1 /*
   2  * Copyright (c) 1999, 2020, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // no precompiled headers
  26 #include "jvm.h"
  27 #include "classfile/classLoader.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "classfile/vmSymbols.hpp"
  30 #include "code/icBuffer.hpp"
  31 #include "code/vtableStubs.hpp"
  32 #include "compiler/compileBroker.hpp"
  33 #include "compiler/disassembler.hpp"
  34 #include "interpreter/interpreter.hpp"
  35 #include "logging/log.hpp"
  36 #include "logging/logStream.hpp"
  37 #include "memory/allocation.inline.hpp"
  38 #include "memory/filemap.hpp"
  39 #include "oops/oop.inline.hpp"
  40 #include "os_linux.inline.hpp"
  41 #include "os_posix.inline.hpp"
  42 #include "os_share_linux.hpp"
  43 #include "osContainer_linux.hpp"
  44 #include "prims/jniFastGetField.hpp"
  45 #include "prims/jvm_misc.hpp"
  46 #include "runtime/arguments.hpp"
  47 #include "runtime/atomic.hpp"
  48 #include "runtime/extendedPC.hpp"
  49 #include "runtime/globals.hpp"
  50 #include "runtime/interfaceSupport.inline.hpp"
  51 #include "runtime/init.hpp"
  52 #include "runtime/java.hpp"
  53 #include "runtime/javaCalls.hpp"
  54 #include "runtime/mutexLocker.hpp"
  55 #include "runtime/objectMonitor.hpp"
  56 #include "runtime/osThread.hpp"
  57 #include "runtime/perfMemory.hpp"
  58 #include "runtime/sharedRuntime.hpp"
  59 #include "runtime/statSampler.hpp"
  60 #include "runtime/stubRoutines.hpp"
  61 #include "runtime/thread.inline.hpp"
  62 #include "runtime/threadCritical.hpp"
  63 #include "runtime/threadSMR.hpp"
  64 #include "runtime/timer.hpp"
  65 #include "runtime/vm_version.hpp"
  66 #include "semaphore_posix.hpp"
  67 #include "services/attachListener.hpp"
  68 #include "services/memTracker.hpp"
  69 #include "services/runtimeService.hpp"
  70 #include "utilities/align.hpp"
  71 #include "utilities/decoder.hpp"
  72 #include "utilities/defaultStream.hpp"
  73 #include "utilities/events.hpp"
  74 #include "utilities/elfFile.hpp"
  75 #include "utilities/growableArray.hpp"
  76 #include "utilities/macros.hpp"
  77 #include "utilities/powerOfTwo.hpp"
  78 #include "utilities/vmError.hpp"
  79 
  80 // put OS-includes here
  81 # include <sys/types.h>
  82 # include <sys/mman.h>
  83 # include <sys/stat.h>
  84 # include <sys/select.h>
  85 # include <pthread.h>
  86 # include <signal.h>
  87 # include <endian.h>
  88 # include <errno.h>
  89 # include <dlfcn.h>
  90 # include <stdio.h>
  91 # include <unistd.h>
  92 # include <sys/resource.h>
  93 # include <pthread.h>
  94 # include <sys/stat.h>
  95 # include <sys/time.h>
  96 # include <sys/times.h>
  97 # include <sys/utsname.h>
  98 # include <sys/socket.h>
  99 # include <sys/wait.h>
 100 # include <pwd.h>
 101 # include <poll.h>
 102 # include <fcntl.h>
 103 # include <string.h>
 104 # include <syscall.h>
 105 # include <sys/sysinfo.h>
 106 # include <gnu/libc-version.h>
 107 # include <sys/ipc.h>
 108 # include <sys/shm.h>
 109 # include <link.h>
 110 # include <stdint.h>
 111 # include <inttypes.h>
 112 # include <sys/ioctl.h>
 113 # include <linux/elf-em.h>
 114 
 115 #ifndef _GNU_SOURCE
 116   #define _GNU_SOURCE
 117   #include <sched.h>
 118   #undef _GNU_SOURCE
 119 #else
 120   #include <sched.h>
 121 #endif
 122 
 123 // if RUSAGE_THREAD for getrusage() has not been defined, do it here. The code calling
 124 // getrusage() is prepared to handle the associated failure.
 125 #ifndef RUSAGE_THREAD
 126   #define RUSAGE_THREAD   (1)               /* only the calling thread */
 127 #endif
 128 
 129 #define MAX_PATH    (2 * K)
 130 
 131 #define MAX_SECS 100000000
 132 
 133 // for timer info max values which include all bits
 134 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
 135 
 136 enum CoredumpFilterBit {
 137   FILE_BACKED_PVT_BIT = 1 << 2,
 138   FILE_BACKED_SHARED_BIT = 1 << 3,
 139   LARGEPAGES_BIT = 1 << 6,
 140   DAX_SHARED_BIT = 1 << 8
 141 };
 142 
 143 ////////////////////////////////////////////////////////////////////////////////
 144 // global variables
 145 julong os::Linux::_physical_memory = 0;
 146 
 147 address   os::Linux::_initial_thread_stack_bottom = NULL;
 148 uintptr_t os::Linux::_initial_thread_stack_size   = 0;
 149 
 150 int (*os::Linux::_pthread_getcpuclockid)(pthread_t, clockid_t *) = NULL;
 151 int (*os::Linux::_pthread_setname_np)(pthread_t, const char*) = NULL;
 152 pthread_t os::Linux::_main_thread;
 153 int os::Linux::_page_size = -1;
 154 bool os::Linux::_supports_fast_thread_cpu_time = false;
 155 const char * os::Linux::_glibc_version = NULL;
 156 const char * os::Linux::_libpthread_version = NULL;
 157 size_t os::Linux::_default_large_page_size = 0;
 158 
 159 static jlong initial_time_count=0;
 160 
 161 static int clock_tics_per_sec = 100;
 162 
 163 // If the VM might have been created on the primordial thread, we need to resolve the
 164 // primordial thread stack bounds and check if the current thread might be the
 165 // primordial thread in places. If we know that the primordial thread is never used,
 166 // such as when the VM was created by one of the standard java launchers, we can
 167 // avoid this
 168 static bool suppress_primordial_thread_resolution = false;
 169 
 170 // For diagnostics to print a message once. see run_periodic_checks
 171 static sigset_t check_signal_done;
 172 static bool check_signals = true;
 173 
 174 // Signal number used to suspend/resume a thread
 175 
 176 // do not use any signal number less than SIGSEGV, see 4355769
 177 static int SR_signum = SIGUSR2;
 178 sigset_t SR_sigset;
 179 
 180 // utility functions
 181 
 182 static int SR_initialize();
 183 
 184 julong os::available_memory() {
 185   return Linux::available_memory();
 186 }
 187 
 188 julong os::Linux::available_memory() {
 189   // values in struct sysinfo are "unsigned long"
 190   struct sysinfo si;
 191   julong avail_mem;
 192 
 193   if (OSContainer::is_containerized()) {
 194     jlong mem_limit, mem_usage;
 195     if ((mem_limit = OSContainer::memory_limit_in_bytes()) < 1) {
 196       log_debug(os, container)("container memory limit %s: " JLONG_FORMAT ", using host value",
 197                              mem_limit == OSCONTAINER_ERROR ? "failed" : "unlimited", mem_limit);
 198     }
 199     if (mem_limit > 0 && (mem_usage = OSContainer::memory_usage_in_bytes()) < 1) {
 200       log_debug(os, container)("container memory usage failed: " JLONG_FORMAT ", using host value", mem_usage);
 201     }
 202     if (mem_limit > 0 && mem_usage > 0 ) {
 203       avail_mem = mem_limit > mem_usage ? (julong)mem_limit - (julong)mem_usage : 0;
 204       log_trace(os)("available container memory: " JULONG_FORMAT, avail_mem);
 205       return avail_mem;
 206     }
 207   }
 208 
 209   sysinfo(&si);
 210   avail_mem = (julong)si.freeram * si.mem_unit;
 211   log_trace(os)("available memory: " JULONG_FORMAT, avail_mem);
 212   return avail_mem;
 213 }
 214 
 215 julong os::physical_memory() {
 216   jlong phys_mem = 0;
 217   if (OSContainer::is_containerized()) {
 218     jlong mem_limit;
 219     if ((mem_limit = OSContainer::memory_limit_in_bytes()) > 0) {
 220       log_trace(os)("total container memory: " JLONG_FORMAT, mem_limit);
 221       return mem_limit;
 222     }
 223     log_debug(os, container)("container memory limit %s: " JLONG_FORMAT ", using host value",
 224                             mem_limit == OSCONTAINER_ERROR ? "failed" : "unlimited", mem_limit);
 225   }
 226 
 227   phys_mem = Linux::physical_memory();
 228   log_trace(os)("total system memory: " JLONG_FORMAT, phys_mem);
 229   return phys_mem;
 230 }
 231 
 232 static uint64_t initial_total_ticks = 0;
 233 static uint64_t initial_steal_ticks = 0;
 234 static bool     has_initial_tick_info = false;
 235 
 236 static void next_line(FILE *f) {
 237   int c;
 238   do {
 239     c = fgetc(f);
 240   } while (c != '\n' && c != EOF);
 241 }
 242 
 243 bool os::Linux::get_tick_information(CPUPerfTicks* pticks, int which_logical_cpu) {
 244   FILE*         fh;
 245   uint64_t      userTicks, niceTicks, systemTicks, idleTicks;
 246   // since at least kernel 2.6 : iowait: time waiting for I/O to complete
 247   // irq: time  servicing interrupts; softirq: time servicing softirqs
 248   uint64_t      iowTicks = 0, irqTicks = 0, sirqTicks= 0;
 249   // steal (since kernel 2.6.11): time spent in other OS when running in a virtualized environment
 250   uint64_t      stealTicks = 0;
 251   // guest (since kernel 2.6.24): time spent running a virtual CPU for guest OS under the
 252   // control of the Linux kernel
 253   uint64_t      guestNiceTicks = 0;
 254   int           logical_cpu = -1;
 255   const int     required_tickinfo_count = (which_logical_cpu == -1) ? 4 : 5;
 256   int           n;
 257 
 258   memset(pticks, 0, sizeof(CPUPerfTicks));
 259 
 260   if ((fh = fopen("/proc/stat", "r")) == NULL) {
 261     return false;
 262   }
 263 
 264   if (which_logical_cpu == -1) {
 265     n = fscanf(fh, "cpu " UINT64_FORMAT " " UINT64_FORMAT " " UINT64_FORMAT " "
 266             UINT64_FORMAT " " UINT64_FORMAT " " UINT64_FORMAT " " UINT64_FORMAT " "
 267             UINT64_FORMAT " " UINT64_FORMAT " ",
 268             &userTicks, &niceTicks, &systemTicks, &idleTicks,
 269             &iowTicks, &irqTicks, &sirqTicks,
 270             &stealTicks, &guestNiceTicks);
 271   } else {
 272     // Move to next line
 273     next_line(fh);
 274 
 275     // find the line for requested cpu faster to just iterate linefeeds?
 276     for (int i = 0; i < which_logical_cpu; i++) {
 277       next_line(fh);
 278     }
 279 
 280     n = fscanf(fh, "cpu%u " UINT64_FORMAT " " UINT64_FORMAT " " UINT64_FORMAT " "
 281                UINT64_FORMAT " " UINT64_FORMAT " " UINT64_FORMAT " " UINT64_FORMAT " "
 282                UINT64_FORMAT " " UINT64_FORMAT " ",
 283                &logical_cpu, &userTicks, &niceTicks,
 284                &systemTicks, &idleTicks, &iowTicks, &irqTicks, &sirqTicks,
 285                &stealTicks, &guestNiceTicks);
 286   }
 287 
 288   fclose(fh);
 289   if (n < required_tickinfo_count || logical_cpu != which_logical_cpu) {
 290     return false;
 291   }
 292   pticks->used       = userTicks + niceTicks;
 293   pticks->usedKernel = systemTicks + irqTicks + sirqTicks;
 294   pticks->total      = userTicks + niceTicks + systemTicks + idleTicks +
 295                        iowTicks + irqTicks + sirqTicks + stealTicks + guestNiceTicks;
 296 
 297   if (n > required_tickinfo_count + 3) {
 298     pticks->steal = stealTicks;
 299     pticks->has_steal_ticks = true;
 300   } else {
 301     pticks->steal = 0;
 302     pticks->has_steal_ticks = false;
 303   }
 304 
 305   return true;
 306 }
 307 
 308 // Return true if user is running as root.
 309 
 310 bool os::have_special_privileges() {
 311   static bool init = false;
 312   static bool privileges = false;
 313   if (!init) {
 314     privileges = (getuid() != geteuid()) || (getgid() != getegid());
 315     init = true;
 316   }
 317   return privileges;
 318 }
 319 
 320 
 321 #ifndef SYS_gettid
 322 // i386: 224, ia64: 1105, amd64: 186, sparc 143
 323   #ifdef __ia64__
 324     #define SYS_gettid 1105
 325   #else
 326     #ifdef __i386__
 327       #define SYS_gettid 224
 328     #else
 329       #ifdef __amd64__
 330         #define SYS_gettid 186
 331       #else
 332         #ifdef __sparc__
 333           #define SYS_gettid 143
 334         #else
 335           #error define gettid for the arch
 336         #endif
 337       #endif
 338     #endif
 339   #endif
 340 #endif
 341 
 342 
 343 // pid_t gettid()
 344 //
 345 // Returns the kernel thread id of the currently running thread. Kernel
 346 // thread id is used to access /proc.
 347 pid_t os::Linux::gettid() {
 348   int rslt = syscall(SYS_gettid);
 349   assert(rslt != -1, "must be."); // old linuxthreads implementation?
 350   return (pid_t)rslt;
 351 }
 352 
 353 // Most versions of linux have a bug where the number of processors are
 354 // determined by looking at the /proc file system.  In a chroot environment,
 355 // the system call returns 1.
 356 static bool unsafe_chroot_detected = false;
 357 static const char *unstable_chroot_error = "/proc file system not found.\n"
 358                      "Java may be unstable running multithreaded in a chroot "
 359                      "environment on Linux when /proc filesystem is not mounted.";
 360 
 361 void os::Linux::initialize_system_info() {
 362   set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
 363   if (processor_count() == 1) {
 364     pid_t pid = os::Linux::gettid();
 365     char fname[32];
 366     jio_snprintf(fname, sizeof(fname), "/proc/%d", pid);
 367     FILE *fp = fopen(fname, "r");
 368     if (fp == NULL) {
 369       unsafe_chroot_detected = true;
 370     } else {
 371       fclose(fp);
 372     }
 373   }
 374   _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE);
 375   assert(processor_count() > 0, "linux error");
 376 }
 377 
 378 void os::init_system_properties_values() {
 379   // The next steps are taken in the product version:
 380   //
 381   // Obtain the JAVA_HOME value from the location of libjvm.so.
 382   // This library should be located at:
 383   // <JAVA_HOME>/lib/{client|server}/libjvm.so.
 384   //
 385   // If "/jre/lib/" appears at the right place in the path, then we
 386   // assume libjvm.so is installed in a JDK and we use this path.
 387   //
 388   // Otherwise exit with message: "Could not create the Java virtual machine."
 389   //
 390   // The following extra steps are taken in the debugging version:
 391   //
 392   // If "/jre/lib/" does NOT appear at the right place in the path
 393   // instead of exit check for $JAVA_HOME environment variable.
 394   //
 395   // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
 396   // then we append a fake suffix "hotspot/libjvm.so" to this path so
 397   // it looks like libjvm.so is installed there
 398   // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
 399   //
 400   // Otherwise exit.
 401   //
 402   // Important note: if the location of libjvm.so changes this
 403   // code needs to be changed accordingly.
 404 
 405   // See ld(1):
 406   //      The linker uses the following search paths to locate required
 407   //      shared libraries:
 408   //        1: ...
 409   //        ...
 410   //        7: The default directories, normally /lib and /usr/lib.
 411 #ifndef OVERRIDE_LIBPATH
 412   #if defined(AMD64) || (defined(_LP64) && defined(SPARC)) || defined(PPC64) || defined(S390)
 413     #define DEFAULT_LIBPATH "/usr/lib64:/lib64:/lib:/usr/lib"
 414   #else
 415     #define DEFAULT_LIBPATH "/lib:/usr/lib"
 416   #endif
 417 #else
 418   #define DEFAULT_LIBPATH OVERRIDE_LIBPATH
 419 #endif
 420 
 421 // Base path of extensions installed on the system.
 422 #define SYS_EXT_DIR     "/usr/java/packages"
 423 #define EXTENSIONS_DIR  "/lib/ext"
 424 
 425   // Buffer that fits several sprintfs.
 426   // Note that the space for the colon and the trailing null are provided
 427   // by the nulls included by the sizeof operator.
 428   const size_t bufsize =
 429     MAX2((size_t)MAXPATHLEN,  // For dll_dir & friends.
 430          (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR) + sizeof(SYS_EXT_DIR) + sizeof(EXTENSIONS_DIR)); // extensions dir
 431   char *buf = NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
 432 
 433   // sysclasspath, java_home, dll_dir
 434   {
 435     char *pslash;
 436     os::jvm_path(buf, bufsize);
 437 
 438     // Found the full path to libjvm.so.
 439     // Now cut the path to <java_home>/jre if we can.
 440     pslash = strrchr(buf, '/');
 441     if (pslash != NULL) {
 442       *pslash = '\0';            // Get rid of /libjvm.so.
 443     }
 444     pslash = strrchr(buf, '/');
 445     if (pslash != NULL) {
 446       *pslash = '\0';            // Get rid of /{client|server|hotspot}.
 447     }
 448     Arguments::set_dll_dir(buf);
 449 
 450     if (pslash != NULL) {
 451       pslash = strrchr(buf, '/');
 452       if (pslash != NULL) {
 453         *pslash = '\0';        // Get rid of /lib.
 454       }
 455     }
 456     Arguments::set_java_home(buf);
 457     if (!set_boot_path('/', ':')) {
 458       vm_exit_during_initialization("Failed setting boot class path.", NULL);
 459     }
 460   }
 461 
 462   // Where to look for native libraries.
 463   //
 464   // Note: Due to a legacy implementation, most of the library path
 465   // is set in the launcher. This was to accomodate linking restrictions
 466   // on legacy Linux implementations (which are no longer supported).
 467   // Eventually, all the library path setting will be done here.
 468   //
 469   // However, to prevent the proliferation of improperly built native
 470   // libraries, the new path component /usr/java/packages is added here.
 471   // Eventually, all the library path setting will be done here.
 472   {
 473     // Get the user setting of LD_LIBRARY_PATH, and prepended it. It
 474     // should always exist (until the legacy problem cited above is
 475     // addressed).
 476     const char *v = ::getenv("LD_LIBRARY_PATH");
 477     const char *v_colon = ":";
 478     if (v == NULL) { v = ""; v_colon = ""; }
 479     // That's +1 for the colon and +1 for the trailing '\0'.
 480     char *ld_library_path = NEW_C_HEAP_ARRAY(char,
 481                                              strlen(v) + 1 +
 482                                              sizeof(SYS_EXT_DIR) + sizeof("/lib/") + sizeof(DEFAULT_LIBPATH) + 1,
 483                                              mtInternal);
 484     sprintf(ld_library_path, "%s%s" SYS_EXT_DIR "/lib:" DEFAULT_LIBPATH, v, v_colon);
 485     Arguments::set_library_path(ld_library_path);
 486     FREE_C_HEAP_ARRAY(char, ld_library_path);
 487   }
 488 
 489   // Extensions directories.
 490   sprintf(buf, "%s" EXTENSIONS_DIR ":" SYS_EXT_DIR EXTENSIONS_DIR, Arguments::get_java_home());
 491   Arguments::set_ext_dirs(buf);
 492 
 493   FREE_C_HEAP_ARRAY(char, buf);
 494 
 495 #undef DEFAULT_LIBPATH
 496 #undef SYS_EXT_DIR
 497 #undef EXTENSIONS_DIR
 498 }
 499 
 500 ////////////////////////////////////////////////////////////////////////////////
 501 // breakpoint support
 502 
 503 void os::breakpoint() {
 504   BREAKPOINT;
 505 }
 506 
 507 extern "C" void breakpoint() {
 508   // use debugger to set breakpoint here
 509 }
 510 
 511 ////////////////////////////////////////////////////////////////////////////////
 512 // signal support
 513 
 514 debug_only(static bool signal_sets_initialized = false);
 515 static sigset_t unblocked_sigs, vm_sigs;
 516 
 517 void os::Linux::signal_sets_init() {
 518   // Should also have an assertion stating we are still single-threaded.
 519   assert(!signal_sets_initialized, "Already initialized");
 520   // Fill in signals that are necessarily unblocked for all threads in
 521   // the VM. Currently, we unblock the following signals:
 522   // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
 523   //                         by -Xrs (=ReduceSignalUsage));
 524   // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
 525   // other threads. The "ReduceSignalUsage" boolean tells us not to alter
 526   // the dispositions or masks wrt these signals.
 527   // Programs embedding the VM that want to use the above signals for their
 528   // own purposes must, at this time, use the "-Xrs" option to prevent
 529   // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
 530   // (See bug 4345157, and other related bugs).
 531   // In reality, though, unblocking these signals is really a nop, since
 532   // these signals are not blocked by default.
 533   sigemptyset(&unblocked_sigs);
 534   sigaddset(&unblocked_sigs, SIGILL);
 535   sigaddset(&unblocked_sigs, SIGSEGV);
 536   sigaddset(&unblocked_sigs, SIGBUS);
 537   sigaddset(&unblocked_sigs, SIGFPE);
 538 #if defined(PPC64)
 539   sigaddset(&unblocked_sigs, SIGTRAP);
 540 #endif
 541   sigaddset(&unblocked_sigs, SR_signum);
 542 
 543   if (!ReduceSignalUsage) {
 544     if (!os::Posix::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
 545       sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
 546     }
 547     if (!os::Posix::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
 548       sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
 549     }
 550     if (!os::Posix::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
 551       sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
 552     }
 553   }
 554   // Fill in signals that are blocked by all but the VM thread.
 555   sigemptyset(&vm_sigs);
 556   if (!ReduceSignalUsage) {
 557     sigaddset(&vm_sigs, BREAK_SIGNAL);
 558   }
 559   debug_only(signal_sets_initialized = true);
 560 
 561 }
 562 
 563 // These are signals that are unblocked while a thread is running Java.
 564 // (For some reason, they get blocked by default.)
 565 sigset_t* os::Linux::unblocked_signals() {
 566   assert(signal_sets_initialized, "Not initialized");
 567   return &unblocked_sigs;
 568 }
 569 
 570 // These are the signals that are blocked while a (non-VM) thread is
 571 // running Java. Only the VM thread handles these signals.
 572 sigset_t* os::Linux::vm_signals() {
 573   assert(signal_sets_initialized, "Not initialized");
 574   return &vm_sigs;
 575 }
 576 
 577 void os::Linux::hotspot_sigmask(Thread* thread) {
 578 
 579   //Save caller's signal mask before setting VM signal mask
 580   sigset_t caller_sigmask;
 581   pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
 582 
 583   OSThread* osthread = thread->osthread();
 584   osthread->set_caller_sigmask(caller_sigmask);
 585 
 586   pthread_sigmask(SIG_UNBLOCK, os::Linux::unblocked_signals(), NULL);
 587 
 588   if (!ReduceSignalUsage) {
 589     if (thread->is_VM_thread()) {
 590       // Only the VM thread handles BREAK_SIGNAL ...
 591       pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
 592     } else {
 593       // ... all other threads block BREAK_SIGNAL
 594       pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
 595     }
 596   }
 597 }
 598 
 599 //////////////////////////////////////////////////////////////////////////////
 600 // detecting pthread library
 601 
 602 void os::Linux::libpthread_init() {
 603   // Save glibc and pthread version strings.
 604 #if !defined(_CS_GNU_LIBC_VERSION) || \
 605     !defined(_CS_GNU_LIBPTHREAD_VERSION)
 606   #error "glibc too old (< 2.3.2)"
 607 #endif
 608 
 609   size_t n = confstr(_CS_GNU_LIBC_VERSION, NULL, 0);
 610   assert(n > 0, "cannot retrieve glibc version");
 611   char *str = (char *)malloc(n, mtInternal);
 612   confstr(_CS_GNU_LIBC_VERSION, str, n);
 613   os::Linux::set_glibc_version(str);
 614 
 615   n = confstr(_CS_GNU_LIBPTHREAD_VERSION, NULL, 0);
 616   assert(n > 0, "cannot retrieve pthread version");
 617   str = (char *)malloc(n, mtInternal);
 618   confstr(_CS_GNU_LIBPTHREAD_VERSION, str, n);
 619   os::Linux::set_libpthread_version(str);
 620 }
 621 
 622 /////////////////////////////////////////////////////////////////////////////
 623 // thread stack expansion
 624 
 625 // os::Linux::manually_expand_stack() takes care of expanding the thread
 626 // stack. Note that this is normally not needed: pthread stacks allocate
 627 // thread stack using mmap() without MAP_NORESERVE, so the stack is already
 628 // committed. Therefore it is not necessary to expand the stack manually.
 629 //
 630 // Manually expanding the stack was historically needed on LinuxThreads
 631 // thread stacks, which were allocated with mmap(MAP_GROWSDOWN). Nowadays
 632 // it is kept to deal with very rare corner cases:
 633 //
 634 // For one, user may run the VM on an own implementation of threads
 635 // whose stacks are - like the old LinuxThreads - implemented using
 636 // mmap(MAP_GROWSDOWN).
 637 //
 638 // Also, this coding may be needed if the VM is running on the primordial
 639 // thread. Normally we avoid running on the primordial thread; however,
 640 // user may still invoke the VM on the primordial thread.
 641 //
 642 // The following historical comment describes the details about running
 643 // on a thread stack allocated with mmap(MAP_GROWSDOWN):
 644 
 645 
 646 // Force Linux kernel to expand current thread stack. If "bottom" is close
 647 // to the stack guard, caller should block all signals.
 648 //
 649 // MAP_GROWSDOWN:
 650 //   A special mmap() flag that is used to implement thread stacks. It tells
 651 //   kernel that the memory region should extend downwards when needed. This
 652 //   allows early versions of LinuxThreads to only mmap the first few pages
 653 //   when creating a new thread. Linux kernel will automatically expand thread
 654 //   stack as needed (on page faults).
 655 //
 656 //   However, because the memory region of a MAP_GROWSDOWN stack can grow on
 657 //   demand, if a page fault happens outside an already mapped MAP_GROWSDOWN
 658 //   region, it's hard to tell if the fault is due to a legitimate stack
 659 //   access or because of reading/writing non-exist memory (e.g. buffer
 660 //   overrun). As a rule, if the fault happens below current stack pointer,
 661 //   Linux kernel does not expand stack, instead a SIGSEGV is sent to the
 662 //   application (see Linux kernel fault.c).
 663 //
 664 //   This Linux feature can cause SIGSEGV when VM bangs thread stack for
 665 //   stack overflow detection.
 666 //
 667 //   Newer version of LinuxThreads (since glibc-2.2, or, RH-7.x) and NPTL do
 668 //   not use MAP_GROWSDOWN.
 669 //
 670 // To get around the problem and allow stack banging on Linux, we need to
 671 // manually expand thread stack after receiving the SIGSEGV.
 672 //
 673 // There are two ways to expand thread stack to address "bottom", we used
 674 // both of them in JVM before 1.5:
 675 //   1. adjust stack pointer first so that it is below "bottom", and then
 676 //      touch "bottom"
 677 //   2. mmap() the page in question
 678 //
 679 // Now alternate signal stack is gone, it's harder to use 2. For instance,
 680 // if current sp is already near the lower end of page 101, and we need to
 681 // call mmap() to map page 100, it is possible that part of the mmap() frame
 682 // will be placed in page 100. When page 100 is mapped, it is zero-filled.
 683 // That will destroy the mmap() frame and cause VM to crash.
 684 //
 685 // The following code works by adjusting sp first, then accessing the "bottom"
 686 // page to force a page fault. Linux kernel will then automatically expand the
 687 // stack mapping.
 688 //
 689 // _expand_stack_to() assumes its frame size is less than page size, which
 690 // should always be true if the function is not inlined.
 691 
 692 static void NOINLINE _expand_stack_to(address bottom) {
 693   address sp;
 694   size_t size;
 695   volatile char *p;
 696 
 697   // Adjust bottom to point to the largest address within the same page, it
 698   // gives us a one-page buffer if alloca() allocates slightly more memory.
 699   bottom = (address)align_down((uintptr_t)bottom, os::Linux::page_size());
 700   bottom += os::Linux::page_size() - 1;
 701 
 702   // sp might be slightly above current stack pointer; if that's the case, we
 703   // will alloca() a little more space than necessary, which is OK. Don't use
 704   // os::current_stack_pointer(), as its result can be slightly below current
 705   // stack pointer, causing us to not alloca enough to reach "bottom".
 706   sp = (address)&sp;
 707 
 708   if (sp > bottom) {
 709     size = sp - bottom;
 710     p = (volatile char *)alloca(size);
 711     assert(p != NULL && p <= (volatile char *)bottom, "alloca problem?");
 712     p[0] = '\0';
 713   }
 714 }
 715 
 716 void os::Linux::expand_stack_to(address bottom) {
 717   _expand_stack_to(bottom);
 718 }
 719 
 720 bool os::Linux::manually_expand_stack(JavaThread * t, address addr) {
 721   assert(t!=NULL, "just checking");
 722   assert(t->osthread()->expanding_stack(), "expand should be set");
 723 
 724   if (t->is_in_usable_stack(addr)) {
 725     sigset_t mask_all, old_sigset;
 726     sigfillset(&mask_all);
 727     pthread_sigmask(SIG_SETMASK, &mask_all, &old_sigset);
 728     _expand_stack_to(addr);
 729     pthread_sigmask(SIG_SETMASK, &old_sigset, NULL);
 730     return true;
 731   }
 732   return false;
 733 }
 734 
 735 //////////////////////////////////////////////////////////////////////////////
 736 // create new thread
 737 
 738 // Thread start routine for all newly created threads
 739 static void *thread_native_entry(Thread *thread) {
 740 
 741   thread->record_stack_base_and_size();
 742 
 743   // Try to randomize the cache line index of hot stack frames.
 744   // This helps when threads of the same stack traces evict each other's
 745   // cache lines. The threads can be either from the same JVM instance, or
 746   // from different JVM instances. The benefit is especially true for
 747   // processors with hyperthreading technology.
 748   static int counter = 0;
 749   int pid = os::current_process_id();
 750   alloca(((pid ^ counter++) & 7) * 128);
 751 
 752   thread->initialize_thread_current();
 753 
 754   OSThread* osthread = thread->osthread();
 755   Monitor* sync = osthread->startThread_lock();
 756 
 757   osthread->set_thread_id(os::current_thread_id());
 758 
 759   log_info(os, thread)("Thread is alive (tid: " UINTX_FORMAT ", pthread id: " UINTX_FORMAT ").",
 760     os::current_thread_id(), (uintx) pthread_self());
 761 
 762   if (UseNUMA) {
 763     int lgrp_id = os::numa_get_group_id();
 764     if (lgrp_id != -1) {
 765       thread->set_lgrp_id(lgrp_id);
 766     }
 767   }
 768   // initialize signal mask for this thread
 769   os::Linux::hotspot_sigmask(thread);
 770 
 771   // initialize floating point control register
 772   os::Linux::init_thread_fpu_state();
 773 
 774   // handshaking with parent thread
 775   {
 776     MutexLocker ml(sync, Mutex::_no_safepoint_check_flag);
 777 
 778     // notify parent thread
 779     osthread->set_state(INITIALIZED);
 780     sync->notify_all();
 781 
 782     // wait until os::start_thread()
 783     while (osthread->get_state() == INITIALIZED) {
 784       sync->wait_without_safepoint_check();
 785     }
 786   }
 787 
 788   assert(osthread->pthread_id() != 0, "pthread_id was not set as expected");
 789 
 790   // call one more level start routine
 791   thread->call_run();
 792 
 793   // Note: at this point the thread object may already have deleted itself.
 794   // Prevent dereferencing it from here on out.
 795   thread = NULL;
 796 
 797   log_info(os, thread)("Thread finished (tid: " UINTX_FORMAT ", pthread id: " UINTX_FORMAT ").",
 798     os::current_thread_id(), (uintx) pthread_self());
 799 
 800   return 0;
 801 }
 802 
 803 // On Linux, glibc places static TLS blocks (for __thread variables) on
 804 // the thread stack. This decreases the stack size actually available
 805 // to threads.
 806 //
 807 // For large static TLS sizes, this may cause threads to malfunction due
 808 // to insufficient stack space. This is a well-known issue in glibc:
 809 // http://sourceware.org/bugzilla/show_bug.cgi?id=11787.
 810 //
 811 // As a workaround, we call a private but assumed-stable glibc function,
 812 // __pthread_get_minstack() to obtain the minstack size and derive the
 813 // static TLS size from it. We then increase the user requested stack
 814 // size by this TLS size.
 815 //
 816 // Due to compatibility concerns, this size adjustment is opt-in and
 817 // controlled via AdjustStackSizeForTLS.
 818 typedef size_t (*GetMinStack)(const pthread_attr_t *attr);
 819 
 820 GetMinStack _get_minstack_func = NULL;
 821 
 822 static void get_minstack_init() {
 823   _get_minstack_func =
 824         (GetMinStack)dlsym(RTLD_DEFAULT, "__pthread_get_minstack");
 825   log_info(os, thread)("Lookup of __pthread_get_minstack %s",
 826                        _get_minstack_func == NULL ? "failed" : "succeeded");
 827 }
 828 
 829 // Returns the size of the static TLS area glibc puts on thread stacks.
 830 // The value is cached on first use, which occurs when the first thread
 831 // is created during VM initialization.
 832 static size_t get_static_tls_area_size(const pthread_attr_t *attr) {
 833   size_t tls_size = 0;
 834   if (_get_minstack_func != NULL) {
 835     // Obtain the pthread minstack size by calling __pthread_get_minstack.
 836     size_t minstack_size = _get_minstack_func(attr);
 837 
 838     // Remove non-TLS area size included in minstack size returned
 839     // by __pthread_get_minstack() to get the static TLS size.
 840     // In glibc before 2.27, minstack size includes guard_size.
 841     // In glibc 2.27 and later, guard_size is automatically added
 842     // to the stack size by pthread_create and is no longer included
 843     // in minstack size. In both cases, the guard_size is taken into
 844     // account, so there is no need to adjust the result for that.
 845     //
 846     // Although __pthread_get_minstack() is a private glibc function,
 847     // it is expected to have a stable behavior across future glibc
 848     // versions while glibc still allocates the static TLS blocks off
 849     // the stack. Following is glibc 2.28 __pthread_get_minstack():
 850     //
 851     // size_t
 852     // __pthread_get_minstack (const pthread_attr_t *attr)
 853     // {
 854     //   return GLRO(dl_pagesize) + __static_tls_size + PTHREAD_STACK_MIN;
 855     // }
 856     //
 857     //
 858     // The following 'minstack_size > os::vm_page_size() + PTHREAD_STACK_MIN'
 859     // if check is done for precaution.
 860     if (minstack_size > (size_t)os::vm_page_size() + PTHREAD_STACK_MIN) {
 861       tls_size = minstack_size - os::vm_page_size() - PTHREAD_STACK_MIN;
 862     }
 863   }
 864 
 865   log_info(os, thread)("Stack size adjustment for TLS is " SIZE_FORMAT,
 866                        tls_size);
 867   return tls_size;
 868 }
 869 
 870 bool os::create_thread(Thread* thread, ThreadType thr_type,
 871                        size_t req_stack_size) {
 872   assert(thread->osthread() == NULL, "caller responsible");
 873 
 874   // Allocate the OSThread object
 875   OSThread* osthread = new OSThread(NULL, NULL);
 876   if (osthread == NULL) {
 877     return false;
 878   }
 879 
 880   // set the correct thread state
 881   osthread->set_thread_type(thr_type);
 882 
 883   // Initial state is ALLOCATED but not INITIALIZED
 884   osthread->set_state(ALLOCATED);
 885 
 886   thread->set_osthread(osthread);
 887 
 888   // init thread attributes
 889   pthread_attr_t attr;
 890   pthread_attr_init(&attr);
 891   pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
 892 
 893   // Calculate stack size if it's not specified by caller.
 894   size_t stack_size = os::Posix::get_initial_stack_size(thr_type, req_stack_size);
 895   // In glibc versions prior to 2.7 the guard size mechanism
 896   // is not implemented properly. The posix standard requires adding
 897   // the size of the guard pages to the stack size, instead Linux
 898   // takes the space out of 'stacksize'. Thus we adapt the requested
 899   // stack_size by the size of the guard pages to mimick proper
 900   // behaviour. However, be careful not to end up with a size
 901   // of zero due to overflow. Don't add the guard page in that case.
 902   size_t guard_size = os::Linux::default_guard_size(thr_type);
 903   // Configure glibc guard page. Must happen before calling
 904   // get_static_tls_area_size(), which uses the guard_size.
 905   pthread_attr_setguardsize(&attr, guard_size);
 906 
 907   size_t stack_adjust_size = 0;
 908   if (AdjustStackSizeForTLS) {
 909     // Adjust the stack_size for on-stack TLS - see get_static_tls_area_size().
 910     stack_adjust_size += get_static_tls_area_size(&attr);
 911   } else {
 912     stack_adjust_size += guard_size;
 913   }
 914 
 915   stack_adjust_size = align_up(stack_adjust_size, os::vm_page_size());
 916   if (stack_size <= SIZE_MAX - stack_adjust_size) {
 917     stack_size += stack_adjust_size;
 918   }
 919   assert(is_aligned(stack_size, os::vm_page_size()), "stack_size not aligned");
 920 
 921   int status = pthread_attr_setstacksize(&attr, stack_size);
 922   assert_status(status == 0, status, "pthread_attr_setstacksize");
 923 
 924   ThreadState state;
 925 
 926   {
 927     pthread_t tid;
 928     int ret = pthread_create(&tid, &attr, (void* (*)(void*)) thread_native_entry, thread);
 929 
 930     char buf[64];
 931     if (ret == 0) {
 932       log_info(os, thread)("Thread started (pthread id: " UINTX_FORMAT ", attributes: %s). ",
 933         (uintx) tid, os::Posix::describe_pthread_attr(buf, sizeof(buf), &attr));
 934     } else {
 935       log_warning(os, thread)("Failed to start thread - pthread_create failed (%s) for attributes: %s.",
 936         os::errno_name(ret), os::Posix::describe_pthread_attr(buf, sizeof(buf), &attr));
 937       // Log some OS information which might explain why creating the thread failed.
 938       log_info(os, thread)("Number of threads approx. running in the VM: %d", Threads::number_of_threads());
 939       LogStream st(Log(os, thread)::info());
 940       os::Posix::print_rlimit_info(&st);
 941       os::print_memory_info(&st);
 942       os::Linux::print_proc_sys_info(&st);
 943       os::Linux::print_container_info(&st);
 944     }
 945 
 946     pthread_attr_destroy(&attr);
 947 
 948     if (ret != 0) {
 949       // Need to clean up stuff we've allocated so far
 950       thread->set_osthread(NULL);
 951       delete osthread;
 952       return false;
 953     }
 954 
 955     // Store pthread info into the OSThread
 956     osthread->set_pthread_id(tid);
 957 
 958     // Wait until child thread is either initialized or aborted
 959     {
 960       Monitor* sync_with_child = osthread->startThread_lock();
 961       MutexLocker ml(sync_with_child, Mutex::_no_safepoint_check_flag);
 962       while ((state = osthread->get_state()) == ALLOCATED) {
 963         sync_with_child->wait_without_safepoint_check();
 964       }
 965     }
 966   }
 967 
 968   // Aborted due to thread limit being reached
 969   if (state == ZOMBIE) {
 970     thread->set_osthread(NULL);
 971     delete osthread;
 972     return false;
 973   }
 974 
 975   // The thread is returned suspended (in state INITIALIZED),
 976   // and is started higher up in the call chain
 977   assert(state == INITIALIZED, "race condition");
 978   return true;
 979 }
 980 
 981 /////////////////////////////////////////////////////////////////////////////
 982 // attach existing thread
 983 
 984 // bootstrap the main thread
 985 bool os::create_main_thread(JavaThread* thread) {
 986   assert(os::Linux::_main_thread == pthread_self(), "should be called inside main thread");
 987   return create_attached_thread(thread);
 988 }
 989 
 990 bool os::create_attached_thread(JavaThread* thread) {
 991 #ifdef ASSERT
 992   thread->verify_not_published();
 993 #endif
 994 
 995   // Allocate the OSThread object
 996   OSThread* osthread = new OSThread(NULL, NULL);
 997 
 998   if (osthread == NULL) {
 999     return false;
1000   }
1001 
1002   // Store pthread info into the OSThread
1003   osthread->set_thread_id(os::Linux::gettid());
1004   osthread->set_pthread_id(::pthread_self());
1005 
1006   // initialize floating point control register
1007   os::Linux::init_thread_fpu_state();
1008 
1009   // Initial thread state is RUNNABLE
1010   osthread->set_state(RUNNABLE);
1011 
1012   thread->set_osthread(osthread);
1013 
1014   if (UseNUMA) {
1015     int lgrp_id = os::numa_get_group_id();
1016     if (lgrp_id != -1) {
1017       thread->set_lgrp_id(lgrp_id);
1018     }
1019   }
1020 
1021   if (os::is_primordial_thread()) {
1022     // If current thread is primordial thread, its stack is mapped on demand,
1023     // see notes about MAP_GROWSDOWN. Here we try to force kernel to map
1024     // the entire stack region to avoid SEGV in stack banging.
1025     // It is also useful to get around the heap-stack-gap problem on SuSE
1026     // kernel (see 4821821 for details). We first expand stack to the top
1027     // of yellow zone, then enable stack yellow zone (order is significant,
1028     // enabling yellow zone first will crash JVM on SuSE Linux), so there
1029     // is no gap between the last two virtual memory regions.
1030 
1031     JavaThread *jt = (JavaThread *)thread;
1032     address addr = jt->stack_reserved_zone_base();
1033     assert(addr != NULL, "initialization problem?");
1034     assert(jt->stack_available(addr) > 0, "stack guard should not be enabled");
1035 
1036     osthread->set_expanding_stack();
1037     os::Linux::manually_expand_stack(jt, addr);
1038     osthread->clear_expanding_stack();
1039   }
1040 
1041   // initialize signal mask for this thread
1042   // and save the caller's signal mask
1043   os::Linux::hotspot_sigmask(thread);
1044 
1045   log_info(os, thread)("Thread attached (tid: " UINTX_FORMAT ", pthread id: " UINTX_FORMAT ").",
1046     os::current_thread_id(), (uintx) pthread_self());
1047 
1048   return true;
1049 }
1050 
1051 void os::pd_start_thread(Thread* thread) {
1052   OSThread * osthread = thread->osthread();
1053   assert(osthread->get_state() != INITIALIZED, "just checking");
1054   Monitor* sync_with_child = osthread->startThread_lock();
1055   MutexLocker ml(sync_with_child, Mutex::_no_safepoint_check_flag);
1056   sync_with_child->notify();
1057 }
1058 
1059 // Free Linux resources related to the OSThread
1060 void os::free_thread(OSThread* osthread) {
1061   assert(osthread != NULL, "osthread not set");
1062 
1063   // We are told to free resources of the argument thread,
1064   // but we can only really operate on the current thread.
1065   assert(Thread::current()->osthread() == osthread,
1066          "os::free_thread but not current thread");
1067 
1068 #ifdef ASSERT
1069   sigset_t current;
1070   sigemptyset(&current);
1071   pthread_sigmask(SIG_SETMASK, NULL, &current);
1072   assert(!sigismember(&current, SR_signum), "SR signal should not be blocked!");
1073 #endif
1074 
1075   // Restore caller's signal mask
1076   sigset_t sigmask = osthread->caller_sigmask();
1077   pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
1078 
1079   delete osthread;
1080 }
1081 
1082 //////////////////////////////////////////////////////////////////////////////
1083 // primordial thread
1084 
1085 // Check if current thread is the primordial thread, similar to Solaris thr_main.
1086 bool os::is_primordial_thread(void) {
1087   if (suppress_primordial_thread_resolution) {
1088     return false;
1089   }
1090   char dummy;
1091   // If called before init complete, thread stack bottom will be null.
1092   // Can be called if fatal error occurs before initialization.
1093   if (os::Linux::initial_thread_stack_bottom() == NULL) return false;
1094   assert(os::Linux::initial_thread_stack_bottom() != NULL &&
1095          os::Linux::initial_thread_stack_size()   != 0,
1096          "os::init did not locate primordial thread's stack region");
1097   if ((address)&dummy >= os::Linux::initial_thread_stack_bottom() &&
1098       (address)&dummy < os::Linux::initial_thread_stack_bottom() +
1099                         os::Linux::initial_thread_stack_size()) {
1100     return true;
1101   } else {
1102     return false;
1103   }
1104 }
1105 
1106 // Find the virtual memory area that contains addr
1107 static bool find_vma(address addr, address* vma_low, address* vma_high) {
1108   FILE *fp = fopen("/proc/self/maps", "r");
1109   if (fp) {
1110     address low, high;
1111     while (!feof(fp)) {
1112       if (fscanf(fp, "%p-%p", &low, &high) == 2) {
1113         if (low <= addr && addr < high) {
1114           if (vma_low)  *vma_low  = low;
1115           if (vma_high) *vma_high = high;
1116           fclose(fp);
1117           return true;
1118         }
1119       }
1120       for (;;) {
1121         int ch = fgetc(fp);
1122         if (ch == EOF || ch == (int)'\n') break;
1123       }
1124     }
1125     fclose(fp);
1126   }
1127   return false;
1128 }
1129 
1130 // Locate primordial thread stack. This special handling of primordial thread stack
1131 // is needed because pthread_getattr_np() on most (all?) Linux distros returns
1132 // bogus value for the primordial process thread. While the launcher has created
1133 // the VM in a new thread since JDK 6, we still have to allow for the use of the
1134 // JNI invocation API from a primordial thread.
1135 void os::Linux::capture_initial_stack(size_t max_size) {
1136 
1137   // max_size is either 0 (which means accept OS default for thread stacks) or
1138   // a user-specified value known to be at least the minimum needed. If we
1139   // are actually on the primordial thread we can make it appear that we have a
1140   // smaller max_size stack by inserting the guard pages at that location. But we
1141   // cannot do anything to emulate a larger stack than what has been provided by
1142   // the OS or threading library. In fact if we try to use a stack greater than
1143   // what is set by rlimit then we will crash the hosting process.
1144 
1145   // Maximum stack size is the easy part, get it from RLIMIT_STACK.
1146   // If this is "unlimited" then it will be a huge value.
1147   struct rlimit rlim;
1148   getrlimit(RLIMIT_STACK, &rlim);
1149   size_t stack_size = rlim.rlim_cur;
1150 
1151   // 6308388: a bug in ld.so will relocate its own .data section to the
1152   //   lower end of primordial stack; reduce ulimit -s value a little bit
1153   //   so we won't install guard page on ld.so's data section.
1154   //   But ensure we don't underflow the stack size - allow 1 page spare
1155   if (stack_size >= (size_t)(3 * page_size())) {
1156     stack_size -= 2 * page_size();
1157   }
1158 
1159   // Try to figure out where the stack base (top) is. This is harder.
1160   //
1161   // When an application is started, glibc saves the initial stack pointer in
1162   // a global variable "__libc_stack_end", which is then used by system
1163   // libraries. __libc_stack_end should be pretty close to stack top. The
1164   // variable is available since the very early days. However, because it is
1165   // a private interface, it could disappear in the future.
1166   //
1167   // Linux kernel saves start_stack information in /proc/<pid>/stat. Similar
1168   // to __libc_stack_end, it is very close to stack top, but isn't the real
1169   // stack top. Note that /proc may not exist if VM is running as a chroot
1170   // program, so reading /proc/<pid>/stat could fail. Also the contents of
1171   // /proc/<pid>/stat could change in the future (though unlikely).
1172   //
1173   // We try __libc_stack_end first. If that doesn't work, look for
1174   // /proc/<pid>/stat. If neither of them works, we use current stack pointer
1175   // as a hint, which should work well in most cases.
1176 
1177   uintptr_t stack_start;
1178 
1179   // try __libc_stack_end first
1180   uintptr_t *p = (uintptr_t *)dlsym(RTLD_DEFAULT, "__libc_stack_end");
1181   if (p && *p) {
1182     stack_start = *p;
1183   } else {
1184     // see if we can get the start_stack field from /proc/self/stat
1185     FILE *fp;
1186     int pid;
1187     char state;
1188     int ppid;
1189     int pgrp;
1190     int session;
1191     int nr;
1192     int tpgrp;
1193     unsigned long flags;
1194     unsigned long minflt;
1195     unsigned long cminflt;
1196     unsigned long majflt;
1197     unsigned long cmajflt;
1198     unsigned long utime;
1199     unsigned long stime;
1200     long cutime;
1201     long cstime;
1202     long prio;
1203     long nice;
1204     long junk;
1205     long it_real;
1206     uintptr_t start;
1207     uintptr_t vsize;
1208     intptr_t rss;
1209     uintptr_t rsslim;
1210     uintptr_t scodes;
1211     uintptr_t ecode;
1212     int i;
1213 
1214     // Figure what the primordial thread stack base is. Code is inspired
1215     // by email from Hans Boehm. /proc/self/stat begins with current pid,
1216     // followed by command name surrounded by parentheses, state, etc.
1217     char stat[2048];
1218     int statlen;
1219 
1220     fp = fopen("/proc/self/stat", "r");
1221     if (fp) {
1222       statlen = fread(stat, 1, 2047, fp);
1223       stat[statlen] = '\0';
1224       fclose(fp);
1225 
1226       // Skip pid and the command string. Note that we could be dealing with
1227       // weird command names, e.g. user could decide to rename java launcher
1228       // to "java 1.4.2 :)", then the stat file would look like
1229       //                1234 (java 1.4.2 :)) R ... ...
1230       // We don't really need to know the command string, just find the last
1231       // occurrence of ")" and then start parsing from there. See bug 4726580.
1232       char * s = strrchr(stat, ')');
1233 
1234       i = 0;
1235       if (s) {
1236         // Skip blank chars
1237         do { s++; } while (s && isspace(*s));
1238 
1239 #define _UFM UINTX_FORMAT
1240 #define _DFM INTX_FORMAT
1241 
1242         //                                     1   1   1   1   1   1   1   1   1   1   2   2    2    2    2    2    2    2    2
1243         //              3  4  5  6  7  8   9   0   1   2   3   4   5   6   7   8   9   0   1    2    3    4    5    6    7    8
1244         i = sscanf(s, "%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu %ld %ld %ld %ld %ld %ld " _UFM _UFM _DFM _UFM _UFM _UFM _UFM,
1245                    &state,          // 3  %c
1246                    &ppid,           // 4  %d
1247                    &pgrp,           // 5  %d
1248                    &session,        // 6  %d
1249                    &nr,             // 7  %d
1250                    &tpgrp,          // 8  %d
1251                    &flags,          // 9  %lu
1252                    &minflt,         // 10 %lu
1253                    &cminflt,        // 11 %lu
1254                    &majflt,         // 12 %lu
1255                    &cmajflt,        // 13 %lu
1256                    &utime,          // 14 %lu
1257                    &stime,          // 15 %lu
1258                    &cutime,         // 16 %ld
1259                    &cstime,         // 17 %ld
1260                    &prio,           // 18 %ld
1261                    &nice,           // 19 %ld
1262                    &junk,           // 20 %ld
1263                    &it_real,        // 21 %ld
1264                    &start,          // 22 UINTX_FORMAT
1265                    &vsize,          // 23 UINTX_FORMAT
1266                    &rss,            // 24 INTX_FORMAT
1267                    &rsslim,         // 25 UINTX_FORMAT
1268                    &scodes,         // 26 UINTX_FORMAT
1269                    &ecode,          // 27 UINTX_FORMAT
1270                    &stack_start);   // 28 UINTX_FORMAT
1271       }
1272 
1273 #undef _UFM
1274 #undef _DFM
1275 
1276       if (i != 28 - 2) {
1277         assert(false, "Bad conversion from /proc/self/stat");
1278         // product mode - assume we are the primordial thread, good luck in the
1279         // embedded case.
1280         warning("Can't detect primordial thread stack location - bad conversion");
1281         stack_start = (uintptr_t) &rlim;
1282       }
1283     } else {
1284       // For some reason we can't open /proc/self/stat (for example, running on
1285       // FreeBSD with a Linux emulator, or inside chroot), this should work for
1286       // most cases, so don't abort:
1287       warning("Can't detect primordial thread stack location - no /proc/self/stat");
1288       stack_start = (uintptr_t) &rlim;
1289     }
1290   }
1291 
1292   // Now we have a pointer (stack_start) very close to the stack top, the
1293   // next thing to do is to figure out the exact location of stack top. We
1294   // can find out the virtual memory area that contains stack_start by
1295   // reading /proc/self/maps, it should be the last vma in /proc/self/maps,
1296   // and its upper limit is the real stack top. (again, this would fail if
1297   // running inside chroot, because /proc may not exist.)
1298 
1299   uintptr_t stack_top;
1300   address low, high;
1301   if (find_vma((address)stack_start, &low, &high)) {
1302     // success, "high" is the true stack top. (ignore "low", because initial
1303     // thread stack grows on demand, its real bottom is high - RLIMIT_STACK.)
1304     stack_top = (uintptr_t)high;
1305   } else {
1306     // failed, likely because /proc/self/maps does not exist
1307     warning("Can't detect primordial thread stack location - find_vma failed");
1308     // best effort: stack_start is normally within a few pages below the real
1309     // stack top, use it as stack top, and reduce stack size so we won't put
1310     // guard page outside stack.
1311     stack_top = stack_start;
1312     stack_size -= 16 * page_size();
1313   }
1314 
1315   // stack_top could be partially down the page so align it
1316   stack_top = align_up(stack_top, page_size());
1317 
1318   // Allowed stack value is minimum of max_size and what we derived from rlimit
1319   if (max_size > 0) {
1320     _initial_thread_stack_size = MIN2(max_size, stack_size);
1321   } else {
1322     // Accept the rlimit max, but if stack is unlimited then it will be huge, so
1323     // clamp it at 8MB as we do on Solaris
1324     _initial_thread_stack_size = MIN2(stack_size, 8*M);
1325   }
1326   _initial_thread_stack_size = align_down(_initial_thread_stack_size, page_size());
1327   _initial_thread_stack_bottom = (address)stack_top - _initial_thread_stack_size;
1328 
1329   assert(_initial_thread_stack_bottom < (address)stack_top, "overflow!");
1330 
1331   if (log_is_enabled(Info, os, thread)) {
1332     // See if we seem to be on primordial process thread
1333     bool primordial = uintptr_t(&rlim) > uintptr_t(_initial_thread_stack_bottom) &&
1334                       uintptr_t(&rlim) < stack_top;
1335 
1336     log_info(os, thread)("Capturing initial stack in %s thread: req. size: " SIZE_FORMAT "K, actual size: "
1337                          SIZE_FORMAT "K, top=" INTPTR_FORMAT ", bottom=" INTPTR_FORMAT,
1338                          primordial ? "primordial" : "user", max_size / K,  _initial_thread_stack_size / K,
1339                          stack_top, intptr_t(_initial_thread_stack_bottom));
1340   }
1341 }
1342 
1343 ////////////////////////////////////////////////////////////////////////////////
1344 // time support
1345 
1346 #ifndef SUPPORTS_CLOCK_MONOTONIC
1347 #error "Build platform doesn't support clock_gettime and related functionality"
1348 #endif
1349 
1350 // Time since start-up in seconds to a fine granularity.
1351 // Used by VMSelfDestructTimer and the MemProfiler.
1352 double os::elapsedTime() {
1353 
1354   return ((double)os::elapsed_counter()) / os::elapsed_frequency(); // nanosecond resolution
1355 }
1356 
1357 jlong os::elapsed_counter() {
1358   return javaTimeNanos() - initial_time_count;
1359 }
1360 
1361 jlong os::elapsed_frequency() {
1362   return NANOSECS_PER_SEC; // nanosecond resolution
1363 }
1364 
1365 bool os::supports_vtime() { return true; }
1366 
1367 double os::elapsedVTime() {
1368   struct rusage usage;
1369   int retval = getrusage(RUSAGE_THREAD, &usage);
1370   if (retval == 0) {
1371     return (double) (usage.ru_utime.tv_sec + usage.ru_stime.tv_sec) + (double) (usage.ru_utime.tv_usec + usage.ru_stime.tv_usec) / (1000 * 1000);
1372   } else {
1373     // better than nothing, but not much
1374     return elapsedTime();
1375   }
1376 }
1377 
1378 jlong os::javaTimeMillis() {
1379   timeval time;
1380   int status = gettimeofday(&time, NULL);
1381   assert(status != -1, "linux error");
1382   return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
1383 }
1384 
1385 void os::javaTimeSystemUTC(jlong &seconds, jlong &nanos) {
1386   timeval time;
1387   int status = gettimeofday(&time, NULL);
1388   assert(status != -1, "linux error");
1389   seconds = jlong(time.tv_sec);
1390   nanos = jlong(time.tv_usec) * 1000;
1391 }
1392 
1393 void os::Linux::fast_thread_clock_init() {
1394   if (!UseLinuxPosixThreadCPUClocks) {
1395     return;
1396   }
1397   clockid_t clockid;
1398   struct timespec tp;
1399   int (*pthread_getcpuclockid_func)(pthread_t, clockid_t *) =
1400       (int(*)(pthread_t, clockid_t *)) dlsym(RTLD_DEFAULT, "pthread_getcpuclockid");
1401 
1402   // Switch to using fast clocks for thread cpu time if
1403   // the clock_getres() returns 0 error code.
1404   // Note, that some kernels may support the current thread
1405   // clock (CLOCK_THREAD_CPUTIME_ID) but not the clocks
1406   // returned by the pthread_getcpuclockid().
1407   // If the fast Posix clocks are supported then the clock_getres()
1408   // must return at least tp.tv_sec == 0 which means a resolution
1409   // better than 1 sec. This is extra check for reliability.
1410 
1411   if (pthread_getcpuclockid_func &&
1412       pthread_getcpuclockid_func(_main_thread, &clockid) == 0 &&
1413       os::Posix::clock_getres(clockid, &tp) == 0 && tp.tv_sec == 0) {
1414     _supports_fast_thread_cpu_time = true;
1415     _pthread_getcpuclockid = pthread_getcpuclockid_func;
1416   }
1417 }
1418 
1419 jlong os::javaTimeNanos() {
1420   if (os::supports_monotonic_clock()) {
1421     struct timespec tp;
1422     int status = os::Posix::clock_gettime(CLOCK_MONOTONIC, &tp);
1423     assert(status == 0, "gettime error");
1424     jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
1425     return result;
1426   } else {
1427     timeval time;
1428     int status = gettimeofday(&time, NULL);
1429     assert(status != -1, "linux error");
1430     jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
1431     return 1000 * usecs;
1432   }
1433 }
1434 
1435 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1436   if (os::supports_monotonic_clock()) {
1437     info_ptr->max_value = ALL_64_BITS;
1438 
1439     // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
1440     info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
1441     info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
1442   } else {
1443     // gettimeofday - based on time in seconds since the Epoch thus does not wrap
1444     info_ptr->max_value = ALL_64_BITS;
1445 
1446     // gettimeofday is a real time clock so it skips
1447     info_ptr->may_skip_backward = true;
1448     info_ptr->may_skip_forward = true;
1449   }
1450 
1451   info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
1452 }
1453 
1454 // Return the real, user, and system times in seconds from an
1455 // arbitrary fixed point in the past.
1456 bool os::getTimesSecs(double* process_real_time,
1457                       double* process_user_time,
1458                       double* process_system_time) {
1459   struct tms ticks;
1460   clock_t real_ticks = times(&ticks);
1461 
1462   if (real_ticks == (clock_t) (-1)) {
1463     return false;
1464   } else {
1465     double ticks_per_second = (double) clock_tics_per_sec;
1466     *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1467     *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1468     *process_real_time = ((double) real_ticks) / ticks_per_second;
1469 
1470     return true;
1471   }
1472 }
1473 
1474 
1475 char * os::local_time_string(char *buf, size_t buflen) {
1476   struct tm t;
1477   time_t long_time;
1478   time(&long_time);
1479   localtime_r(&long_time, &t);
1480   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1481                t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1482                t.tm_hour, t.tm_min, t.tm_sec);
1483   return buf;
1484 }
1485 
1486 struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
1487   return localtime_r(clock, res);
1488 }
1489 
1490 ////////////////////////////////////////////////////////////////////////////////
1491 // runtime exit support
1492 
1493 // Note: os::shutdown() might be called very early during initialization, or
1494 // called from signal handler. Before adding something to os::shutdown(), make
1495 // sure it is async-safe and can handle partially initialized VM.
1496 void os::shutdown() {
1497 
1498   // allow PerfMemory to attempt cleanup of any persistent resources
1499   perfMemory_exit();
1500 
1501   // needs to remove object in file system
1502   AttachListener::abort();
1503 
1504   // flush buffered output, finish log files
1505   ostream_abort();
1506 
1507   // Check for abort hook
1508   abort_hook_t abort_hook = Arguments::abort_hook();
1509   if (abort_hook != NULL) {
1510     abort_hook();
1511   }
1512 
1513 }
1514 
1515 // Note: os::abort() might be called very early during initialization, or
1516 // called from signal handler. Before adding something to os::abort(), make
1517 // sure it is async-safe and can handle partially initialized VM.
1518 void os::abort(bool dump_core, void* siginfo, const void* context) {
1519   os::shutdown();
1520   if (dump_core) {
1521     if (DumpPrivateMappingsInCore) {
1522       ClassLoader::close_jrt_image();
1523     }
1524     ::abort(); // dump core
1525   }
1526 
1527   ::exit(1);
1528 }
1529 
1530 // Die immediately, no exit hook, no abort hook, no cleanup.
1531 // Dump a core file, if possible, for debugging.
1532 void os::die() {
1533   if (TestUnresponsiveErrorHandler && !CreateCoredumpOnCrash) {
1534     // For TimeoutInErrorHandlingTest.java, we just kill the VM
1535     // and don't take the time to generate a core file.
1536     os::signal_raise(SIGKILL);
1537   } else {
1538     ::abort();
1539   }
1540 }
1541 
1542 // thread_id is kernel thread id (similar to Solaris LWP id)
1543 intx os::current_thread_id() { return os::Linux::gettid(); }
1544 int os::current_process_id() {
1545   return ::getpid();
1546 }
1547 
1548 // DLL functions
1549 
1550 const char* os::dll_file_extension() { return ".so"; }
1551 
1552 // This must be hard coded because it's the system's temporary
1553 // directory not the java application's temp directory, ala java.io.tmpdir.
1554 const char* os::get_temp_directory() { return "/tmp"; }
1555 
1556 static bool file_exists(const char* filename) {
1557   struct stat statbuf;
1558   if (filename == NULL || strlen(filename) == 0) {
1559     return false;
1560   }
1561   return os::stat(filename, &statbuf) == 0;
1562 }
1563 
1564 // check if addr is inside libjvm.so
1565 bool os::address_is_in_vm(address addr) {
1566   static address libjvm_base_addr;
1567   Dl_info dlinfo;
1568 
1569   if (libjvm_base_addr == NULL) {
1570     if (dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo) != 0) {
1571       libjvm_base_addr = (address)dlinfo.dli_fbase;
1572     }
1573     assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1574   }
1575 
1576   if (dladdr((void *)addr, &dlinfo) != 0) {
1577     if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1578   }
1579 
1580   return false;
1581 }
1582 
1583 bool os::dll_address_to_function_name(address addr, char *buf,
1584                                       int buflen, int *offset,
1585                                       bool demangle) {
1586   // buf is not optional, but offset is optional
1587   assert(buf != NULL, "sanity check");
1588 
1589   Dl_info dlinfo;
1590 
1591   if (dladdr((void*)addr, &dlinfo) != 0) {
1592     // see if we have a matching symbol
1593     if (dlinfo.dli_saddr != NULL && dlinfo.dli_sname != NULL) {
1594       if (!(demangle && Decoder::demangle(dlinfo.dli_sname, buf, buflen))) {
1595         jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1596       }
1597       if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1598       return true;
1599     }
1600     // no matching symbol so try for just file info
1601     if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
1602       if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1603                           buf, buflen, offset, dlinfo.dli_fname, demangle)) {
1604         return true;
1605       }
1606     }
1607   }
1608 
1609   buf[0] = '\0';
1610   if (offset != NULL) *offset = -1;
1611   return false;
1612 }
1613 
1614 struct _address_to_library_name {
1615   address addr;          // input : memory address
1616   size_t  buflen;        //         size of fname
1617   char*   fname;         // output: library name
1618   address base;          //         library base addr
1619 };
1620 
1621 static int address_to_library_name_callback(struct dl_phdr_info *info,
1622                                             size_t size, void *data) {
1623   int i;
1624   bool found = false;
1625   address libbase = NULL;
1626   struct _address_to_library_name * d = (struct _address_to_library_name *)data;
1627 
1628   // iterate through all loadable segments
1629   for (i = 0; i < info->dlpi_phnum; i++) {
1630     address segbase = (address)(info->dlpi_addr + info->dlpi_phdr[i].p_vaddr);
1631     if (info->dlpi_phdr[i].p_type == PT_LOAD) {
1632       // base address of a library is the lowest address of its loaded
1633       // segments.
1634       if (libbase == NULL || libbase > segbase) {
1635         libbase = segbase;
1636       }
1637       // see if 'addr' is within current segment
1638       if (segbase <= d->addr &&
1639           d->addr < segbase + info->dlpi_phdr[i].p_memsz) {
1640         found = true;
1641       }
1642     }
1643   }
1644 
1645   // dlpi_name is NULL or empty if the ELF file is executable, return 0
1646   // so dll_address_to_library_name() can fall through to use dladdr() which
1647   // can figure out executable name from argv[0].
1648   if (found && info->dlpi_name && info->dlpi_name[0]) {
1649     d->base = libbase;
1650     if (d->fname) {
1651       jio_snprintf(d->fname, d->buflen, "%s", info->dlpi_name);
1652     }
1653     return 1;
1654   }
1655   return 0;
1656 }
1657 
1658 bool os::dll_address_to_library_name(address addr, char* buf,
1659                                      int buflen, int* offset) {
1660   // buf is not optional, but offset is optional
1661   assert(buf != NULL, "sanity check");
1662 
1663   Dl_info dlinfo;
1664   struct _address_to_library_name data;
1665 
1666   // There is a bug in old glibc dladdr() implementation that it could resolve
1667   // to wrong library name if the .so file has a base address != NULL. Here
1668   // we iterate through the program headers of all loaded libraries to find
1669   // out which library 'addr' really belongs to. This workaround can be
1670   // removed once the minimum requirement for glibc is moved to 2.3.x.
1671   data.addr = addr;
1672   data.fname = buf;
1673   data.buflen = buflen;
1674   data.base = NULL;
1675   int rslt = dl_iterate_phdr(address_to_library_name_callback, (void *)&data);
1676 
1677   if (rslt) {
1678     // buf already contains library name
1679     if (offset) *offset = addr - data.base;
1680     return true;
1681   }
1682   if (dladdr((void*)addr, &dlinfo) != 0) {
1683     if (dlinfo.dli_fname != NULL) {
1684       jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1685     }
1686     if (dlinfo.dli_fbase != NULL && offset != NULL) {
1687       *offset = addr - (address)dlinfo.dli_fbase;
1688     }
1689     return true;
1690   }
1691 
1692   buf[0] = '\0';
1693   if (offset) *offset = -1;
1694   return false;
1695 }
1696 
1697 // Loads .dll/.so and
1698 // in case of error it checks if .dll/.so was built for the
1699 // same architecture as Hotspot is running on
1700 
1701 
1702 // Remember the stack's state. The Linux dynamic linker will change
1703 // the stack to 'executable' at most once, so we must safepoint only once.
1704 bool os::Linux::_stack_is_executable = false;
1705 
1706 // VM operation that loads a library.  This is necessary if stack protection
1707 // of the Java stacks can be lost during loading the library.  If we
1708 // do not stop the Java threads, they can stack overflow before the stacks
1709 // are protected again.
1710 class VM_LinuxDllLoad: public VM_Operation {
1711  private:
1712   const char *_filename;
1713   char *_ebuf;
1714   int _ebuflen;
1715   void *_lib;
1716  public:
1717   VM_LinuxDllLoad(const char *fn, char *ebuf, int ebuflen) :
1718     _filename(fn), _ebuf(ebuf), _ebuflen(ebuflen), _lib(NULL) {}
1719   VMOp_Type type() const { return VMOp_LinuxDllLoad; }
1720   void doit() {
1721     _lib = os::Linux::dll_load_in_vmthread(_filename, _ebuf, _ebuflen);
1722     os::Linux::_stack_is_executable = true;
1723   }
1724   void* loaded_library() { return _lib; }
1725 };
1726 
1727 void * os::dll_load(const char *filename, char *ebuf, int ebuflen) {
1728   void * result = NULL;
1729   bool load_attempted = false;
1730 
1731   log_info(os)("attempting shared library load of %s", filename);
1732 
1733   // Check whether the library to load might change execution rights
1734   // of the stack. If they are changed, the protection of the stack
1735   // guard pages will be lost. We need a safepoint to fix this.
1736   //
1737   // See Linux man page execstack(8) for more info.
1738   if (os::uses_stack_guard_pages() && !os::Linux::_stack_is_executable) {
1739     if (!ElfFile::specifies_noexecstack(filename)) {
1740       if (!is_init_completed()) {
1741         os::Linux::_stack_is_executable = true;
1742         // This is OK - No Java threads have been created yet, and hence no
1743         // stack guard pages to fix.
1744         //
1745         // Dynamic loader will make all stacks executable after
1746         // this function returns, and will not do that again.
1747         assert(Threads::number_of_threads() == 0, "no Java threads should exist yet.");
1748       } else {
1749         warning("You have loaded library %s which might have disabled stack guard. "
1750                 "The VM will try to fix the stack guard now.\n"
1751                 "It's highly recommended that you fix the library with "
1752                 "'execstack -c <libfile>', or link it with '-z noexecstack'.",
1753                 filename);
1754 
1755         assert(Thread::current()->is_Java_thread(), "must be Java thread");
1756         JavaThread *jt = JavaThread::current();
1757         if (jt->thread_state() != _thread_in_native) {
1758           // This happens when a compiler thread tries to load a hsdis-<arch>.so file
1759           // that requires ExecStack. Cannot enter safe point. Let's give up.
1760           warning("Unable to fix stack guard. Giving up.");
1761         } else {
1762           if (!LoadExecStackDllInVMThread) {
1763             // This is for the case where the DLL has an static
1764             // constructor function that executes JNI code. We cannot
1765             // load such DLLs in the VMThread.
1766             result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1767           }
1768 
1769           ThreadInVMfromNative tiv(jt);
1770           debug_only(VMNativeEntryWrapper vew;)
1771 
1772           VM_LinuxDllLoad op(filename, ebuf, ebuflen);
1773           VMThread::execute(&op);
1774           if (LoadExecStackDllInVMThread) {
1775             result = op.loaded_library();
1776           }
1777           load_attempted = true;
1778         }
1779       }
1780     }
1781   }
1782 
1783   if (!load_attempted) {
1784     result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1785   }
1786 
1787   if (result != NULL) {
1788     // Successful loading
1789     return result;
1790   }
1791 
1792   Elf32_Ehdr elf_head;
1793   int diag_msg_max_length=ebuflen-strlen(ebuf);
1794   char* diag_msg_buf=ebuf+strlen(ebuf);
1795 
1796   if (diag_msg_max_length==0) {
1797     // No more space in ebuf for additional diagnostics message
1798     return NULL;
1799   }
1800 
1801 
1802   int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1803 
1804   if (file_descriptor < 0) {
1805     // Can't open library, report dlerror() message
1806     return NULL;
1807   }
1808 
1809   bool failed_to_read_elf_head=
1810     (sizeof(elf_head)!=
1811      (::read(file_descriptor, &elf_head,sizeof(elf_head))));
1812 
1813   ::close(file_descriptor);
1814   if (failed_to_read_elf_head) {
1815     // file i/o error - report dlerror() msg
1816     return NULL;
1817   }
1818 
1819   if (elf_head.e_ident[EI_DATA] != LITTLE_ENDIAN_ONLY(ELFDATA2LSB) BIG_ENDIAN_ONLY(ELFDATA2MSB)) {
1820     // handle invalid/out of range endianness values
1821     if (elf_head.e_ident[EI_DATA] == 0 || elf_head.e_ident[EI_DATA] > 2) {
1822       return NULL;
1823     }
1824 
1825 #if defined(VM_LITTLE_ENDIAN)
1826     // VM is LE, shared object BE
1827     elf_head.e_machine = be16toh(elf_head.e_machine);
1828 #else
1829     // VM is BE, shared object LE
1830     elf_head.e_machine = le16toh(elf_head.e_machine);
1831 #endif
1832   }
1833 
1834   typedef struct {
1835     Elf32_Half    code;         // Actual value as defined in elf.h
1836     Elf32_Half    compat_class; // Compatibility of archs at VM's sense
1837     unsigned char elf_class;    // 32 or 64 bit
1838     unsigned char endianness;   // MSB or LSB
1839     char*         name;         // String representation
1840   } arch_t;
1841 
1842 #ifndef EM_AARCH64
1843   #define EM_AARCH64    183               /* ARM AARCH64 */
1844 #endif
1845 #ifndef EM_RISCV
1846   #define EM_RISCV      243               /* RISC-V */
1847 #endif
1848 
1849   static const arch_t arch_array[]={
1850     {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1851     {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1852     {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1853     {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1854     {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1855     {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1856     {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1857     {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1858 #if defined(VM_LITTLE_ENDIAN)
1859     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2LSB, (char*)"Power PC 64 LE"},
1860     {EM_SH,          EM_SH,      ELFCLASS32, ELFDATA2LSB, (char*)"SuperH"},
1861 #else
1862     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
1863     {EM_SH,          EM_SH,      ELFCLASS32, ELFDATA2MSB, (char*)"SuperH BE"},
1864 #endif
1865     {EM_ARM,         EM_ARM,     ELFCLASS32, ELFDATA2LSB, (char*)"ARM"},
1866     // we only support 64 bit z architecture
1867     {EM_S390,        EM_S390,    ELFCLASS64, ELFDATA2MSB, (char*)"IBM System/390"},
1868     {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
1869     {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
1870     {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
1871     {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
1872     {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"},
1873     {EM_AARCH64,     EM_AARCH64, ELFCLASS64, ELFDATA2LSB, (char*)"AARCH64"},
1874     {EM_RISCV,       EM_RISCV,   ELFCLASS64, ELFDATA2LSB, (char*)"RISC-V"},
1875   };
1876 
1877 #if  (defined IA32)
1878   static  Elf32_Half running_arch_code=EM_386;
1879 #elif   (defined AMD64) || (defined X32)
1880   static  Elf32_Half running_arch_code=EM_X86_64;
1881 #elif  (defined IA64)
1882   static  Elf32_Half running_arch_code=EM_IA_64;
1883 #elif  (defined __sparc) && (defined _LP64)
1884   static  Elf32_Half running_arch_code=EM_SPARCV9;
1885 #elif  (defined __sparc) && (!defined _LP64)
1886   static  Elf32_Half running_arch_code=EM_SPARC;
1887 #elif  (defined __powerpc64__)
1888   static  Elf32_Half running_arch_code=EM_PPC64;
1889 #elif  (defined __powerpc__)
1890   static  Elf32_Half running_arch_code=EM_PPC;
1891 #elif  (defined AARCH64)
1892   static  Elf32_Half running_arch_code=EM_AARCH64;
1893 #elif  (defined ARM)
1894   static  Elf32_Half running_arch_code=EM_ARM;
1895 #elif  (defined S390)
1896   static  Elf32_Half running_arch_code=EM_S390;
1897 #elif  (defined ALPHA)
1898   static  Elf32_Half running_arch_code=EM_ALPHA;
1899 #elif  (defined MIPSEL)
1900   static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
1901 #elif  (defined PARISC)
1902   static  Elf32_Half running_arch_code=EM_PARISC;
1903 #elif  (defined MIPS)
1904   static  Elf32_Half running_arch_code=EM_MIPS;
1905 #elif  (defined M68K)
1906   static  Elf32_Half running_arch_code=EM_68K;
1907 #elif  (defined SH)
1908   static  Elf32_Half running_arch_code=EM_SH;
1909 #elif  (defined RISCV)
1910   static  Elf32_Half running_arch_code=EM_RISCV;
1911 #else
1912     #error Method os::dll_load requires that one of following is defined:\
1913         AARCH64, ALPHA, ARM, AMD64, IA32, IA64, M68K, MIPS, MIPSEL, PARISC, __powerpc__, __powerpc64__, RISCV, S390, SH, __sparc
1914 #endif
1915 
1916   // Identify compatibility class for VM's architecture and library's architecture
1917   // Obtain string descriptions for architectures
1918 
1919   arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
1920   int running_arch_index=-1;
1921 
1922   for (unsigned int i=0; i < ARRAY_SIZE(arch_array); i++) {
1923     if (running_arch_code == arch_array[i].code) {
1924       running_arch_index    = i;
1925     }
1926     if (lib_arch.code == arch_array[i].code) {
1927       lib_arch.compat_class = arch_array[i].compat_class;
1928       lib_arch.name         = arch_array[i].name;
1929     }
1930   }
1931 
1932   assert(running_arch_index != -1,
1933          "Didn't find running architecture code (running_arch_code) in arch_array");
1934   if (running_arch_index == -1) {
1935     // Even though running architecture detection failed
1936     // we may still continue with reporting dlerror() message
1937     return NULL;
1938   }
1939 
1940   if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
1941     if (lib_arch.name != NULL) {
1942       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1943                  " (Possible cause: can't load %s .so on a %s platform)",
1944                  lib_arch.name, arch_array[running_arch_index].name);
1945     } else {
1946       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1947                  " (Possible cause: can't load this .so (machine code=0x%x) on a %s platform)",
1948                  lib_arch.code, arch_array[running_arch_index].name);
1949     }
1950     return NULL;
1951   }
1952 
1953   if (lib_arch.endianness != arch_array[running_arch_index].endianness) {
1954     ::snprintf(diag_msg_buf, diag_msg_max_length-1, " (Possible cause: endianness mismatch)");
1955     return NULL;
1956   }
1957 
1958   // ELF file class/capacity : 0 - invalid, 1 - 32bit, 2 - 64bit
1959   if (lib_arch.elf_class > 2 || lib_arch.elf_class < 1) {
1960     ::snprintf(diag_msg_buf, diag_msg_max_length-1, " (Possible cause: invalid ELF file class)");
1961     return NULL;
1962   }
1963 
1964   if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
1965     ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1966                " (Possible cause: architecture word width mismatch, can't load %d-bit .so on a %d-bit platform)",
1967                (int) lib_arch.elf_class * 32, arch_array[running_arch_index].elf_class * 32);
1968     return NULL;
1969   }
1970 
1971   return NULL;
1972 }
1973 
1974 void * os::Linux::dlopen_helper(const char *filename, char *ebuf,
1975                                 int ebuflen) {
1976   void * result = ::dlopen(filename, RTLD_LAZY);
1977   if (result == NULL) {
1978     const char* error_report = ::dlerror();
1979     if (error_report == NULL) {
1980       error_report = "dlerror returned no error description";
1981     }
1982     if (ebuf != NULL && ebuflen > 0) {
1983       ::strncpy(ebuf, error_report, ebuflen-1);
1984       ebuf[ebuflen-1]='\0';
1985     }
1986     Events::log(NULL, "Loading shared library %s failed, %s", filename, error_report);
1987     log_info(os)("shared library load of %s failed, %s", filename, error_report);
1988   } else {
1989     Events::log(NULL, "Loaded shared library %s", filename);
1990     log_info(os)("shared library load of %s was successful", filename);
1991   }
1992   return result;
1993 }
1994 
1995 void * os::Linux::dll_load_in_vmthread(const char *filename, char *ebuf,
1996                                        int ebuflen) {
1997   void * result = NULL;
1998   if (LoadExecStackDllInVMThread) {
1999     result = dlopen_helper(filename, ebuf, ebuflen);
2000   }
2001 
2002   // Since 7019808, libjvm.so is linked with -noexecstack. If the VM loads a
2003   // library that requires an executable stack, or which does not have this
2004   // stack attribute set, dlopen changes the stack attribute to executable. The
2005   // read protection of the guard pages gets lost.
2006   //
2007   // Need to check _stack_is_executable again as multiple VM_LinuxDllLoad
2008   // may have been queued at the same time.
2009 
2010   if (!_stack_is_executable) {
2011     for (JavaThreadIteratorWithHandle jtiwh; JavaThread *jt = jtiwh.next(); ) {
2012       if (!jt->stack_guard_zone_unused() &&     // Stack not yet fully initialized
2013           jt->stack_guards_enabled()) {         // No pending stack overflow exceptions
2014         if (!os::guard_memory((char *)jt->stack_end(), jt->stack_guard_zone_size())) {
2015           warning("Attempt to reguard stack yellow zone failed.");
2016         }
2017       }
2018     }
2019   }
2020 
2021   return result;
2022 }
2023 
2024 void* os::dll_lookup(void* handle, const char* name) {
2025   void* res = dlsym(handle, name);
2026   return res;
2027 }
2028 
2029 void* os::get_default_process_handle() {
2030   return (void*)::dlopen(NULL, RTLD_LAZY);
2031 }
2032 
2033 static bool _print_ascii_file(const char* filename, outputStream* st, const char* hdr = NULL) {
2034   int fd = ::open(filename, O_RDONLY);
2035   if (fd == -1) {
2036     return false;
2037   }
2038 
2039   if (hdr != NULL) {
2040     st->print_cr("%s", hdr);
2041   }
2042 
2043   char buf[33];
2044   int bytes;
2045   buf[32] = '\0';
2046   while ((bytes = ::read(fd, buf, sizeof(buf)-1)) > 0) {
2047     st->print_raw(buf, bytes);
2048   }
2049 
2050   ::close(fd);
2051 
2052   return true;
2053 }
2054 
2055 static void _print_ascii_file_h(const char* header, const char* filename, outputStream* st) {
2056   st->print_cr("%s:", header);
2057   if (!_print_ascii_file(filename, st)) {
2058     st->print_cr("<Not Available>");
2059   }
2060 }
2061 
2062 void os::print_dll_info(outputStream *st) {
2063   st->print_cr("Dynamic libraries:");
2064 
2065   char fname[32];
2066   pid_t pid = os::Linux::gettid();
2067 
2068   jio_snprintf(fname, sizeof(fname), "/proc/%d/maps", pid);
2069 
2070   if (!_print_ascii_file(fname, st)) {
2071     st->print("Can not get library information for pid = %d\n", pid);
2072   }
2073 }
2074 
2075 int os::get_loaded_modules_info(os::LoadedModulesCallbackFunc callback, void *param) {
2076   FILE *procmapsFile = NULL;
2077 
2078   // Open the procfs maps file for the current process
2079   if ((procmapsFile = fopen("/proc/self/maps", "r")) != NULL) {
2080     // Allocate PATH_MAX for file name plus a reasonable size for other fields.
2081     char line[PATH_MAX + 100];
2082 
2083     // Read line by line from 'file'
2084     while (fgets(line, sizeof(line), procmapsFile) != NULL) {
2085       u8 base, top, inode;
2086       char name[sizeof(line)];
2087 
2088       // Parse fields from line, discard perms, offset and device
2089       int matches = sscanf(line, UINT64_FORMAT_X "-" UINT64_FORMAT_X " %*s %*s %*s " INT64_FORMAT " %s",
2090              &base, &top, &inode, name);
2091       // the last entry 'name' is empty for some entries, so we might have 3 matches instead of 4 for some lines
2092       if (matches < 3) continue;
2093       if (matches == 3) name[0] = '\0';
2094 
2095       // Filter by inode 0 so that we only get file system mapped files.
2096       if (inode != 0) {
2097 
2098         // Call callback with the fields of interest
2099         if(callback(name, (address)base, (address)top, param)) {
2100           // Oops abort, callback aborted
2101           fclose(procmapsFile);
2102           return 1;
2103         }
2104       }
2105     }
2106     fclose(procmapsFile);
2107   }
2108   return 0;
2109 }
2110 
2111 void os::print_os_info_brief(outputStream* st) {
2112   os::Linux::print_distro_info(st);
2113 
2114   os::Posix::print_uname_info(st);
2115 
2116   os::Linux::print_libversion_info(st);
2117 
2118 }
2119 
2120 void os::print_os_info(outputStream* st) {
2121   st->print("OS:");
2122 
2123   os::Linux::print_distro_info(st);
2124 
2125   os::Posix::print_uname_info(st);
2126 
2127   os::Linux::print_uptime_info(st);
2128 
2129   // Print warning if unsafe chroot environment detected
2130   if (unsafe_chroot_detected) {
2131     st->print("WARNING!! ");
2132     st->print_cr("%s", unstable_chroot_error);
2133   }
2134 
2135   os::Linux::print_libversion_info(st);
2136 
2137   os::Posix::print_rlimit_info(st);
2138 
2139   os::Posix::print_load_average(st);
2140 
2141   os::Linux::print_full_memory_info(st);
2142 
2143   os::Linux::print_proc_sys_info(st);
2144 
2145   os::Linux::print_ld_preload_file(st);
2146 
2147   os::Linux::print_container_info(st);
2148 
2149   VM_Version::print_platform_virtualization_info(st);
2150 
2151   os::Linux::print_steal_info(st);
2152 }
2153 
2154 // Try to identify popular distros.
2155 // Most Linux distributions have a /etc/XXX-release file, which contains
2156 // the OS version string. Newer Linux distributions have a /etc/lsb-release
2157 // file that also contains the OS version string. Some have more than one
2158 // /etc/XXX-release file (e.g. Mandrake has both /etc/mandrake-release and
2159 // /etc/redhat-release.), so the order is important.
2160 // Any Linux that is based on Redhat (i.e. Oracle, Mandrake, Sun JDS...) have
2161 // their own specific XXX-release file as well as a redhat-release file.
2162 // Because of this the XXX-release file needs to be searched for before the
2163 // redhat-release file.
2164 // Since Red Hat and SuSE have an lsb-release file that is not very descriptive the
2165 // search for redhat-release / SuSE-release needs to be before lsb-release.
2166 // Since the lsb-release file is the new standard it needs to be searched
2167 // before the older style release files.
2168 // Searching system-release (Red Hat) and os-release (other Linuxes) are a
2169 // next to last resort.  The os-release file is a new standard that contains
2170 // distribution information and the system-release file seems to be an old
2171 // standard that has been replaced by the lsb-release and os-release files.
2172 // Searching for the debian_version file is the last resort.  It contains
2173 // an informative string like "6.0.6" or "wheezy/sid". Because of this
2174 // "Debian " is printed before the contents of the debian_version file.
2175 
2176 const char* distro_files[] = {
2177   "/etc/oracle-release",
2178   "/etc/mandriva-release",
2179   "/etc/mandrake-release",
2180   "/etc/sun-release",
2181   "/etc/redhat-release",
2182   "/etc/SuSE-release",
2183   "/etc/lsb-release",
2184   "/etc/turbolinux-release",
2185   "/etc/gentoo-release",
2186   "/etc/ltib-release",
2187   "/etc/angstrom-version",
2188   "/etc/system-release",
2189   "/etc/os-release",
2190   NULL };
2191 
2192 void os::Linux::print_distro_info(outputStream* st) {
2193   for (int i = 0;; i++) {
2194     const char* file = distro_files[i];
2195     if (file == NULL) {
2196       break;  // done
2197     }
2198     // If file prints, we found it.
2199     if (_print_ascii_file(file, st)) {
2200       return;
2201     }
2202   }
2203 
2204   if (file_exists("/etc/debian_version")) {
2205     st->print("Debian ");
2206     _print_ascii_file("/etc/debian_version", st);
2207   } else {
2208     st->print("Linux");
2209   }
2210   st->cr();
2211 }
2212 
2213 static void parse_os_info_helper(FILE* fp, char* distro, size_t length, bool get_first_line) {
2214   char buf[256];
2215   while (fgets(buf, sizeof(buf), fp)) {
2216     // Edit out extra stuff in expected format
2217     if (strstr(buf, "DISTRIB_DESCRIPTION=") != NULL || strstr(buf, "PRETTY_NAME=") != NULL) {
2218       char* ptr = strstr(buf, "\"");  // the name is in quotes
2219       if (ptr != NULL) {
2220         ptr++; // go beyond first quote
2221         char* nl = strchr(ptr, '\"');
2222         if (nl != NULL) *nl = '\0';
2223         strncpy(distro, ptr, length);
2224       } else {
2225         ptr = strstr(buf, "=");
2226         ptr++; // go beyond equals then
2227         char* nl = strchr(ptr, '\n');
2228         if (nl != NULL) *nl = '\0';
2229         strncpy(distro, ptr, length);
2230       }
2231       return;
2232     } else if (get_first_line) {
2233       char* nl = strchr(buf, '\n');
2234       if (nl != NULL) *nl = '\0';
2235       strncpy(distro, buf, length);
2236       return;
2237     }
2238   }
2239   // print last line and close
2240   char* nl = strchr(buf, '\n');
2241   if (nl != NULL) *nl = '\0';
2242   strncpy(distro, buf, length);
2243 }
2244 
2245 static void parse_os_info(char* distro, size_t length, const char* file) {
2246   FILE* fp = fopen(file, "r");
2247   if (fp != NULL) {
2248     // if suse format, print out first line
2249     bool get_first_line = (strcmp(file, "/etc/SuSE-release") == 0);
2250     parse_os_info_helper(fp, distro, length, get_first_line);
2251     fclose(fp);
2252   }
2253 }
2254 
2255 void os::get_summary_os_info(char* buf, size_t buflen) {
2256   for (int i = 0;; i++) {
2257     const char* file = distro_files[i];
2258     if (file == NULL) {
2259       break; // ran out of distro_files
2260     }
2261     if (file_exists(file)) {
2262       parse_os_info(buf, buflen, file);
2263       return;
2264     }
2265   }
2266   // special case for debian
2267   if (file_exists("/etc/debian_version")) {
2268     strncpy(buf, "Debian ", buflen);
2269     if (buflen > 7) {
2270       parse_os_info(&buf[7], buflen-7, "/etc/debian_version");
2271     }
2272   } else {
2273     strncpy(buf, "Linux", buflen);
2274   }
2275 }
2276 
2277 void os::Linux::print_libversion_info(outputStream* st) {
2278   // libc, pthread
2279   st->print("libc:");
2280   st->print("%s ", os::Linux::glibc_version());
2281   st->print("%s ", os::Linux::libpthread_version());
2282   st->cr();
2283 }
2284 
2285 void os::Linux::print_proc_sys_info(outputStream* st) {
2286   st->cr();
2287   _print_ascii_file_h("/proc/sys/kernel/threads-max (system-wide limit on the number of threads)",
2288                       "/proc/sys/kernel/threads-max", st);
2289   _print_ascii_file_h("/proc/sys/vm/max_map_count (maximum number of memory map areas a process may have)",
2290                       "/proc/sys/vm/max_map_count", st);
2291   _print_ascii_file_h("/proc/sys/kernel/pid_max (system-wide limit on number of process identifiers)",
2292                       "/proc/sys/kernel/pid_max", st);
2293 }
2294 
2295 void os::Linux::print_full_memory_info(outputStream* st) {
2296   _print_ascii_file_h("\n/proc/meminfo", "/proc/meminfo", st);
2297   st->cr();
2298 
2299   // some information regarding THPs; for details see
2300   // https://www.kernel.org/doc/Documentation/vm/transhuge.txt
2301   _print_ascii_file_h("/sys/kernel/mm/transparent_hugepage/enabled",
2302                       "/sys/kernel/mm/transparent_hugepage/enabled", st);
2303   _print_ascii_file_h("/sys/kernel/mm/transparent_hugepage/defrag (defrag/compaction efforts parameter)",
2304                       "/sys/kernel/mm/transparent_hugepage/defrag", st);
2305 }
2306 
2307 void os::Linux::print_ld_preload_file(outputStream* st) {
2308   _print_ascii_file("/etc/ld.so.preload", st, "\n/etc/ld.so.preload:");
2309   st->cr();
2310 }
2311 
2312 void os::Linux::print_uptime_info(outputStream* st) {
2313   struct sysinfo sinfo;
2314   int ret = sysinfo(&sinfo);
2315   if (ret == 0) {
2316     os::print_dhm(st, "OS uptime:", (long) sinfo.uptime);
2317   }
2318 }
2319 
2320 
2321 void os::Linux::print_container_info(outputStream* st) {
2322   if (!OSContainer::is_containerized()) {
2323     return;
2324   }
2325 
2326   st->print("container (cgroup) information:\n");
2327 
2328   const char *p_ct = OSContainer::container_type();
2329   st->print("container_type: %s\n", p_ct != NULL ? p_ct : "not supported");
2330 
2331   char *p = OSContainer::cpu_cpuset_cpus();
2332   st->print("cpu_cpuset_cpus: %s\n", p != NULL ? p : "not supported");
2333   free(p);
2334 
2335   p = OSContainer::cpu_cpuset_memory_nodes();
2336   st->print("cpu_memory_nodes: %s\n", p != NULL ? p : "not supported");
2337   free(p);
2338 
2339   int i = OSContainer::active_processor_count();
2340   st->print("active_processor_count: ");
2341   if (i > 0) {
2342     st->print("%d\n", i);
2343   } else {
2344     st->print("not supported\n");
2345   }
2346 
2347   i = OSContainer::cpu_quota();
2348   st->print("cpu_quota: ");
2349   if (i > 0) {
2350     st->print("%d\n", i);
2351   } else {
2352     st->print("%s\n", i == OSCONTAINER_ERROR ? "not supported" : "no quota");
2353   }
2354 
2355   i = OSContainer::cpu_period();
2356   st->print("cpu_period: ");
2357   if (i > 0) {
2358     st->print("%d\n", i);
2359   } else {
2360     st->print("%s\n", i == OSCONTAINER_ERROR ? "not supported" : "no period");
2361   }
2362 
2363   i = OSContainer::cpu_shares();
2364   st->print("cpu_shares: ");
2365   if (i > 0) {
2366     st->print("%d\n", i);
2367   } else {
2368     st->print("%s\n", i == OSCONTAINER_ERROR ? "not supported" : "no shares");
2369   }
2370 
2371   jlong j = OSContainer::memory_limit_in_bytes();
2372   st->print("memory_limit_in_bytes: ");
2373   if (j > 0) {
2374     st->print(JLONG_FORMAT "\n", j);
2375   } else {
2376     st->print("%s\n", j == OSCONTAINER_ERROR ? "not supported" : "unlimited");
2377   }
2378 
2379   j = OSContainer::memory_and_swap_limit_in_bytes();
2380   st->print("memory_and_swap_limit_in_bytes: ");
2381   if (j > 0) {
2382     st->print(JLONG_FORMAT "\n", j);
2383   } else {
2384     st->print("%s\n", j == OSCONTAINER_ERROR ? "not supported" : "unlimited");
2385   }
2386 
2387   j = OSContainer::memory_soft_limit_in_bytes();
2388   st->print("memory_soft_limit_in_bytes: ");
2389   if (j > 0) {
2390     st->print(JLONG_FORMAT "\n", j);
2391   } else {
2392     st->print("%s\n", j == OSCONTAINER_ERROR ? "not supported" : "unlimited");
2393   }
2394 
2395   j = OSContainer::OSContainer::memory_usage_in_bytes();
2396   st->print("memory_usage_in_bytes: ");
2397   if (j > 0) {
2398     st->print(JLONG_FORMAT "\n", j);
2399   } else {
2400     st->print("%s\n", j == OSCONTAINER_ERROR ? "not supported" : "unlimited");
2401   }
2402 
2403   j = OSContainer::OSContainer::memory_max_usage_in_bytes();
2404   st->print("memory_max_usage_in_bytes: ");
2405   if (j > 0) {
2406     st->print(JLONG_FORMAT "\n", j);
2407   } else {
2408     st->print("%s\n", j == OSCONTAINER_ERROR ? "not supported" : "unlimited");
2409   }
2410   st->cr();
2411 }
2412 
2413 void os::Linux::print_steal_info(outputStream* st) {
2414   if (has_initial_tick_info) {
2415     CPUPerfTicks pticks;
2416     bool res = os::Linux::get_tick_information(&pticks, -1);
2417 
2418     if (res && pticks.has_steal_ticks) {
2419       uint64_t steal_ticks_difference = pticks.steal - initial_steal_ticks;
2420       uint64_t total_ticks_difference = pticks.total - initial_total_ticks;
2421       double steal_ticks_perc = 0.0;
2422       if (total_ticks_difference != 0) {
2423         steal_ticks_perc = (double) steal_ticks_difference / total_ticks_difference;
2424       }
2425       st->print_cr("Steal ticks since vm start: " UINT64_FORMAT, steal_ticks_difference);
2426       st->print_cr("Steal ticks percentage since vm start:%7.3f", steal_ticks_perc);
2427     }
2428   }
2429 }
2430 
2431 void os::print_memory_info(outputStream* st) {
2432 
2433   st->print("Memory:");
2434   st->print(" %dk page", os::vm_page_size()>>10);
2435 
2436   // values in struct sysinfo are "unsigned long"
2437   struct sysinfo si;
2438   sysinfo(&si);
2439 
2440   st->print(", physical " UINT64_FORMAT "k",
2441             os::physical_memory() >> 10);
2442   st->print("(" UINT64_FORMAT "k free)",
2443             os::available_memory() >> 10);
2444   st->print(", swap " UINT64_FORMAT "k",
2445             ((jlong)si.totalswap * si.mem_unit) >> 10);
2446   st->print("(" UINT64_FORMAT "k free)",
2447             ((jlong)si.freeswap * si.mem_unit) >> 10);
2448   st->cr();
2449 }
2450 
2451 // Print the first "model name" line and the first "flags" line
2452 // that we find and nothing more. We assume "model name" comes
2453 // before "flags" so if we find a second "model name", then the
2454 // "flags" field is considered missing.
2455 static bool print_model_name_and_flags(outputStream* st, char* buf, size_t buflen) {
2456 #if defined(IA32) || defined(AMD64)
2457   // Other platforms have less repetitive cpuinfo files
2458   FILE *fp = fopen("/proc/cpuinfo", "r");
2459   if (fp) {
2460     while (!feof(fp)) {
2461       if (fgets(buf, buflen, fp)) {
2462         // Assume model name comes before flags
2463         bool model_name_printed = false;
2464         if (strstr(buf, "model name") != NULL) {
2465           if (!model_name_printed) {
2466             st->print_raw("CPU Model and flags from /proc/cpuinfo:\n");
2467             st->print_raw(buf);
2468             model_name_printed = true;
2469           } else {
2470             // model name printed but not flags?  Odd, just return
2471             fclose(fp);
2472             return true;
2473           }
2474         }
2475         // print the flags line too
2476         if (strstr(buf, "flags") != NULL) {
2477           st->print_raw(buf);
2478           fclose(fp);
2479           return true;
2480         }
2481       }
2482     }
2483     fclose(fp);
2484   }
2485 #endif // x86 platforms
2486   return false;
2487 }
2488 
2489 // additional information about CPU e.g. available frequency ranges
2490 static void print_sys_devices_cpu_info(outputStream* st, char* buf, size_t buflen) {
2491   _print_ascii_file_h("Online cpus", "/sys/devices/system/cpu/online", st);
2492   _print_ascii_file_h("Offline cpus", "/sys/devices/system/cpu/offline", st);
2493 
2494   if (ExtensiveErrorReports) {
2495     // cache related info (cpu 0, should be similar for other CPUs)
2496     for (unsigned int i=0; i < 10; i++) { // handle max. 10 cache entries
2497       char hbuf_level[60];
2498       char hbuf_type[60];
2499       char hbuf_size[60];
2500       char hbuf_coherency_line_size[80];
2501       snprintf(hbuf_level, 60, "/sys/devices/system/cpu/cpu0/cache/index%u/level", i);
2502       snprintf(hbuf_type, 60, "/sys/devices/system/cpu/cpu0/cache/index%u/type", i);
2503       snprintf(hbuf_size, 60, "/sys/devices/system/cpu/cpu0/cache/index%u/size", i);
2504       snprintf(hbuf_coherency_line_size, 80, "/sys/devices/system/cpu/cpu0/cache/index%u/coherency_line_size", i);
2505       if (file_exists(hbuf_level)) {
2506         _print_ascii_file_h("cache level", hbuf_level, st);
2507         _print_ascii_file_h("cache type", hbuf_type, st);
2508         _print_ascii_file_h("cache size", hbuf_size, st);
2509         _print_ascii_file_h("cache coherency line size", hbuf_coherency_line_size, st);
2510       }
2511     }
2512   }
2513 
2514   // we miss the cpufreq entries on Power and s390x
2515 #if defined(IA32) || defined(AMD64)
2516   _print_ascii_file_h("BIOS frequency limitation", "/sys/devices/system/cpu/cpu0/cpufreq/bios_limit", st);
2517   _print_ascii_file_h("Frequency switch latency (ns)", "/sys/devices/system/cpu/cpu0/cpufreq/cpuinfo_transition_latency", st);
2518   _print_ascii_file_h("Available cpu frequencies", "/sys/devices/system/cpu/cpu0/cpufreq/scaling_available_frequencies", st);
2519   // min and max should be in the Available range but still print them (not all info might be available for all kernels)
2520   if (ExtensiveErrorReports) {
2521     _print_ascii_file_h("Maximum cpu frequency", "/sys/devices/system/cpu/cpu0/cpufreq/cpuinfo_max_freq", st);
2522     _print_ascii_file_h("Minimum cpu frequency", "/sys/devices/system/cpu/cpu0/cpufreq/cpuinfo_min_freq", st);
2523     _print_ascii_file_h("Current cpu frequency", "/sys/devices/system/cpu/cpu0/cpufreq/scaling_cur_freq", st);
2524   }
2525   // governors are power schemes, see https://wiki.archlinux.org/index.php/CPU_frequency_scaling
2526   if (ExtensiveErrorReports) {
2527     _print_ascii_file_h("Available governors", "/sys/devices/system/cpu/cpu0/cpufreq/scaling_available_governors", st);
2528   }
2529   _print_ascii_file_h("Current governor", "/sys/devices/system/cpu/cpu0/cpufreq/scaling_governor", st);
2530   // Core performance boost, see https://www.kernel.org/doc/Documentation/cpu-freq/boost.txt
2531   // Raise operating frequency of some cores in a multi-core package if certain conditions apply, e.g.
2532   // whole chip is not fully utilized
2533   _print_ascii_file_h("Core performance/turbo boost", "/sys/devices/system/cpu/cpufreq/boost", st);
2534 #endif
2535 }
2536 
2537 void os::pd_print_cpu_info(outputStream* st, char* buf, size_t buflen) {
2538   // Only print the model name if the platform provides this as a summary
2539   if (!print_model_name_and_flags(st, buf, buflen)) {
2540     _print_ascii_file_h("\n/proc/cpuinfo", "/proc/cpuinfo", st);
2541   }
2542   print_sys_devices_cpu_info(st, buf, buflen);
2543 }
2544 
2545 #if defined(AMD64) || defined(IA32) || defined(X32)
2546 const char* search_string = "model name";
2547 #elif defined(M68K)
2548 const char* search_string = "CPU";
2549 #elif defined(PPC64)
2550 const char* search_string = "cpu";
2551 #elif defined(S390)
2552 const char* search_string = "machine =";
2553 #elif defined(SPARC)
2554 const char* search_string = "cpu";
2555 #else
2556 const char* search_string = "Processor";
2557 #endif
2558 
2559 // Parses the cpuinfo file for string representing the model name.
2560 void os::get_summary_cpu_info(char* cpuinfo, size_t length) {
2561   FILE* fp = fopen("/proc/cpuinfo", "r");
2562   if (fp != NULL) {
2563     while (!feof(fp)) {
2564       char buf[256];
2565       if (fgets(buf, sizeof(buf), fp)) {
2566         char* start = strstr(buf, search_string);
2567         if (start != NULL) {
2568           char *ptr = start + strlen(search_string);
2569           char *end = buf + strlen(buf);
2570           while (ptr != end) {
2571              // skip whitespace and colon for the rest of the name.
2572              if (*ptr != ' ' && *ptr != '\t' && *ptr != ':') {
2573                break;
2574              }
2575              ptr++;
2576           }
2577           if (ptr != end) {
2578             // reasonable string, get rid of newline and keep the rest
2579             char* nl = strchr(buf, '\n');
2580             if (nl != NULL) *nl = '\0';
2581             strncpy(cpuinfo, ptr, length);
2582             fclose(fp);
2583             return;
2584           }
2585         }
2586       }
2587     }
2588     fclose(fp);
2589   }
2590   // cpuinfo not found or parsing failed, just print generic string.  The entire
2591   // /proc/cpuinfo file will be printed later in the file (or enough of it for x86)
2592 #if   defined(AARCH64)
2593   strncpy(cpuinfo, "AArch64", length);
2594 #elif defined(AMD64)
2595   strncpy(cpuinfo, "x86_64", length);
2596 #elif defined(ARM)  // Order wrt. AARCH64 is relevant!
2597   strncpy(cpuinfo, "ARM", length);
2598 #elif defined(IA32)
2599   strncpy(cpuinfo, "x86_32", length);
2600 #elif defined(IA64)
2601   strncpy(cpuinfo, "IA64", length);
2602 #elif defined(PPC)
2603   strncpy(cpuinfo, "PPC64", length);
2604 #elif defined(S390)
2605   strncpy(cpuinfo, "S390", length);
2606 #elif defined(SPARC)
2607   strncpy(cpuinfo, "sparcv9", length);
2608 #elif defined(ZERO_LIBARCH)
2609   strncpy(cpuinfo, ZERO_LIBARCH, length);
2610 #else
2611   strncpy(cpuinfo, "unknown", length);
2612 #endif
2613 }
2614 
2615 static void print_signal_handler(outputStream* st, int sig,
2616                                  char* buf, size_t buflen);
2617 
2618 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
2619   st->print_cr("Signal Handlers:");
2620   print_signal_handler(st, SIGSEGV, buf, buflen);
2621   print_signal_handler(st, SIGBUS , buf, buflen);
2622   print_signal_handler(st, SIGFPE , buf, buflen);
2623   print_signal_handler(st, SIGPIPE, buf, buflen);
2624   print_signal_handler(st, SIGXFSZ, buf, buflen);
2625   print_signal_handler(st, SIGILL , buf, buflen);
2626   print_signal_handler(st, SR_signum, buf, buflen);
2627   print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
2628   print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
2629   print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
2630   print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
2631 #if defined(PPC64)
2632   print_signal_handler(st, SIGTRAP, buf, buflen);
2633 #endif
2634 }
2635 
2636 static char saved_jvm_path[MAXPATHLEN] = {0};
2637 
2638 // Find the full path to the current module, libjvm.so
2639 void os::jvm_path(char *buf, jint buflen) {
2640   // Error checking.
2641   if (buflen < MAXPATHLEN) {
2642     assert(false, "must use a large-enough buffer");
2643     buf[0] = '\0';
2644     return;
2645   }
2646   // Lazy resolve the path to current module.
2647   if (saved_jvm_path[0] != 0) {
2648     strcpy(buf, saved_jvm_path);
2649     return;
2650   }
2651 
2652   char dli_fname[MAXPATHLEN];
2653   bool ret = dll_address_to_library_name(
2654                                          CAST_FROM_FN_PTR(address, os::jvm_path),
2655                                          dli_fname, sizeof(dli_fname), NULL);
2656   assert(ret, "cannot locate libjvm");
2657   char *rp = NULL;
2658   if (ret && dli_fname[0] != '\0') {
2659     rp = os::Posix::realpath(dli_fname, buf, buflen);
2660   }
2661   if (rp == NULL) {
2662     return;
2663   }
2664 
2665   if (Arguments::sun_java_launcher_is_altjvm()) {
2666     // Support for the java launcher's '-XXaltjvm=<path>' option. Typical
2667     // value for buf is "<JAVA_HOME>/jre/lib/<vmtype>/libjvm.so".
2668     // If "/jre/lib/" appears at the right place in the string, then
2669     // assume we are installed in a JDK and we're done. Otherwise, check
2670     // for a JAVA_HOME environment variable and fix up the path so it
2671     // looks like libjvm.so is installed there (append a fake suffix
2672     // hotspot/libjvm.so).
2673     const char *p = buf + strlen(buf) - 1;
2674     for (int count = 0; p > buf && count < 5; ++count) {
2675       for (--p; p > buf && *p != '/'; --p)
2676         /* empty */ ;
2677     }
2678 
2679     if (strncmp(p, "/jre/lib/", 9) != 0) {
2680       // Look for JAVA_HOME in the environment.
2681       char* java_home_var = ::getenv("JAVA_HOME");
2682       if (java_home_var != NULL && java_home_var[0] != 0) {
2683         char* jrelib_p;
2684         int len;
2685 
2686         // Check the current module name "libjvm.so".
2687         p = strrchr(buf, '/');
2688         if (p == NULL) {
2689           return;
2690         }
2691         assert(strstr(p, "/libjvm") == p, "invalid library name");
2692 
2693         rp = os::Posix::realpath(java_home_var, buf, buflen);
2694         if (rp == NULL) {
2695           return;
2696         }
2697 
2698         // determine if this is a legacy image or modules image
2699         // modules image doesn't have "jre" subdirectory
2700         len = strlen(buf);
2701         assert(len < buflen, "Ran out of buffer room");
2702         jrelib_p = buf + len;
2703         snprintf(jrelib_p, buflen-len, "/jre/lib");
2704         if (0 != access(buf, F_OK)) {
2705           snprintf(jrelib_p, buflen-len, "/lib");
2706         }
2707 
2708         if (0 == access(buf, F_OK)) {
2709           // Use current module name "libjvm.so"
2710           len = strlen(buf);
2711           snprintf(buf + len, buflen-len, "/hotspot/libjvm.so");
2712         } else {
2713           // Go back to path of .so
2714           rp = os::Posix::realpath(dli_fname, buf, buflen);
2715           if (rp == NULL) {
2716             return;
2717           }
2718         }
2719       }
2720     }
2721   }
2722 
2723   strncpy(saved_jvm_path, buf, MAXPATHLEN);
2724   saved_jvm_path[MAXPATHLEN - 1] = '\0';
2725 }
2726 
2727 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
2728   // no prefix required, not even "_"
2729 }
2730 
2731 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
2732   // no suffix required
2733 }
2734 
2735 ////////////////////////////////////////////////////////////////////////////////
2736 // sun.misc.Signal support
2737 
2738 static void UserHandler(int sig, void *siginfo, void *context) {
2739   // Ctrl-C is pressed during error reporting, likely because the error
2740   // handler fails to abort. Let VM die immediately.
2741   if (sig == SIGINT && VMError::is_error_reported()) {
2742     os::die();
2743   }
2744 
2745   os::signal_notify(sig);
2746 }
2747 
2748 void* os::user_handler() {
2749   return CAST_FROM_FN_PTR(void*, UserHandler);
2750 }
2751 
2752 extern "C" {
2753   typedef void (*sa_handler_t)(int);
2754   typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
2755 }
2756 
2757 void* os::signal(int signal_number, void* handler) {
2758   struct sigaction sigAct, oldSigAct;
2759 
2760   sigfillset(&(sigAct.sa_mask));
2761   sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
2762   sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
2763 
2764   if (sigaction(signal_number, &sigAct, &oldSigAct)) {
2765     // -1 means registration failed
2766     return (void *)-1;
2767   }
2768 
2769   return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
2770 }
2771 
2772 void os::signal_raise(int signal_number) {
2773   ::raise(signal_number);
2774 }
2775 
2776 // The following code is moved from os.cpp for making this
2777 // code platform specific, which it is by its very nature.
2778 
2779 // Will be modified when max signal is changed to be dynamic
2780 int os::sigexitnum_pd() {
2781   return NSIG;
2782 }
2783 
2784 // a counter for each possible signal value
2785 static volatile jint pending_signals[NSIG+1] = { 0 };
2786 
2787 // Linux(POSIX) specific hand shaking semaphore.
2788 static Semaphore* sig_sem = NULL;
2789 static PosixSemaphore sr_semaphore;
2790 
2791 static void jdk_misc_signal_init() {
2792   // Initialize signal structures
2793   ::memset((void*)pending_signals, 0, sizeof(pending_signals));
2794 
2795   // Initialize signal semaphore
2796   sig_sem = new Semaphore();
2797 }
2798 
2799 void os::signal_notify(int sig) {
2800   if (sig_sem != NULL) {
2801     Atomic::inc(&pending_signals[sig]);
2802     sig_sem->signal();
2803   } else {
2804     // Signal thread is not created with ReduceSignalUsage and jdk_misc_signal_init
2805     // initialization isn't called.
2806     assert(ReduceSignalUsage, "signal semaphore should be created");
2807   }
2808 }
2809 
2810 static int check_pending_signals() {
2811   for (;;) {
2812     for (int i = 0; i < NSIG + 1; i++) {
2813       jint n = pending_signals[i];
2814       if (n > 0 && n == Atomic::cmpxchg(&pending_signals[i], n, n - 1)) {
2815         return i;
2816       }
2817     }
2818     JavaThread *thread = JavaThread::current();
2819     ThreadBlockInVM tbivm(thread);
2820 
2821     bool threadIsSuspended;
2822     do {
2823       thread->set_suspend_equivalent();
2824       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2825       sig_sem->wait();
2826 
2827       // were we externally suspended while we were waiting?
2828       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2829       if (threadIsSuspended) {
2830         // The semaphore has been incremented, but while we were waiting
2831         // another thread suspended us. We don't want to continue running
2832         // while suspended because that would surprise the thread that
2833         // suspended us.
2834         sig_sem->signal();
2835 
2836         thread->java_suspend_self();
2837       }
2838     } while (threadIsSuspended);
2839   }
2840 }
2841 
2842 int os::signal_wait() {
2843   return check_pending_signals();
2844 }
2845 
2846 ////////////////////////////////////////////////////////////////////////////////
2847 // Virtual Memory
2848 
2849 int os::vm_page_size() {
2850   // Seems redundant as all get out
2851   assert(os::Linux::page_size() != -1, "must call os::init");
2852   return os::Linux::page_size();
2853 }
2854 
2855 // Solaris allocates memory by pages.
2856 int os::vm_allocation_granularity() {
2857   assert(os::Linux::page_size() != -1, "must call os::init");
2858   return os::Linux::page_size();
2859 }
2860 
2861 // Rationale behind this function:
2862 //  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
2863 //  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
2864 //  samples for JITted code. Here we create private executable mapping over the code cache
2865 //  and then we can use standard (well, almost, as mapping can change) way to provide
2866 //  info for the reporting script by storing timestamp and location of symbol
2867 void linux_wrap_code(char* base, size_t size) {
2868   static volatile jint cnt = 0;
2869 
2870   if (!UseOprofile) {
2871     return;
2872   }
2873 
2874   char buf[PATH_MAX+1];
2875   int num = Atomic::add(&cnt, 1);
2876 
2877   snprintf(buf, sizeof(buf), "%s/hs-vm-%d-%d",
2878            os::get_temp_directory(), os::current_process_id(), num);
2879   unlink(buf);
2880 
2881   int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
2882 
2883   if (fd != -1) {
2884     off_t rv = ::lseek(fd, size-2, SEEK_SET);
2885     if (rv != (off_t)-1) {
2886       if (::write(fd, "", 1) == 1) {
2887         mmap(base, size,
2888              PROT_READ|PROT_WRITE|PROT_EXEC,
2889              MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
2890       }
2891     }
2892     ::close(fd);
2893     unlink(buf);
2894   }
2895 }
2896 
2897 static bool recoverable_mmap_error(int err) {
2898   // See if the error is one we can let the caller handle. This
2899   // list of errno values comes from JBS-6843484. I can't find a
2900   // Linux man page that documents this specific set of errno
2901   // values so while this list currently matches Solaris, it may
2902   // change as we gain experience with this failure mode.
2903   switch (err) {
2904   case EBADF:
2905   case EINVAL:
2906   case ENOTSUP:
2907     // let the caller deal with these errors
2908     return true;
2909 
2910   default:
2911     // Any remaining errors on this OS can cause our reserved mapping
2912     // to be lost. That can cause confusion where different data
2913     // structures think they have the same memory mapped. The worst
2914     // scenario is if both the VM and a library think they have the
2915     // same memory mapped.
2916     return false;
2917   }
2918 }
2919 
2920 static void warn_fail_commit_memory(char* addr, size_t size, bool exec,
2921                                     int err) {
2922   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2923           ", %d) failed; error='%s' (errno=%d)", p2i(addr), size, exec,
2924           os::strerror(err), err);
2925 }
2926 
2927 static void warn_fail_commit_memory(char* addr, size_t size,
2928                                     size_t alignment_hint, bool exec,
2929                                     int err) {
2930   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2931           ", " SIZE_FORMAT ", %d) failed; error='%s' (errno=%d)", p2i(addr), size,
2932           alignment_hint, exec, os::strerror(err), err);
2933 }
2934 
2935 // NOTE: Linux kernel does not really reserve the pages for us.
2936 //       All it does is to check if there are enough free pages
2937 //       left at the time of mmap(). This could be a potential
2938 //       problem.
2939 int os::Linux::commit_memory_impl(char* addr, size_t size, bool exec) {
2940   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2941   uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
2942                                      MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
2943   if (res != (uintptr_t) MAP_FAILED) {
2944     if (UseNUMAInterleaving) {
2945       numa_make_global(addr, size);
2946     }
2947     return 0;
2948   }
2949 
2950   int err = errno;  // save errno from mmap() call above
2951 
2952   if (!recoverable_mmap_error(err)) {
2953     warn_fail_commit_memory(addr, size, exec, err);
2954     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "committing reserved memory.");
2955   }
2956 
2957   return err;
2958 }
2959 
2960 bool os::pd_commit_memory(char* addr, size_t size, bool exec) {
2961   return os::Linux::commit_memory_impl(addr, size, exec) == 0;
2962 }
2963 
2964 void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
2965                                   const char* mesg) {
2966   assert(mesg != NULL, "mesg must be specified");
2967   int err = os::Linux::commit_memory_impl(addr, size, exec);
2968   if (err != 0) {
2969     // the caller wants all commit errors to exit with the specified mesg:
2970     warn_fail_commit_memory(addr, size, exec, err);
2971     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "%s", mesg);
2972   }
2973 }
2974 
2975 // Define MAP_HUGETLB here so we can build HotSpot on old systems.
2976 #ifndef MAP_HUGETLB
2977   #define MAP_HUGETLB 0x40000
2978 #endif
2979 
2980 // If mmap flags are set with MAP_HUGETLB and the system supports multiple
2981 // huge page sizes, flag bits [26:31] can be used to encode the log2 of the
2982 // desired huge page size. Otherwise, the system's default huge page size will be used.
2983 // See mmap(2) man page for more info (since Linux 3.8).
2984 // https://lwn.net/Articles/533499/
2985 #ifndef MAP_HUGE_SHIFT
2986   #define MAP_HUGE_SHIFT 26
2987 #endif
2988 
2989 // Define MADV_HUGEPAGE here so we can build HotSpot on old systems.
2990 #ifndef MADV_HUGEPAGE
2991   #define MADV_HUGEPAGE 14
2992 #endif
2993 
2994 int os::Linux::commit_memory_impl(char* addr, size_t size,
2995                                   size_t alignment_hint, bool exec) {
2996   int err = os::Linux::commit_memory_impl(addr, size, exec);
2997   if (err == 0) {
2998     realign_memory(addr, size, alignment_hint);
2999   }
3000   return err;
3001 }
3002 
3003 bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
3004                           bool exec) {
3005   return os::Linux::commit_memory_impl(addr, size, alignment_hint, exec) == 0;
3006 }
3007 
3008 void os::pd_commit_memory_or_exit(char* addr, size_t size,
3009                                   size_t alignment_hint, bool exec,
3010                                   const char* mesg) {
3011   assert(mesg != NULL, "mesg must be specified");
3012   int err = os::Linux::commit_memory_impl(addr, size, alignment_hint, exec);
3013   if (err != 0) {
3014     // the caller wants all commit errors to exit with the specified mesg:
3015     warn_fail_commit_memory(addr, size, alignment_hint, exec, err);
3016     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "%s", mesg);
3017   }
3018 }
3019 
3020 void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
3021   if (UseTransparentHugePages && alignment_hint > (size_t)vm_page_size()) {
3022     // We don't check the return value: madvise(MADV_HUGEPAGE) may not
3023     // be supported or the memory may already be backed by huge pages.
3024     ::madvise(addr, bytes, MADV_HUGEPAGE);
3025   }
3026 }
3027 
3028 void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
3029   // This method works by doing an mmap over an existing mmaping and effectively discarding
3030   // the existing pages. However it won't work for SHM-based large pages that cannot be
3031   // uncommitted at all. We don't do anything in this case to avoid creating a segment with
3032   // small pages on top of the SHM segment. This method always works for small pages, so we
3033   // allow that in any case.
3034   if (alignment_hint <= (size_t)os::vm_page_size() || can_commit_large_page_memory()) {
3035     commit_memory(addr, bytes, alignment_hint, !ExecMem);
3036   }
3037 }
3038 
3039 void os::numa_make_global(char *addr, size_t bytes) {
3040   Linux::numa_interleave_memory(addr, bytes);
3041 }
3042 
3043 // Define for numa_set_bind_policy(int). Setting the argument to 0 will set the
3044 // bind policy to MPOL_PREFERRED for the current thread.
3045 #define USE_MPOL_PREFERRED 0
3046 
3047 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
3048   // To make NUMA and large pages more robust when both enabled, we need to ease
3049   // the requirements on where the memory should be allocated. MPOL_BIND is the
3050   // default policy and it will force memory to be allocated on the specified
3051   // node. Changing this to MPOL_PREFERRED will prefer to allocate the memory on
3052   // the specified node, but will not force it. Using this policy will prevent
3053   // getting SIGBUS when trying to allocate large pages on NUMA nodes with no
3054   // free large pages.
3055   Linux::numa_set_bind_policy(USE_MPOL_PREFERRED);
3056   Linux::numa_tonode_memory(addr, bytes, lgrp_hint);
3057 }
3058 
3059 bool os::numa_topology_changed() { return false; }
3060 
3061 size_t os::numa_get_groups_num() {
3062   // Return just the number of nodes in which it's possible to allocate memory
3063   // (in numa terminology, configured nodes).
3064   return Linux::numa_num_configured_nodes();
3065 }
3066 
3067 int os::numa_get_group_id() {
3068   int cpu_id = Linux::sched_getcpu();
3069   if (cpu_id != -1) {
3070     int lgrp_id = Linux::get_node_by_cpu(cpu_id);
3071     if (lgrp_id != -1) {
3072       return lgrp_id;
3073     }
3074   }
3075   return 0;
3076 }
3077 
3078 int os::numa_get_group_id_for_address(const void* address) {
3079   void** pages = const_cast<void**>(&address);
3080   int id = -1;
3081 
3082   if (os::Linux::numa_move_pages(0, 1, pages, NULL, &id, 0) == -1) {
3083     return -1;
3084   }
3085   if (id < 0) {
3086     return -1;
3087   }
3088   return id;
3089 }
3090 
3091 int os::Linux::get_existing_num_nodes() {
3092   int node;
3093   int highest_node_number = Linux::numa_max_node();
3094   int num_nodes = 0;
3095 
3096   // Get the total number of nodes in the system including nodes without memory.
3097   for (node = 0; node <= highest_node_number; node++) {
3098     if (is_node_in_existing_nodes(node)) {
3099       num_nodes++;
3100     }
3101   }
3102   return num_nodes;
3103 }
3104 
3105 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
3106   int highest_node_number = Linux::numa_max_node();
3107   size_t i = 0;
3108 
3109   // Map all node ids in which it is possible to allocate memory. Also nodes are
3110   // not always consecutively available, i.e. available from 0 to the highest
3111   // node number. If the nodes have been bound explicitly using numactl membind,
3112   // then allocate memory from those nodes only.
3113   for (int node = 0; node <= highest_node_number; node++) {
3114     if (Linux::is_node_in_bound_nodes((unsigned int)node)) {
3115       ids[i++] = node;
3116     }
3117   }
3118   return i;
3119 }
3120 
3121 bool os::get_page_info(char *start, page_info* info) {
3122   return false;
3123 }
3124 
3125 char *os::scan_pages(char *start, char* end, page_info* page_expected,
3126                      page_info* page_found) {
3127   return end;
3128 }
3129 
3130 
3131 int os::Linux::sched_getcpu_syscall(void) {
3132   unsigned int cpu = 0;
3133   int retval = -1;
3134 
3135 #if defined(IA32)
3136   #ifndef SYS_getcpu
3137     #define SYS_getcpu 318
3138   #endif
3139   retval = syscall(SYS_getcpu, &cpu, NULL, NULL);
3140 #elif defined(AMD64)
3141 // Unfortunately we have to bring all these macros here from vsyscall.h
3142 // to be able to compile on old linuxes.
3143   #define __NR_vgetcpu 2
3144   #define VSYSCALL_START (-10UL << 20)
3145   #define VSYSCALL_SIZE 1024
3146   #define VSYSCALL_ADDR(vsyscall_nr) (VSYSCALL_START+VSYSCALL_SIZE*(vsyscall_nr))
3147   typedef long (*vgetcpu_t)(unsigned int *cpu, unsigned int *node, unsigned long *tcache);
3148   vgetcpu_t vgetcpu = (vgetcpu_t)VSYSCALL_ADDR(__NR_vgetcpu);
3149   retval = vgetcpu(&cpu, NULL, NULL);
3150 #endif
3151 
3152   return (retval == -1) ? retval : cpu;
3153 }
3154 
3155 void os::Linux::sched_getcpu_init() {
3156   // sched_getcpu() should be in libc.
3157   set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
3158                                   dlsym(RTLD_DEFAULT, "sched_getcpu")));
3159 
3160   // If it's not, try a direct syscall.
3161   if (sched_getcpu() == -1) {
3162     set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
3163                                     (void*)&sched_getcpu_syscall));
3164   }
3165 
3166   if (sched_getcpu() == -1) {
3167     vm_exit_during_initialization("getcpu(2) system call not supported by kernel");
3168   }
3169 }
3170 
3171 // Something to do with the numa-aware allocator needs these symbols
3172 extern "C" JNIEXPORT void numa_warn(int number, char *where, ...) { }
3173 extern "C" JNIEXPORT void numa_error(char *where) { }
3174 
3175 // Handle request to load libnuma symbol version 1.1 (API v1). If it fails
3176 // load symbol from base version instead.
3177 void* os::Linux::libnuma_dlsym(void* handle, const char *name) {
3178   void *f = dlvsym(handle, name, "libnuma_1.1");
3179   if (f == NULL) {
3180     f = dlsym(handle, name);
3181   }
3182   return f;
3183 }
3184 
3185 // Handle request to load libnuma symbol version 1.2 (API v2) only.
3186 // Return NULL if the symbol is not defined in this particular version.
3187 void* os::Linux::libnuma_v2_dlsym(void* handle, const char* name) {
3188   return dlvsym(handle, name, "libnuma_1.2");
3189 }
3190 
3191 bool os::Linux::libnuma_init() {
3192   if (sched_getcpu() != -1) { // Requires sched_getcpu() support
3193     void *handle = dlopen("libnuma.so.1", RTLD_LAZY);
3194     if (handle != NULL) {
3195       set_numa_node_to_cpus(CAST_TO_FN_PTR(numa_node_to_cpus_func_t,
3196                                            libnuma_dlsym(handle, "numa_node_to_cpus")));
3197       set_numa_max_node(CAST_TO_FN_PTR(numa_max_node_func_t,
3198                                        libnuma_dlsym(handle, "numa_max_node")));
3199       set_numa_num_configured_nodes(CAST_TO_FN_PTR(numa_num_configured_nodes_func_t,
3200                                                    libnuma_dlsym(handle, "numa_num_configured_nodes")));
3201       set_numa_available(CAST_TO_FN_PTR(numa_available_func_t,
3202                                         libnuma_dlsym(handle, "numa_available")));
3203       set_numa_tonode_memory(CAST_TO_FN_PTR(numa_tonode_memory_func_t,
3204                                             libnuma_dlsym(handle, "numa_tonode_memory")));
3205       set_numa_interleave_memory(CAST_TO_FN_PTR(numa_interleave_memory_func_t,
3206                                                 libnuma_dlsym(handle, "numa_interleave_memory")));
3207       set_numa_interleave_memory_v2(CAST_TO_FN_PTR(numa_interleave_memory_v2_func_t,
3208                                                 libnuma_v2_dlsym(handle, "numa_interleave_memory")));
3209       set_numa_set_bind_policy(CAST_TO_FN_PTR(numa_set_bind_policy_func_t,
3210                                               libnuma_dlsym(handle, "numa_set_bind_policy")));
3211       set_numa_bitmask_isbitset(CAST_TO_FN_PTR(numa_bitmask_isbitset_func_t,
3212                                                libnuma_dlsym(handle, "numa_bitmask_isbitset")));
3213       set_numa_distance(CAST_TO_FN_PTR(numa_distance_func_t,
3214                                        libnuma_dlsym(handle, "numa_distance")));
3215       set_numa_get_membind(CAST_TO_FN_PTR(numa_get_membind_func_t,
3216                                           libnuma_v2_dlsym(handle, "numa_get_membind")));
3217       set_numa_get_interleave_mask(CAST_TO_FN_PTR(numa_get_interleave_mask_func_t,
3218                                                   libnuma_v2_dlsym(handle, "numa_get_interleave_mask")));
3219       set_numa_move_pages(CAST_TO_FN_PTR(numa_move_pages_func_t,
3220                                          libnuma_dlsym(handle, "numa_move_pages")));
3221       set_numa_set_preferred(CAST_TO_FN_PTR(numa_set_preferred_func_t,
3222                                             libnuma_dlsym(handle, "numa_set_preferred")));
3223 
3224       if (numa_available() != -1) {
3225         set_numa_all_nodes((unsigned long*)libnuma_dlsym(handle, "numa_all_nodes"));
3226         set_numa_all_nodes_ptr((struct bitmask **)libnuma_dlsym(handle, "numa_all_nodes_ptr"));
3227         set_numa_nodes_ptr((struct bitmask **)libnuma_dlsym(handle, "numa_nodes_ptr"));
3228         set_numa_interleave_bitmask(_numa_get_interleave_mask());
3229         set_numa_membind_bitmask(_numa_get_membind());
3230         // Create an index -> node mapping, since nodes are not always consecutive
3231         _nindex_to_node = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<int>(0, true);
3232         rebuild_nindex_to_node_map();
3233         // Create a cpu -> node mapping
3234         _cpu_to_node = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<int>(0, true);
3235         rebuild_cpu_to_node_map();
3236         return true;
3237       }
3238     }
3239   }
3240   return false;
3241 }
3242 
3243 size_t os::Linux::default_guard_size(os::ThreadType thr_type) {
3244   // Creating guard page is very expensive. Java thread has HotSpot
3245   // guard pages, only enable glibc guard page for non-Java threads.
3246   // (Remember: compiler thread is a Java thread, too!)
3247   return ((thr_type == java_thread || thr_type == compiler_thread) ? 0 : page_size());
3248 }
3249 
3250 void os::Linux::rebuild_nindex_to_node_map() {
3251   int highest_node_number = Linux::numa_max_node();
3252 
3253   nindex_to_node()->clear();
3254   for (int node = 0; node <= highest_node_number; node++) {
3255     if (Linux::is_node_in_existing_nodes(node)) {
3256       nindex_to_node()->append(node);
3257     }
3258   }
3259 }
3260 
3261 // rebuild_cpu_to_node_map() constructs a table mapping cpud id to node id.
3262 // The table is later used in get_node_by_cpu().
3263 void os::Linux::rebuild_cpu_to_node_map() {
3264   const size_t NCPUS = 32768; // Since the buffer size computation is very obscure
3265                               // in libnuma (possible values are starting from 16,
3266                               // and continuing up with every other power of 2, but less
3267                               // than the maximum number of CPUs supported by kernel), and
3268                               // is a subject to change (in libnuma version 2 the requirements
3269                               // are more reasonable) we'll just hardcode the number they use
3270                               // in the library.
3271   const size_t BitsPerCLong = sizeof(long) * CHAR_BIT;
3272 
3273   size_t cpu_num = processor_count();
3274   size_t cpu_map_size = NCPUS / BitsPerCLong;
3275   size_t cpu_map_valid_size =
3276     MIN2((cpu_num + BitsPerCLong - 1) / BitsPerCLong, cpu_map_size);
3277 
3278   cpu_to_node()->clear();
3279   cpu_to_node()->at_grow(cpu_num - 1);
3280 
3281   size_t node_num = get_existing_num_nodes();
3282 
3283   int distance = 0;
3284   int closest_distance = INT_MAX;
3285   int closest_node = 0;
3286   unsigned long *cpu_map = NEW_C_HEAP_ARRAY(unsigned long, cpu_map_size, mtInternal);
3287   for (size_t i = 0; i < node_num; i++) {
3288     // Check if node is configured (not a memory-less node). If it is not, find
3289     // the closest configured node. Check also if node is bound, i.e. it's allowed
3290     // to allocate memory from the node. If it's not allowed, map cpus in that node
3291     // to the closest node from which memory allocation is allowed.
3292     if (!is_node_in_configured_nodes(nindex_to_node()->at(i)) ||
3293         !is_node_in_bound_nodes(nindex_to_node()->at(i))) {
3294       closest_distance = INT_MAX;
3295       // Check distance from all remaining nodes in the system. Ignore distance
3296       // from itself, from another non-configured node, and from another non-bound
3297       // node.
3298       for (size_t m = 0; m < node_num; m++) {
3299         if (m != i &&
3300             is_node_in_configured_nodes(nindex_to_node()->at(m)) &&
3301             is_node_in_bound_nodes(nindex_to_node()->at(m))) {
3302           distance = numa_distance(nindex_to_node()->at(i), nindex_to_node()->at(m));
3303           // If a closest node is found, update. There is always at least one
3304           // configured and bound node in the system so there is always at least
3305           // one node close.
3306           if (distance != 0 && distance < closest_distance) {
3307             closest_distance = distance;
3308             closest_node = nindex_to_node()->at(m);
3309           }
3310         }
3311       }
3312      } else {
3313        // Current node is already a configured node.
3314        closest_node = nindex_to_node()->at(i);
3315      }
3316 
3317     // Get cpus from the original node and map them to the closest node. If node
3318     // is a configured node (not a memory-less node), then original node and
3319     // closest node are the same.
3320     if (numa_node_to_cpus(nindex_to_node()->at(i), cpu_map, cpu_map_size * sizeof(unsigned long)) != -1) {
3321       for (size_t j = 0; j < cpu_map_valid_size; j++) {
3322         if (cpu_map[j] != 0) {
3323           for (size_t k = 0; k < BitsPerCLong; k++) {
3324             if (cpu_map[j] & (1UL << k)) {
3325               cpu_to_node()->at_put(j * BitsPerCLong + k, closest_node);
3326             }
3327           }
3328         }
3329       }
3330     }
3331   }
3332   FREE_C_HEAP_ARRAY(unsigned long, cpu_map);
3333 }
3334 
3335 int os::Linux::get_node_by_cpu(int cpu_id) {
3336   if (cpu_to_node() != NULL && cpu_id >= 0 && cpu_id < cpu_to_node()->length()) {
3337     return cpu_to_node()->at(cpu_id);
3338   }
3339   return -1;
3340 }
3341 
3342 GrowableArray<int>* os::Linux::_cpu_to_node;
3343 GrowableArray<int>* os::Linux::_nindex_to_node;
3344 os::Linux::sched_getcpu_func_t os::Linux::_sched_getcpu;
3345 os::Linux::numa_node_to_cpus_func_t os::Linux::_numa_node_to_cpus;
3346 os::Linux::numa_max_node_func_t os::Linux::_numa_max_node;
3347 os::Linux::numa_num_configured_nodes_func_t os::Linux::_numa_num_configured_nodes;
3348 os::Linux::numa_available_func_t os::Linux::_numa_available;
3349 os::Linux::numa_tonode_memory_func_t os::Linux::_numa_tonode_memory;
3350 os::Linux::numa_interleave_memory_func_t os::Linux::_numa_interleave_memory;
3351 os::Linux::numa_interleave_memory_v2_func_t os::Linux::_numa_interleave_memory_v2;
3352 os::Linux::numa_set_bind_policy_func_t os::Linux::_numa_set_bind_policy;
3353 os::Linux::numa_bitmask_isbitset_func_t os::Linux::_numa_bitmask_isbitset;
3354 os::Linux::numa_distance_func_t os::Linux::_numa_distance;
3355 os::Linux::numa_get_membind_func_t os::Linux::_numa_get_membind;
3356 os::Linux::numa_get_interleave_mask_func_t os::Linux::_numa_get_interleave_mask;
3357 os::Linux::numa_move_pages_func_t os::Linux::_numa_move_pages;
3358 os::Linux::numa_set_preferred_func_t os::Linux::_numa_set_preferred;
3359 os::Linux::NumaAllocationPolicy os::Linux::_current_numa_policy;
3360 unsigned long* os::Linux::_numa_all_nodes;
3361 struct bitmask* os::Linux::_numa_all_nodes_ptr;
3362 struct bitmask* os::Linux::_numa_nodes_ptr;
3363 struct bitmask* os::Linux::_numa_interleave_bitmask;
3364 struct bitmask* os::Linux::_numa_membind_bitmask;
3365 
3366 bool os::pd_uncommit_memory(char* addr, size_t size) {
3367   uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
3368                                      MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
3369   return res  != (uintptr_t) MAP_FAILED;
3370 }
3371 
3372 static address get_stack_commited_bottom(address bottom, size_t size) {
3373   address nbot = bottom;
3374   address ntop = bottom + size;
3375 
3376   size_t page_sz = os::vm_page_size();
3377   unsigned pages = size / page_sz;
3378 
3379   unsigned char vec[1];
3380   unsigned imin = 1, imax = pages + 1, imid;
3381   int mincore_return_value = 0;
3382 
3383   assert(imin <= imax, "Unexpected page size");
3384 
3385   while (imin < imax) {
3386     imid = (imax + imin) / 2;
3387     nbot = ntop - (imid * page_sz);
3388 
3389     // Use a trick with mincore to check whether the page is mapped or not.
3390     // mincore sets vec to 1 if page resides in memory and to 0 if page
3391     // is swapped output but if page we are asking for is unmapped
3392     // it returns -1,ENOMEM
3393     mincore_return_value = mincore(nbot, page_sz, vec);
3394 
3395     if (mincore_return_value == -1) {
3396       // Page is not mapped go up
3397       // to find first mapped page
3398       if (errno != EAGAIN) {
3399         assert(errno == ENOMEM, "Unexpected mincore errno");
3400         imax = imid;
3401       }
3402     } else {
3403       // Page is mapped go down
3404       // to find first not mapped page
3405       imin = imid + 1;
3406     }
3407   }
3408 
3409   nbot = nbot + page_sz;
3410 
3411   // Adjust stack bottom one page up if last checked page is not mapped
3412   if (mincore_return_value == -1) {
3413     nbot = nbot + page_sz;
3414   }
3415 
3416   return nbot;
3417 }
3418 
3419 bool os::committed_in_range(address start, size_t size, address& committed_start, size_t& committed_size) {
3420   int mincore_return_value;
3421   const size_t stripe = 1024;  // query this many pages each time
3422   unsigned char vec[stripe + 1];
3423   // set a guard
3424   vec[stripe] = 'X';
3425 
3426   const size_t page_sz = os::vm_page_size();
3427   size_t pages = size / page_sz;
3428 
3429   assert(is_aligned(start, page_sz), "Start address must be page aligned");
3430   assert(is_aligned(size, page_sz), "Size must be page aligned");
3431 
3432   committed_start = NULL;
3433 
3434   int loops = (pages + stripe - 1) / stripe;
3435   int committed_pages = 0;
3436   address loop_base = start;
3437   bool found_range = false;
3438 
3439   for (int index = 0; index < loops && !found_range; index ++) {
3440     assert(pages > 0, "Nothing to do");
3441     int pages_to_query = (pages >= stripe) ? stripe : pages;
3442     pages -= pages_to_query;
3443 
3444     // Get stable read
3445     while ((mincore_return_value = mincore(loop_base, pages_to_query * page_sz, vec)) == -1 && errno == EAGAIN);
3446 
3447     // During shutdown, some memory goes away without properly notifying NMT,
3448     // E.g. ConcurrentGCThread/WatcherThread can exit without deleting thread object.
3449     // Bailout and return as not committed for now.
3450     if (mincore_return_value == -1 && errno == ENOMEM) {
3451       return false;
3452     }
3453 
3454     assert(vec[stripe] == 'X', "overflow guard");
3455     assert(mincore_return_value == 0, "Range must be valid");
3456     // Process this stripe
3457     for (int vecIdx = 0; vecIdx < pages_to_query; vecIdx ++) {
3458       if ((vec[vecIdx] & 0x01) == 0) { // not committed
3459         // End of current contiguous region
3460         if (committed_start != NULL) {
3461           found_range = true;
3462           break;
3463         }
3464       } else { // committed
3465         // Start of region
3466         if (committed_start == NULL) {
3467           committed_start = loop_base + page_sz * vecIdx;
3468         }
3469         committed_pages ++;
3470       }
3471     }
3472 
3473     loop_base += pages_to_query * page_sz;
3474   }
3475 
3476   if (committed_start != NULL) {
3477     assert(committed_pages > 0, "Must have committed region");
3478     assert(committed_pages <= int(size / page_sz), "Can not commit more than it has");
3479     assert(committed_start >= start && committed_start < start + size, "Out of range");
3480     committed_size = page_sz * committed_pages;
3481     return true;
3482   } else {
3483     assert(committed_pages == 0, "Should not have committed region");
3484     return false;
3485   }
3486 }
3487 
3488 
3489 // Linux uses a growable mapping for the stack, and if the mapping for
3490 // the stack guard pages is not removed when we detach a thread the
3491 // stack cannot grow beyond the pages where the stack guard was
3492 // mapped.  If at some point later in the process the stack expands to
3493 // that point, the Linux kernel cannot expand the stack any further
3494 // because the guard pages are in the way, and a segfault occurs.
3495 //
3496 // However, it's essential not to split the stack region by unmapping
3497 // a region (leaving a hole) that's already part of the stack mapping,
3498 // so if the stack mapping has already grown beyond the guard pages at
3499 // the time we create them, we have to truncate the stack mapping.
3500 // So, we need to know the extent of the stack mapping when
3501 // create_stack_guard_pages() is called.
3502 
3503 // We only need this for stacks that are growable: at the time of
3504 // writing thread stacks don't use growable mappings (i.e. those
3505 // creeated with MAP_GROWSDOWN), and aren't marked "[stack]", so this
3506 // only applies to the main thread.
3507 
3508 // If the (growable) stack mapping already extends beyond the point
3509 // where we're going to put our guard pages, truncate the mapping at
3510 // that point by munmap()ping it.  This ensures that when we later
3511 // munmap() the guard pages we don't leave a hole in the stack
3512 // mapping. This only affects the main/primordial thread
3513 
3514 bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
3515   if (os::is_primordial_thread()) {
3516     // As we manually grow stack up to bottom inside create_attached_thread(),
3517     // it's likely that os::Linux::initial_thread_stack_bottom is mapped and
3518     // we don't need to do anything special.
3519     // Check it first, before calling heavy function.
3520     uintptr_t stack_extent = (uintptr_t) os::Linux::initial_thread_stack_bottom();
3521     unsigned char vec[1];
3522 
3523     if (mincore((address)stack_extent, os::vm_page_size(), vec) == -1) {
3524       // Fallback to slow path on all errors, including EAGAIN
3525       stack_extent = (uintptr_t) get_stack_commited_bottom(
3526                                                            os::Linux::initial_thread_stack_bottom(),
3527                                                            (size_t)addr - stack_extent);
3528     }
3529 
3530     if (stack_extent < (uintptr_t)addr) {
3531       ::munmap((void*)stack_extent, (uintptr_t)(addr - stack_extent));
3532     }
3533   }
3534 
3535   return os::commit_memory(addr, size, !ExecMem);
3536 }
3537 
3538 // If this is a growable mapping, remove the guard pages entirely by
3539 // munmap()ping them.  If not, just call uncommit_memory(). This only
3540 // affects the main/primordial thread, but guard against future OS changes.
3541 // It's safe to always unmap guard pages for primordial thread because we
3542 // always place it right after end of the mapped region.
3543 
3544 bool os::remove_stack_guard_pages(char* addr, size_t size) {
3545   uintptr_t stack_extent, stack_base;
3546 
3547   if (os::is_primordial_thread()) {
3548     return ::munmap(addr, size) == 0;
3549   }
3550 
3551   return os::uncommit_memory(addr, size);
3552 }
3553 
3554 // If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
3555 // at 'requested_addr'. If there are existing memory mappings at the same
3556 // location, however, they will be overwritten. If 'fixed' is false,
3557 // 'requested_addr' is only treated as a hint, the return value may or
3558 // may not start from the requested address. Unlike Linux mmap(), this
3559 // function returns NULL to indicate failure.
3560 static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
3561   char * addr;
3562   int flags;
3563 
3564   flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
3565   if (fixed) {
3566     assert((uintptr_t)requested_addr % os::Linux::page_size() == 0, "unaligned address");
3567     flags |= MAP_FIXED;
3568   }
3569 
3570   // Map reserved/uncommitted pages PROT_NONE so we fail early if we
3571   // touch an uncommitted page. Otherwise, the read/write might
3572   // succeed if we have enough swap space to back the physical page.
3573   addr = (char*)::mmap(requested_addr, bytes, PROT_NONE,
3574                        flags, -1, 0);
3575 
3576   return addr == MAP_FAILED ? NULL : addr;
3577 }
3578 
3579 // Allocate (using mmap, NO_RESERVE, with small pages) at either a given request address
3580 //   (req_addr != NULL) or with a given alignment.
3581 //  - bytes shall be a multiple of alignment.
3582 //  - req_addr can be NULL. If not NULL, it must be a multiple of alignment.
3583 //  - alignment sets the alignment at which memory shall be allocated.
3584 //     It must be a multiple of allocation granularity.
3585 // Returns address of memory or NULL. If req_addr was not NULL, will only return
3586 //  req_addr or NULL.
3587 static char* anon_mmap_aligned(size_t bytes, size_t alignment, char* req_addr) {
3588 
3589   size_t extra_size = bytes;
3590   if (req_addr == NULL && alignment > 0) {
3591     extra_size += alignment;
3592   }
3593 
3594   char* start = (char*) ::mmap(req_addr, extra_size, PROT_NONE,
3595     MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
3596     -1, 0);
3597   if (start == MAP_FAILED) {
3598     start = NULL;
3599   } else {
3600     if (req_addr != NULL) {
3601       if (start != req_addr) {
3602         ::munmap(start, extra_size);
3603         start = NULL;
3604       }
3605     } else {
3606       char* const start_aligned = align_up(start, alignment);
3607       char* const end_aligned = start_aligned + bytes;
3608       char* const end = start + extra_size;
3609       if (start_aligned > start) {
3610         ::munmap(start, start_aligned - start);
3611       }
3612       if (end_aligned < end) {
3613         ::munmap(end_aligned, end - end_aligned);
3614       }
3615       start = start_aligned;
3616     }
3617   }
3618   return start;
3619 }
3620 
3621 static int anon_munmap(char * addr, size_t size) {
3622   return ::munmap(addr, size) == 0;
3623 }
3624 
3625 char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
3626                             size_t alignment_hint) {
3627   return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
3628 }
3629 
3630 bool os::pd_release_memory(char* addr, size_t size) {
3631   return anon_munmap(addr, size);
3632 }
3633 
3634 static bool linux_mprotect(char* addr, size_t size, int prot) {
3635   // Linux wants the mprotect address argument to be page aligned.
3636   char* bottom = (char*)align_down((intptr_t)addr, os::Linux::page_size());
3637 
3638   // According to SUSv3, mprotect() should only be used with mappings
3639   // established by mmap(), and mmap() always maps whole pages. Unaligned
3640   // 'addr' likely indicates problem in the VM (e.g. trying to change
3641   // protection of malloc'ed or statically allocated memory). Check the
3642   // caller if you hit this assert.
3643   assert(addr == bottom, "sanity check");
3644 
3645   size = align_up(pointer_delta(addr, bottom, 1) + size, os::Linux::page_size());
3646   Events::log(NULL, "Protecting memory [" INTPTR_FORMAT "," INTPTR_FORMAT "] with protection modes %x", p2i(bottom), p2i(bottom+size), prot);
3647   return ::mprotect(bottom, size, prot) == 0;
3648 }
3649 
3650 // Set protections specified
3651 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
3652                         bool is_committed) {
3653   unsigned int p = 0;
3654   switch (prot) {
3655   case MEM_PROT_NONE: p = PROT_NONE; break;
3656   case MEM_PROT_READ: p = PROT_READ; break;
3657   case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
3658   case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
3659   default:
3660     ShouldNotReachHere();
3661   }
3662   // is_committed is unused.
3663   return linux_mprotect(addr, bytes, p);
3664 }
3665 
3666 bool os::guard_memory(char* addr, size_t size) {
3667   return linux_mprotect(addr, size, PROT_NONE);
3668 }
3669 
3670 bool os::unguard_memory(char* addr, size_t size) {
3671   return linux_mprotect(addr, size, PROT_READ|PROT_WRITE);
3672 }
3673 
3674 bool os::Linux::transparent_huge_pages_sanity_check(bool warn,
3675                                                     size_t page_size) {
3676   bool result = false;
3677   void *p = mmap(NULL, page_size * 2, PROT_READ|PROT_WRITE,
3678                  MAP_ANONYMOUS|MAP_PRIVATE,
3679                  -1, 0);
3680   if (p != MAP_FAILED) {
3681     void *aligned_p = align_up(p, page_size);
3682 
3683     result = madvise(aligned_p, page_size, MADV_HUGEPAGE) == 0;
3684 
3685     munmap(p, page_size * 2);
3686   }
3687 
3688   if (warn && !result) {
3689     warning("TransparentHugePages is not supported by the operating system.");
3690   }
3691 
3692   return result;
3693 }
3694 
3695 bool os::Linux::hugetlbfs_sanity_check(bool warn, size_t page_size) {
3696   bool result = false;
3697   void *p = mmap(NULL, page_size, PROT_READ|PROT_WRITE,
3698                  MAP_ANONYMOUS|MAP_PRIVATE|MAP_HUGETLB,
3699                  -1, 0);
3700 
3701   if (p != MAP_FAILED) {
3702     // We don't know if this really is a huge page or not.
3703     FILE *fp = fopen("/proc/self/maps", "r");
3704     if (fp) {
3705       while (!feof(fp)) {
3706         char chars[257];
3707         long x = 0;
3708         if (fgets(chars, sizeof(chars), fp)) {
3709           if (sscanf(chars, "%lx-%*x", &x) == 1
3710               && x == (long)p) {
3711             if (strstr (chars, "hugepage")) {
3712               result = true;
3713               break;
3714             }
3715           }
3716         }
3717       }
3718       fclose(fp);
3719     }
3720     munmap(p, page_size);
3721   }
3722 
3723   if (warn && !result) {
3724     warning("HugeTLBFS is not supported by the operating system.");
3725   }
3726 
3727   return result;
3728 }
3729 
3730 // From the coredump_filter documentation:
3731 //
3732 // - (bit 0) anonymous private memory
3733 // - (bit 1) anonymous shared memory
3734 // - (bit 2) file-backed private memory
3735 // - (bit 3) file-backed shared memory
3736 // - (bit 4) ELF header pages in file-backed private memory areas (it is
3737 //           effective only if the bit 2 is cleared)
3738 // - (bit 5) hugetlb private memory
3739 // - (bit 6) hugetlb shared memory
3740 // - (bit 7) dax private memory
3741 // - (bit 8) dax shared memory
3742 //
3743 static void set_coredump_filter(CoredumpFilterBit bit) {
3744   FILE *f;
3745   long cdm;
3746 
3747   if ((f = fopen("/proc/self/coredump_filter", "r+")) == NULL) {
3748     return;
3749   }
3750 
3751   if (fscanf(f, "%lx", &cdm) != 1) {
3752     fclose(f);
3753     return;
3754   }
3755 
3756   long saved_cdm = cdm;
3757   rewind(f);
3758   cdm |= bit;
3759 
3760   if (cdm != saved_cdm) {
3761     fprintf(f, "%#lx", cdm);
3762   }
3763 
3764   fclose(f);
3765 }
3766 
3767 // Large page support
3768 
3769 static size_t _large_page_size = 0;
3770 
3771 size_t os::Linux::find_default_large_page_size() {
3772   if (_default_large_page_size != 0) {
3773     return _default_large_page_size;
3774   }
3775   size_t large_page_size = 0;
3776 
3777   // large_page_size on Linux is used to round up heap size. x86 uses either
3778   // 2M or 4M page, depending on whether PAE (Physical Address Extensions)
3779   // mode is enabled. AMD64/EM64T uses 2M page in 64bit mode. IA64 can use
3780   // page as large as 256M.
3781   //
3782   // Here we try to figure out page size by parsing /proc/meminfo and looking
3783   // for a line with the following format:
3784   //    Hugepagesize:     2048 kB
3785   //
3786   // If we can't determine the value (e.g. /proc is not mounted, or the text
3787   // format has been changed), we'll use the largest page size supported by
3788   // the processor.
3789 
3790 #ifndef ZERO
3791   large_page_size =
3792     AARCH64_ONLY(2 * M)
3793     AMD64_ONLY(2 * M)
3794     ARM32_ONLY(2 * M)
3795     IA32_ONLY(4 * M)
3796     IA64_ONLY(256 * M)
3797     PPC_ONLY(4 * M)
3798     S390_ONLY(1 * M)
3799     SPARC_ONLY(4 * M);
3800 #endif // ZERO
3801 
3802   FILE *fp = fopen("/proc/meminfo", "r");
3803   if (fp) {
3804     while (!feof(fp)) {
3805       int x = 0;
3806       char buf[16];
3807       if (fscanf(fp, "Hugepagesize: %d", &x) == 1) {
3808         if (x && fgets(buf, sizeof(buf), fp) && strcmp(buf, " kB\n") == 0) {
3809           large_page_size = x * K;
3810           break;
3811         }
3812       } else {
3813         // skip to next line
3814         for (;;) {
3815           int ch = fgetc(fp);
3816           if (ch == EOF || ch == (int)'\n') break;
3817         }
3818       }
3819     }
3820     fclose(fp);
3821   }
3822   return large_page_size;
3823 }
3824 
3825 size_t os::Linux::find_large_page_size(size_t large_page_size) {
3826   if (_default_large_page_size == 0) {
3827     _default_large_page_size = Linux::find_default_large_page_size();
3828   }
3829   // We need to scan /sys/kernel/mm/hugepages
3830   // to discover the available page sizes
3831   const char* sys_hugepages = "/sys/kernel/mm/hugepages";
3832 
3833   DIR *dir = opendir(sys_hugepages);
3834   if (dir == NULL) {
3835     return _default_large_page_size;
3836   }
3837 
3838   struct dirent *entry;
3839   size_t page_size;
3840   while ((entry = readdir(dir)) != NULL) {
3841     if (entry->d_type == DT_DIR &&
3842         sscanf(entry->d_name, "hugepages-%zukB", &page_size) == 1) {
3843       // The kernel is using kB, hotspot uses bytes
3844       if (large_page_size == page_size * K) {
3845         closedir(dir);
3846         return large_page_size;
3847       }
3848     }
3849   }
3850   closedir(dir);
3851   return _default_large_page_size;
3852 }
3853 
3854 size_t os::Linux::setup_large_page_size() {
3855   _default_large_page_size = Linux::find_default_large_page_size();
3856 
3857   if (!FLAG_IS_DEFAULT(LargePageSizeInBytes) && LargePageSizeInBytes != _default_large_page_size ) {
3858     _large_page_size = find_large_page_size(LargePageSizeInBytes);
3859     if (_large_page_size == _default_large_page_size) {
3860       warning("Setting LargePageSizeInBytes=" SIZE_FORMAT " has no effect on this OS. Using the default large page size "
3861               SIZE_FORMAT "%s.",
3862               LargePageSizeInBytes,
3863               byte_size_in_proper_unit(_large_page_size), proper_unit_for_byte_size(_large_page_size));
3864     }
3865   } else {
3866     _large_page_size = _default_large_page_size;
3867   }
3868 
3869   const size_t default_page_size = (size_t)Linux::page_size();
3870   if (_large_page_size > default_page_size) {
3871     _page_sizes[0] = _large_page_size;
3872     _page_sizes[1] = default_page_size;
3873     _page_sizes[2] = 0;
3874   }
3875 
3876   return _large_page_size;
3877 }
3878 
3879 size_t os::Linux::default_large_page_size() {
3880   return _default_large_page_size;
3881 }
3882 
3883 bool os::Linux::setup_large_page_type(size_t page_size) {
3884   if (FLAG_IS_DEFAULT(UseHugeTLBFS) &&
3885       FLAG_IS_DEFAULT(UseSHM) &&
3886       FLAG_IS_DEFAULT(UseTransparentHugePages)) {
3887 
3888     // The type of large pages has not been specified by the user.
3889 
3890     // Try UseHugeTLBFS and then UseSHM.
3891     UseHugeTLBFS = UseSHM = true;
3892 
3893     // Don't try UseTransparentHugePages since there are known
3894     // performance issues with it turned on. This might change in the future.
3895     UseTransparentHugePages = false;
3896   }
3897 
3898   if (UseTransparentHugePages) {
3899     bool warn_on_failure = !FLAG_IS_DEFAULT(UseTransparentHugePages);
3900     if (transparent_huge_pages_sanity_check(warn_on_failure, page_size)) {
3901       UseHugeTLBFS = false;
3902       UseSHM = false;
3903       return true;
3904     }
3905     UseTransparentHugePages = false;
3906   }
3907 
3908   if (UseHugeTLBFS) {
3909     bool warn_on_failure = !FLAG_IS_DEFAULT(UseHugeTLBFS);
3910     if (hugetlbfs_sanity_check(warn_on_failure, page_size)) {
3911       UseSHM = false;
3912       return true;
3913     }
3914     UseHugeTLBFS = false;
3915   }
3916 
3917   return UseSHM;
3918 }
3919 
3920 void os::large_page_init() {
3921   if (!UseLargePages &&
3922       !UseTransparentHugePages &&
3923       !UseHugeTLBFS &&
3924       !UseSHM) {
3925     // Not using large pages.
3926     return;
3927   }
3928 
3929   if (!FLAG_IS_DEFAULT(UseLargePages) && !UseLargePages) {
3930     // The user explicitly turned off large pages.
3931     // Ignore the rest of the large pages flags.
3932     UseTransparentHugePages = false;
3933     UseHugeTLBFS = false;
3934     UseSHM = false;
3935     return;
3936   }
3937 
3938   size_t large_page_size = Linux::setup_large_page_size();
3939   UseLargePages          = Linux::setup_large_page_type(large_page_size);
3940 
3941   set_coredump_filter(LARGEPAGES_BIT);
3942 }
3943 
3944 #ifndef SHM_HUGETLB
3945   #define SHM_HUGETLB 04000
3946 #endif
3947 
3948 #define shm_warning_format(format, ...)              \
3949   do {                                               \
3950     if (UseLargePages &&                             \
3951         (!FLAG_IS_DEFAULT(UseLargePages) ||          \
3952          !FLAG_IS_DEFAULT(UseSHM) ||                 \
3953          !FLAG_IS_DEFAULT(LargePageSizeInBytes))) {  \
3954       warning(format, __VA_ARGS__);                  \
3955     }                                                \
3956   } while (0)
3957 
3958 #define shm_warning(str) shm_warning_format("%s", str)
3959 
3960 #define shm_warning_with_errno(str)                \
3961   do {                                             \
3962     int err = errno;                               \
3963     shm_warning_format(str " (error = %d)", err);  \
3964   } while (0)
3965 
3966 static char* shmat_with_alignment(int shmid, size_t bytes, size_t alignment) {
3967   assert(is_aligned(bytes, alignment), "Must be divisible by the alignment");
3968 
3969   if (!is_aligned(alignment, SHMLBA)) {
3970     assert(false, "Code below assumes that alignment is at least SHMLBA aligned");
3971     return NULL;
3972   }
3973 
3974   // To ensure that we get 'alignment' aligned memory from shmat,
3975   // we pre-reserve aligned virtual memory and then attach to that.
3976 
3977   char* pre_reserved_addr = anon_mmap_aligned(bytes, alignment, NULL);
3978   if (pre_reserved_addr == NULL) {
3979     // Couldn't pre-reserve aligned memory.
3980     shm_warning("Failed to pre-reserve aligned memory for shmat.");
3981     return NULL;
3982   }
3983 
3984   // SHM_REMAP is needed to allow shmat to map over an existing mapping.
3985   char* addr = (char*)shmat(shmid, pre_reserved_addr, SHM_REMAP);
3986 
3987   if ((intptr_t)addr == -1) {
3988     int err = errno;
3989     shm_warning_with_errno("Failed to attach shared memory.");
3990 
3991     assert(err != EACCES, "Unexpected error");
3992     assert(err != EIDRM,  "Unexpected error");
3993     assert(err != EINVAL, "Unexpected error");
3994 
3995     // Since we don't know if the kernel unmapped the pre-reserved memory area
3996     // we can't unmap it, since that would potentially unmap memory that was
3997     // mapped from other threads.
3998     return NULL;
3999   }
4000 
4001   return addr;
4002 }
4003 
4004 static char* shmat_at_address(int shmid, char* req_addr) {
4005   if (!is_aligned(req_addr, SHMLBA)) {
4006     assert(false, "Requested address needs to be SHMLBA aligned");
4007     return NULL;
4008   }
4009 
4010   char* addr = (char*)shmat(shmid, req_addr, 0);
4011 
4012   if ((intptr_t)addr == -1) {
4013     shm_warning_with_errno("Failed to attach shared memory.");
4014     return NULL;
4015   }
4016 
4017   return addr;
4018 }
4019 
4020 static char* shmat_large_pages(int shmid, size_t bytes, size_t alignment, char* req_addr) {
4021   // If a req_addr has been provided, we assume that the caller has already aligned the address.
4022   if (req_addr != NULL) {
4023     assert(is_aligned(req_addr, os::large_page_size()), "Must be divisible by the large page size");
4024     assert(is_aligned(req_addr, alignment), "Must be divisible by given alignment");
4025     return shmat_at_address(shmid, req_addr);
4026   }
4027 
4028   // Since shmid has been setup with SHM_HUGETLB, shmat will automatically
4029   // return large page size aligned memory addresses when req_addr == NULL.
4030   // However, if the alignment is larger than the large page size, we have
4031   // to manually ensure that the memory returned is 'alignment' aligned.
4032   if (alignment > os::large_page_size()) {
4033     assert(is_aligned(alignment, os::large_page_size()), "Must be divisible by the large page size");
4034     return shmat_with_alignment(shmid, bytes, alignment);
4035   } else {
4036     return shmat_at_address(shmid, NULL);
4037   }
4038 }
4039 
4040 char* os::Linux::reserve_memory_special_shm(size_t bytes, size_t alignment,
4041                                             char* req_addr, bool exec) {
4042   // "exec" is passed in but not used.  Creating the shared image for
4043   // the code cache doesn't have an SHM_X executable permission to check.
4044   assert(UseLargePages && UseSHM, "only for SHM large pages");
4045   assert(is_aligned(req_addr, os::large_page_size()), "Unaligned address");
4046   assert(is_aligned(req_addr, alignment), "Unaligned address");
4047 
4048   if (!is_aligned(bytes, os::large_page_size())) {
4049     return NULL; // Fallback to small pages.
4050   }
4051 
4052   // Create a large shared memory region to attach to based on size.
4053   // Currently, size is the total size of the heap.
4054   int shmid = shmget(IPC_PRIVATE, bytes, SHM_HUGETLB|IPC_CREAT|SHM_R|SHM_W);
4055   if (shmid == -1) {
4056     // Possible reasons for shmget failure:
4057     // 1. shmmax is too small for Java heap.
4058     //    > check shmmax value: cat /proc/sys/kernel/shmmax
4059     //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
4060     // 2. not enough large page memory.
4061     //    > check available large pages: cat /proc/meminfo
4062     //    > increase amount of large pages:
4063     //          echo new_value > /proc/sys/vm/nr_hugepages
4064     //      Note 1: different Linux may use different name for this property,
4065     //            e.g. on Redhat AS-3 it is "hugetlb_pool".
4066     //      Note 2: it's possible there's enough physical memory available but
4067     //            they are so fragmented after a long run that they can't
4068     //            coalesce into large pages. Try to reserve large pages when
4069     //            the system is still "fresh".
4070     shm_warning_with_errno("Failed to reserve shared memory.");
4071     return NULL;
4072   }
4073 
4074   // Attach to the region.
4075   char* addr = shmat_large_pages(shmid, bytes, alignment, req_addr);
4076 
4077   // Remove shmid. If shmat() is successful, the actual shared memory segment
4078   // will be deleted when it's detached by shmdt() or when the process
4079   // terminates. If shmat() is not successful this will remove the shared
4080   // segment immediately.
4081   shmctl(shmid, IPC_RMID, NULL);
4082 
4083   return addr;
4084 }
4085 
4086 static void warn_on_large_pages_failure(char* req_addr, size_t bytes,
4087                                         int error) {
4088   assert(error == ENOMEM, "Only expect to fail if no memory is available");
4089 
4090   bool warn_on_failure = UseLargePages &&
4091       (!FLAG_IS_DEFAULT(UseLargePages) ||
4092        !FLAG_IS_DEFAULT(UseHugeTLBFS) ||
4093        !FLAG_IS_DEFAULT(LargePageSizeInBytes));
4094 
4095   if (warn_on_failure) {
4096     char msg[128];
4097     jio_snprintf(msg, sizeof(msg), "Failed to reserve large pages memory req_addr: "
4098                  PTR_FORMAT " bytes: " SIZE_FORMAT " (errno = %d).", req_addr, bytes, error);
4099     warning("%s", msg);
4100   }
4101 }
4102 
4103 char* os::Linux::reserve_memory_special_huge_tlbfs_only(size_t bytes,
4104                                                         char* req_addr,
4105                                                         bool exec) {
4106   assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
4107   assert(is_aligned(bytes, os::large_page_size()), "Unaligned size");
4108   assert(is_aligned(req_addr, os::large_page_size()), "Unaligned address");
4109 
4110   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
4111   int flags = MAP_PRIVATE|MAP_ANONYMOUS|MAP_HUGETLB;
4112 
4113   if (os::large_page_size() != default_large_page_size()) {
4114     flags |= (exact_log2(os::large_page_size()) << MAP_HUGE_SHIFT);
4115   }
4116   char* addr = (char*)::mmap(req_addr, bytes, prot, flags, -1, 0);
4117 
4118   if (addr == MAP_FAILED) {
4119     warn_on_large_pages_failure(req_addr, bytes, errno);
4120     return NULL;
4121   }
4122 
4123   assert(is_aligned(addr, os::large_page_size()), "Must be");
4124 
4125   return addr;
4126 }
4127 
4128 // Reserve memory using mmap(MAP_HUGETLB).
4129 //  - bytes shall be a multiple of alignment.
4130 //  - req_addr can be NULL. If not NULL, it must be a multiple of alignment.
4131 //  - alignment sets the alignment at which memory shall be allocated.
4132 //     It must be a multiple of allocation granularity.
4133 // Returns address of memory or NULL. If req_addr was not NULL, will only return
4134 //  req_addr or NULL.
4135 char* os::Linux::reserve_memory_special_huge_tlbfs_mixed(size_t bytes,
4136                                                          size_t alignment,
4137                                                          char* req_addr,
4138                                                          bool exec) {
4139   size_t large_page_size = os::large_page_size();
4140   assert(bytes >= large_page_size, "Shouldn't allocate large pages for small sizes");
4141 
4142   assert(is_aligned(req_addr, alignment), "Must be");
4143   assert(is_aligned(bytes, alignment), "Must be");
4144 
4145   // First reserve - but not commit - the address range in small pages.
4146   char* const start = anon_mmap_aligned(bytes, alignment, req_addr);
4147 
4148   if (start == NULL) {
4149     return NULL;
4150   }
4151 
4152   assert(is_aligned(start, alignment), "Must be");
4153 
4154   char* end = start + bytes;
4155 
4156   // Find the regions of the allocated chunk that can be promoted to large pages.
4157   char* lp_start = align_up(start, large_page_size);
4158   char* lp_end   = align_down(end, large_page_size);
4159 
4160   size_t lp_bytes = lp_end - lp_start;
4161 
4162   assert(is_aligned(lp_bytes, large_page_size), "Must be");
4163 
4164   if (lp_bytes == 0) {
4165     // The mapped region doesn't even span the start and the end of a large page.
4166     // Fall back to allocate a non-special area.
4167     ::munmap(start, end - start);
4168     return NULL;
4169   }
4170 
4171   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
4172   int flags = MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED;
4173   void* result;
4174 
4175   // Commit small-paged leading area.
4176   if (start != lp_start) {
4177     result = ::mmap(start, lp_start - start, prot, flags, -1, 0);
4178     if (result == MAP_FAILED) {
4179       ::munmap(lp_start, end - lp_start);
4180       return NULL;
4181     }
4182   }
4183 
4184   // Commit large-paged area.
4185   flags |= MAP_HUGETLB;
4186 
4187   if (os::large_page_size() != default_large_page_size()) {
4188     flags |= (exact_log2(os::large_page_size()) << MAP_HUGE_SHIFT);
4189   }
4190 
4191   result = ::mmap(lp_start, lp_bytes, prot, flags, -1, 0);
4192   if (result == MAP_FAILED) {
4193     warn_on_large_pages_failure(lp_start, lp_bytes, errno);
4194     // If the mmap above fails, the large pages region will be unmapped and we
4195     // have regions before and after with small pages. Release these regions.
4196     //
4197     // |  mapped  |  unmapped  |  mapped  |
4198     // ^          ^            ^          ^
4199     // start      lp_start     lp_end     end
4200     //
4201     ::munmap(start, lp_start - start);
4202     ::munmap(lp_end, end - lp_end);
4203     return NULL;
4204   }
4205 
4206   // Commit small-paged trailing area.
4207   if (lp_end != end) {
4208     result = ::mmap(lp_end, end - lp_end, prot,
4209                     MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
4210                     -1, 0);
4211     if (result == MAP_FAILED) {
4212       ::munmap(start, lp_end - start);
4213       return NULL;
4214     }
4215   }
4216 
4217   return start;
4218 }
4219 
4220 char* os::Linux::reserve_memory_special_huge_tlbfs(size_t bytes,
4221                                                    size_t alignment,
4222                                                    char* req_addr,
4223                                                    bool exec) {
4224   assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
4225   assert(is_aligned(req_addr, alignment), "Must be");
4226   assert(is_aligned(alignment, os::vm_allocation_granularity()), "Must be");
4227   assert(is_power_of_2(os::large_page_size()), "Must be");
4228   assert(bytes >= os::large_page_size(), "Shouldn't allocate large pages for small sizes");
4229 
4230   if (is_aligned(bytes, os::large_page_size()) && alignment <= os::large_page_size()) {
4231     return reserve_memory_special_huge_tlbfs_only(bytes, req_addr, exec);
4232   } else {
4233     return reserve_memory_special_huge_tlbfs_mixed(bytes, alignment, req_addr, exec);
4234   }
4235 }
4236 
4237 char* os::pd_reserve_memory_special(size_t bytes, size_t alignment,
4238                                     char* req_addr, bool exec) {
4239   assert(UseLargePages, "only for large pages");
4240 
4241   char* addr;
4242   if (UseSHM) {
4243     addr = os::Linux::reserve_memory_special_shm(bytes, alignment, req_addr, exec);
4244   } else {
4245     assert(UseHugeTLBFS, "must be");
4246     addr = os::Linux::reserve_memory_special_huge_tlbfs(bytes, alignment, req_addr, exec);
4247   }
4248 
4249   if (addr != NULL) {
4250     if (UseNUMAInterleaving) {
4251       numa_make_global(addr, bytes);
4252     }
4253   }
4254 
4255   return addr;
4256 }
4257 
4258 bool os::Linux::release_memory_special_shm(char* base, size_t bytes) {
4259   // detaching the SHM segment will also delete it, see reserve_memory_special_shm()
4260   return shmdt(base) == 0;
4261 }
4262 
4263 bool os::Linux::release_memory_special_huge_tlbfs(char* base, size_t bytes) {
4264   return pd_release_memory(base, bytes);
4265 }
4266 
4267 bool os::pd_release_memory_special(char* base, size_t bytes) {
4268   assert(UseLargePages, "only for large pages");
4269   bool res;
4270 
4271   if (UseSHM) {
4272     res = os::Linux::release_memory_special_shm(base, bytes);
4273   } else {
4274     assert(UseHugeTLBFS, "must be");
4275     res = os::Linux::release_memory_special_huge_tlbfs(base, bytes);
4276   }
4277   return res;
4278 }
4279 
4280 size_t os::large_page_size() {
4281   return _large_page_size;
4282 }
4283 
4284 // With SysV SHM the entire memory region must be allocated as shared
4285 // memory.
4286 // HugeTLBFS allows application to commit large page memory on demand.
4287 // However, when committing memory with HugeTLBFS fails, the region
4288 // that was supposed to be committed will lose the old reservation
4289 // and allow other threads to steal that memory region. Because of this
4290 // behavior we can't commit HugeTLBFS memory.
4291 bool os::can_commit_large_page_memory() {
4292   return UseTransparentHugePages;
4293 }
4294 
4295 bool os::can_execute_large_page_memory() {
4296   return UseTransparentHugePages || UseHugeTLBFS;
4297 }
4298 
4299 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr, int file_desc) {
4300   assert(file_desc >= 0, "file_desc is not valid");
4301   char* result = pd_attempt_reserve_memory_at(bytes, requested_addr);
4302   if (result != NULL) {
4303     if (replace_existing_mapping_with_file_mapping(result, bytes, file_desc) == NULL) {
4304       vm_exit_during_initialization(err_msg("Error in mapping Java heap at the given filesystem directory"));
4305     }
4306   }
4307   return result;
4308 }
4309 
4310 // Reserve memory at an arbitrary address, only if that area is
4311 // available (and not reserved for something else).
4312 
4313 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
4314   // Assert only that the size is a multiple of the page size, since
4315   // that's all that mmap requires, and since that's all we really know
4316   // about at this low abstraction level.  If we need higher alignment,
4317   // we can either pass an alignment to this method or verify alignment
4318   // in one of the methods further up the call chain.  See bug 5044738.
4319   assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
4320 
4321   // Repeatedly allocate blocks until the block is allocated at the
4322   // right spot.
4323 
4324   // Linux mmap allows caller to pass an address as hint; give it a try first,
4325   // if kernel honors the hint then we can return immediately.
4326   char * addr = anon_mmap(requested_addr, bytes, false);
4327   if (addr == requested_addr) {
4328     return requested_addr;
4329   }
4330 
4331   if (addr != NULL) {
4332     // mmap() is successful but it fails to reserve at the requested address
4333     anon_munmap(addr, bytes);
4334   }
4335 
4336   return NULL;
4337 }
4338 
4339 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
4340 void os::infinite_sleep() {
4341   while (true) {    // sleep forever ...
4342     ::sleep(100);   // ... 100 seconds at a time
4343   }
4344 }
4345 
4346 // Used to convert frequent JVM_Yield() to nops
4347 bool os::dont_yield() {
4348   return DontYieldALot;
4349 }
4350 
4351 // Linux CFS scheduler (since 2.6.23) does not guarantee sched_yield(2) will
4352 // actually give up the CPU. Since skip buddy (v2.6.28):
4353 //
4354 // * Sets the yielding task as skip buddy for current CPU's run queue.
4355 // * Picks next from run queue, if empty, picks a skip buddy (can be the yielding task).
4356 // * Clears skip buddies for this run queue (yielding task no longer a skip buddy).
4357 //
4358 // An alternative is calling os::naked_short_nanosleep with a small number to avoid
4359 // getting re-scheduled immediately.
4360 //
4361 void os::naked_yield() {
4362   sched_yield();
4363 }
4364 
4365 ////////////////////////////////////////////////////////////////////////////////
4366 // thread priority support
4367 
4368 // Note: Normal Linux applications are run with SCHED_OTHER policy. SCHED_OTHER
4369 // only supports dynamic priority, static priority must be zero. For real-time
4370 // applications, Linux supports SCHED_RR which allows static priority (1-99).
4371 // However, for large multi-threaded applications, SCHED_RR is not only slower
4372 // than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
4373 // of 5 runs - Sep 2005).
4374 //
4375 // The following code actually changes the niceness of kernel-thread/LWP. It
4376 // has an assumption that setpriority() only modifies one kernel-thread/LWP,
4377 // not the entire user process, and user level threads are 1:1 mapped to kernel
4378 // threads. It has always been the case, but could change in the future. For
4379 // this reason, the code should not be used as default (ThreadPriorityPolicy=0).
4380 // It is only used when ThreadPriorityPolicy=1 and may require system level permission
4381 // (e.g., root privilege or CAP_SYS_NICE capability).
4382 
4383 int os::java_to_os_priority[CriticalPriority + 1] = {
4384   19,              // 0 Entry should never be used
4385 
4386    4,              // 1 MinPriority
4387    3,              // 2
4388    2,              // 3
4389 
4390    1,              // 4
4391    0,              // 5 NormPriority
4392   -1,              // 6
4393 
4394   -2,              // 7
4395   -3,              // 8
4396   -4,              // 9 NearMaxPriority
4397 
4398   -5,              // 10 MaxPriority
4399 
4400   -5               // 11 CriticalPriority
4401 };
4402 
4403 static int prio_init() {
4404   if (ThreadPriorityPolicy == 1) {
4405     if (geteuid() != 0) {
4406       if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy) && !FLAG_IS_JIMAGE_RESOURCE(ThreadPriorityPolicy)) {
4407         warning("-XX:ThreadPriorityPolicy=1 may require system level permission, " \
4408                 "e.g., being the root user. If the necessary permission is not " \
4409                 "possessed, changes to priority will be silently ignored.");
4410       }
4411     }
4412   }
4413   if (UseCriticalJavaThreadPriority) {
4414     os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
4415   }
4416   return 0;
4417 }
4418 
4419 OSReturn os::set_native_priority(Thread* thread, int newpri) {
4420   if (!UseThreadPriorities || ThreadPriorityPolicy == 0) return OS_OK;
4421 
4422   int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
4423   return (ret == 0) ? OS_OK : OS_ERR;
4424 }
4425 
4426 OSReturn os::get_native_priority(const Thread* const thread,
4427                                  int *priority_ptr) {
4428   if (!UseThreadPriorities || ThreadPriorityPolicy == 0) {
4429     *priority_ptr = java_to_os_priority[NormPriority];
4430     return OS_OK;
4431   }
4432 
4433   errno = 0;
4434   *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
4435   return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
4436 }
4437 
4438 ////////////////////////////////////////////////////////////////////////////////
4439 // suspend/resume support
4440 
4441 //  The low-level signal-based suspend/resume support is a remnant from the
4442 //  old VM-suspension that used to be for java-suspension, safepoints etc,
4443 //  within hotspot. Currently used by JFR's OSThreadSampler
4444 //
4445 //  The remaining code is greatly simplified from the more general suspension
4446 //  code that used to be used.
4447 //
4448 //  The protocol is quite simple:
4449 //  - suspend:
4450 //      - sends a signal to the target thread
4451 //      - polls the suspend state of the osthread using a yield loop
4452 //      - target thread signal handler (SR_handler) sets suspend state
4453 //        and blocks in sigsuspend until continued
4454 //  - resume:
4455 //      - sets target osthread state to continue
4456 //      - sends signal to end the sigsuspend loop in the SR_handler
4457 //
4458 //  Note that the SR_lock plays no role in this suspend/resume protocol,
4459 //  but is checked for NULL in SR_handler as a thread termination indicator.
4460 //  The SR_lock is, however, used by JavaThread::java_suspend()/java_resume() APIs.
4461 //
4462 //  Note that resume_clear_context() and suspend_save_context() are needed
4463 //  by SR_handler(), so that fetch_frame_from_ucontext() works,
4464 //  which in part is used by:
4465 //    - Forte Analyzer: AsyncGetCallTrace()
4466 //    - StackBanging: get_frame_at_stack_banging_point()
4467 
4468 static void resume_clear_context(OSThread *osthread) {
4469   osthread->set_ucontext(NULL);
4470   osthread->set_siginfo(NULL);
4471 }
4472 
4473 static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo,
4474                                  ucontext_t* context) {
4475   osthread->set_ucontext(context);
4476   osthread->set_siginfo(siginfo);
4477 }
4478 
4479 // Handler function invoked when a thread's execution is suspended or
4480 // resumed. We have to be careful that only async-safe functions are
4481 // called here (Note: most pthread functions are not async safe and
4482 // should be avoided.)
4483 //
4484 // Note: sigwait() is a more natural fit than sigsuspend() from an
4485 // interface point of view, but sigwait() prevents the signal hander
4486 // from being run. libpthread would get very confused by not having
4487 // its signal handlers run and prevents sigwait()'s use with the
4488 // mutex granting granting signal.
4489 //
4490 // Currently only ever called on the VMThread and JavaThreads (PC sampling)
4491 //
4492 static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
4493   // Save and restore errno to avoid confusing native code with EINTR
4494   // after sigsuspend.
4495   int old_errno = errno;
4496 
4497   Thread* thread = Thread::current_or_null_safe();
4498   assert(thread != NULL, "Missing current thread in SR_handler");
4499 
4500   // On some systems we have seen signal delivery get "stuck" until the signal
4501   // mask is changed as part of thread termination. Check that the current thread
4502   // has not already terminated (via SR_lock()) - else the following assertion
4503   // will fail because the thread is no longer a JavaThread as the ~JavaThread
4504   // destructor has completed.
4505 
4506   if (thread->SR_lock() == NULL) {
4507     return;
4508   }
4509 
4510   assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
4511 
4512   OSThread* osthread = thread->osthread();
4513 
4514   os::SuspendResume::State current = osthread->sr.state();
4515   if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
4516     suspend_save_context(osthread, siginfo, context);
4517 
4518     // attempt to switch the state, we assume we had a SUSPEND_REQUEST
4519     os::SuspendResume::State state = osthread->sr.suspended();
4520     if (state == os::SuspendResume::SR_SUSPENDED) {
4521       sigset_t suspend_set;  // signals for sigsuspend()
4522       sigemptyset(&suspend_set);
4523       // get current set of blocked signals and unblock resume signal
4524       pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
4525       sigdelset(&suspend_set, SR_signum);
4526 
4527       sr_semaphore.signal();
4528       // wait here until we are resumed
4529       while (1) {
4530         sigsuspend(&suspend_set);
4531 
4532         os::SuspendResume::State result = osthread->sr.running();
4533         if (result == os::SuspendResume::SR_RUNNING) {
4534           sr_semaphore.signal();
4535           break;
4536         }
4537       }
4538 
4539     } else if (state == os::SuspendResume::SR_RUNNING) {
4540       // request was cancelled, continue
4541     } else {
4542       ShouldNotReachHere();
4543     }
4544 
4545     resume_clear_context(osthread);
4546   } else if (current == os::SuspendResume::SR_RUNNING) {
4547     // request was cancelled, continue
4548   } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
4549     // ignore
4550   } else {
4551     // ignore
4552   }
4553 
4554   errno = old_errno;
4555 }
4556 
4557 static int SR_initialize() {
4558   struct sigaction act;
4559   char *s;
4560 
4561   // Get signal number to use for suspend/resume
4562   if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
4563     int sig = ::strtol(s, 0, 10);
4564     if (sig > MAX2(SIGSEGV, SIGBUS) &&  // See 4355769.
4565         sig < NSIG) {                   // Must be legal signal and fit into sigflags[].
4566       SR_signum = sig;
4567     } else {
4568       warning("You set _JAVA_SR_SIGNUM=%d. It must be in range [%d, %d]. Using %d instead.",
4569               sig, MAX2(SIGSEGV, SIGBUS)+1, NSIG-1, SR_signum);
4570     }
4571   }
4572 
4573   assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
4574          "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
4575 
4576   sigemptyset(&SR_sigset);
4577   sigaddset(&SR_sigset, SR_signum);
4578 
4579   // Set up signal handler for suspend/resume
4580   act.sa_flags = SA_RESTART|SA_SIGINFO;
4581   act.sa_handler = (void (*)(int)) SR_handler;
4582 
4583   // SR_signum is blocked by default.
4584   // 4528190 - We also need to block pthread restart signal (32 on all
4585   // supported Linux platforms). Note that LinuxThreads need to block
4586   // this signal for all threads to work properly. So we don't have
4587   // to use hard-coded signal number when setting up the mask.
4588   pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
4589 
4590   if (sigaction(SR_signum, &act, 0) == -1) {
4591     return -1;
4592   }
4593 
4594   // Save signal flag
4595   os::Linux::set_our_sigflags(SR_signum, act.sa_flags);
4596   return 0;
4597 }
4598 
4599 static int sr_notify(OSThread* osthread) {
4600   int status = pthread_kill(osthread->pthread_id(), SR_signum);
4601   assert_status(status == 0, status, "pthread_kill");
4602   return status;
4603 }
4604 
4605 // "Randomly" selected value for how long we want to spin
4606 // before bailing out on suspending a thread, also how often
4607 // we send a signal to a thread we want to resume
4608 static const int RANDOMLY_LARGE_INTEGER = 1000000;
4609 static const int RANDOMLY_LARGE_INTEGER2 = 100;
4610 
4611 // returns true on success and false on error - really an error is fatal
4612 // but this seems the normal response to library errors
4613 static bool do_suspend(OSThread* osthread) {
4614   assert(osthread->sr.is_running(), "thread should be running");
4615   assert(!sr_semaphore.trywait(), "semaphore has invalid state");
4616 
4617   // mark as suspended and send signal
4618   if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
4619     // failed to switch, state wasn't running?
4620     ShouldNotReachHere();
4621     return false;
4622   }
4623 
4624   if (sr_notify(osthread) != 0) {
4625     ShouldNotReachHere();
4626   }
4627 
4628   // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
4629   while (true) {
4630     if (sr_semaphore.timedwait(2)) {
4631       break;
4632     } else {
4633       // timeout
4634       os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
4635       if (cancelled == os::SuspendResume::SR_RUNNING) {
4636         return false;
4637       } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
4638         // make sure that we consume the signal on the semaphore as well
4639         sr_semaphore.wait();
4640         break;
4641       } else {
4642         ShouldNotReachHere();
4643         return false;
4644       }
4645     }
4646   }
4647 
4648   guarantee(osthread->sr.is_suspended(), "Must be suspended");
4649   return true;
4650 }
4651 
4652 static void do_resume(OSThread* osthread) {
4653   assert(osthread->sr.is_suspended(), "thread should be suspended");
4654   assert(!sr_semaphore.trywait(), "invalid semaphore state");
4655 
4656   if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
4657     // failed to switch to WAKEUP_REQUEST
4658     ShouldNotReachHere();
4659     return;
4660   }
4661 
4662   while (true) {
4663     if (sr_notify(osthread) == 0) {
4664       if (sr_semaphore.timedwait(2)) {
4665         if (osthread->sr.is_running()) {
4666           return;
4667         }
4668       }
4669     } else {
4670       ShouldNotReachHere();
4671     }
4672   }
4673 
4674   guarantee(osthread->sr.is_running(), "Must be running!");
4675 }
4676 
4677 ///////////////////////////////////////////////////////////////////////////////////
4678 // signal handling (except suspend/resume)
4679 
4680 // This routine may be used by user applications as a "hook" to catch signals.
4681 // The user-defined signal handler must pass unrecognized signals to this
4682 // routine, and if it returns true (non-zero), then the signal handler must
4683 // return immediately.  If the flag "abort_if_unrecognized" is true, then this
4684 // routine will never retun false (zero), but instead will execute a VM panic
4685 // routine kill the process.
4686 //
4687 // If this routine returns false, it is OK to call it again.  This allows
4688 // the user-defined signal handler to perform checks either before or after
4689 // the VM performs its own checks.  Naturally, the user code would be making
4690 // a serious error if it tried to handle an exception (such as a null check
4691 // or breakpoint) that the VM was generating for its own correct operation.
4692 //
4693 // This routine may recognize any of the following kinds of signals:
4694 //    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
4695 // It should be consulted by handlers for any of those signals.
4696 //
4697 // The caller of this routine must pass in the three arguments supplied
4698 // to the function referred to in the "sa_sigaction" (not the "sa_handler")
4699 // field of the structure passed to sigaction().  This routine assumes that
4700 // the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
4701 //
4702 // Note that the VM will print warnings if it detects conflicting signal
4703 // handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
4704 //
4705 extern "C" JNIEXPORT int JVM_handle_linux_signal(int signo,
4706                                                  siginfo_t* siginfo,
4707                                                  void* ucontext,
4708                                                  int abort_if_unrecognized);
4709 
4710 static void signalHandler(int sig, siginfo_t* info, void* uc) {
4711   assert(info != NULL && uc != NULL, "it must be old kernel");
4712   int orig_errno = errno;  // Preserve errno value over signal handler.
4713   JVM_handle_linux_signal(sig, info, uc, true);
4714   errno = orig_errno;
4715 }
4716 
4717 
4718 // This boolean allows users to forward their own non-matching signals
4719 // to JVM_handle_linux_signal, harmlessly.
4720 bool os::Linux::signal_handlers_are_installed = false;
4721 
4722 // For signal-chaining
4723 bool os::Linux::libjsig_is_loaded = false;
4724 typedef struct sigaction *(*get_signal_t)(int);
4725 get_signal_t os::Linux::get_signal_action = NULL;
4726 
4727 struct sigaction* os::Linux::get_chained_signal_action(int sig) {
4728   struct sigaction *actp = NULL;
4729 
4730   if (libjsig_is_loaded) {
4731     // Retrieve the old signal handler from libjsig
4732     actp = (*get_signal_action)(sig);
4733   }
4734   if (actp == NULL) {
4735     // Retrieve the preinstalled signal handler from jvm
4736     actp = os::Posix::get_preinstalled_handler(sig);
4737   }
4738 
4739   return actp;
4740 }
4741 
4742 static bool call_chained_handler(struct sigaction *actp, int sig,
4743                                  siginfo_t *siginfo, void *context) {
4744   // Call the old signal handler
4745   if (actp->sa_handler == SIG_DFL) {
4746     // It's more reasonable to let jvm treat it as an unexpected exception
4747     // instead of taking the default action.
4748     return false;
4749   } else if (actp->sa_handler != SIG_IGN) {
4750     if ((actp->sa_flags & SA_NODEFER) == 0) {
4751       // automaticlly block the signal
4752       sigaddset(&(actp->sa_mask), sig);
4753     }
4754 
4755     sa_handler_t hand = NULL;
4756     sa_sigaction_t sa = NULL;
4757     bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
4758     // retrieve the chained handler
4759     if (siginfo_flag_set) {
4760       sa = actp->sa_sigaction;
4761     } else {
4762       hand = actp->sa_handler;
4763     }
4764 
4765     if ((actp->sa_flags & SA_RESETHAND) != 0) {
4766       actp->sa_handler = SIG_DFL;
4767     }
4768 
4769     // try to honor the signal mask
4770     sigset_t oset;
4771     sigemptyset(&oset);
4772     pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
4773 
4774     // call into the chained handler
4775     if (siginfo_flag_set) {
4776       (*sa)(sig, siginfo, context);
4777     } else {
4778       (*hand)(sig);
4779     }
4780 
4781     // restore the signal mask
4782     pthread_sigmask(SIG_SETMASK, &oset, NULL);
4783   }
4784   // Tell jvm's signal handler the signal is taken care of.
4785   return true;
4786 }
4787 
4788 bool os::Linux::chained_handler(int sig, siginfo_t* siginfo, void* context) {
4789   bool chained = false;
4790   // signal-chaining
4791   if (UseSignalChaining) {
4792     struct sigaction *actp = get_chained_signal_action(sig);
4793     if (actp != NULL) {
4794       chained = call_chained_handler(actp, sig, siginfo, context);
4795     }
4796   }
4797   return chained;
4798 }
4799 
4800 // for diagnostic
4801 int sigflags[NSIG];
4802 
4803 int os::Linux::get_our_sigflags(int sig) {
4804   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
4805   return sigflags[sig];
4806 }
4807 
4808 void os::Linux::set_our_sigflags(int sig, int flags) {
4809   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
4810   if (sig > 0 && sig < NSIG) {
4811     sigflags[sig] = flags;
4812   }
4813 }
4814 
4815 void os::Linux::set_signal_handler(int sig, bool set_installed) {
4816   // Check for overwrite.
4817   struct sigaction oldAct;
4818   sigaction(sig, (struct sigaction*)NULL, &oldAct);
4819 
4820   void* oldhand = oldAct.sa_sigaction
4821                 ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
4822                 : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
4823   if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
4824       oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
4825       oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
4826     if (AllowUserSignalHandlers || !set_installed) {
4827       // Do not overwrite; user takes responsibility to forward to us.
4828       return;
4829     } else if (UseSignalChaining) {
4830       // save the old handler in jvm
4831       os::Posix::save_preinstalled_handler(sig, oldAct);
4832       // libjsig also interposes the sigaction() call below and saves the
4833       // old sigaction on it own.
4834     } else {
4835       fatal("Encountered unexpected pre-existing sigaction handler "
4836             "%#lx for signal %d.", (long)oldhand, sig);
4837     }
4838   }
4839 
4840   struct sigaction sigAct;
4841   sigfillset(&(sigAct.sa_mask));
4842   sigAct.sa_handler = SIG_DFL;
4843   if (!set_installed) {
4844     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4845   } else {
4846     sigAct.sa_sigaction = signalHandler;
4847     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4848   }
4849   // Save flags, which are set by ours
4850   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
4851   sigflags[sig] = sigAct.sa_flags;
4852 
4853   int ret = sigaction(sig, &sigAct, &oldAct);
4854   assert(ret == 0, "check");
4855 
4856   void* oldhand2  = oldAct.sa_sigaction
4857                   ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
4858                   : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
4859   assert(oldhand2 == oldhand, "no concurrent signal handler installation");
4860 }
4861 
4862 // install signal handlers for signals that HotSpot needs to
4863 // handle in order to support Java-level exception handling.
4864 
4865 void os::Linux::install_signal_handlers() {
4866   if (!signal_handlers_are_installed) {
4867     signal_handlers_are_installed = true;
4868 
4869     // signal-chaining
4870     typedef void (*signal_setting_t)();
4871     signal_setting_t begin_signal_setting = NULL;
4872     signal_setting_t end_signal_setting = NULL;
4873     begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4874                                           dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
4875     if (begin_signal_setting != NULL) {
4876       end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4877                                           dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
4878       get_signal_action = CAST_TO_FN_PTR(get_signal_t,
4879                                          dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
4880       libjsig_is_loaded = true;
4881       assert(UseSignalChaining, "should enable signal-chaining");
4882     }
4883     if (libjsig_is_loaded) {
4884       // Tell libjsig jvm is setting signal handlers
4885       (*begin_signal_setting)();
4886     }
4887 
4888     set_signal_handler(SIGSEGV, true);
4889     set_signal_handler(SIGPIPE, true);
4890     set_signal_handler(SIGBUS, true);
4891     set_signal_handler(SIGILL, true);
4892     set_signal_handler(SIGFPE, true);
4893 #if defined(PPC64)
4894     set_signal_handler(SIGTRAP, true);
4895 #endif
4896     set_signal_handler(SIGXFSZ, true);
4897 
4898     if (libjsig_is_loaded) {
4899       // Tell libjsig jvm finishes setting signal handlers
4900       (*end_signal_setting)();
4901     }
4902 
4903     // We don't activate signal checker if libjsig is in place, we trust ourselves
4904     // and if UserSignalHandler is installed all bets are off.
4905     // Log that signal checking is off only if -verbose:jni is specified.
4906     if (CheckJNICalls) {
4907       if (libjsig_is_loaded) {
4908         log_debug(jni, resolve)("Info: libjsig is activated, all active signal checking is disabled");
4909         check_signals = false;
4910       }
4911       if (AllowUserSignalHandlers) {
4912         log_debug(jni, resolve)("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
4913         check_signals = false;
4914       }
4915     }
4916   }
4917 }
4918 
4919 // This is the fastest way to get thread cpu time on Linux.
4920 // Returns cpu time (user+sys) for any thread, not only for current.
4921 // POSIX compliant clocks are implemented in the kernels 2.6.16+.
4922 // It might work on 2.6.10+ with a special kernel/glibc patch.
4923 // For reference, please, see IEEE Std 1003.1-2004:
4924 //   http://www.unix.org/single_unix_specification
4925 
4926 jlong os::Linux::fast_thread_cpu_time(clockid_t clockid) {
4927   struct timespec tp;
4928   int rc = os::Posix::clock_gettime(clockid, &tp);
4929   assert(rc == 0, "clock_gettime is expected to return 0 code");
4930 
4931   return (tp.tv_sec * NANOSECS_PER_SEC) + tp.tv_nsec;
4932 }
4933 
4934 /////
4935 // glibc on Linux platform uses non-documented flag
4936 // to indicate, that some special sort of signal
4937 // trampoline is used.
4938 // We will never set this flag, and we should
4939 // ignore this flag in our diagnostic
4940 #ifdef SIGNIFICANT_SIGNAL_MASK
4941   #undef SIGNIFICANT_SIGNAL_MASK
4942 #endif
4943 #define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
4944 
4945 static const char* get_signal_handler_name(address handler,
4946                                            char* buf, int buflen) {
4947   int offset = 0;
4948   bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
4949   if (found) {
4950     // skip directory names
4951     const char *p1, *p2;
4952     p1 = buf;
4953     size_t len = strlen(os::file_separator());
4954     while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
4955     jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
4956   } else {
4957     jio_snprintf(buf, buflen, PTR_FORMAT, handler);
4958   }
4959   return buf;
4960 }
4961 
4962 static void print_signal_handler(outputStream* st, int sig,
4963                                  char* buf, size_t buflen) {
4964   struct sigaction sa;
4965 
4966   sigaction(sig, NULL, &sa);
4967 
4968   // See comment for SIGNIFICANT_SIGNAL_MASK define
4969   sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4970 
4971   st->print("%s: ", os::exception_name(sig, buf, buflen));
4972 
4973   address handler = (sa.sa_flags & SA_SIGINFO)
4974     ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
4975     : CAST_FROM_FN_PTR(address, sa.sa_handler);
4976 
4977   if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
4978     st->print("SIG_DFL");
4979   } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
4980     st->print("SIG_IGN");
4981   } else {
4982     st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
4983   }
4984 
4985   st->print(", sa_mask[0]=");
4986   os::Posix::print_signal_set_short(st, &sa.sa_mask);
4987 
4988   address rh = VMError::get_resetted_sighandler(sig);
4989   // May be, handler was resetted by VMError?
4990   if (rh != NULL) {
4991     handler = rh;
4992     sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
4993   }
4994 
4995   st->print(", sa_flags=");
4996   os::Posix::print_sa_flags(st, sa.sa_flags);
4997 
4998   // Check: is it our handler?
4999   if (handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
5000       handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
5001     // It is our signal handler
5002     // check for flags, reset system-used one!
5003     if ((int)sa.sa_flags != os::Linux::get_our_sigflags(sig)) {
5004       st->print(
5005                 ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
5006                 os::Linux::get_our_sigflags(sig));
5007     }
5008   }
5009   st->cr();
5010 }
5011 
5012 
5013 #define DO_SIGNAL_CHECK(sig)                      \
5014   do {                                            \
5015     if (!sigismember(&check_signal_done, sig)) {  \
5016       os::Linux::check_signal_handler(sig);       \
5017     }                                             \
5018   } while (0)
5019 
5020 // This method is a periodic task to check for misbehaving JNI applications
5021 // under CheckJNI, we can add any periodic checks here
5022 
5023 void os::run_periodic_checks() {
5024   if (check_signals == false) return;
5025 
5026   // SEGV and BUS if overridden could potentially prevent
5027   // generation of hs*.log in the event of a crash, debugging
5028   // such a case can be very challenging, so we absolutely
5029   // check the following for a good measure:
5030   DO_SIGNAL_CHECK(SIGSEGV);
5031   DO_SIGNAL_CHECK(SIGILL);
5032   DO_SIGNAL_CHECK(SIGFPE);
5033   DO_SIGNAL_CHECK(SIGBUS);
5034   DO_SIGNAL_CHECK(SIGPIPE);
5035   DO_SIGNAL_CHECK(SIGXFSZ);
5036 #if defined(PPC64)
5037   DO_SIGNAL_CHECK(SIGTRAP);
5038 #endif
5039 
5040   // ReduceSignalUsage allows the user to override these handlers
5041   // see comments at the very top and jvm_md.h
5042   if (!ReduceSignalUsage) {
5043     DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
5044     DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
5045     DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
5046     DO_SIGNAL_CHECK(BREAK_SIGNAL);
5047   }
5048 
5049   DO_SIGNAL_CHECK(SR_signum);
5050 }
5051 
5052 typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
5053 
5054 static os_sigaction_t os_sigaction = NULL;
5055 
5056 void os::Linux::check_signal_handler(int sig) {
5057   char buf[O_BUFLEN];
5058   address jvmHandler = NULL;
5059 
5060 
5061   struct sigaction act;
5062   if (os_sigaction == NULL) {
5063     // only trust the default sigaction, in case it has been interposed
5064     os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
5065     if (os_sigaction == NULL) return;
5066   }
5067 
5068   os_sigaction(sig, (struct sigaction*)NULL, &act);
5069 
5070 
5071   act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
5072 
5073   address thisHandler = (act.sa_flags & SA_SIGINFO)
5074     ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
5075     : CAST_FROM_FN_PTR(address, act.sa_handler);
5076 
5077 
5078   switch (sig) {
5079   case SIGSEGV:
5080   case SIGBUS:
5081   case SIGFPE:
5082   case SIGPIPE:
5083   case SIGILL:
5084   case SIGXFSZ:
5085     jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
5086     break;
5087 
5088   case SHUTDOWN1_SIGNAL:
5089   case SHUTDOWN2_SIGNAL:
5090   case SHUTDOWN3_SIGNAL:
5091   case BREAK_SIGNAL:
5092     jvmHandler = (address)user_handler();
5093     break;
5094 
5095   default:
5096     if (sig == SR_signum) {
5097       jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
5098     } else {
5099       return;
5100     }
5101     break;
5102   }
5103 
5104   if (thisHandler != jvmHandler) {
5105     tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
5106     tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
5107     tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
5108     // No need to check this sig any longer
5109     sigaddset(&check_signal_done, sig);
5110     // Running under non-interactive shell, SHUTDOWN2_SIGNAL will be reassigned SIG_IGN
5111     if (sig == SHUTDOWN2_SIGNAL && !isatty(fileno(stdin))) {
5112       tty->print_cr("Running in non-interactive shell, %s handler is replaced by shell",
5113                     exception_name(sig, buf, O_BUFLEN));
5114     }
5115   } else if(os::Linux::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Linux::get_our_sigflags(sig)) {
5116     tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
5117     tty->print("expected:");
5118     os::Posix::print_sa_flags(tty, os::Linux::get_our_sigflags(sig));
5119     tty->cr();
5120     tty->print("  found:");
5121     os::Posix::print_sa_flags(tty, act.sa_flags);
5122     tty->cr();
5123     // No need to check this sig any longer
5124     sigaddset(&check_signal_done, sig);
5125   }
5126 
5127   // Dump all the signal
5128   if (sigismember(&check_signal_done, sig)) {
5129     print_signal_handlers(tty, buf, O_BUFLEN);
5130   }
5131 }
5132 
5133 extern void report_error(char* file_name, int line_no, char* title,
5134                          char* format, ...);
5135 
5136 // this is called _before_ most of the global arguments have been parsed
5137 void os::init(void) {
5138   char dummy;   // used to get a guess on initial stack address
5139 
5140   clock_tics_per_sec = sysconf(_SC_CLK_TCK);
5141 
5142   init_random(1234567);
5143 
5144   Linux::set_page_size(sysconf(_SC_PAGESIZE));
5145   if (Linux::page_size() == -1) {
5146     fatal("os_linux.cpp: os::init: sysconf failed (%s)",
5147           os::strerror(errno));
5148   }
5149   init_page_sizes((size_t) Linux::page_size());
5150 
5151   Linux::initialize_system_info();
5152 
5153   os::Linux::CPUPerfTicks pticks;
5154   bool res = os::Linux::get_tick_information(&pticks, -1);
5155 
5156   if (res && pticks.has_steal_ticks) {
5157     has_initial_tick_info = true;
5158     initial_total_ticks = pticks.total;
5159     initial_steal_ticks = pticks.steal;
5160   }
5161 
5162   // _main_thread points to the thread that created/loaded the JVM.
5163   Linux::_main_thread = pthread_self();
5164 
5165   // retrieve entry point for pthread_setname_np
5166   Linux::_pthread_setname_np =
5167     (int(*)(pthread_t, const char*))dlsym(RTLD_DEFAULT, "pthread_setname_np");
5168 
5169   os::Posix::init();
5170 
5171   initial_time_count = javaTimeNanos();
5172 
5173   // Always warn if no monotonic clock available
5174   if (!os::Posix::supports_monotonic_clock()) {
5175     warning("No monotonic clock was available - timed services may "    \
5176             "be adversely affected if the time-of-day clock changes");
5177   }
5178 }
5179 
5180 // To install functions for atexit system call
5181 extern "C" {
5182   static void perfMemory_exit_helper() {
5183     perfMemory_exit();
5184   }
5185 }
5186 
5187 void os::pd_init_container_support() {
5188   OSContainer::init();
5189 }
5190 
5191 void os::Linux::numa_init() {
5192 
5193   // Java can be invoked as
5194   // 1. Without numactl and heap will be allocated/configured on all nodes as
5195   //    per the system policy.
5196   // 2. With numactl --interleave:
5197   //      Use numa_get_interleave_mask(v2) API to get nodes bitmask. The same
5198   //      API for membind case bitmask is reset.
5199   //      Interleave is only hint and Kernel can fallback to other nodes if
5200   //      no memory is available on the target nodes.
5201   // 3. With numactl --membind:
5202   //      Use numa_get_membind(v2) API to get nodes bitmask. The same API for
5203   //      interleave case returns bitmask of all nodes.
5204   // numa_all_nodes_ptr holds bitmask of all nodes.
5205   // numa_get_interleave_mask(v2) and numa_get_membind(v2) APIs returns correct
5206   // bitmask when externally configured to run on all or fewer nodes.
5207 
5208   if (!Linux::libnuma_init()) {
5209     FLAG_SET_ERGO(UseNUMA, false);
5210     FLAG_SET_ERGO(UseNUMAInterleaving, false); // Also depends on libnuma.
5211   } else {
5212     if ((Linux::numa_max_node() < 1) || Linux::is_bound_to_single_node()) {
5213       // If there's only one node (they start from 0) or if the process
5214       // is bound explicitly to a single node using membind, disable NUMA unless
5215       // user explicilty forces NUMA optimizations on single-node/UMA systems
5216       UseNUMA = ForceNUMA;
5217     } else {
5218 
5219       LogTarget(Info,os) log;
5220       LogStream ls(log);
5221 
5222       Linux::set_configured_numa_policy(Linux::identify_numa_policy());
5223 
5224       struct bitmask* bmp = Linux::_numa_membind_bitmask;
5225       const char* numa_mode = "membind";
5226 
5227       if (Linux::is_running_in_interleave_mode()) {
5228         bmp = Linux::_numa_interleave_bitmask;
5229         numa_mode = "interleave";
5230       }
5231 
5232       ls.print("UseNUMA is enabled and invoked in '%s' mode."
5233                " Heap will be configured using NUMA memory nodes:", numa_mode);
5234 
5235       for (int node = 0; node <= Linux::numa_max_node(); node++) {
5236         if (Linux::_numa_bitmask_isbitset(bmp, node)) {
5237           ls.print(" %d", node);
5238         }
5239       }
5240     }
5241   }
5242 
5243   // When NUMA requested, not-NUMA-aware allocations default to interleaving.
5244   if (UseNUMA && !UseNUMAInterleaving) {
5245     FLAG_SET_ERGO_IF_DEFAULT(UseNUMAInterleaving, true);
5246   }
5247 
5248   if (UseParallelGC && UseNUMA && UseLargePages && !can_commit_large_page_memory()) {
5249     // With SHM and HugeTLBFS large pages we cannot uncommit a page, so there's no way
5250     // we can make the adaptive lgrp chunk resizing work. If the user specified both
5251     // UseNUMA and UseLargePages (or UseSHM/UseHugeTLBFS) on the command line - warn
5252     // and disable adaptive resizing.
5253     if (UseAdaptiveSizePolicy || UseAdaptiveNUMAChunkSizing) {
5254       warning("UseNUMA is not fully compatible with SHM/HugeTLBFS large pages, "
5255               "disabling adaptive resizing (-XX:-UseAdaptiveSizePolicy -XX:-UseAdaptiveNUMAChunkSizing)");
5256       UseAdaptiveSizePolicy = false;
5257       UseAdaptiveNUMAChunkSizing = false;
5258     }
5259   }
5260 }
5261 
5262 // this is called _after_ the global arguments have been parsed
5263 jint os::init_2(void) {
5264 
5265   // This could be set after os::Posix::init() but all platforms
5266   // have to set it the same so we have to mirror Solaris.
5267   DEBUG_ONLY(os::set_mutex_init_done();)
5268 
5269   os::Posix::init_2();
5270 
5271   Linux::fast_thread_clock_init();
5272 
5273   // initialize suspend/resume support - must do this before signal_sets_init()
5274   if (SR_initialize() != 0) {
5275     perror("SR_initialize failed");
5276     return JNI_ERR;
5277   }
5278 
5279   Linux::signal_sets_init();
5280   Linux::install_signal_handlers();
5281   // Initialize data for jdk.internal.misc.Signal
5282   if (!ReduceSignalUsage) {
5283     jdk_misc_signal_init();
5284   }
5285 
5286   if (AdjustStackSizeForTLS) {
5287     get_minstack_init();
5288   }
5289 
5290   // Check and sets minimum stack sizes against command line options
5291   if (Posix::set_minimum_stack_sizes() == JNI_ERR) {
5292     return JNI_ERR;
5293   }
5294 
5295 #if defined(IA32)
5296   // Need to ensure we've determined the process's initial stack to
5297   // perform the workaround
5298   Linux::capture_initial_stack(JavaThread::stack_size_at_create());
5299   workaround_expand_exec_shield_cs_limit();
5300 #else
5301   suppress_primordial_thread_resolution = Arguments::created_by_java_launcher();
5302   if (!suppress_primordial_thread_resolution) {
5303     Linux::capture_initial_stack(JavaThread::stack_size_at_create());
5304   }
5305 #endif
5306 
5307   Linux::libpthread_init();
5308   Linux::sched_getcpu_init();
5309   log_info(os)("HotSpot is running with %s, %s",
5310                Linux::glibc_version(), Linux::libpthread_version());
5311 
5312   if (UseNUMA || UseNUMAInterleaving) {
5313     Linux::numa_init();
5314   }
5315 
5316   if (MaxFDLimit) {
5317     // set the number of file descriptors to max. print out error
5318     // if getrlimit/setrlimit fails but continue regardless.
5319     struct rlimit nbr_files;
5320     int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
5321     if (status != 0) {
5322       log_info(os)("os::init_2 getrlimit failed: %s", os::strerror(errno));
5323     } else {
5324       nbr_files.rlim_cur = nbr_files.rlim_max;
5325       status = setrlimit(RLIMIT_NOFILE, &nbr_files);
5326       if (status != 0) {
5327         log_info(os)("os::init_2 setrlimit failed: %s", os::strerror(errno));
5328       }
5329     }
5330   }
5331 
5332   // at-exit methods are called in the reverse order of their registration.
5333   // atexit functions are called on return from main or as a result of a
5334   // call to exit(3C). There can be only 32 of these functions registered
5335   // and atexit() does not set errno.
5336 
5337   if (PerfAllowAtExitRegistration) {
5338     // only register atexit functions if PerfAllowAtExitRegistration is set.
5339     // atexit functions can be delayed until process exit time, which
5340     // can be problematic for embedded VM situations. Embedded VMs should
5341     // call DestroyJavaVM() to assure that VM resources are released.
5342 
5343     // note: perfMemory_exit_helper atexit function may be removed in
5344     // the future if the appropriate cleanup code can be added to the
5345     // VM_Exit VMOperation's doit method.
5346     if (atexit(perfMemory_exit_helper) != 0) {
5347       warning("os::init_2 atexit(perfMemory_exit_helper) failed");
5348     }
5349   }
5350 
5351   // initialize thread priority policy
5352   prio_init();
5353 
5354   if (!FLAG_IS_DEFAULT(AllocateHeapAt) || !FLAG_IS_DEFAULT(AllocateOldGenAt)) {
5355     set_coredump_filter(DAX_SHARED_BIT);
5356   }
5357 
5358   if (DumpPrivateMappingsInCore) {
5359     set_coredump_filter(FILE_BACKED_PVT_BIT);
5360   }
5361 
5362   if (DumpSharedMappingsInCore) {
5363     set_coredump_filter(FILE_BACKED_SHARED_BIT);
5364   }
5365 
5366   return JNI_OK;
5367 }
5368 
5369 // older glibc versions don't have this macro (which expands to
5370 // an optimized bit-counting function) so we have to roll our own
5371 #ifndef CPU_COUNT
5372 
5373 static int _cpu_count(const cpu_set_t* cpus) {
5374   int count = 0;
5375   // only look up to the number of configured processors
5376   for (int i = 0; i < os::processor_count(); i++) {
5377     if (CPU_ISSET(i, cpus)) {
5378       count++;
5379     }
5380   }
5381   return count;
5382 }
5383 
5384 #define CPU_COUNT(cpus) _cpu_count(cpus)
5385 
5386 #endif // CPU_COUNT
5387 
5388 // Get the current number of available processors for this process.
5389 // This value can change at any time during a process's lifetime.
5390 // sched_getaffinity gives an accurate answer as it accounts for cpusets.
5391 // If it appears there may be more than 1024 processors then we do a
5392 // dynamic check - see 6515172 for details.
5393 // If anything goes wrong we fallback to returning the number of online
5394 // processors - which can be greater than the number available to the process.
5395 int os::Linux::active_processor_count() {
5396   cpu_set_t cpus;  // can represent at most 1024 (CPU_SETSIZE) processors
5397   cpu_set_t* cpus_p = &cpus;
5398   int cpus_size = sizeof(cpu_set_t);
5399 
5400   int configured_cpus = os::processor_count();  // upper bound on available cpus
5401   int cpu_count = 0;
5402 
5403 // old build platforms may not support dynamic cpu sets
5404 #ifdef CPU_ALLOC
5405 
5406   // To enable easy testing of the dynamic path on different platforms we
5407   // introduce a diagnostic flag: UseCpuAllocPath
5408   if (configured_cpus >= CPU_SETSIZE || UseCpuAllocPath) {
5409     // kernel may use a mask bigger than cpu_set_t
5410     log_trace(os)("active_processor_count: using dynamic path %s"
5411                   "- configured processors: %d",
5412                   UseCpuAllocPath ? "(forced) " : "",
5413                   configured_cpus);
5414     cpus_p = CPU_ALLOC(configured_cpus);
5415     if (cpus_p != NULL) {
5416       cpus_size = CPU_ALLOC_SIZE(configured_cpus);
5417       // zero it just to be safe
5418       CPU_ZERO_S(cpus_size, cpus_p);
5419     }
5420     else {
5421        // failed to allocate so fallback to online cpus
5422        int online_cpus = ::sysconf(_SC_NPROCESSORS_ONLN);
5423        log_trace(os)("active_processor_count: "
5424                      "CPU_ALLOC failed (%s) - using "
5425                      "online processor count: %d",
5426                      os::strerror(errno), online_cpus);
5427        return online_cpus;
5428     }
5429   }
5430   else {
5431     log_trace(os)("active_processor_count: using static path - configured processors: %d",
5432                   configured_cpus);
5433   }
5434 #else // CPU_ALLOC
5435 // these stubs won't be executed
5436 #define CPU_COUNT_S(size, cpus) -1
5437 #define CPU_FREE(cpus)
5438 
5439   log_trace(os)("active_processor_count: only static path available - configured processors: %d",
5440                 configured_cpus);
5441 #endif // CPU_ALLOC
5442 
5443   // pid 0 means the current thread - which we have to assume represents the process
5444   if (sched_getaffinity(0, cpus_size, cpus_p) == 0) {
5445     if (cpus_p != &cpus) { // can only be true when CPU_ALLOC used
5446       cpu_count = CPU_COUNT_S(cpus_size, cpus_p);
5447     }
5448     else {
5449       cpu_count = CPU_COUNT(cpus_p);
5450     }
5451     log_trace(os)("active_processor_count: sched_getaffinity processor count: %d", cpu_count);
5452   }
5453   else {
5454     cpu_count = ::sysconf(_SC_NPROCESSORS_ONLN);
5455     warning("sched_getaffinity failed (%s)- using online processor count (%d) "
5456             "which may exceed available processors", os::strerror(errno), cpu_count);
5457   }
5458 
5459   if (cpus_p != &cpus) { // can only be true when CPU_ALLOC used
5460     CPU_FREE(cpus_p);
5461   }
5462 
5463   assert(cpu_count > 0 && cpu_count <= os::processor_count(), "sanity check");
5464   return cpu_count;
5465 }
5466 
5467 // Determine the active processor count from one of
5468 // three different sources:
5469 //
5470 // 1. User option -XX:ActiveProcessorCount
5471 // 2. kernel os calls (sched_getaffinity or sysconf(_SC_NPROCESSORS_ONLN)
5472 // 3. extracted from cgroup cpu subsystem (shares and quotas)
5473 //
5474 // Option 1, if specified, will always override.
5475 // If the cgroup subsystem is active and configured, we
5476 // will return the min of the cgroup and option 2 results.
5477 // This is required since tools, such as numactl, that
5478 // alter cpu affinity do not update cgroup subsystem
5479 // cpuset configuration files.
5480 int os::active_processor_count() {
5481   // User has overridden the number of active processors
5482   if (ActiveProcessorCount > 0) {
5483     log_trace(os)("active_processor_count: "
5484                   "active processor count set by user : %d",
5485                   ActiveProcessorCount);
5486     return ActiveProcessorCount;
5487   }
5488 
5489   int active_cpus;
5490   if (OSContainer::is_containerized()) {
5491     active_cpus = OSContainer::active_processor_count();
5492     log_trace(os)("active_processor_count: determined by OSContainer: %d",
5493                    active_cpus);
5494   } else {
5495     active_cpus = os::Linux::active_processor_count();
5496   }
5497 
5498   return active_cpus;
5499 }
5500 
5501 uint os::processor_id() {
5502   const int id = Linux::sched_getcpu();
5503   assert(id >= 0 && id < _processor_count, "Invalid processor id");
5504   return (uint)id;
5505 }
5506 
5507 void os::set_native_thread_name(const char *name) {
5508   if (Linux::_pthread_setname_np) {
5509     char buf [16]; // according to glibc manpage, 16 chars incl. '/0'
5510     snprintf(buf, sizeof(buf), "%s", name);
5511     buf[sizeof(buf) - 1] = '\0';
5512     const int rc = Linux::_pthread_setname_np(pthread_self(), buf);
5513     // ERANGE should not happen; all other errors should just be ignored.
5514     assert(rc != ERANGE, "pthread_setname_np failed");
5515   }
5516 }
5517 
5518 bool os::bind_to_processor(uint processor_id) {
5519   // Not yet implemented.
5520   return false;
5521 }
5522 
5523 ///
5524 
5525 void os::SuspendedThreadTask::internal_do_task() {
5526   if (do_suspend(_thread->osthread())) {
5527     SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
5528     do_task(context);
5529     do_resume(_thread->osthread());
5530   }
5531 }
5532 
5533 ////////////////////////////////////////////////////////////////////////////////
5534 // debug support
5535 
5536 bool os::find(address addr, outputStream* st) {
5537   Dl_info dlinfo;
5538   memset(&dlinfo, 0, sizeof(dlinfo));
5539   if (dladdr(addr, &dlinfo) != 0) {
5540     st->print(PTR_FORMAT ": ", p2i(addr));
5541     if (dlinfo.dli_sname != NULL && dlinfo.dli_saddr != NULL) {
5542       st->print("%s+" PTR_FORMAT, dlinfo.dli_sname,
5543                 p2i(addr) - p2i(dlinfo.dli_saddr));
5544     } else if (dlinfo.dli_fbase != NULL) {
5545       st->print("<offset " PTR_FORMAT ">", p2i(addr) - p2i(dlinfo.dli_fbase));
5546     } else {
5547       st->print("<absolute address>");
5548     }
5549     if (dlinfo.dli_fname != NULL) {
5550       st->print(" in %s", dlinfo.dli_fname);
5551     }
5552     if (dlinfo.dli_fbase != NULL) {
5553       st->print(" at " PTR_FORMAT, p2i(dlinfo.dli_fbase));
5554     }
5555     st->cr();
5556 
5557     if (Verbose) {
5558       // decode some bytes around the PC
5559       address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
5560       address end   = clamp_address_in_page(addr+40, addr, os::vm_page_size());
5561       address       lowest = (address) dlinfo.dli_sname;
5562       if (!lowest)  lowest = (address) dlinfo.dli_fbase;
5563       if (begin < lowest)  begin = lowest;
5564       Dl_info dlinfo2;
5565       if (dladdr(end, &dlinfo2) != 0 && dlinfo2.dli_saddr != dlinfo.dli_saddr
5566           && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin) {
5567         end = (address) dlinfo2.dli_saddr;
5568       }
5569       Disassembler::decode(begin, end, st);
5570     }
5571     return true;
5572   }
5573   return false;
5574 }
5575 
5576 ////////////////////////////////////////////////////////////////////////////////
5577 // misc
5578 
5579 // This does not do anything on Linux. This is basically a hook for being
5580 // able to use structured exception handling (thread-local exception filters)
5581 // on, e.g., Win32.
5582 void
5583 os::os_exception_wrapper(java_call_t f, JavaValue* value, const methodHandle& method,
5584                          JavaCallArguments* args, Thread* thread) {
5585   f(value, method, args, thread);
5586 }
5587 
5588 void os::print_statistics() {
5589 }
5590 
5591 bool os::message_box(const char* title, const char* message) {
5592   int i;
5593   fdStream err(defaultStream::error_fd());
5594   for (i = 0; i < 78; i++) err.print_raw("=");
5595   err.cr();
5596   err.print_raw_cr(title);
5597   for (i = 0; i < 78; i++) err.print_raw("-");
5598   err.cr();
5599   err.print_raw_cr(message);
5600   for (i = 0; i < 78; i++) err.print_raw("=");
5601   err.cr();
5602 
5603   char buf[16];
5604   // Prevent process from exiting upon "read error" without consuming all CPU
5605   while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
5606 
5607   return buf[0] == 'y' || buf[0] == 'Y';
5608 }
5609 
5610 // Is a (classpath) directory empty?
5611 bool os::dir_is_empty(const char* path) {
5612   DIR *dir = NULL;
5613   struct dirent *ptr;
5614 
5615   dir = opendir(path);
5616   if (dir == NULL) return true;
5617 
5618   // Scan the directory
5619   bool result = true;
5620   while (result && (ptr = readdir(dir)) != NULL) {
5621     if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
5622       result = false;
5623     }
5624   }
5625   closedir(dir);
5626   return result;
5627 }
5628 
5629 // This code originates from JDK's sysOpen and open64_w
5630 // from src/solaris/hpi/src/system_md.c
5631 
5632 int os::open(const char *path, int oflag, int mode) {
5633   if (strlen(path) > MAX_PATH - 1) {
5634     errno = ENAMETOOLONG;
5635     return -1;
5636   }
5637 
5638   // All file descriptors that are opened in the Java process and not
5639   // specifically destined for a subprocess should have the close-on-exec
5640   // flag set.  If we don't set it, then careless 3rd party native code
5641   // might fork and exec without closing all appropriate file descriptors
5642   // (e.g. as we do in closeDescriptors in UNIXProcess.c), and this in
5643   // turn might:
5644   //
5645   // - cause end-of-file to fail to be detected on some file
5646   //   descriptors, resulting in mysterious hangs, or
5647   //
5648   // - might cause an fopen in the subprocess to fail on a system
5649   //   suffering from bug 1085341.
5650   //
5651   // (Yes, the default setting of the close-on-exec flag is a Unix
5652   // design flaw)
5653   //
5654   // See:
5655   // 1085341: 32-bit stdio routines should support file descriptors >255
5656   // 4843136: (process) pipe file descriptor from Runtime.exec not being closed
5657   // 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
5658   //
5659   // Modern Linux kernels (after 2.6.23 2007) support O_CLOEXEC with open().
5660   // O_CLOEXEC is preferable to using FD_CLOEXEC on an open file descriptor
5661   // because it saves a system call and removes a small window where the flag
5662   // is unset.  On ancient Linux kernels the O_CLOEXEC flag will be ignored
5663   // and we fall back to using FD_CLOEXEC (see below).
5664 #ifdef O_CLOEXEC
5665   oflag |= O_CLOEXEC;
5666 #endif
5667 
5668   int fd = ::open64(path, oflag, mode);
5669   if (fd == -1) return -1;
5670 
5671   //If the open succeeded, the file might still be a directory
5672   {
5673     struct stat64 buf64;
5674     int ret = ::fstat64(fd, &buf64);
5675     int st_mode = buf64.st_mode;
5676 
5677     if (ret != -1) {
5678       if ((st_mode & S_IFMT) == S_IFDIR) {
5679         errno = EISDIR;
5680         ::close(fd);
5681         return -1;
5682       }
5683     } else {
5684       ::close(fd);
5685       return -1;
5686     }
5687   }
5688 
5689 #ifdef FD_CLOEXEC
5690   // Validate that the use of the O_CLOEXEC flag on open above worked.
5691   // With recent kernels, we will perform this check exactly once.
5692   static sig_atomic_t O_CLOEXEC_is_known_to_work = 0;
5693   if (!O_CLOEXEC_is_known_to_work) {
5694     int flags = ::fcntl(fd, F_GETFD);
5695     if (flags != -1) {
5696       if ((flags & FD_CLOEXEC) != 0)
5697         O_CLOEXEC_is_known_to_work = 1;
5698       else
5699         ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
5700     }
5701   }
5702 #endif
5703 
5704   return fd;
5705 }
5706 
5707 
5708 // create binary file, rewriting existing file if required
5709 int os::create_binary_file(const char* path, bool rewrite_existing) {
5710   int oflags = O_WRONLY | O_CREAT;
5711   if (!rewrite_existing) {
5712     oflags |= O_EXCL;
5713   }
5714   return ::open64(path, oflags, S_IREAD | S_IWRITE);
5715 }
5716 
5717 // return current position of file pointer
5718 jlong os::current_file_offset(int fd) {
5719   return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
5720 }
5721 
5722 // move file pointer to the specified offset
5723 jlong os::seek_to_file_offset(int fd, jlong offset) {
5724   return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
5725 }
5726 
5727 // This code originates from JDK's sysAvailable
5728 // from src/solaris/hpi/src/native_threads/src/sys_api_td.c
5729 
5730 int os::available(int fd, jlong *bytes) {
5731   jlong cur, end;
5732   int mode;
5733   struct stat64 buf64;
5734 
5735   if (::fstat64(fd, &buf64) >= 0) {
5736     mode = buf64.st_mode;
5737     if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
5738       int n;
5739       if (::ioctl(fd, FIONREAD, &n) >= 0) {
5740         *bytes = n;
5741         return 1;
5742       }
5743     }
5744   }
5745   if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
5746     return 0;
5747   } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
5748     return 0;
5749   } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
5750     return 0;
5751   }
5752   *bytes = end - cur;
5753   return 1;
5754 }
5755 
5756 // Map a block of memory.
5757 char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
5758                         char *addr, size_t bytes, bool read_only,
5759                         bool allow_exec) {
5760   int prot;
5761   int flags = MAP_PRIVATE;
5762 
5763   if (read_only) {
5764     prot = PROT_READ;
5765   } else {
5766     prot = PROT_READ | PROT_WRITE;
5767   }
5768 
5769   if (allow_exec) {
5770     prot |= PROT_EXEC;
5771   }
5772 
5773   if (addr != NULL) {
5774     flags |= MAP_FIXED;
5775   }
5776 
5777   char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
5778                                      fd, file_offset);
5779   if (mapped_address == MAP_FAILED) {
5780     return NULL;
5781   }
5782   return mapped_address;
5783 }
5784 
5785 
5786 // Remap a block of memory.
5787 char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
5788                           char *addr, size_t bytes, bool read_only,
5789                           bool allow_exec) {
5790   // same as map_memory() on this OS
5791   return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
5792                         allow_exec);
5793 }
5794 
5795 
5796 // Unmap a block of memory.
5797 bool os::pd_unmap_memory(char* addr, size_t bytes) {
5798   return munmap(addr, bytes) == 0;
5799 }
5800 
5801 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time);
5802 
5803 static jlong fast_cpu_time(Thread *thread) {
5804     clockid_t clockid;
5805     int rc = os::Linux::pthread_getcpuclockid(thread->osthread()->pthread_id(),
5806                                               &clockid);
5807     if (rc == 0) {
5808       return os::Linux::fast_thread_cpu_time(clockid);
5809     } else {
5810       // It's possible to encounter a terminated native thread that failed
5811       // to detach itself from the VM - which should result in ESRCH.
5812       assert_status(rc == ESRCH, rc, "pthread_getcpuclockid failed");
5813       return -1;
5814     }
5815 }
5816 
5817 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
5818 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
5819 // of a thread.
5820 //
5821 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
5822 // the fast estimate available on the platform.
5823 
5824 jlong os::current_thread_cpu_time() {
5825   if (os::Linux::supports_fast_thread_cpu_time()) {
5826     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5827   } else {
5828     // return user + sys since the cost is the same
5829     return slow_thread_cpu_time(Thread::current(), true /* user + sys */);
5830   }
5831 }
5832 
5833 jlong os::thread_cpu_time(Thread* thread) {
5834   // consistent with what current_thread_cpu_time() returns
5835   if (os::Linux::supports_fast_thread_cpu_time()) {
5836     return fast_cpu_time(thread);
5837   } else {
5838     return slow_thread_cpu_time(thread, true /* user + sys */);
5839   }
5840 }
5841 
5842 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
5843   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5844     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5845   } else {
5846     return slow_thread_cpu_time(Thread::current(), user_sys_cpu_time);
5847   }
5848 }
5849 
5850 jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5851   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5852     return fast_cpu_time(thread);
5853   } else {
5854     return slow_thread_cpu_time(thread, user_sys_cpu_time);
5855   }
5856 }
5857 
5858 //  -1 on error.
5859 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5860   pid_t  tid = thread->osthread()->thread_id();
5861   char *s;
5862   char stat[2048];
5863   int statlen;
5864   char proc_name[64];
5865   int count;
5866   long sys_time, user_time;
5867   char cdummy;
5868   int idummy;
5869   long ldummy;
5870   FILE *fp;
5871 
5872   snprintf(proc_name, 64, "/proc/self/task/%d/stat", tid);
5873   fp = fopen(proc_name, "r");
5874   if (fp == NULL) return -1;
5875   statlen = fread(stat, 1, 2047, fp);
5876   stat[statlen] = '\0';
5877   fclose(fp);
5878 
5879   // Skip pid and the command string. Note that we could be dealing with
5880   // weird command names, e.g. user could decide to rename java launcher
5881   // to "java 1.4.2 :)", then the stat file would look like
5882   //                1234 (java 1.4.2 :)) R ... ...
5883   // We don't really need to know the command string, just find the last
5884   // occurrence of ")" and then start parsing from there. See bug 4726580.
5885   s = strrchr(stat, ')');
5886   if (s == NULL) return -1;
5887 
5888   // Skip blank chars
5889   do { s++; } while (s && isspace(*s));
5890 
5891   count = sscanf(s,"%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu",
5892                  &cdummy, &idummy, &idummy, &idummy, &idummy, &idummy,
5893                  &ldummy, &ldummy, &ldummy, &ldummy, &ldummy,
5894                  &user_time, &sys_time);
5895   if (count != 13) return -1;
5896   if (user_sys_cpu_time) {
5897     return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
5898   } else {
5899     return (jlong)user_time * (1000000000 / clock_tics_per_sec);
5900   }
5901 }
5902 
5903 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5904   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5905   info_ptr->may_skip_backward = false;     // elapsed time not wall time
5906   info_ptr->may_skip_forward = false;      // elapsed time not wall time
5907   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5908 }
5909 
5910 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5911   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5912   info_ptr->may_skip_backward = false;     // elapsed time not wall time
5913   info_ptr->may_skip_forward = false;      // elapsed time not wall time
5914   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5915 }
5916 
5917 bool os::is_thread_cpu_time_supported() {
5918   return true;
5919 }
5920 
5921 // System loadavg support.  Returns -1 if load average cannot be obtained.
5922 // Linux doesn't yet have a (official) notion of processor sets,
5923 // so just return the system wide load average.
5924 int os::loadavg(double loadavg[], int nelem) {
5925   return ::getloadavg(loadavg, nelem);
5926 }
5927 
5928 void os::pause() {
5929   char filename[MAX_PATH];
5930   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
5931     jio_snprintf(filename, MAX_PATH, "%s", PauseAtStartupFile);
5932   } else {
5933     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
5934   }
5935 
5936   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
5937   if (fd != -1) {
5938     struct stat buf;
5939     ::close(fd);
5940     while (::stat(filename, &buf) == 0) {
5941       (void)::poll(NULL, 0, 100);
5942     }
5943   } else {
5944     jio_fprintf(stderr,
5945                 "Could not open pause file '%s', continuing immediately.\n", filename);
5946   }
5947 }
5948 
5949 extern char** environ;
5950 
5951 // Run the specified command in a separate process. Return its exit value,
5952 // or -1 on failure (e.g. can't fork a new process).
5953 // Unlike system(), this function can be called from signal handler. It
5954 // doesn't block SIGINT et al.
5955 int os::fork_and_exec(char* cmd, bool use_vfork_if_available) {
5956   const char * argv[4] = {"sh", "-c", cmd, NULL};
5957 
5958   pid_t pid ;
5959 
5960   if (use_vfork_if_available) {
5961     pid = vfork();
5962   } else {
5963     pid = fork();
5964   }
5965 
5966   if (pid < 0) {
5967     // fork failed
5968     return -1;
5969 
5970   } else if (pid == 0) {
5971     // child process
5972 
5973     execve("/bin/sh", (char* const*)argv, environ);
5974 
5975     // execve failed
5976     _exit(-1);
5977 
5978   } else  {
5979     // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
5980     // care about the actual exit code, for now.
5981 
5982     int status;
5983 
5984     // Wait for the child process to exit.  This returns immediately if
5985     // the child has already exited. */
5986     while (waitpid(pid, &status, 0) < 0) {
5987       switch (errno) {
5988       case ECHILD: return 0;
5989       case EINTR: break;
5990       default: return -1;
5991       }
5992     }
5993 
5994     if (WIFEXITED(status)) {
5995       // The child exited normally; get its exit code.
5996       return WEXITSTATUS(status);
5997     } else if (WIFSIGNALED(status)) {
5998       // The child exited because of a signal
5999       // The best value to return is 0x80 + signal number,
6000       // because that is what all Unix shells do, and because
6001       // it allows callers to distinguish between process exit and
6002       // process death by signal.
6003       return 0x80 + WTERMSIG(status);
6004     } else {
6005       // Unknown exit code; pass it through
6006       return status;
6007     }
6008   }
6009 }
6010 
6011 // Get the default path to the core file
6012 // Returns the length of the string
6013 int os::get_core_path(char* buffer, size_t bufferSize) {
6014   /*
6015    * Max length of /proc/sys/kernel/core_pattern is 128 characters.
6016    * See https://www.kernel.org/doc/Documentation/sysctl/kernel.txt
6017    */
6018   const int core_pattern_len = 129;
6019   char core_pattern[core_pattern_len] = {0};
6020 
6021   int core_pattern_file = ::open("/proc/sys/kernel/core_pattern", O_RDONLY);
6022   if (core_pattern_file == -1) {
6023     return -1;
6024   }
6025 
6026   ssize_t ret = ::read(core_pattern_file, core_pattern, core_pattern_len);
6027   ::close(core_pattern_file);
6028   if (ret <= 0 || ret >= core_pattern_len || core_pattern[0] == '\n') {
6029     return -1;
6030   }
6031   if (core_pattern[ret-1] == '\n') {
6032     core_pattern[ret-1] = '\0';
6033   } else {
6034     core_pattern[ret] = '\0';
6035   }
6036 
6037   // Replace the %p in the core pattern with the process id. NOTE: we do this
6038   // only if the pattern doesn't start with "|", and we support only one %p in
6039   // the pattern.
6040   char *pid_pos = strstr(core_pattern, "%p");
6041   const char* tail = (pid_pos != NULL) ? (pid_pos + 2) : "";  // skip over the "%p"
6042   int written;
6043 
6044   if (core_pattern[0] == '/') {
6045     if (pid_pos != NULL) {
6046       *pid_pos = '\0';
6047       written = jio_snprintf(buffer, bufferSize, "%s%d%s", core_pattern,
6048                              current_process_id(), tail);
6049     } else {
6050       written = jio_snprintf(buffer, bufferSize, "%s", core_pattern);
6051     }
6052   } else {
6053     char cwd[PATH_MAX];
6054 
6055     const char* p = get_current_directory(cwd, PATH_MAX);
6056     if (p == NULL) {
6057       return -1;
6058     }
6059 
6060     if (core_pattern[0] == '|') {
6061       written = jio_snprintf(buffer, bufferSize,
6062                              "\"%s\" (or dumping to %s/core.%d)",
6063                              &core_pattern[1], p, current_process_id());
6064     } else if (pid_pos != NULL) {
6065       *pid_pos = '\0';
6066       written = jio_snprintf(buffer, bufferSize, "%s/%s%d%s", p, core_pattern,
6067                              current_process_id(), tail);
6068     } else {
6069       written = jio_snprintf(buffer, bufferSize, "%s/%s", p, core_pattern);
6070     }
6071   }
6072 
6073   if (written < 0) {
6074     return -1;
6075   }
6076 
6077   if (((size_t)written < bufferSize) && (pid_pos == NULL) && (core_pattern[0] != '|')) {
6078     int core_uses_pid_file = ::open("/proc/sys/kernel/core_uses_pid", O_RDONLY);
6079 
6080     if (core_uses_pid_file != -1) {
6081       char core_uses_pid = 0;
6082       ssize_t ret = ::read(core_uses_pid_file, &core_uses_pid, 1);
6083       ::close(core_uses_pid_file);
6084 
6085       if (core_uses_pid == '1') {
6086         jio_snprintf(buffer + written, bufferSize - written,
6087                                           ".%d", current_process_id());
6088       }
6089     }
6090   }
6091 
6092   return strlen(buffer);
6093 }
6094 
6095 bool os::start_debugging(char *buf, int buflen) {
6096   int len = (int)strlen(buf);
6097   char *p = &buf[len];
6098 
6099   jio_snprintf(p, buflen-len,
6100                "\n\n"
6101                "Do you want to debug the problem?\n\n"
6102                "To debug, run 'gdb /proc/%d/exe %d'; then switch to thread " UINTX_FORMAT " (" INTPTR_FORMAT ")\n"
6103                "Enter 'yes' to launch gdb automatically (PATH must include gdb)\n"
6104                "Otherwise, press RETURN to abort...",
6105                os::current_process_id(), os::current_process_id(),
6106                os::current_thread_id(), os::current_thread_id());
6107 
6108   bool yes = os::message_box("Unexpected Error", buf);
6109 
6110   if (yes) {
6111     // yes, user asked VM to launch debugger
6112     jio_snprintf(buf, sizeof(char)*buflen, "gdb /proc/%d/exe %d",
6113                  os::current_process_id(), os::current_process_id());
6114 
6115     os::fork_and_exec(buf);
6116     yes = false;
6117   }
6118   return yes;
6119 }
6120 
6121 
6122 // Java/Compiler thread:
6123 //
6124 //   Low memory addresses
6125 // P0 +------------------------+
6126 //    |                        |\  Java thread created by VM does not have glibc
6127 //    |    glibc guard page    | - guard page, attached Java thread usually has
6128 //    |                        |/  1 glibc guard page.
6129 // P1 +------------------------+ Thread::stack_base() - Thread::stack_size()
6130 //    |                        |\
6131 //    |  HotSpot Guard Pages   | - red, yellow and reserved pages
6132 //    |                        |/
6133 //    +------------------------+ JavaThread::stack_reserved_zone_base()
6134 //    |                        |\
6135 //    |      Normal Stack      | -
6136 //    |                        |/
6137 // P2 +------------------------+ Thread::stack_base()
6138 //
6139 // Non-Java thread:
6140 //
6141 //   Low memory addresses
6142 // P0 +------------------------+
6143 //    |                        |\
6144 //    |  glibc guard page      | - usually 1 page
6145 //    |                        |/
6146 // P1 +------------------------+ Thread::stack_base() - Thread::stack_size()
6147 //    |                        |\
6148 //    |      Normal Stack      | -
6149 //    |                        |/
6150 // P2 +------------------------+ Thread::stack_base()
6151 //
6152 // ** P1 (aka bottom) and size (P2 = P1 - size) are the address and stack size
6153 //    returned from pthread_attr_getstack().
6154 // ** Due to NPTL implementation error, linux takes the glibc guard page out
6155 //    of the stack size given in pthread_attr. We work around this for
6156 //    threads created by the VM. (We adapt bottom to be P1 and size accordingly.)
6157 //
6158 #ifndef ZERO
6159 static void current_stack_region(address * bottom, size_t * size) {
6160   if (os::is_primordial_thread()) {
6161     // primordial thread needs special handling because pthread_getattr_np()
6162     // may return bogus value.
6163     *bottom = os::Linux::initial_thread_stack_bottom();
6164     *size   = os::Linux::initial_thread_stack_size();
6165   } else {
6166     pthread_attr_t attr;
6167 
6168     int rslt = pthread_getattr_np(pthread_self(), &attr);
6169 
6170     // JVM needs to know exact stack location, abort if it fails
6171     if (rslt != 0) {
6172       if (rslt == ENOMEM) {
6173         vm_exit_out_of_memory(0, OOM_MMAP_ERROR, "pthread_getattr_np");
6174       } else {
6175         fatal("pthread_getattr_np failed with error = %d", rslt);
6176       }
6177     }
6178 
6179     if (pthread_attr_getstack(&attr, (void **)bottom, size) != 0) {
6180       fatal("Cannot locate current stack attributes!");
6181     }
6182 
6183     // Work around NPTL stack guard error.
6184     size_t guard_size = 0;
6185     rslt = pthread_attr_getguardsize(&attr, &guard_size);
6186     if (rslt != 0) {
6187       fatal("pthread_attr_getguardsize failed with error = %d", rslt);
6188     }
6189     *bottom += guard_size;
6190     *size   -= guard_size;
6191 
6192     pthread_attr_destroy(&attr);
6193 
6194   }
6195   assert(os::current_stack_pointer() >= *bottom &&
6196          os::current_stack_pointer() < *bottom + *size, "just checking");
6197 }
6198 
6199 address os::current_stack_base() {
6200   address bottom;
6201   size_t size;
6202   current_stack_region(&bottom, &size);
6203   return (bottom + size);
6204 }
6205 
6206 size_t os::current_stack_size() {
6207   // This stack size includes the usable stack and HotSpot guard pages
6208   // (for the threads that have Hotspot guard pages).
6209   address bottom;
6210   size_t size;
6211   current_stack_region(&bottom, &size);
6212   return size;
6213 }
6214 #endif
6215 
6216 static inline struct timespec get_mtime(const char* filename) {
6217   struct stat st;
6218   int ret = os::stat(filename, &st);
6219   assert(ret == 0, "failed to stat() file '%s': %s", filename, os::strerror(errno));
6220   return st.st_mtim;
6221 }
6222 
6223 int os::compare_file_modified_times(const char* file1, const char* file2) {
6224   struct timespec filetime1 = get_mtime(file1);
6225   struct timespec filetime2 = get_mtime(file2);
6226   int diff = filetime1.tv_sec - filetime2.tv_sec;
6227   if (diff == 0) {
6228     return filetime1.tv_nsec - filetime2.tv_nsec;
6229   }
6230   return diff;
6231 }
6232 
6233 bool os::supports_map_sync() {
6234   return true;
6235 }
6236 
6237 /////////////// Unit tests ///////////////
6238 
6239 #ifndef PRODUCT
6240 
6241 class TestReserveMemorySpecial : AllStatic {
6242  public:
6243   static void small_page_write(void* addr, size_t size) {
6244     size_t page_size = os::vm_page_size();
6245 
6246     char* end = (char*)addr + size;
6247     for (char* p = (char*)addr; p < end; p += page_size) {
6248       *p = 1;
6249     }
6250   }
6251 
6252   static void test_reserve_memory_special_huge_tlbfs_only(size_t size) {
6253     if (!UseHugeTLBFS) {
6254       return;
6255     }
6256 
6257     char* addr = os::Linux::reserve_memory_special_huge_tlbfs_only(size, NULL, false);
6258 
6259     if (addr != NULL) {
6260       small_page_write(addr, size);
6261 
6262       os::Linux::release_memory_special_huge_tlbfs(addr, size);
6263     }
6264   }
6265 
6266   static void test_reserve_memory_special_huge_tlbfs_only() {
6267     if (!UseHugeTLBFS) {
6268       return;
6269     }
6270 
6271     size_t lp = os::large_page_size();
6272 
6273     for (size_t size = lp; size <= lp * 10; size += lp) {
6274       test_reserve_memory_special_huge_tlbfs_only(size);
6275     }
6276   }
6277 
6278   static void test_reserve_memory_special_huge_tlbfs_mixed() {
6279     size_t lp = os::large_page_size();
6280     size_t ag = os::vm_allocation_granularity();
6281 
6282     // sizes to test
6283     const size_t sizes[] = {
6284       lp, lp + ag, lp + lp / 2, lp * 2,
6285       lp * 2 + ag, lp * 2 - ag, lp * 2 + lp / 2,
6286       lp * 10, lp * 10 + lp / 2
6287     };
6288     const int num_sizes = sizeof(sizes) / sizeof(size_t);
6289 
6290     // For each size/alignment combination, we test three scenarios:
6291     // 1) with req_addr == NULL
6292     // 2) with a non-null req_addr at which we expect to successfully allocate
6293     // 3) with a non-null req_addr which contains a pre-existing mapping, at which we
6294     //    expect the allocation to either fail or to ignore req_addr
6295 
6296     // Pre-allocate two areas; they shall be as large as the largest allocation
6297     //  and aligned to the largest alignment we will be testing.
6298     const size_t mapping_size = sizes[num_sizes - 1] * 2;
6299     char* const mapping1 = (char*) ::mmap(NULL, mapping_size,
6300       PROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
6301       -1, 0);
6302     assert(mapping1 != MAP_FAILED, "should work");
6303 
6304     char* const mapping2 = (char*) ::mmap(NULL, mapping_size,
6305       PROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
6306       -1, 0);
6307     assert(mapping2 != MAP_FAILED, "should work");
6308 
6309     // Unmap the first mapping, but leave the second mapping intact: the first
6310     // mapping will serve as a value for a "good" req_addr (case 2). The second
6311     // mapping, still intact, as "bad" req_addr (case 3).
6312     ::munmap(mapping1, mapping_size);
6313 
6314     // Case 1
6315     for (int i = 0; i < num_sizes; i++) {
6316       const size_t size = sizes[i];
6317       for (size_t alignment = ag; is_aligned(size, alignment); alignment *= 2) {
6318         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, NULL, false);
6319         if (p != NULL) {
6320           assert(is_aligned(p, alignment), "must be");
6321           small_page_write(p, size);
6322           os::Linux::release_memory_special_huge_tlbfs(p, size);
6323         }
6324       }
6325     }
6326 
6327     // Case 2
6328     for (int i = 0; i < num_sizes; i++) {
6329       const size_t size = sizes[i];
6330       for (size_t alignment = ag; is_aligned(size, alignment); alignment *= 2) {
6331         char* const req_addr = align_up(mapping1, alignment);
6332         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, req_addr, false);
6333         if (p != NULL) {
6334           assert(p == req_addr, "must be");
6335           small_page_write(p, size);
6336           os::Linux::release_memory_special_huge_tlbfs(p, size);
6337         }
6338       }
6339     }
6340 
6341     // Case 3
6342     for (int i = 0; i < num_sizes; i++) {
6343       const size_t size = sizes[i];
6344       for (size_t alignment = ag; is_aligned(size, alignment); alignment *= 2) {
6345         char* const req_addr = align_up(mapping2, alignment);
6346         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, req_addr, false);
6347         // as the area around req_addr contains already existing mappings, the API should always
6348         // return NULL (as per contract, it cannot return another address)
6349         assert(p == NULL, "must be");
6350       }
6351     }
6352 
6353     ::munmap(mapping2, mapping_size);
6354 
6355   }
6356 
6357   static void test_reserve_memory_special_huge_tlbfs() {
6358     if (!UseHugeTLBFS) {
6359       return;
6360     }
6361 
6362     test_reserve_memory_special_huge_tlbfs_only();
6363     test_reserve_memory_special_huge_tlbfs_mixed();
6364   }
6365 
6366   static void test_reserve_memory_special_shm(size_t size, size_t alignment) {
6367     if (!UseSHM) {
6368       return;
6369     }
6370 
6371     char* addr = os::Linux::reserve_memory_special_shm(size, alignment, NULL, false);
6372 
6373     if (addr != NULL) {
6374       assert(is_aligned(addr, alignment), "Check");
6375       assert(is_aligned(addr, os::large_page_size()), "Check");
6376 
6377       small_page_write(addr, size);
6378 
6379       os::Linux::release_memory_special_shm(addr, size);
6380     }
6381   }
6382 
6383   static void test_reserve_memory_special_shm() {
6384     size_t lp = os::large_page_size();
6385     size_t ag = os::vm_allocation_granularity();
6386 
6387     for (size_t size = ag; size < lp * 3; size += ag) {
6388       for (size_t alignment = ag; is_aligned(size, alignment); alignment *= 2) {
6389         test_reserve_memory_special_shm(size, alignment);
6390       }
6391     }
6392   }
6393 
6394   static void test() {
6395     test_reserve_memory_special_huge_tlbfs();
6396     test_reserve_memory_special_shm();
6397   }
6398 };
6399 
6400 void TestReserveMemorySpecial_test() {
6401   TestReserveMemorySpecial::test();
6402 }
6403 
6404 #endif