1 /*
   2  * Copyright (c) 1997, 2020, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 
  27 /*
  28  *  DESCRIPTION
  29  *    Calculates cliping boundary for Affine functions.
  30  *
  31  */
  32 
  33 #include "mlib_image.h"
  34 #include "mlib_SysMath.h"
  35 #include "mlib_ImageAffine.h"
  36 #include "safe_math.h"
  37 
  38 
  39 /***************************************************************/
  40 mlib_status mlib_AffineEdges(mlib_affine_param *param,
  41                              const mlib_image  *dst,
  42                              const mlib_image  *src,
  43                              void              *buff_lcl,
  44                              mlib_s32          buff_size,
  45                              mlib_s32          kw,
  46                              mlib_s32          kh,
  47                              mlib_s32          kw1,
  48                              mlib_s32          kh1,
  49                              mlib_edge         edge,
  50                              const mlib_d64    *mtx,
  51                              mlib_s32          shiftx,
  52                              mlib_s32          shifty)
  53 {
  54   mlib_u8 *buff = buff_lcl;
  55   mlib_u8 **lineAddr = param->lineAddr;
  56   mlib_s32 srcWidth, dstWidth, srcHeight, dstHeight, srcYStride, dstYStride;
  57   mlib_s32 *leftEdges, *rightEdges, *xStarts, *yStarts, bsize0, bsize1 = 0;
  58   mlib_u8 *srcData, *dstData;
  59   mlib_u8 *paddings;
  60   void *warp_tbl = NULL;
  61   mlib_s32 yStart = 0, yFinish = -1, dX, dY;
  62 
  63   mlib_d64 xClip, yClip, wClip, hClip;
  64   mlib_d64 delta = 0.;
  65   mlib_d64 minX, minY, maxX, maxY;
  66 
  67   mlib_d64 coords[4][2];
  68   mlib_d64 a = mtx[0], b = mtx[1], tx = mtx[2], c = mtx[3], d = mtx[4], ty = mtx[5];
  69   mlib_d64 a2, b2, tx2, c2, d2, ty2;
  70   mlib_d64 dx, dy, div;
  71   mlib_s32 sdx, sdy;
  72   mlib_d64 dTop;
  73   mlib_d64 val0;
  74   mlib_s32 top, bot;
  75   mlib_s32 topIdx, max_xsize = 0;
  76   mlib_s32 i, j, t;
  77 
  78   srcData = mlib_ImageGetData(src);
  79   dstData = mlib_ImageGetData(dst);
  80   srcWidth = mlib_ImageGetWidth(src);
  81   srcHeight = mlib_ImageGetHeight(src);
  82   dstWidth = mlib_ImageGetWidth(dst);
  83   dstHeight = mlib_ImageGetHeight(dst);
  84   srcYStride = mlib_ImageGetStride(src);
  85   dstYStride = mlib_ImageGetStride(dst);
  86   paddings = mlib_ImageGetPaddings(src);
  87 
  88   /* All the transformation matrix parameters should be finite. if not, return failure */
  89   if (!(IS_FINITE(a) && IS_FINITE(b) && IS_FINITE(c) && IS_FINITE(d) &&
  90         IS_FINITE(tx) && IS_FINITE(ty))) {
  91     return MLIB_FAILURE;
  92   }
  93 
  94   if (srcWidth >= (1 << 15) || srcHeight >= (1 << 15)) {
  95     return MLIB_FAILURE;
  96   }
  97 
  98   div = a * d - b * c;
  99 
 100   if (div == 0.0) {
 101     return MLIB_FAILURE;
 102   }
 103 
 104   bsize0 = (dstHeight * sizeof(mlib_s32) + 7) & ~7;
 105 
 106   if (lineAddr == NULL) {
 107     bsize1 = ((srcHeight + 4 * kh) * sizeof(mlib_u8 *) + 7) & ~7;
 108   }
 109 
 110   param->buff_malloc = NULL;
 111 
 112   if ((4 * bsize0 + bsize1) > buff_size) {
 113     buff = param->buff_malloc = mlib_malloc(4 * bsize0 + bsize1);
 114 
 115     if (buff == NULL)
 116       return MLIB_FAILURE;
 117   }
 118 
 119   leftEdges = (mlib_s32 *) (buff);
 120   rightEdges = (mlib_s32 *) (buff += bsize0);
 121   xStarts = (mlib_s32 *) (buff += bsize0);
 122   yStarts = (mlib_s32 *) (buff += bsize0);
 123 
 124   if (lineAddr == NULL) {
 125     mlib_u8 *srcLinePtr = srcData;
 126     lineAddr = (mlib_u8 **) (buff += bsize0);
 127     for (i = 0; i < 2 * kh; i++)
 128       lineAddr[i] = srcLinePtr;
 129     lineAddr += 2 * kh;
 130     for (i = 0; i < srcHeight - 1; i++) {
 131       lineAddr[i] = srcLinePtr;
 132       srcLinePtr += srcYStride;
 133     }
 134 
 135     for (i = srcHeight - 1; i < srcHeight + 2 * kh; i++)
 136       lineAddr[i] = srcLinePtr;
 137   }
 138 
 139   if ((mlib_s32) edge < 0) {                               /* process edges */
 140     minX = 0;
 141     minY = 0;
 142     maxX = srcWidth;
 143     maxY = srcHeight;
 144   }
 145   else {
 146 
 147     if (kw > 1)
 148       delta = -0.5;                                        /* for MLIB_NEAREST filter delta = 0. */
 149 
 150     minX = (kw1 - delta);
 151     minY = (kh1 - delta);
 152     maxX = srcWidth - ((kw - 1) - (kw1 - delta));
 153     maxY = srcHeight - ((kh - 1) - (kh1 - delta));
 154 
 155     if (edge == MLIB_EDGE_SRC_PADDED) {
 156       if (minX < paddings[0])
 157         minX = paddings[0];
 158 
 159       if (minY < paddings[1])
 160         minY = paddings[1];
 161 
 162       if (maxX > (srcWidth - paddings[2]))
 163         maxX = srcWidth - paddings[2];
 164 
 165       if (maxY > (srcHeight - paddings[3]))
 166         maxY = srcHeight - paddings[3];
 167     }
 168   }
 169 
 170   xClip = minX;
 171   yClip = minY;
 172   wClip = maxX;
 173   hClip = maxY;
 174 
 175 /*
 176  *   STORE_PARAM(param, src);
 177  *   STORE_PARAM(param, dst);
 178  */
 179   param->src = (void *)src;
 180   param->dst = (void *)dst;
 181   STORE_PARAM(param, lineAddr);
 182   STORE_PARAM(param, dstData);
 183   STORE_PARAM(param, srcYStride);
 184   STORE_PARAM(param, dstYStride);
 185   STORE_PARAM(param, leftEdges);
 186   STORE_PARAM(param, rightEdges);
 187   STORE_PARAM(param, xStarts);
 188   STORE_PARAM(param, yStarts);
 189   STORE_PARAM(param, max_xsize);
 190   STORE_PARAM(param, yStart);
 191   STORE_PARAM(param, yFinish);
 192   STORE_PARAM(param, warp_tbl);
 193 
 194   if ((xClip >= wClip) || (yClip >= hClip)) {
 195     return MLIB_SUCCESS;
 196   }
 197 
 198   a2 = d;
 199   b2 = -b;
 200   tx2 = (-d * tx + b * ty);
 201   c2 = -c;
 202   d2 = a;
 203   ty2 = (c * tx - a * ty);
 204 
 205   dx = a2;
 206   dy = c2;
 207 
 208   tx -= 0.5;
 209   ty -= 0.5;
 210 
 211   coords[0][0] = xClip * a + yClip * b + tx;
 212   coords[0][1] = xClip * c + yClip * d + ty;
 213 
 214   coords[2][0] = wClip * a + hClip * b + tx;
 215   coords[2][1] = wClip * c + hClip * d + ty;
 216 
 217   if (div > 0) {
 218     coords[1][0] = wClip * a + yClip * b + tx;
 219     coords[1][1] = wClip * c + yClip * d + ty;
 220 
 221     coords[3][0] = xClip * a + hClip * b + tx;
 222     coords[3][1] = xClip * c + hClip * d + ty;
 223   }
 224   else {
 225     coords[3][0] = wClip * a + yClip * b + tx;
 226     coords[3][1] = wClip * c + yClip * d + ty;
 227 
 228     coords[1][0] = xClip * a + hClip * b + tx;
 229     coords[1][1] = xClip * c + hClip * d + ty;
 230   }
 231 
 232   topIdx = 0;
 233   for (i = 1; i < 4; i++) {
 234 
 235     if (coords[i][1] < coords[topIdx][1])
 236       topIdx = i;
 237   }
 238 
 239   dTop = coords[topIdx][1];
 240   val0 = dTop;
 241   SAT32(top);
 242   bot = -1;
 243 
 244   if (top >= dstHeight) {
 245     return MLIB_SUCCESS;
 246   }
 247 
 248   if (dTop >= 0.0) {
 249     mlib_d64 xLeft, xRight, x;
 250     mlib_s32 nextIdx;
 251 
 252     if (dTop == top) {
 253       xLeft = coords[topIdx][0];
 254       xRight = coords[topIdx][0];
 255       nextIdx = (topIdx + 1) & 0x3;
 256 
 257       if (dTop == coords[nextIdx][1]) {
 258         x = coords[nextIdx][0];
 259         xLeft = (xLeft <= x) ? xLeft : x;
 260         xRight = (xRight >= x) ? xRight : x;
 261       }
 262 
 263       nextIdx = (topIdx - 1) & 0x3;
 264 
 265       if (dTop == coords[nextIdx][1]) {
 266         x = coords[nextIdx][0];
 267         xLeft = (xLeft <= x) ? xLeft : x;
 268         xRight = (xRight >= x) ? xRight : x;
 269       }
 270 
 271       val0 = xLeft;
 272       SAT32(t);
 273       leftEdges[top] = (t >= xLeft) ? t : ++t;
 274 
 275       if (xLeft >= MLIB_S32_MAX)
 276         leftEdges[top] = MLIB_S32_MAX;
 277 
 278       val0 = xRight;
 279       SAT32(rightEdges[top]);
 280     }
 281     else
 282       top++;
 283   }
 284   else
 285     top = 0;
 286 
 287   for (i = 0; i < 2; i++) {
 288     mlib_d64 dY1 = coords[(topIdx - i) & 0x3][1];
 289     mlib_d64 dX1 = coords[(topIdx - i) & 0x3][0];
 290     mlib_d64 dY2 = coords[(topIdx - i - 1) & 0x3][1];
 291     mlib_d64 dX2 = coords[(topIdx - i - 1) & 0x3][0];
 292     mlib_d64 x = dX1, slope = (dX2 - dX1) / (dY2 - dY1);
 293     mlib_s32 y1;
 294     mlib_s32 y2;
 295 
 296     if (dY1 == dY2)
 297       continue;
 298 
 299     if (!(IS_FINITE(slope))) {
 300       continue;
 301     }
 302 
 303     if (dY1 < 0.0)
 304       y1 = 0;
 305     else {
 306       val0 = dY1 + 1;
 307       SAT32(y1);
 308     }
 309 
 310     val0 = dY2;
 311     SAT32(y2);
 312 
 313     if (y2 >= dstHeight)
 314       y2 = (mlib_s32) (dstHeight - 1);
 315 
 316     x += slope * (y1 - dY1);
 317     for (j = y1; j <= y2; j++) {
 318       val0 = x;
 319       SAT32(t);
 320       leftEdges[j] = (t >= x) ? t : ++t;
 321 
 322       if (x >= MLIB_S32_MAX)
 323         leftEdges[j] = MLIB_S32_MAX;
 324       x += slope;
 325     }
 326   }
 327 
 328   for (i = 0; i < 2; i++) {
 329     mlib_d64 dY1 = coords[(topIdx + i) & 0x3][1];
 330     mlib_d64 dX1 = coords[(topIdx + i) & 0x3][0];
 331     mlib_d64 dY2 = coords[(topIdx + i + 1) & 0x3][1];
 332     mlib_d64 dX2 = coords[(topIdx + i + 1) & 0x3][0];
 333     mlib_d64 x = dX1, slope = (dX2 - dX1) / (dY2 - dY1);
 334     mlib_s32 y1;
 335     mlib_s32 y2;
 336 
 337     if (dY1 == dY2)
 338       continue;
 339 
 340     if (!(IS_FINITE(slope))) {
 341       continue;
 342     }
 343 
 344     if (dY1 < 0.0)
 345       y1 = 0;
 346     else {
 347       val0 = dY1 + 1;
 348       SAT32(y1);
 349     }
 350 
 351     val0 = dY2;
 352     SAT32(y2);
 353 
 354     if (y2 >= dstHeight)
 355       y2 = (mlib_s32) (dstHeight - 1);
 356 
 357     x += slope * (y1 - dY1);
 358     for (j = y1; j <= y2; j++) {
 359       val0 = x;
 360       SAT32(rightEdges[j]);
 361       x += slope;
 362     }
 363 
 364     bot = y2;
 365   }
 366 
 367   {
 368     mlib_d64 dxCl = xClip * div;
 369     mlib_d64 dyCl = yClip * div;
 370     mlib_d64 dwCl = wClip * div;
 371     mlib_d64 dhCl = hClip * div;
 372 
 373     mlib_s32 xCl = (mlib_s32) (xClip + delta);
 374     mlib_s32 yCl = (mlib_s32) (yClip + delta);
 375     mlib_s32 wCl = (mlib_s32) (wClip + delta);
 376     mlib_s32 hCl = (mlib_s32) (hClip + delta);
 377 
 378     /*
 379      * mlib_s32 xCl = (mlib_s32)(xClip + delta);
 380      * mlib_s32 yCl = (mlib_s32)(yClip + delta);
 381      * mlib_s32 wCl = (mlib_s32)(wClip);
 382      * mlib_s32 hCl = (mlib_s32)(hClip);
 383      */
 384 
 385     if (edge == MLIB_EDGE_SRC_PADDED) {
 386       xCl = kw1;
 387       yCl = kh1;
 388       wCl = (mlib_s32) (srcWidth - ((kw - 1) - kw1));
 389       hCl = (mlib_s32) (srcHeight - ((kh - 1) - kh1));
 390     }
 391 
 392     div = 1.0 / div;
 393 
 394     sdx = (mlib_s32) (a2 * div * (1 << shiftx));
 395     sdy = (mlib_s32) (c2 * div * (1 << shifty));
 396 
 397     if (div > 0) {
 398 
 399       for (i = top; i <= bot; i++) {
 400         mlib_s32 xLeft = leftEdges[i];
 401         mlib_s32 xRight = rightEdges[i];
 402         mlib_s32 xs, ys, x_e, y_e, x_s, y_s;
 403         mlib_d64 dxs, dys, dxe, dye;
 404         mlib_d64 xl, ii, xr;
 405 
 406         xLeft = (xLeft < 0) ? 0 : xLeft;
 407         xRight = (xRight >= dstWidth) ? (mlib_s32) (dstWidth - 1) : xRight;
 408 
 409         xl = xLeft + 0.5;
 410         ii = i + 0.5;
 411         xr = xRight + 0.5;
 412         dxs = xl * a2 + ii * b2 + tx2;
 413         dys = xl * c2 + ii * d2 + ty2;
 414 
 415         if ((dxs < dxCl) || (dxs >= dwCl) || (dys < dyCl) || (dys >= dhCl)) {
 416           dxs += dx;
 417           dys += dy;
 418           xLeft++;
 419 
 420           if ((dxs < dxCl) || (dxs >= dwCl) || (dys < dyCl) || (dys >= dhCl))
 421             xRight = -1;
 422         }
 423 
 424         dxe = xr * a2 + ii * b2 + tx2;
 425         dye = xr * c2 + ii * d2 + ty2;
 426 
 427         if ((dxe < dxCl) || (dxe >= dwCl) || (dye < dyCl) || (dye >= dhCl)) {
 428           dxe -= dx;
 429           dye -= dy;
 430           xRight--;
 431 
 432           if ((dxe < dxCl) || (dxe >= dwCl) || (dye < dyCl) || (dye >= dhCl))
 433             xRight = -1;
 434         }
 435 
 436         xs = (mlib_s32) ((dxs * div + delta) * (1 << shiftx));
 437         x_s = xs >> shiftx;
 438 
 439         ys = (mlib_s32) ((dys * div + delta) * (1 << shifty));
 440         y_s = ys >> shifty;
 441 
 442         if (x_s < xCl)
 443           xs = (xCl << shiftx);
 444         else if (x_s >= wCl)
 445           xs = ((wCl << shiftx) - 1);
 446 
 447         if (y_s < yCl)
 448           ys = (yCl << shifty);
 449         else if (y_s >= hCl)
 450           ys = ((hCl << shifty) - 1);
 451 
 452         if (xRight >= xLeft) {
 453           x_e = ((xRight - xLeft) * sdx + xs) >> shiftx;
 454           y_e = ((xRight - xLeft) * sdy + ys) >> shifty;
 455 
 456           if ((x_e < xCl) || (x_e >= wCl)) {
 457             if (sdx > 0)
 458               sdx -= 1;
 459             else
 460               sdx += 1;
 461           }
 462 
 463           if ((y_e < yCl) || (y_e >= hCl)) {
 464             if (sdy > 0)
 465               sdy -= 1;
 466             else
 467               sdy += 1;
 468           }
 469         }
 470 
 471         leftEdges[i] = xLeft;
 472         rightEdges[i] = xRight;
 473         xStarts[i] = xs;
 474         yStarts[i] = ys;
 475 
 476         if ((xRight - xLeft + 1) > max_xsize)
 477           max_xsize = (xRight - xLeft + 1);
 478       }
 479     }
 480     else {
 481 
 482       for (i = top; i <= bot; i++) {
 483         mlib_s32 xLeft = leftEdges[i];
 484         mlib_s32 xRight = rightEdges[i];
 485         mlib_s32 xs, ys, x_e, y_e, x_s, y_s;
 486         mlib_d64 dxs, dys, dxe, dye;
 487         mlib_d64 xl, ii, xr;
 488 
 489         xLeft = (xLeft < 0) ? 0 : xLeft;
 490         xRight = (xRight >= dstWidth) ? (mlib_s32) (dstWidth - 1) : xRight;
 491 
 492         xl = xLeft + 0.5;
 493         ii = i + 0.5;
 494         xr = xRight + 0.5;
 495         dxs = xl * a2 + ii * b2 + tx2;
 496         dys = xl * c2 + ii * d2 + ty2;
 497 
 498         if ((dxs > dxCl) || (dxs <= dwCl) || (dys > dyCl) || (dys <= dhCl)) {
 499           dxs += dx;
 500           dys += dy;
 501           xLeft++;
 502 
 503           if ((dxs > dxCl) || (dxs <= dwCl) || (dys > dyCl) || (dys <= dhCl))
 504             xRight = -1;
 505         }
 506 
 507         dxe = xr * a2 + ii * b2 + tx2;
 508         dye = xr * c2 + ii * d2 + ty2;
 509 
 510         if ((dxe > dxCl) || (dxe <= dwCl) || (dye > dyCl) || (dye <= dhCl)) {
 511           dxe -= dx;
 512           dye -= dy;
 513           xRight--;
 514 
 515           if ((dxe > dxCl) || (dxe <= dwCl) || (dye > dyCl) || (dye <= dhCl))
 516             xRight = -1;
 517         }
 518 
 519         xs = (mlib_s32) ((dxs * div + delta) * (1 << shiftx));
 520         x_s = xs >> shiftx;
 521 
 522         if (x_s < xCl)
 523           xs = (xCl << shiftx);
 524         else if (x_s >= wCl)
 525           xs = ((wCl << shiftx) - 1);
 526 
 527         ys = (mlib_s32) ((dys * div + delta) * (1 << shifty));
 528         y_s = ys >> shifty;
 529 
 530         if (y_s < yCl)
 531           ys = (yCl << shifty);
 532         else if (y_s >= hCl)
 533           ys = ((hCl << shifty) - 1);
 534 
 535         if (xRight >= xLeft) {
 536           x_e = ((xRight - xLeft) * sdx + xs) >> shiftx;
 537           y_e = ((xRight - xLeft) * sdy + ys) >> shifty;
 538 
 539           if ((x_e < xCl) || (x_e >= wCl)) {
 540             if (sdx > 0)
 541               sdx -= 1;
 542             else
 543               sdx += 1;
 544           }
 545 
 546           if ((y_e < yCl) || (y_e >= hCl)) {
 547             if (sdy > 0)
 548               sdy -= 1;
 549             else
 550               sdy += 1;
 551           }
 552         }
 553 
 554         leftEdges[i] = xLeft;
 555         rightEdges[i] = xRight;
 556         xStarts[i] = xs;
 557         yStarts[i] = ys;
 558 
 559         if ((xRight - xLeft + 1) > max_xsize)
 560           max_xsize = (xRight - xLeft + 1);
 561       }
 562     }
 563   }
 564 
 565   while (leftEdges[top] > rightEdges[top] && top <= bot)
 566     top++;
 567 
 568   if (top < bot)
 569     while (leftEdges[bot] > rightEdges[bot])
 570       bot--;
 571 
 572   yStart = top;
 573   yFinish = bot;
 574   dX = sdx;
 575   dY = sdy;
 576 
 577   dstData += (yStart - 1) * dstYStride;
 578 
 579   STORE_PARAM(param, dstData);
 580   STORE_PARAM(param, yStart);
 581   STORE_PARAM(param, yFinish);
 582   STORE_PARAM(param, max_xsize);
 583   STORE_PARAM(param, dX);
 584   STORE_PARAM(param, dY);
 585 
 586   return MLIB_SUCCESS;
 587 }
 588 
 589 /***************************************************************/