill = def;             // Rename 'def' to more descriptive 'kill'
2827   debug_only( def = (Node*)((intptr_t)0xdeadbeef); )
2828 
2829   // After some number of kills there _may_ be a later def
2830   Node *later_def = NULL;
2831 
2832   Compile* C = Compile::current();
2833 
2834   // Finding a kill requires a real pinch-point.
2835   // Check for not already having a pinch-point.
2836   // Pinch points are Op_Node's.
2837   if( pinch->Opcode() != Op_Node ) { // Or later-def/kill as pinch-point?
2838     later_def = pinch;            // Must be def/kill as optimistic pinch-point
2839     if ( _pinch_free_list.size() > 0) {
2840       pinch = _pinch_free_list.pop();
2841     } else {
2842       pinch = new Node(1); // Pinch point to-be
2843     }
2844     if (pinch->_idx >= _regalloc->node_regs_max_index()) {
2845       _cfg->C->record_method_not_compilable("too many D-U pinch points");
2846       return;
2847     }
2848     _cfg->map_node_to_block(pinch, b);      // Pretend it's valid in this block (lazy init)
2849     _reg_node.map(def_reg,pinch); // Record pinch-point
2850     //regalloc()->set_bad(pinch->_idx); // Already initialized this way.
2851     if( later_def->outcnt() == 0 || later_def->ideal_reg() == MachProjNode::fat_proj ) { // Distinguish def from kill
2852       pinch->init_req(0, C->top());     // set not NULL for the next call
2853       add_prec_edge_from_to(later_def,pinch); // Add edge from kill to pinch
2854       later_def = NULL;           // and no later def
2855     }
2856     pinch->set_req(0,later_def);  // Hook later def so we can find it
2857   } else {                        // Else have valid pinch point
2858     if( pinch->in(0) )            // If there is a later-def
2859       later_def = pinch->in(0);   // Get it
2860   }
2861 
2862   // Add output-dependence edge from later def to kill
2863   if( later_def )               // If there is some original def
2864     add_prec_edge_from_to(later_def,kill); // Add edge from def to kill
2865 
2866   // See if current kill is also a use, and so is forced to be the pinch-point.
2867   if( pinch->Opcode() == Op_Node ) {
2868     Node *uses = kill->is_Proj() ? kill->in(0) : kill;
2869     for( uint i=1; i<uses->req(); i++ ) {
2870       if( _regalloc->get_reg_first(uses->in(i)) == def_reg ||
2871           _regalloc->get_reg_second(uses->in(i)) == def_reg ) {
2872         // Yes, found a use/kill pinch-point
2873         pinch->set_req(0,NULL);  //
2874         pinch->replace_by(kill); // Move anti-dep edges up
2875         pinch = kill;
2876         _reg_node.map(def_reg,pinch);
2877         return;
2878       }
2879     }
2880   }
2881 
2882   // Add edge from kill to pinch-point
2883   add_prec_edge_from_to(kill,pinch);
2884 }
2885 
2886 void Scheduling::anti_do_use( Block *b, Node *use, OptoReg::Name use_reg ) {
2887   if( !OptoReg::is_valid(use_reg) ) // Ignore stores & control flow
2888     return;
2889   Node *pinch = _reg_node[use_reg]; // Get pinch point
2890   // Check for no later def_reg/kill in block
2891   if ((pinch != NULL) && _cfg->get_block_for_node(pinch) == b &&
2892       // Use has to be block-local as well
2893       _cfg->get_block_for_node(use) == b) {
2894     if( pinch->Opcode() == Op_Node && // Real pinch-point (not optimistic?)
2895         pinch->req() == 1 ) {   // pinch not yet in block?
2896       pinch->del_req(0);        // yank pointer to later-def, also set flag
2897       // Insert the pinch-point in the block just after the last use
2898       b->insert_node(pinch, b->find_node(use) + 1);
2899       _bb_end++;                // Increase size scheduled region in block
2900     }
2901 
2902     add_prec_edge_from_to(pinch,use);
2903   }
2904 }
2905 
2906 // We insert antidependences between the reads and following write of
2907 // allocated registers to prevent illegal code motion. Hopefully, the
2908 // number of added references should be fairly small, especially as we
2909 // are only adding references within the current basic block.
2910 void Scheduling::ComputeRegisterAntidependencies(Block *b) {
2911 
2912 #ifdef ASSERT
2913   verify_good_schedule(b,"before block local scheduling");
2914 #endif
2915 
2916   // A valid schedule, for each register independently, is an endless cycle
2917   // of: a def, then some uses (connected to the def by true dependencies),
2918   // then some kills (defs with no uses), finally the cycle repeats with a new
2919   // def.  The uses are allowed to float relative to each other, as are the
2920   // kills.  No use is allowed to slide past a kill (or def).  This requires
2921   // antidependencies between all uses of a single def and all kills that
2922   // follow, up to the next def.  More edges are redundant, because later defs
2923   // & kills are already serialized with true or antidependencies.  To keep
2924   // the edge count down, we add a 'pinch point' node if there's more than
2925   // one use or more than one kill/def.
2926 
2927   // We add dependencies in one bottom-up pass.
2928 
2929   // For each instruction we handle it's DEFs/KILLs, then it's USEs.
2930 
2931   // For each DEF/KILL, we check to see if there's a prior DEF/KILL for this
2932   // register.  If not, we record the DEF/KILL in _reg_node, the
2933   // register-to-def mapping.  If there is a prior DEF/KILL, we insert a
2934   // "pinch point", a new Node that's in the graph but not in the block.
2935   // We put edges from the prior and current DEF/KILLs to the pinch point.
2936   // We put the pinch point in _reg_node.  If there's already a pinch point
2937   // we merely add an edge from the current DEF/KILL to the pinch point.
2938 
2939   // After doing the DEF/KILLs, we handle USEs.  For each used register, we
2940   // put an edge from the pinch point to the USE.
2941 
2942   // To be expedient, the _reg_node array is pre-allocated for the whole
2943   // compilation.  _reg_node is lazily initialized; it either contains a NULL,
2944   // or a valid def/kill/pinch-point, or a leftover node from some prior
2945   // block.  Leftover node from some prior block is treated like a NULL (no
2946   // prior def, so no anti-dependence needed).  Valid def is distinguished by
2947   // it being in the current block.
2948   bool fat_proj_seen = false;
2949   uint last_safept = _bb_end-1;
2950   Node* end_node         = (_bb_end-1 >= _bb_start) ? b->get_node(last_safept) : NULL;
2951   Node* last_safept_node = end_node;
2952   for( uint i = _bb_end-1; i >= _bb_start; i-- ) {
2953     Node *n = b->get_node(i);
2954     int is_def = n->outcnt();   // def if some uses prior to adding precedence edges
2955     if( n->is_MachProj() && n->ideal_reg() == MachProjNode::fat_proj ) {
2956       // Fat-proj kills a slew of registers
2957       // This can add edges to 'n' and obscure whether or not it was a def,
2958       // hence the is_def flag.
2959       fat_proj_seen = true;
2960       RegMask rm = n->out_RegMask();// Make local copy
2961       while( rm.is_NotEmpty() ) {
2962         OptoReg::Name kill = rm.find_first_elem();
2963         rm.Remove(kill);
2964         anti_do_def( b, n, kill, is_def );
2965       }
2966     } else {
2967       // Get DEF'd registers the normal way
2968       anti_do_def( b, n, _regalloc->get_reg_first(n), is_def );
2969       anti_do_def( b, n, _regalloc->get_reg_second(n), is_def );
2970     }
2971 
2972     // Kill projections on a branch should appear to occur on the
2973     // branch, not afterwards, so grab the masks from the projections
2974     // and process them.
2975     if (n->is_MachBranch() || (n->is_Mach() && n->as_Mach()->ideal_Opcode() == Op_Jump)) {
2976       for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
2977         Node* use = n->fast_out(i);
2978         if (use->is_Proj()) {
2979           RegMask rm = use->out_RegMask();// Make local copy
2980           while( rm.is_NotEmpty() ) {
2981             OptoReg::Name kill = rm.find_first_elem();
2982             rm.Remove(kill);
2983             anti_do_def( b, n, kill, false );
2984           }
2985         }
2986       }
2987     }
2988 
2989     // Check each register used by this instruction for a following DEF/KILL
2990     // that must occur afterward and requires an anti-dependence edge.
2991     for( uint j=0; j<n->req(); j++ ) {
2992       Node *def = n->in(j);
2993       if( def ) {
2994         assert( !def->is_MachProj() || def->ideal_reg() != MachProjNode::fat_proj, "" );
2995         anti_do_use( b, n, _regalloc->get_reg_first(def) );
2996         anti_do_use( b, n, _regalloc->get_reg_second(def) );
2997       }
2998     }
2999     // Do not allow defs of new derived values to float above GC
3000     // points unless the base is definitely available at the GC point.
3001 
3002     Node *m = b->get_node(i);
3003 
3004     // Add precedence edge from following safepoint to use of derived pointer
3005     if( last_safept_node != end_node &&
3006         m != last_safept_node) {
3007       for (uint k = 1; k < m->req(); k++) {
3008         const Type *t = m->in(k)->bottom_type();
3009         if( t->isa_oop_ptr() &&
3010             t->is_ptr()->offset() != 0 ) {
3011           last_safept_node->add_prec( m );
3012           break;
3013         }
3014       }
3015     }
3016 
3017     if( n->jvms() ) {           // Precedence edge from derived to safept
3018       // Check if last_safept_node was moved by pinch-point insertion in anti_do_use()
3019       if( b->get_node(last_safept) != last_safept_node ) {
3020         last_safept = b->find_node(last_safept_node);
3021       }
3022       for( uint j=last_safept; j > i; j-- ) {
3023         Node *mach = b->get_node(j);
3024         if( mach->is_Mach() && mach->as_Mach()->ideal_Opcode() == Op_AddP )
3025           mach->add_prec( n );
3026       }
3027       last_safept = i;
3028       last_safept_node = m;
3029     }
3030   }
3031 
3032   if (fat_proj_seen) {
3033     // Garbage collect pinch nodes that were not consumed.
3034     // They are usually created by a fat kill MachProj for a call.
3035     garbage_collect_pinch_nodes();
3036   }
3037 }
3038 
3039 // Garbage collect pinch nodes for reuse by other blocks.
3040 //
3041 // The block scheduler's insertion of anti-dependence
3042 // edges creates many pinch nodes when the block contains
3043 // 2 or more Calls.  A pinch node is used to prevent a
3044 // combinatorial explosion of edges.  If a set of kills for a
3045 // register is anti-dependent on a set of uses (or defs), rather
3046 // than adding an edge in the graph between each pair of kill
3047 // and use (or def), a pinch is inserted between them:
3048 //
3049 //            use1   use2  use3
3050 //                \   |   /
3051 //                 \  |  /
3052 //                  pinch
3053 //                 /  |  \
3054 //                /   |   \
3055 //            kill1 kill2 kill3
3056 //
3057 // One pinch node is created per register killed when
3058 // the second call is encountered during a backwards pass
3059 // over the block.  Most of these pinch nodes are never
3060 // wired into the graph because the register is never
3061 // used or def'ed in the block.
3062 //
3063 void Scheduling::garbage_collect_pinch_nodes() {
3064 #ifndef PRODUCT
3065   if (_cfg->C->trace_opto_output()) tty->print("Reclaimed pinch nodes:");
3066 #endif
3067   int trace_cnt = 0;
3068   for (uint k = 0; k < _reg_node.Size(); k++) {
3069     Node* pinch = _reg_node[k];
3070     if ((pinch != NULL) && pinch->Opcode() == Op_Node &&
3071         // no predecence input edges
3072         (pinch->req() == pinch->len() || pinch->in(pinch->req()) == NULL) ) {
3073       cleanup_pinch(pinch);
3074       _pinch_free_list.push(pinch);
3075       _reg_node.map(k, NULL);
3076 #ifndef PRODUCT
3077       if (_cfg->C->trace_opto_output()) {
3078         trace_cnt++;
3079         if (trace_cnt > 40) {
3080           tty->print("\n");
3081           trace_cnt = 0;
3082         }
3083         tty->print(" %d", pinch->_idx);
3084       }
3085 #endif
3086     }
3087   }
3088 #ifndef PRODUCT
3089   if (_cfg->C->trace_opto_output()) tty->print("\n");
3090 #endif
3091 }
3092 
3093 // Clean up a pinch node for reuse.
3094 void Scheduling::cleanup_pinch( Node *pinch ) {
3095   assert (pinch && pinch->Opcode() == Op_Node && pinch->req() == 1, "just checking");
3096 
3097   for (DUIterator_Last imin, i = pinch->last_outs(imin); i >= imin; ) {
3098     Node* use = pinch->last_out(i);
3099     uint uses_found = 0;
3100     for (uint j = use->req(); j < use->len(); j++) {
3101       if (use->in(j) == pinch) {
3102         use->rm_prec(j);
3103         uses_found++;
3104       }
3105     }
3106     assert(uses_found > 0, "must be a precedence edge");
3107     i -= uses_found;    // we deleted 1 or more copies of this edge
3108   }
3109   // May have a later_def entry
3110   pinch->set_req(0, NULL);
3111 }
3112 
3113 #ifndef PRODUCT
3114 
3115 void Scheduling::dump_available() const {
3116   tty->print("#Availist  ");
3117   for (uint i = 0; i < _available.size(); i++)
3118     tty->print(" N%d/l%d", _available[i]->_idx,_current_latency[_available[i]->_idx]);
3119   tty->cr();
3120 }
3121 
3122 // Print Scheduling Statistics
3123 void Scheduling::print_statistics() {
3124   // Print the size added by nops for bundling
3125   tty->print("Nops added %d bytes to total of %d bytes",
3126              _total_nop_size, _total_method_size);
3127   if (_total_method_size > 0)
3128     tty->print(", for %.2f%%",
3129                ((double)_total_nop_size) / ((double) _total_method_size) * 100.0);
3130   tty->print("\n");
3131 
3132   // Print the number of branch shadows filled
3133   if (Pipeline::_branch_has_delay_slot) {
3134     tty->print("Of %d branches, %d had unconditional delay slots filled",
3135                _total_branches, _total_unconditional_delays);
3136     if (_total_branches > 0)
3137       tty->print(", for %.2f%%",
3138                  ((double)_total_unconditional_delays) / ((double)_total_branches) * 100.0);
3139     tty->print("\n");
3140   }
3141 
3142   uint total_instructions = 0, total_bundles = 0;
3143 
3144   for (uint i = 1; i <= Pipeline::_max_instrs_per_cycle; i++) {
3145     uint bundle_count   = _total_instructions_per_bundle[i];
3146     total_instructions += bundle_count * i;
3147     total_bundles      += bundle_count;
3148   }
3149 
3150   if (total_bundles > 0)
3151     tty->print("Average ILP (excluding nops) is %.2f\n",
3152                ((double)total_instructions) / ((double)total_bundles));
3153 }
3154 #endif
3155 
3156 //-----------------------init_scratch_buffer_blob------------------------------
3157 // Construct a temporary BufferBlob and cache it for this compile.
3158 void PhaseOutput::init_scratch_buffer_blob(int const_size) {
3159   // If there is already a scratch buffer blob allocated and the
3160   // constant section is big enough, use it.  Otherwise free the
3161   // current and allocate a new one.
3162   BufferBlob* blob = scratch_buffer_blob();
3163   if ((blob != NULL) && (const_size <= _scratch_const_size)) {
3164     // Use the current blob.
3165   } else {
3166     if (blob != NULL) {
3167       BufferBlob::free(blob);
3168     }
3169 
3170     ResourceMark rm;
3171     _scratch_const_size = const_size;
3172     int size = C2Compiler::initial_code_buffer_size(const_size);
3173     blob = BufferBlob::create("Compile::scratch_buffer", size);
3174     // Record the buffer blob for next time.
3175     set_scratch_buffer_blob(blob);
3176     // Have we run out of code space?
3177     if (scratch_buffer_blob() == NULL) {
3178       // Let CompilerBroker disable further compilations.
3179       C->record_failure("Not enough space for scratch buffer in CodeCache");
3180       return;
3181     }
3182   }
3183 
3184   // Initialize the relocation buffers
3185   relocInfo* locs_buf = (relocInfo*) blob->content_end() - MAX_locs_size;
3186   set_scratch_locs_memory(locs_buf);
3187 }
3188 
3189 
3190 //-----------------------scratch_emit_size-------------------------------------
3191 // Helper function that computes size by emitting code
3192 uint PhaseOutput::scratch_emit_size(const Node* n) {
3193   // Start scratch_emit_size section.
3194   set_in_scratch_emit_size(true);
3195 
3196   // Emit into a trash buffer and count bytes emitted.
3197   // This is a pretty expensive way to compute a size,
3198   // but it works well enough if seldom used.
3199   // All common fixed-size instructions are given a size
3200   // method by the AD file.
3201   // Note that the scratch buffer blob and locs memory are
3202   // allocated at the beginning of the compile task, and
3203   // may be shared by several calls to scratch_emit_size.
3204   // The allocation of the scratch buffer blob is particularly
3205   // expensive, since it has to grab the code cache lock.
3206   BufferBlob* blob = this->scratch_buffer_blob();
3207   assert(blob != NULL, "Initialize BufferBlob at start");
3208   assert(blob->size() > MAX_inst_size, "sanity");
3209   relocInfo* locs_buf = scratch_locs_memory();
3210   address blob_begin = blob->content_begin();
3211   address blob_end   = (address)locs_buf;
3212   assert(blob->contains(blob_end), "sanity");
3213   CodeBuffer buf(blob_begin, blob_end - blob_begin);
3214   buf.initialize_consts_size(_scratch_const_size);
3215   buf.initialize_stubs_size(MAX_stubs_size);
3216   assert(locs_buf != NULL, "sanity");
3217   int lsize = MAX_locs_size / 3;
3218   buf.consts()->initialize_shared_locs(&locs_buf[lsize * 0], lsize);
3219   buf.insts()->initialize_shared_locs( &locs_buf[lsize * 1], lsize);
3220   buf.stubs()->initialize_shared_locs( &locs_buf[lsize * 2], lsize);
3221   // Mark as scratch buffer.
3222   buf.consts()->set_scratch_emit();
3223   buf.insts()->set_scratch_emit();
3224   buf.stubs()->set_scratch_emit();
3225 
3226   // Do the emission.
3227 
3228   Label fakeL; // Fake label for branch instructions.
3229   Label*   saveL = NULL;
3230   uint save_bnum = 0;
3231   bool is_branch = n->is_MachBranch();
3232   if (is_branch) {
3233     MacroAssembler masm(&buf);
3234     masm.bind(fakeL);
3235     n->as_MachBranch()->save_label(&saveL, &save_bnum);
3236     n->as_MachBranch()->label_set(&fakeL, 0);
3237   }
3238   n->emit(buf, C->regalloc());
3239 
3240   // Emitting into the scratch buffer should not fail
3241   assert (!C->failing(), "Must not have pending failure. Reason is: %s", C->failure_reason());
3242 
3243   if (is_branch) // Restore label.
3244     n->as_MachBranch()->label_set(saveL, save_bnum);
3245 
3246   // End scratch_emit_size section.
3247   set_in_scratch_emit_size(false);
3248 
3249   return buf.insts_size();
3250 }
3251 
3252 void PhaseOutput::install() {
3253   if (C->stub_function() != NULL) {
3254     install_stub(C->stub_name(),
3255                  C->save_argument_registers());
3256   } else {
3257     install_code(C->method(),
3258                  C->entry_bci(),
3259                  CompileBroker::compiler2(),
3260                  C->has_unsafe_access(),
3261                  SharedRuntime::is_wide_vector(C->max_vector_size()),
3262                  C->rtm_state());
3263   }
3264 }
3265 
3266 void PhaseOutput::install_code(ciMethod*         target,
3267                                int               entry_bci,
3268                                AbstractCompiler* compiler,
3269                                bool              has_unsafe_access,
3270                                bool              has_wide_vectors,
3271                                RTMState          rtm_state) {
3272   // Check if we want to skip execution of all compiled code.
3273   {
3274 #ifndef PRODUCT
3275     if (OptoNoExecute) {
3276       C->record_method_not_compilable("+OptoNoExecute");  // Flag as failed
3277       return;
3278     }
3279 #endif
3280     Compile::TracePhase tp("install_code", &timers[_t_registerMethod]);
3281 
3282     if (C->is_osr_compilation()) {
3283       _code_offsets.set_value(CodeOffsets::Verified_Entry, 0);
3284       _code_offsets.set_value(CodeOffsets::OSR_Entry, _first_block_size);
3285     } else {
3286       _code_offsets.set_value(CodeOffsets::Verified_Entry, _first_block_size);
3287       _code_offsets.set_value(CodeOffsets::OSR_Entry, 0);
3288     }
3289 
3290     C->env()->register_method(target,
3291                                      entry_bci,
3292                                      &_code_offsets,
3293                                      _orig_pc_slot_offset_in_bytes,
3294                                      code_buffer(),
3295                                      frame_size_in_words(),
3296                                      oop_map_set(),
3297                                      &_handler_table,
3298                                      inc_table(),
3299                                      compiler,
3300                                      has_unsafe_access,
3301                                      SharedRuntime::is_wide_vector(C->max_vector_size()),
3302                                      C->rtm_state());
3303 
3304     if (C->log() != NULL) { // Print code cache state into compiler log
3305       C->log()->code_cache_state();
3306     }
3307   }
3308 }
3309 void PhaseOutput::install_stub(const char* stub_name,
3310                                bool        caller_must_gc_arguments) {
3311   // Entry point will be accessed using stub_entry_point();
3312   if (code_buffer() == NULL) {
3313     Matcher::soft_match_failure();
3314   } else {
3315     if (PrintAssembly && (WizardMode || Verbose))
3316       tty->print_cr("### Stub::%s", stub_name);
3317 
3318     if (!C->failing()) {
3319       assert(C->fixed_slots() == 0, "no fixed slots used for runtime stubs");
3320 
3321       // Make the NMethod
3322       // For now we mark the frame as never safe for profile stackwalking
3323       RuntimeStub *rs = RuntimeStub::new_runtime_stub(stub_name,
3324                                                       code_buffer(),
3325                                                       CodeOffsets::frame_never_safe,
3326                                                       // _code_offsets.value(CodeOffsets::Frame_Complete),
3327                                                       frame_size_in_words(),
3328                                                       oop_map_set(),
3329                                                       caller_must_gc_arguments);
3330       assert(rs != NULL && rs->is_runtime_stub(), "sanity check");
3331 
3332       C->set_stub_entry_point(rs->entry_point());
3333     }
3334   }
3335 }
3336 
3337 // Support for bundling info
3338 Bundle* PhaseOutput::node_bundling(const Node *n) {
3339   assert(valid_bundle_info(n), "oob");
3340   return &_node_bundling_base[n->_idx];
3341 }
3342 
3343 bool PhaseOutput::valid_bundle_info(const Node *n) {
3344   return (_node_bundling_limit > n->_idx);
3345 }
3346 
3347 //------------------------------frame_size_in_words-----------------------------
3348 // frame_slots in units of words
3349 int PhaseOutput::frame_size_in_words() const {
3350   // shift is 0 in LP32 and 1 in LP64
3351   const int shift = (LogBytesPerWord - LogBytesPerInt);
3352   int words = _frame_slots >> shift;
3353   assert( words << shift == _frame_slots, "frame size must be properly aligned in LP64" );
3354   return words;
3355 }
3356 
3357 // To bang the stack of this compiled method we use the stack size
3358 // that the interpreter would need in case of a deoptimization. This
3359 // removes the need to bang the stack in the deoptimization blob which
3360 // in turn simplifies stack overflow handling.
3361 int PhaseOutput::bang_size_in_bytes() const {
3362   return MAX2(frame_size_in_bytes() + os::extra_bang_size_in_bytes(), C->interpreter_frame_size());
3363 }
3364 
3365 //------------------------------dump_asm---------------------------------------
3366 // Dump formatted assembly
3367 #if defined(SUPPORT_OPTO_ASSEMBLY)
3368 void PhaseOutput::dump_asm_on(outputStream* st, int* pcs, uint pc_limit) {
3369 
3370   int pc_digits = 3; // #chars required for pc
3371   int sb_chars  = 3; // #chars for "start bundle" indicator
3372   int tab_size  = 8;
3373   if (pcs != NULL) {
3374     int max_pc = 0;
3375     for (uint i = 0; i < pc_limit; i++) {
3376       max_pc = (max_pc < pcs[i]) ? pcs[i] : max_pc;
3377     }
3378     pc_digits  = ((max_pc < 4096) ? 3 : ((max_pc < 65536) ? 4 : ((max_pc < 65536*256) ? 6 : 8))); // #chars required for pc
3379   }
3380   int prefix_len = ((pc_digits + sb_chars + tab_size - 1)/tab_size)*tab_size;
3381 
3382   bool cut_short = false;
3383   st->print_cr("#");
3384   st->print("#  ");  C->tf()->dump_on(st);  st->cr();
3385   st->print_cr("#");
3386 
3387   // For all blocks
3388   int pc = 0x0;                 // Program counter
3389   char starts_bundle = ' ';
3390   C->regalloc()->dump_frame();
3391 
3392   Node *n = NULL;
3393   for (uint i = 0; i < C->cfg()->number_of_blocks(); i++) {
3394     if (VMThread::should_terminate()) {
3395       cut_short = true;
3396       break;
3397     }
3398     Block* block = C->cfg()->get_block(i);
3399     if (block->is_connector() && !Verbose) {
3400       continue;
3401     }
3402     n = block->head();
3403     if ((pcs != NULL) && (n->_idx < pc_limit)) {
3404       pc = pcs[n->_idx];
3405       st->print("%*.*x", pc_digits, pc_digits, pc);
3406     }
3407     st->fill_to(prefix_len);
3408     block->dump_head(C->cfg(), st);
3409     if (block->is_connector()) {
3410       st->fill_to(prefix_len);
3411       st->print_cr("# Empty connector block");
3412     } else if (block->num_preds() == 2 && block->pred(1)->is_CatchProj() && block->pred(1)->as_CatchProj()->_con == CatchProjNode::fall_through_index) {
3413       st->fill_to(prefix_len);
3414       st->print_cr("# Block is sole successor of call");
3415     }
3416 
3417     // For all instructions
3418     Node *delay = NULL;
3419     for (uint j = 0; j < block->number_of_nodes(); j++) {
3420       if (VMThread::should_terminate()) {
3421         cut_short = true;
3422         break;
3423       }
3424       n = block->get_node(j);
3425       if (valid_bundle_info(n)) {
3426         Bundle* bundle = node_bundling(n);
3427         if (bundle->used_in_unconditional_delay()) {
3428           delay = n;
3429           continue;
3430         }
3431         if (bundle->starts_bundle()) {
3432           starts_bundle = '+';
3433         }
3434       }
3435 
3436       if (WizardMode) {
3437         n->dump();
3438       }
3439 
3440       if( !n->is_Region() &&    // Dont print in the Assembly
3441           !n->is_Phi() &&       // a few noisely useless nodes
3442           !n->is_Proj() &&
3443           !n->is_MachTemp() &&
3444           !n->is_SafePointScalarObject() &&
3445           !n->is_Catch() &&     // Would be nice to print exception table targets
3446           !n->is_MergeMem() &&  // Not very interesting
3447           !n->is_top() &&       // Debug info table constants
3448           !(n->is_Con() && !n->is_Mach())// Debug info table constants
3449           ) {
3450         if ((pcs != NULL) && (n->_idx < pc_limit)) {
3451           pc = pcs[n->_idx];
3452           st->print("%*.*x", pc_digits, pc_digits, pc);
3453         } else {
3454           st->fill_to(pc_digits);
3455         }
3456         st->print(" %c ", starts_bundle);
3457         starts_bundle = ' ';
3458         st->fill_to(prefix_len);
3459         n->format(C->regalloc(), st);
3460         st->cr();
3461       }
3462 
3463       // If we have an instruction with a delay slot, and have seen a delay,
3464       // then back up and print it
3465       if (valid_bundle_info(n) && node_bundling(n)->use_unconditional_delay()) {
3466         // Coverity finding - Explicit null dereferenced.
3467         guarantee(delay != NULL, "no unconditional delay instruction");
3468         if (WizardMode) delay->dump();
3469 
3470         if (node_bundling(delay)->starts_bundle())
3471           starts_bundle = '+';
3472         if ((pcs != NULL) && (n->_idx < pc_limit)) {
3473           pc = pcs[n->_idx];
3474           st->print("%*.*x", pc_digits, pc_digits, pc);
3475         } else {
3476           st->fill_to(pc_digits);
3477         }
3478         st->print(" %c ", starts_bundle);
3479         starts_bundle = ' ';
3480         st->fill_to(prefix_len);
3481         delay->format(C->regalloc(), st);
3482         st->cr();
3483         delay = NULL;
3484       }
3485 
3486       // Dump the exception table as well
3487       if( n->is_Catch() && (Verbose || WizardMode) ) {
3488         // Print the exception table for this offset
3489         _handler_table.print_subtable_for(pc);
3490       }
3491       st->bol(); // Make sure we start on a new line
3492     }
3493     st->cr(); // one empty line between blocks
3494     assert(cut_short || delay == NULL, "no unconditional delay branch");
3495   } // End of per-block dump
3496 
3497   if (cut_short)  st->print_cr("*** disassembly is cut short ***");
3498 }
3499 #endif
3500 
3501 #ifndef PRODUCT
3502 void PhaseOutput::print_statistics() {
3503   Scheduling::print_statistics();
3504 }
3505 #endif