1 /*
   2  * Copyright (c) 1999, 2020, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "jvm.h"
  26 #include "logging/log.hpp"
  27 #include "memory/allocation.inline.hpp"
  28 #include "os_posix.inline.hpp"
  29 #include "utilities/globalDefinitions.hpp"
  30 #include "runtime/frame.inline.hpp"
  31 #include "runtime/interfaceSupport.inline.hpp"
  32 #include "services/memTracker.hpp"
  33 #include "runtime/atomic.hpp"
  34 #include "runtime/orderAccess.hpp"
  35 #include "utilities/align.hpp"
  36 #include "utilities/events.hpp"
  37 #include "utilities/formatBuffer.hpp"
  38 #include "utilities/macros.hpp"
  39 #include "utilities/vmError.hpp"
  40 
  41 #include <dirent.h>
  42 #include <dlfcn.h>
  43 #include <grp.h>
  44 #include <pwd.h>
  45 #include <pthread.h>
  46 #include <signal.h>
  47 #include <sys/mman.h>
  48 #include <sys/resource.h>
  49 #include <sys/utsname.h>
  50 #include <time.h>
  51 #include <unistd.h>
  52 #include <utmpx.h>
  53 
  54 // Todo: provide a os::get_max_process_id() or similar. Number of processes
  55 // may have been configured, can be read more accurately from proc fs etc.
  56 #ifndef MAX_PID
  57 #define MAX_PID INT_MAX
  58 #endif
  59 #define IS_VALID_PID(p) (p > 0 && p < MAX_PID)
  60 
  61 #define ROOT_UID 0
  62 
  63 #ifndef MAP_ANONYMOUS
  64   #define MAP_ANONYMOUS MAP_ANON
  65 #endif
  66 
  67 #define check_with_errno(check_type, cond, msg)                             \
  68   do {                                                                      \
  69     int err = errno;                                                        \
  70     check_type(cond, "%s; error='%s' (errno=%s)", msg, os::strerror(err),   \
  71                os::errno_name(err));                                        \
  72 } while (false)
  73 
  74 #define assert_with_errno(cond, msg)    check_with_errno(assert, cond, msg)
  75 #define guarantee_with_errno(cond, msg) check_with_errno(guarantee, cond, msg)
  76 
  77 // Check core dump limit and report possible place where core can be found
  78 void os::check_dump_limit(char* buffer, size_t bufferSize) {
  79   if (!FLAG_IS_DEFAULT(CreateCoredumpOnCrash) && !CreateCoredumpOnCrash) {
  80     jio_snprintf(buffer, bufferSize, "CreateCoredumpOnCrash is disabled from command line");
  81     VMError::record_coredump_status(buffer, false);
  82     return;
  83   }
  84 
  85   int n;
  86   struct rlimit rlim;
  87   bool success;
  88 
  89   char core_path[PATH_MAX];
  90   n = get_core_path(core_path, PATH_MAX);
  91 
  92   if (n <= 0) {
  93     jio_snprintf(buffer, bufferSize, "core.%d (may not exist)", current_process_id());
  94     success = true;
  95 #ifdef LINUX
  96   } else if (core_path[0] == '"') { // redirect to user process
  97     jio_snprintf(buffer, bufferSize, "Core dumps may be processed with %s", core_path);
  98     success = true;
  99 #endif
 100   } else if (getrlimit(RLIMIT_CORE, &rlim) != 0) {
 101     jio_snprintf(buffer, bufferSize, "%s (may not exist)", core_path);
 102     success = true;
 103   } else {
 104     switch(rlim.rlim_cur) {
 105       case RLIM_INFINITY:
 106         jio_snprintf(buffer, bufferSize, "%s", core_path);
 107         success = true;
 108         break;
 109       case 0:
 110         jio_snprintf(buffer, bufferSize, "Core dumps have been disabled. To enable core dumping, try \"ulimit -c unlimited\" before starting Java again");
 111         success = false;
 112         break;
 113       default:
 114         jio_snprintf(buffer, bufferSize, "%s (max size " UINT64_FORMAT " kB). To ensure a full core dump, try \"ulimit -c unlimited\" before starting Java again", core_path, uint64_t(rlim.rlim_cur) / 1024);
 115         success = true;
 116         break;
 117     }
 118   }
 119 
 120   VMError::record_coredump_status(buffer, success);
 121 }
 122 
 123 int os::get_native_stack(address* stack, int frames, int toSkip) {
 124   int frame_idx = 0;
 125   int num_of_frames;  // number of frames captured
 126   frame fr = os::current_frame();
 127   while (fr.pc() && frame_idx < frames) {
 128     if (toSkip > 0) {
 129       toSkip --;
 130     } else {
 131       stack[frame_idx ++] = fr.pc();
 132     }
 133     if (fr.fp() == NULL || fr.cb() != NULL ||
 134         fr.sender_pc() == NULL || os::is_first_C_frame(&fr)) break;
 135 
 136     if (fr.sender_pc() && !os::is_first_C_frame(&fr)) {
 137       fr = os::get_sender_for_C_frame(&fr);
 138     } else {
 139       break;
 140     }
 141   }
 142   num_of_frames = frame_idx;
 143   for (; frame_idx < frames; frame_idx ++) {
 144     stack[frame_idx] = NULL;
 145   }
 146 
 147   return num_of_frames;
 148 }
 149 
 150 
 151 bool os::unsetenv(const char* name) {
 152   assert(name != NULL, "Null pointer");
 153   return (::unsetenv(name) == 0);
 154 }
 155 
 156 int os::get_last_error() {
 157   return errno;
 158 }
 159 
 160 size_t os::lasterror(char *buf, size_t len) {
 161   if (errno == 0)  return 0;
 162 
 163   const char *s = os::strerror(errno);
 164   size_t n = ::strlen(s);
 165   if (n >= len) {
 166     n = len - 1;
 167   }
 168   ::strncpy(buf, s, n);
 169   buf[n] = '\0';
 170   return n;
 171 }
 172 
 173 void os::wait_for_keypress_at_exit(void) {
 174   // don't do anything on posix platforms
 175   return;
 176 }
 177 
 178 int os::create_file_for_heap(const char* dir) {
 179   int fd;
 180 
 181 #if defined(LINUX) && defined(O_TMPFILE)
 182   char* native_dir = os::strdup(dir);
 183   if (native_dir == NULL) {
 184     vm_exit_during_initialization(err_msg("strdup failed during creation of backing file for heap (%s)", os::strerror(errno)));
 185     return -1;
 186   }
 187   os::native_path(native_dir);
 188   fd = os::open(dir, O_TMPFILE | O_RDWR, S_IRUSR | S_IWUSR);
 189   os::free(native_dir);
 190 
 191   if (fd == -1)
 192 #endif
 193   {
 194     const char name_template[] = "/jvmheap.XXXXXX";
 195 
 196     size_t fullname_len = strlen(dir) + strlen(name_template);
 197     char *fullname = (char*)os::malloc(fullname_len + 1, mtInternal);
 198     if (fullname == NULL) {
 199       vm_exit_during_initialization(err_msg("Malloc failed during creation of backing file for heap (%s)", os::strerror(errno)));
 200       return -1;
 201     }
 202     int n = snprintf(fullname, fullname_len + 1, "%s%s", dir, name_template);
 203     assert((size_t)n == fullname_len, "Unexpected number of characters in string");
 204 
 205     os::native_path(fullname);
 206 
 207     // create a new file.
 208     fd = mkstemp(fullname);
 209 
 210     if (fd < 0) {
 211       warning("Could not create file for heap with template %s", fullname);
 212       os::free(fullname);
 213       return -1;
 214     } else {
 215       // delete the name from the filesystem. When 'fd' is closed, the file (and space) will be deleted.
 216       int ret = unlink(fullname);
 217       assert_with_errno(ret == 0, "unlink returned error");
 218     }
 219 
 220     os::free(fullname);
 221   }
 222 
 223   return fd;
 224 }
 225 
 226 static char* reserve_mmapped_memory(size_t bytes, char* requested_addr) {
 227   char * addr;
 228   int flags = MAP_PRIVATE NOT_AIX( | MAP_NORESERVE ) | MAP_ANONYMOUS;
 229   if (requested_addr != NULL) {
 230     assert((uintptr_t)requested_addr % os::vm_page_size() == 0, "Requested address should be aligned to OS page size");
 231     flags |= MAP_FIXED;
 232   }
 233 
 234   // Map reserved/uncommitted pages PROT_NONE so we fail early if we
 235   // touch an uncommitted page. Otherwise, the read/write might
 236   // succeed if we have enough swap space to back the physical page.
 237   addr = (char*)::mmap(requested_addr, bytes, PROT_NONE,
 238                        flags, -1, 0);
 239 
 240   if (addr != MAP_FAILED) {
 241     MemTracker::record_virtual_memory_reserve((address)addr, bytes, CALLER_PC);
 242     return addr;
 243   }
 244   return NULL;
 245 }
 246 
 247 static int util_posix_fallocate(int fd, off_t offset, off_t len) {
 248 #ifdef __APPLE__
 249   fstore_t store = { F_ALLOCATECONTIG, F_PEOFPOSMODE, 0, len };
 250   // First we try to get a continuous chunk of disk space
 251   int ret = fcntl(fd, F_PREALLOCATE, &store);
 252   if (ret == -1) {
 253     // Maybe we are too fragmented, try to allocate non-continuous range
 254     store.fst_flags = F_ALLOCATEALL;
 255     ret = fcntl(fd, F_PREALLOCATE, &store);
 256   }
 257   if(ret != -1) {
 258     return ftruncate(fd, len);
 259   }
 260   return -1;
 261 #else
 262   return posix_fallocate(fd, offset, len);
 263 #endif
 264 }
 265 
 266 // Map the given address range to the provided file descriptor.
 267 char* os::map_memory_to_file(char* base, size_t size, int fd) {
 268   assert(fd != -1, "File descriptor is not valid");
 269 
 270   // allocate space for the file
 271   int ret = util_posix_fallocate(fd, 0, (off_t)size);
 272   if (ret != 0) {
 273     vm_exit_during_initialization(err_msg("Error in mapping Java heap at the given filesystem directory. error(%d)", ret));
 274     return NULL;
 275   }
 276 
 277   int prot = PROT_READ | PROT_WRITE;
 278   int flags = MAP_SHARED;
 279   if (base != NULL) {
 280     flags |= MAP_FIXED;
 281   }
 282   char* addr = (char*)mmap(base, size, prot, flags, fd, 0);
 283 
 284   if (addr == MAP_FAILED) {
 285     warning("Failed mmap to file. (%s)", os::strerror(errno));
 286     return NULL;
 287   }
 288   if (base != NULL && addr != base) {
 289     if (!os::release_memory(addr, size)) {
 290       warning("Could not release memory on unsuccessful file mapping");
 291     }
 292     return NULL;
 293   }
 294   return addr;
 295 }
 296 
 297 char* os::replace_existing_mapping_with_file_mapping(char* base, size_t size, int fd) {
 298   assert(fd != -1, "File descriptor is not valid");
 299   assert(base != NULL, "Base cannot be NULL");
 300 
 301   return map_memory_to_file(base, size, fd);
 302 }
 303 
 304 // Multiple threads can race in this code, and can remap over each other with MAP_FIXED,
 305 // so on posix, unmap the section at the start and at the end of the chunk that we mapped
 306 // rather than unmapping and remapping the whole chunk to get requested alignment.
 307 char* os::reserve_memory_aligned(size_t size, size_t alignment, int file_desc) {
 308   assert((alignment & (os::vm_allocation_granularity() - 1)) == 0,
 309       "Alignment must be a multiple of allocation granularity (page size)");
 310   assert((size & (alignment -1)) == 0, "size must be 'alignment' aligned");
 311 
 312   size_t extra_size = size + alignment;
 313   assert(extra_size >= size, "overflow, size is too large to allow alignment");
 314 
 315   char* extra_base;
 316   if (file_desc != -1) {
 317     // For file mapping, we do not call os:reserve_memory(extra_size, NULL, alignment, file_desc) because
 318     // we need to deal with shrinking of the file space later when we release extra memory after alignment.
 319     // We also cannot called os:reserve_memory() with file_desc set to -1 because on aix we might get SHM memory.
 320     // So here to call a helper function while reserve memory for us. After we have a aligned base,
 321     // we will replace anonymous mapping with file mapping.
 322     extra_base = reserve_mmapped_memory(extra_size, NULL);
 323     if (extra_base != NULL) {
 324       MemTracker::record_virtual_memory_reserve((address)extra_base, extra_size, CALLER_PC);
 325     }
 326   } else {
 327     extra_base = os::reserve_memory(extra_size, NULL, alignment);
 328   }
 329 
 330   if (extra_base == NULL) {
 331     return NULL;
 332   }
 333 
 334   // Do manual alignment
 335   char* aligned_base = align_up(extra_base, alignment);
 336 
 337   // [  |                                       |  ]
 338   // ^ extra_base
 339   //    ^ extra_base + begin_offset == aligned_base
 340   //     extra_base + begin_offset + size       ^
 341   //                       extra_base + extra_size ^
 342   // |<>| == begin_offset
 343   //                              end_offset == |<>|
 344   size_t begin_offset = aligned_base - extra_base;
 345   size_t end_offset = (extra_base + extra_size) - (aligned_base + size);
 346 
 347   if (begin_offset > 0) {
 348       os::release_memory(extra_base, begin_offset);
 349   }
 350 
 351   if (end_offset > 0) {
 352       os::release_memory(extra_base + begin_offset + size, end_offset);
 353   }
 354 
 355   if (file_desc != -1) {
 356     // After we have an aligned address, we can replace anonymous mapping with file mapping
 357     if (replace_existing_mapping_with_file_mapping(aligned_base, size, file_desc) == NULL) {
 358       vm_exit_during_initialization(err_msg("Error in mapping Java heap at the given filesystem directory"));
 359     }
 360     MemTracker::record_virtual_memory_commit((address)aligned_base, size, CALLER_PC);
 361   }
 362   return aligned_base;
 363 }
 364 
 365 // On Posix platforms, reservations are done using mmap which can be released in parts. So splitting is a no-op.
 366 void os::split_reserved_memory(char *base, size_t size, size_t split) {
 367   char* const split_address = base + split;
 368   assert(size > 0, "Sanity");
 369   assert(size > split, "Sanity");
 370   assert(split > 0, "Sanity");
 371   assert(is_aligned(base, os::vm_allocation_granularity()), "Sanity");
 372   assert(is_aligned(split_address, os::vm_allocation_granularity()), "Sanity");
 373 }
 374 
 375 int os::vsnprintf(char* buf, size_t len, const char* fmt, va_list args) {
 376   // All supported POSIX platforms provide C99 semantics.
 377   int result = ::vsnprintf(buf, len, fmt, args);
 378   // If an encoding error occurred (result < 0) then it's not clear
 379   // whether the buffer is NUL terminated, so ensure it is.
 380   if ((result < 0) && (len > 0)) {
 381     buf[len - 1] = '\0';
 382   }
 383   return result;
 384 }
 385 
 386 int os::get_fileno(FILE* fp) {
 387   return NOT_AIX(::)fileno(fp);
 388 }
 389 
 390 struct tm* os::gmtime_pd(const time_t* clock, struct tm*  res) {
 391   return gmtime_r(clock, res);
 392 }
 393 
 394 void os::Posix::print_load_average(outputStream* st) {
 395   st->print("load average:");
 396   double loadavg[3];
 397   int res = os::loadavg(loadavg, 3);
 398   if (res != -1) {
 399     st->print("%0.02f %0.02f %0.02f", loadavg[0], loadavg[1], loadavg[2]);
 400   } else {
 401     st->print(" Unavailable");
 402   }
 403   st->cr();
 404 }
 405 
 406 // boot/uptime information;
 407 // unfortunately it does not work on macOS and Linux because the utx chain has no entry
 408 // for reboot at least on my test machines
 409 void os::Posix::print_uptime_info(outputStream* st) {
 410   int bootsec = -1;
 411   int currsec = time(NULL);
 412   struct utmpx* ent;
 413   setutxent();
 414   while ((ent = getutxent())) {
 415     if (!strcmp("system boot", ent->ut_line)) {
 416       bootsec = ent->ut_tv.tv_sec;
 417       break;
 418     }
 419   }
 420 
 421   if (bootsec != -1) {
 422     os::print_dhm(st, "OS uptime:", (long) (currsec-bootsec));
 423   }
 424 }
 425 
 426 static void print_rlimit(outputStream* st, const char* msg,
 427                          int resource, bool output_k = false) {
 428   struct rlimit rlim;
 429 
 430   st->print(" %s ", msg);
 431   int res = getrlimit(resource, &rlim);
 432   if (res == -1) {
 433     st->print("could not obtain value");
 434   } else {
 435     // soft limit
 436     if (rlim.rlim_cur == RLIM_INFINITY) { st->print("infinity"); }
 437     else {
 438       if (output_k) { st->print(UINT64_FORMAT "k", uint64_t(rlim.rlim_cur) / 1024); }
 439       else { st->print(UINT64_FORMAT, uint64_t(rlim.rlim_cur)); }
 440     }
 441     // hard limit
 442     st->print("/");
 443     if (rlim.rlim_max == RLIM_INFINITY) { st->print("infinity"); }
 444     else {
 445       if (output_k) { st->print(UINT64_FORMAT "k", uint64_t(rlim.rlim_max) / 1024); }
 446       else { st->print(UINT64_FORMAT, uint64_t(rlim.rlim_max)); }
 447     }
 448   }
 449 }
 450 
 451 void os::Posix::print_rlimit_info(outputStream* st) {
 452   st->print("rlimit (soft/hard):");
 453   print_rlimit(st, "STACK", RLIMIT_STACK, true);
 454   print_rlimit(st, ", CORE", RLIMIT_CORE, true);
 455 
 456 #if defined(AIX)
 457   st->print(", NPROC ");
 458   st->print("%d", sysconf(_SC_CHILD_MAX));
 459 
 460   print_rlimit(st, ", THREADS", RLIMIT_THREADS);
 461 #elif !defined(SOLARIS)
 462   print_rlimit(st, ", NPROC", RLIMIT_NPROC);
 463 #endif
 464 
 465   print_rlimit(st, ", NOFILE", RLIMIT_NOFILE);
 466   print_rlimit(st, ", AS", RLIMIT_AS, true);
 467   print_rlimit(st, ", CPU", RLIMIT_CPU);
 468   print_rlimit(st, ", DATA", RLIMIT_DATA, true);
 469 
 470   // maximum size of files that the process may create
 471   print_rlimit(st, ", FSIZE", RLIMIT_FSIZE, true);
 472 
 473 #if defined(LINUX) || defined(__APPLE__)
 474   // maximum number of bytes of memory that may be locked into RAM
 475   // (rounded down to the nearest  multiple of system pagesize)
 476   print_rlimit(st, ", MEMLOCK", RLIMIT_MEMLOCK, true);
 477 #endif
 478 
 479 #if defined(SOLARIS)
 480   // maximum size of mapped address space of a process in bytes;
 481   // if the limit is exceeded, mmap and brk fail
 482   print_rlimit(st, ", VMEM", RLIMIT_VMEM, true);
 483 #endif
 484 
 485   // MacOS; The maximum size (in bytes) to which a process's resident set size may grow.
 486 #if defined(__APPLE__)
 487   print_rlimit(st, ", RSS", RLIMIT_RSS, true);
 488 #endif
 489 
 490   st->cr();
 491 }
 492 
 493 void os::Posix::print_uname_info(outputStream* st) {
 494   // kernel
 495   st->print("uname:");
 496   struct utsname name;
 497   uname(&name);
 498   st->print("%s ", name.sysname);
 499 #ifdef ASSERT
 500   st->print("%s ", name.nodename);
 501 #endif
 502   st->print("%s ", name.release);
 503   st->print("%s ", name.version);
 504   st->print("%s", name.machine);
 505   st->cr();
 506 }
 507 
 508 void os::Posix::print_umask(outputStream* st, mode_t umsk) {
 509   st->print((umsk & S_IRUSR) ? "r" : "-");
 510   st->print((umsk & S_IWUSR) ? "w" : "-");
 511   st->print((umsk & S_IXUSR) ? "x" : "-");
 512   st->print((umsk & S_IRGRP) ? "r" : "-");
 513   st->print((umsk & S_IWGRP) ? "w" : "-");
 514   st->print((umsk & S_IXGRP) ? "x" : "-");
 515   st->print((umsk & S_IROTH) ? "r" : "-");
 516   st->print((umsk & S_IWOTH) ? "w" : "-");
 517   st->print((umsk & S_IXOTH) ? "x" : "-");
 518 }
 519 
 520 void os::Posix::print_user_info(outputStream* st) {
 521   unsigned id = (unsigned) ::getuid();
 522   st->print("uid  : %u ", id);
 523   id = (unsigned) ::geteuid();
 524   st->print("euid : %u ", id);
 525   id = (unsigned) ::getgid();
 526   st->print("gid  : %u ", id);
 527   id = (unsigned) ::getegid();
 528   st->print_cr("egid : %u", id);
 529   st->cr();
 530 
 531   mode_t umsk = ::umask(0);
 532   ::umask(umsk);
 533   st->print("umask: %04o (", (unsigned) umsk);
 534   print_umask(st, umsk);
 535   st->print_cr(")");
 536   st->cr();
 537 }
 538 
 539 
 540 bool os::get_host_name(char* buf, size_t buflen) {
 541   struct utsname name;
 542   uname(&name);
 543   jio_snprintf(buf, buflen, "%s", name.nodename);
 544   return true;
 545 }
 546 
 547 bool os::has_allocatable_memory_limit(julong* limit) {
 548   struct rlimit rlim;
 549   int getrlimit_res = getrlimit(RLIMIT_AS, &rlim);
 550   // if there was an error when calling getrlimit, assume that there is no limitation
 551   // on virtual memory.
 552   bool result;
 553   if ((getrlimit_res != 0) || (rlim.rlim_cur == RLIM_INFINITY)) {
 554     result = false;
 555   } else {
 556     *limit = (julong)rlim.rlim_cur;
 557     result = true;
 558   }
 559 #ifdef _LP64
 560   return result;
 561 #else
 562   // arbitrary virtual space limit for 32 bit Unices found by testing. If
 563   // getrlimit above returned a limit, bound it with this limit. Otherwise
 564   // directly use it.
 565   const julong max_virtual_limit = (julong)3800*M;
 566   if (result) {
 567     *limit = MIN2(*limit, max_virtual_limit);
 568   } else {
 569     *limit = max_virtual_limit;
 570   }
 571 
 572   // bound by actually allocatable memory. The algorithm uses two bounds, an
 573   // upper and a lower limit. The upper limit is the current highest amount of
 574   // memory that could not be allocated, the lower limit is the current highest
 575   // amount of memory that could be allocated.
 576   // The algorithm iteratively refines the result by halving the difference
 577   // between these limits, updating either the upper limit (if that value could
 578   // not be allocated) or the lower limit (if the that value could be allocated)
 579   // until the difference between these limits is "small".
 580 
 581   // the minimum amount of memory we care about allocating.
 582   const julong min_allocation_size = M;
 583 
 584   julong upper_limit = *limit;
 585 
 586   // first check a few trivial cases
 587   if (is_allocatable(upper_limit) || (upper_limit <= min_allocation_size)) {
 588     *limit = upper_limit;
 589   } else if (!is_allocatable(min_allocation_size)) {
 590     // we found that not even min_allocation_size is allocatable. Return it
 591     // anyway. There is no point to search for a better value any more.
 592     *limit = min_allocation_size;
 593   } else {
 594     // perform the binary search.
 595     julong lower_limit = min_allocation_size;
 596     while ((upper_limit - lower_limit) > min_allocation_size) {
 597       julong temp_limit = ((upper_limit - lower_limit) / 2) + lower_limit;
 598       temp_limit = align_down(temp_limit, min_allocation_size);
 599       if (is_allocatable(temp_limit)) {
 600         lower_limit = temp_limit;
 601       } else {
 602         upper_limit = temp_limit;
 603       }
 604     }
 605     *limit = lower_limit;
 606   }
 607   return true;
 608 #endif
 609 }
 610 
 611 const char* os::get_current_directory(char *buf, size_t buflen) {
 612   return getcwd(buf, buflen);
 613 }
 614 
 615 FILE* os::open(int fd, const char* mode) {
 616   return ::fdopen(fd, mode);
 617 }
 618 
 619 ssize_t os::read_at(int fd, void *buf, unsigned int nBytes, jlong offset) {
 620   return ::pread(fd, buf, nBytes, offset);
 621 }
 622 
 623 void os::flockfile(FILE* fp) {
 624   ::flockfile(fp);
 625 }
 626 
 627 void os::funlockfile(FILE* fp) {
 628   ::funlockfile(fp);
 629 }
 630 
 631 DIR* os::opendir(const char* dirname) {
 632   assert(dirname != NULL, "just checking");
 633   return ::opendir(dirname);
 634 }
 635 
 636 struct dirent* os::readdir(DIR* dirp) {
 637   assert(dirp != NULL, "just checking");
 638   return ::readdir(dirp);
 639 }
 640 
 641 int os::closedir(DIR *dirp) {
 642   assert(dirp != NULL, "just checking");
 643   return ::closedir(dirp);
 644 }
 645 
 646 // Builds a platform dependent Agent_OnLoad_<lib_name> function name
 647 // which is used to find statically linked in agents.
 648 // Parameters:
 649 //            sym_name: Symbol in library we are looking for
 650 //            lib_name: Name of library to look in, NULL for shared libs.
 651 //            is_absolute_path == true if lib_name is absolute path to agent
 652 //                                     such as "/a/b/libL.so"
 653 //            == false if only the base name of the library is passed in
 654 //               such as "L"
 655 char* os::build_agent_function_name(const char *sym_name, const char *lib_name,
 656                                     bool is_absolute_path) {
 657   char *agent_entry_name;
 658   size_t len;
 659   size_t name_len;
 660   size_t prefix_len = strlen(JNI_LIB_PREFIX);
 661   size_t suffix_len = strlen(JNI_LIB_SUFFIX);
 662   const char *start;
 663 
 664   if (lib_name != NULL) {
 665     name_len = strlen(lib_name);
 666     if (is_absolute_path) {
 667       // Need to strip path, prefix and suffix
 668       if ((start = strrchr(lib_name, *os::file_separator())) != NULL) {
 669         lib_name = ++start;
 670       }
 671       if (strlen(lib_name) <= (prefix_len + suffix_len)) {
 672         return NULL;
 673       }
 674       lib_name += prefix_len;
 675       name_len = strlen(lib_name) - suffix_len;
 676     }
 677   }
 678   len = (lib_name != NULL ? name_len : 0) + strlen(sym_name) + 2;
 679   agent_entry_name = NEW_C_HEAP_ARRAY_RETURN_NULL(char, len, mtThread);
 680   if (agent_entry_name == NULL) {
 681     return NULL;
 682   }
 683   strcpy(agent_entry_name, sym_name);
 684   if (lib_name != NULL) {
 685     strcat(agent_entry_name, "_");
 686     strncat(agent_entry_name, lib_name, name_len);
 687   }
 688   return agent_entry_name;
 689 }
 690 
 691 
 692 void os::naked_short_nanosleep(jlong ns) {
 693   struct timespec req;
 694   assert(ns > -1 && ns < NANOUNITS, "Un-interruptable sleep, short time use only");
 695   req.tv_sec = 0;
 696   req.tv_nsec = ns;
 697   ::nanosleep(&req, NULL);
 698   return;
 699 }
 700 
 701 void os::naked_short_sleep(jlong ms) {
 702   assert(ms < MILLIUNITS, "Un-interruptable sleep, short time use only");
 703   os::naked_short_nanosleep(millis_to_nanos(ms));
 704   return;
 705 }
 706 
 707 static const struct {
 708   int sig; const char* name;
 709 }
 710  g_signal_info[] =
 711   {
 712   {  SIGABRT,     "SIGABRT" },
 713 #ifdef SIGAIO
 714   {  SIGAIO,      "SIGAIO" },
 715 #endif
 716   {  SIGALRM,     "SIGALRM" },
 717 #ifdef SIGALRM1
 718   {  SIGALRM1,    "SIGALRM1" },
 719 #endif
 720   {  SIGBUS,      "SIGBUS" },
 721 #ifdef SIGCANCEL
 722   {  SIGCANCEL,   "SIGCANCEL" },
 723 #endif
 724   {  SIGCHLD,     "SIGCHLD" },
 725 #ifdef SIGCLD
 726   {  SIGCLD,      "SIGCLD" },
 727 #endif
 728   {  SIGCONT,     "SIGCONT" },
 729 #ifdef SIGCPUFAIL
 730   {  SIGCPUFAIL,  "SIGCPUFAIL" },
 731 #endif
 732 #ifdef SIGDANGER
 733   {  SIGDANGER,   "SIGDANGER" },
 734 #endif
 735 #ifdef SIGDIL
 736   {  SIGDIL,      "SIGDIL" },
 737 #endif
 738 #ifdef SIGEMT
 739   {  SIGEMT,      "SIGEMT" },
 740 #endif
 741   {  SIGFPE,      "SIGFPE" },
 742 #ifdef SIGFREEZE
 743   {  SIGFREEZE,   "SIGFREEZE" },
 744 #endif
 745 #ifdef SIGGFAULT
 746   {  SIGGFAULT,   "SIGGFAULT" },
 747 #endif
 748 #ifdef SIGGRANT
 749   {  SIGGRANT,    "SIGGRANT" },
 750 #endif
 751   {  SIGHUP,      "SIGHUP" },
 752   {  SIGILL,      "SIGILL" },
 753 #ifdef SIGINFO
 754   {  SIGINFO,     "SIGINFO" },
 755 #endif
 756   {  SIGINT,      "SIGINT" },
 757 #ifdef SIGIO
 758   {  SIGIO,       "SIGIO" },
 759 #endif
 760 #ifdef SIGIOINT
 761   {  SIGIOINT,    "SIGIOINT" },
 762 #endif
 763 #ifdef SIGIOT
 764 // SIGIOT is there for BSD compatibility, but on most Unices just a
 765 // synonym for SIGABRT. The result should be "SIGABRT", not
 766 // "SIGIOT".
 767 #if (SIGIOT != SIGABRT )
 768   {  SIGIOT,      "SIGIOT" },
 769 #endif
 770 #endif
 771 #ifdef SIGKAP
 772   {  SIGKAP,      "SIGKAP" },
 773 #endif
 774   {  SIGKILL,     "SIGKILL" },
 775 #ifdef SIGLOST
 776   {  SIGLOST,     "SIGLOST" },
 777 #endif
 778 #ifdef SIGLWP
 779   {  SIGLWP,      "SIGLWP" },
 780 #endif
 781 #ifdef SIGLWPTIMER
 782   {  SIGLWPTIMER, "SIGLWPTIMER" },
 783 #endif
 784 #ifdef SIGMIGRATE
 785   {  SIGMIGRATE,  "SIGMIGRATE" },
 786 #endif
 787 #ifdef SIGMSG
 788   {  SIGMSG,      "SIGMSG" },
 789 #endif
 790   {  SIGPIPE,     "SIGPIPE" },
 791 #ifdef SIGPOLL
 792   {  SIGPOLL,     "SIGPOLL" },
 793 #endif
 794 #ifdef SIGPRE
 795   {  SIGPRE,      "SIGPRE" },
 796 #endif
 797   {  SIGPROF,     "SIGPROF" },
 798 #ifdef SIGPTY
 799   {  SIGPTY,      "SIGPTY" },
 800 #endif
 801 #ifdef SIGPWR
 802   {  SIGPWR,      "SIGPWR" },
 803 #endif
 804   {  SIGQUIT,     "SIGQUIT" },
 805 #ifdef SIGRECONFIG
 806   {  SIGRECONFIG, "SIGRECONFIG" },
 807 #endif
 808 #ifdef SIGRECOVERY
 809   {  SIGRECOVERY, "SIGRECOVERY" },
 810 #endif
 811 #ifdef SIGRESERVE
 812   {  SIGRESERVE,  "SIGRESERVE" },
 813 #endif
 814 #ifdef SIGRETRACT
 815   {  SIGRETRACT,  "SIGRETRACT" },
 816 #endif
 817 #ifdef SIGSAK
 818   {  SIGSAK,      "SIGSAK" },
 819 #endif
 820   {  SIGSEGV,     "SIGSEGV" },
 821 #ifdef SIGSOUND
 822   {  SIGSOUND,    "SIGSOUND" },
 823 #endif
 824 #ifdef SIGSTKFLT
 825   {  SIGSTKFLT,    "SIGSTKFLT" },
 826 #endif
 827   {  SIGSTOP,     "SIGSTOP" },
 828   {  SIGSYS,      "SIGSYS" },
 829 #ifdef SIGSYSERROR
 830   {  SIGSYSERROR, "SIGSYSERROR" },
 831 #endif
 832 #ifdef SIGTALRM
 833   {  SIGTALRM,    "SIGTALRM" },
 834 #endif
 835   {  SIGTERM,     "SIGTERM" },
 836 #ifdef SIGTHAW
 837   {  SIGTHAW,     "SIGTHAW" },
 838 #endif
 839   {  SIGTRAP,     "SIGTRAP" },
 840 #ifdef SIGTSTP
 841   {  SIGTSTP,     "SIGTSTP" },
 842 #endif
 843   {  SIGTTIN,     "SIGTTIN" },
 844   {  SIGTTOU,     "SIGTTOU" },
 845 #ifdef SIGURG
 846   {  SIGURG,      "SIGURG" },
 847 #endif
 848   {  SIGUSR1,     "SIGUSR1" },
 849   {  SIGUSR2,     "SIGUSR2" },
 850 #ifdef SIGVIRT
 851   {  SIGVIRT,     "SIGVIRT" },
 852 #endif
 853   {  SIGVTALRM,   "SIGVTALRM" },
 854 #ifdef SIGWAITING
 855   {  SIGWAITING,  "SIGWAITING" },
 856 #endif
 857 #ifdef SIGWINCH
 858   {  SIGWINCH,    "SIGWINCH" },
 859 #endif
 860 #ifdef SIGWINDOW
 861   {  SIGWINDOW,   "SIGWINDOW" },
 862 #endif
 863   {  SIGXCPU,     "SIGXCPU" },
 864   {  SIGXFSZ,     "SIGXFSZ" },
 865 #ifdef SIGXRES
 866   {  SIGXRES,     "SIGXRES" },
 867 #endif
 868   { -1, NULL }
 869 };
 870 
 871 // Returned string is a constant. For unknown signals "UNKNOWN" is returned.
 872 const char* os::Posix::get_signal_name(int sig, char* out, size_t outlen) {
 873 
 874   const char* ret = NULL;
 875 
 876 #ifdef SIGRTMIN
 877   if (sig >= SIGRTMIN && sig <= SIGRTMAX) {
 878     if (sig == SIGRTMIN) {
 879       ret = "SIGRTMIN";
 880     } else if (sig == SIGRTMAX) {
 881       ret = "SIGRTMAX";
 882     } else {
 883       jio_snprintf(out, outlen, "SIGRTMIN+%d", sig - SIGRTMIN);
 884       return out;
 885     }
 886   }
 887 #endif
 888 
 889   if (sig > 0) {
 890     for (int idx = 0; g_signal_info[idx].sig != -1; idx ++) {
 891       if (g_signal_info[idx].sig == sig) {
 892         ret = g_signal_info[idx].name;
 893         break;
 894       }
 895     }
 896   }
 897 
 898   if (!ret) {
 899     if (!is_valid_signal(sig)) {
 900       ret = "INVALID";
 901     } else {
 902       ret = "UNKNOWN";
 903     }
 904   }
 905 
 906   if (out && outlen > 0) {
 907     strncpy(out, ret, outlen);
 908     out[outlen - 1] = '\0';
 909   }
 910   return out;
 911 }
 912 
 913 int os::Posix::get_signal_number(const char* signal_name) {
 914   char tmp[30];
 915   const char* s = signal_name;
 916   if (s[0] != 'S' || s[1] != 'I' || s[2] != 'G') {
 917     jio_snprintf(tmp, sizeof(tmp), "SIG%s", signal_name);
 918     s = tmp;
 919   }
 920   for (int idx = 0; g_signal_info[idx].sig != -1; idx ++) {
 921     if (strcmp(g_signal_info[idx].name, s) == 0) {
 922       return g_signal_info[idx].sig;
 923     }
 924   }
 925   return -1;
 926 }
 927 
 928 int os::get_signal_number(const char* signal_name) {
 929   return os::Posix::get_signal_number(signal_name);
 930 }
 931 
 932 // Returns true if signal number is valid.
 933 bool os::Posix::is_valid_signal(int sig) {
 934   // MacOS not really POSIX compliant: sigaddset does not return
 935   // an error for invalid signal numbers. However, MacOS does not
 936   // support real time signals and simply seems to have just 33
 937   // signals with no holes in the signal range.
 938 #ifdef __APPLE__
 939   return sig >= 1 && sig < NSIG;
 940 #else
 941   // Use sigaddset to check for signal validity.
 942   sigset_t set;
 943   sigemptyset(&set);
 944   if (sigaddset(&set, sig) == -1 && errno == EINVAL) {
 945     return false;
 946   }
 947   return true;
 948 #endif
 949 }
 950 
 951 bool os::Posix::is_sig_ignored(int sig) {
 952   struct sigaction oact;
 953   sigaction(sig, (struct sigaction*)NULL, &oact);
 954   void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
 955                                  : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
 956   if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN)) {
 957     return true;
 958   } else {
 959     return false;
 960   }
 961 }
 962 
 963 // Returns:
 964 // NULL for an invalid signal number
 965 // "SIG<num>" for a valid but unknown signal number
 966 // signal name otherwise.
 967 const char* os::exception_name(int sig, char* buf, size_t size) {
 968   if (!os::Posix::is_valid_signal(sig)) {
 969     return NULL;
 970   }
 971   const char* const name = os::Posix::get_signal_name(sig, buf, size);
 972   if (strcmp(name, "UNKNOWN") == 0) {
 973     jio_snprintf(buf, size, "SIG%d", sig);
 974   }
 975   return buf;
 976 }
 977 
 978 #define NUM_IMPORTANT_SIGS 32
 979 // Returns one-line short description of a signal set in a user provided buffer.
 980 const char* os::Posix::describe_signal_set_short(const sigset_t* set, char* buffer, size_t buf_size) {
 981   assert(buf_size == (NUM_IMPORTANT_SIGS + 1), "wrong buffer size");
 982   // Note: for shortness, just print out the first 32. That should
 983   // cover most of the useful ones, apart from realtime signals.
 984   for (int sig = 1; sig <= NUM_IMPORTANT_SIGS; sig++) {
 985     const int rc = sigismember(set, sig);
 986     if (rc == -1 && errno == EINVAL) {
 987       buffer[sig-1] = '?';
 988     } else {
 989       buffer[sig-1] = rc == 0 ? '0' : '1';
 990     }
 991   }
 992   buffer[NUM_IMPORTANT_SIGS] = 0;
 993   return buffer;
 994 }
 995 
 996 // Prints one-line description of a signal set.
 997 void os::Posix::print_signal_set_short(outputStream* st, const sigset_t* set) {
 998   char buf[NUM_IMPORTANT_SIGS + 1];
 999   os::Posix::describe_signal_set_short(set, buf, sizeof(buf));
1000   st->print("%s", buf);
1001 }
1002 
1003 // Writes one-line description of a combination of sigaction.sa_flags into a user
1004 // provided buffer. Returns that buffer.
1005 const char* os::Posix::describe_sa_flags(int flags, char* buffer, size_t size) {
1006   char* p = buffer;
1007   size_t remaining = size;
1008   bool first = true;
1009   int idx = 0;
1010 
1011   assert(buffer, "invalid argument");
1012 
1013   if (size == 0) {
1014     return buffer;
1015   }
1016 
1017   strncpy(buffer, "none", size);
1018 
1019   const struct {
1020     // NB: i is an unsigned int here because SA_RESETHAND is on some
1021     // systems 0x80000000, which is implicitly unsigned.  Assignining
1022     // it to an int field would be an overflow in unsigned-to-signed
1023     // conversion.
1024     unsigned int i;
1025     const char* s;
1026   } flaginfo [] = {
1027     { SA_NOCLDSTOP, "SA_NOCLDSTOP" },
1028     { SA_ONSTACK,   "SA_ONSTACK"   },
1029     { SA_RESETHAND, "SA_RESETHAND" },
1030     { SA_RESTART,   "SA_RESTART"   },
1031     { SA_SIGINFO,   "SA_SIGINFO"   },
1032     { SA_NOCLDWAIT, "SA_NOCLDWAIT" },
1033     { SA_NODEFER,   "SA_NODEFER"   },
1034 #ifdef AIX
1035     { SA_ONSTACK,   "SA_ONSTACK"   },
1036     { SA_OLDSTYLE,  "SA_OLDSTYLE"  },
1037 #endif
1038     { 0, NULL }
1039   };
1040 
1041   for (idx = 0; flaginfo[idx].s && remaining > 1; idx++) {
1042     if (flags & flaginfo[idx].i) {
1043       if (first) {
1044         jio_snprintf(p, remaining, "%s", flaginfo[idx].s);
1045         first = false;
1046       } else {
1047         jio_snprintf(p, remaining, "|%s", flaginfo[idx].s);
1048       }
1049       const size_t len = strlen(p);
1050       p += len;
1051       remaining -= len;
1052     }
1053   }
1054 
1055   buffer[size - 1] = '\0';
1056 
1057   return buffer;
1058 }
1059 
1060 // Prints one-line description of a combination of sigaction.sa_flags.
1061 void os::Posix::print_sa_flags(outputStream* st, int flags) {
1062   char buffer[0x100];
1063   os::Posix::describe_sa_flags(flags, buffer, sizeof(buffer));
1064   st->print("%s", buffer);
1065 }
1066 
1067 // Helper function for os::Posix::print_siginfo_...():
1068 // return a textual description for signal code.
1069 struct enum_sigcode_desc_t {
1070   const char* s_name;
1071   const char* s_desc;
1072 };
1073 
1074 static bool get_signal_code_description(const siginfo_t* si, enum_sigcode_desc_t* out) {
1075 
1076   const struct {
1077     int sig; int code; const char* s_code; const char* s_desc;
1078   } t1 [] = {
1079     { SIGILL,  ILL_ILLOPC,   "ILL_ILLOPC",   "Illegal opcode." },
1080     { SIGILL,  ILL_ILLOPN,   "ILL_ILLOPN",   "Illegal operand." },
1081     { SIGILL,  ILL_ILLADR,   "ILL_ILLADR",   "Illegal addressing mode." },
1082     { SIGILL,  ILL_ILLTRP,   "ILL_ILLTRP",   "Illegal trap." },
1083     { SIGILL,  ILL_PRVOPC,   "ILL_PRVOPC",   "Privileged opcode." },
1084     { SIGILL,  ILL_PRVREG,   "ILL_PRVREG",   "Privileged register." },
1085     { SIGILL,  ILL_COPROC,   "ILL_COPROC",   "Coprocessor error." },
1086     { SIGILL,  ILL_BADSTK,   "ILL_BADSTK",   "Internal stack error." },
1087 #if defined(IA64) && defined(LINUX)
1088     { SIGILL,  ILL_BADIADDR, "ILL_BADIADDR", "Unimplemented instruction address" },
1089     { SIGILL,  ILL_BREAK,    "ILL_BREAK",    "Application Break instruction" },
1090 #endif
1091     { SIGFPE,  FPE_INTDIV,   "FPE_INTDIV",   "Integer divide by zero." },
1092     { SIGFPE,  FPE_INTOVF,   "FPE_INTOVF",   "Integer overflow." },
1093     { SIGFPE,  FPE_FLTDIV,   "FPE_FLTDIV",   "Floating-point divide by zero." },
1094     { SIGFPE,  FPE_FLTOVF,   "FPE_FLTOVF",   "Floating-point overflow." },
1095     { SIGFPE,  FPE_FLTUND,   "FPE_FLTUND",   "Floating-point underflow." },
1096     { SIGFPE,  FPE_FLTRES,   "FPE_FLTRES",   "Floating-point inexact result." },
1097     { SIGFPE,  FPE_FLTINV,   "FPE_FLTINV",   "Invalid floating-point operation." },
1098     { SIGFPE,  FPE_FLTSUB,   "FPE_FLTSUB",   "Subscript out of range." },
1099     { SIGSEGV, SEGV_MAPERR,  "SEGV_MAPERR",  "Address not mapped to object." },
1100     { SIGSEGV, SEGV_ACCERR,  "SEGV_ACCERR",  "Invalid permissions for mapped object." },
1101 #ifdef AIX
1102     // no explanation found what keyerr would be
1103     { SIGSEGV, SEGV_KEYERR,  "SEGV_KEYERR",  "key error" },
1104 #endif
1105 #if defined(IA64) && !defined(AIX)
1106     { SIGSEGV, SEGV_PSTKOVF, "SEGV_PSTKOVF", "Paragraph stack overflow" },
1107 #endif
1108 #if defined(__sparc) && defined(SOLARIS)
1109 // define Solaris Sparc M7 ADI SEGV signals
1110 #if !defined(SEGV_ACCADI)
1111 #define SEGV_ACCADI 3
1112 #endif
1113     { SIGSEGV, SEGV_ACCADI,  "SEGV_ACCADI",  "ADI not enabled for mapped object." },
1114 #if !defined(SEGV_ACCDERR)
1115 #define SEGV_ACCDERR 4
1116 #endif
1117     { SIGSEGV, SEGV_ACCDERR, "SEGV_ACCDERR", "ADI disrupting exception." },
1118 #if !defined(SEGV_ACCPERR)
1119 #define SEGV_ACCPERR 5
1120 #endif
1121     { SIGSEGV, SEGV_ACCPERR, "SEGV_ACCPERR", "ADI precise exception." },
1122 #endif // defined(__sparc) && defined(SOLARIS)
1123     { SIGBUS,  BUS_ADRALN,   "BUS_ADRALN",   "Invalid address alignment." },
1124     { SIGBUS,  BUS_ADRERR,   "BUS_ADRERR",   "Nonexistent physical address." },
1125     { SIGBUS,  BUS_OBJERR,   "BUS_OBJERR",   "Object-specific hardware error." },
1126     { SIGTRAP, TRAP_BRKPT,   "TRAP_BRKPT",   "Process breakpoint." },
1127     { SIGTRAP, TRAP_TRACE,   "TRAP_TRACE",   "Process trace trap." },
1128     { SIGCHLD, CLD_EXITED,   "CLD_EXITED",   "Child has exited." },
1129     { SIGCHLD, CLD_KILLED,   "CLD_KILLED",   "Child has terminated abnormally and did not create a core file." },
1130     { SIGCHLD, CLD_DUMPED,   "CLD_DUMPED",   "Child has terminated abnormally and created a core file." },
1131     { SIGCHLD, CLD_TRAPPED,  "CLD_TRAPPED",  "Traced child has trapped." },
1132     { SIGCHLD, CLD_STOPPED,  "CLD_STOPPED",  "Child has stopped." },
1133     { SIGCHLD, CLD_CONTINUED,"CLD_CONTINUED","Stopped child has continued." },
1134 #ifdef SIGPOLL
1135     { SIGPOLL, POLL_OUT,     "POLL_OUT",     "Output buffers available." },
1136     { SIGPOLL, POLL_MSG,     "POLL_MSG",     "Input message available." },
1137     { SIGPOLL, POLL_ERR,     "POLL_ERR",     "I/O error." },
1138     { SIGPOLL, POLL_PRI,     "POLL_PRI",     "High priority input available." },
1139     { SIGPOLL, POLL_HUP,     "POLL_HUP",     "Device disconnected. [Option End]" },
1140 #endif
1141     { -1, -1, NULL, NULL }
1142   };
1143 
1144   // Codes valid in any signal context.
1145   const struct {
1146     int code; const char* s_code; const char* s_desc;
1147   } t2 [] = {
1148     { SI_USER,      "SI_USER",     "Signal sent by kill()." },
1149     { SI_QUEUE,     "SI_QUEUE",    "Signal sent by the sigqueue()." },
1150     { SI_TIMER,     "SI_TIMER",    "Signal generated by expiration of a timer set by timer_settime()." },
1151     { SI_ASYNCIO,   "SI_ASYNCIO",  "Signal generated by completion of an asynchronous I/O request." },
1152     { SI_MESGQ,     "SI_MESGQ",    "Signal generated by arrival of a message on an empty message queue." },
1153     // Linux specific
1154 #ifdef SI_TKILL
1155     { SI_TKILL,     "SI_TKILL",    "Signal sent by tkill (pthread_kill)" },
1156 #endif
1157 #ifdef SI_DETHREAD
1158     { SI_DETHREAD,  "SI_DETHREAD", "Signal sent by execve() killing subsidiary threads" },
1159 #endif
1160 #ifdef SI_KERNEL
1161     { SI_KERNEL,    "SI_KERNEL",   "Signal sent by kernel." },
1162 #endif
1163 #ifdef SI_SIGIO
1164     { SI_SIGIO,     "SI_SIGIO",    "Signal sent by queued SIGIO" },
1165 #endif
1166 
1167 #ifdef AIX
1168     { SI_UNDEFINED, "SI_UNDEFINED","siginfo contains partial information" },
1169     { SI_EMPTY,     "SI_EMPTY",    "siginfo contains no useful information" },
1170 #endif
1171 
1172 #ifdef __sun
1173     { SI_NOINFO,    "SI_NOINFO",   "No signal information" },
1174     { SI_RCTL,      "SI_RCTL",     "kernel generated signal via rctl action" },
1175     { SI_LWP,       "SI_LWP",      "Signal sent via lwp_kill" },
1176 #endif
1177 
1178     { -1, NULL, NULL }
1179   };
1180 
1181   const char* s_code = NULL;
1182   const char* s_desc = NULL;
1183 
1184   for (int i = 0; t1[i].sig != -1; i ++) {
1185     if (t1[i].sig == si->si_signo && t1[i].code == si->si_code) {
1186       s_code = t1[i].s_code;
1187       s_desc = t1[i].s_desc;
1188       break;
1189     }
1190   }
1191 
1192   if (s_code == NULL) {
1193     for (int i = 0; t2[i].s_code != NULL; i ++) {
1194       if (t2[i].code == si->si_code) {
1195         s_code = t2[i].s_code;
1196         s_desc = t2[i].s_desc;
1197       }
1198     }
1199   }
1200 
1201   if (s_code == NULL) {
1202     out->s_name = "unknown";
1203     out->s_desc = "unknown";
1204     return false;
1205   }
1206 
1207   out->s_name = s_code;
1208   out->s_desc = s_desc;
1209 
1210   return true;
1211 }
1212 
1213 bool os::signal_sent_by_kill(const void* siginfo) {
1214   const siginfo_t* const si = (const siginfo_t*)siginfo;
1215   return si->si_code == SI_USER || si->si_code == SI_QUEUE
1216 #ifdef SI_TKILL
1217          || si->si_code == SI_TKILL
1218 #endif
1219   ;
1220 }
1221 
1222 void os::print_siginfo(outputStream* os, const void* si0) {
1223 
1224   const siginfo_t* const si = (const siginfo_t*) si0;
1225 
1226   char buf[20];
1227   os->print("siginfo:");
1228 
1229   if (!si) {
1230     os->print(" <null>");
1231     return;
1232   }
1233 
1234   const int sig = si->si_signo;
1235 
1236   os->print(" si_signo: %d (%s)", sig, os::Posix::get_signal_name(sig, buf, sizeof(buf)));
1237 
1238   enum_sigcode_desc_t ed;
1239   get_signal_code_description(si, &ed);
1240   os->print(", si_code: %d (%s)", si->si_code, ed.s_name);
1241 
1242   if (si->si_errno) {
1243     os->print(", si_errno: %d", si->si_errno);
1244   }
1245 
1246   // Output additional information depending on the signal code.
1247 
1248   // Note: Many implementations lump si_addr, si_pid, si_uid etc. together as unions,
1249   // so it depends on the context which member to use. For synchronous error signals,
1250   // we print si_addr, unless the signal was sent by another process or thread, in
1251   // which case we print out pid or tid of the sender.
1252   if (signal_sent_by_kill(si)) {
1253     const pid_t pid = si->si_pid;
1254     os->print(", si_pid: %ld", (long) pid);
1255     if (IS_VALID_PID(pid)) {
1256       const pid_t me = getpid();
1257       if (me == pid) {
1258         os->print(" (current process)");
1259       }
1260     } else {
1261       os->print(" (invalid)");
1262     }
1263     os->print(", si_uid: %ld", (long) si->si_uid);
1264     if (sig == SIGCHLD) {
1265       os->print(", si_status: %d", si->si_status);
1266     }
1267   } else if (sig == SIGSEGV || sig == SIGBUS || sig == SIGILL ||
1268              sig == SIGTRAP || sig == SIGFPE) {
1269     os->print(", si_addr: " PTR_FORMAT, p2i(si->si_addr));
1270 #ifdef SIGPOLL
1271   } else if (sig == SIGPOLL) {
1272     os->print(", si_band: %ld", si->si_band);
1273 #endif
1274   }
1275 
1276 }
1277 
1278 bool os::signal_thread(Thread* thread, int sig, const char* reason) {
1279   OSThread* osthread = thread->osthread();
1280   if (osthread) {
1281 #if defined (SOLARIS)
1282     // Note: we cannot use pthread_kill on Solaris - not because
1283     // its missing, but because we do not have the pthread_t id.
1284     int status = thr_kill(osthread->thread_id(), sig);
1285 #else
1286     int status = pthread_kill(osthread->pthread_id(), sig);
1287 #endif
1288     if (status == 0) {
1289       Events::log(Thread::current(), "sent signal %d to Thread " INTPTR_FORMAT " because %s.",
1290                   sig, p2i(thread), reason);
1291       return true;
1292     }
1293   }
1294   return false;
1295 }
1296 
1297 int os::Posix::unblock_thread_signal_mask(const sigset_t *set) {
1298   return pthread_sigmask(SIG_UNBLOCK, set, NULL);
1299 }
1300 
1301 address os::Posix::ucontext_get_pc(const ucontext_t* ctx) {
1302 #if defined(AIX)
1303    return Aix::ucontext_get_pc(ctx);
1304 #elif defined(BSD)
1305    return Bsd::ucontext_get_pc(ctx);
1306 #elif defined(LINUX)
1307    return Linux::ucontext_get_pc(ctx);
1308 #elif defined(SOLARIS)
1309    return Solaris::ucontext_get_pc(ctx);
1310 #else
1311    VMError::report_and_die("unimplemented ucontext_get_pc");
1312 #endif
1313 }
1314 
1315 void os::Posix::ucontext_set_pc(ucontext_t* ctx, address pc) {
1316 #if defined(AIX)
1317    Aix::ucontext_set_pc(ctx, pc);
1318 #elif defined(BSD)
1319    Bsd::ucontext_set_pc(ctx, pc);
1320 #elif defined(LINUX)
1321    Linux::ucontext_set_pc(ctx, pc);
1322 #elif defined(SOLARIS)
1323    Solaris::ucontext_set_pc(ctx, pc);
1324 #else
1325    VMError::report_and_die("unimplemented ucontext_get_pc");
1326 #endif
1327 }
1328 
1329 char* os::Posix::describe_pthread_attr(char* buf, size_t buflen, const pthread_attr_t* attr) {
1330   size_t stack_size = 0;
1331   size_t guard_size = 0;
1332   int detachstate = 0;
1333   pthread_attr_getstacksize(attr, &stack_size);
1334   pthread_attr_getguardsize(attr, &guard_size);
1335   // Work around linux NPTL implementation error, see also os::create_thread() in os_linux.cpp.
1336   LINUX_ONLY(stack_size -= guard_size);
1337   pthread_attr_getdetachstate(attr, &detachstate);
1338   jio_snprintf(buf, buflen, "stacksize: " SIZE_FORMAT "k, guardsize: " SIZE_FORMAT "k, %s",
1339     stack_size / 1024, guard_size / 1024,
1340     (detachstate == PTHREAD_CREATE_DETACHED ? "detached" : "joinable"));
1341   return buf;
1342 }
1343 
1344 char* os::Posix::realpath(const char* filename, char* outbuf, size_t outbuflen) {
1345 
1346   if (filename == NULL || outbuf == NULL || outbuflen < 1) {
1347     assert(false, "os::Posix::realpath: invalid arguments.");
1348     errno = EINVAL;
1349     return NULL;
1350   }
1351 
1352   char* result = NULL;
1353 
1354   // This assumes platform realpath() is implemented according to POSIX.1-2008.
1355   // POSIX.1-2008 allows to specify NULL for the output buffer, in which case
1356   // output buffer is dynamically allocated and must be ::free()'d by the caller.
1357   char* p = ::realpath(filename, NULL);
1358   if (p != NULL) {
1359     if (strlen(p) < outbuflen) {
1360       strcpy(outbuf, p);
1361       result = outbuf;
1362     } else {
1363       errno = ENAMETOOLONG;
1364     }
1365     ::free(p); // *not* os::free
1366   } else {
1367     // Fallback for platforms struggling with modern Posix standards (AIX 5.3, 6.1). If realpath
1368     // returns EINVAL, this may indicate that realpath is not POSIX.1-2008 compatible and
1369     // that it complains about the NULL we handed down as user buffer.
1370     // In this case, use the user provided buffer but at least check whether realpath caused
1371     // a memory overwrite.
1372     if (errno == EINVAL) {
1373       outbuf[outbuflen - 1] = '\0';
1374       p = ::realpath(filename, outbuf);
1375       if (p != NULL) {
1376         guarantee(outbuf[outbuflen - 1] == '\0', "realpath buffer overwrite detected.");
1377         result = p;
1378       }
1379     }
1380   }
1381   return result;
1382 
1383 }
1384 
1385 int os::stat(const char *path, struct stat *sbuf) {
1386   return ::stat(path, sbuf);
1387 }
1388 
1389 char * os::native_path(char *path) {
1390   return path;
1391 }
1392 
1393 bool os::same_files(const char* file1, const char* file2) {
1394   if (strcmp(file1, file2) == 0) {
1395     return true;
1396   }
1397 
1398   bool is_same = false;
1399   struct stat st1;
1400   struct stat st2;
1401 
1402   if (os::stat(file1, &st1) < 0) {
1403     return false;
1404   }
1405 
1406   if (os::stat(file2, &st2) < 0) {
1407     return false;
1408   }
1409 
1410   if (st1.st_dev == st2.st_dev && st1.st_ino == st2.st_ino) {
1411     // same files
1412     is_same = true;
1413   }
1414   return is_same;
1415 }
1416 
1417 // Check minimum allowable stack sizes for thread creation and to initialize
1418 // the java system classes, including StackOverflowError - depends on page
1419 // size.
1420 // The space needed for frames during startup is platform dependent. It
1421 // depends on word size, platform calling conventions, C frame layout and
1422 // interpreter/C1/C2 design decisions. Therefore this is given in a
1423 // platform (os/cpu) dependent constant.
1424 // To this, space for guard mechanisms is added, which depends on the
1425 // page size which again depends on the concrete system the VM is running
1426 // on. Space for libc guard pages is not included in this size.
1427 jint os::Posix::set_minimum_stack_sizes() {
1428   size_t os_min_stack_allowed = SOLARIS_ONLY(thr_min_stack()) NOT_SOLARIS(PTHREAD_STACK_MIN);
1429 
1430   _java_thread_min_stack_allowed = _java_thread_min_stack_allowed +
1431                                    JavaThread::stack_guard_zone_size() +
1432                                    JavaThread::stack_shadow_zone_size();
1433 
1434   _java_thread_min_stack_allowed = align_up(_java_thread_min_stack_allowed, vm_page_size());
1435   _java_thread_min_stack_allowed = MAX2(_java_thread_min_stack_allowed, os_min_stack_allowed);
1436 
1437   size_t stack_size_in_bytes = ThreadStackSize * K;
1438   if (stack_size_in_bytes != 0 &&
1439       stack_size_in_bytes < _java_thread_min_stack_allowed) {
1440     // The '-Xss' and '-XX:ThreadStackSize=N' options both set
1441     // ThreadStackSize so we go with "Java thread stack size" instead
1442     // of "ThreadStackSize" to be more friendly.
1443     tty->print_cr("\nThe Java thread stack size specified is too small. "
1444                   "Specify at least " SIZE_FORMAT "k",
1445                   _java_thread_min_stack_allowed / K);
1446     return JNI_ERR;
1447   }
1448 
1449   // Make the stack size a multiple of the page size so that
1450   // the yellow/red zones can be guarded.
1451   JavaThread::set_stack_size_at_create(align_up(stack_size_in_bytes, vm_page_size()));
1452 
1453   // Reminder: a compiler thread is a Java thread.
1454   _compiler_thread_min_stack_allowed = _compiler_thread_min_stack_allowed +
1455                                        JavaThread::stack_guard_zone_size() +
1456                                        JavaThread::stack_shadow_zone_size();
1457 
1458   _compiler_thread_min_stack_allowed = align_up(_compiler_thread_min_stack_allowed, vm_page_size());
1459   _compiler_thread_min_stack_allowed = MAX2(_compiler_thread_min_stack_allowed, os_min_stack_allowed);
1460 
1461   stack_size_in_bytes = CompilerThreadStackSize * K;
1462   if (stack_size_in_bytes != 0 &&
1463       stack_size_in_bytes < _compiler_thread_min_stack_allowed) {
1464     tty->print_cr("\nThe CompilerThreadStackSize specified is too small. "
1465                   "Specify at least " SIZE_FORMAT "k",
1466                   _compiler_thread_min_stack_allowed / K);
1467     return JNI_ERR;
1468   }
1469 
1470   _vm_internal_thread_min_stack_allowed = align_up(_vm_internal_thread_min_stack_allowed, vm_page_size());
1471   _vm_internal_thread_min_stack_allowed = MAX2(_vm_internal_thread_min_stack_allowed, os_min_stack_allowed);
1472 
1473   stack_size_in_bytes = VMThreadStackSize * K;
1474   if (stack_size_in_bytes != 0 &&
1475       stack_size_in_bytes < _vm_internal_thread_min_stack_allowed) {
1476     tty->print_cr("\nThe VMThreadStackSize specified is too small. "
1477                   "Specify at least " SIZE_FORMAT "k",
1478                   _vm_internal_thread_min_stack_allowed / K);
1479     return JNI_ERR;
1480   }
1481   return JNI_OK;
1482 }
1483 
1484 // Called when creating the thread.  The minimum stack sizes have already been calculated
1485 size_t os::Posix::get_initial_stack_size(ThreadType thr_type, size_t req_stack_size) {
1486   size_t stack_size;
1487   if (req_stack_size == 0) {
1488     stack_size = default_stack_size(thr_type);
1489   } else {
1490     stack_size = req_stack_size;
1491   }
1492 
1493   switch (thr_type) {
1494   case os::java_thread:
1495     // Java threads use ThreadStackSize which default value can be
1496     // changed with the flag -Xss
1497     if (req_stack_size == 0 && JavaThread::stack_size_at_create() > 0) {
1498       // no requested size and we have a more specific default value
1499       stack_size = JavaThread::stack_size_at_create();
1500     }
1501     stack_size = MAX2(stack_size,
1502                       _java_thread_min_stack_allowed);
1503     break;
1504   case os::compiler_thread:
1505     if (req_stack_size == 0 && CompilerThreadStackSize > 0) {
1506       // no requested size and we have a more specific default value
1507       stack_size = (size_t)(CompilerThreadStackSize * K);
1508     }
1509     stack_size = MAX2(stack_size,
1510                       _compiler_thread_min_stack_allowed);
1511     break;
1512   case os::vm_thread:
1513   case os::pgc_thread:
1514   case os::cgc_thread:
1515   case os::watcher_thread:
1516   default:  // presume the unknown thr_type is a VM internal
1517     if (req_stack_size == 0 && VMThreadStackSize > 0) {
1518       // no requested size and we have a more specific default value
1519       stack_size = (size_t)(VMThreadStackSize * K);
1520     }
1521 
1522     stack_size = MAX2(stack_size,
1523                       _vm_internal_thread_min_stack_allowed);
1524     break;
1525   }
1526 
1527   // pthread_attr_setstacksize() may require that the size be rounded up to the OS page size.
1528   // Be careful not to round up to 0. Align down in that case.
1529   if (stack_size <= SIZE_MAX - vm_page_size()) {
1530     stack_size = align_up(stack_size, vm_page_size());
1531   } else {
1532     stack_size = align_down(stack_size, vm_page_size());
1533   }
1534 
1535   return stack_size;
1536 }
1537 
1538 bool os::Posix::is_root(uid_t uid){
1539     return ROOT_UID == uid;
1540 }
1541 
1542 bool os::Posix::matches_effective_uid_or_root(uid_t uid) {
1543     return is_root(uid) || geteuid() == uid;
1544 }
1545 
1546 bool os::Posix::matches_effective_uid_and_gid_or_root(uid_t uid, gid_t gid) {
1547     return is_root(uid) || (geteuid() == uid && getegid() == gid);
1548 }
1549 
1550 Thread* os::ThreadCrashProtection::_protected_thread = NULL;
1551 os::ThreadCrashProtection* os::ThreadCrashProtection::_crash_protection = NULL;
1552 volatile intptr_t os::ThreadCrashProtection::_crash_mux = 0;
1553 
1554 os::ThreadCrashProtection::ThreadCrashProtection() {
1555 }
1556 
1557 /*
1558  * See the caveats for this class in os_posix.hpp
1559  * Protects the callback call so that SIGSEGV / SIGBUS jumps back into this
1560  * method and returns false. If none of the signals are raised, returns true.
1561  * The callback is supposed to provide the method that should be protected.
1562  */
1563 bool os::ThreadCrashProtection::call(os::CrashProtectionCallback& cb) {
1564   sigset_t saved_sig_mask;
1565 
1566   Thread::muxAcquire(&_crash_mux, "CrashProtection");
1567 
1568   _protected_thread = Thread::current_or_null();
1569   assert(_protected_thread != NULL, "Cannot crash protect a NULL thread");
1570 
1571   // we cannot rely on sigsetjmp/siglongjmp to save/restore the signal mask
1572   // since on at least some systems (OS X) siglongjmp will restore the mask
1573   // for the process, not the thread
1574   pthread_sigmask(0, NULL, &saved_sig_mask);
1575   if (sigsetjmp(_jmpbuf, 0) == 0) {
1576     // make sure we can see in the signal handler that we have crash protection
1577     // installed
1578     _crash_protection = this;
1579     cb.call();
1580     // and clear the crash protection
1581     _crash_protection = NULL;
1582     _protected_thread = NULL;
1583     Thread::muxRelease(&_crash_mux);
1584     return true;
1585   }
1586   // this happens when we siglongjmp() back
1587   pthread_sigmask(SIG_SETMASK, &saved_sig_mask, NULL);
1588   _crash_protection = NULL;
1589   _protected_thread = NULL;
1590   Thread::muxRelease(&_crash_mux);
1591   return false;
1592 }
1593 
1594 void os::ThreadCrashProtection::restore() {
1595   assert(_crash_protection != NULL, "must have crash protection");
1596   siglongjmp(_jmpbuf, 1);
1597 }
1598 
1599 void os::ThreadCrashProtection::check_crash_protection(int sig,
1600     Thread* thread) {
1601 
1602   if (thread != NULL &&
1603       thread == _protected_thread &&
1604       _crash_protection != NULL) {
1605 
1606     if (sig == SIGSEGV || sig == SIGBUS) {
1607       _crash_protection->restore();
1608     }
1609   }
1610 }
1611 
1612 // Shared clock/time and other supporting routines for pthread_mutex/cond
1613 // initialization. This is enabled on Solaris but only some of the clock/time
1614 // functionality is actually used there.
1615 
1616 // Shared condattr object for use with relative timed-waits. Will be associated
1617 // with CLOCK_MONOTONIC if available to avoid issues with time-of-day changes,
1618 // but otherwise whatever default is used by the platform - generally the
1619 // time-of-day clock.
1620 static pthread_condattr_t _condAttr[1];
1621 
1622 // Shared mutexattr to explicitly set the type to PTHREAD_MUTEX_NORMAL as not
1623 // all systems (e.g. FreeBSD) map the default to "normal".
1624 static pthread_mutexattr_t _mutexAttr[1];
1625 
1626 // common basic initialization that is always supported
1627 static void pthread_init_common(void) {
1628   int status;
1629   if ((status = pthread_condattr_init(_condAttr)) != 0) {
1630     fatal("pthread_condattr_init: %s", os::strerror(status));
1631   }
1632   if ((status = pthread_mutexattr_init(_mutexAttr)) != 0) {
1633     fatal("pthread_mutexattr_init: %s", os::strerror(status));
1634   }
1635   if ((status = pthread_mutexattr_settype(_mutexAttr, PTHREAD_MUTEX_NORMAL)) != 0) {
1636     fatal("pthread_mutexattr_settype: %s", os::strerror(status));
1637   }
1638   // Solaris has it's own PlatformMutex, distinct from the one for POSIX.
1639   NOT_SOLARIS(os::PlatformMutex::init();)
1640 }
1641 
1642 #ifndef SOLARIS
1643 sigset_t sigs;
1644 struct sigaction sigact[NSIG];
1645 
1646 struct sigaction* os::Posix::get_preinstalled_handler(int sig) {
1647   if (sigismember(&sigs, sig)) {
1648     return &sigact[sig];
1649   }
1650   return NULL;
1651 }
1652 
1653 void os::Posix::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
1654   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
1655   sigact[sig] = oldAct;
1656   sigaddset(&sigs, sig);
1657 }
1658 #endif
1659 
1660 // Not all POSIX types and API's are available on all notionally "posix"
1661 // platforms. If we have build-time support then we will check for actual
1662 // runtime support via dlopen/dlsym lookup. This allows for running on an
1663 // older OS version compared to the build platform. But if there is no
1664 // build time support then there cannot be any runtime support as we do not
1665 // know what the runtime types would be (for example clockid_t might be an
1666 // int or int64_t).
1667 //
1668 #ifdef SUPPORTS_CLOCK_MONOTONIC
1669 
1670 // This means we have clockid_t, clock_gettime et al and CLOCK_MONOTONIC
1671 
1672 int (*os::Posix::_clock_gettime)(clockid_t, struct timespec *) = NULL;
1673 int (*os::Posix::_clock_getres)(clockid_t, struct timespec *) = NULL;
1674 
1675 static int (*_pthread_condattr_setclock)(pthread_condattr_t *, clockid_t) = NULL;
1676 
1677 static bool _use_clock_monotonic_condattr = false;
1678 
1679 // Determine what POSIX API's are present and do appropriate
1680 // configuration.
1681 void os::Posix::init(void) {
1682 
1683   // NOTE: no logging available when this is called. Put logging
1684   // statements in init_2().
1685 
1686   // 1. Check for CLOCK_MONOTONIC support.
1687 
1688   void* handle = NULL;
1689 
1690   // For linux we need librt, for other OS we can find
1691   // this function in regular libc.
1692 #ifdef NEEDS_LIBRT
1693   // We do dlopen's in this particular order due to bug in linux
1694   // dynamic loader (see 6348968) leading to crash on exit.
1695   handle = dlopen("librt.so.1", RTLD_LAZY);
1696   if (handle == NULL) {
1697     handle = dlopen("librt.so", RTLD_LAZY);
1698   }
1699 #endif
1700 
1701   if (handle == NULL) {
1702     handle = RTLD_DEFAULT;
1703   }
1704 
1705   int (*clock_getres_func)(clockid_t, struct timespec*) =
1706     (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_getres");
1707   int (*clock_gettime_func)(clockid_t, struct timespec*) =
1708     (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_gettime");
1709   if (clock_getres_func != NULL && clock_gettime_func != NULL) {
1710     // We assume that if both clock_gettime and clock_getres support
1711     // CLOCK_MONOTONIC then the OS provides true high-res monotonic clock.
1712     struct timespec res;
1713     struct timespec tp;
1714     if (clock_getres_func(CLOCK_MONOTONIC, &res) == 0 &&
1715         clock_gettime_func(CLOCK_MONOTONIC, &tp) == 0) {
1716       // Yes, monotonic clock is supported.
1717       _clock_gettime = clock_gettime_func;
1718       _clock_getres = clock_getres_func;
1719     } else {
1720 #ifdef NEEDS_LIBRT
1721       // Close librt if there is no monotonic clock.
1722       if (handle != RTLD_DEFAULT) {
1723         dlclose(handle);
1724       }
1725 #endif
1726     }
1727   }
1728 
1729   // 2. Check for pthread_condattr_setclock support.
1730 
1731   // libpthread is already loaded.
1732   int (*condattr_setclock_func)(pthread_condattr_t*, clockid_t) =
1733     (int (*)(pthread_condattr_t*, clockid_t))dlsym(RTLD_DEFAULT,
1734                                                    "pthread_condattr_setclock");
1735   if (condattr_setclock_func != NULL) {
1736     _pthread_condattr_setclock = condattr_setclock_func;
1737   }
1738 
1739   // Now do general initialization.
1740 
1741   pthread_init_common();
1742 
1743 #ifndef SOLARIS
1744   int status;
1745   if (_pthread_condattr_setclock != NULL && _clock_gettime != NULL) {
1746     if ((status = _pthread_condattr_setclock(_condAttr, CLOCK_MONOTONIC)) != 0) {
1747       if (status == EINVAL) {
1748         _use_clock_monotonic_condattr = false;
1749         warning("Unable to use monotonic clock with relative timed-waits" \
1750                 " - changes to the time-of-day clock may have adverse affects");
1751       } else {
1752         fatal("pthread_condattr_setclock: %s", os::strerror(status));
1753       }
1754     } else {
1755       _use_clock_monotonic_condattr = true;
1756     }
1757   }
1758 #endif // !SOLARIS
1759 
1760 }
1761 
1762 void os::Posix::init_2(void) {
1763 #ifndef SOLARIS
1764   log_info(os)("Use of CLOCK_MONOTONIC is%s supported",
1765                (_clock_gettime != NULL ? "" : " not"));
1766   log_info(os)("Use of pthread_condattr_setclock is%s supported",
1767                (_pthread_condattr_setclock != NULL ? "" : " not"));
1768   log_info(os)("Relative timed-wait using pthread_cond_timedwait is associated with %s",
1769                _use_clock_monotonic_condattr ? "CLOCK_MONOTONIC" : "the default clock");
1770   sigemptyset(&sigs);
1771 #endif // !SOLARIS
1772 }
1773 
1774 #else // !SUPPORTS_CLOCK_MONOTONIC
1775 
1776 void os::Posix::init(void) {
1777   pthread_init_common();
1778 }
1779 
1780 void os::Posix::init_2(void) {
1781 #ifndef SOLARIS
1782   log_info(os)("Use of CLOCK_MONOTONIC is not supported");
1783   log_info(os)("Use of pthread_condattr_setclock is not supported");
1784   log_info(os)("Relative timed-wait using pthread_cond_timedwait is associated with the default clock");
1785   sigemptyset(&sigs);
1786 #endif // !SOLARIS
1787 }
1788 
1789 #endif // SUPPORTS_CLOCK_MONOTONIC
1790 
1791 // Utility to convert the given timeout to an absolute timespec
1792 // (based on the appropriate clock) to use with pthread_cond_timewait,
1793 // and sem_timedwait().
1794 // The clock queried here must be the clock used to manage the
1795 // timeout of the condition variable or semaphore.
1796 //
1797 // The passed in timeout value is either a relative time in nanoseconds
1798 // or an absolute time in milliseconds. A relative timeout will be
1799 // associated with CLOCK_MONOTONIC if available, unless the real-time clock
1800 // is explicitly requested; otherwise, or if absolute,
1801 // the default time-of-day clock will be used.
1802 
1803 // Given time is a 64-bit value and the time_t used in the timespec is
1804 // sometimes a signed-32-bit value we have to watch for overflow if times
1805 // way in the future are given. Further on Solaris versions
1806 // prior to 10 there is a restriction (see cond_timedwait) that the specified
1807 // number of seconds, in abstime, is less than current_time + 100000000.
1808 // As it will be over 20 years before "now + 100000000" will overflow we can
1809 // ignore overflow and just impose a hard-limit on seconds using the value
1810 // of "now + 100000000". This places a limit on the timeout of about 3.17
1811 // years from "now".
1812 //
1813 #define MAX_SECS 100000000
1814 
1815 // Calculate a new absolute time that is "timeout" nanoseconds from "now".
1816 // "unit" indicates the unit of "now_part_sec" (may be nanos or micros depending
1817 // on which clock API is being used).
1818 static void calc_rel_time(timespec* abstime, jlong timeout, jlong now_sec,
1819                           jlong now_part_sec, jlong unit) {
1820   time_t max_secs = now_sec + MAX_SECS;
1821 
1822   jlong seconds = timeout / NANOUNITS;
1823   timeout %= NANOUNITS; // remaining nanos
1824 
1825   if (seconds >= MAX_SECS) {
1826     // More seconds than we can add, so pin to max_secs.
1827     abstime->tv_sec = max_secs;
1828     abstime->tv_nsec = 0;
1829   } else {
1830     abstime->tv_sec = now_sec  + seconds;
1831     long nanos = (now_part_sec * (NANOUNITS / unit)) + timeout;
1832     if (nanos >= NANOUNITS) { // overflow
1833       abstime->tv_sec += 1;
1834       nanos -= NANOUNITS;
1835     }
1836     abstime->tv_nsec = nanos;
1837   }
1838 }
1839 
1840 // Unpack the given deadline in milliseconds since the epoch, into the given timespec.
1841 // The current time in seconds is also passed in to enforce an upper bound as discussed above.
1842 // This is only used with gettimeofday, when clock_gettime is not available.
1843 static void unpack_abs_time(timespec* abstime, jlong deadline, jlong now_sec) {
1844   time_t max_secs = now_sec + MAX_SECS;
1845 
1846   jlong seconds = deadline / MILLIUNITS;
1847   jlong millis = deadline % MILLIUNITS;
1848 
1849   if (seconds >= max_secs) {
1850     // Absolute seconds exceeds allowed max, so pin to max_secs.
1851     abstime->tv_sec = max_secs;
1852     abstime->tv_nsec = 0;
1853   } else {
1854     abstime->tv_sec = seconds;
1855     abstime->tv_nsec = millis_to_nanos(millis);
1856   }
1857 }
1858 
1859 static jlong millis_to_nanos_bounded(jlong millis) {
1860   // We have to watch for overflow when converting millis to nanos,
1861   // but if millis is that large then we will end up limiting to
1862   // MAX_SECS anyway, so just do that here.
1863   if (millis / MILLIUNITS > MAX_SECS) {
1864     millis = jlong(MAX_SECS) * MILLIUNITS;
1865   }
1866   return millis_to_nanos(millis);
1867 }
1868 
1869 static void to_abstime(timespec* abstime, jlong timeout,
1870                        bool isAbsolute, bool isRealtime) {
1871   DEBUG_ONLY(int max_secs = MAX_SECS;)
1872 
1873   if (timeout < 0) {
1874     timeout = 0;
1875   }
1876 
1877 #ifdef SUPPORTS_CLOCK_MONOTONIC
1878 
1879   clockid_t clock = CLOCK_MONOTONIC;
1880   // need to ensure we have a runtime check for clock_gettime support
1881   if (!isAbsolute && os::Posix::supports_monotonic_clock()) {
1882     if (!_use_clock_monotonic_condattr || isRealtime) {
1883       clock = CLOCK_REALTIME;
1884     }
1885     struct timespec now;
1886     int status = os::Posix::clock_gettime(clock, &now);
1887     assert_status(status == 0, status, "clock_gettime");
1888     calc_rel_time(abstime, timeout, now.tv_sec, now.tv_nsec, NANOUNITS);
1889     DEBUG_ONLY(max_secs += now.tv_sec;)
1890   } else {
1891 
1892 #else
1893 
1894   { // Match the block scope.
1895 
1896 #endif // SUPPORTS_CLOCK_MONOTONIC
1897 
1898     // Time-of-day clock is all we can reliably use.
1899     struct timeval now;
1900     int status = gettimeofday(&now, NULL);
1901     assert_status(status == 0, errno, "gettimeofday");
1902     if (isAbsolute) {
1903       unpack_abs_time(abstime, timeout, now.tv_sec);
1904     } else {
1905       calc_rel_time(abstime, timeout, now.tv_sec, now.tv_usec, MICROUNITS);
1906     }
1907     DEBUG_ONLY(max_secs += now.tv_sec;)
1908   }
1909 
1910   assert(abstime->tv_sec >= 0, "tv_sec < 0");
1911   assert(abstime->tv_sec <= max_secs, "tv_sec > max_secs");
1912   assert(abstime->tv_nsec >= 0, "tv_nsec < 0");
1913   assert(abstime->tv_nsec < NANOUNITS, "tv_nsec >= NANOUNITS");
1914 }
1915 
1916 // Create an absolute time 'millis' milliseconds in the future, using the
1917 // real-time (time-of-day) clock. Used by PosixSemaphore.
1918 void os::Posix::to_RTC_abstime(timespec* abstime, int64_t millis) {
1919   to_abstime(abstime, millis_to_nanos_bounded(millis),
1920              false /* not absolute */,
1921              true  /* use real-time clock */);
1922 }
1923 
1924 // Shared pthread_mutex/cond based PlatformEvent implementation.
1925 // Not currently usable by Solaris.
1926 
1927 #ifndef SOLARIS
1928 
1929 // PlatformEvent
1930 //
1931 // Assumption:
1932 //    Only one parker can exist on an event, which is why we allocate
1933 //    them per-thread. Multiple unparkers can coexist.
1934 //
1935 // _event serves as a restricted-range semaphore.
1936 //   -1 : thread is blocked, i.e. there is a waiter
1937 //    0 : neutral: thread is running or ready,
1938 //        could have been signaled after a wait started
1939 //    1 : signaled - thread is running or ready
1940 //
1941 //    Having three states allows for some detection of bad usage - see
1942 //    comments on unpark().
1943 
1944 os::PlatformEvent::PlatformEvent() {
1945   int status = pthread_cond_init(_cond, _condAttr);
1946   assert_status(status == 0, status, "cond_init");
1947   status = pthread_mutex_init(_mutex, _mutexAttr);
1948   assert_status(status == 0, status, "mutex_init");
1949   _event   = 0;
1950   _nParked = 0;
1951 }
1952 
1953 void os::PlatformEvent::park() {       // AKA "down()"
1954   // Transitions for _event:
1955   //   -1 => -1 : illegal
1956   //    1 =>  0 : pass - return immediately
1957   //    0 => -1 : block; then set _event to 0 before returning
1958 
1959   // Invariant: Only the thread associated with the PlatformEvent
1960   // may call park().
1961   assert(_nParked == 0, "invariant");
1962 
1963   int v;
1964 
1965   // atomically decrement _event
1966   for (;;) {
1967     v = _event;
1968     if (Atomic::cmpxchg(&_event, v, v - 1) == v) break;
1969   }
1970   guarantee(v >= 0, "invariant");
1971 
1972   if (v == 0) { // Do this the hard way by blocking ...
1973     int status = pthread_mutex_lock(_mutex);
1974     assert_status(status == 0, status, "mutex_lock");
1975     guarantee(_nParked == 0, "invariant");
1976     ++_nParked;
1977     while (_event < 0) {
1978       // OS-level "spurious wakeups" are ignored
1979       status = pthread_cond_wait(_cond, _mutex);
1980       assert_status(status == 0 MACOS_ONLY(|| status == ETIMEDOUT),
1981                     status, "cond_wait");
1982     }
1983     --_nParked;
1984 
1985     _event = 0;
1986     status = pthread_mutex_unlock(_mutex);
1987     assert_status(status == 0, status, "mutex_unlock");
1988     // Paranoia to ensure our locked and lock-free paths interact
1989     // correctly with each other.
1990     OrderAccess::fence();
1991   }
1992   guarantee(_event >= 0, "invariant");
1993 }
1994 
1995 int os::PlatformEvent::park(jlong millis) {
1996   // Transitions for _event:
1997   //   -1 => -1 : illegal
1998   //    1 =>  0 : pass - return immediately
1999   //    0 => -1 : block; then set _event to 0 before returning
2000 
2001   // Invariant: Only the thread associated with the Event/PlatformEvent
2002   // may call park().
2003   assert(_nParked == 0, "invariant");
2004 
2005   int v;
2006   // atomically decrement _event
2007   for (;;) {
2008     v = _event;
2009     if (Atomic::cmpxchg(&_event, v, v - 1) == v) break;
2010   }
2011   guarantee(v >= 0, "invariant");
2012 
2013   if (v == 0) { // Do this the hard way by blocking ...
2014     struct timespec abst;
2015     to_abstime(&abst, millis_to_nanos_bounded(millis), false, false);
2016 
2017     int ret = OS_TIMEOUT;
2018     int status = pthread_mutex_lock(_mutex);
2019     assert_status(status == 0, status, "mutex_lock");
2020     guarantee(_nParked == 0, "invariant");
2021     ++_nParked;
2022 
2023     while (_event < 0) {
2024       status = pthread_cond_timedwait(_cond, _mutex, &abst);
2025       assert_status(status == 0 || status == ETIMEDOUT,
2026                     status, "cond_timedwait");
2027       // OS-level "spurious wakeups" are ignored unless the archaic
2028       // FilterSpuriousWakeups is set false. That flag should be obsoleted.
2029       if (!FilterSpuriousWakeups) break;
2030       if (status == ETIMEDOUT) break;
2031     }
2032     --_nParked;
2033 
2034     if (_event >= 0) {
2035       ret = OS_OK;
2036     }
2037 
2038     _event = 0;
2039     status = pthread_mutex_unlock(_mutex);
2040     assert_status(status == 0, status, "mutex_unlock");
2041     // Paranoia to ensure our locked and lock-free paths interact
2042     // correctly with each other.
2043     OrderAccess::fence();
2044     return ret;
2045   }
2046   return OS_OK;
2047 }
2048 
2049 void os::PlatformEvent::unpark() {
2050   // Transitions for _event:
2051   //    0 => 1 : just return
2052   //    1 => 1 : just return
2053   //   -1 => either 0 or 1; must signal target thread
2054   //         That is, we can safely transition _event from -1 to either
2055   //         0 or 1.
2056   // See also: "Semaphores in Plan 9" by Mullender & Cox
2057   //
2058   // Note: Forcing a transition from "-1" to "1" on an unpark() means
2059   // that it will take two back-to-back park() calls for the owning
2060   // thread to block. This has the benefit of forcing a spurious return
2061   // from the first park() call after an unpark() call which will help
2062   // shake out uses of park() and unpark() without checking state conditions
2063   // properly. This spurious return doesn't manifest itself in any user code
2064   // but only in the correctly written condition checking loops of ObjectMonitor,
2065   // Mutex/Monitor, Thread::muxAcquire and JavaThread::sleep
2066 
2067   if (Atomic::xchg(&_event, 1) >= 0) return;
2068 
2069   int status = pthread_mutex_lock(_mutex);
2070   assert_status(status == 0, status, "mutex_lock");
2071   int anyWaiters = _nParked;
2072   assert(anyWaiters == 0 || anyWaiters == 1, "invariant");
2073   status = pthread_mutex_unlock(_mutex);
2074   assert_status(status == 0, status, "mutex_unlock");
2075 
2076   // Note that we signal() *after* dropping the lock for "immortal" Events.
2077   // This is safe and avoids a common class of futile wakeups.  In rare
2078   // circumstances this can cause a thread to return prematurely from
2079   // cond_{timed}wait() but the spurious wakeup is benign and the victim
2080   // will simply re-test the condition and re-park itself.
2081   // This provides particular benefit if the underlying platform does not
2082   // provide wait morphing.
2083 
2084   if (anyWaiters != 0) {
2085     status = pthread_cond_signal(_cond);
2086     assert_status(status == 0, status, "cond_signal");
2087   }
2088 }
2089 
2090 // JSR166 support
2091 
2092  os::PlatformParker::PlatformParker() {
2093   int status;
2094   status = pthread_cond_init(&_cond[REL_INDEX], _condAttr);
2095   assert_status(status == 0, status, "cond_init rel");
2096   status = pthread_cond_init(&_cond[ABS_INDEX], NULL);
2097   assert_status(status == 0, status, "cond_init abs");
2098   status = pthread_mutex_init(_mutex, _mutexAttr);
2099   assert_status(status == 0, status, "mutex_init");
2100   _cur_index = -1; // mark as unused
2101 }
2102 
2103 // Parker::park decrements count if > 0, else does a condvar wait.  Unpark
2104 // sets count to 1 and signals condvar.  Only one thread ever waits
2105 // on the condvar. Contention seen when trying to park implies that someone
2106 // is unparking you, so don't wait. And spurious returns are fine, so there
2107 // is no need to track notifications.
2108 
2109 void Parker::park(bool isAbsolute, jlong time) {
2110 
2111   // Optional fast-path check:
2112   // Return immediately if a permit is available.
2113   // We depend on Atomic::xchg() having full barrier semantics
2114   // since we are doing a lock-free update to _counter.
2115   if (Atomic::xchg(&_counter, 0) > 0) return;
2116 
2117   Thread* thread = Thread::current();
2118   assert(thread->is_Java_thread(), "Must be JavaThread");
2119   JavaThread *jt = (JavaThread *)thread;
2120 
2121   // Optional optimization -- avoid state transitions if there's
2122   // an interrupt pending.
2123   if (jt->is_interrupted(false)) {
2124     return;
2125   }
2126 
2127   // Next, demultiplex/decode time arguments
2128   struct timespec absTime;
2129   if (time < 0 || (isAbsolute && time == 0)) { // don't wait at all
2130     return;
2131   }
2132   if (time > 0) {
2133     to_abstime(&absTime, time, isAbsolute, false);
2134   }
2135 
2136   // Enter safepoint region
2137   // Beware of deadlocks such as 6317397.
2138   // The per-thread Parker:: mutex is a classic leaf-lock.
2139   // In particular a thread must never block on the Threads_lock while
2140   // holding the Parker:: mutex.  If safepoints are pending both the
2141   // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
2142   ThreadBlockInVM tbivm(jt);
2143 
2144   // Can't access interrupt state now that we are _thread_blocked. If we've
2145   // been interrupted since we checked above then _counter will be > 0.
2146 
2147   // Don't wait if cannot get lock since interference arises from
2148   // unparking.
2149   if (pthread_mutex_trylock(_mutex) != 0) {
2150     return;
2151   }
2152 
2153   int status;
2154   if (_counter > 0)  { // no wait needed
2155     _counter = 0;
2156     status = pthread_mutex_unlock(_mutex);
2157     assert_status(status == 0, status, "invariant");
2158     // Paranoia to ensure our locked and lock-free paths interact
2159     // correctly with each other and Java-level accesses.
2160     OrderAccess::fence();
2161     return;
2162   }
2163 
2164   OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
2165   jt->set_suspend_equivalent();
2166   // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2167 
2168   assert(_cur_index == -1, "invariant");
2169   if (time == 0) {
2170     _cur_index = REL_INDEX; // arbitrary choice when not timed
2171     status = pthread_cond_wait(&_cond[_cur_index], _mutex);
2172     assert_status(status == 0 MACOS_ONLY(|| status == ETIMEDOUT),
2173                   status, "cond_wait");
2174   }
2175   else {
2176     _cur_index = isAbsolute ? ABS_INDEX : REL_INDEX;
2177     status = pthread_cond_timedwait(&_cond[_cur_index], _mutex, &absTime);
2178     assert_status(status == 0 || status == ETIMEDOUT,
2179                   status, "cond_timedwait");
2180   }
2181   _cur_index = -1;
2182 
2183   _counter = 0;
2184   status = pthread_mutex_unlock(_mutex);
2185   assert_status(status == 0, status, "invariant");
2186   // Paranoia to ensure our locked and lock-free paths interact
2187   // correctly with each other and Java-level accesses.
2188   OrderAccess::fence();
2189 
2190   // If externally suspended while waiting, re-suspend
2191   if (jt->handle_special_suspend_equivalent_condition()) {
2192     jt->java_suspend_self();
2193   }
2194 }
2195 
2196 void Parker::unpark() {
2197   int status = pthread_mutex_lock(_mutex);
2198   assert_status(status == 0, status, "invariant");
2199   const int s = _counter;
2200   _counter = 1;
2201   // must capture correct index before unlocking
2202   int index = _cur_index;
2203   status = pthread_mutex_unlock(_mutex);
2204   assert_status(status == 0, status, "invariant");
2205 
2206   // Note that we signal() *after* dropping the lock for "immortal" Events.
2207   // This is safe and avoids a common class of futile wakeups.  In rare
2208   // circumstances this can cause a thread to return prematurely from
2209   // cond_{timed}wait() but the spurious wakeup is benign and the victim
2210   // will simply re-test the condition and re-park itself.
2211   // This provides particular benefit if the underlying platform does not
2212   // provide wait morphing.
2213 
2214   if (s < 1 && index != -1) {
2215     // thread is definitely parked
2216     status = pthread_cond_signal(&_cond[index]);
2217     assert_status(status == 0, status, "invariant");
2218   }
2219 }
2220 
2221 // Platform Mutex/Monitor implementation
2222 
2223 #if PLATFORM_MONITOR_IMPL_INDIRECT
2224 
2225 os::PlatformMutex::Mutex::Mutex() : _next(NULL) {
2226   int status = pthread_mutex_init(&_mutex, _mutexAttr);
2227   assert_status(status == 0, status, "mutex_init");
2228 }
2229 
2230 os::PlatformMutex::Mutex::~Mutex() {
2231   int status = pthread_mutex_destroy(&_mutex);
2232   assert_status(status == 0, status, "mutex_destroy");
2233 }
2234 
2235 pthread_mutex_t os::PlatformMutex::_freelist_lock;
2236 os::PlatformMutex::Mutex* os::PlatformMutex::_mutex_freelist = NULL;
2237 
2238 void os::PlatformMutex::init() {
2239   int status = pthread_mutex_init(&_freelist_lock, _mutexAttr);
2240   assert_status(status == 0, status, "freelist lock init");
2241 }
2242 
2243 struct os::PlatformMutex::WithFreeListLocked : public StackObj {
2244   WithFreeListLocked() {
2245     int status = pthread_mutex_lock(&_freelist_lock);
2246     assert_status(status == 0, status, "freelist lock");
2247   }
2248 
2249   ~WithFreeListLocked() {
2250     int status = pthread_mutex_unlock(&_freelist_lock);
2251     assert_status(status == 0, status, "freelist unlock");
2252   }
2253 };
2254 
2255 os::PlatformMutex::PlatformMutex() {
2256   {
2257     WithFreeListLocked wfl;
2258     _impl = _mutex_freelist;
2259     if (_impl != NULL) {
2260       _mutex_freelist = _impl->_next;
2261       _impl->_next = NULL;
2262       return;
2263     }
2264   }
2265   _impl = new Mutex();
2266 }
2267 
2268 os::PlatformMutex::~PlatformMutex() {
2269   WithFreeListLocked wfl;
2270   assert(_impl->_next == NULL, "invariant");
2271   _impl->_next = _mutex_freelist;
2272   _mutex_freelist = _impl;
2273 }
2274 
2275 os::PlatformMonitor::Cond::Cond() : _next(NULL) {
2276   int status = pthread_cond_init(&_cond, _condAttr);
2277   assert_status(status == 0, status, "cond_init");
2278 }
2279 
2280 os::PlatformMonitor::Cond::~Cond() {
2281   int status = pthread_cond_destroy(&_cond);
2282   assert_status(status == 0, status, "cond_destroy");
2283 }
2284 
2285 os::PlatformMonitor::Cond* os::PlatformMonitor::_cond_freelist = NULL;
2286 
2287 os::PlatformMonitor::PlatformMonitor() {
2288   {
2289     WithFreeListLocked wfl;
2290     _impl = _cond_freelist;
2291     if (_impl != NULL) {
2292       _cond_freelist = _impl->_next;
2293       _impl->_next = NULL;
2294       return;
2295     }
2296   }
2297   _impl = new Cond();
2298 }
2299 
2300 os::PlatformMonitor::~PlatformMonitor() {
2301   WithFreeListLocked wfl;
2302   assert(_impl->_next == NULL, "invariant");
2303   _impl->_next = _cond_freelist;
2304   _cond_freelist = _impl;
2305 }
2306 
2307 #else
2308 
2309 os::PlatformMutex::PlatformMutex() {
2310   int status = pthread_mutex_init(&_mutex, _mutexAttr);
2311   assert_status(status == 0, status, "mutex_init");
2312 }
2313 
2314 os::PlatformMutex::~PlatformMutex() {
2315   int status = pthread_mutex_destroy(&_mutex);
2316   assert_status(status == 0, status, "mutex_destroy");
2317 }
2318 
2319 os::PlatformMonitor::PlatformMonitor() {
2320   int status = pthread_cond_init(&_cond, _condAttr);
2321   assert_status(status == 0, status, "cond_init");
2322 }
2323 
2324 os::PlatformMonitor::~PlatformMonitor() {
2325   int status = pthread_cond_destroy(&_cond);
2326   assert_status(status == 0, status, "cond_destroy");
2327 }
2328 
2329 #endif // PLATFORM_MONITOR_IMPL_INDIRECT
2330 
2331 // Must already be locked
2332 int os::PlatformMonitor::wait(jlong millis) {
2333   assert(millis >= 0, "negative timeout");
2334   if (millis > 0) {
2335     struct timespec abst;
2336     // We have to watch for overflow when converting millis to nanos,
2337     // but if millis is that large then we will end up limiting to
2338     // MAX_SECS anyway, so just do that here.
2339     if (millis / MILLIUNITS > MAX_SECS) {
2340       millis = jlong(MAX_SECS) * MILLIUNITS;
2341     }
2342     to_abstime(&abst, millis_to_nanos(millis), false, false);
2343 
2344     int ret = OS_TIMEOUT;
2345     int status = pthread_cond_timedwait(cond(), mutex(), &abst);
2346     assert_status(status == 0 || status == ETIMEDOUT,
2347                   status, "cond_timedwait");
2348     if (status == 0) {
2349       ret = OS_OK;
2350     }
2351     return ret;
2352   } else {
2353     int status = pthread_cond_wait(cond(), mutex());
2354     assert_status(status == 0 MACOS_ONLY(|| status == ETIMEDOUT),
2355                   status, "cond_wait");
2356     return OS_OK;
2357   }
2358 }
2359 
2360 #endif // !SOLARIS