1 /*
   2  * Copyright (c) 1997, 2020, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "jvm.h"
  27 #include "aot/aotLoader.hpp"
  28 #include "classfile/classLoader.hpp"
  29 #include "classfile/javaClasses.hpp"
  30 #include "classfile/moduleEntry.hpp"
  31 #include "classfile/systemDictionary.hpp"
  32 #include "classfile/vmSymbols.hpp"
  33 #include "code/codeCache.hpp"
  34 #include "code/scopeDesc.hpp"
  35 #include "compiler/compileBroker.hpp"
  36 #include "compiler/compileTask.hpp"
  37 #include "gc/shared/barrierSet.hpp"
  38 #include "gc/shared/gcId.hpp"
  39 #include "gc/shared/gcLocker.inline.hpp"
  40 #include "gc/shared/workgroup.hpp"
  41 #include "interpreter/interpreter.hpp"
  42 #include "interpreter/linkResolver.hpp"
  43 #include "interpreter/oopMapCache.hpp"
  44 #include "jfr/jfrEvents.hpp"
  45 #include "jvmtifiles/jvmtiEnv.hpp"
  46 #include "logging/log.hpp"
  47 #include "logging/logConfiguration.hpp"
  48 #include "logging/logStream.hpp"
  49 #include "memory/allocation.inline.hpp"
  50 #include "memory/iterator.hpp"
  51 #include "memory/metaspaceShared.hpp"
  52 #include "memory/oopFactory.hpp"
  53 #include "memory/resourceArea.hpp"
  54 #include "memory/universe.hpp"
  55 #include "oops/access.inline.hpp"
  56 #include "oops/instanceKlass.hpp"
  57 #include "oops/objArrayOop.hpp"
  58 #include "oops/oop.inline.hpp"
  59 #include "oops/symbol.hpp"
  60 #include "oops/typeArrayOop.inline.hpp"
  61 #include "oops/verifyOopClosure.hpp"
  62 #include "prims/jvm_misc.hpp"
  63 #include "prims/jvmtiExport.hpp"
  64 #include "prims/jvmtiThreadState.hpp"
  65 #include "runtime/arguments.hpp"
  66 #include "runtime/atomic.hpp"
  67 #include "runtime/biasedLocking.hpp"
  68 #include "runtime/fieldDescriptor.inline.hpp"
  69 #include "runtime/flags/jvmFlagConstraintList.hpp"
  70 #include "runtime/flags/jvmFlagRangeList.hpp"
  71 #include "runtime/deoptimization.hpp"
  72 #include "runtime/frame.inline.hpp"
  73 #include "runtime/handles.inline.hpp"
  74 #include "runtime/handshake.hpp"
  75 #include "runtime/init.hpp"
  76 #include "runtime/interfaceSupport.inline.hpp"
  77 #include "runtime/java.hpp"
  78 #include "runtime/javaCalls.hpp"
  79 #include "runtime/jniHandles.inline.hpp"
  80 #include "runtime/jniPeriodicChecker.hpp"
  81 #include "runtime/memprofiler.hpp"
  82 #include "runtime/mutexLocker.hpp"
  83 #include "runtime/objectMonitor.hpp"
  84 #include "runtime/orderAccess.hpp"
  85 #include "runtime/osThread.hpp"
  86 #include "runtime/prefetch.inline.hpp"
  87 #include "runtime/safepoint.hpp"
  88 #include "runtime/safepointMechanism.inline.hpp"
  89 #include "runtime/safepointVerifiers.hpp"
  90 #include "runtime/serviceThread.hpp"
  91 #include "runtime/sharedRuntime.hpp"
  92 #include "runtime/statSampler.hpp"
  93 #include "runtime/stubRoutines.hpp"
  94 #include "runtime/sweeper.hpp"
  95 #include "runtime/task.hpp"
  96 #include "runtime/thread.inline.hpp"
  97 #include "runtime/threadCritical.hpp"
  98 #include "runtime/threadSMR.inline.hpp"
  99 #include "runtime/threadStatisticalInfo.hpp"
 100 #include "runtime/timer.hpp"
 101 #include "runtime/timerTrace.hpp"
 102 #include "runtime/vframe.inline.hpp"
 103 #include "runtime/vframeArray.hpp"
 104 #include "runtime/vframe_hp.hpp"
 105 #include "runtime/vmThread.hpp"
 106 #include "runtime/vmOperations.hpp"
 107 #include "runtime/vm_version.hpp"
 108 #include "services/attachListener.hpp"
 109 #include "services/management.hpp"
 110 #include "services/memTracker.hpp"
 111 #include "services/threadService.hpp"
 112 #include "utilities/align.hpp"
 113 #include "utilities/copy.hpp"
 114 #include "utilities/defaultStream.hpp"
 115 #include "utilities/dtrace.hpp"
 116 #include "utilities/events.hpp"
 117 #include "utilities/macros.hpp"
 118 #include "utilities/preserveException.hpp"
 119 #include "utilities/singleWriterSynchronizer.hpp"
 120 #include "utilities/vmError.hpp"
 121 #if INCLUDE_JVMCI
 122 #include "jvmci/jvmci.hpp"
 123 #include "jvmci/jvmciEnv.hpp"
 124 #endif
 125 #ifdef COMPILER1
 126 #include "c1/c1_Compiler.hpp"
 127 #endif
 128 #ifdef COMPILER2
 129 #include "opto/c2compiler.hpp"
 130 #include "opto/idealGraphPrinter.hpp"
 131 #endif
 132 #if INCLUDE_RTM_OPT
 133 #include "runtime/rtmLocking.hpp"
 134 #endif
 135 #if INCLUDE_JFR
 136 #include "jfr/jfr.hpp"
 137 #endif
 138 
 139 // Initialization after module runtime initialization
 140 void universe_post_module_init();  // must happen after call_initPhase2
 141 
 142 #ifdef DTRACE_ENABLED
 143 
 144 // Only bother with this argument setup if dtrace is available
 145 
 146   #define HOTSPOT_THREAD_PROBE_start HOTSPOT_THREAD_START
 147   #define HOTSPOT_THREAD_PROBE_stop HOTSPOT_THREAD_STOP
 148 
 149   #define DTRACE_THREAD_PROBE(probe, javathread)                           \
 150     {                                                                      \
 151       ResourceMark rm(this);                                               \
 152       int len = 0;                                                         \
 153       const char* name = (javathread)->get_thread_name();                  \
 154       len = strlen(name);                                                  \
 155       HOTSPOT_THREAD_PROBE_##probe(/* probe = start, stop */               \
 156         (char *) name, len,                                                \
 157         java_lang_Thread::thread_id((javathread)->threadObj()),            \
 158         (uintptr_t) (javathread)->osthread()->thread_id(),                 \
 159         java_lang_Thread::is_daemon((javathread)->threadObj()));           \
 160     }
 161 
 162 #else //  ndef DTRACE_ENABLED
 163 
 164   #define DTRACE_THREAD_PROBE(probe, javathread)
 165 
 166 #endif // ndef DTRACE_ENABLED
 167 
 168 #ifndef USE_LIBRARY_BASED_TLS_ONLY
 169 // Current thread is maintained as a thread-local variable
 170 THREAD_LOCAL Thread* Thread::_thr_current = NULL;
 171 #endif
 172 
 173 // ======= Thread ========
 174 // Support for forcing alignment of thread objects for biased locking
 175 void* Thread::allocate(size_t size, bool throw_excpt, MEMFLAGS flags) {
 176   if (UseBiasedLocking) {
 177     const size_t alignment = markWord::biased_lock_alignment;
 178     size_t aligned_size = size + (alignment - sizeof(intptr_t));
 179     void* real_malloc_addr = throw_excpt? AllocateHeap(aligned_size, flags, CURRENT_PC)
 180                                           : AllocateHeap(aligned_size, flags, CURRENT_PC,
 181                                                          AllocFailStrategy::RETURN_NULL);
 182     void* aligned_addr     = align_up(real_malloc_addr, alignment);
 183     assert(((uintptr_t) aligned_addr + (uintptr_t) size) <=
 184            ((uintptr_t) real_malloc_addr + (uintptr_t) aligned_size),
 185            "JavaThread alignment code overflowed allocated storage");
 186     if (aligned_addr != real_malloc_addr) {
 187       log_info(biasedlocking)("Aligned thread " INTPTR_FORMAT " to " INTPTR_FORMAT,
 188                               p2i(real_malloc_addr),
 189                               p2i(aligned_addr));
 190     }
 191     ((Thread*) aligned_addr)->_real_malloc_address = real_malloc_addr;
 192     return aligned_addr;
 193   } else {
 194     return throw_excpt? AllocateHeap(size, flags, CURRENT_PC)
 195                        : AllocateHeap(size, flags, CURRENT_PC, AllocFailStrategy::RETURN_NULL);
 196   }
 197 }
 198 
 199 void Thread::operator delete(void* p) {
 200   if (UseBiasedLocking) {
 201     FreeHeap(((Thread*) p)->_real_malloc_address);
 202   } else {
 203     FreeHeap(p);
 204   }
 205 }
 206 
 207 void JavaThread::smr_delete() {
 208   if (_on_thread_list) {
 209     ThreadsSMRSupport::smr_delete(this);
 210   } else {
 211     delete this;
 212   }
 213 }
 214 
 215 // Base class for all threads: VMThread, WatcherThread, ConcurrentMarkSweepThread,
 216 // JavaThread
 217 
 218 DEBUG_ONLY(Thread* Thread::_starting_thread = NULL;)
 219 
 220 Thread::Thread() {
 221 
 222   DEBUG_ONLY(_run_state = PRE_CALL_RUN;)
 223 
 224   // stack and get_thread
 225   set_stack_base(NULL);
 226   set_stack_size(0);
 227   set_lgrp_id(-1);
 228   DEBUG_ONLY(clear_suspendible_thread();)
 229 
 230   // allocated data structures
 231   set_osthread(NULL);
 232   set_resource_area(new (mtThread)ResourceArea());
 233   DEBUG_ONLY(_current_resource_mark = NULL;)
 234   set_handle_area(new (mtThread) HandleArea(NULL));
 235   set_metadata_handles(new (ResourceObj::C_HEAP, mtClass) GrowableArray<Metadata*>(30, true));
 236   set_active_handles(NULL);
 237   set_free_handle_block(NULL);
 238   set_last_handle_mark(NULL);
 239   DEBUG_ONLY(_missed_ic_stub_refill_verifier = NULL);
 240 
 241   // Initial value of zero ==> never claimed.
 242   _threads_do_token = 0;
 243   _threads_hazard_ptr = NULL;
 244   _threads_list_ptr = NULL;
 245   _nested_threads_hazard_ptr_cnt = 0;
 246   _rcu_counter = 0;
 247 
 248   // the handle mark links itself to last_handle_mark
 249   new HandleMark(this);
 250 
 251   // plain initialization
 252   debug_only(_owned_locks = NULL;)
 253   NOT_PRODUCT(_no_safepoint_count = 0;)
 254   NOT_PRODUCT(_skip_gcalot = false;)
 255   _jvmti_env_iteration_count = 0;
 256   set_allocated_bytes(0);
 257   _vm_operation_started_count = 0;
 258   _vm_operation_completed_count = 0;
 259   _current_pending_monitor = NULL;
 260   _current_pending_monitor_is_from_java = true;
 261   _current_waiting_monitor = NULL;
 262   _current_pending_raw_monitor = NULL;
 263   _num_nested_signal = 0;
 264   om_free_list = NULL;
 265   om_free_count = 0;
 266   om_free_provision = 32;
 267   om_in_use_list = NULL;
 268   om_in_use_count = 0;
 269 
 270 #ifdef ASSERT
 271   _visited_for_critical_count = false;
 272 #endif
 273 
 274   _SR_lock = new Monitor(Mutex::suspend_resume, "SR_lock", true,
 275                          Monitor::_safepoint_check_sometimes);
 276   _suspend_flags = 0;
 277 
 278   // thread-specific hashCode stream generator state - Marsaglia shift-xor form
 279   _hashStateX = os::random();
 280   _hashStateY = 842502087;
 281   _hashStateZ = 0x8767;    // (int)(3579807591LL & 0xffff) ;
 282   _hashStateW = 273326509;
 283 
 284   _OnTrap   = 0;
 285   _Stalled  = 0;
 286   _TypeTag  = 0x2BAD;
 287 
 288   // Many of the following fields are effectively final - immutable
 289   // Note that nascent threads can't use the Native Monitor-Mutex
 290   // construct until the _MutexEvent is initialized ...
 291   // CONSIDER: instead of using a fixed set of purpose-dedicated ParkEvents
 292   // we might instead use a stack of ParkEvents that we could provision on-demand.
 293   // The stack would act as a cache to avoid calls to ParkEvent::Allocate()
 294   // and ::Release()
 295   _ParkEvent   = ParkEvent::Allocate(this);
 296   _MuxEvent    = ParkEvent::Allocate(this);
 297 
 298 #ifdef CHECK_UNHANDLED_OOPS
 299   if (CheckUnhandledOops) {
 300     _unhandled_oops = new UnhandledOops(this);
 301   }
 302 #endif // CHECK_UNHANDLED_OOPS
 303 #ifdef ASSERT
 304   if (UseBiasedLocking) {
 305     assert(is_aligned(this, markWord::biased_lock_alignment), "forced alignment of thread object failed");
 306     assert(this == _real_malloc_address ||
 307            this == align_up(_real_malloc_address, markWord::biased_lock_alignment),
 308            "bug in forced alignment of thread objects");
 309   }
 310 #endif // ASSERT
 311 
 312   // Notify the barrier set that a thread is being created. The initial
 313   // thread is created before the barrier set is available.  The call to
 314   // BarrierSet::on_thread_create() for this thread is therefore deferred
 315   // to BarrierSet::set_barrier_set().
 316   BarrierSet* const barrier_set = BarrierSet::barrier_set();
 317   if (barrier_set != NULL) {
 318     barrier_set->on_thread_create(this);
 319   } else {
 320     // Only the main thread should be created before the barrier set
 321     // and that happens just before Thread::current is set. No other thread
 322     // can attach as the VM is not created yet, so they can't execute this code.
 323     // If the main thread creates other threads before the barrier set that is an error.
 324     assert(Thread::current_or_null() == NULL, "creating thread before barrier set");
 325   }
 326 }
 327 
 328 void Thread::initialize_thread_current() {
 329 #ifndef USE_LIBRARY_BASED_TLS_ONLY
 330   assert(_thr_current == NULL, "Thread::current already initialized");
 331   _thr_current = this;
 332 #endif
 333   assert(ThreadLocalStorage::thread() == NULL, "ThreadLocalStorage::thread already initialized");
 334   ThreadLocalStorage::set_thread(this);
 335   assert(Thread::current() == ThreadLocalStorage::thread(), "TLS mismatch!");
 336 }
 337 
 338 void Thread::clear_thread_current() {
 339   assert(Thread::current() == ThreadLocalStorage::thread(), "TLS mismatch!");
 340 #ifndef USE_LIBRARY_BASED_TLS_ONLY
 341   _thr_current = NULL;
 342 #endif
 343   ThreadLocalStorage::set_thread(NULL);
 344 }
 345 
 346 void Thread::record_stack_base_and_size() {
 347   // Note: at this point, Thread object is not yet initialized. Do not rely on
 348   // any members being initialized. Do not rely on Thread::current() being set.
 349   // If possible, refrain from doing anything which may crash or assert since
 350   // quite probably those crash dumps will be useless.
 351   set_stack_base(os::current_stack_base());
 352   set_stack_size(os::current_stack_size());
 353 
 354   // Set stack limits after thread is initialized.
 355   if (is_Java_thread()) {
 356     ((JavaThread*) this)->set_stack_overflow_limit();
 357     ((JavaThread*) this)->set_reserved_stack_activation(stack_base());
 358   }
 359 }
 360 
 361 #if INCLUDE_NMT
 362 void Thread::register_thread_stack_with_NMT() {
 363   MemTracker::record_thread_stack(stack_end(), stack_size());
 364 }
 365 #endif // INCLUDE_NMT
 366 
 367 void Thread::call_run() {
 368   DEBUG_ONLY(_run_state = CALL_RUN;)
 369 
 370   // At this point, Thread object should be fully initialized and
 371   // Thread::current() should be set.
 372 
 373   assert(Thread::current_or_null() != NULL, "current thread is unset");
 374   assert(Thread::current_or_null() == this, "current thread is wrong");
 375 
 376   // Perform common initialization actions
 377 
 378   register_thread_stack_with_NMT();
 379 
 380   JFR_ONLY(Jfr::on_thread_start(this);)
 381 
 382   log_debug(os, thread)("Thread " UINTX_FORMAT " stack dimensions: "
 383     PTR_FORMAT "-" PTR_FORMAT " (" SIZE_FORMAT "k).",
 384     os::current_thread_id(), p2i(stack_end()),
 385     p2i(stack_base()), stack_size()/1024);
 386 
 387   // Perform <ChildClass> initialization actions
 388   DEBUG_ONLY(_run_state = PRE_RUN;)
 389   this->pre_run();
 390 
 391   // Invoke <ChildClass>::run()
 392   DEBUG_ONLY(_run_state = RUN;)
 393   this->run();
 394   // Returned from <ChildClass>::run(). Thread finished.
 395 
 396   // Perform common tear-down actions
 397 
 398   assert(Thread::current_or_null() != NULL, "current thread is unset");
 399   assert(Thread::current_or_null() == this, "current thread is wrong");
 400 
 401   // Perform <ChildClass> tear-down actions
 402   DEBUG_ONLY(_run_state = POST_RUN;)
 403   this->post_run();
 404 
 405   // Note: at this point the thread object may already have deleted itself,
 406   // so from here on do not dereference *this*. Not all thread types currently
 407   // delete themselves when they terminate. But no thread should ever be deleted
 408   // asynchronously with respect to its termination - that is what _run_state can
 409   // be used to check.
 410 
 411   assert(Thread::current_or_null() == NULL, "current thread still present");
 412 }
 413 
 414 Thread::~Thread() {
 415 
 416   // Attached threads will remain in PRE_CALL_RUN, as will threads that don't actually
 417   // get started due to errors etc. Any active thread should at least reach post_run
 418   // before it is deleted (usually in post_run()).
 419   assert(_run_state == PRE_CALL_RUN ||
 420          _run_state == POST_RUN, "Active Thread deleted before post_run(): "
 421          "_run_state=%d", (int)_run_state);
 422 
 423   // Notify the barrier set that a thread is being destroyed. Note that a barrier
 424   // set might not be available if we encountered errors during bootstrapping.
 425   BarrierSet* const barrier_set = BarrierSet::barrier_set();
 426   if (barrier_set != NULL) {
 427     barrier_set->on_thread_destroy(this);
 428   }
 429 
 430   // stack_base can be NULL if the thread is never started or exited before
 431   // record_stack_base_and_size called. Although, we would like to ensure
 432   // that all started threads do call record_stack_base_and_size(), there is
 433   // not proper way to enforce that.
 434 #if INCLUDE_NMT
 435   if (_stack_base != NULL) {
 436     MemTracker::release_thread_stack(stack_end(), stack_size());
 437 #ifdef ASSERT
 438     set_stack_base(NULL);
 439 #endif
 440   }
 441 #endif // INCLUDE_NMT
 442 
 443   // deallocate data structures
 444   delete resource_area();
 445   // since the handle marks are using the handle area, we have to deallocated the root
 446   // handle mark before deallocating the thread's handle area,
 447   assert(last_handle_mark() != NULL, "check we have an element");
 448   delete last_handle_mark();
 449   assert(last_handle_mark() == NULL, "check we have reached the end");
 450 
 451   // It's possible we can encounter a null _ParkEvent, etc., in stillborn threads.
 452   // We NULL out the fields for good hygiene.
 453   ParkEvent::Release(_ParkEvent); _ParkEvent   = NULL;
 454   ParkEvent::Release(_MuxEvent); _MuxEvent    = NULL;
 455 
 456   delete handle_area();
 457   delete metadata_handles();
 458 
 459   // SR_handler uses this as a termination indicator -
 460   // needs to happen before os::free_thread()
 461   delete _SR_lock;
 462   _SR_lock = NULL;
 463 
 464   // osthread() can be NULL, if creation of thread failed.
 465   if (osthread() != NULL) os::free_thread(osthread());
 466 
 467   // Clear Thread::current if thread is deleting itself and it has not
 468   // already been done. This must be done before the memory is deallocated.
 469   // Needed to ensure JNI correctly detects non-attached threads.
 470   if (this == Thread::current_or_null()) {
 471     Thread::clear_thread_current();
 472   }
 473 
 474   CHECK_UNHANDLED_OOPS_ONLY(if (CheckUnhandledOops) delete unhandled_oops();)
 475 }
 476 
 477 #ifdef ASSERT
 478 // A JavaThread is considered "dangling" if it is not the current
 479 // thread, has been added the Threads list, the system is not at a
 480 // safepoint and the Thread is not "protected".
 481 //
 482 void Thread::check_for_dangling_thread_pointer(Thread *thread) {
 483   assert(!thread->is_Java_thread() || Thread::current() == thread ||
 484          !((JavaThread *) thread)->on_thread_list() ||
 485          SafepointSynchronize::is_at_safepoint() ||
 486          ThreadsSMRSupport::is_a_protected_JavaThread_with_lock((JavaThread *) thread),
 487          "possibility of dangling Thread pointer");
 488 }
 489 #endif
 490 
 491 ThreadPriority Thread::get_priority(const Thread* const thread) {
 492   ThreadPriority priority;
 493   // Can return an error!
 494   (void)os::get_priority(thread, priority);
 495   assert(MinPriority <= priority && priority <= MaxPriority, "non-Java priority found");
 496   return priority;
 497 }
 498 
 499 void Thread::set_priority(Thread* thread, ThreadPriority priority) {
 500   debug_only(check_for_dangling_thread_pointer(thread);)
 501   // Can return an error!
 502   (void)os::set_priority(thread, priority);
 503 }
 504 
 505 
 506 void Thread::start(Thread* thread) {
 507   // Start is different from resume in that its safety is guaranteed by context or
 508   // being called from a Java method synchronized on the Thread object.
 509   if (!DisableStartThread) {
 510     if (thread->is_Java_thread()) {
 511       // Initialize the thread state to RUNNABLE before starting this thread.
 512       // Can not set it after the thread started because we do not know the
 513       // exact thread state at that time. It could be in MONITOR_WAIT or
 514       // in SLEEPING or some other state.
 515       java_lang_Thread::set_thread_status(((JavaThread*)thread)->threadObj(),
 516                                           java_lang_Thread::RUNNABLE);
 517     }
 518     os::start_thread(thread);
 519   }
 520 }
 521 
 522 class InstallAsyncExceptionClosure : public HandshakeClosure {
 523   Handle _throwable; // The Throwable thrown at the target Thread
 524 public:
 525   InstallAsyncExceptionClosure(Handle throwable) : HandshakeClosure("InstallAsyncException"), _throwable(throwable) {}
 526 
 527   void do_thread(Thread* thr) {
 528     JavaThread* target = (JavaThread*)thr;
 529     // Note that this now allows multiple ThreadDeath exceptions to be
 530     // thrown at a thread.
 531     // The target thread has run and has not exited yet.
 532     target->send_thread_stop(_throwable());
 533   }
 534 };
 535 
 536 void Thread::send_async_exception(oop java_thread, oop java_throwable) {
 537   Handle throwable(Thread::current(), java_throwable);
 538   JavaThread* target = java_lang_Thread::thread(java_thread);
 539   InstallAsyncExceptionClosure vm_stop(throwable);
 540   Handshake::execute(&vm_stop, target);
 541 }
 542 
 543 
 544 // Check if an external suspend request has completed (or has been
 545 // cancelled). Returns true if the thread is externally suspended and
 546 // false otherwise.
 547 //
 548 // The bits parameter returns information about the code path through
 549 // the routine. Useful for debugging:
 550 //
 551 // set in is_ext_suspend_completed():
 552 // 0x00000001 - routine was entered
 553 // 0x00000010 - routine return false at end
 554 // 0x00000100 - thread exited (return false)
 555 // 0x00000200 - suspend request cancelled (return false)
 556 // 0x00000400 - thread suspended (return true)
 557 // 0x00001000 - thread is in a suspend equivalent state (return true)
 558 // 0x00002000 - thread is native and walkable (return true)
 559 // 0x00004000 - thread is native_trans and walkable (needed retry)
 560 //
 561 // set in wait_for_ext_suspend_completion():
 562 // 0x00010000 - routine was entered
 563 // 0x00020000 - suspend request cancelled before loop (return false)
 564 // 0x00040000 - thread suspended before loop (return true)
 565 // 0x00080000 - suspend request cancelled in loop (return false)
 566 // 0x00100000 - thread suspended in loop (return true)
 567 // 0x00200000 - suspend not completed during retry loop (return false)
 568 
 569 // Helper class for tracing suspend wait debug bits.
 570 //
 571 // 0x00000100 indicates that the target thread exited before it could
 572 // self-suspend which is not a wait failure. 0x00000200, 0x00020000 and
 573 // 0x00080000 each indicate a cancelled suspend request so they don't
 574 // count as wait failures either.
 575 #define DEBUG_FALSE_BITS (0x00000010 | 0x00200000)
 576 
 577 class TraceSuspendDebugBits : public StackObj {
 578  private:
 579   JavaThread * jt;
 580   bool         is_wait;
 581   bool         called_by_wait;  // meaningful when !is_wait
 582   uint32_t *   bits;
 583 
 584  public:
 585   TraceSuspendDebugBits(JavaThread *_jt, bool _is_wait, bool _called_by_wait,
 586                         uint32_t *_bits) {
 587     jt             = _jt;
 588     is_wait        = _is_wait;
 589     called_by_wait = _called_by_wait;
 590     bits           = _bits;
 591   }
 592 
 593   ~TraceSuspendDebugBits() {
 594     if (!is_wait) {
 595 #if 1
 596       // By default, don't trace bits for is_ext_suspend_completed() calls.
 597       // That trace is very chatty.
 598       return;
 599 #else
 600       if (!called_by_wait) {
 601         // If tracing for is_ext_suspend_completed() is enabled, then only
 602         // trace calls to it from wait_for_ext_suspend_completion()
 603         return;
 604       }
 605 #endif
 606     }
 607 
 608     if (AssertOnSuspendWaitFailure || TraceSuspendWaitFailures) {
 609       if (bits != NULL && (*bits & DEBUG_FALSE_BITS) != 0) {
 610         MutexLocker ml(Threads_lock);  // needed for get_thread_name()
 611         ResourceMark rm;
 612 
 613         tty->print_cr(
 614                       "Failed wait_for_ext_suspend_completion(thread=%s, debug_bits=%x)",
 615                       jt->get_thread_name(), *bits);
 616 
 617         guarantee(!AssertOnSuspendWaitFailure, "external suspend wait failed");
 618       }
 619     }
 620   }
 621 };
 622 #undef DEBUG_FALSE_BITS
 623 
 624 
 625 bool JavaThread::is_ext_suspend_completed(bool called_by_wait, int delay,
 626                                           uint32_t *bits) {
 627   TraceSuspendDebugBits tsdb(this, false /* !is_wait */, called_by_wait, bits);
 628 
 629   bool did_trans_retry = false;  // only do thread_in_native_trans retry once
 630   bool do_trans_retry;           // flag to force the retry
 631 
 632   *bits |= 0x00000001;
 633 
 634   do {
 635     do_trans_retry = false;
 636 
 637     if (is_exiting()) {
 638       // Thread is in the process of exiting. This is always checked
 639       // first to reduce the risk of dereferencing a freed JavaThread.
 640       *bits |= 0x00000100;
 641       return false;
 642     }
 643 
 644     if (!is_external_suspend()) {
 645       // Suspend request is cancelled. This is always checked before
 646       // is_ext_suspended() to reduce the risk of a rogue resume
 647       // confusing the thread that made the suspend request.
 648       *bits |= 0x00000200;
 649       return false;
 650     }
 651 
 652     if (is_ext_suspended()) {
 653       // thread is suspended
 654       *bits |= 0x00000400;
 655       return true;
 656     }
 657 
 658     // Now that we no longer do hard suspends of threads running
 659     // native code, the target thread can be changing thread state
 660     // while we are in this routine:
 661     //
 662     //   _thread_in_native -> _thread_in_native_trans -> _thread_blocked
 663     //
 664     // We save a copy of the thread state as observed at this moment
 665     // and make our decision about suspend completeness based on the
 666     // copy. This closes the race where the thread state is seen as
 667     // _thread_in_native_trans in the if-thread_blocked check, but is
 668     // seen as _thread_blocked in if-thread_in_native_trans check.
 669     JavaThreadState save_state = thread_state();
 670 
 671     if (save_state == _thread_blocked && is_suspend_equivalent()) {
 672       // If the thread's state is _thread_blocked and this blocking
 673       // condition is known to be equivalent to a suspend, then we can
 674       // consider the thread to be externally suspended. This means that
 675       // the code that sets _thread_blocked has been modified to do
 676       // self-suspension if the blocking condition releases. We also
 677       // used to check for CONDVAR_WAIT here, but that is now covered by
 678       // the _thread_blocked with self-suspension check.
 679       //
 680       // Return true since we wouldn't be here unless there was still an
 681       // external suspend request.
 682       *bits |= 0x00001000;
 683       return true;
 684     } else if (save_state == _thread_in_native && frame_anchor()->walkable()) {
 685       // Threads running native code will self-suspend on native==>VM/Java
 686       // transitions. If its stack is walkable (should always be the case
 687       // unless this function is called before the actual java_suspend()
 688       // call), then the wait is done.
 689       *bits |= 0x00002000;
 690       return true;
 691     } else if (!called_by_wait && !did_trans_retry &&
 692                save_state == _thread_in_native_trans &&
 693                frame_anchor()->walkable()) {
 694       // The thread is transitioning from thread_in_native to another
 695       // thread state. check_safepoint_and_suspend_for_native_trans()
 696       // will force the thread to self-suspend. If it hasn't gotten
 697       // there yet we may have caught the thread in-between the native
 698       // code check above and the self-suspend. Lucky us. If we were
 699       // called by wait_for_ext_suspend_completion(), then it
 700       // will be doing the retries so we don't have to.
 701       //
 702       // Since we use the saved thread state in the if-statement above,
 703       // there is a chance that the thread has already transitioned to
 704       // _thread_blocked by the time we get here. In that case, we will
 705       // make a single unnecessary pass through the logic below. This
 706       // doesn't hurt anything since we still do the trans retry.
 707 
 708       *bits |= 0x00004000;
 709 
 710       // Once the thread leaves thread_in_native_trans for another
 711       // thread state, we break out of this retry loop. We shouldn't
 712       // need this flag to prevent us from getting back here, but
 713       // sometimes paranoia is good.
 714       did_trans_retry = true;
 715 
 716       // We wait for the thread to transition to a more usable state.
 717       for (int i = 1; i <= SuspendRetryCount; i++) {
 718         // We used to do an "os::yield_all(i)" call here with the intention
 719         // that yielding would increase on each retry. However, the parameter
 720         // is ignored on Linux which means the yield didn't scale up. Waiting
 721         // on the SR_lock below provides a much more predictable scale up for
 722         // the delay. It also provides a simple/direct point to check for any
 723         // safepoint requests from the VMThread
 724 
 725         // temporarily drops SR_lock while doing wait with safepoint check
 726         // (if we're a JavaThread - the WatcherThread can also call this)
 727         // and increase delay with each retry
 728         if (Thread::current()->is_Java_thread()) {
 729           SR_lock()->wait(i * delay);
 730         } else {
 731           SR_lock()->wait_without_safepoint_check(i * delay);
 732         }
 733 
 734         // check the actual thread state instead of what we saved above
 735         if (thread_state() != _thread_in_native_trans) {
 736           // the thread has transitioned to another thread state so
 737           // try all the checks (except this one) one more time.
 738           do_trans_retry = true;
 739           break;
 740         }
 741       } // end retry loop
 742 
 743 
 744     }
 745   } while (do_trans_retry);
 746 
 747   *bits |= 0x00000010;
 748   return false;
 749 }
 750 
 751 // Wait for an external suspend request to complete (or be cancelled).
 752 // Returns true if the thread is externally suspended and false otherwise.
 753 //
 754 bool JavaThread::wait_for_ext_suspend_completion(int retries, int delay,
 755                                                  uint32_t *bits) {
 756   TraceSuspendDebugBits tsdb(this, true /* is_wait */,
 757                              false /* !called_by_wait */, bits);
 758 
 759   // local flag copies to minimize SR_lock hold time
 760   bool is_suspended;
 761   bool pending;
 762   uint32_t reset_bits;
 763 
 764   // set a marker so is_ext_suspend_completed() knows we are the caller
 765   *bits |= 0x00010000;
 766 
 767   // We use reset_bits to reinitialize the bits value at the top of
 768   // each retry loop. This allows the caller to make use of any
 769   // unused bits for their own marking purposes.
 770   reset_bits = *bits;
 771 
 772   {
 773     MutexLocker ml(SR_lock(), Mutex::_no_safepoint_check_flag);
 774     is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 775                                             delay, bits);
 776     pending = is_external_suspend();
 777   }
 778   // must release SR_lock to allow suspension to complete
 779 
 780   if (!pending) {
 781     // A cancelled suspend request is the only false return from
 782     // is_ext_suspend_completed() that keeps us from entering the
 783     // retry loop.
 784     *bits |= 0x00020000;
 785     return false;
 786   }
 787 
 788   if (is_suspended) {
 789     *bits |= 0x00040000;
 790     return true;
 791   }
 792 
 793   for (int i = 1; i <= retries; i++) {
 794     *bits = reset_bits;  // reinit to only track last retry
 795 
 796     // We used to do an "os::yield_all(i)" call here with the intention
 797     // that yielding would increase on each retry. However, the parameter
 798     // is ignored on Linux which means the yield didn't scale up. Waiting
 799     // on the SR_lock below provides a much more predictable scale up for
 800     // the delay. It also provides a simple/direct point to check for any
 801     // safepoint requests from the VMThread
 802 
 803     {
 804       Thread* t = Thread::current();
 805       MonitorLocker ml(SR_lock(),
 806                        t->is_Java_thread() ? Mutex::_safepoint_check_flag : Mutex::_no_safepoint_check_flag);
 807       // wait with safepoint check (if we're a JavaThread - the WatcherThread
 808       // can also call this)  and increase delay with each retry
 809       ml.wait(i * delay);
 810 
 811       is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 812                                               delay, bits);
 813 
 814       // It is possible for the external suspend request to be cancelled
 815       // (by a resume) before the actual suspend operation is completed.
 816       // Refresh our local copy to see if we still need to wait.
 817       pending = is_external_suspend();
 818     }
 819 
 820     if (!pending) {
 821       // A cancelled suspend request is the only false return from
 822       // is_ext_suspend_completed() that keeps us from staying in the
 823       // retry loop.
 824       *bits |= 0x00080000;
 825       return false;
 826     }
 827 
 828     if (is_suspended) {
 829       *bits |= 0x00100000;
 830       return true;
 831     }
 832   } // end retry loop
 833 
 834   // thread did not suspend after all our retries
 835   *bits |= 0x00200000;
 836   return false;
 837 }
 838 
 839 // Called from API entry points which perform stack walking. If the
 840 // associated JavaThread is the current thread, then wait_for_suspend
 841 // is not used. Otherwise, it determines if we should wait for the
 842 // "other" thread to complete external suspension. (NOTE: in future
 843 // releases the suspension mechanism should be reimplemented so this
 844 // is not necessary.)
 845 //
 846 bool
 847 JavaThread::is_thread_fully_suspended(bool wait_for_suspend, uint32_t *bits) {
 848   if (this != JavaThread::current()) {
 849     // "other" threads require special handling.
 850     if (wait_for_suspend) {
 851       // We are allowed to wait for the external suspend to complete
 852       // so give the other thread a chance to get suspended.
 853       if (!wait_for_ext_suspend_completion(SuspendRetryCount,
 854                                            SuspendRetryDelay, bits)) {
 855         // Didn't make it so let the caller know.
 856         return false;
 857       }
 858     }
 859     // We aren't allowed to wait for the external suspend to complete
 860     // so if the other thread isn't externally suspended we need to
 861     // let the caller know.
 862     else if (!is_ext_suspend_completed_with_lock(bits)) {
 863       return false;
 864     }
 865   }
 866 
 867   return true;
 868 }
 869 
 870 // GC Support
 871 bool Thread::claim_par_threads_do(uintx claim_token) {
 872   uintx token = _threads_do_token;
 873   if (token != claim_token) {
 874     uintx res = Atomic::cmpxchg(&_threads_do_token, token, claim_token);
 875     if (res == token) {
 876       return true;
 877     }
 878     guarantee(res == claim_token, "invariant");
 879   }
 880   return false;
 881 }
 882 
 883 void Thread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
 884   if (active_handles() != NULL) {
 885     active_handles()->oops_do(f);
 886   }
 887   // Do oop for ThreadShadow
 888   f->do_oop((oop*)&_pending_exception);
 889   handle_area()->oops_do(f);
 890 
 891   // We scan thread local monitor lists here, and the remaining global
 892   // monitors in ObjectSynchronizer::oops_do().
 893   ObjectSynchronizer::thread_local_used_oops_do(this, f);
 894 }
 895 
 896 void Thread::metadata_handles_do(void f(Metadata*)) {
 897   // Only walk the Handles in Thread.
 898   if (metadata_handles() != NULL) {
 899     for (int i = 0; i< metadata_handles()->length(); i++) {
 900       f(metadata_handles()->at(i));
 901     }
 902   }
 903 }
 904 
 905 void Thread::print_on(outputStream* st, bool print_extended_info) const {
 906   // get_priority assumes osthread initialized
 907   if (osthread() != NULL) {
 908     int os_prio;
 909     if (os::get_native_priority(this, &os_prio) == OS_OK) {
 910       st->print("os_prio=%d ", os_prio);
 911     }
 912 
 913     st->print("cpu=%.2fms ",
 914               os::thread_cpu_time(const_cast<Thread*>(this), true) / 1000000.0
 915               );
 916     st->print("elapsed=%.2fs ",
 917               _statistical_info.getElapsedTime() / 1000.0
 918               );
 919     if (is_Java_thread() && (PrintExtendedThreadInfo || print_extended_info)) {
 920       size_t allocated_bytes = (size_t) const_cast<Thread*>(this)->cooked_allocated_bytes();
 921       st->print("allocated=" SIZE_FORMAT "%s ",
 922                 byte_size_in_proper_unit(allocated_bytes),
 923                 proper_unit_for_byte_size(allocated_bytes)
 924                 );
 925       st->print("defined_classes=" INT64_FORMAT " ", _statistical_info.getDefineClassCount());
 926     }
 927 
 928     st->print("tid=" INTPTR_FORMAT " ", p2i(this));
 929     osthread()->print_on(st);
 930   }
 931   ThreadsSMRSupport::print_info_on(this, st);
 932   st->print(" ");
 933   debug_only(if (WizardMode) print_owned_locks_on(st);)
 934 }
 935 
 936 void Thread::print() const { print_on(tty); }
 937 
 938 // Thread::print_on_error() is called by fatal error handler. Don't use
 939 // any lock or allocate memory.
 940 void Thread::print_on_error(outputStream* st, char* buf, int buflen) const {
 941   assert(!(is_Compiler_thread() || is_Java_thread()), "Can't call name() here if it allocates");
 942 
 943   if (is_VM_thread())                 { st->print("VMThread"); }
 944   else if (is_GC_task_thread())       { st->print("GCTaskThread"); }
 945   else if (is_Watcher_thread())       { st->print("WatcherThread"); }
 946   else if (is_ConcurrentGC_thread())  { st->print("ConcurrentGCThread"); }
 947   else                                { st->print("Thread"); }
 948 
 949   if (is_Named_thread()) {
 950     st->print(" \"%s\"", name());
 951   }
 952 
 953   st->print(" [stack: " PTR_FORMAT "," PTR_FORMAT "]",
 954             p2i(stack_end()), p2i(stack_base()));
 955 
 956   if (osthread()) {
 957     st->print(" [id=%d]", osthread()->thread_id());
 958   }
 959 
 960   ThreadsSMRSupport::print_info_on(this, st);
 961 }
 962 
 963 void Thread::print_value_on(outputStream* st) const {
 964   if (is_Named_thread()) {
 965     st->print(" \"%s\" ", name());
 966   }
 967   st->print(INTPTR_FORMAT, p2i(this));   // print address
 968 }
 969 
 970 #ifdef ASSERT
 971 void Thread::print_owned_locks_on(outputStream* st) const {
 972   Mutex* cur = _owned_locks;
 973   if (cur == NULL) {
 974     st->print(" (no locks) ");
 975   } else {
 976     st->print_cr(" Locks owned:");
 977     while (cur) {
 978       cur->print_on(st);
 979       cur = cur->next();
 980     }
 981   }
 982 }
 983 
 984 // Checks safepoint allowed and clears unhandled oops at potential safepoints.
 985 void Thread::check_possible_safepoint() {
 986   if (!is_Java_thread()) return;
 987 
 988   if (_no_safepoint_count > 0) {
 989     print_owned_locks();
 990     fatal("Possible safepoint reached by thread that does not allow it");
 991   }
 992 #ifdef CHECK_UNHANDLED_OOPS
 993   // Clear unhandled oops in JavaThreads so we get a crash right away.
 994   clear_unhandled_oops();
 995 #endif // CHECK_UNHANDLED_OOPS
 996 }
 997 
 998 void Thread::check_for_valid_safepoint_state() {
 999   if (!is_Java_thread()) return;
1000 
1001   // Check NoSafepointVerifier, which is implied by locks taken that can be
1002   // shared with the VM thread.  This makes sure that no locks with allow_vm_block
1003   // are held.
1004   check_possible_safepoint();
1005 
1006   if (((JavaThread*)this)->thread_state() != _thread_in_vm) {
1007     fatal("LEAF method calling lock?");
1008   }
1009 
1010   if (GCALotAtAllSafepoints) {
1011     // We could enter a safepoint here and thus have a gc
1012     InterfaceSupport::check_gc_alot();
1013   }
1014 }
1015 #endif // ASSERT
1016 
1017 // We had to move these methods here, because vm threads get into ObjectSynchronizer::enter
1018 // However, there is a note in JavaThread::is_lock_owned() about the VM threads not being
1019 // used for compilation in the future. If that change is made, the need for these methods
1020 // should be revisited, and they should be removed if possible.
1021 
1022 bool Thread::is_lock_owned(address adr) const {
1023   return is_in_full_stack(adr);
1024 }
1025 
1026 bool Thread::set_as_starting_thread() {
1027   assert(_starting_thread == NULL, "already initialized: "
1028          "_starting_thread=" INTPTR_FORMAT, p2i(_starting_thread));
1029   // NOTE: this must be called inside the main thread.
1030   DEBUG_ONLY(_starting_thread = this;)
1031   return os::create_main_thread((JavaThread*)this);
1032 }
1033 
1034 static void initialize_class(Symbol* class_name, TRAPS) {
1035   Klass* klass = SystemDictionary::resolve_or_fail(class_name, true, CHECK);
1036   InstanceKlass::cast(klass)->initialize(CHECK);
1037 }
1038 
1039 
1040 // Creates the initial ThreadGroup
1041 static Handle create_initial_thread_group(TRAPS) {
1042   Handle system_instance = JavaCalls::construct_new_instance(
1043                             SystemDictionary::ThreadGroup_klass(),
1044                             vmSymbols::void_method_signature(),
1045                             CHECK_NH);
1046   Universe::set_system_thread_group(system_instance());
1047 
1048   Handle string = java_lang_String::create_from_str("main", CHECK_NH);
1049   Handle main_instance = JavaCalls::construct_new_instance(
1050                             SystemDictionary::ThreadGroup_klass(),
1051                             vmSymbols::threadgroup_string_void_signature(),
1052                             system_instance,
1053                             string,
1054                             CHECK_NH);
1055   return main_instance;
1056 }
1057 
1058 // Creates the initial Thread
1059 static oop create_initial_thread(Handle thread_group, JavaThread* thread,
1060                                  TRAPS) {
1061   InstanceKlass* ik = SystemDictionary::Thread_klass();
1062   assert(ik->is_initialized(), "must be");
1063   instanceHandle thread_oop = ik->allocate_instance_handle(CHECK_NULL);
1064 
1065   // Cannot use JavaCalls::construct_new_instance because the java.lang.Thread
1066   // constructor calls Thread.current(), which must be set here for the
1067   // initial thread.
1068   java_lang_Thread::set_thread(thread_oop(), thread);
1069   java_lang_Thread::set_priority(thread_oop(), NormPriority);
1070   thread->set_threadObj(thread_oop());
1071 
1072   Handle string = java_lang_String::create_from_str("main", CHECK_NULL);
1073 
1074   JavaValue result(T_VOID);
1075   JavaCalls::call_special(&result, thread_oop,
1076                           ik,
1077                           vmSymbols::object_initializer_name(),
1078                           vmSymbols::threadgroup_string_void_signature(),
1079                           thread_group,
1080                           string,
1081                           CHECK_NULL);
1082   return thread_oop();
1083 }
1084 
1085 char java_runtime_name[128] = "";
1086 char java_runtime_version[128] = "";
1087 char java_runtime_vendor_version[128] = "";
1088 char java_runtime_vendor_vm_bug_url[128] = "";
1089 
1090 // extract the JRE name from java.lang.VersionProps.java_runtime_name
1091 static const char* get_java_runtime_name(TRAPS) {
1092   Klass* k = SystemDictionary::find(vmSymbols::java_lang_VersionProps(),
1093                                     Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1094   fieldDescriptor fd;
1095   bool found = k != NULL &&
1096                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_name_name(),
1097                                                         vmSymbols::string_signature(), &fd);
1098   if (found) {
1099     oop name_oop = k->java_mirror()->obj_field(fd.offset());
1100     if (name_oop == NULL) {
1101       return NULL;
1102     }
1103     const char* name = java_lang_String::as_utf8_string(name_oop,
1104                                                         java_runtime_name,
1105                                                         sizeof(java_runtime_name));
1106     return name;
1107   } else {
1108     return NULL;
1109   }
1110 }
1111 
1112 // extract the JRE version from java.lang.VersionProps.java_runtime_version
1113 static const char* get_java_runtime_version(TRAPS) {
1114   Klass* k = SystemDictionary::find(vmSymbols::java_lang_VersionProps(),
1115                                     Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1116   fieldDescriptor fd;
1117   bool found = k != NULL &&
1118                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_version_name(),
1119                                                         vmSymbols::string_signature(), &fd);
1120   if (found) {
1121     oop name_oop = k->java_mirror()->obj_field(fd.offset());
1122     if (name_oop == NULL) {
1123       return NULL;
1124     }
1125     const char* name = java_lang_String::as_utf8_string(name_oop,
1126                                                         java_runtime_version,
1127                                                         sizeof(java_runtime_version));
1128     return name;
1129   } else {
1130     return NULL;
1131   }
1132 }
1133 
1134 // extract the JRE vendor version from java.lang.VersionProps.VENDOR_VERSION
1135 static const char* get_java_runtime_vendor_version(TRAPS) {
1136   Klass* k = SystemDictionary::find(vmSymbols::java_lang_VersionProps(),
1137                                     Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1138   fieldDescriptor fd;
1139   bool found = k != NULL &&
1140                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_vendor_version_name(),
1141                                                         vmSymbols::string_signature(), &fd);
1142   if (found) {
1143     oop name_oop = k->java_mirror()->obj_field(fd.offset());
1144     if (name_oop == NULL) {
1145       return NULL;
1146     }
1147     const char* name = java_lang_String::as_utf8_string(name_oop,
1148                                                         java_runtime_vendor_version,
1149                                                         sizeof(java_runtime_vendor_version));
1150     return name;
1151   } else {
1152     return NULL;
1153   }
1154 }
1155 
1156 // extract the JRE vendor VM bug URL from java.lang.VersionProps.VENDOR_URL_VM_BUG
1157 static const char* get_java_runtime_vendor_vm_bug_url(TRAPS) {
1158   Klass* k = SystemDictionary::find(vmSymbols::java_lang_VersionProps(),
1159                                     Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1160   fieldDescriptor fd;
1161   bool found = k != NULL &&
1162                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_vendor_vm_bug_url_name(),
1163                                                         vmSymbols::string_signature(), &fd);
1164   if (found) {
1165     oop name_oop = k->java_mirror()->obj_field(fd.offset());
1166     if (name_oop == NULL) {
1167       return NULL;
1168     }
1169     const char* name = java_lang_String::as_utf8_string(name_oop,
1170                                                         java_runtime_vendor_vm_bug_url,
1171                                                         sizeof(java_runtime_vendor_vm_bug_url));
1172     return name;
1173   } else {
1174     return NULL;
1175   }
1176 }
1177 
1178 // General purpose hook into Java code, run once when the VM is initialized.
1179 // The Java library method itself may be changed independently from the VM.
1180 static void call_postVMInitHook(TRAPS) {
1181   Klass* klass = SystemDictionary::resolve_or_null(vmSymbols::jdk_internal_vm_PostVMInitHook(), THREAD);
1182   if (klass != NULL) {
1183     JavaValue result(T_VOID);
1184     JavaCalls::call_static(&result, klass, vmSymbols::run_method_name(),
1185                            vmSymbols::void_method_signature(),
1186                            CHECK);
1187   }
1188 }
1189 
1190 void JavaThread::allocate_threadObj(Handle thread_group, const char* thread_name,
1191                                     bool daemon, TRAPS) {
1192   assert(thread_group.not_null(), "thread group should be specified");
1193   assert(threadObj() == NULL, "should only create Java thread object once");
1194 
1195   InstanceKlass* ik = SystemDictionary::Thread_klass();
1196   assert(ik->is_initialized(), "must be");
1197   instanceHandle thread_oop = ik->allocate_instance_handle(CHECK);
1198 
1199   // We are called from jni_AttachCurrentThread/jni_AttachCurrentThreadAsDaemon.
1200   // We cannot use JavaCalls::construct_new_instance because the java.lang.Thread
1201   // constructor calls Thread.current(), which must be set here.
1202   java_lang_Thread::set_thread(thread_oop(), this);
1203   java_lang_Thread::set_priority(thread_oop(), NormPriority);
1204   set_threadObj(thread_oop());
1205 
1206   JavaValue result(T_VOID);
1207   if (thread_name != NULL) {
1208     Handle name = java_lang_String::create_from_str(thread_name, CHECK);
1209     // Thread gets assigned specified name and null target
1210     JavaCalls::call_special(&result,
1211                             thread_oop,
1212                             ik,
1213                             vmSymbols::object_initializer_name(),
1214                             vmSymbols::threadgroup_string_void_signature(),
1215                             thread_group,
1216                             name,
1217                             THREAD);
1218   } else {
1219     // Thread gets assigned name "Thread-nnn" and null target
1220     // (java.lang.Thread doesn't have a constructor taking only a ThreadGroup argument)
1221     JavaCalls::call_special(&result,
1222                             thread_oop,
1223                             ik,
1224                             vmSymbols::object_initializer_name(),
1225                             vmSymbols::threadgroup_runnable_void_signature(),
1226                             thread_group,
1227                             Handle(),
1228                             THREAD);
1229   }
1230 
1231 
1232   if (daemon) {
1233     java_lang_Thread::set_daemon(thread_oop());
1234   }
1235 
1236   if (HAS_PENDING_EXCEPTION) {
1237     return;
1238   }
1239 
1240   Klass* group = SystemDictionary::ThreadGroup_klass();
1241   Handle threadObj(THREAD, this->threadObj());
1242 
1243   JavaCalls::call_special(&result,
1244                           thread_group,
1245                           group,
1246                           vmSymbols::add_method_name(),
1247                           vmSymbols::thread_void_signature(),
1248                           threadObj,          // Arg 1
1249                           THREAD);
1250 }
1251 
1252 // List of all NonJavaThreads and safe iteration over that list.
1253 
1254 class NonJavaThread::List {
1255 public:
1256   NonJavaThread* volatile _head;
1257   SingleWriterSynchronizer _protect;
1258 
1259   List() : _head(NULL), _protect() {}
1260 };
1261 
1262 NonJavaThread::List NonJavaThread::_the_list;
1263 
1264 NonJavaThread::Iterator::Iterator() :
1265   _protect_enter(_the_list._protect.enter()),
1266   _current(Atomic::load_acquire(&_the_list._head))
1267 {}
1268 
1269 NonJavaThread::Iterator::~Iterator() {
1270   _the_list._protect.exit(_protect_enter);
1271 }
1272 
1273 void NonJavaThread::Iterator::step() {
1274   assert(!end(), "precondition");
1275   _current = Atomic::load_acquire(&_current->_next);
1276 }
1277 
1278 NonJavaThread::NonJavaThread() : Thread(), _next(NULL) {
1279   assert(BarrierSet::barrier_set() != NULL, "NonJavaThread created too soon!");
1280 }
1281 
1282 NonJavaThread::~NonJavaThread() { }
1283 
1284 void NonJavaThread::add_to_the_list() {
1285   MutexLocker ml(NonJavaThreadsList_lock, Mutex::_no_safepoint_check_flag);
1286   // Initialize BarrierSet-related data before adding to list.
1287   BarrierSet::barrier_set()->on_thread_attach(this);
1288   Atomic::release_store(&_next, _the_list._head);
1289   Atomic::release_store(&_the_list._head, this);
1290 }
1291 
1292 void NonJavaThread::remove_from_the_list() {
1293   {
1294     MutexLocker ml(NonJavaThreadsList_lock, Mutex::_no_safepoint_check_flag);
1295     // Cleanup BarrierSet-related data before removing from list.
1296     BarrierSet::barrier_set()->on_thread_detach(this);
1297     NonJavaThread* volatile* p = &_the_list._head;
1298     for (NonJavaThread* t = *p; t != NULL; p = &t->_next, t = *p) {
1299       if (t == this) {
1300         *p = _next;
1301         break;
1302       }
1303     }
1304   }
1305   // Wait for any in-progress iterators.  Concurrent synchronize is not
1306   // allowed, so do it while holding a dedicated lock.  Outside and distinct
1307   // from NJTList_lock in case an iteration attempts to lock it.
1308   MutexLocker ml(NonJavaThreadsListSync_lock, Mutex::_no_safepoint_check_flag);
1309   _the_list._protect.synchronize();
1310   _next = NULL;                 // Safe to drop the link now.
1311 }
1312 
1313 void NonJavaThread::pre_run() {
1314   add_to_the_list();
1315 
1316   // This is slightly odd in that NamedThread is a subclass, but
1317   // in fact name() is defined in Thread
1318   assert(this->name() != NULL, "thread name was not set before it was started");
1319   this->set_native_thread_name(this->name());
1320 }
1321 
1322 void NonJavaThread::post_run() {
1323   JFR_ONLY(Jfr::on_thread_exit(this);)
1324   remove_from_the_list();
1325   // Ensure thread-local-storage is cleared before termination.
1326   Thread::clear_thread_current();
1327 }
1328 
1329 // NamedThread --  non-JavaThread subclasses with multiple
1330 // uniquely named instances should derive from this.
1331 NamedThread::NamedThread() :
1332   NonJavaThread(),
1333   _name(NULL),
1334   _processed_thread(NULL),
1335   _gc_id(GCId::undefined())
1336 {}
1337 
1338 NamedThread::~NamedThread() {
1339   FREE_C_HEAP_ARRAY(char, _name);
1340 }
1341 
1342 void NamedThread::set_name(const char* format, ...) {
1343   guarantee(_name == NULL, "Only get to set name once.");
1344   _name = NEW_C_HEAP_ARRAY(char, max_name_len, mtThread);
1345   va_list ap;
1346   va_start(ap, format);
1347   jio_vsnprintf(_name, max_name_len, format, ap);
1348   va_end(ap);
1349 }
1350 
1351 void NamedThread::print_on(outputStream* st) const {
1352   st->print("\"%s\" ", name());
1353   Thread::print_on(st);
1354   st->cr();
1355 }
1356 
1357 
1358 // ======= WatcherThread ========
1359 
1360 // The watcher thread exists to simulate timer interrupts.  It should
1361 // be replaced by an abstraction over whatever native support for
1362 // timer interrupts exists on the platform.
1363 
1364 WatcherThread* WatcherThread::_watcher_thread   = NULL;
1365 bool WatcherThread::_startable = false;
1366 volatile bool  WatcherThread::_should_terminate = false;
1367 
1368 WatcherThread::WatcherThread() : NonJavaThread() {
1369   assert(watcher_thread() == NULL, "we can only allocate one WatcherThread");
1370   if (os::create_thread(this, os::watcher_thread)) {
1371     _watcher_thread = this;
1372 
1373     // Set the watcher thread to the highest OS priority which should not be
1374     // used, unless a Java thread with priority java.lang.Thread.MAX_PRIORITY
1375     // is created. The only normal thread using this priority is the reference
1376     // handler thread, which runs for very short intervals only.
1377     // If the VMThread's priority is not lower than the WatcherThread profiling
1378     // will be inaccurate.
1379     os::set_priority(this, MaxPriority);
1380     if (!DisableStartThread) {
1381       os::start_thread(this);
1382     }
1383   }
1384 }
1385 
1386 int WatcherThread::sleep() const {
1387   // The WatcherThread does not participate in the safepoint protocol
1388   // for the PeriodicTask_lock because it is not a JavaThread.
1389   MonitorLocker ml(PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
1390 
1391   if (_should_terminate) {
1392     // check for termination before we do any housekeeping or wait
1393     return 0;  // we did not sleep.
1394   }
1395 
1396   // remaining will be zero if there are no tasks,
1397   // causing the WatcherThread to sleep until a task is
1398   // enrolled
1399   int remaining = PeriodicTask::time_to_wait();
1400   int time_slept = 0;
1401 
1402   // we expect this to timeout - we only ever get unparked when
1403   // we should terminate or when a new task has been enrolled
1404   OSThreadWaitState osts(this->osthread(), false /* not Object.wait() */);
1405 
1406   jlong time_before_loop = os::javaTimeNanos();
1407 
1408   while (true) {
1409     bool timedout = ml.wait(remaining);
1410     jlong now = os::javaTimeNanos();
1411 
1412     if (remaining == 0) {
1413       // if we didn't have any tasks we could have waited for a long time
1414       // consider the time_slept zero and reset time_before_loop
1415       time_slept = 0;
1416       time_before_loop = now;
1417     } else {
1418       // need to recalculate since we might have new tasks in _tasks
1419       time_slept = (int) ((now - time_before_loop) / 1000000);
1420     }
1421 
1422     // Change to task list or spurious wakeup of some kind
1423     if (timedout || _should_terminate) {
1424       break;
1425     }
1426 
1427     remaining = PeriodicTask::time_to_wait();
1428     if (remaining == 0) {
1429       // Last task was just disenrolled so loop around and wait until
1430       // another task gets enrolled
1431       continue;
1432     }
1433 
1434     remaining -= time_slept;
1435     if (remaining <= 0) {
1436       break;
1437     }
1438   }
1439 
1440   return time_slept;
1441 }
1442 
1443 void WatcherThread::run() {
1444   assert(this == watcher_thread(), "just checking");
1445 
1446   this->set_active_handles(JNIHandleBlock::allocate_block());
1447   while (true) {
1448     assert(watcher_thread() == Thread::current(), "thread consistency check");
1449     assert(watcher_thread() == this, "thread consistency check");
1450 
1451     // Calculate how long it'll be until the next PeriodicTask work
1452     // should be done, and sleep that amount of time.
1453     int time_waited = sleep();
1454 
1455     if (VMError::is_error_reported()) {
1456       // A fatal error has happened, the error handler(VMError::report_and_die)
1457       // should abort JVM after creating an error log file. However in some
1458       // rare cases, the error handler itself might deadlock. Here periodically
1459       // check for error reporting timeouts, and if it happens, just proceed to
1460       // abort the VM.
1461 
1462       // This code is in WatcherThread because WatcherThread wakes up
1463       // periodically so the fatal error handler doesn't need to do anything;
1464       // also because the WatcherThread is less likely to crash than other
1465       // threads.
1466 
1467       for (;;) {
1468         // Note: we use naked sleep in this loop because we want to avoid using
1469         // any kind of VM infrastructure which may be broken at this point.
1470         if (VMError::check_timeout()) {
1471           // We hit error reporting timeout. Error reporting was interrupted and
1472           // will be wrapping things up now (closing files etc). Give it some more
1473           // time, then quit the VM.
1474           os::naked_short_sleep(200);
1475           // Print a message to stderr.
1476           fdStream err(defaultStream::output_fd());
1477           err.print_raw_cr("# [ timer expired, abort... ]");
1478           // skip atexit/vm_exit/vm_abort hooks
1479           os::die();
1480         }
1481 
1482         // Wait a second, then recheck for timeout.
1483         os::naked_short_sleep(999);
1484       }
1485     }
1486 
1487     if (_should_terminate) {
1488       // check for termination before posting the next tick
1489       break;
1490     }
1491 
1492     PeriodicTask::real_time_tick(time_waited);
1493   }
1494 
1495   // Signal that it is terminated
1496   {
1497     MutexLocker mu(Terminator_lock, Mutex::_no_safepoint_check_flag);
1498     _watcher_thread = NULL;
1499     Terminator_lock->notify_all();
1500   }
1501 }
1502 
1503 void WatcherThread::start() {
1504   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1505 
1506   if (watcher_thread() == NULL && _startable) {
1507     _should_terminate = false;
1508     // Create the single instance of WatcherThread
1509     new WatcherThread();
1510   }
1511 }
1512 
1513 void WatcherThread::make_startable() {
1514   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1515   _startable = true;
1516 }
1517 
1518 void WatcherThread::stop() {
1519   {
1520     // Follow normal safepoint aware lock enter protocol since the
1521     // WatcherThread is stopped by another JavaThread.
1522     MutexLocker ml(PeriodicTask_lock);
1523     _should_terminate = true;
1524 
1525     WatcherThread* watcher = watcher_thread();
1526     if (watcher != NULL) {
1527       // unpark the WatcherThread so it can see that it should terminate
1528       watcher->unpark();
1529     }
1530   }
1531 
1532   MonitorLocker mu(Terminator_lock);
1533 
1534   while (watcher_thread() != NULL) {
1535     // This wait should make safepoint checks, wait without a timeout,
1536     // and wait as a suspend-equivalent condition.
1537     mu.wait(0, Mutex::_as_suspend_equivalent_flag);
1538   }
1539 }
1540 
1541 void WatcherThread::unpark() {
1542   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1543   PeriodicTask_lock->notify();
1544 }
1545 
1546 void WatcherThread::print_on(outputStream* st) const {
1547   st->print("\"%s\" ", name());
1548   Thread::print_on(st);
1549   st->cr();
1550 }
1551 
1552 // ======= JavaThread ========
1553 
1554 #if INCLUDE_JVMCI
1555 
1556 jlong* JavaThread::_jvmci_old_thread_counters;
1557 
1558 bool jvmci_counters_include(JavaThread* thread) {
1559   return !JVMCICountersExcludeCompiler || !thread->is_Compiler_thread();
1560 }
1561 
1562 void JavaThread::collect_counters(jlong* array, int length) {
1563   assert(length == JVMCICounterSize, "wrong value");
1564   for (int i = 0; i < length; i++) {
1565     array[i] = _jvmci_old_thread_counters[i];
1566   }
1567   for (JavaThreadIteratorWithHandle jtiwh; JavaThread *tp = jtiwh.next(); ) {
1568     if (jvmci_counters_include(tp)) {
1569       for (int i = 0; i < length; i++) {
1570         array[i] += tp->_jvmci_counters[i];
1571       }
1572     }
1573   }
1574 }
1575 
1576 // Attempt to enlarge the array for per thread counters.
1577 jlong* resize_counters_array(jlong* old_counters, int current_size, int new_size) {
1578   jlong* new_counters = NEW_C_HEAP_ARRAY(jlong, new_size, mtJVMCI);
1579   if (old_counters == NULL) {
1580     old_counters = new_counters;
1581     memset(old_counters, 0, sizeof(jlong) * new_size);
1582   } else {
1583     for (int i = 0; i < MIN2((int) current_size, new_size); i++) {
1584       new_counters[i] = old_counters[i];
1585     }
1586     if (new_size > current_size) {
1587       memset(new_counters + current_size, 0, sizeof(jlong) * (new_size - current_size));
1588     }
1589     FREE_C_HEAP_ARRAY(jlong, old_counters);
1590   }
1591   return new_counters;
1592 }
1593 
1594 // Attempt to enlarge the array for per thread counters.
1595 void JavaThread::resize_counters(int current_size, int new_size) {
1596   _jvmci_counters = resize_counters_array(_jvmci_counters, current_size, new_size);
1597 }
1598 
1599 class VM_JVMCIResizeCounters : public VM_Operation {
1600  private:
1601   int _new_size;
1602 
1603  public:
1604   VM_JVMCIResizeCounters(int new_size) : _new_size(new_size) { }
1605   VMOp_Type type()                  const        { return VMOp_JVMCIResizeCounters; }
1606   bool allow_nested_vm_operations() const        { return true; }
1607   void doit() {
1608     // Resize the old thread counters array
1609     jlong* new_counters = resize_counters_array(JavaThread::_jvmci_old_thread_counters, JVMCICounterSize, _new_size);
1610     JavaThread::_jvmci_old_thread_counters = new_counters;
1611 
1612     // Now resize each threads array
1613     for (JavaThreadIteratorWithHandle jtiwh; JavaThread *tp = jtiwh.next(); ) {
1614       tp->resize_counters(JVMCICounterSize, _new_size);
1615     }
1616     JVMCICounterSize = _new_size;
1617   }
1618 };
1619 
1620 void JavaThread::resize_all_jvmci_counters(int new_size) {
1621   VM_JVMCIResizeCounters op(new_size);
1622   VMThread::execute(&op);
1623 }
1624 
1625 #endif // INCLUDE_JVMCI
1626 
1627 // A JavaThread is a normal Java thread
1628 
1629 void JavaThread::initialize() {
1630   // Initialize fields
1631 
1632   set_saved_exception_pc(NULL);
1633   set_threadObj(NULL);
1634   _anchor.clear();
1635   set_entry_point(NULL);
1636   set_jni_functions(jni_functions());
1637   set_callee_target(NULL);
1638   set_vm_result(NULL);
1639   set_vm_result_2(NULL);
1640   set_vframe_array_head(NULL);
1641   set_vframe_array_last(NULL);
1642   set_deferred_locals(NULL);
1643   set_deopt_mark(NULL);
1644   set_deopt_compiled_method(NULL);
1645   set_monitor_chunks(NULL);
1646   _on_thread_list = false;
1647   _thread_state = _thread_new;
1648   _terminated = _not_terminated;
1649   _array_for_gc = NULL;
1650   _suspend_equivalent = false;
1651   _in_deopt_handler = 0;
1652   _doing_unsafe_access = false;
1653   _stack_guard_state = stack_guard_unused;
1654 #if INCLUDE_JVMCI
1655   _pending_monitorenter = false;
1656   _pending_deoptimization = -1;
1657   _pending_failed_speculation = 0;
1658   _pending_transfer_to_interpreter = false;
1659   _in_retryable_allocation = false;
1660   _jvmci._alternate_call_target = NULL;
1661   assert(_jvmci._implicit_exception_pc == NULL, "must be");
1662   _jvmci_counters = NULL;
1663   if (JVMCICounterSize > 0) {
1664     resize_counters(0, (int) JVMCICounterSize);
1665   }
1666 #endif // INCLUDE_JVMCI
1667   _reserved_stack_activation = NULL;  // stack base not known yet
1668   (void)const_cast<oop&>(_exception_oop = oop(NULL));
1669   _exception_pc  = 0;
1670   _exception_handler_pc = 0;
1671   _is_method_handle_return = 0;
1672   _jvmti_thread_state= NULL;
1673   _should_post_on_exceptions_flag = JNI_FALSE;
1674   _interp_only_mode    = 0;
1675   _special_runtime_exit_condition = _no_async_condition;
1676   _pending_async_exception = NULL;
1677   _thread_stat = NULL;
1678   _thread_stat = new ThreadStatistics();
1679   _jni_active_critical = 0;
1680   _pending_jni_exception_check_fn = NULL;
1681   _do_not_unlock_if_synchronized = false;
1682   _cached_monitor_info = NULL;
1683   _parker = Parker::Allocate(this);
1684   _SleepEvent = ParkEvent::Allocate(this);
1685   // Setup safepoint state info for this thread
1686   ThreadSafepointState::create(this);
1687   _handshake.set_handshakee(this);
1688 
1689   debug_only(_java_call_counter = 0);
1690 
1691   // JVMTI PopFrame support
1692   _popframe_condition = popframe_inactive;
1693   _popframe_preserved_args = NULL;
1694   _popframe_preserved_args_size = 0;
1695   _frames_to_pop_failed_realloc = 0;
1696 
1697   SafepointMechanism::initialize_header(this);
1698 
1699   _class_to_be_initialized = NULL;
1700 
1701   pd_initialize();
1702 }
1703 
1704 JavaThread::JavaThread(bool is_attaching_via_jni) :
1705                        Thread() {
1706   initialize();
1707   if (is_attaching_via_jni) {
1708     _jni_attach_state = _attaching_via_jni;
1709   } else {
1710     _jni_attach_state = _not_attaching_via_jni;
1711   }
1712   assert(deferred_card_mark().is_empty(), "Default MemRegion ctor");
1713 }
1714 
1715 
1716 // interrupt support
1717 
1718 void JavaThread::interrupt() {
1719   debug_only(check_for_dangling_thread_pointer(this);)
1720 
1721   // For Windows _interrupt_event
1722   osthread()->set_interrupted(true);
1723 
1724   // For Thread.sleep
1725   _SleepEvent->unpark();
1726 
1727   // For JSR166 LockSupport.park
1728   parker()->unpark();
1729 
1730   // For ObjectMonitor and JvmtiRawMonitor
1731   _ParkEvent->unpark();
1732 }
1733 
1734 
1735 bool JavaThread::is_interrupted(bool clear_interrupted) {
1736   debug_only(check_for_dangling_thread_pointer(this);)
1737 
1738   if (threadObj() == NULL) {
1739     // If there is no j.l.Thread then it is impossible to have
1740     // been interrupted. We can find NULL during VM initialization
1741     // or when a JNI thread is still in the process of attaching.
1742     // In such cases this must be the current thread.
1743     assert(this == Thread::current(), "invariant");
1744     return false;
1745   }
1746 
1747   bool interrupted = java_lang_Thread::interrupted(threadObj());
1748 
1749   // NOTE that since there is no "lock" around the interrupt and
1750   // is_interrupted operations, there is the possibility that the
1751   // interrupted flag will be "false" but that the
1752   // low-level events will be in the signaled state. This is
1753   // intentional. The effect of this is that Object.wait() and
1754   // LockSupport.park() will appear to have a spurious wakeup, which
1755   // is allowed and not harmful, and the possibility is so rare that
1756   // it is not worth the added complexity to add yet another lock.
1757   // For the sleep event an explicit reset is performed on entry
1758   // to JavaThread::sleep, so there is no early return. It has also been
1759   // recommended not to put the interrupted flag into the "event"
1760   // structure because it hides the issue.
1761   // Also, because there is no lock, we must only clear the interrupt
1762   // state if we are going to report that we were interrupted; otherwise
1763   // an interrupt that happens just after we read the field would be lost.
1764   if (interrupted && clear_interrupted) {
1765     assert(this == Thread::current(), "only the current thread can clear");
1766     java_lang_Thread::set_interrupted(threadObj(), false);
1767     osthread()->set_interrupted(false);
1768   }
1769 
1770   return interrupted;
1771 }
1772 
1773 bool JavaThread::reguard_stack(address cur_sp) {
1774   if (_stack_guard_state != stack_guard_yellow_reserved_disabled
1775       && _stack_guard_state != stack_guard_reserved_disabled) {
1776     return true; // Stack already guarded or guard pages not needed.
1777   }
1778 
1779   if (register_stack_overflow()) {
1780     // For those architectures which have separate register and
1781     // memory stacks, we must check the register stack to see if
1782     // it has overflowed.
1783     return false;
1784   }
1785 
1786   // Java code never executes within the yellow zone: the latter is only
1787   // there to provoke an exception during stack banging.  If java code
1788   // is executing there, either StackShadowPages should be larger, or
1789   // some exception code in c1, c2 or the interpreter isn't unwinding
1790   // when it should.
1791   guarantee(cur_sp > stack_reserved_zone_base(),
1792             "not enough space to reguard - increase StackShadowPages");
1793   if (_stack_guard_state == stack_guard_yellow_reserved_disabled) {
1794     enable_stack_yellow_reserved_zone();
1795     if (reserved_stack_activation() != stack_base()) {
1796       set_reserved_stack_activation(stack_base());
1797     }
1798   } else if (_stack_guard_state == stack_guard_reserved_disabled) {
1799     set_reserved_stack_activation(stack_base());
1800     enable_stack_reserved_zone();
1801   }
1802   return true;
1803 }
1804 
1805 bool JavaThread::reguard_stack(void) {
1806   return reguard_stack(os::current_stack_pointer());
1807 }
1808 
1809 void JavaThread::block_if_vm_exited() {
1810   if (_terminated == _vm_exited) {
1811     // _vm_exited is set at safepoint, and Threads_lock is never released
1812     // we will block here forever.
1813     // Here we can be doing a jump from a safe state to an unsafe state without
1814     // proper transition, but it happens after the final safepoint has begun.
1815     set_thread_state(_thread_in_vm);
1816     Threads_lock->lock();
1817     ShouldNotReachHere();
1818   }
1819 }
1820 
1821 
1822 // Remove this ifdef when C1 is ported to the compiler interface.
1823 static void compiler_thread_entry(JavaThread* thread, TRAPS);
1824 static void sweeper_thread_entry(JavaThread* thread, TRAPS);
1825 
1826 JavaThread::JavaThread(ThreadFunction entry_point, size_t stack_sz) :
1827                        Thread() {
1828   initialize();
1829   _jni_attach_state = _not_attaching_via_jni;
1830   set_entry_point(entry_point);
1831   // Create the native thread itself.
1832   // %note runtime_23
1833   os::ThreadType thr_type = os::java_thread;
1834   thr_type = entry_point == &compiler_thread_entry ? os::compiler_thread :
1835                                                      os::java_thread;
1836   os::create_thread(this, thr_type, stack_sz);
1837   // The _osthread may be NULL here because we ran out of memory (too many threads active).
1838   // We need to throw and OutOfMemoryError - however we cannot do this here because the caller
1839   // may hold a lock and all locks must be unlocked before throwing the exception (throwing
1840   // the exception consists of creating the exception object & initializing it, initialization
1841   // will leave the VM via a JavaCall and then all locks must be unlocked).
1842   //
1843   // The thread is still suspended when we reach here. Thread must be explicit started
1844   // by creator! Furthermore, the thread must also explicitly be added to the Threads list
1845   // by calling Threads:add. The reason why this is not done here, is because the thread
1846   // object must be fully initialized (take a look at JVM_Start)
1847 }
1848 
1849 JavaThread::~JavaThread() {
1850 
1851   // JSR166 -- return the parker to the free list
1852   Parker::Release(_parker);
1853   _parker = NULL;
1854 
1855   // Return the sleep event to the free list
1856   ParkEvent::Release(_SleepEvent);
1857   _SleepEvent = NULL;
1858 
1859   // Free any remaining  previous UnrollBlock
1860   vframeArray* old_array = vframe_array_last();
1861 
1862   if (old_array != NULL) {
1863     Deoptimization::UnrollBlock* old_info = old_array->unroll_block();
1864     old_array->set_unroll_block(NULL);
1865     delete old_info;
1866     delete old_array;
1867   }
1868 
1869   GrowableArray<jvmtiDeferredLocalVariableSet*>* deferred = deferred_locals();
1870   if (deferred != NULL) {
1871     // This can only happen if thread is destroyed before deoptimization occurs.
1872     assert(deferred->length() != 0, "empty array!");
1873     do {
1874       jvmtiDeferredLocalVariableSet* dlv = deferred->at(0);
1875       deferred->remove_at(0);
1876       // individual jvmtiDeferredLocalVariableSet are CHeapObj's
1877       delete dlv;
1878     } while (deferred->length() != 0);
1879     delete deferred;
1880   }
1881 
1882   // All Java related clean up happens in exit
1883   ThreadSafepointState::destroy(this);
1884   if (_thread_stat != NULL) delete _thread_stat;
1885 
1886 #if INCLUDE_JVMCI
1887   if (JVMCICounterSize > 0) {
1888     if (jvmci_counters_include(this)) {
1889       for (int i = 0; i < JVMCICounterSize; i++) {
1890         _jvmci_old_thread_counters[i] += _jvmci_counters[i];
1891       }
1892     }
1893     FREE_C_HEAP_ARRAY(jlong, _jvmci_counters);
1894   }
1895 #endif // INCLUDE_JVMCI
1896 }
1897 
1898 
1899 // First JavaThread specific code executed by a new Java thread.
1900 void JavaThread::pre_run() {
1901   // empty - see comments in run()
1902 }
1903 
1904 // The main routine called by a new Java thread. This isn't overridden
1905 // by subclasses, instead different subclasses define a different "entry_point"
1906 // which defines the actual logic for that kind of thread.
1907 void JavaThread::run() {
1908   // initialize thread-local alloc buffer related fields
1909   this->initialize_tlab();
1910 
1911   // Used to test validity of stack trace backs.
1912   // This can't be moved into pre_run() else we invalidate
1913   // the requirement that thread_main_inner is lower on
1914   // the stack. Consequently all the initialization logic
1915   // stays here in run() rather than pre_run().
1916   this->record_base_of_stack_pointer();
1917 
1918   this->create_stack_guard_pages();
1919 
1920   this->cache_global_variables();
1921 
1922   // Thread is now sufficiently initialized to be handled by the safepoint code as being
1923   // in the VM. Change thread state from _thread_new to _thread_in_vm
1924   ThreadStateTransition::transition(this, _thread_new, _thread_in_vm);
1925   // Before a thread is on the threads list it is always safe, so after leaving the
1926   // _thread_new we should emit a instruction barrier. The distance to modified code
1927   // from here is probably far enough, but this is consistent and safe.
1928   OrderAccess::cross_modify_fence();
1929 
1930   assert(JavaThread::current() == this, "sanity check");
1931   assert(!Thread::current()->owns_locks(), "sanity check");
1932 
1933   DTRACE_THREAD_PROBE(start, this);
1934 
1935   // This operation might block. We call that after all safepoint checks for a new thread has
1936   // been completed.
1937   this->set_active_handles(JNIHandleBlock::allocate_block());
1938 
1939   if (JvmtiExport::should_post_thread_life()) {
1940     JvmtiExport::post_thread_start(this);
1941 
1942   }
1943 
1944   // We call another function to do the rest so we are sure that the stack addresses used
1945   // from there will be lower than the stack base just computed.
1946   thread_main_inner();
1947 }
1948 
1949 void JavaThread::thread_main_inner() {
1950   assert(JavaThread::current() == this, "sanity check");
1951   assert(this->threadObj() != NULL, "just checking");
1952 
1953   // Execute thread entry point unless this thread has a pending exception
1954   // or has been stopped before starting.
1955   // Note: Due to JVM_StopThread we can have pending exceptions already!
1956   if (!this->has_pending_exception() &&
1957       !java_lang_Thread::is_stillborn(this->threadObj())) {
1958     {
1959       ResourceMark rm(this);
1960       this->set_native_thread_name(this->get_thread_name());
1961     }
1962     HandleMark hm(this);
1963     this->entry_point()(this, this);
1964   }
1965 
1966   DTRACE_THREAD_PROBE(stop, this);
1967 
1968   // Cleanup is handled in post_run()
1969 }
1970 
1971 // Shared teardown for all JavaThreads
1972 void JavaThread::post_run() {
1973   this->exit(false);
1974   // Defer deletion to here to ensure 'this' is still referenceable in call_run
1975   // for any shared tear-down.
1976   this->smr_delete();
1977 }
1978 
1979 static void ensure_join(JavaThread* thread) {
1980   // We do not need to grab the Threads_lock, since we are operating on ourself.
1981   Handle threadObj(thread, thread->threadObj());
1982   assert(threadObj.not_null(), "java thread object must exist");
1983   ObjectLocker lock(threadObj, thread);
1984   // Ignore pending exception (ThreadDeath), since we are exiting anyway
1985   thread->clear_pending_exception();
1986   // Thread is exiting. So set thread_status field in  java.lang.Thread class to TERMINATED.
1987   java_lang_Thread::set_thread_status(threadObj(), java_lang_Thread::TERMINATED);
1988   // Clear the native thread instance - this makes isAlive return false and allows the join()
1989   // to complete once we've done the notify_all below
1990   java_lang_Thread::set_thread(threadObj(), NULL);
1991   lock.notify_all(thread);
1992   // Ignore pending exception (ThreadDeath), since we are exiting anyway
1993   thread->clear_pending_exception();
1994 }
1995 
1996 static bool is_daemon(oop threadObj) {
1997   return (threadObj != NULL && java_lang_Thread::is_daemon(threadObj));
1998 }
1999 
2000 // For any new cleanup additions, please check to see if they need to be applied to
2001 // cleanup_failed_attach_current_thread as well.
2002 void JavaThread::exit(bool destroy_vm, ExitType exit_type) {
2003   assert(this == JavaThread::current(), "thread consistency check");
2004 
2005   elapsedTimer _timer_exit_phase1;
2006   elapsedTimer _timer_exit_phase2;
2007   elapsedTimer _timer_exit_phase3;
2008   elapsedTimer _timer_exit_phase4;
2009 
2010   if (log_is_enabled(Debug, os, thread, timer)) {
2011     _timer_exit_phase1.start();
2012   }
2013 
2014   HandleMark hm(this);
2015   Handle uncaught_exception(this, this->pending_exception());
2016   this->clear_pending_exception();
2017   Handle threadObj(this, this->threadObj());
2018   assert(threadObj.not_null(), "Java thread object should be created");
2019 
2020   // FIXIT: This code should be moved into else part, when reliable 1.2/1.3 check is in place
2021   {
2022     EXCEPTION_MARK;
2023 
2024     CLEAR_PENDING_EXCEPTION;
2025   }
2026   if (!destroy_vm) {
2027     if (uncaught_exception.not_null()) {
2028       EXCEPTION_MARK;
2029       // Call method Thread.dispatchUncaughtException().
2030       Klass* thread_klass = SystemDictionary::Thread_klass();
2031       JavaValue result(T_VOID);
2032       JavaCalls::call_virtual(&result,
2033                               threadObj, thread_klass,
2034                               vmSymbols::dispatchUncaughtException_name(),
2035                               vmSymbols::throwable_void_signature(),
2036                               uncaught_exception,
2037                               THREAD);
2038       if (HAS_PENDING_EXCEPTION) {
2039         ResourceMark rm(this);
2040         jio_fprintf(defaultStream::error_stream(),
2041                     "\nException: %s thrown from the UncaughtExceptionHandler"
2042                     " in thread \"%s\"\n",
2043                     pending_exception()->klass()->external_name(),
2044                     get_thread_name());
2045         CLEAR_PENDING_EXCEPTION;
2046       }
2047     }
2048     JFR_ONLY(Jfr::on_java_thread_dismantle(this);)
2049 
2050     // Call Thread.exit(). We try 3 times in case we got another Thread.stop during
2051     // the execution of the method. If that is not enough, then we don't really care. Thread.stop
2052     // is deprecated anyhow.
2053     if (!is_Compiler_thread()) {
2054       int count = 3;
2055       while (java_lang_Thread::threadGroup(threadObj()) != NULL && (count-- > 0)) {
2056         EXCEPTION_MARK;
2057         JavaValue result(T_VOID);
2058         Klass* thread_klass = SystemDictionary::Thread_klass();
2059         JavaCalls::call_virtual(&result,
2060                                 threadObj, thread_klass,
2061                                 vmSymbols::exit_method_name(),
2062                                 vmSymbols::void_method_signature(),
2063                                 THREAD);
2064         CLEAR_PENDING_EXCEPTION;
2065       }
2066     }
2067     // notify JVMTI
2068     if (JvmtiExport::should_post_thread_life()) {
2069       JvmtiExport::post_thread_end(this);
2070     }
2071 
2072     // We have notified the agents that we are exiting, before we go on,
2073     // we must check for a pending external suspend request and honor it
2074     // in order to not surprise the thread that made the suspend request.
2075     while (true) {
2076       {
2077         MutexLocker ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2078         if (!is_external_suspend()) {
2079           set_terminated(_thread_exiting);
2080           ThreadService::current_thread_exiting(this, is_daemon(threadObj()));
2081           break;
2082         }
2083         // Implied else:
2084         // Things get a little tricky here. We have a pending external
2085         // suspend request, but we are holding the SR_lock so we
2086         // can't just self-suspend. So we temporarily drop the lock
2087         // and then self-suspend.
2088       }
2089 
2090       ThreadBlockInVM tbivm(this);
2091       java_suspend_self();
2092 
2093       // We're done with this suspend request, but we have to loop around
2094       // and check again. Eventually we will get SR_lock without a pending
2095       // external suspend request and will be able to mark ourselves as
2096       // exiting.
2097     }
2098     // no more external suspends are allowed at this point
2099   } else {
2100     assert(!is_terminated() && !is_exiting(), "must not be exiting");
2101     // before_exit() has already posted JVMTI THREAD_END events
2102   }
2103 
2104   if (log_is_enabled(Debug, os, thread, timer)) {
2105     _timer_exit_phase1.stop();
2106     _timer_exit_phase2.start();
2107   }
2108 
2109   // Capture daemon status before the thread is marked as terminated.
2110   bool daemon = is_daemon(threadObj());
2111 
2112   // Notify waiters on thread object. This has to be done after exit() is called
2113   // on the thread (if the thread is the last thread in a daemon ThreadGroup the
2114   // group should have the destroyed bit set before waiters are notified).
2115   ensure_join(this);
2116   assert(!this->has_pending_exception(), "ensure_join should have cleared");
2117 
2118   if (log_is_enabled(Debug, os, thread, timer)) {
2119     _timer_exit_phase2.stop();
2120     _timer_exit_phase3.start();
2121   }
2122   // 6282335 JNI DetachCurrentThread spec states that all Java monitors
2123   // held by this thread must be released. The spec does not distinguish
2124   // between JNI-acquired and regular Java monitors. We can only see
2125   // regular Java monitors here if monitor enter-exit matching is broken.
2126   //
2127   // ensure_join() ignores IllegalThreadStateExceptions, and so does
2128   // ObjectSynchronizer::release_monitors_owned_by_thread().
2129   if (exit_type == jni_detach) {
2130     // Sanity check even though JNI DetachCurrentThread() would have
2131     // returned JNI_ERR if there was a Java frame. JavaThread exit
2132     // should be done executing Java code by the time we get here.
2133     assert(!this->has_last_Java_frame(),
2134            "should not have a Java frame when detaching or exiting");
2135     ObjectSynchronizer::release_monitors_owned_by_thread(this);
2136     assert(!this->has_pending_exception(), "release_monitors should have cleared");
2137   }
2138 
2139   // These things needs to be done while we are still a Java Thread. Make sure that thread
2140   // is in a consistent state, in case GC happens
2141   JFR_ONLY(Jfr::on_thread_exit(this);)
2142 
2143   if (active_handles() != NULL) {
2144     JNIHandleBlock* block = active_handles();
2145     set_active_handles(NULL);
2146     JNIHandleBlock::release_block(block);
2147   }
2148 
2149   if (free_handle_block() != NULL) {
2150     JNIHandleBlock* block = free_handle_block();
2151     set_free_handle_block(NULL);
2152     JNIHandleBlock::release_block(block);
2153   }
2154 
2155   // These have to be removed while this is still a valid thread.
2156   remove_stack_guard_pages();
2157 
2158   if (UseTLAB) {
2159     tlab().retire();
2160   }
2161 
2162   if (JvmtiEnv::environments_might_exist()) {
2163     JvmtiExport::cleanup_thread(this);
2164   }
2165 
2166   // We must flush any deferred card marks and other various GC barrier
2167   // related buffers (e.g. G1 SATB buffer and G1 dirty card queue buffer)
2168   // before removing a thread from the list of active threads.
2169   BarrierSet::barrier_set()->on_thread_detach(this);
2170 
2171   log_info(os, thread)("JavaThread %s (tid: " UINTX_FORMAT ").",
2172     exit_type == JavaThread::normal_exit ? "exiting" : "detaching",
2173     os::current_thread_id());
2174 
2175   if (log_is_enabled(Debug, os, thread, timer)) {
2176     _timer_exit_phase3.stop();
2177     _timer_exit_phase4.start();
2178   }
2179   // Remove from list of active threads list, and notify VM thread if we are the last non-daemon thread
2180   Threads::remove(this, daemon);
2181 
2182   if (log_is_enabled(Debug, os, thread, timer)) {
2183     _timer_exit_phase4.stop();
2184     ResourceMark rm(this);
2185     log_debug(os, thread, timer)("name='%s'"
2186                                  ", exit-phase1=" JLONG_FORMAT
2187                                  ", exit-phase2=" JLONG_FORMAT
2188                                  ", exit-phase3=" JLONG_FORMAT
2189                                  ", exit-phase4=" JLONG_FORMAT,
2190                                  get_thread_name(),
2191                                  _timer_exit_phase1.milliseconds(),
2192                                  _timer_exit_phase2.milliseconds(),
2193                                  _timer_exit_phase3.milliseconds(),
2194                                  _timer_exit_phase4.milliseconds());
2195   }
2196 }
2197 
2198 void JavaThread::cleanup_failed_attach_current_thread(bool is_daemon) {
2199   if (active_handles() != NULL) {
2200     JNIHandleBlock* block = active_handles();
2201     set_active_handles(NULL);
2202     JNIHandleBlock::release_block(block);
2203   }
2204 
2205   if (free_handle_block() != NULL) {
2206     JNIHandleBlock* block = free_handle_block();
2207     set_free_handle_block(NULL);
2208     JNIHandleBlock::release_block(block);
2209   }
2210 
2211   // These have to be removed while this is still a valid thread.
2212   remove_stack_guard_pages();
2213 
2214   if (UseTLAB) {
2215     tlab().retire();
2216   }
2217 
2218   BarrierSet::barrier_set()->on_thread_detach(this);
2219 
2220   Threads::remove(this, is_daemon);
2221   this->smr_delete();
2222 }
2223 
2224 JavaThread* JavaThread::active() {
2225   Thread* thread = Thread::current();
2226   if (thread->is_Java_thread()) {
2227     return (JavaThread*) thread;
2228   } else {
2229     assert(thread->is_VM_thread(), "this must be a vm thread");
2230     VM_Operation* op = ((VMThread*) thread)->vm_operation();
2231     JavaThread *ret=op == NULL ? NULL : (JavaThread *)op->calling_thread();
2232     assert(ret->is_Java_thread(), "must be a Java thread");
2233     return ret;
2234   }
2235 }
2236 
2237 bool JavaThread::is_lock_owned(address adr) const {
2238   if (Thread::is_lock_owned(adr)) return true;
2239 
2240   for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2241     if (chunk->contains(adr)) return true;
2242   }
2243 
2244   return false;
2245 }
2246 
2247 
2248 void JavaThread::add_monitor_chunk(MonitorChunk* chunk) {
2249   chunk->set_next(monitor_chunks());
2250   set_monitor_chunks(chunk);
2251 }
2252 
2253 void JavaThread::remove_monitor_chunk(MonitorChunk* chunk) {
2254   guarantee(monitor_chunks() != NULL, "must be non empty");
2255   if (monitor_chunks() == chunk) {
2256     set_monitor_chunks(chunk->next());
2257   } else {
2258     MonitorChunk* prev = monitor_chunks();
2259     while (prev->next() != chunk) prev = prev->next();
2260     prev->set_next(chunk->next());
2261   }
2262 }
2263 
2264 // JVM support.
2265 
2266 // Note: this function shouldn't block if it's called in
2267 // _thread_in_native_trans state (such as from
2268 // check_special_condition_for_native_trans()).
2269 void JavaThread::check_and_handle_async_exceptions(bool check_unsafe_error) {
2270 
2271   if (has_last_Java_frame() && has_async_condition()) {
2272     // If we are at a polling page safepoint (not a poll return)
2273     // then we must defer async exception because live registers
2274     // will be clobbered by the exception path. Poll return is
2275     // ok because the call we a returning from already collides
2276     // with exception handling registers and so there is no issue.
2277     // (The exception handling path kills call result registers but
2278     //  this is ok since the exception kills the result anyway).
2279 
2280     if (is_at_poll_safepoint()) {
2281       // if the code we are returning to has deoptimized we must defer
2282       // the exception otherwise live registers get clobbered on the
2283       // exception path before deoptimization is able to retrieve them.
2284       //
2285       RegisterMap map(this, false);
2286       frame caller_fr = last_frame().sender(&map);
2287       assert(caller_fr.is_compiled_frame(), "what?");
2288       if (caller_fr.is_deoptimized_frame()) {
2289         log_info(exceptions)("deferred async exception at compiled safepoint");
2290         return;
2291       }
2292     }
2293   }
2294 
2295   JavaThread::AsyncRequests condition = clear_special_runtime_exit_condition();
2296   if (condition == _no_async_condition) {
2297     // Conditions have changed since has_special_runtime_exit_condition()
2298     // was called:
2299     // - if we were here only because of an external suspend request,
2300     //   then that was taken care of above (or cancelled) so we are done
2301     // - if we were here because of another async request, then it has
2302     //   been cleared between the has_special_runtime_exit_condition()
2303     //   and now so again we are done
2304     return;
2305   }
2306 
2307   // Check for pending async. exception
2308   if (_pending_async_exception != NULL) {
2309     // Only overwrite an already pending exception, if it is not a threadDeath.
2310     if (!has_pending_exception() || !pending_exception()->is_a(SystemDictionary::ThreadDeath_klass())) {
2311 
2312       // We cannot call Exceptions::_throw(...) here because we cannot block
2313       set_pending_exception(_pending_async_exception, __FILE__, __LINE__);
2314 
2315       LogTarget(Info, exceptions) lt;
2316       if (lt.is_enabled()) {
2317         ResourceMark rm;
2318         LogStream ls(lt);
2319         ls.print("Async. exception installed at runtime exit (" INTPTR_FORMAT ")", p2i(this));
2320           if (has_last_Java_frame()) {
2321             frame f = last_frame();
2322            ls.print(" (pc: " INTPTR_FORMAT " sp: " INTPTR_FORMAT " )", p2i(f.pc()), p2i(f.sp()));
2323           }
2324         ls.print_cr(" of type: %s", _pending_async_exception->klass()->external_name());
2325       }
2326       _pending_async_exception = NULL;
2327       clear_has_async_exception();
2328     }
2329   }
2330 
2331   if (check_unsafe_error &&
2332       condition == _async_unsafe_access_error && !has_pending_exception()) {
2333     condition = _no_async_condition;  // done
2334     switch (thread_state()) {
2335     case _thread_in_vm: {
2336       JavaThread* THREAD = this;
2337       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2338     }
2339     case _thread_in_native: {
2340       ThreadInVMfromNative tiv(this);
2341       JavaThread* THREAD = this;
2342       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2343     }
2344     case _thread_in_Java: {
2345       ThreadInVMfromJava tiv(this);
2346       JavaThread* THREAD = this;
2347       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in a recent unsafe memory access operation in compiled Java code");
2348     }
2349     default:
2350       ShouldNotReachHere();
2351     }
2352   }
2353 
2354   assert(condition == _no_async_condition || has_pending_exception() ||
2355          (!check_unsafe_error && condition == _async_unsafe_access_error),
2356          "must have handled the async condition, if no exception");
2357 }
2358 
2359 void JavaThread::handle_special_runtime_exit_condition(bool check_asyncs) {
2360 
2361   // Check for pending external suspend.
2362   if (is_external_suspend_with_lock()) {
2363     frame_anchor()->make_walkable(this);
2364     java_suspend_self_with_safepoint_check();
2365   }
2366 
2367   // We might be here for reasons in addition to the self-suspend request
2368   // so check for other async requests.
2369   if (check_asyncs) {
2370     check_and_handle_async_exceptions();
2371   }
2372 
2373   JFR_ONLY(SUSPEND_THREAD_CONDITIONAL(this);)
2374 }
2375 
2376 void JavaThread::send_thread_stop(oop java_throwable)  {
2377   ResourceMark rm;
2378   assert(Thread::current()->is_VM_thread() || Thread::current() == this, "should be in the vm thread");
2379 
2380   // Do not throw asynchronous exceptions against the compiler thread
2381   // (the compiler thread should not be a Java thread -- fix in 1.4.2)
2382   if (!can_call_java()) return;
2383 
2384   {
2385     // Actually throw the Throwable against the target Thread - however
2386     // only if there is no thread death exception installed already.
2387     if (_pending_async_exception == NULL || !_pending_async_exception->is_a(SystemDictionary::ThreadDeath_klass())) {
2388       // If the topmost frame is a runtime stub, then we are calling into
2389       // OptoRuntime from compiled code. Some runtime stubs (new, monitor_exit..)
2390       // must deoptimize the caller before continuing, as the compiled  exception handler table
2391       // may not be valid
2392       if (has_last_Java_frame()) {
2393         frame f = last_frame();
2394         if (f.is_runtime_frame() || f.is_safepoint_blob_frame()) {
2395           RegisterMap reg_map(this, false);
2396           frame compiled_frame = f.sender(&reg_map);
2397           if (!StressCompiledExceptionHandlers && compiled_frame.can_be_deoptimized()) {
2398             Deoptimization::deoptimize(this, compiled_frame);
2399           }
2400         }
2401       }
2402 
2403       // Set async. pending exception in thread.
2404       set_pending_async_exception(java_throwable);
2405 
2406       if (log_is_enabled(Info, exceptions)) {
2407          ResourceMark rm;
2408         log_info(exceptions)("Pending Async. exception installed of type: %s",
2409                              InstanceKlass::cast(_pending_async_exception->klass())->external_name());
2410       }
2411       // for AbortVMOnException flag
2412       Exceptions::debug_check_abort(_pending_async_exception->klass()->external_name());
2413     }
2414   }
2415 
2416 
2417   // Interrupt thread so it will wake up from a potential wait()/sleep()/park()
2418   java_lang_Thread::set_interrupted(threadObj(), true);
2419   this->interrupt();
2420 }
2421 
2422 // External suspension mechanism.
2423 //
2424 // Tell the VM to suspend a thread when ever it knows that it does not hold on
2425 // to any VM_locks and it is at a transition
2426 // Self-suspension will happen on the transition out of the vm.
2427 // Catch "this" coming in from JNIEnv pointers when the thread has been freed
2428 //
2429 // Guarantees on return:
2430 //   + Target thread will not execute any new bytecode (that's why we need to
2431 //     force a safepoint)
2432 //   + Target thread will not enter any new monitors
2433 //
2434 void JavaThread::java_suspend() {
2435   ThreadsListHandle tlh;
2436   if (!tlh.includes(this) || threadObj() == NULL || is_exiting()) {
2437     return;
2438   }
2439 
2440   { MutexLocker ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2441     if (!is_external_suspend()) {
2442       // a racing resume has cancelled us; bail out now
2443       return;
2444     }
2445 
2446     // suspend is done
2447     uint32_t debug_bits = 0;
2448     // Warning: is_ext_suspend_completed() may temporarily drop the
2449     // SR_lock to allow the thread to reach a stable thread state if
2450     // it is currently in a transient thread state.
2451     if (is_ext_suspend_completed(false /* !called_by_wait */,
2452                                  SuspendRetryDelay, &debug_bits)) {
2453       return;
2454     }
2455   }
2456 
2457   if (Thread::current() == this) {
2458     // Safely self-suspend.
2459     // If we don't do this explicitly it will implicitly happen
2460     // before we transition back to Java, and on some other thread-state
2461     // transition paths, but not as we exit a JVM TI SuspendThread call.
2462     // As SuspendThread(current) must not return (until resumed) we must
2463     // self-suspend here.
2464     ThreadBlockInVM tbivm(this);
2465     java_suspend_self();
2466   } else {
2467     VM_ThreadSuspend vm_suspend;
2468     VMThread::execute(&vm_suspend);
2469   }
2470 }
2471 
2472 // Part II of external suspension.
2473 // A JavaThread self suspends when it detects a pending external suspend
2474 // request. This is usually on transitions. It is also done in places
2475 // where continuing to the next transition would surprise the caller,
2476 // e.g., monitor entry.
2477 //
2478 // Returns the number of times that the thread self-suspended.
2479 //
2480 // Note: DO NOT call java_suspend_self() when you just want to block current
2481 //       thread. java_suspend_self() is the second stage of cooperative
2482 //       suspension for external suspend requests and should only be used
2483 //       to complete an external suspend request.
2484 //
2485 int JavaThread::java_suspend_self() {
2486   assert(thread_state() == _thread_blocked, "wrong state for java_suspend_self()");
2487   int ret = 0;
2488 
2489   // we are in the process of exiting so don't suspend
2490   if (is_exiting()) {
2491     clear_external_suspend();
2492     return ret;
2493   }
2494 
2495   assert(_anchor.walkable() ||
2496          (is_Java_thread() && !((JavaThread*)this)->has_last_Java_frame()),
2497          "must have walkable stack");
2498 
2499   MonitorLocker ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2500 
2501   assert(!this->is_ext_suspended(),
2502          "a thread trying to self-suspend should not already be suspended");
2503 
2504   if (this->is_suspend_equivalent()) {
2505     // If we are self-suspending as a result of the lifting of a
2506     // suspend equivalent condition, then the suspend_equivalent
2507     // flag is not cleared until we set the ext_suspended flag so
2508     // that wait_for_ext_suspend_completion() returns consistent
2509     // results.
2510     this->clear_suspend_equivalent();
2511   }
2512 
2513   // A racing resume may have cancelled us before we grabbed SR_lock
2514   // above. Or another external suspend request could be waiting for us
2515   // by the time we return from SR_lock()->wait(). The thread
2516   // that requested the suspension may already be trying to walk our
2517   // stack and if we return now, we can change the stack out from under
2518   // it. This would be a "bad thing (TM)" and cause the stack walker
2519   // to crash. We stay self-suspended until there are no more pending
2520   // external suspend requests.
2521   while (is_external_suspend()) {
2522     ret++;
2523     this->set_ext_suspended();
2524 
2525     // _ext_suspended flag is cleared by java_resume()
2526     while (is_ext_suspended()) {
2527       ml.wait();
2528     }
2529   }
2530   return ret;
2531 }
2532 
2533 // Helper routine to set up the correct thread state before calling java_suspend_self.
2534 // This is called when regular thread-state transition helpers can't be used because
2535 // we can be in various states, in particular _thread_in_native_trans.
2536 // Because this thread is external suspended the safepoint code will count it as at
2537 // a safepoint, regardless of what its actual current thread-state is. But
2538 // is_ext_suspend_completed() may be waiting to see a thread transition from
2539 // _thread_in_native_trans to _thread_blocked. So we set the thread state directly
2540 // to _thread_blocked. The problem with setting thread state directly is that a
2541 // safepoint could happen just after java_suspend_self() returns after being resumed,
2542 // and the VM thread will see the _thread_blocked state. So we must check for a safepoint
2543 // after restoring the state to make sure we won't leave while a safepoint is in progress.
2544 // However, not all initial-states are allowed when performing a safepoint check, as we
2545 // should never be blocking at a safepoint whilst in those states. Of these 'bad' states
2546 // only _thread_in_native is possible when executing this code (based on our two callers).
2547 // A thread that is _thread_in_native is already safepoint-safe and so it doesn't matter
2548 // whether the VMThread sees the _thread_blocked state, or the _thread_in_native state,
2549 // and so we don't need the explicit safepoint check.
2550 
2551 void JavaThread::java_suspend_self_with_safepoint_check() {
2552   assert(this == Thread::current(), "invariant");
2553   JavaThreadState state = thread_state();
2554   set_thread_state(_thread_blocked);
2555   java_suspend_self();
2556   set_thread_state_fence(state);
2557   // Since we are not using a regular thread-state transition helper here,
2558   // we must manually emit the instruction barrier after leaving a safe state.
2559   OrderAccess::cross_modify_fence();
2560   if (state != _thread_in_native) {
2561     SafepointMechanism::block_if_requested(this);
2562   }
2563 }
2564 
2565 #ifdef ASSERT
2566 // Verify the JavaThread has not yet been published in the Threads::list, and
2567 // hence doesn't need protection from concurrent access at this stage.
2568 void JavaThread::verify_not_published() {
2569   // Cannot create a ThreadsListHandle here and check !tlh.includes(this)
2570   // since an unpublished JavaThread doesn't participate in the
2571   // Thread-SMR protocol for keeping a ThreadsList alive.
2572   assert(!on_thread_list(), "JavaThread shouldn't have been published yet!");
2573 }
2574 #endif
2575 
2576 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2577 // progress or when _suspend_flags is non-zero.
2578 // Current thread needs to self-suspend if there is a suspend request and/or
2579 // block if a safepoint is in progress.
2580 // Async exception ISN'T checked.
2581 // Note only the ThreadInVMfromNative transition can call this function
2582 // directly and when thread state is _thread_in_native_trans
2583 void JavaThread::check_safepoint_and_suspend_for_native_trans(JavaThread *thread) {
2584   assert(thread->thread_state() == _thread_in_native_trans, "wrong state");
2585 
2586   assert(!thread->has_last_Java_frame() || thread->frame_anchor()->walkable(), "Unwalkable stack in native->vm transition");
2587 
2588   if (thread->is_external_suspend()) {
2589     thread->java_suspend_self_with_safepoint_check();
2590   } else {
2591     SafepointMechanism::block_if_requested(thread);
2592   }
2593 
2594   JFR_ONLY(SUSPEND_THREAD_CONDITIONAL(thread);)
2595 }
2596 
2597 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2598 // progress or when _suspend_flags is non-zero.
2599 // Current thread needs to self-suspend if there is a suspend request and/or
2600 // block if a safepoint is in progress.
2601 // Also check for pending async exception (not including unsafe access error).
2602 // Note only the native==>VM/Java barriers can call this function and when
2603 // thread state is _thread_in_native_trans.
2604 void JavaThread::check_special_condition_for_native_trans(JavaThread *thread) {
2605   check_safepoint_and_suspend_for_native_trans(thread);
2606 
2607   if (thread->has_async_exception()) {
2608     // We are in _thread_in_native_trans state, don't handle unsafe
2609     // access error since that may block.
2610     thread->check_and_handle_async_exceptions(false);
2611   }
2612 }
2613 
2614 // This is a variant of the normal
2615 // check_special_condition_for_native_trans with slightly different
2616 // semantics for use by critical native wrappers.  It does all the
2617 // normal checks but also performs the transition back into
2618 // thread_in_Java state.  This is required so that critical natives
2619 // can potentially block and perform a GC if they are the last thread
2620 // exiting the GCLocker.
2621 void JavaThread::check_special_condition_for_native_trans_and_transition(JavaThread *thread) {
2622   check_special_condition_for_native_trans(thread);
2623 
2624   // Finish the transition
2625   thread->set_thread_state(_thread_in_Java);
2626 
2627   if (thread->do_critical_native_unlock()) {
2628     ThreadInVMfromJavaNoAsyncException tiv(thread);
2629     GCLocker::unlock_critical(thread);
2630     thread->clear_critical_native_unlock();
2631   }
2632 }
2633 
2634 // We need to guarantee the Threads_lock here, since resumes are not
2635 // allowed during safepoint synchronization
2636 // Can only resume from an external suspension
2637 void JavaThread::java_resume() {
2638   assert_locked_or_safepoint(Threads_lock);
2639 
2640   // Sanity check: thread is gone, has started exiting or the thread
2641   // was not externally suspended.
2642   ThreadsListHandle tlh;
2643   if (!tlh.includes(this) || is_exiting() || !is_external_suspend()) {
2644     return;
2645   }
2646 
2647   MutexLocker ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2648 
2649   clear_external_suspend();
2650 
2651   if (is_ext_suspended()) {
2652     clear_ext_suspended();
2653     SR_lock()->notify_all();
2654   }
2655 }
2656 
2657 size_t JavaThread::_stack_red_zone_size = 0;
2658 size_t JavaThread::_stack_yellow_zone_size = 0;
2659 size_t JavaThread::_stack_reserved_zone_size = 0;
2660 size_t JavaThread::_stack_shadow_zone_size = 0;
2661 
2662 void JavaThread::create_stack_guard_pages() {
2663   if (!os::uses_stack_guard_pages() ||
2664       _stack_guard_state != stack_guard_unused ||
2665       (DisablePrimordialThreadGuardPages && os::is_primordial_thread())) {
2666       log_info(os, thread)("Stack guard page creation for thread "
2667                            UINTX_FORMAT " disabled", os::current_thread_id());
2668     return;
2669   }
2670   address low_addr = stack_end();
2671   size_t len = stack_guard_zone_size();
2672 
2673   assert(is_aligned(low_addr, os::vm_page_size()), "Stack base should be the start of a page");
2674   assert(is_aligned(len, os::vm_page_size()), "Stack size should be a multiple of page size");
2675 
2676   int must_commit = os::must_commit_stack_guard_pages();
2677   // warning("Guarding at " PTR_FORMAT " for len " SIZE_FORMAT "\n", low_addr, len);
2678 
2679   if (must_commit && !os::create_stack_guard_pages((char *) low_addr, len)) {
2680     log_warning(os, thread)("Attempt to allocate stack guard pages failed.");
2681     return;
2682   }
2683 
2684   if (os::guard_memory((char *) low_addr, len)) {
2685     _stack_guard_state = stack_guard_enabled;
2686   } else {
2687     log_warning(os, thread)("Attempt to protect stack guard pages failed ("
2688       PTR_FORMAT "-" PTR_FORMAT ").", p2i(low_addr), p2i(low_addr + len));
2689     if (os::uncommit_memory((char *) low_addr, len)) {
2690       log_warning(os, thread)("Attempt to deallocate stack guard pages failed.");
2691     }
2692     return;
2693   }
2694 
2695   log_debug(os, thread)("Thread " UINTX_FORMAT " stack guard pages activated: "
2696     PTR_FORMAT "-" PTR_FORMAT ".",
2697     os::current_thread_id(), p2i(low_addr), p2i(low_addr + len));
2698 }
2699 
2700 void JavaThread::remove_stack_guard_pages() {
2701   assert(Thread::current() == this, "from different thread");
2702   if (_stack_guard_state == stack_guard_unused) return;
2703   address low_addr = stack_end();
2704   size_t len = stack_guard_zone_size();
2705 
2706   if (os::must_commit_stack_guard_pages()) {
2707     if (os::remove_stack_guard_pages((char *) low_addr, len)) {
2708       _stack_guard_state = stack_guard_unused;
2709     } else {
2710       log_warning(os, thread)("Attempt to deallocate stack guard pages failed ("
2711         PTR_FORMAT "-" PTR_FORMAT ").", p2i(low_addr), p2i(low_addr + len));
2712       return;
2713     }
2714   } else {
2715     if (_stack_guard_state == stack_guard_unused) return;
2716     if (os::unguard_memory((char *) low_addr, len)) {
2717       _stack_guard_state = stack_guard_unused;
2718     } else {
2719       log_warning(os, thread)("Attempt to unprotect stack guard pages failed ("
2720         PTR_FORMAT "-" PTR_FORMAT ").", p2i(low_addr), p2i(low_addr + len));
2721       return;
2722     }
2723   }
2724 
2725   log_debug(os, thread)("Thread " UINTX_FORMAT " stack guard pages removed: "
2726     PTR_FORMAT "-" PTR_FORMAT ".",
2727     os::current_thread_id(), p2i(low_addr), p2i(low_addr + len));
2728 }
2729 
2730 void JavaThread::enable_stack_reserved_zone() {
2731   assert(_stack_guard_state == stack_guard_reserved_disabled, "inconsistent state");
2732 
2733   // The base notation is from the stack's point of view, growing downward.
2734   // We need to adjust it to work correctly with guard_memory()
2735   address base = stack_reserved_zone_base() - stack_reserved_zone_size();
2736 
2737   guarantee(base < stack_base(),"Error calculating stack reserved zone");
2738   guarantee(base < os::current_stack_pointer(),"Error calculating stack reserved zone");
2739 
2740   if (os::guard_memory((char *) base, stack_reserved_zone_size())) {
2741     _stack_guard_state = stack_guard_enabled;
2742   } else {
2743     warning("Attempt to guard stack reserved zone failed.");
2744   }
2745   enable_register_stack_guard();
2746 }
2747 
2748 void JavaThread::disable_stack_reserved_zone() {
2749   assert(_stack_guard_state == stack_guard_enabled, "inconsistent state");
2750 
2751   // Simply return if called for a thread that does not use guard pages.
2752   if (_stack_guard_state != stack_guard_enabled) return;
2753 
2754   // The base notation is from the stack's point of view, growing downward.
2755   // We need to adjust it to work correctly with guard_memory()
2756   address base = stack_reserved_zone_base() - stack_reserved_zone_size();
2757 
2758   if (os::unguard_memory((char *)base, stack_reserved_zone_size())) {
2759     _stack_guard_state = stack_guard_reserved_disabled;
2760   } else {
2761     warning("Attempt to unguard stack reserved zone failed.");
2762   }
2763   disable_register_stack_guard();
2764 }
2765 
2766 void JavaThread::enable_stack_yellow_reserved_zone() {
2767   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2768   assert(_stack_guard_state != stack_guard_enabled, "already enabled");
2769 
2770   // The base notation is from the stacks point of view, growing downward.
2771   // We need to adjust it to work correctly with guard_memory()
2772   address base = stack_red_zone_base();
2773 
2774   guarantee(base < stack_base(), "Error calculating stack yellow zone");
2775   guarantee(base < os::current_stack_pointer(), "Error calculating stack yellow zone");
2776 
2777   if (os::guard_memory((char *) base, stack_yellow_reserved_zone_size())) {
2778     _stack_guard_state = stack_guard_enabled;
2779   } else {
2780     warning("Attempt to guard stack yellow zone failed.");
2781   }
2782   enable_register_stack_guard();
2783 }
2784 
2785 void JavaThread::disable_stack_yellow_reserved_zone() {
2786   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2787   assert(_stack_guard_state != stack_guard_yellow_reserved_disabled, "already disabled");
2788 
2789   // Simply return if called for a thread that does not use guard pages.
2790   if (_stack_guard_state == stack_guard_unused) return;
2791 
2792   // The base notation is from the stacks point of view, growing downward.
2793   // We need to adjust it to work correctly with guard_memory()
2794   address base = stack_red_zone_base();
2795 
2796   if (os::unguard_memory((char *)base, stack_yellow_reserved_zone_size())) {
2797     _stack_guard_state = stack_guard_yellow_reserved_disabled;
2798   } else {
2799     warning("Attempt to unguard stack yellow zone failed.");
2800   }
2801   disable_register_stack_guard();
2802 }
2803 
2804 void JavaThread::enable_stack_red_zone() {
2805   // The base notation is from the stacks point of view, growing downward.
2806   // We need to adjust it to work correctly with guard_memory()
2807   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2808   address base = stack_red_zone_base() - stack_red_zone_size();
2809 
2810   guarantee(base < stack_base(), "Error calculating stack red zone");
2811   guarantee(base < os::current_stack_pointer(), "Error calculating stack red zone");
2812 
2813   if (!os::guard_memory((char *) base, stack_red_zone_size())) {
2814     warning("Attempt to guard stack red zone failed.");
2815   }
2816 }
2817 
2818 void JavaThread::disable_stack_red_zone() {
2819   // The base notation is from the stacks point of view, growing downward.
2820   // We need to adjust it to work correctly with guard_memory()
2821   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2822   address base = stack_red_zone_base() - stack_red_zone_size();
2823   if (!os::unguard_memory((char *)base, stack_red_zone_size())) {
2824     warning("Attempt to unguard stack red zone failed.");
2825   }
2826 }
2827 
2828 void JavaThread::frames_do(void f(frame*, const RegisterMap* map)) {
2829   // ignore is there is no stack
2830   if (!has_last_Java_frame()) return;
2831   // traverse the stack frames. Starts from top frame.
2832   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2833     frame* fr = fst.current();
2834     f(fr, fst.register_map());
2835   }
2836 }
2837 
2838 
2839 #ifndef PRODUCT
2840 // Deoptimization
2841 // Function for testing deoptimization
2842 void JavaThread::deoptimize() {
2843   StackFrameStream fst(this, false);
2844   bool deopt = false;           // Dump stack only if a deopt actually happens.
2845   bool only_at = strlen(DeoptimizeOnlyAt) > 0;
2846   // Iterate over all frames in the thread and deoptimize
2847   for (; !fst.is_done(); fst.next()) {
2848     if (fst.current()->can_be_deoptimized()) {
2849 
2850       if (only_at) {
2851         // Deoptimize only at particular bcis.  DeoptimizeOnlyAt
2852         // consists of comma or carriage return separated numbers so
2853         // search for the current bci in that string.
2854         address pc = fst.current()->pc();
2855         nmethod* nm =  (nmethod*) fst.current()->cb();
2856         ScopeDesc* sd = nm->scope_desc_at(pc);
2857         char buffer[8];
2858         jio_snprintf(buffer, sizeof(buffer), "%d", sd->bci());
2859         size_t len = strlen(buffer);
2860         const char * found = strstr(DeoptimizeOnlyAt, buffer);
2861         while (found != NULL) {
2862           if ((found[len] == ',' || found[len] == '\n' || found[len] == '\0') &&
2863               (found == DeoptimizeOnlyAt || found[-1] == ',' || found[-1] == '\n')) {
2864             // Check that the bci found is bracketed by terminators.
2865             break;
2866           }
2867           found = strstr(found + 1, buffer);
2868         }
2869         if (!found) {
2870           continue;
2871         }
2872       }
2873 
2874       if (DebugDeoptimization && !deopt) {
2875         deopt = true; // One-time only print before deopt
2876         tty->print_cr("[BEFORE Deoptimization]");
2877         trace_frames();
2878         trace_stack();
2879       }
2880       Deoptimization::deoptimize(this, *fst.current());
2881     }
2882   }
2883 
2884   if (DebugDeoptimization && deopt) {
2885     tty->print_cr("[AFTER Deoptimization]");
2886     trace_frames();
2887   }
2888 }
2889 
2890 
2891 // Make zombies
2892 void JavaThread::make_zombies() {
2893   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2894     if (fst.current()->can_be_deoptimized()) {
2895       // it is a Java nmethod
2896       nmethod* nm = CodeCache::find_nmethod(fst.current()->pc());
2897       nm->make_not_entrant();
2898     }
2899   }
2900 }
2901 #endif // PRODUCT
2902 
2903 
2904 void JavaThread::deoptimize_marked_methods() {
2905   if (!has_last_Java_frame()) return;
2906   StackFrameStream fst(this, false);
2907   for (; !fst.is_done(); fst.next()) {
2908     if (fst.current()->should_be_deoptimized()) {
2909       Deoptimization::deoptimize(this, *fst.current());
2910     }
2911   }
2912 }
2913 
2914 // If the caller is a NamedThread, then remember, in the current scope,
2915 // the given JavaThread in its _processed_thread field.
2916 class RememberProcessedThread: public StackObj {
2917   NamedThread* _cur_thr;
2918  public:
2919   RememberProcessedThread(JavaThread* jthr) {
2920     Thread* thread = Thread::current();
2921     if (thread->is_Named_thread()) {
2922       _cur_thr = (NamedThread *)thread;
2923       _cur_thr->set_processed_thread(jthr);
2924     } else {
2925       _cur_thr = NULL;
2926     }
2927   }
2928 
2929   ~RememberProcessedThread() {
2930     if (_cur_thr) {
2931       _cur_thr->set_processed_thread(NULL);
2932     }
2933   }
2934 };
2935 
2936 void JavaThread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
2937   // Verify that the deferred card marks have been flushed.
2938   assert(deferred_card_mark().is_empty(), "Should be empty during GC");
2939 
2940   // Traverse the GCHandles
2941   Thread::oops_do(f, cf);
2942 
2943   assert((!has_last_Java_frame() && java_call_counter() == 0) ||
2944          (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2945 
2946   if (has_last_Java_frame()) {
2947     // Record JavaThread to GC thread
2948     RememberProcessedThread rpt(this);
2949 
2950     // traverse the registered growable array
2951     if (_array_for_gc != NULL) {
2952       for (int index = 0; index < _array_for_gc->length(); index++) {
2953         f->do_oop(_array_for_gc->adr_at(index));
2954       }
2955     }
2956 
2957     // Traverse the monitor chunks
2958     for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2959       chunk->oops_do(f);
2960     }
2961 
2962     // Traverse the execution stack
2963     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2964       fst.current()->oops_do(f, cf, fst.register_map());
2965     }
2966   }
2967 
2968   assert(vframe_array_head() == NULL, "deopt in progress at a safepoint!");
2969   // If we have deferred set_locals there might be oops waiting to be
2970   // written
2971   GrowableArray<jvmtiDeferredLocalVariableSet*>* list = deferred_locals();
2972   if (list != NULL) {
2973     for (int i = 0; i < list->length(); i++) {
2974       list->at(i)->oops_do(f);
2975     }
2976   }
2977 
2978   // Traverse instance variables at the end since the GC may be moving things
2979   // around using this function
2980   f->do_oop((oop*) &_threadObj);
2981   f->do_oop((oop*) &_vm_result);
2982   f->do_oop((oop*) &_exception_oop);
2983   f->do_oop((oop*) &_pending_async_exception);
2984 
2985   if (jvmti_thread_state() != NULL) {
2986     jvmti_thread_state()->oops_do(f, cf);
2987   }
2988 }
2989 
2990 #ifdef ASSERT
2991 void JavaThread::verify_states_for_handshake() {
2992   // This checks that the thread has a correct frame state during a handshake.
2993   assert((!has_last_Java_frame() && java_call_counter() == 0) ||
2994          (has_last_Java_frame() && java_call_counter() > 0),
2995          "unexpected frame info: has_last_frame=%d, java_call_counter=%d",
2996          has_last_Java_frame(), java_call_counter());
2997 }
2998 #endif
2999 
3000 void JavaThread::nmethods_do(CodeBlobClosure* cf) {
3001   assert((!has_last_Java_frame() && java_call_counter() == 0) ||
3002          (has_last_Java_frame() && java_call_counter() > 0),
3003          "unexpected frame info: has_last_frame=%d, java_call_counter=%d",
3004          has_last_Java_frame(), java_call_counter());
3005 
3006   if (has_last_Java_frame()) {
3007     // Traverse the execution stack
3008     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
3009       fst.current()->nmethods_do(cf);
3010     }
3011   }
3012 
3013   if (jvmti_thread_state() != NULL) {
3014     jvmti_thread_state()->nmethods_do(cf);
3015   }
3016 }
3017 
3018 void JavaThread::metadata_do(MetadataClosure* f) {
3019   if (has_last_Java_frame()) {
3020     // Traverse the execution stack to call f() on the methods in the stack
3021     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
3022       fst.current()->metadata_do(f);
3023     }
3024   } else if (is_Compiler_thread()) {
3025     // need to walk ciMetadata in current compile tasks to keep alive.
3026     CompilerThread* ct = (CompilerThread*)this;
3027     if (ct->env() != NULL) {
3028       ct->env()->metadata_do(f);
3029     }
3030     CompileTask* task = ct->task();
3031     if (task != NULL) {
3032       task->metadata_do(f);
3033     }
3034   }
3035 }
3036 
3037 // Printing
3038 const char* _get_thread_state_name(JavaThreadState _thread_state) {
3039   switch (_thread_state) {
3040   case _thread_uninitialized:     return "_thread_uninitialized";
3041   case _thread_new:               return "_thread_new";
3042   case _thread_new_trans:         return "_thread_new_trans";
3043   case _thread_in_native:         return "_thread_in_native";
3044   case _thread_in_native_trans:   return "_thread_in_native_trans";
3045   case _thread_in_vm:             return "_thread_in_vm";
3046   case _thread_in_vm_trans:       return "_thread_in_vm_trans";
3047   case _thread_in_Java:           return "_thread_in_Java";
3048   case _thread_in_Java_trans:     return "_thread_in_Java_trans";
3049   case _thread_blocked:           return "_thread_blocked";
3050   case _thread_blocked_trans:     return "_thread_blocked_trans";
3051   default:                        return "unknown thread state";
3052   }
3053 }
3054 
3055 #ifndef PRODUCT
3056 void JavaThread::print_thread_state_on(outputStream *st) const {
3057   st->print_cr("   JavaThread state: %s", _get_thread_state_name(_thread_state));
3058 };
3059 #endif // PRODUCT
3060 
3061 // Called by Threads::print() for VM_PrintThreads operation
3062 void JavaThread::print_on(outputStream *st, bool print_extended_info) const {
3063   st->print_raw("\"");
3064   st->print_raw(get_thread_name());
3065   st->print_raw("\" ");
3066   oop thread_oop = threadObj();
3067   if (thread_oop != NULL) {
3068     st->print("#" INT64_FORMAT " ", (int64_t)java_lang_Thread::thread_id(thread_oop));
3069     if (java_lang_Thread::is_daemon(thread_oop))  st->print("daemon ");
3070     st->print("prio=%d ", java_lang_Thread::priority(thread_oop));
3071   }
3072   Thread::print_on(st, print_extended_info);
3073   // print guess for valid stack memory region (assume 4K pages); helps lock debugging
3074   st->print_cr("[" INTPTR_FORMAT "]", (intptr_t)last_Java_sp() & ~right_n_bits(12));
3075   if (thread_oop != NULL) {
3076     st->print_cr("   java.lang.Thread.State: %s", java_lang_Thread::thread_status_name(thread_oop));
3077   }
3078 #ifndef PRODUCT
3079   _safepoint_state->print_on(st);
3080 #endif // PRODUCT
3081   if (is_Compiler_thread()) {
3082     CompileTask *task = ((CompilerThread*)this)->task();
3083     if (task != NULL) {
3084       st->print("   Compiling: ");
3085       task->print(st, NULL, true, false);
3086     } else {
3087       st->print("   No compile task");
3088     }
3089     st->cr();
3090   }
3091 }
3092 
3093 void JavaThread::print() const { print_on(tty); }
3094 
3095 void JavaThread::print_name_on_error(outputStream* st, char *buf, int buflen) const {
3096   st->print("%s", get_thread_name_string(buf, buflen));
3097 }
3098 
3099 // Called by fatal error handler. The difference between this and
3100 // JavaThread::print() is that we can't grab lock or allocate memory.
3101 void JavaThread::print_on_error(outputStream* st, char *buf, int buflen) const {
3102   st->print("JavaThread \"%s\"", get_thread_name_string(buf, buflen));
3103   oop thread_obj = threadObj();
3104   if (thread_obj != NULL) {
3105     if (java_lang_Thread::is_daemon(thread_obj)) st->print(" daemon");
3106   }
3107   st->print(" [");
3108   st->print("%s", _get_thread_state_name(_thread_state));
3109   if (osthread()) {
3110     st->print(", id=%d", osthread()->thread_id());
3111   }
3112   st->print(", stack(" PTR_FORMAT "," PTR_FORMAT ")",
3113             p2i(stack_end()), p2i(stack_base()));
3114   st->print("]");
3115 
3116   ThreadsSMRSupport::print_info_on(this, st);
3117   return;
3118 }
3119 
3120 // Verification
3121 
3122 static void frame_verify(frame* f, const RegisterMap *map) { f->verify(map); }
3123 
3124 void JavaThread::verify() {
3125   // Verify oops in the thread.
3126   oops_do(&VerifyOopClosure::verify_oop, NULL);
3127 
3128   // Verify the stack frames.
3129   frames_do(frame_verify);
3130 }
3131 
3132 // CR 6300358 (sub-CR 2137150)
3133 // Most callers of this method assume that it can't return NULL but a
3134 // thread may not have a name whilst it is in the process of attaching to
3135 // the VM - see CR 6412693, and there are places where a JavaThread can be
3136 // seen prior to having it's threadObj set (eg JNI attaching threads and
3137 // if vm exit occurs during initialization). These cases can all be accounted
3138 // for such that this method never returns NULL.
3139 const char* JavaThread::get_thread_name() const {
3140 #ifdef ASSERT
3141   // early safepoints can hit while current thread does not yet have TLS
3142   if (!SafepointSynchronize::is_at_safepoint()) {
3143     Thread *cur = Thread::current();
3144     if (!(cur->is_Java_thread() && cur == this)) {
3145       // Current JavaThreads are allowed to get their own name without
3146       // the Threads_lock.
3147       assert_locked_or_safepoint_or_handshake(Threads_lock, this);
3148     }
3149   }
3150 #endif // ASSERT
3151   return get_thread_name_string();
3152 }
3153 
3154 // Returns a non-NULL representation of this thread's name, or a suitable
3155 // descriptive string if there is no set name
3156 const char* JavaThread::get_thread_name_string(char* buf, int buflen) const {
3157   const char* name_str;
3158   oop thread_obj = threadObj();
3159   if (thread_obj != NULL) {
3160     oop name = java_lang_Thread::name(thread_obj);
3161     if (name != NULL) {
3162       if (buf == NULL) {
3163         name_str = java_lang_String::as_utf8_string(name);
3164       } else {
3165         name_str = java_lang_String::as_utf8_string(name, buf, buflen);
3166       }
3167     } else if (is_attaching_via_jni()) { // workaround for 6412693 - see 6404306
3168       name_str = "<no-name - thread is attaching>";
3169     } else {
3170       name_str = Thread::name();
3171     }
3172   } else {
3173     name_str = Thread::name();
3174   }
3175   assert(name_str != NULL, "unexpected NULL thread name");
3176   return name_str;
3177 }
3178 
3179 void JavaThread::prepare(jobject jni_thread, ThreadPriority prio) {
3180 
3181   assert(Threads_lock->owner() == Thread::current(), "must have threads lock");
3182   assert(NoPriority <= prio && prio <= MaxPriority, "sanity check");
3183   // Link Java Thread object <-> C++ Thread
3184 
3185   // Get the C++ thread object (an oop) from the JNI handle (a jthread)
3186   // and put it into a new Handle.  The Handle "thread_oop" can then
3187   // be used to pass the C++ thread object to other methods.
3188 
3189   // Set the Java level thread object (jthread) field of the
3190   // new thread (a JavaThread *) to C++ thread object using the
3191   // "thread_oop" handle.
3192 
3193   // Set the thread field (a JavaThread *) of the
3194   // oop representing the java_lang_Thread to the new thread (a JavaThread *).
3195 
3196   Handle thread_oop(Thread::current(),
3197                     JNIHandles::resolve_non_null(jni_thread));
3198   assert(InstanceKlass::cast(thread_oop->klass())->is_linked(),
3199          "must be initialized");
3200   set_threadObj(thread_oop());
3201   java_lang_Thread::set_thread(thread_oop(), this);
3202 
3203   if (prio == NoPriority) {
3204     prio = java_lang_Thread::priority(thread_oop());
3205     assert(prio != NoPriority, "A valid priority should be present");
3206   }
3207 
3208   // Push the Java priority down to the native thread; needs Threads_lock
3209   Thread::set_priority(this, prio);
3210 
3211   // Add the new thread to the Threads list and set it in motion.
3212   // We must have threads lock in order to call Threads::add.
3213   // It is crucial that we do not block before the thread is
3214   // added to the Threads list for if a GC happens, then the java_thread oop
3215   // will not be visited by GC.
3216   Threads::add(this);
3217 }
3218 
3219 oop JavaThread::current_park_blocker() {
3220   // Support for JSR-166 locks
3221   oop thread_oop = threadObj();
3222   if (thread_oop != NULL) {
3223     return java_lang_Thread::park_blocker(thread_oop);
3224   }
3225   return NULL;
3226 }
3227 
3228 
3229 void JavaThread::print_stack_on(outputStream* st) {
3230   if (!has_last_Java_frame()) return;
3231   ResourceMark rm;
3232   HandleMark   hm;
3233 
3234   RegisterMap reg_map(this);
3235   vframe* start_vf = last_java_vframe(&reg_map);
3236   int count = 0;
3237   for (vframe* f = start_vf; f != NULL; f = f->sender()) {
3238     if (f->is_java_frame()) {
3239       javaVFrame* jvf = javaVFrame::cast(f);
3240       java_lang_Throwable::print_stack_element(st, jvf->method(), jvf->bci());
3241 
3242       // Print out lock information
3243       if (JavaMonitorsInStackTrace) {
3244         jvf->print_lock_info_on(st, count);
3245       }
3246     } else {
3247       // Ignore non-Java frames
3248     }
3249 
3250     // Bail-out case for too deep stacks if MaxJavaStackTraceDepth > 0
3251     count++;
3252     if (MaxJavaStackTraceDepth > 0 && MaxJavaStackTraceDepth == count) return;
3253   }
3254 }
3255 
3256 
3257 // JVMTI PopFrame support
3258 void JavaThread::popframe_preserve_args(ByteSize size_in_bytes, void* start) {
3259   assert(_popframe_preserved_args == NULL, "should not wipe out old PopFrame preserved arguments");
3260   if (in_bytes(size_in_bytes) != 0) {
3261     _popframe_preserved_args = NEW_C_HEAP_ARRAY(char, in_bytes(size_in_bytes), mtThread);
3262     _popframe_preserved_args_size = in_bytes(size_in_bytes);
3263     Copy::conjoint_jbytes(start, _popframe_preserved_args, _popframe_preserved_args_size);
3264   }
3265 }
3266 
3267 void* JavaThread::popframe_preserved_args() {
3268   return _popframe_preserved_args;
3269 }
3270 
3271 ByteSize JavaThread::popframe_preserved_args_size() {
3272   return in_ByteSize(_popframe_preserved_args_size);
3273 }
3274 
3275 WordSize JavaThread::popframe_preserved_args_size_in_words() {
3276   int sz = in_bytes(popframe_preserved_args_size());
3277   assert(sz % wordSize == 0, "argument size must be multiple of wordSize");
3278   return in_WordSize(sz / wordSize);
3279 }
3280 
3281 void JavaThread::popframe_free_preserved_args() {
3282   assert(_popframe_preserved_args != NULL, "should not free PopFrame preserved arguments twice");
3283   FREE_C_HEAP_ARRAY(char, (char*)_popframe_preserved_args);
3284   _popframe_preserved_args = NULL;
3285   _popframe_preserved_args_size = 0;
3286 }
3287 
3288 #ifndef PRODUCT
3289 
3290 void JavaThread::trace_frames() {
3291   tty->print_cr("[Describe stack]");
3292   int frame_no = 1;
3293   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
3294     tty->print("  %d. ", frame_no++);
3295     fst.current()->print_value_on(tty, this);
3296     tty->cr();
3297   }
3298 }
3299 
3300 class PrintAndVerifyOopClosure: public OopClosure {
3301  protected:
3302   template <class T> inline void do_oop_work(T* p) {
3303     oop obj = RawAccess<>::oop_load(p);
3304     if (obj == NULL) return;
3305     tty->print(INTPTR_FORMAT ": ", p2i(p));
3306     if (oopDesc::is_oop_or_null(obj)) {
3307       if (obj->is_objArray()) {
3308         tty->print_cr("valid objArray: " INTPTR_FORMAT, p2i(obj));
3309       } else {
3310         obj->print();
3311       }
3312     } else {
3313       tty->print_cr("invalid oop: " INTPTR_FORMAT, p2i(obj));
3314     }
3315     tty->cr();
3316   }
3317  public:
3318   virtual void do_oop(oop* p) { do_oop_work(p); }
3319   virtual void do_oop(narrowOop* p)  { do_oop_work(p); }
3320 };
3321 
3322 #ifdef ASSERT
3323 // Print or validate the layout of stack frames
3324 void JavaThread::print_frame_layout(int depth, bool validate_only) {
3325   ResourceMark rm;
3326   PRESERVE_EXCEPTION_MARK;
3327   FrameValues values;
3328   int frame_no = 0;
3329   for (StackFrameStream fst(this, false); !fst.is_done(); fst.next()) {
3330     fst.current()->describe(values, ++frame_no);
3331     if (depth == frame_no) break;
3332   }
3333   if (validate_only) {
3334     values.validate();
3335   } else {
3336     tty->print_cr("[Describe stack layout]");
3337     values.print(this);
3338   }
3339 }
3340 #endif
3341 
3342 void JavaThread::trace_stack_from(vframe* start_vf) {
3343   ResourceMark rm;
3344   int vframe_no = 1;
3345   for (vframe* f = start_vf; f; f = f->sender()) {
3346     if (f->is_java_frame()) {
3347       javaVFrame::cast(f)->print_activation(vframe_no++);
3348     } else {
3349       f->print();
3350     }
3351     if (vframe_no > StackPrintLimit) {
3352       tty->print_cr("...<more frames>...");
3353       return;
3354     }
3355   }
3356 }
3357 
3358 
3359 void JavaThread::trace_stack() {
3360   if (!has_last_Java_frame()) return;
3361   ResourceMark rm;
3362   HandleMark   hm;
3363   RegisterMap reg_map(this);
3364   trace_stack_from(last_java_vframe(&reg_map));
3365 }
3366 
3367 
3368 #endif // PRODUCT
3369 
3370 
3371 javaVFrame* JavaThread::last_java_vframe(RegisterMap *reg_map) {
3372   assert(reg_map != NULL, "a map must be given");
3373   frame f = last_frame();
3374   for (vframe* vf = vframe::new_vframe(&f, reg_map, this); vf; vf = vf->sender()) {
3375     if (vf->is_java_frame()) return javaVFrame::cast(vf);
3376   }
3377   return NULL;
3378 }
3379 
3380 
3381 Klass* JavaThread::security_get_caller_class(int depth) {
3382   vframeStream vfst(this);
3383   vfst.security_get_caller_frame(depth);
3384   if (!vfst.at_end()) {
3385     return vfst.method()->method_holder();
3386   }
3387   return NULL;
3388 }
3389 
3390 // java.lang.Thread.sleep support
3391 // Returns true if sleep time elapsed as expected, and false
3392 // if the thread was interrupted.
3393 bool JavaThread::sleep(jlong millis) {
3394   assert(this == Thread::current(),  "thread consistency check");
3395 
3396   ParkEvent * const slp = this->_SleepEvent;
3397   // Because there can be races with thread interruption sending an unpark()
3398   // to the event, we explicitly reset it here to avoid an immediate return.
3399   // The actual interrupt state will be checked before we park().
3400   slp->reset();
3401   // Thread interruption establishes a happens-before ordering in the
3402   // Java Memory Model, so we need to ensure we synchronize with the
3403   // interrupt state.
3404   OrderAccess::fence();
3405 
3406   jlong prevtime = os::javaTimeNanos();
3407 
3408   for (;;) {
3409     // interruption has precedence over timing out
3410     if (this->is_interrupted(true)) {
3411       return false;
3412     }
3413 
3414     if (millis <= 0) {
3415       return true;
3416     }
3417 
3418     {
3419       ThreadBlockInVM tbivm(this);
3420       OSThreadWaitState osts(this->osthread(), false /* not Object.wait() */);
3421 
3422       this->set_suspend_equivalent();
3423       // cleared by handle_special_suspend_equivalent_condition() or
3424       // java_suspend_self() via check_and_wait_while_suspended()
3425 
3426       slp->park(millis);
3427 
3428       // were we externally suspended while we were waiting?
3429       this->check_and_wait_while_suspended();
3430     }
3431 
3432     // Update elapsed time tracking
3433     jlong newtime = os::javaTimeNanos();
3434     if (newtime - prevtime < 0) {
3435       // time moving backwards, should only happen if no monotonic clock
3436       // not a guarantee() because JVM should not abort on kernel/glibc bugs
3437       assert(!os::supports_monotonic_clock(),
3438              "unexpected time moving backwards detected in JavaThread::sleep()");
3439     } else {
3440       millis -= (newtime - prevtime) / NANOSECS_PER_MILLISEC;
3441     }
3442     prevtime = newtime;
3443   }
3444 }
3445 
3446 static void compiler_thread_entry(JavaThread* thread, TRAPS) {
3447   assert(thread->is_Compiler_thread(), "must be compiler thread");
3448   CompileBroker::compiler_thread_loop();
3449 }
3450 
3451 static void sweeper_thread_entry(JavaThread* thread, TRAPS) {
3452   NMethodSweeper::sweeper_loop();
3453 }
3454 
3455 // Create a CompilerThread
3456 CompilerThread::CompilerThread(CompileQueue* queue,
3457                                CompilerCounters* counters)
3458                                : JavaThread(&compiler_thread_entry) {
3459   _env   = NULL;
3460   _log   = NULL;
3461   _task  = NULL;
3462   _queue = queue;
3463   _counters = counters;
3464   _buffer_blob = NULL;
3465   _compiler = NULL;
3466 
3467   // Compiler uses resource area for compilation, let's bias it to mtCompiler
3468   resource_area()->bias_to(mtCompiler);
3469 
3470 #ifndef PRODUCT
3471   _ideal_graph_printer = NULL;
3472 #endif
3473 }
3474 
3475 CompilerThread::~CompilerThread() {
3476   // Delete objects which were allocated on heap.
3477   delete _counters;
3478 }
3479 
3480 bool CompilerThread::can_call_java() const {
3481   return _compiler != NULL && _compiler->is_jvmci();
3482 }
3483 
3484 // Create sweeper thread
3485 CodeCacheSweeperThread::CodeCacheSweeperThread()
3486 : JavaThread(&sweeper_thread_entry) {
3487   _scanned_compiled_method = NULL;
3488 }
3489 
3490 void CodeCacheSweeperThread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
3491   JavaThread::oops_do(f, cf);
3492   if (_scanned_compiled_method != NULL && cf != NULL) {
3493     // Safepoints can occur when the sweeper is scanning an nmethod so
3494     // process it here to make sure it isn't unloaded in the middle of
3495     // a scan.
3496     cf->do_code_blob(_scanned_compiled_method);
3497   }
3498 }
3499 
3500 void CodeCacheSweeperThread::nmethods_do(CodeBlobClosure* cf) {
3501   JavaThread::nmethods_do(cf);
3502   if (_scanned_compiled_method != NULL && cf != NULL) {
3503     // Safepoints can occur when the sweeper is scanning an nmethod so
3504     // process it here to make sure it isn't unloaded in the middle of
3505     // a scan.
3506     cf->do_code_blob(_scanned_compiled_method);
3507   }
3508 }
3509 
3510 
3511 // ======= Threads ========
3512 
3513 // The Threads class links together all active threads, and provides
3514 // operations over all threads. It is protected by the Threads_lock,
3515 // which is also used in other global contexts like safepointing.
3516 // ThreadsListHandles are used to safely perform operations on one
3517 // or more threads without the risk of the thread exiting during the
3518 // operation.
3519 //
3520 // Note: The Threads_lock is currently more widely used than we
3521 // would like. We are actively migrating Threads_lock uses to other
3522 // mechanisms in order to reduce Threads_lock contention.
3523 
3524 int         Threads::_number_of_threads = 0;
3525 int         Threads::_number_of_non_daemon_threads = 0;
3526 int         Threads::_return_code = 0;
3527 uintx       Threads::_thread_claim_token = 1; // Never zero.
3528 size_t      JavaThread::_stack_size_at_create = 0;
3529 
3530 #ifdef ASSERT
3531 bool        Threads::_vm_complete = false;
3532 #endif
3533 
3534 static inline void *prefetch_and_load_ptr(void **addr, intx prefetch_interval) {
3535   Prefetch::read((void*)addr, prefetch_interval);
3536   return *addr;
3537 }
3538 
3539 // Possibly the ugliest for loop the world has seen. C++ does not allow
3540 // multiple types in the declaration section of the for loop. In this case
3541 // we are only dealing with pointers and hence can cast them. It looks ugly
3542 // but macros are ugly and therefore it's fine to make things absurdly ugly.
3543 #define DO_JAVA_THREADS(LIST, X)                                                                                          \
3544     for (JavaThread *MACRO_scan_interval = (JavaThread*)(uintptr_t)PrefetchScanIntervalInBytes,                           \
3545              *MACRO_list = (JavaThread*)(LIST),                                                                           \
3546              **MACRO_end = ((JavaThread**)((ThreadsList*)MACRO_list)->threads()) + ((ThreadsList*)MACRO_list)->length(),  \
3547              **MACRO_current_p = (JavaThread**)((ThreadsList*)MACRO_list)->threads(),                                     \
3548              *X = (JavaThread*)prefetch_and_load_ptr((void**)MACRO_current_p, (intx)MACRO_scan_interval);                 \
3549          MACRO_current_p != MACRO_end;                                                                                    \
3550          MACRO_current_p++,                                                                                               \
3551              X = (JavaThread*)prefetch_and_load_ptr((void**)MACRO_current_p, (intx)MACRO_scan_interval))
3552 
3553 // All JavaThreads
3554 #define ALL_JAVA_THREADS(X) DO_JAVA_THREADS(ThreadsSMRSupport::get_java_thread_list(), X)
3555 
3556 // All NonJavaThreads (i.e., every non-JavaThread in the system).
3557 void Threads::non_java_threads_do(ThreadClosure* tc) {
3558   NoSafepointVerifier nsv;
3559   for (NonJavaThread::Iterator njti; !njti.end(); njti.step()) {
3560     tc->do_thread(njti.current());
3561   }
3562 }
3563 
3564 // All JavaThreads
3565 void Threads::java_threads_do(ThreadClosure* tc) {
3566   assert_locked_or_safepoint(Threads_lock);
3567   // ALL_JAVA_THREADS iterates through all JavaThreads.
3568   ALL_JAVA_THREADS(p) {
3569     tc->do_thread(p);
3570   }
3571 }
3572 
3573 void Threads::java_threads_and_vm_thread_do(ThreadClosure* tc) {
3574   assert_locked_or_safepoint(Threads_lock);
3575   java_threads_do(tc);
3576   tc->do_thread(VMThread::vm_thread());
3577 }
3578 
3579 // All JavaThreads + all non-JavaThreads (i.e., every thread in the system).
3580 void Threads::threads_do(ThreadClosure* tc) {
3581   assert_locked_or_safepoint(Threads_lock);
3582   java_threads_do(tc);
3583   non_java_threads_do(tc);
3584 }
3585 
3586 void Threads::possibly_parallel_threads_do(bool is_par, ThreadClosure* tc) {
3587   uintx claim_token = Threads::thread_claim_token();
3588   ALL_JAVA_THREADS(p) {
3589     if (p->claim_threads_do(is_par, claim_token)) {
3590       tc->do_thread(p);
3591     }
3592   }
3593   VMThread* vmt = VMThread::vm_thread();
3594   if (vmt->claim_threads_do(is_par, claim_token)) {
3595     tc->do_thread(vmt);
3596   }
3597 }
3598 
3599 // The system initialization in the library has three phases.
3600 //
3601 // Phase 1: java.lang.System class initialization
3602 //     java.lang.System is a primordial class loaded and initialized
3603 //     by the VM early during startup.  java.lang.System.<clinit>
3604 //     only does registerNatives and keeps the rest of the class
3605 //     initialization work later until thread initialization completes.
3606 //
3607 //     System.initPhase1 initializes the system properties, the static
3608 //     fields in, out, and err. Set up java signal handlers, OS-specific
3609 //     system settings, and thread group of the main thread.
3610 static void call_initPhase1(TRAPS) {
3611   Klass* klass = SystemDictionary::System_klass();
3612   JavaValue result(T_VOID);
3613   JavaCalls::call_static(&result, klass, vmSymbols::initPhase1_name(),
3614                                          vmSymbols::void_method_signature(), CHECK);
3615 }
3616 
3617 // Phase 2. Module system initialization
3618 //     This will initialize the module system.  Only java.base classes
3619 //     can be loaded until phase 2 completes.
3620 //
3621 //     Call System.initPhase2 after the compiler initialization and jsr292
3622 //     classes get initialized because module initialization runs a lot of java
3623 //     code, that for performance reasons, should be compiled.  Also, this will
3624 //     enable the startup code to use lambda and other language features in this
3625 //     phase and onward.
3626 //
3627 //     After phase 2, The VM will begin search classes from -Xbootclasspath/a.
3628 static void call_initPhase2(TRAPS) {
3629   TraceTime timer("Initialize module system", TRACETIME_LOG(Info, startuptime));
3630 
3631   Klass* klass = SystemDictionary::System_klass();
3632 
3633   JavaValue result(T_INT);
3634   JavaCallArguments args;
3635   args.push_int(DisplayVMOutputToStderr);
3636   args.push_int(log_is_enabled(Debug, init)); // print stack trace if exception thrown
3637   JavaCalls::call_static(&result, klass, vmSymbols::initPhase2_name(),
3638                                          vmSymbols::boolean_boolean_int_signature(), &args, CHECK);
3639   if (result.get_jint() != JNI_OK) {
3640     vm_exit_during_initialization(); // no message or exception
3641   }
3642 
3643   universe_post_module_init();
3644 }
3645 
3646 // Phase 3. final setup - set security manager, system class loader and TCCL
3647 //
3648 //     This will instantiate and set the security manager, set the system class
3649 //     loader as well as the thread context class loader.  The security manager
3650 //     and system class loader may be a custom class loaded from -Xbootclasspath/a,
3651 //     other modules or the application's classpath.
3652 static void call_initPhase3(TRAPS) {
3653   Klass* klass = SystemDictionary::System_klass();
3654   JavaValue result(T_VOID);
3655   JavaCalls::call_static(&result, klass, vmSymbols::initPhase3_name(),
3656                                          vmSymbols::void_method_signature(), CHECK);
3657 }
3658 
3659 void Threads::initialize_java_lang_classes(JavaThread* main_thread, TRAPS) {
3660   TraceTime timer("Initialize java.lang classes", TRACETIME_LOG(Info, startuptime));
3661 
3662   if (EagerXrunInit && Arguments::init_libraries_at_startup()) {
3663     create_vm_init_libraries();
3664   }
3665 
3666   initialize_class(vmSymbols::java_lang_String(), CHECK);
3667 
3668   // Inject CompactStrings value after the static initializers for String ran.
3669   java_lang_String::set_compact_strings(CompactStrings);
3670 
3671   // Initialize java_lang.System (needed before creating the thread)
3672   initialize_class(vmSymbols::java_lang_System(), CHECK);
3673   // The VM creates & returns objects of this class. Make sure it's initialized.
3674   initialize_class(vmSymbols::java_lang_Class(), CHECK);
3675   initialize_class(vmSymbols::java_lang_ThreadGroup(), CHECK);
3676   Handle thread_group = create_initial_thread_group(CHECK);
3677   Universe::set_main_thread_group(thread_group());
3678   initialize_class(vmSymbols::java_lang_Thread(), CHECK);
3679   oop thread_object = create_initial_thread(thread_group, main_thread, CHECK);
3680   main_thread->set_threadObj(thread_object);
3681 
3682   // Set thread status to running since main thread has
3683   // been started and running.
3684   java_lang_Thread::set_thread_status(thread_object,
3685                                       java_lang_Thread::RUNNABLE);
3686 
3687   // The VM creates objects of this class.
3688   initialize_class(vmSymbols::java_lang_Module(), CHECK);
3689 
3690 #ifdef ASSERT
3691   InstanceKlass *k = SystemDictionary::UnsafeConstants_klass();
3692   assert(k->is_not_initialized(), "UnsafeConstants should not already be initialized");
3693 #endif
3694 
3695   // initialize the hardware-specific constants needed by Unsafe
3696   initialize_class(vmSymbols::jdk_internal_misc_UnsafeConstants(), CHECK);
3697   jdk_internal_misc_UnsafeConstants::set_unsafe_constants();
3698 
3699   // The VM preresolves methods to these classes. Make sure that they get initialized
3700   initialize_class(vmSymbols::java_lang_reflect_Method(), CHECK);
3701   initialize_class(vmSymbols::java_lang_ref_Finalizer(), CHECK);
3702 
3703   // Phase 1 of the system initialization in the library, java.lang.System class initialization
3704   call_initPhase1(CHECK);
3705 
3706   // get the Java runtime name, version, and vendor info after java.lang.System is initialized
3707   JDK_Version::set_runtime_name(get_java_runtime_name(THREAD));
3708   JDK_Version::set_runtime_version(get_java_runtime_version(THREAD));
3709   JDK_Version::set_runtime_vendor_version(get_java_runtime_vendor_version(THREAD));
3710   JDK_Version::set_runtime_vendor_vm_bug_url(get_java_runtime_vendor_vm_bug_url(THREAD));
3711 
3712   // an instance of OutOfMemory exception has been allocated earlier
3713   initialize_class(vmSymbols::java_lang_OutOfMemoryError(), CHECK);
3714   initialize_class(vmSymbols::java_lang_NullPointerException(), CHECK);
3715   initialize_class(vmSymbols::java_lang_ClassCastException(), CHECK);
3716   initialize_class(vmSymbols::java_lang_ArrayStoreException(), CHECK);
3717   initialize_class(vmSymbols::java_lang_ArithmeticException(), CHECK);
3718   initialize_class(vmSymbols::java_lang_StackOverflowError(), CHECK);
3719   initialize_class(vmSymbols::java_lang_IllegalMonitorStateException(), CHECK);
3720   initialize_class(vmSymbols::java_lang_IllegalArgumentException(), CHECK);
3721 
3722   // Eager box cache initialization only if AOT is on and any library is loaded.
3723   AOTLoader::initialize_box_caches(CHECK);
3724 }
3725 
3726 void Threads::initialize_jsr292_core_classes(TRAPS) {
3727   TraceTime timer("Initialize java.lang.invoke classes", TRACETIME_LOG(Info, startuptime));
3728 
3729   initialize_class(vmSymbols::java_lang_invoke_MethodHandle(), CHECK);
3730   initialize_class(vmSymbols::java_lang_invoke_ResolvedMethodName(), CHECK);
3731   initialize_class(vmSymbols::java_lang_invoke_MemberName(), CHECK);
3732   initialize_class(vmSymbols::java_lang_invoke_MethodHandleNatives(), CHECK);
3733 }
3734 
3735 jint Threads::create_vm(JavaVMInitArgs* args, bool* canTryAgain) {
3736   extern void JDK_Version_init();
3737 
3738   // Preinitialize version info.
3739   VM_Version::early_initialize();
3740 
3741   // Check version
3742   if (!is_supported_jni_version(args->version)) return JNI_EVERSION;
3743 
3744   // Initialize library-based TLS
3745   ThreadLocalStorage::init();
3746 
3747   // Initialize the output stream module
3748   ostream_init();
3749 
3750   // Process java launcher properties.
3751   Arguments::process_sun_java_launcher_properties(args);
3752 
3753   // Initialize the os module
3754   os::init();
3755 
3756   // Record VM creation timing statistics
3757   TraceVmCreationTime create_vm_timer;
3758   create_vm_timer.start();
3759 
3760   // Initialize system properties.
3761   Arguments::init_system_properties();
3762 
3763   // So that JDK version can be used as a discriminator when parsing arguments
3764   JDK_Version_init();
3765 
3766   // Update/Initialize System properties after JDK version number is known
3767   Arguments::init_version_specific_system_properties();
3768 
3769   // Make sure to initialize log configuration *before* parsing arguments
3770   LogConfiguration::initialize(create_vm_timer.begin_time());
3771 
3772   // Parse arguments
3773   // Note: this internally calls os::init_container_support()
3774   jint parse_result = Arguments::parse(args);
3775   if (parse_result != JNI_OK) return parse_result;
3776 
3777   os::init_before_ergo();
3778 
3779   jint ergo_result = Arguments::apply_ergo();
3780   if (ergo_result != JNI_OK) return ergo_result;
3781 
3782   // Final check of all ranges after ergonomics which may change values.
3783   if (!JVMFlagRangeList::check_ranges()) {
3784     return JNI_EINVAL;
3785   }
3786 
3787   // Final check of all 'AfterErgo' constraints after ergonomics which may change values.
3788   bool constraint_result = JVMFlagConstraintList::check_constraints(JVMFlagConstraint::AfterErgo);
3789   if (!constraint_result) {
3790     return JNI_EINVAL;
3791   }
3792 
3793   if (PauseAtStartup) {
3794     os::pause();
3795   }
3796 
3797   HOTSPOT_VM_INIT_BEGIN();
3798 
3799   // Timing (must come after argument parsing)
3800   TraceTime timer("Create VM", TRACETIME_LOG(Info, startuptime));
3801 
3802   // Initialize the os module after parsing the args
3803   jint os_init_2_result = os::init_2();
3804   if (os_init_2_result != JNI_OK) return os_init_2_result;
3805 
3806 #ifdef CAN_SHOW_REGISTERS_ON_ASSERT
3807   // Initialize assert poison page mechanism.
3808   if (ShowRegistersOnAssert) {
3809     initialize_assert_poison();
3810   }
3811 #endif // CAN_SHOW_REGISTERS_ON_ASSERT
3812 
3813   SafepointMechanism::initialize();
3814 
3815   jint adjust_after_os_result = Arguments::adjust_after_os();
3816   if (adjust_after_os_result != JNI_OK) return adjust_after_os_result;
3817 
3818   // Initialize output stream logging
3819   ostream_init_log();
3820 
3821   // Convert -Xrun to -agentlib: if there is no JVM_OnLoad
3822   // Must be before create_vm_init_agents()
3823   if (Arguments::init_libraries_at_startup()) {
3824     convert_vm_init_libraries_to_agents();
3825   }
3826 
3827   // Launch -agentlib/-agentpath and converted -Xrun agents
3828   if (Arguments::init_agents_at_startup()) {
3829     create_vm_init_agents();
3830   }
3831 
3832   // Initialize Threads state
3833   _number_of_threads = 0;
3834   _number_of_non_daemon_threads = 0;
3835 
3836   // Initialize global data structures and create system classes in heap
3837   vm_init_globals();
3838 
3839 #if INCLUDE_JVMCI
3840   if (JVMCICounterSize > 0) {
3841     JavaThread::_jvmci_old_thread_counters = NEW_C_HEAP_ARRAY(jlong, JVMCICounterSize, mtJVMCI);
3842     memset(JavaThread::_jvmci_old_thread_counters, 0, sizeof(jlong) * JVMCICounterSize);
3843   } else {
3844     JavaThread::_jvmci_old_thread_counters = NULL;
3845   }
3846 #endif // INCLUDE_JVMCI
3847 
3848   // Attach the main thread to this os thread
3849   JavaThread* main_thread = new JavaThread();
3850   main_thread->set_thread_state(_thread_in_vm);
3851   main_thread->initialize_thread_current();
3852   // must do this before set_active_handles
3853   main_thread->record_stack_base_and_size();
3854   main_thread->register_thread_stack_with_NMT();
3855   main_thread->set_active_handles(JNIHandleBlock::allocate_block());
3856 
3857   if (!main_thread->set_as_starting_thread()) {
3858     vm_shutdown_during_initialization(
3859                                       "Failed necessary internal allocation. Out of swap space");
3860     main_thread->smr_delete();
3861     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3862     return JNI_ENOMEM;
3863   }
3864 
3865   // Enable guard page *after* os::create_main_thread(), otherwise it would
3866   // crash Linux VM, see notes in os_linux.cpp.
3867   main_thread->create_stack_guard_pages();
3868 
3869   // Initialize Java-Level synchronization subsystem
3870   ObjectMonitor::Initialize();
3871 
3872   // Initialize global modules
3873   jint status = init_globals();
3874   if (status != JNI_OK) {
3875     main_thread->smr_delete();
3876     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3877     return status;
3878   }
3879 
3880   JFR_ONLY(Jfr::on_create_vm_1();)
3881 
3882   // Should be done after the heap is fully created
3883   main_thread->cache_global_variables();
3884 
3885   HandleMark hm;
3886 
3887   { MutexLocker mu(Threads_lock);
3888     Threads::add(main_thread);
3889   }
3890 
3891   // Any JVMTI raw monitors entered in onload will transition into
3892   // real raw monitor. VM is setup enough here for raw monitor enter.
3893   JvmtiExport::transition_pending_onload_raw_monitors();
3894 
3895   // Create the VMThread
3896   { TraceTime timer("Start VMThread", TRACETIME_LOG(Info, startuptime));
3897 
3898     VMThread::create();
3899     Thread* vmthread = VMThread::vm_thread();
3900 
3901     if (!os::create_thread(vmthread, os::vm_thread)) {
3902       vm_exit_during_initialization("Cannot create VM thread. "
3903                                     "Out of system resources.");
3904     }
3905 
3906     // Wait for the VM thread to become ready, and VMThread::run to initialize
3907     // Monitors can have spurious returns, must always check another state flag
3908     {
3909       MonitorLocker ml(Notify_lock);
3910       os::start_thread(vmthread);
3911       while (vmthread->active_handles() == NULL) {
3912         ml.wait();
3913       }
3914     }
3915   }
3916 
3917   assert(Universe::is_fully_initialized(), "not initialized");
3918   if (VerifyDuringStartup) {
3919     // Make sure we're starting with a clean slate.
3920     VM_Verify verify_op;
3921     VMThread::execute(&verify_op);
3922   }
3923 
3924   // We need this to update the java.vm.info property in case any flags used
3925   // to initially define it have been changed. This is needed for both CDS and
3926   // AOT, since UseSharedSpaces and UseAOT may be changed after java.vm.info
3927   // is initially computed. See Abstract_VM_Version::vm_info_string().
3928   // This update must happen before we initialize the java classes, but
3929   // after any initialization logic that might modify the flags.
3930   Arguments::update_vm_info_property(VM_Version::vm_info_string());
3931 
3932   Thread* THREAD = Thread::current();
3933 
3934   // Always call even when there are not JVMTI environments yet, since environments
3935   // may be attached late and JVMTI must track phases of VM execution
3936   JvmtiExport::enter_early_start_phase();
3937 
3938   // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
3939   JvmtiExport::post_early_vm_start();
3940 
3941   initialize_java_lang_classes(main_thread, CHECK_JNI_ERR);
3942 
3943   quicken_jni_functions();
3944 
3945   // No more stub generation allowed after that point.
3946   StubCodeDesc::freeze();
3947 
3948   // Set flag that basic initialization has completed. Used by exceptions and various
3949   // debug stuff, that does not work until all basic classes have been initialized.
3950   set_init_completed();
3951 
3952   LogConfiguration::post_initialize();
3953   Metaspace::post_initialize();
3954 
3955   HOTSPOT_VM_INIT_END();
3956 
3957   // record VM initialization completion time
3958 #if INCLUDE_MANAGEMENT
3959   Management::record_vm_init_completed();
3960 #endif // INCLUDE_MANAGEMENT
3961 
3962   // Signal Dispatcher needs to be started before VMInit event is posted
3963   os::initialize_jdk_signal_support(CHECK_JNI_ERR);
3964 
3965   // Start Attach Listener if +StartAttachListener or it can't be started lazily
3966   if (!DisableAttachMechanism) {
3967     AttachListener::vm_start();
3968     if (StartAttachListener || AttachListener::init_at_startup()) {
3969       AttachListener::init();
3970     }
3971   }
3972 
3973   // Launch -Xrun agents
3974   // Must be done in the JVMTI live phase so that for backward compatibility the JDWP
3975   // back-end can launch with -Xdebug -Xrunjdwp.
3976   if (!EagerXrunInit && Arguments::init_libraries_at_startup()) {
3977     create_vm_init_libraries();
3978   }
3979 
3980   if (CleanChunkPoolAsync) {
3981     Chunk::start_chunk_pool_cleaner_task();
3982   }
3983 
3984   // Start the service thread
3985   // The service thread enqueues JVMTI deferred events and does various hashtable
3986   // and other cleanups.  Needs to start before the compilers start posting events.
3987   ServiceThread::initialize();
3988 
3989   // initialize compiler(s)
3990 #if defined(COMPILER1) || COMPILER2_OR_JVMCI
3991 #if INCLUDE_JVMCI
3992   bool force_JVMCI_intialization = false;
3993   if (EnableJVMCI) {
3994     // Initialize JVMCI eagerly when it is explicitly requested.
3995     // Or when JVMCILibDumpJNIConfig or JVMCIPrintProperties is enabled.
3996     force_JVMCI_intialization = EagerJVMCI || JVMCIPrintProperties || JVMCILibDumpJNIConfig;
3997 
3998     if (!force_JVMCI_intialization) {
3999       // 8145270: Force initialization of JVMCI runtime otherwise requests for blocking
4000       // compilations via JVMCI will not actually block until JVMCI is initialized.
4001       force_JVMCI_intialization = UseJVMCICompiler && (!UseInterpreter || !BackgroundCompilation);
4002     }
4003   }
4004 #endif
4005   CompileBroker::compilation_init_phase1(CHECK_JNI_ERR);
4006   // Postpone completion of compiler initialization to after JVMCI
4007   // is initialized to avoid timeouts of blocking compilations.
4008   if (JVMCI_ONLY(!force_JVMCI_intialization) NOT_JVMCI(true)) {
4009     CompileBroker::compilation_init_phase2();
4010   }
4011 #endif
4012 
4013   // Pre-initialize some JSR292 core classes to avoid deadlock during class loading.
4014   // It is done after compilers are initialized, because otherwise compilations of
4015   // signature polymorphic MH intrinsics can be missed
4016   // (see SystemDictionary::find_method_handle_intrinsic).
4017   initialize_jsr292_core_classes(CHECK_JNI_ERR);
4018 
4019   // This will initialize the module system.  Only java.base classes can be
4020   // loaded until phase 2 completes
4021   call_initPhase2(CHECK_JNI_ERR);
4022 
4023   JFR_ONLY(Jfr::on_create_vm_2();)
4024 
4025   // Always call even when there are not JVMTI environments yet, since environments
4026   // may be attached late and JVMTI must track phases of VM execution
4027   JvmtiExport::enter_start_phase();
4028 
4029   // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
4030   JvmtiExport::post_vm_start();
4031 
4032   // Final system initialization including security manager and system class loader
4033   call_initPhase3(CHECK_JNI_ERR);
4034 
4035   // cache the system and platform class loaders
4036   SystemDictionary::compute_java_loaders(CHECK_JNI_ERR);
4037 
4038 #if INCLUDE_CDS
4039   // capture the module path info from the ModuleEntryTable
4040   ClassLoader::initialize_module_path(THREAD);
4041 #endif
4042 
4043 #if INCLUDE_JVMCI
4044   if (force_JVMCI_intialization) {
4045     JVMCI::initialize_compiler(CHECK_JNI_ERR);
4046     CompileBroker::compilation_init_phase2();
4047   }
4048 #endif
4049 
4050   // Always call even when there are not JVMTI environments yet, since environments
4051   // may be attached late and JVMTI must track phases of VM execution
4052   JvmtiExport::enter_live_phase();
4053 
4054   // Make perfmemory accessible
4055   PerfMemory::set_accessible(true);
4056 
4057   // Notify JVMTI agents that VM initialization is complete - nop if no agents.
4058   JvmtiExport::post_vm_initialized();
4059 
4060   JFR_ONLY(Jfr::on_create_vm_3();)
4061 
4062 #if INCLUDE_MANAGEMENT
4063   Management::initialize(THREAD);
4064 
4065   if (HAS_PENDING_EXCEPTION) {
4066     // management agent fails to start possibly due to
4067     // configuration problem and is responsible for printing
4068     // stack trace if appropriate. Simply exit VM.
4069     vm_exit(1);
4070   }
4071 #endif // INCLUDE_MANAGEMENT
4072 
4073   if (MemProfiling)                   MemProfiler::engage();
4074   StatSampler::engage();
4075   if (CheckJNICalls)                  JniPeriodicChecker::engage();
4076 
4077   BiasedLocking::init();
4078 
4079 #if INCLUDE_RTM_OPT
4080   RTMLockingCounters::init();
4081 #endif
4082 
4083   call_postVMInitHook(THREAD);
4084   // The Java side of PostVMInitHook.run must deal with all
4085   // exceptions and provide means of diagnosis.
4086   if (HAS_PENDING_EXCEPTION) {
4087     CLEAR_PENDING_EXCEPTION;
4088   }
4089 
4090   {
4091     MutexLocker ml(PeriodicTask_lock);
4092     // Make sure the WatcherThread can be started by WatcherThread::start()
4093     // or by dynamic enrollment.
4094     WatcherThread::make_startable();
4095     // Start up the WatcherThread if there are any periodic tasks
4096     // NOTE:  All PeriodicTasks should be registered by now. If they
4097     //   aren't, late joiners might appear to start slowly (we might
4098     //   take a while to process their first tick).
4099     if (PeriodicTask::num_tasks() > 0) {
4100       WatcherThread::start();
4101     }
4102   }
4103 
4104   create_vm_timer.end();
4105 #ifdef ASSERT
4106   _vm_complete = true;
4107 #endif
4108 
4109   if (DumpSharedSpaces) {
4110     MetaspaceShared::preload_and_dump(CHECK_JNI_ERR);
4111     ShouldNotReachHere();
4112   }
4113 
4114   return JNI_OK;
4115 }
4116 
4117 // type for the Agent_OnLoad and JVM_OnLoad entry points
4118 extern "C" {
4119   typedef jint (JNICALL *OnLoadEntry_t)(JavaVM *, char *, void *);
4120 }
4121 // Find a command line agent library and return its entry point for
4122 //         -agentlib:  -agentpath:   -Xrun
4123 // num_symbol_entries must be passed-in since only the caller knows the number of symbols in the array.
4124 static OnLoadEntry_t lookup_on_load(AgentLibrary* agent,
4125                                     const char *on_load_symbols[],
4126                                     size_t num_symbol_entries) {
4127   OnLoadEntry_t on_load_entry = NULL;
4128   void *library = NULL;
4129 
4130   if (!agent->valid()) {
4131     char buffer[JVM_MAXPATHLEN];
4132     char ebuf[1024] = "";
4133     const char *name = agent->name();
4134     const char *msg = "Could not find agent library ";
4135 
4136     // First check to see if agent is statically linked into executable
4137     if (os::find_builtin_agent(agent, on_load_symbols, num_symbol_entries)) {
4138       library = agent->os_lib();
4139     } else if (agent->is_absolute_path()) {
4140       library = os::dll_load(name, ebuf, sizeof ebuf);
4141       if (library == NULL) {
4142         const char *sub_msg = " in absolute path, with error: ";
4143         size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
4144         char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
4145         jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
4146         // If we can't find the agent, exit.
4147         vm_exit_during_initialization(buf, NULL);
4148         FREE_C_HEAP_ARRAY(char, buf);
4149       }
4150     } else {
4151       // Try to load the agent from the standard dll directory
4152       if (os::dll_locate_lib(buffer, sizeof(buffer), Arguments::get_dll_dir(),
4153                              name)) {
4154         library = os::dll_load(buffer, ebuf, sizeof ebuf);
4155       }
4156       if (library == NULL) { // Try the library path directory.
4157         if (os::dll_build_name(buffer, sizeof(buffer), name)) {
4158           library = os::dll_load(buffer, ebuf, sizeof ebuf);
4159         }
4160         if (library == NULL) {
4161           const char *sub_msg = " on the library path, with error: ";
4162           const char *sub_msg2 = "\nModule java.instrument may be missing from runtime image.";
4163 
4164           size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) +
4165                        strlen(ebuf) + strlen(sub_msg2) + 1;
4166           char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
4167           if (!agent->is_instrument_lib()) {
4168             jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
4169           } else {
4170             jio_snprintf(buf, len, "%s%s%s%s%s", msg, name, sub_msg, ebuf, sub_msg2);
4171           }
4172           // If we can't find the agent, exit.
4173           vm_exit_during_initialization(buf, NULL);
4174           FREE_C_HEAP_ARRAY(char, buf);
4175         }
4176       }
4177     }
4178     agent->set_os_lib(library);
4179     agent->set_valid();
4180   }
4181 
4182   // Find the OnLoad function.
4183   on_load_entry =
4184     CAST_TO_FN_PTR(OnLoadEntry_t, os::find_agent_function(agent,
4185                                                           false,
4186                                                           on_load_symbols,
4187                                                           num_symbol_entries));
4188   return on_load_entry;
4189 }
4190 
4191 // Find the JVM_OnLoad entry point
4192 static OnLoadEntry_t lookup_jvm_on_load(AgentLibrary* agent) {
4193   const char *on_load_symbols[] = JVM_ONLOAD_SYMBOLS;
4194   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
4195 }
4196 
4197 // Find the Agent_OnLoad entry point
4198 static OnLoadEntry_t lookup_agent_on_load(AgentLibrary* agent) {
4199   const char *on_load_symbols[] = AGENT_ONLOAD_SYMBOLS;
4200   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
4201 }
4202 
4203 // For backwards compatibility with -Xrun
4204 // Convert libraries with no JVM_OnLoad, but which have Agent_OnLoad to be
4205 // treated like -agentpath:
4206 // Must be called before agent libraries are created
4207 void Threads::convert_vm_init_libraries_to_agents() {
4208   AgentLibrary* agent;
4209   AgentLibrary* next;
4210 
4211   for (agent = Arguments::libraries(); agent != NULL; agent = next) {
4212     next = agent->next();  // cache the next agent now as this agent may get moved off this list
4213     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
4214 
4215     // If there is an JVM_OnLoad function it will get called later,
4216     // otherwise see if there is an Agent_OnLoad
4217     if (on_load_entry == NULL) {
4218       on_load_entry = lookup_agent_on_load(agent);
4219       if (on_load_entry != NULL) {
4220         // switch it to the agent list -- so that Agent_OnLoad will be called,
4221         // JVM_OnLoad won't be attempted and Agent_OnUnload will
4222         Arguments::convert_library_to_agent(agent);
4223       } else {
4224         vm_exit_during_initialization("Could not find JVM_OnLoad or Agent_OnLoad function in the library", agent->name());
4225       }
4226     }
4227   }
4228 }
4229 
4230 // Create agents for -agentlib:  -agentpath:  and converted -Xrun
4231 // Invokes Agent_OnLoad
4232 // Called very early -- before JavaThreads exist
4233 void Threads::create_vm_init_agents() {
4234   extern struct JavaVM_ main_vm;
4235   AgentLibrary* agent;
4236 
4237   JvmtiExport::enter_onload_phase();
4238 
4239   for (agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
4240     // CDS dumping does not support native JVMTI agent.
4241     // CDS dumping supports Java agent if the AllowArchivingWithJavaAgent diagnostic option is specified.
4242     if (Arguments::is_dumping_archive()) {
4243       if(!agent->is_instrument_lib()) {
4244         vm_exit_during_cds_dumping("CDS dumping does not support native JVMTI agent, name", agent->name());
4245       } else if (!AllowArchivingWithJavaAgent) {
4246         vm_exit_during_cds_dumping(
4247           "Must enable AllowArchivingWithJavaAgent in order to run Java agent during CDS dumping");
4248       }
4249     }
4250 
4251     OnLoadEntry_t  on_load_entry = lookup_agent_on_load(agent);
4252 
4253     if (on_load_entry != NULL) {
4254       // Invoke the Agent_OnLoad function
4255       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
4256       if (err != JNI_OK) {
4257         vm_exit_during_initialization("agent library failed to init", agent->name());
4258       }
4259     } else {
4260       vm_exit_during_initialization("Could not find Agent_OnLoad function in the agent library", agent->name());
4261     }
4262   }
4263 
4264   JvmtiExport::enter_primordial_phase();
4265 }
4266 
4267 extern "C" {
4268   typedef void (JNICALL *Agent_OnUnload_t)(JavaVM *);
4269 }
4270 
4271 void Threads::shutdown_vm_agents() {
4272   // Send any Agent_OnUnload notifications
4273   const char *on_unload_symbols[] = AGENT_ONUNLOAD_SYMBOLS;
4274   size_t num_symbol_entries = ARRAY_SIZE(on_unload_symbols);
4275   extern struct JavaVM_ main_vm;
4276   for (AgentLibrary* agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
4277 
4278     // Find the Agent_OnUnload function.
4279     Agent_OnUnload_t unload_entry = CAST_TO_FN_PTR(Agent_OnUnload_t,
4280                                                    os::find_agent_function(agent,
4281                                                    false,
4282                                                    on_unload_symbols,
4283                                                    num_symbol_entries));
4284 
4285     // Invoke the Agent_OnUnload function
4286     if (unload_entry != NULL) {
4287       JavaThread* thread = JavaThread::current();
4288       ThreadToNativeFromVM ttn(thread);
4289       HandleMark hm(thread);
4290       (*unload_entry)(&main_vm);
4291     }
4292   }
4293 }
4294 
4295 // Called for after the VM is initialized for -Xrun libraries which have not been converted to agent libraries
4296 // Invokes JVM_OnLoad
4297 void Threads::create_vm_init_libraries() {
4298   extern struct JavaVM_ main_vm;
4299   AgentLibrary* agent;
4300 
4301   for (agent = Arguments::libraries(); agent != NULL; agent = agent->next()) {
4302     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
4303 
4304     if (on_load_entry != NULL) {
4305       // Invoke the JVM_OnLoad function
4306       JavaThread* thread = JavaThread::current();
4307       ThreadToNativeFromVM ttn(thread);
4308       HandleMark hm(thread);
4309       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
4310       if (err != JNI_OK) {
4311         vm_exit_during_initialization("-Xrun library failed to init", agent->name());
4312       }
4313     } else {
4314       vm_exit_during_initialization("Could not find JVM_OnLoad function in -Xrun library", agent->name());
4315     }
4316   }
4317 }
4318 
4319 
4320 // Last thread running calls java.lang.Shutdown.shutdown()
4321 void JavaThread::invoke_shutdown_hooks() {
4322   HandleMark hm(this);
4323 
4324   // Link all classes for dynamic CDS dumping before vm exit.
4325   // Same operation is being done in JVM_BeforeHalt for handling the
4326   // case where the application calls System.exit().
4327   if (DynamicDumpSharedSpaces) {
4328     MetaspaceShared::link_and_cleanup_shared_classes(this);
4329   }
4330 
4331   // We could get here with a pending exception, if so clear it now.
4332   if (this->has_pending_exception()) {
4333     this->clear_pending_exception();
4334   }
4335 
4336   EXCEPTION_MARK;
4337   Klass* shutdown_klass =
4338     SystemDictionary::resolve_or_null(vmSymbols::java_lang_Shutdown(),
4339                                       THREAD);
4340   if (shutdown_klass != NULL) {
4341     // SystemDictionary::resolve_or_null will return null if there was
4342     // an exception.  If we cannot load the Shutdown class, just don't
4343     // call Shutdown.shutdown() at all.  This will mean the shutdown hooks
4344     // won't be run.  Note that if a shutdown hook was registered,
4345     // the Shutdown class would have already been loaded
4346     // (Runtime.addShutdownHook will load it).
4347     JavaValue result(T_VOID);
4348     JavaCalls::call_static(&result,
4349                            shutdown_klass,
4350                            vmSymbols::shutdown_name(),
4351                            vmSymbols::void_method_signature(),
4352                            THREAD);
4353   }
4354   CLEAR_PENDING_EXCEPTION;
4355 }
4356 
4357 // Threads::destroy_vm() is normally called from jni_DestroyJavaVM() when
4358 // the program falls off the end of main(). Another VM exit path is through
4359 // vm_exit() when the program calls System.exit() to return a value or when
4360 // there is a serious error in VM. The two shutdown paths are not exactly
4361 // the same, but they share Shutdown.shutdown() at Java level and before_exit()
4362 // and VM_Exit op at VM level.
4363 //
4364 // Shutdown sequence:
4365 //   + Shutdown native memory tracking if it is on
4366 //   + Wait until we are the last non-daemon thread to execute
4367 //     <-- every thing is still working at this moment -->
4368 //   + Call java.lang.Shutdown.shutdown(), which will invoke Java level
4369 //        shutdown hooks
4370 //   + Call before_exit(), prepare for VM exit
4371 //      > run VM level shutdown hooks (they are registered through JVM_OnExit(),
4372 //        currently the only user of this mechanism is File.deleteOnExit())
4373 //      > stop StatSampler, watcher thread,
4374 //        post thread end and vm death events to JVMTI,
4375 //        stop signal thread
4376 //   + Call JavaThread::exit(), it will:
4377 //      > release JNI handle blocks, remove stack guard pages
4378 //      > remove this thread from Threads list
4379 //     <-- no more Java code from this thread after this point -->
4380 //   + Stop VM thread, it will bring the remaining VM to a safepoint and stop
4381 //     the compiler threads at safepoint
4382 //     <-- do not use anything that could get blocked by Safepoint -->
4383 //   + Disable tracing at JNI/JVM barriers
4384 //   + Set _vm_exited flag for threads that are still running native code
4385 //   + Call exit_globals()
4386 //      > deletes tty
4387 //      > deletes PerfMemory resources
4388 //   + Delete this thread
4389 //   + Return to caller
4390 
4391 bool Threads::destroy_vm() {
4392   JavaThread* thread = JavaThread::current();
4393 
4394 #ifdef ASSERT
4395   _vm_complete = false;
4396 #endif
4397   // Wait until we are the last non-daemon thread to execute
4398   { MonitorLocker nu(Threads_lock);
4399     while (Threads::number_of_non_daemon_threads() > 1)
4400       // This wait should make safepoint checks, wait without a timeout,
4401       // and wait as a suspend-equivalent condition.
4402       nu.wait(0, Mutex::_as_suspend_equivalent_flag);
4403   }
4404 
4405   EventShutdown e;
4406   if (e.should_commit()) {
4407     e.set_reason("No remaining non-daemon Java threads");
4408     e.commit();
4409   }
4410 
4411   // Hang forever on exit if we are reporting an error.
4412   if (ShowMessageBoxOnError && VMError::is_error_reported()) {
4413     os::infinite_sleep();
4414   }
4415   os::wait_for_keypress_at_exit();
4416 
4417   // run Java level shutdown hooks
4418   thread->invoke_shutdown_hooks();
4419 
4420   before_exit(thread);
4421 
4422   thread->exit(true);
4423 
4424   // We are no longer on the main thread list but could still be in a
4425   // secondary list where another thread may try to interact with us.
4426   // So wait until all such interactions are complete before we bring
4427   // the VM to the termination safepoint. Normally this would be done
4428   // using thread->smr_delete() below where we delete the thread, but
4429   // we can't call that after the termination safepoint is active as
4430   // we will deadlock on the Threads_lock. Once all interactions are
4431   // complete it is safe to directly delete the thread at any time.
4432   ThreadsSMRSupport::wait_until_not_protected(thread);
4433 
4434   // Stop VM thread.
4435   {
4436     // 4945125 The vm thread comes to a safepoint during exit.
4437     // GC vm_operations can get caught at the safepoint, and the
4438     // heap is unparseable if they are caught. Grab the Heap_lock
4439     // to prevent this. The GC vm_operations will not be able to
4440     // queue until after the vm thread is dead. After this point,
4441     // we'll never emerge out of the safepoint before the VM exits.
4442 
4443     MutexLocker ml(Heap_lock, Mutex::_no_safepoint_check_flag);
4444 
4445     VMThread::wait_for_vm_thread_exit();
4446     assert(SafepointSynchronize::is_at_safepoint(), "VM thread should exit at Safepoint");
4447     VMThread::destroy();
4448   }
4449 
4450   // Now, all Java threads are gone except daemon threads. Daemon threads
4451   // running Java code or in VM are stopped by the Safepoint. However,
4452   // daemon threads executing native code are still running.  But they
4453   // will be stopped at native=>Java/VM barriers. Note that we can't
4454   // simply kill or suspend them, as it is inherently deadlock-prone.
4455 
4456   VM_Exit::set_vm_exited();
4457 
4458   // Clean up ideal graph printers after the VMThread has started
4459   // the final safepoint which will block all the Compiler threads.
4460   // Note that this Thread has already logically exited so the
4461   // clean_up() function's use of a JavaThreadIteratorWithHandle
4462   // would be a problem except set_vm_exited() has remembered the
4463   // shutdown thread which is granted a policy exception.
4464 #if defined(COMPILER2) && !defined(PRODUCT)
4465   IdealGraphPrinter::clean_up();
4466 #endif
4467 
4468   notify_vm_shutdown();
4469 
4470   // exit_globals() will delete tty
4471   exit_globals();
4472 
4473   // Deleting the shutdown thread here is safe. See comment on
4474   // wait_until_not_protected() above.
4475   delete thread;
4476 
4477 #if INCLUDE_JVMCI
4478   if (JVMCICounterSize > 0) {
4479     FREE_C_HEAP_ARRAY(jlong, JavaThread::_jvmci_old_thread_counters);
4480   }
4481 #endif
4482 
4483   LogConfiguration::finalize();
4484 
4485   return true;
4486 }
4487 
4488 
4489 jboolean Threads::is_supported_jni_version_including_1_1(jint version) {
4490   if (version == JNI_VERSION_1_1) return JNI_TRUE;
4491   return is_supported_jni_version(version);
4492 }
4493 
4494 
4495 jboolean Threads::is_supported_jni_version(jint version) {
4496   if (version == JNI_VERSION_1_2) return JNI_TRUE;
4497   if (version == JNI_VERSION_1_4) return JNI_TRUE;
4498   if (version == JNI_VERSION_1_6) return JNI_TRUE;
4499   if (version == JNI_VERSION_1_8) return JNI_TRUE;
4500   if (version == JNI_VERSION_9) return JNI_TRUE;
4501   if (version == JNI_VERSION_10) return JNI_TRUE;
4502   return JNI_FALSE;
4503 }
4504 
4505 
4506 void Threads::add(JavaThread* p, bool force_daemon) {
4507   // The threads lock must be owned at this point
4508   assert(Threads_lock->owned_by_self(), "must have threads lock");
4509 
4510   BarrierSet::barrier_set()->on_thread_attach(p);
4511 
4512   // Once a JavaThread is added to the Threads list, smr_delete() has
4513   // to be used to delete it. Otherwise we can just delete it directly.
4514   p->set_on_thread_list();
4515 
4516   _number_of_threads++;
4517   oop threadObj = p->threadObj();
4518   bool daemon = true;
4519   // Bootstrapping problem: threadObj can be null for initial
4520   // JavaThread (or for threads attached via JNI)
4521   if ((!force_daemon) && !is_daemon((threadObj))) {
4522     _number_of_non_daemon_threads++;
4523     daemon = false;
4524   }
4525 
4526   ThreadService::add_thread(p, daemon);
4527 
4528   // Maintain fast thread list
4529   ThreadsSMRSupport::add_thread(p);
4530 
4531   // Possible GC point.
4532   Events::log(p, "Thread added: " INTPTR_FORMAT, p2i(p));
4533 }
4534 
4535 void Threads::remove(JavaThread* p, bool is_daemon) {
4536 
4537   // Reclaim the ObjectMonitors from the om_in_use_list and om_free_list of the moribund thread.
4538   ObjectSynchronizer::om_flush(p);
4539 
4540   // Extra scope needed for Thread_lock, so we can check
4541   // that we do not remove thread without safepoint code notice
4542   { MonitorLocker ml(Threads_lock);
4543 
4544     assert(ThreadsSMRSupport::get_java_thread_list()->includes(p), "p must be present");
4545 
4546     // Maintain fast thread list
4547     ThreadsSMRSupport::remove_thread(p);
4548 
4549     _number_of_threads--;
4550     if (!is_daemon) {
4551       _number_of_non_daemon_threads--;
4552 
4553       // Only one thread left, do a notify on the Threads_lock so a thread waiting
4554       // on destroy_vm will wake up.
4555       if (number_of_non_daemon_threads() == 1) {
4556         ml.notify_all();
4557       }
4558     }
4559     ThreadService::remove_thread(p, is_daemon);
4560 
4561     // Make sure that safepoint code disregard this thread. This is needed since
4562     // the thread might mess around with locks after this point. This can cause it
4563     // to do callbacks into the safepoint code. However, the safepoint code is not aware
4564     // of this thread since it is removed from the queue.
4565     p->set_terminated_value();
4566   } // unlock Threads_lock
4567 
4568   // Since Events::log uses a lock, we grab it outside the Threads_lock
4569   Events::log(p, "Thread exited: " INTPTR_FORMAT, p2i(p));
4570 }
4571 
4572 // Operations on the Threads list for GC.  These are not explicitly locked,
4573 // but the garbage collector must provide a safe context for them to run.
4574 // In particular, these things should never be called when the Threads_lock
4575 // is held by some other thread. (Note: the Safepoint abstraction also
4576 // uses the Threads_lock to guarantee this property. It also makes sure that
4577 // all threads gets blocked when exiting or starting).
4578 
4579 void Threads::oops_do(OopClosure* f, CodeBlobClosure* cf) {
4580   ALL_JAVA_THREADS(p) {
4581     p->oops_do(f, cf);
4582   }
4583   VMThread::vm_thread()->oops_do(f, cf);
4584 }
4585 
4586 void Threads::change_thread_claim_token() {
4587   if (++_thread_claim_token == 0) {
4588     // On overflow of the token counter, there is a risk of future
4589     // collisions between a new global token value and a stale token
4590     // for a thread, because not all iterations visit all threads.
4591     // (Though it's pretty much a theoretical concern for non-trivial
4592     // token counter sizes.)  To deal with the possibility, reset all
4593     // the thread tokens to zero on global token overflow.
4594     struct ResetClaims : public ThreadClosure {
4595       virtual void do_thread(Thread* t) {
4596         t->claim_threads_do(false, 0);
4597       }
4598     } reset_claims;
4599     Threads::threads_do(&reset_claims);
4600     // On overflow, update the global token to non-zero, to
4601     // avoid the special "never claimed" initial thread value.
4602     _thread_claim_token = 1;
4603   }
4604 }
4605 
4606 #ifdef ASSERT
4607 void assert_thread_claimed(const char* kind, Thread* t, uintx expected) {
4608   const uintx token = t->threads_do_token();
4609   assert(token == expected,
4610          "%s " PTR_FORMAT " has incorrect value " UINTX_FORMAT " != "
4611          UINTX_FORMAT, kind, p2i(t), token, expected);
4612 }
4613 
4614 void Threads::assert_all_threads_claimed() {
4615   ALL_JAVA_THREADS(p) {
4616     assert_thread_claimed("Thread", p, _thread_claim_token);
4617   }
4618   assert_thread_claimed("VMThread", VMThread::vm_thread(), _thread_claim_token);
4619 }
4620 #endif // ASSERT
4621 
4622 class ParallelOopsDoThreadClosure : public ThreadClosure {
4623 private:
4624   OopClosure* _f;
4625   CodeBlobClosure* _cf;
4626 public:
4627   ParallelOopsDoThreadClosure(OopClosure* f, CodeBlobClosure* cf) : _f(f), _cf(cf) {}
4628   void do_thread(Thread* t) {
4629     t->oops_do(_f, _cf);
4630   }
4631 };
4632 
4633 void Threads::possibly_parallel_oops_do(bool is_par, OopClosure* f, CodeBlobClosure* cf) {
4634   ParallelOopsDoThreadClosure tc(f, cf);
4635   possibly_parallel_threads_do(is_par, &tc);
4636 }
4637 
4638 void Threads::nmethods_do(CodeBlobClosure* cf) {
4639   ALL_JAVA_THREADS(p) {
4640     // This is used by the code cache sweeper to mark nmethods that are active
4641     // on the stack of a Java thread. Ignore the sweeper thread itself to avoid
4642     // marking CodeCacheSweeperThread::_scanned_compiled_method as active.
4643     if(!p->is_Code_cache_sweeper_thread()) {
4644       p->nmethods_do(cf);
4645     }
4646   }
4647 }
4648 
4649 void Threads::metadata_do(MetadataClosure* f) {
4650   ALL_JAVA_THREADS(p) {
4651     p->metadata_do(f);
4652   }
4653 }
4654 
4655 class ThreadHandlesClosure : public ThreadClosure {
4656   void (*_f)(Metadata*);
4657  public:
4658   ThreadHandlesClosure(void f(Metadata*)) : _f(f) {}
4659   virtual void do_thread(Thread* thread) {
4660     thread->metadata_handles_do(_f);
4661   }
4662 };
4663 
4664 void Threads::metadata_handles_do(void f(Metadata*)) {
4665   // Only walk the Handles in Thread.
4666   ThreadHandlesClosure handles_closure(f);
4667   threads_do(&handles_closure);
4668 }
4669 
4670 // Get count Java threads that are waiting to enter the specified monitor.
4671 GrowableArray<JavaThread*>* Threads::get_pending_threads(ThreadsList * t_list,
4672                                                          int count,
4673                                                          address monitor) {
4674   GrowableArray<JavaThread*>* result = new GrowableArray<JavaThread*>(count);
4675 
4676   int i = 0;
4677   DO_JAVA_THREADS(t_list, p) {
4678     if (!p->can_call_java()) continue;
4679 
4680     address pending = (address)p->current_pending_monitor();
4681     if (pending == monitor) {             // found a match
4682       if (i < count) result->append(p);   // save the first count matches
4683       i++;
4684     }
4685   }
4686 
4687   return result;
4688 }
4689 
4690 
4691 JavaThread *Threads::owning_thread_from_monitor_owner(ThreadsList * t_list,
4692                                                       address owner) {
4693   // NULL owner means not locked so we can skip the search
4694   if (owner == NULL) return NULL;
4695 
4696   DO_JAVA_THREADS(t_list, p) {
4697     // first, see if owner is the address of a Java thread
4698     if (owner == (address)p) return p;
4699   }
4700 
4701   // Cannot assert on lack of success here since this function may be
4702   // used by code that is trying to report useful problem information
4703   // like deadlock detection.
4704   if (UseHeavyMonitors) return NULL;
4705 
4706   // If we didn't find a matching Java thread and we didn't force use of
4707   // heavyweight monitors, then the owner is the stack address of the
4708   // Lock Word in the owning Java thread's stack.
4709   //
4710   JavaThread* the_owner = NULL;
4711   DO_JAVA_THREADS(t_list, q) {
4712     if (q->is_lock_owned(owner)) {
4713       the_owner = q;
4714       break;
4715     }
4716   }
4717 
4718   // cannot assert on lack of success here; see above comment
4719   return the_owner;
4720 }
4721 
4722 // Threads::print_on() is called at safepoint by VM_PrintThreads operation.
4723 void Threads::print_on(outputStream* st, bool print_stacks,
4724                        bool internal_format, bool print_concurrent_locks,
4725                        bool print_extended_info) {
4726   char buf[32];
4727   st->print_raw_cr(os::local_time_string(buf, sizeof(buf)));
4728 
4729   st->print_cr("Full thread dump %s (%s %s):",
4730                VM_Version::vm_name(),
4731                VM_Version::vm_release(),
4732                VM_Version::vm_info_string());
4733   st->cr();
4734 
4735 #if INCLUDE_SERVICES
4736   // Dump concurrent locks
4737   ConcurrentLocksDump concurrent_locks;
4738   if (print_concurrent_locks) {
4739     concurrent_locks.dump_at_safepoint();
4740   }
4741 #endif // INCLUDE_SERVICES
4742 
4743   ThreadsSMRSupport::print_info_on(st);
4744   st->cr();
4745 
4746   ALL_JAVA_THREADS(p) {
4747     ResourceMark rm;
4748     p->print_on(st, print_extended_info);
4749     if (print_stacks) {
4750       if (internal_format) {
4751         p->trace_stack();
4752       } else {
4753         p->print_stack_on(st);
4754       }
4755     }
4756     st->cr();
4757 #if INCLUDE_SERVICES
4758     if (print_concurrent_locks) {
4759       concurrent_locks.print_locks_on(p, st);
4760     }
4761 #endif // INCLUDE_SERVICES
4762   }
4763 
4764   VMThread::vm_thread()->print_on(st);
4765   st->cr();
4766   Universe::heap()->print_gc_threads_on(st);
4767   WatcherThread* wt = WatcherThread::watcher_thread();
4768   if (wt != NULL) {
4769     wt->print_on(st);
4770     st->cr();
4771   }
4772 
4773   st->flush();
4774 }
4775 
4776 void Threads::print_on_error(Thread* this_thread, outputStream* st, Thread* current, char* buf,
4777                              int buflen, bool* found_current) {
4778   if (this_thread != NULL) {
4779     bool is_current = (current == this_thread);
4780     *found_current = *found_current || is_current;
4781     st->print("%s", is_current ? "=>" : "  ");
4782 
4783     st->print(PTR_FORMAT, p2i(this_thread));
4784     st->print(" ");
4785     this_thread->print_on_error(st, buf, buflen);
4786     st->cr();
4787   }
4788 }
4789 
4790 class PrintOnErrorClosure : public ThreadClosure {
4791   outputStream* _st;
4792   Thread* _current;
4793   char* _buf;
4794   int _buflen;
4795   bool* _found_current;
4796  public:
4797   PrintOnErrorClosure(outputStream* st, Thread* current, char* buf,
4798                       int buflen, bool* found_current) :
4799    _st(st), _current(current), _buf(buf), _buflen(buflen), _found_current(found_current) {}
4800 
4801   virtual void do_thread(Thread* thread) {
4802     Threads::print_on_error(thread, _st, _current, _buf, _buflen, _found_current);
4803   }
4804 };
4805 
4806 // Threads::print_on_error() is called by fatal error handler. It's possible
4807 // that VM is not at safepoint and/or current thread is inside signal handler.
4808 // Don't print stack trace, as the stack may not be walkable. Don't allocate
4809 // memory (even in resource area), it might deadlock the error handler.
4810 void Threads::print_on_error(outputStream* st, Thread* current, char* buf,
4811                              int buflen) {
4812   ThreadsSMRSupport::print_info_on(st);
4813   st->cr();
4814 
4815   bool found_current = false;
4816   st->print_cr("Java Threads: ( => current thread )");
4817   ALL_JAVA_THREADS(thread) {
4818     print_on_error(thread, st, current, buf, buflen, &found_current);
4819   }
4820   st->cr();
4821 
4822   st->print_cr("Other Threads:");
4823   print_on_error(VMThread::vm_thread(), st, current, buf, buflen, &found_current);
4824   print_on_error(WatcherThread::watcher_thread(), st, current, buf, buflen, &found_current);
4825 
4826   PrintOnErrorClosure print_closure(st, current, buf, buflen, &found_current);
4827   Universe::heap()->gc_threads_do(&print_closure);
4828 
4829   if (!found_current) {
4830     st->cr();
4831     st->print("=>" PTR_FORMAT " (exited) ", p2i(current));
4832     current->print_on_error(st, buf, buflen);
4833     st->cr();
4834   }
4835   st->cr();
4836 
4837   st->print_cr("Threads with active compile tasks:");
4838   print_threads_compiling(st, buf, buflen);
4839 }
4840 
4841 void Threads::print_threads_compiling(outputStream* st, char* buf, int buflen, bool short_form) {
4842   ALL_JAVA_THREADS(thread) {
4843     if (thread->is_Compiler_thread()) {
4844       CompilerThread* ct = (CompilerThread*) thread;
4845 
4846       // Keep task in local variable for NULL check.
4847       // ct->_task might be set to NULL by concurring compiler thread
4848       // because it completed the compilation. The task is never freed,
4849       // though, just returned to a free list.
4850       CompileTask* task = ct->task();
4851       if (task != NULL) {
4852         thread->print_name_on_error(st, buf, buflen);
4853         st->print("  ");
4854         task->print(st, NULL, short_form, true);
4855       }
4856     }
4857   }
4858 }
4859 
4860 
4861 // Internal SpinLock and Mutex
4862 // Based on ParkEvent
4863 
4864 // Ad-hoc mutual exclusion primitives: SpinLock and Mux
4865 //
4866 // We employ SpinLocks _only for low-contention, fixed-length
4867 // short-duration critical sections where we're concerned
4868 // about native mutex_t or HotSpot Mutex:: latency.
4869 // The mux construct provides a spin-then-block mutual exclusion
4870 // mechanism.
4871 //
4872 // Testing has shown that contention on the ListLock guarding gFreeList
4873 // is common.  If we implement ListLock as a simple SpinLock it's common
4874 // for the JVM to devolve to yielding with little progress.  This is true
4875 // despite the fact that the critical sections protected by ListLock are
4876 // extremely short.
4877 //
4878 // TODO-FIXME: ListLock should be of type SpinLock.
4879 // We should make this a 1st-class type, integrated into the lock
4880 // hierarchy as leaf-locks.  Critically, the SpinLock structure
4881 // should have sufficient padding to avoid false-sharing and excessive
4882 // cache-coherency traffic.
4883 
4884 
4885 typedef volatile int SpinLockT;
4886 
4887 void Thread::SpinAcquire(volatile int * adr, const char * LockName) {
4888   if (Atomic::cmpxchg(adr, 0, 1) == 0) {
4889     return;   // normal fast-path return
4890   }
4891 
4892   // Slow-path : We've encountered contention -- Spin/Yield/Block strategy.
4893   int ctr = 0;
4894   int Yields = 0;
4895   for (;;) {
4896     while (*adr != 0) {
4897       ++ctr;
4898       if ((ctr & 0xFFF) == 0 || !os::is_MP()) {
4899         if (Yields > 5) {
4900           os::naked_short_sleep(1);
4901         } else {
4902           os::naked_yield();
4903           ++Yields;
4904         }
4905       } else {
4906         SpinPause();
4907       }
4908     }
4909     if (Atomic::cmpxchg(adr, 0, 1) == 0) return;
4910   }
4911 }
4912 
4913 void Thread::SpinRelease(volatile int * adr) {
4914   assert(*adr != 0, "invariant");
4915   OrderAccess::fence();      // guarantee at least release consistency.
4916   // Roach-motel semantics.
4917   // It's safe if subsequent LDs and STs float "up" into the critical section,
4918   // but prior LDs and STs within the critical section can't be allowed
4919   // to reorder or float past the ST that releases the lock.
4920   // Loads and stores in the critical section - which appear in program
4921   // order before the store that releases the lock - must also appear
4922   // before the store that releases the lock in memory visibility order.
4923   // Conceptually we need a #loadstore|#storestore "release" MEMBAR before
4924   // the ST of 0 into the lock-word which releases the lock, so fence
4925   // more than covers this on all platforms.
4926   *adr = 0;
4927 }
4928 
4929 // muxAcquire and muxRelease:
4930 //
4931 // *  muxAcquire and muxRelease support a single-word lock-word construct.
4932 //    The LSB of the word is set IFF the lock is held.
4933 //    The remainder of the word points to the head of a singly-linked list
4934 //    of threads blocked on the lock.
4935 //
4936 // *  The current implementation of muxAcquire-muxRelease uses its own
4937 //    dedicated Thread._MuxEvent instance.  If we're interested in
4938 //    minimizing the peak number of extant ParkEvent instances then
4939 //    we could eliminate _MuxEvent and "borrow" _ParkEvent as long
4940 //    as certain invariants were satisfied.  Specifically, care would need
4941 //    to be taken with regards to consuming unpark() "permits".
4942 //    A safe rule of thumb is that a thread would never call muxAcquire()
4943 //    if it's enqueued (cxq, EntryList, WaitList, etc) and will subsequently
4944 //    park().  Otherwise the _ParkEvent park() operation in muxAcquire() could
4945 //    consume an unpark() permit intended for monitorenter, for instance.
4946 //    One way around this would be to widen the restricted-range semaphore
4947 //    implemented in park().  Another alternative would be to provide
4948 //    multiple instances of the PlatformEvent() for each thread.  One
4949 //    instance would be dedicated to muxAcquire-muxRelease, for instance.
4950 //
4951 // *  Usage:
4952 //    -- Only as leaf locks
4953 //    -- for short-term locking only as muxAcquire does not perform
4954 //       thread state transitions.
4955 //
4956 // Alternatives:
4957 // *  We could implement muxAcquire and muxRelease with MCS or CLH locks
4958 //    but with parking or spin-then-park instead of pure spinning.
4959 // *  Use Taura-Oyama-Yonenzawa locks.
4960 // *  It's possible to construct a 1-0 lock if we encode the lockword as
4961 //    (List,LockByte).  Acquire will CAS the full lockword while Release
4962 //    will STB 0 into the LockByte.  The 1-0 scheme admits stranding, so
4963 //    acquiring threads use timers (ParkTimed) to detect and recover from
4964 //    the stranding window.  Thread/Node structures must be aligned on 256-byte
4965 //    boundaries by using placement-new.
4966 // *  Augment MCS with advisory back-link fields maintained with CAS().
4967 //    Pictorially:  LockWord -> T1 <-> T2 <-> T3 <-> ... <-> Tn <-> Owner.
4968 //    The validity of the backlinks must be ratified before we trust the value.
4969 //    If the backlinks are invalid the exiting thread must back-track through the
4970 //    the forward links, which are always trustworthy.
4971 // *  Add a successor indication.  The LockWord is currently encoded as
4972 //    (List, LOCKBIT:1).  We could also add a SUCCBIT or an explicit _succ variable
4973 //    to provide the usual futile-wakeup optimization.
4974 //    See RTStt for details.
4975 //
4976 
4977 
4978 const intptr_t LOCKBIT = 1;
4979 
4980 void Thread::muxAcquire(volatile intptr_t * Lock, const char * LockName) {
4981   intptr_t w = Atomic::cmpxchg(Lock, (intptr_t)0, LOCKBIT);
4982   if (w == 0) return;
4983   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg(Lock, w, w|LOCKBIT) == w) {
4984     return;
4985   }
4986 
4987   ParkEvent * const Self = Thread::current()->_MuxEvent;
4988   assert((intptr_t(Self) & LOCKBIT) == 0, "invariant");
4989   for (;;) {
4990     int its = (os::is_MP() ? 100 : 0) + 1;
4991 
4992     // Optional spin phase: spin-then-park strategy
4993     while (--its >= 0) {
4994       w = *Lock;
4995       if ((w & LOCKBIT) == 0 && Atomic::cmpxchg(Lock, w, w|LOCKBIT) == w) {
4996         return;
4997       }
4998     }
4999 
5000     Self->reset();
5001     Self->OnList = intptr_t(Lock);
5002     // The following fence() isn't _strictly necessary as the subsequent
5003     // CAS() both serializes execution and ratifies the fetched *Lock value.
5004     OrderAccess::fence();
5005     for (;;) {
5006       w = *Lock;
5007       if ((w & LOCKBIT) == 0) {
5008         if (Atomic::cmpxchg(Lock, w, w|LOCKBIT) == w) {
5009           Self->OnList = 0;   // hygiene - allows stronger asserts
5010           return;
5011         }
5012         continue;      // Interference -- *Lock changed -- Just retry
5013       }
5014       assert(w & LOCKBIT, "invariant");
5015       Self->ListNext = (ParkEvent *) (w & ~LOCKBIT);
5016       if (Atomic::cmpxchg(Lock, w, intptr_t(Self)|LOCKBIT) == w) break;
5017     }
5018 
5019     while (Self->OnList != 0) {
5020       Self->park();
5021     }
5022   }
5023 }
5024 
5025 // Release() must extract a successor from the list and then wake that thread.
5026 // It can "pop" the front of the list or use a detach-modify-reattach (DMR) scheme
5027 // similar to that used by ParkEvent::Allocate() and ::Release().  DMR-based
5028 // Release() would :
5029 // (A) CAS() or swap() null to *Lock, releasing the lock and detaching the list.
5030 // (B) Extract a successor from the private list "in-hand"
5031 // (C) attempt to CAS() the residual back into *Lock over null.
5032 //     If there were any newly arrived threads and the CAS() would fail.
5033 //     In that case Release() would detach the RATs, re-merge the list in-hand
5034 //     with the RATs and repeat as needed.  Alternately, Release() might
5035 //     detach and extract a successor, but then pass the residual list to the wakee.
5036 //     The wakee would be responsible for reattaching and remerging before it
5037 //     competed for the lock.
5038 //
5039 // Both "pop" and DMR are immune from ABA corruption -- there can be
5040 // multiple concurrent pushers, but only one popper or detacher.
5041 // This implementation pops from the head of the list.  This is unfair,
5042 // but tends to provide excellent throughput as hot threads remain hot.
5043 // (We wake recently run threads first).
5044 //
5045 // All paths through muxRelease() will execute a CAS.
5046 // Release consistency -- We depend on the CAS in muxRelease() to provide full
5047 // bidirectional fence/MEMBAR semantics, ensuring that all prior memory operations
5048 // executed within the critical section are complete and globally visible before the
5049 // store (CAS) to the lock-word that releases the lock becomes globally visible.
5050 void Thread::muxRelease(volatile intptr_t * Lock)  {
5051   for (;;) {
5052     const intptr_t w = Atomic::cmpxchg(Lock, LOCKBIT, (intptr_t)0);
5053     assert(w & LOCKBIT, "invariant");
5054     if (w == LOCKBIT) return;
5055     ParkEvent * const List = (ParkEvent *) (w & ~LOCKBIT);
5056     assert(List != NULL, "invariant");
5057     assert(List->OnList == intptr_t(Lock), "invariant");
5058     ParkEvent * const nxt = List->ListNext;
5059     guarantee((intptr_t(nxt) & LOCKBIT) == 0, "invariant");
5060 
5061     // The following CAS() releases the lock and pops the head element.
5062     // The CAS() also ratifies the previously fetched lock-word value.
5063     if (Atomic::cmpxchg(Lock, w, intptr_t(nxt)) != w) {
5064       continue;
5065     }
5066     List->OnList = 0;
5067     OrderAccess::fence();
5068     List->unpark();
5069     return;
5070   }
5071 }
5072 
5073 
5074 void Threads::verify() {
5075   ALL_JAVA_THREADS(p) {
5076     p->verify();
5077   }
5078   VMThread* thread = VMThread::vm_thread();
5079   if (thread != NULL) thread->verify();
5080 }