1 /*
   2  * Copyright (c) 1999, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // no precompiled headers
  26 #include "classfile/classLoader.hpp"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "classfile/vmSymbols.hpp"
  29 #include "code/icBuffer.hpp"
  30 #include "code/vtableStubs.hpp"
  31 #include "compiler/compileBroker.hpp"
  32 #include "compiler/disassembler.hpp"
  33 #include "interpreter/interpreter.hpp"
  34 #include "jvm_linux.h"
  35 #include "logging/log.hpp"
  36 #include "memory/allocation.inline.hpp"
  37 #include "memory/filemap.hpp"
  38 #include "oops/oop.inline.hpp"
  39 #include "os_linux.inline.hpp"
  40 #include "os_share_linux.hpp"
  41 #include "prims/jniFastGetField.hpp"
  42 #include "prims/jvm.h"
  43 #include "prims/jvm_misc.hpp"
  44 #include "runtime/arguments.hpp"
  45 #include "runtime/atomic.hpp"
  46 #include "runtime/extendedPC.hpp"
  47 #include "runtime/globals.hpp"
  48 #include "runtime/interfaceSupport.hpp"
  49 #include "runtime/init.hpp"
  50 #include "runtime/java.hpp"
  51 #include "runtime/javaCalls.hpp"
  52 #include "runtime/mutexLocker.hpp"
  53 #include "runtime/objectMonitor.hpp"
  54 #include "runtime/orderAccess.inline.hpp"
  55 #include "runtime/osThread.hpp"
  56 #include "runtime/perfMemory.hpp"
  57 #include "runtime/sharedRuntime.hpp"
  58 #include "runtime/statSampler.hpp"
  59 #include "runtime/stubRoutines.hpp"
  60 #include "runtime/thread.inline.hpp"
  61 #include "runtime/threadCritical.hpp"
  62 #include "runtime/timer.hpp"
  63 #include "semaphore_posix.hpp"
  64 #include "services/attachListener.hpp"
  65 #include "services/memTracker.hpp"
  66 #include "services/runtimeService.hpp"
  67 #include "utilities/decoder.hpp"
  68 #include "utilities/defaultStream.hpp"
  69 #include "utilities/events.hpp"
  70 #include "utilities/elfFile.hpp"
  71 #include "utilities/growableArray.hpp"
  72 #include "utilities/macros.hpp"
  73 #include "utilities/vmError.hpp"
  74 
  75 // put OS-includes here
  76 # include <sys/types.h>
  77 # include <sys/mman.h>
  78 # include <sys/stat.h>
  79 # include <sys/select.h>
  80 # include <pthread.h>
  81 # include <signal.h>
  82 # include <errno.h>
  83 # include <dlfcn.h>
  84 # include <stdio.h>
  85 # include <unistd.h>
  86 # include <sys/resource.h>
  87 # include <pthread.h>
  88 # include <sys/stat.h>
  89 # include <sys/time.h>
  90 # include <sys/times.h>
  91 # include <sys/utsname.h>
  92 # include <sys/socket.h>
  93 # include <sys/wait.h>
  94 # include <pwd.h>
  95 # include <poll.h>
  96 # include <semaphore.h>
  97 # include <fcntl.h>
  98 # include <string.h>
  99 # include <syscall.h>
 100 # include <sys/sysinfo.h>
 101 # include <sys/ipc.h>
 102 # include <sys/shm.h>
 103 # include <link.h>
 104 # include <stdint.h>
 105 # include <inttypes.h>
 106 # include <sys/ioctl.h>
 107 
 108 #ifndef _GNU_SOURCE
 109   #define _GNU_SOURCE
 110   #include <sched.h>
 111   #undef _GNU_SOURCE
 112 #else
 113   #include <sched.h>
 114 #endif
 115 
 116 // if RUSAGE_THREAD for getrusage() has not been defined, do it here. The code calling
 117 // getrusage() is prepared to handle the associated failure.
 118 #ifndef RUSAGE_THREAD
 119   #define RUSAGE_THREAD   (1)               /* only the calling thread */
 120 #endif
 121 
 122 #define MAX_PATH    (2 * K)
 123 
 124 #define MAX_SECS 100000000
 125 
 126 // for timer info max values which include all bits
 127 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
 128 
 129 #define LARGEPAGES_BIT (1 << 6)
 130 ////////////////////////////////////////////////////////////////////////////////
 131 // global variables
 132 julong os::Linux::_physical_memory = 0;
 133 
 134 address   os::Linux::_initial_thread_stack_bottom = NULL;
 135 uintptr_t os::Linux::_initial_thread_stack_size   = 0;
 136 
 137 int (*os::Linux::_clock_gettime)(clockid_t, struct timespec *) = NULL;
 138 int (*os::Linux::_pthread_getcpuclockid)(pthread_t, clockid_t *) = NULL;
 139 int (*os::Linux::_pthread_setname_np)(pthread_t, const char*) = NULL;
 140 Mutex* os::Linux::_createThread_lock = NULL;
 141 pthread_t os::Linux::_main_thread;
 142 int os::Linux::_page_size = -1;
 143 bool os::Linux::_supports_fast_thread_cpu_time = false;
 144 uint32_t os::Linux::_os_version = 0;
 145 const char * os::Linux::_glibc_version = "unknown";
 146 const char * os::Linux::_libpthread_version = "unknown";
 147 pthread_condattr_t os::Linux::_condattr[1];
 148 
 149 static jlong initial_time_count=0;
 150 
 151 static int clock_tics_per_sec = 100;
 152 
 153 // For diagnostics to print a message once. see run_periodic_checks
 154 static sigset_t check_signal_done;
 155 static bool check_signals = true;
 156 
 157 // Signal number used to suspend/resume a thread
 158 
 159 // do not use any signal number less than SIGSEGV, see 4355769
 160 static int SR_signum = SIGUSR2;
 161 sigset_t SR_sigset;
 162 
 163 // Declarations
 164 static void unpackTime(timespec* absTime, bool isAbsolute, jlong time);
 165 
 166 // utility functions
 167 
 168 static int SR_initialize();
 169 
 170 julong os::available_memory() {
 171   return Linux::available_memory();
 172 }
 173 
 174 julong os::Linux::available_memory() {
 175   // values in struct sysinfo are "unsigned long"
 176   struct sysinfo si;
 177   sysinfo(&si);
 178 
 179   return (julong)si.freeram * si.mem_unit;
 180 }
 181 
 182 julong os::physical_memory() {
 183   return Linux::physical_memory();
 184 }
 185 
 186 // Return true if user is running as root.
 187 
 188 bool os::have_special_privileges() {
 189   static bool init = false;
 190   static bool privileges = false;
 191   if (!init) {
 192     privileges = (getuid() != geteuid()) || (getgid() != getegid());
 193     init = true;
 194   }
 195   return privileges;
 196 }
 197 
 198 
 199 #ifndef SYS_gettid
 200 // i386: 224, ia64: 1105, amd64: 186, sparc 143
 201   #ifdef __ia64__
 202     #define SYS_gettid 1105
 203   #else
 204     #ifdef __i386__
 205       #define SYS_gettid 224
 206     #else
 207       #ifdef __amd64__
 208         #define SYS_gettid 186
 209       #else
 210         #ifdef __sparc__
 211           #define SYS_gettid 143
 212         #else
 213           #error define gettid for the arch
 214         #endif
 215       #endif
 216     #endif
 217   #endif
 218 #endif
 219 
 220 
 221 // pid_t gettid()
 222 //
 223 // Returns the kernel thread id of the currently running thread. Kernel
 224 // thread id is used to access /proc.
 225 pid_t os::Linux::gettid() {
 226   int rslt = syscall(SYS_gettid);
 227   assert(rslt != -1, "must be."); // old linuxthreads implementation?
 228   return (pid_t)rslt;
 229 }
 230 
 231 // Most versions of linux have a bug where the number of processors are
 232 // determined by looking at the /proc file system.  In a chroot environment,
 233 // the system call returns 1.  This causes the VM to act as if it is
 234 // a single processor and elide locking (see is_MP() call).
 235 static bool unsafe_chroot_detected = false;
 236 static const char *unstable_chroot_error = "/proc file system not found.\n"
 237                      "Java may be unstable running multithreaded in a chroot "
 238                      "environment on Linux when /proc filesystem is not mounted.";
 239 
 240 void os::Linux::initialize_system_info() {
 241   set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
 242   if (processor_count() == 1) {
 243     pid_t pid = os::Linux::gettid();
 244     char fname[32];
 245     jio_snprintf(fname, sizeof(fname), "/proc/%d", pid);
 246     FILE *fp = fopen(fname, "r");
 247     if (fp == NULL) {
 248       unsafe_chroot_detected = true;
 249     } else {
 250       fclose(fp);
 251     }
 252   }
 253   _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE);
 254   assert(processor_count() > 0, "linux error");
 255 }
 256 
 257 void os::init_system_properties_values() {
 258   // The next steps are taken in the product version:
 259   //
 260   // Obtain the JAVA_HOME value from the location of libjvm.so.
 261   // This library should be located at:
 262   // <JAVA_HOME>/lib/{client|server}/libjvm.so.
 263   //
 264   // If "/jre/lib/" appears at the right place in the path, then we
 265   // assume libjvm.so is installed in a JDK and we use this path.
 266   //
 267   // Otherwise exit with message: "Could not create the Java virtual machine."
 268   //
 269   // The following extra steps are taken in the debugging version:
 270   //
 271   // If "/jre/lib/" does NOT appear at the right place in the path
 272   // instead of exit check for $JAVA_HOME environment variable.
 273   //
 274   // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
 275   // then we append a fake suffix "hotspot/libjvm.so" to this path so
 276   // it looks like libjvm.so is installed there
 277   // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
 278   //
 279   // Otherwise exit.
 280   //
 281   // Important note: if the location of libjvm.so changes this
 282   // code needs to be changed accordingly.
 283 
 284   // See ld(1):
 285   //      The linker uses the following search paths to locate required
 286   //      shared libraries:
 287   //        1: ...
 288   //        ...
 289   //        7: The default directories, normally /lib and /usr/lib.
 290 #if defined(AMD64) || (defined(_LP64) && defined(SPARC)) || defined(PPC64) || defined(S390)
 291   #define DEFAULT_LIBPATH "/usr/lib64:/lib64:/lib:/usr/lib"
 292 #else
 293   #define DEFAULT_LIBPATH "/lib:/usr/lib"
 294 #endif
 295 
 296 // Base path of extensions installed on the system.
 297 #define SYS_EXT_DIR     "/usr/java/packages"
 298 #define EXTENSIONS_DIR  "/lib/ext"
 299 
 300   // Buffer that fits several sprintfs.
 301   // Note that the space for the colon and the trailing null are provided
 302   // by the nulls included by the sizeof operator.
 303   const size_t bufsize =
 304     MAX2((size_t)MAXPATHLEN,  // For dll_dir & friends.
 305          (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR) + sizeof(SYS_EXT_DIR) + sizeof(EXTENSIONS_DIR)); // extensions dir
 306   char *buf = (char *)NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
 307 
 308   // sysclasspath, java_home, dll_dir
 309   {
 310     char *pslash;
 311     os::jvm_path(buf, bufsize);
 312 
 313     // Found the full path to libjvm.so.
 314     // Now cut the path to <java_home>/jre if we can.
 315     pslash = strrchr(buf, '/');
 316     if (pslash != NULL) {
 317       *pslash = '\0';            // Get rid of /libjvm.so.
 318     }
 319     pslash = strrchr(buf, '/');
 320     if (pslash != NULL) {
 321       *pslash = '\0';            // Get rid of /{client|server|hotspot}.
 322     }
 323     Arguments::set_dll_dir(buf);
 324 
 325     if (pslash != NULL) {
 326       pslash = strrchr(buf, '/');
 327       if (pslash != NULL) {
 328         *pslash = '\0';        // Get rid of /lib.
 329       }
 330     }
 331     Arguments::set_java_home(buf);
 332     set_boot_path('/', ':');
 333   }
 334 
 335   // Where to look for native libraries.
 336   //
 337   // Note: Due to a legacy implementation, most of the library path
 338   // is set in the launcher. This was to accomodate linking restrictions
 339   // on legacy Linux implementations (which are no longer supported).
 340   // Eventually, all the library path setting will be done here.
 341   //
 342   // However, to prevent the proliferation of improperly built native
 343   // libraries, the new path component /usr/java/packages is added here.
 344   // Eventually, all the library path setting will be done here.
 345   {
 346     // Get the user setting of LD_LIBRARY_PATH, and prepended it. It
 347     // should always exist (until the legacy problem cited above is
 348     // addressed).
 349     const char *v = ::getenv("LD_LIBRARY_PATH");
 350     const char *v_colon = ":";
 351     if (v == NULL) { v = ""; v_colon = ""; }
 352     // That's +1 for the colon and +1 for the trailing '\0'.
 353     char *ld_library_path = (char *)NEW_C_HEAP_ARRAY(char,
 354                                                      strlen(v) + 1 +
 355                                                      sizeof(SYS_EXT_DIR) + sizeof("/lib/") + sizeof(DEFAULT_LIBPATH) + 1,
 356                                                      mtInternal);
 357     sprintf(ld_library_path, "%s%s" SYS_EXT_DIR "/lib:" DEFAULT_LIBPATH, v, v_colon);
 358     Arguments::set_library_path(ld_library_path);
 359     FREE_C_HEAP_ARRAY(char, ld_library_path);
 360   }
 361 
 362   // Extensions directories.
 363   sprintf(buf, "%s" EXTENSIONS_DIR ":" SYS_EXT_DIR EXTENSIONS_DIR, Arguments::get_java_home());
 364   Arguments::set_ext_dirs(buf);
 365 
 366   FREE_C_HEAP_ARRAY(char, buf);
 367 
 368 #undef DEFAULT_LIBPATH
 369 #undef SYS_EXT_DIR
 370 #undef EXTENSIONS_DIR
 371 }
 372 
 373 ////////////////////////////////////////////////////////////////////////////////
 374 // breakpoint support
 375 
 376 void os::breakpoint() {
 377   BREAKPOINT;
 378 }
 379 
 380 extern "C" void breakpoint() {
 381   // use debugger to set breakpoint here
 382 }
 383 
 384 ////////////////////////////////////////////////////////////////////////////////
 385 // signal support
 386 
 387 debug_only(static bool signal_sets_initialized = false);
 388 static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
 389 
 390 bool os::Linux::is_sig_ignored(int sig) {
 391   struct sigaction oact;
 392   sigaction(sig, (struct sigaction*)NULL, &oact);
 393   void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
 394                                  : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
 395   if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN)) {
 396     return true;
 397   } else {
 398     return false;
 399   }
 400 }
 401 
 402 void os::Linux::signal_sets_init() {
 403   // Should also have an assertion stating we are still single-threaded.
 404   assert(!signal_sets_initialized, "Already initialized");
 405   // Fill in signals that are necessarily unblocked for all threads in
 406   // the VM. Currently, we unblock the following signals:
 407   // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
 408   //                         by -Xrs (=ReduceSignalUsage));
 409   // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
 410   // other threads. The "ReduceSignalUsage" boolean tells us not to alter
 411   // the dispositions or masks wrt these signals.
 412   // Programs embedding the VM that want to use the above signals for their
 413   // own purposes must, at this time, use the "-Xrs" option to prevent
 414   // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
 415   // (See bug 4345157, and other related bugs).
 416   // In reality, though, unblocking these signals is really a nop, since
 417   // these signals are not blocked by default.
 418   sigemptyset(&unblocked_sigs);
 419   sigemptyset(&allowdebug_blocked_sigs);
 420   sigaddset(&unblocked_sigs, SIGILL);
 421   sigaddset(&unblocked_sigs, SIGSEGV);
 422   sigaddset(&unblocked_sigs, SIGBUS);
 423   sigaddset(&unblocked_sigs, SIGFPE);
 424 #if defined(PPC64)
 425   sigaddset(&unblocked_sigs, SIGTRAP);
 426 #endif
 427   sigaddset(&unblocked_sigs, SR_signum);
 428 
 429   if (!ReduceSignalUsage) {
 430     if (!os::Linux::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
 431       sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
 432       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
 433     }
 434     if (!os::Linux::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
 435       sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
 436       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
 437     }
 438     if (!os::Linux::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
 439       sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
 440       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
 441     }
 442   }
 443   // Fill in signals that are blocked by all but the VM thread.
 444   sigemptyset(&vm_sigs);
 445   if (!ReduceSignalUsage) {
 446     sigaddset(&vm_sigs, BREAK_SIGNAL);
 447   }
 448   debug_only(signal_sets_initialized = true);
 449 
 450 }
 451 
 452 // These are signals that are unblocked while a thread is running Java.
 453 // (For some reason, they get blocked by default.)
 454 sigset_t* os::Linux::unblocked_signals() {
 455   assert(signal_sets_initialized, "Not initialized");
 456   return &unblocked_sigs;
 457 }
 458 
 459 // These are the signals that are blocked while a (non-VM) thread is
 460 // running Java. Only the VM thread handles these signals.
 461 sigset_t* os::Linux::vm_signals() {
 462   assert(signal_sets_initialized, "Not initialized");
 463   return &vm_sigs;
 464 }
 465 
 466 // These are signals that are blocked during cond_wait to allow debugger in
 467 sigset_t* os::Linux::allowdebug_blocked_signals() {
 468   assert(signal_sets_initialized, "Not initialized");
 469   return &allowdebug_blocked_sigs;
 470 }
 471 
 472 void os::Linux::hotspot_sigmask(Thread* thread) {
 473 
 474   //Save caller's signal mask before setting VM signal mask
 475   sigset_t caller_sigmask;
 476   pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
 477 
 478   OSThread* osthread = thread->osthread();
 479   osthread->set_caller_sigmask(caller_sigmask);
 480 
 481   pthread_sigmask(SIG_UNBLOCK, os::Linux::unblocked_signals(), NULL);
 482 
 483   if (!ReduceSignalUsage) {
 484     if (thread->is_VM_thread()) {
 485       // Only the VM thread handles BREAK_SIGNAL ...
 486       pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
 487     } else {
 488       // ... all other threads block BREAK_SIGNAL
 489       pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
 490     }
 491   }
 492 }
 493 
 494 //////////////////////////////////////////////////////////////////////////////
 495 // detecting pthread library
 496 
 497 void os::Linux::libpthread_init() {
 498   // Save glibc and pthread version strings.
 499 #if !defined(_CS_GNU_LIBC_VERSION) || \
 500     !defined(_CS_GNU_LIBPTHREAD_VERSION)
 501   #error "glibc too old (< 2.3.2)"
 502 #endif
 503 
 504   size_t n;
 505 
 506   n = confstr(_CS_GNU_LIBC_VERSION, NULL, 0);
 507   if (n > 0) {
 508     char* str = (char *)malloc(n, mtInternal);
 509     confstr(_CS_GNU_LIBC_VERSION, str, n);
 510     os::Linux::set_glibc_version(str);
 511   }
 512 
 513   n = confstr(_CS_GNU_LIBPTHREAD_VERSION, NULL, 0);
 514   if (n > 0) {
 515     char* str = (char *)malloc(n, mtInternal);
 516     confstr(_CS_GNU_LIBPTHREAD_VERSION, str, n);
 517     os::Linux::set_libpthread_version(str);
 518   }
 519 }
 520 
 521 /////////////////////////////////////////////////////////////////////////////
 522 // thread stack expansion
 523 
 524 // os::Linux::manually_expand_stack() takes care of expanding the thread
 525 // stack. Note that this is normally not needed: pthread stacks allocate
 526 // thread stack using mmap() without MAP_NORESERVE, so the stack is already
 527 // committed. Therefore it is not necessary to expand the stack manually.
 528 //
 529 // Manually expanding the stack was historically needed on LinuxThreads
 530 // thread stacks, which were allocated with mmap(MAP_GROWSDOWN). Nowadays
 531 // it is kept to deal with very rare corner cases:
 532 //
 533 // For one, user may run the VM on an own implementation of threads
 534 // whose stacks are - like the old LinuxThreads - implemented using
 535 // mmap(MAP_GROWSDOWN).
 536 //
 537 // Also, this coding may be needed if the VM is running on the primordial
 538 // thread. Normally we avoid running on the primordial thread; however,
 539 // user may still invoke the VM on the primordial thread.
 540 //
 541 // The following historical comment describes the details about running
 542 // on a thread stack allocated with mmap(MAP_GROWSDOWN):
 543 
 544 
 545 // Force Linux kernel to expand current thread stack. If "bottom" is close
 546 // to the stack guard, caller should block all signals.
 547 //
 548 // MAP_GROWSDOWN:
 549 //   A special mmap() flag that is used to implement thread stacks. It tells
 550 //   kernel that the memory region should extend downwards when needed. This
 551 //   allows early versions of LinuxThreads to only mmap the first few pages
 552 //   when creating a new thread. Linux kernel will automatically expand thread
 553 //   stack as needed (on page faults).
 554 //
 555 //   However, because the memory region of a MAP_GROWSDOWN stack can grow on
 556 //   demand, if a page fault happens outside an already mapped MAP_GROWSDOWN
 557 //   region, it's hard to tell if the fault is due to a legitimate stack
 558 //   access or because of reading/writing non-exist memory (e.g. buffer
 559 //   overrun). As a rule, if the fault happens below current stack pointer,
 560 //   Linux kernel does not expand stack, instead a SIGSEGV is sent to the
 561 //   application (see Linux kernel fault.c).
 562 //
 563 //   This Linux feature can cause SIGSEGV when VM bangs thread stack for
 564 //   stack overflow detection.
 565 //
 566 //   Newer version of LinuxThreads (since glibc-2.2, or, RH-7.x) and NPTL do
 567 //   not use MAP_GROWSDOWN.
 568 //
 569 // To get around the problem and allow stack banging on Linux, we need to
 570 // manually expand thread stack after receiving the SIGSEGV.
 571 //
 572 // There are two ways to expand thread stack to address "bottom", we used
 573 // both of them in JVM before 1.5:
 574 //   1. adjust stack pointer first so that it is below "bottom", and then
 575 //      touch "bottom"
 576 //   2. mmap() the page in question
 577 //
 578 // Now alternate signal stack is gone, it's harder to use 2. For instance,
 579 // if current sp is already near the lower end of page 101, and we need to
 580 // call mmap() to map page 100, it is possible that part of the mmap() frame
 581 // will be placed in page 100. When page 100 is mapped, it is zero-filled.
 582 // That will destroy the mmap() frame and cause VM to crash.
 583 //
 584 // The following code works by adjusting sp first, then accessing the "bottom"
 585 // page to force a page fault. Linux kernel will then automatically expand the
 586 // stack mapping.
 587 //
 588 // _expand_stack_to() assumes its frame size is less than page size, which
 589 // should always be true if the function is not inlined.
 590 
 591 static void NOINLINE _expand_stack_to(address bottom) {
 592   address sp;
 593   size_t size;
 594   volatile char *p;
 595 
 596   // Adjust bottom to point to the largest address within the same page, it
 597   // gives us a one-page buffer if alloca() allocates slightly more memory.
 598   bottom = (address)align_size_down((uintptr_t)bottom, os::Linux::page_size());
 599   bottom += os::Linux::page_size() - 1;
 600 
 601   // sp might be slightly above current stack pointer; if that's the case, we
 602   // will alloca() a little more space than necessary, which is OK. Don't use
 603   // os::current_stack_pointer(), as its result can be slightly below current
 604   // stack pointer, causing us to not alloca enough to reach "bottom".
 605   sp = (address)&sp;
 606 
 607   if (sp > bottom) {
 608     size = sp - bottom;
 609     p = (volatile char *)alloca(size);
 610     assert(p != NULL && p <= (volatile char *)bottom, "alloca problem?");
 611     p[0] = '\0';
 612   }
 613 }
 614 
 615 bool os::Linux::manually_expand_stack(JavaThread * t, address addr) {
 616   assert(t!=NULL, "just checking");
 617   assert(t->osthread()->expanding_stack(), "expand should be set");
 618   assert(t->stack_base() != NULL, "stack_base was not initialized");
 619 
 620   if (addr <  t->stack_base() && addr >= t->stack_reserved_zone_base()) {
 621     sigset_t mask_all, old_sigset;
 622     sigfillset(&mask_all);
 623     pthread_sigmask(SIG_SETMASK, &mask_all, &old_sigset);
 624     _expand_stack_to(addr);
 625     pthread_sigmask(SIG_SETMASK, &old_sigset, NULL);
 626     return true;
 627   }
 628   return false;
 629 }
 630 
 631 //////////////////////////////////////////////////////////////////////////////
 632 // create new thread
 633 
 634 // Thread start routine for all newly created threads
 635 static void *thread_native_entry(Thread *thread) {
 636   // Try to randomize the cache line index of hot stack frames.
 637   // This helps when threads of the same stack traces evict each other's
 638   // cache lines. The threads can be either from the same JVM instance, or
 639   // from different JVM instances. The benefit is especially true for
 640   // processors with hyperthreading technology.
 641   static int counter = 0;
 642   int pid = os::current_process_id();
 643   alloca(((pid ^ counter++) & 7) * 128);
 644 
 645   thread->initialize_thread_current();
 646 
 647   OSThread* osthread = thread->osthread();
 648   Monitor* sync = osthread->startThread_lock();
 649 
 650   osthread->set_thread_id(os::current_thread_id());
 651 
 652   log_info(os, thread)("Thread is alive (tid: " UINTX_FORMAT ", pthread id: " UINTX_FORMAT ").",
 653     os::current_thread_id(), (uintx) pthread_self());
 654 
 655   if (UseNUMA) {
 656     int lgrp_id = os::numa_get_group_id();
 657     if (lgrp_id != -1) {
 658       thread->set_lgrp_id(lgrp_id);
 659     }
 660   }
 661   // initialize signal mask for this thread
 662   os::Linux::hotspot_sigmask(thread);
 663 
 664   // initialize floating point control register
 665   os::Linux::init_thread_fpu_state();
 666 
 667   // handshaking with parent thread
 668   {
 669     MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
 670 
 671     // notify parent thread
 672     osthread->set_state(INITIALIZED);
 673     sync->notify_all();
 674 
 675     // wait until os::start_thread()
 676     while (osthread->get_state() == INITIALIZED) {
 677       sync->wait(Mutex::_no_safepoint_check_flag);
 678     }
 679   }
 680 
 681   // call one more level start routine
 682   thread->run();
 683 
 684   log_info(os, thread)("Thread finished (tid: " UINTX_FORMAT ", pthread id: " UINTX_FORMAT ").",
 685     os::current_thread_id(), (uintx) pthread_self());
 686 
 687   // If a thread has not deleted itself ("delete this") as part of its
 688   // termination sequence, we have to ensure thread-local-storage is
 689   // cleared before we actually terminate. No threads should ever be
 690   // deleted asynchronously with respect to their termination.
 691   if (Thread::current_or_null_safe() != NULL) {
 692     assert(Thread::current_or_null_safe() == thread, "current thread is wrong");
 693     thread->clear_thread_current();
 694   }
 695 
 696   return 0;
 697 }
 698 
 699 bool os::create_thread(Thread* thread, ThreadType thr_type,
 700                        size_t req_stack_size) {
 701   assert(thread->osthread() == NULL, "caller responsible");
 702 
 703   // Allocate the OSThread object
 704   OSThread* osthread = new OSThread(NULL, NULL);
 705   if (osthread == NULL) {
 706     return false;
 707   }
 708 
 709   // set the correct thread state
 710   osthread->set_thread_type(thr_type);
 711 
 712   // Initial state is ALLOCATED but not INITIALIZED
 713   osthread->set_state(ALLOCATED);
 714 
 715   thread->set_osthread(osthread);
 716 
 717   // init thread attributes
 718   pthread_attr_t attr;
 719   pthread_attr_init(&attr);
 720   pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
 721 
 722   // Calculate stack size if it's not specified by caller.
 723   size_t stack_size = os::Posix::get_initial_stack_size(thr_type, req_stack_size);
 724   // In the Linux NPTL pthread implementation the guard size mechanism
 725   // is not implemented properly. The posix standard requires adding
 726   // the size of the guard pages to the stack size, instead Linux
 727   // takes the space out of 'stacksize'. Thus we adapt the requested
 728   // stack_size by the size of the guard pages to mimick proper
 729   // behaviour.
 730   stack_size = align_size_up(stack_size + os::Linux::default_guard_size(thr_type), vm_page_size());
 731   pthread_attr_setstacksize(&attr, stack_size);
 732 
 733   // Configure glibc guard page.
 734   pthread_attr_setguardsize(&attr, os::Linux::default_guard_size(thr_type));
 735 
 736   ThreadState state;
 737 
 738   {
 739     pthread_t tid;
 740     int ret = pthread_create(&tid, &attr, (void* (*)(void*)) thread_native_entry, thread);
 741 
 742     char buf[64];
 743     if (ret == 0) {
 744       log_info(os, thread)("Thread started (pthread id: " UINTX_FORMAT ", attributes: %s). ",
 745         (uintx) tid, os::Posix::describe_pthread_attr(buf, sizeof(buf), &attr));
 746     } else {
 747       log_warning(os, thread)("Failed to start thread - pthread_create failed (%s) for attributes: %s.",
 748         os::errno_name(ret), os::Posix::describe_pthread_attr(buf, sizeof(buf), &attr));
 749     }
 750 
 751     pthread_attr_destroy(&attr);
 752 
 753     if (ret != 0) {
 754       // Need to clean up stuff we've allocated so far
 755       thread->set_osthread(NULL);
 756       delete osthread;
 757       return false;
 758     }
 759 
 760     // Store pthread info into the OSThread
 761     osthread->set_pthread_id(tid);
 762 
 763     // Wait until child thread is either initialized or aborted
 764     {
 765       Monitor* sync_with_child = osthread->startThread_lock();
 766       MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
 767       while ((state = osthread->get_state()) == ALLOCATED) {
 768         sync_with_child->wait(Mutex::_no_safepoint_check_flag);
 769       }
 770     }
 771   }
 772 
 773   // Aborted due to thread limit being reached
 774   if (state == ZOMBIE) {
 775     thread->set_osthread(NULL);
 776     delete osthread;
 777     return false;
 778   }
 779 
 780   // The thread is returned suspended (in state INITIALIZED),
 781   // and is started higher up in the call chain
 782   assert(state == INITIALIZED, "race condition");
 783   return true;
 784 }
 785 
 786 /////////////////////////////////////////////////////////////////////////////
 787 // attach existing thread
 788 
 789 // bootstrap the main thread
 790 bool os::create_main_thread(JavaThread* thread) {
 791   assert(os::Linux::_main_thread == pthread_self(), "should be called inside main thread");
 792   return create_attached_thread(thread);
 793 }
 794 
 795 bool os::create_attached_thread(JavaThread* thread) {
 796 #ifdef ASSERT
 797   thread->verify_not_published();
 798 #endif
 799 
 800   // Allocate the OSThread object
 801   OSThread* osthread = new OSThread(NULL, NULL);
 802 
 803   if (osthread == NULL) {
 804     return false;
 805   }
 806 
 807   // Store pthread info into the OSThread
 808   osthread->set_thread_id(os::Linux::gettid());
 809   osthread->set_pthread_id(::pthread_self());
 810 
 811   // initialize floating point control register
 812   os::Linux::init_thread_fpu_state();
 813 
 814   // Initial thread state is RUNNABLE
 815   osthread->set_state(RUNNABLE);
 816 
 817   thread->set_osthread(osthread);
 818 
 819   if (UseNUMA) {
 820     int lgrp_id = os::numa_get_group_id();
 821     if (lgrp_id != -1) {
 822       thread->set_lgrp_id(lgrp_id);
 823     }
 824   }
 825 
 826   if (os::Linux::is_initial_thread()) {
 827     // If current thread is initial thread, its stack is mapped on demand,
 828     // see notes about MAP_GROWSDOWN. Here we try to force kernel to map
 829     // the entire stack region to avoid SEGV in stack banging.
 830     // It is also useful to get around the heap-stack-gap problem on SuSE
 831     // kernel (see 4821821 for details). We first expand stack to the top
 832     // of yellow zone, then enable stack yellow zone (order is significant,
 833     // enabling yellow zone first will crash JVM on SuSE Linux), so there
 834     // is no gap between the last two virtual memory regions.
 835 
 836     JavaThread *jt = (JavaThread *)thread;
 837     address addr = jt->stack_reserved_zone_base();
 838     assert(addr != NULL, "initialization problem?");
 839     assert(jt->stack_available(addr) > 0, "stack guard should not be enabled");
 840 
 841     osthread->set_expanding_stack();
 842     os::Linux::manually_expand_stack(jt, addr);
 843     osthread->clear_expanding_stack();
 844   }
 845 
 846   // initialize signal mask for this thread
 847   // and save the caller's signal mask
 848   os::Linux::hotspot_sigmask(thread);
 849 
 850   log_info(os, thread)("Thread attached (tid: " UINTX_FORMAT ", pthread id: " UINTX_FORMAT ").",
 851     os::current_thread_id(), (uintx) pthread_self());
 852 
 853   return true;
 854 }
 855 
 856 void os::pd_start_thread(Thread* thread) {
 857   OSThread * osthread = thread->osthread();
 858   assert(osthread->get_state() != INITIALIZED, "just checking");
 859   Monitor* sync_with_child = osthread->startThread_lock();
 860   MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
 861   sync_with_child->notify();
 862 }
 863 
 864 // Free Linux resources related to the OSThread
 865 void os::free_thread(OSThread* osthread) {
 866   assert(osthread != NULL, "osthread not set");
 867 
 868   // We are told to free resources of the argument thread,
 869   // but we can only really operate on the current thread.
 870   assert(Thread::current()->osthread() == osthread,
 871          "os::free_thread but not current thread");
 872 
 873 #ifdef ASSERT
 874   sigset_t current;
 875   sigemptyset(&current);
 876   pthread_sigmask(SIG_SETMASK, NULL, &current);
 877   assert(!sigismember(&current, SR_signum), "SR signal should not be blocked!");
 878 #endif
 879 
 880   // Restore caller's signal mask
 881   sigset_t sigmask = osthread->caller_sigmask();
 882   pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
 883 
 884   delete osthread;
 885 }
 886 
 887 //////////////////////////////////////////////////////////////////////////////
 888 // initial thread
 889 
 890 // Check if current thread is the initial thread, similar to Solaris thr_main.
 891 bool os::Linux::is_initial_thread(void) {
 892   char dummy;
 893   // If called before init complete, thread stack bottom will be null.
 894   // Can be called if fatal error occurs before initialization.
 895   if (initial_thread_stack_bottom() == NULL) return false;
 896   assert(initial_thread_stack_bottom() != NULL &&
 897          initial_thread_stack_size()   != 0,
 898          "os::init did not locate initial thread's stack region");
 899   if ((address)&dummy >= initial_thread_stack_bottom() &&
 900       (address)&dummy < initial_thread_stack_bottom() + initial_thread_stack_size()) {
 901     return true;
 902   } else {
 903     return false;
 904   }
 905 }
 906 
 907 // Find the virtual memory area that contains addr
 908 static bool find_vma(address addr, address* vma_low, address* vma_high) {
 909   FILE *fp = fopen("/proc/self/maps", "r");
 910   if (fp) {
 911     address low, high;
 912     while (!feof(fp)) {
 913       if (fscanf(fp, "%p-%p", &low, &high) == 2) {
 914         if (low <= addr && addr < high) {
 915           if (vma_low)  *vma_low  = low;
 916           if (vma_high) *vma_high = high;
 917           fclose(fp);
 918           return true;
 919         }
 920       }
 921       for (;;) {
 922         int ch = fgetc(fp);
 923         if (ch == EOF || ch == (int)'\n') break;
 924       }
 925     }
 926     fclose(fp);
 927   }
 928   return false;
 929 }
 930 
 931 // Locate initial thread stack. This special handling of initial thread stack
 932 // is needed because pthread_getattr_np() on most (all?) Linux distros returns
 933 // bogus value for the primordial process thread. While the launcher has created
 934 // the VM in a new thread since JDK 6, we still have to allow for the use of the
 935 // JNI invocation API from a primordial thread.
 936 void os::Linux::capture_initial_stack(size_t max_size) {
 937 
 938   // max_size is either 0 (which means accept OS default for thread stacks) or
 939   // a user-specified value known to be at least the minimum needed. If we
 940   // are actually on the primordial thread we can make it appear that we have a
 941   // smaller max_size stack by inserting the guard pages at that location. But we
 942   // cannot do anything to emulate a larger stack than what has been provided by
 943   // the OS or threading library. In fact if we try to use a stack greater than
 944   // what is set by rlimit then we will crash the hosting process.
 945 
 946   // Maximum stack size is the easy part, get it from RLIMIT_STACK.
 947   // If this is "unlimited" then it will be a huge value.
 948   struct rlimit rlim;
 949   getrlimit(RLIMIT_STACK, &rlim);
 950   size_t stack_size = rlim.rlim_cur;
 951 
 952   // 6308388: a bug in ld.so will relocate its own .data section to the
 953   //   lower end of primordial stack; reduce ulimit -s value a little bit
 954   //   so we won't install guard page on ld.so's data section.
 955   stack_size -= 2 * page_size();
 956 
 957   // Try to figure out where the stack base (top) is. This is harder.
 958   //
 959   // When an application is started, glibc saves the initial stack pointer in
 960   // a global variable "__libc_stack_end", which is then used by system
 961   // libraries. __libc_stack_end should be pretty close to stack top. The
 962   // variable is available since the very early days. However, because it is
 963   // a private interface, it could disappear in the future.
 964   //
 965   // Linux kernel saves start_stack information in /proc/<pid>/stat. Similar
 966   // to __libc_stack_end, it is very close to stack top, but isn't the real
 967   // stack top. Note that /proc may not exist if VM is running as a chroot
 968   // program, so reading /proc/<pid>/stat could fail. Also the contents of
 969   // /proc/<pid>/stat could change in the future (though unlikely).
 970   //
 971   // We try __libc_stack_end first. If that doesn't work, look for
 972   // /proc/<pid>/stat. If neither of them works, we use current stack pointer
 973   // as a hint, which should work well in most cases.
 974 
 975   uintptr_t stack_start;
 976 
 977   // try __libc_stack_end first
 978   uintptr_t *p = (uintptr_t *)dlsym(RTLD_DEFAULT, "__libc_stack_end");
 979   if (p && *p) {
 980     stack_start = *p;
 981   } else {
 982     // see if we can get the start_stack field from /proc/self/stat
 983     FILE *fp;
 984     int pid;
 985     char state;
 986     int ppid;
 987     int pgrp;
 988     int session;
 989     int nr;
 990     int tpgrp;
 991     unsigned long flags;
 992     unsigned long minflt;
 993     unsigned long cminflt;
 994     unsigned long majflt;
 995     unsigned long cmajflt;
 996     unsigned long utime;
 997     unsigned long stime;
 998     long cutime;
 999     long cstime;
1000     long prio;
1001     long nice;
1002     long junk;
1003     long it_real;
1004     uintptr_t start;
1005     uintptr_t vsize;
1006     intptr_t rss;
1007     uintptr_t rsslim;
1008     uintptr_t scodes;
1009     uintptr_t ecode;
1010     int i;
1011 
1012     // Figure what the primordial thread stack base is. Code is inspired
1013     // by email from Hans Boehm. /proc/self/stat begins with current pid,
1014     // followed by command name surrounded by parentheses, state, etc.
1015     char stat[2048];
1016     int statlen;
1017 
1018     fp = fopen("/proc/self/stat", "r");
1019     if (fp) {
1020       statlen = fread(stat, 1, 2047, fp);
1021       stat[statlen] = '\0';
1022       fclose(fp);
1023 
1024       // Skip pid and the command string. Note that we could be dealing with
1025       // weird command names, e.g. user could decide to rename java launcher
1026       // to "java 1.4.2 :)", then the stat file would look like
1027       //                1234 (java 1.4.2 :)) R ... ...
1028       // We don't really need to know the command string, just find the last
1029       // occurrence of ")" and then start parsing from there. See bug 4726580.
1030       char * s = strrchr(stat, ')');
1031 
1032       i = 0;
1033       if (s) {
1034         // Skip blank chars
1035         do { s++; } while (s && isspace(*s));
1036 
1037 #define _UFM UINTX_FORMAT
1038 #define _DFM INTX_FORMAT
1039 
1040         //                                     1   1   1   1   1   1   1   1   1   1   2   2    2    2    2    2    2    2    2
1041         //              3  4  5  6  7  8   9   0   1   2   3   4   5   6   7   8   9   0   1    2    3    4    5    6    7    8
1042         i = sscanf(s, "%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu %ld %ld %ld %ld %ld %ld " _UFM _UFM _DFM _UFM _UFM _UFM _UFM,
1043                    &state,          // 3  %c
1044                    &ppid,           // 4  %d
1045                    &pgrp,           // 5  %d
1046                    &session,        // 6  %d
1047                    &nr,             // 7  %d
1048                    &tpgrp,          // 8  %d
1049                    &flags,          // 9  %lu
1050                    &minflt,         // 10 %lu
1051                    &cminflt,        // 11 %lu
1052                    &majflt,         // 12 %lu
1053                    &cmajflt,        // 13 %lu
1054                    &utime,          // 14 %lu
1055                    &stime,          // 15 %lu
1056                    &cutime,         // 16 %ld
1057                    &cstime,         // 17 %ld
1058                    &prio,           // 18 %ld
1059                    &nice,           // 19 %ld
1060                    &junk,           // 20 %ld
1061                    &it_real,        // 21 %ld
1062                    &start,          // 22 UINTX_FORMAT
1063                    &vsize,          // 23 UINTX_FORMAT
1064                    &rss,            // 24 INTX_FORMAT
1065                    &rsslim,         // 25 UINTX_FORMAT
1066                    &scodes,         // 26 UINTX_FORMAT
1067                    &ecode,          // 27 UINTX_FORMAT
1068                    &stack_start);   // 28 UINTX_FORMAT
1069       }
1070 
1071 #undef _UFM
1072 #undef _DFM
1073 
1074       if (i != 28 - 2) {
1075         assert(false, "Bad conversion from /proc/self/stat");
1076         // product mode - assume we are the initial thread, good luck in the
1077         // embedded case.
1078         warning("Can't detect initial thread stack location - bad conversion");
1079         stack_start = (uintptr_t) &rlim;
1080       }
1081     } else {
1082       // For some reason we can't open /proc/self/stat (for example, running on
1083       // FreeBSD with a Linux emulator, or inside chroot), this should work for
1084       // most cases, so don't abort:
1085       warning("Can't detect initial thread stack location - no /proc/self/stat");
1086       stack_start = (uintptr_t) &rlim;
1087     }
1088   }
1089 
1090   // Now we have a pointer (stack_start) very close to the stack top, the
1091   // next thing to do is to figure out the exact location of stack top. We
1092   // can find out the virtual memory area that contains stack_start by
1093   // reading /proc/self/maps, it should be the last vma in /proc/self/maps,
1094   // and its upper limit is the real stack top. (again, this would fail if
1095   // running inside chroot, because /proc may not exist.)
1096 
1097   uintptr_t stack_top;
1098   address low, high;
1099   if (find_vma((address)stack_start, &low, &high)) {
1100     // success, "high" is the true stack top. (ignore "low", because initial
1101     // thread stack grows on demand, its real bottom is high - RLIMIT_STACK.)
1102     stack_top = (uintptr_t)high;
1103   } else {
1104     // failed, likely because /proc/self/maps does not exist
1105     warning("Can't detect initial thread stack location - find_vma failed");
1106     // best effort: stack_start is normally within a few pages below the real
1107     // stack top, use it as stack top, and reduce stack size so we won't put
1108     // guard page outside stack.
1109     stack_top = stack_start;
1110     stack_size -= 16 * page_size();
1111   }
1112 
1113   // stack_top could be partially down the page so align it
1114   stack_top = align_size_up(stack_top, page_size());
1115 
1116   // Allowed stack value is minimum of max_size and what we derived from rlimit
1117   if (max_size > 0) {
1118     _initial_thread_stack_size = MIN2(max_size, stack_size);
1119   } else {
1120     // Accept the rlimit max, but if stack is unlimited then it will be huge, so
1121     // clamp it at 8MB as we do on Solaris
1122     _initial_thread_stack_size = MIN2(stack_size, 8*M);
1123   }
1124   _initial_thread_stack_size = align_size_down(_initial_thread_stack_size, page_size());
1125   _initial_thread_stack_bottom = (address)stack_top - _initial_thread_stack_size;
1126 
1127   assert(_initial_thread_stack_bottom < (address)stack_top, "overflow!");
1128 
1129   if (log_is_enabled(Info, os, thread)) {
1130     // See if we seem to be on primordial process thread
1131     bool primordial = uintptr_t(&rlim) > uintptr_t(_initial_thread_stack_bottom) &&
1132                       uintptr_t(&rlim) < stack_top;
1133 
1134     log_info(os, thread)("Capturing initial stack in %s thread: req. size: " SIZE_FORMAT "K, actual size: "
1135                          SIZE_FORMAT "K, top=" INTPTR_FORMAT ", bottom=" INTPTR_FORMAT,
1136                          primordial ? "primordial" : "user", max_size / K,  _initial_thread_stack_size / K,
1137                          stack_top, intptr_t(_initial_thread_stack_bottom));
1138   }
1139 }
1140 
1141 ////////////////////////////////////////////////////////////////////////////////
1142 // time support
1143 
1144 // Time since start-up in seconds to a fine granularity.
1145 // Used by VMSelfDestructTimer and the MemProfiler.
1146 double os::elapsedTime() {
1147 
1148   return ((double)os::elapsed_counter()) / os::elapsed_frequency(); // nanosecond resolution
1149 }
1150 
1151 jlong os::elapsed_counter() {
1152   return javaTimeNanos() - initial_time_count;
1153 }
1154 
1155 jlong os::elapsed_frequency() {
1156   return NANOSECS_PER_SEC; // nanosecond resolution
1157 }
1158 
1159 bool os::supports_vtime() { return true; }
1160 bool os::enable_vtime()   { return false; }
1161 bool os::vtime_enabled()  { return false; }
1162 
1163 double os::elapsedVTime() {
1164   struct rusage usage;
1165   int retval = getrusage(RUSAGE_THREAD, &usage);
1166   if (retval == 0) {
1167     return (double) (usage.ru_utime.tv_sec + usage.ru_stime.tv_sec) + (double) (usage.ru_utime.tv_usec + usage.ru_stime.tv_usec) / (1000 * 1000);
1168   } else {
1169     // better than nothing, but not much
1170     return elapsedTime();
1171   }
1172 }
1173 
1174 jlong os::javaTimeMillis() {
1175   timeval time;
1176   int status = gettimeofday(&time, NULL);
1177   assert(status != -1, "linux error");
1178   return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
1179 }
1180 
1181 void os::javaTimeSystemUTC(jlong &seconds, jlong &nanos) {
1182   timeval time;
1183   int status = gettimeofday(&time, NULL);
1184   assert(status != -1, "linux error");
1185   seconds = jlong(time.tv_sec);
1186   nanos = jlong(time.tv_usec) * 1000;
1187 }
1188 
1189 
1190 #ifndef CLOCK_MONOTONIC
1191   #define CLOCK_MONOTONIC (1)
1192 #endif
1193 
1194 void os::Linux::clock_init() {
1195   // we do dlopen's in this particular order due to bug in linux
1196   // dynamical loader (see 6348968) leading to crash on exit
1197   void* handle = dlopen("librt.so.1", RTLD_LAZY);
1198   if (handle == NULL) {
1199     handle = dlopen("librt.so", RTLD_LAZY);
1200   }
1201 
1202   if (handle) {
1203     int (*clock_getres_func)(clockid_t, struct timespec*) =
1204            (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_getres");
1205     int (*clock_gettime_func)(clockid_t, struct timespec*) =
1206            (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_gettime");
1207     if (clock_getres_func && clock_gettime_func) {
1208       // See if monotonic clock is supported by the kernel. Note that some
1209       // early implementations simply return kernel jiffies (updated every
1210       // 1/100 or 1/1000 second). It would be bad to use such a low res clock
1211       // for nano time (though the monotonic property is still nice to have).
1212       // It's fixed in newer kernels, however clock_getres() still returns
1213       // 1/HZ. We check if clock_getres() works, but will ignore its reported
1214       // resolution for now. Hopefully as people move to new kernels, this
1215       // won't be a problem.
1216       struct timespec res;
1217       struct timespec tp;
1218       if (clock_getres_func (CLOCK_MONOTONIC, &res) == 0 &&
1219           clock_gettime_func(CLOCK_MONOTONIC, &tp)  == 0) {
1220         // yes, monotonic clock is supported
1221         _clock_gettime = clock_gettime_func;
1222         return;
1223       } else {
1224         // close librt if there is no monotonic clock
1225         dlclose(handle);
1226       }
1227     }
1228   }
1229   warning("No monotonic clock was available - timed services may " \
1230           "be adversely affected if the time-of-day clock changes");
1231 }
1232 
1233 #ifndef SYS_clock_getres
1234   #if defined(X86) || defined(PPC64) || defined(S390)
1235     #define SYS_clock_getres AMD64_ONLY(229) IA32_ONLY(266) PPC64_ONLY(247) S390_ONLY(261)
1236     #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1237   #else
1238     #warning "SYS_clock_getres not defined for this platform, disabling fast_thread_cpu_time"
1239     #define sys_clock_getres(x,y)  -1
1240   #endif
1241 #else
1242   #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1243 #endif
1244 
1245 void os::Linux::fast_thread_clock_init() {
1246   if (!UseLinuxPosixThreadCPUClocks) {
1247     return;
1248   }
1249   clockid_t clockid;
1250   struct timespec tp;
1251   int (*pthread_getcpuclockid_func)(pthread_t, clockid_t *) =
1252       (int(*)(pthread_t, clockid_t *)) dlsym(RTLD_DEFAULT, "pthread_getcpuclockid");
1253 
1254   // Switch to using fast clocks for thread cpu time if
1255   // the sys_clock_getres() returns 0 error code.
1256   // Note, that some kernels may support the current thread
1257   // clock (CLOCK_THREAD_CPUTIME_ID) but not the clocks
1258   // returned by the pthread_getcpuclockid().
1259   // If the fast Posix clocks are supported then the sys_clock_getres()
1260   // must return at least tp.tv_sec == 0 which means a resolution
1261   // better than 1 sec. This is extra check for reliability.
1262 
1263   if (pthread_getcpuclockid_func &&
1264       pthread_getcpuclockid_func(_main_thread, &clockid) == 0 &&
1265       sys_clock_getres(clockid, &tp) == 0 && tp.tv_sec == 0) {
1266     _supports_fast_thread_cpu_time = true;
1267     _pthread_getcpuclockid = pthread_getcpuclockid_func;
1268   }
1269 }
1270 
1271 jlong os::javaTimeNanos() {
1272   if (os::supports_monotonic_clock()) {
1273     struct timespec tp;
1274     int status = Linux::clock_gettime(CLOCK_MONOTONIC, &tp);
1275     assert(status == 0, "gettime error");
1276     jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
1277     return result;
1278   } else {
1279     timeval time;
1280     int status = gettimeofday(&time, NULL);
1281     assert(status != -1, "linux error");
1282     jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
1283     return 1000 * usecs;
1284   }
1285 }
1286 
1287 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1288   if (os::supports_monotonic_clock()) {
1289     info_ptr->max_value = ALL_64_BITS;
1290 
1291     // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
1292     info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
1293     info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
1294   } else {
1295     // gettimeofday - based on time in seconds since the Epoch thus does not wrap
1296     info_ptr->max_value = ALL_64_BITS;
1297 
1298     // gettimeofday is a real time clock so it skips
1299     info_ptr->may_skip_backward = true;
1300     info_ptr->may_skip_forward = true;
1301   }
1302 
1303   info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
1304 }
1305 
1306 // Return the real, user, and system times in seconds from an
1307 // arbitrary fixed point in the past.
1308 bool os::getTimesSecs(double* process_real_time,
1309                       double* process_user_time,
1310                       double* process_system_time) {
1311   struct tms ticks;
1312   clock_t real_ticks = times(&ticks);
1313 
1314   if (real_ticks == (clock_t) (-1)) {
1315     return false;
1316   } else {
1317     double ticks_per_second = (double) clock_tics_per_sec;
1318     *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1319     *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1320     *process_real_time = ((double) real_ticks) / ticks_per_second;
1321 
1322     return true;
1323   }
1324 }
1325 
1326 
1327 char * os::local_time_string(char *buf, size_t buflen) {
1328   struct tm t;
1329   time_t long_time;
1330   time(&long_time);
1331   localtime_r(&long_time, &t);
1332   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1333                t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1334                t.tm_hour, t.tm_min, t.tm_sec);
1335   return buf;
1336 }
1337 
1338 struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
1339   return localtime_r(clock, res);
1340 }
1341 
1342 ////////////////////////////////////////////////////////////////////////////////
1343 // runtime exit support
1344 
1345 // Note: os::shutdown() might be called very early during initialization, or
1346 // called from signal handler. Before adding something to os::shutdown(), make
1347 // sure it is async-safe and can handle partially initialized VM.
1348 void os::shutdown() {
1349 
1350   // allow PerfMemory to attempt cleanup of any persistent resources
1351   perfMemory_exit();
1352 
1353   // needs to remove object in file system
1354   AttachListener::abort();
1355 
1356   // flush buffered output, finish log files
1357   ostream_abort();
1358 
1359   // Check for abort hook
1360   abort_hook_t abort_hook = Arguments::abort_hook();
1361   if (abort_hook != NULL) {
1362     abort_hook();
1363   }
1364 
1365 }
1366 
1367 // Note: os::abort() might be called very early during initialization, or
1368 // called from signal handler. Before adding something to os::abort(), make
1369 // sure it is async-safe and can handle partially initialized VM.
1370 void os::abort(bool dump_core, void* siginfo, const void* context) {
1371   os::shutdown();
1372   if (dump_core) {
1373 #ifndef PRODUCT
1374     fdStream out(defaultStream::output_fd());
1375     out.print_raw("Current thread is ");
1376     char buf[16];
1377     jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1378     out.print_raw_cr(buf);
1379     out.print_raw_cr("Dumping core ...");
1380 #endif
1381     ::abort(); // dump core
1382   }
1383 
1384   ::exit(1);
1385 }
1386 
1387 // Die immediately, no exit hook, no abort hook, no cleanup.
1388 void os::die() {
1389   ::abort();
1390 }
1391 
1392 
1393 // This method is a copy of JDK's sysGetLastErrorString
1394 // from src/solaris/hpi/src/system_md.c
1395 
1396 size_t os::lasterror(char *buf, size_t len) {
1397   if (errno == 0)  return 0;
1398 
1399   const char *s = os::strerror(errno);
1400   size_t n = ::strlen(s);
1401   if (n >= len) {
1402     n = len - 1;
1403   }
1404   ::strncpy(buf, s, n);
1405   buf[n] = '\0';
1406   return n;
1407 }
1408 
1409 // thread_id is kernel thread id (similar to Solaris LWP id)
1410 intx os::current_thread_id() { return os::Linux::gettid(); }
1411 int os::current_process_id() {
1412   return ::getpid();
1413 }
1414 
1415 // DLL functions
1416 
1417 const char* os::dll_file_extension() { return ".so"; }
1418 
1419 // This must be hard coded because it's the system's temporary
1420 // directory not the java application's temp directory, ala java.io.tmpdir.
1421 const char* os::get_temp_directory() { return "/tmp"; }
1422 
1423 static bool file_exists(const char* filename) {
1424   struct stat statbuf;
1425   if (filename == NULL || strlen(filename) == 0) {
1426     return false;
1427   }
1428   return os::stat(filename, &statbuf) == 0;
1429 }
1430 
1431 bool os::dll_build_name(char* buffer, size_t buflen,
1432                         const char* pname, const char* fname) {
1433   bool retval = false;
1434   // Copied from libhpi
1435   const size_t pnamelen = pname ? strlen(pname) : 0;
1436 
1437   // Return error on buffer overflow.
1438   if (pnamelen + strlen(fname) + 10 > (size_t) buflen) {
1439     return retval;
1440   }
1441 
1442   if (pnamelen == 0) {
1443     snprintf(buffer, buflen, "lib%s.so", fname);
1444     retval = true;
1445   } else if (strchr(pname, *os::path_separator()) != NULL) {
1446     int n;
1447     char** pelements = split_path(pname, &n);
1448     if (pelements == NULL) {
1449       return false;
1450     }
1451     for (int i = 0; i < n; i++) {
1452       // Really shouldn't be NULL, but check can't hurt
1453       if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
1454         continue; // skip the empty path values
1455       }
1456       snprintf(buffer, buflen, "%s/lib%s.so", pelements[i], fname);
1457       if (file_exists(buffer)) {
1458         retval = true;
1459         break;
1460       }
1461     }
1462     // release the storage
1463     for (int i = 0; i < n; i++) {
1464       if (pelements[i] != NULL) {
1465         FREE_C_HEAP_ARRAY(char, pelements[i]);
1466       }
1467     }
1468     if (pelements != NULL) {
1469       FREE_C_HEAP_ARRAY(char*, pelements);
1470     }
1471   } else {
1472     snprintf(buffer, buflen, "%s/lib%s.so", pname, fname);
1473     retval = true;
1474   }
1475   return retval;
1476 }
1477 
1478 // check if addr is inside libjvm.so
1479 bool os::address_is_in_vm(address addr) {
1480   static address libjvm_base_addr;
1481   Dl_info dlinfo;
1482 
1483   if (libjvm_base_addr == NULL) {
1484     if (dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo) != 0) {
1485       libjvm_base_addr = (address)dlinfo.dli_fbase;
1486     }
1487     assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1488   }
1489 
1490   if (dladdr((void *)addr, &dlinfo) != 0) {
1491     if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1492   }
1493 
1494   return false;
1495 }
1496 
1497 bool os::dll_address_to_function_name(address addr, char *buf,
1498                                       int buflen, int *offset,
1499                                       bool demangle) {
1500   // buf is not optional, but offset is optional
1501   assert(buf != NULL, "sanity check");
1502 
1503   Dl_info dlinfo;
1504 
1505   if (dladdr((void*)addr, &dlinfo) != 0) {
1506     // see if we have a matching symbol
1507     if (dlinfo.dli_saddr != NULL && dlinfo.dli_sname != NULL) {
1508       if (!(demangle && Decoder::demangle(dlinfo.dli_sname, buf, buflen))) {
1509         jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1510       }
1511       if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1512       return true;
1513     }
1514     // no matching symbol so try for just file info
1515     if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
1516       if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1517                           buf, buflen, offset, dlinfo.dli_fname, demangle)) {
1518         return true;
1519       }
1520     }
1521   }
1522 
1523   buf[0] = '\0';
1524   if (offset != NULL) *offset = -1;
1525   return false;
1526 }
1527 
1528 struct _address_to_library_name {
1529   address addr;          // input : memory address
1530   size_t  buflen;        //         size of fname
1531   char*   fname;         // output: library name
1532   address base;          //         library base addr
1533 };
1534 
1535 static int address_to_library_name_callback(struct dl_phdr_info *info,
1536                                             size_t size, void *data) {
1537   int i;
1538   bool found = false;
1539   address libbase = NULL;
1540   struct _address_to_library_name * d = (struct _address_to_library_name *)data;
1541 
1542   // iterate through all loadable segments
1543   for (i = 0; i < info->dlpi_phnum; i++) {
1544     address segbase = (address)(info->dlpi_addr + info->dlpi_phdr[i].p_vaddr);
1545     if (info->dlpi_phdr[i].p_type == PT_LOAD) {
1546       // base address of a library is the lowest address of its loaded
1547       // segments.
1548       if (libbase == NULL || libbase > segbase) {
1549         libbase = segbase;
1550       }
1551       // see if 'addr' is within current segment
1552       if (segbase <= d->addr &&
1553           d->addr < segbase + info->dlpi_phdr[i].p_memsz) {
1554         found = true;
1555       }
1556     }
1557   }
1558 
1559   // dlpi_name is NULL or empty if the ELF file is executable, return 0
1560   // so dll_address_to_library_name() can fall through to use dladdr() which
1561   // can figure out executable name from argv[0].
1562   if (found && info->dlpi_name && info->dlpi_name[0]) {
1563     d->base = libbase;
1564     if (d->fname) {
1565       jio_snprintf(d->fname, d->buflen, "%s", info->dlpi_name);
1566     }
1567     return 1;
1568   }
1569   return 0;
1570 }
1571 
1572 bool os::dll_address_to_library_name(address addr, char* buf,
1573                                      int buflen, int* offset) {
1574   // buf is not optional, but offset is optional
1575   assert(buf != NULL, "sanity check");
1576 
1577   Dl_info dlinfo;
1578   struct _address_to_library_name data;
1579 
1580   // There is a bug in old glibc dladdr() implementation that it could resolve
1581   // to wrong library name if the .so file has a base address != NULL. Here
1582   // we iterate through the program headers of all loaded libraries to find
1583   // out which library 'addr' really belongs to. This workaround can be
1584   // removed once the minimum requirement for glibc is moved to 2.3.x.
1585   data.addr = addr;
1586   data.fname = buf;
1587   data.buflen = buflen;
1588   data.base = NULL;
1589   int rslt = dl_iterate_phdr(address_to_library_name_callback, (void *)&data);
1590 
1591   if (rslt) {
1592     // buf already contains library name
1593     if (offset) *offset = addr - data.base;
1594     return true;
1595   }
1596   if (dladdr((void*)addr, &dlinfo) != 0) {
1597     if (dlinfo.dli_fname != NULL) {
1598       jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1599     }
1600     if (dlinfo.dli_fbase != NULL && offset != NULL) {
1601       *offset = addr - (address)dlinfo.dli_fbase;
1602     }
1603     return true;
1604   }
1605 
1606   buf[0] = '\0';
1607   if (offset) *offset = -1;
1608   return false;
1609 }
1610 
1611 // Loads .dll/.so and
1612 // in case of error it checks if .dll/.so was built for the
1613 // same architecture as Hotspot is running on
1614 
1615 
1616 // Remember the stack's state. The Linux dynamic linker will change
1617 // the stack to 'executable' at most once, so we must safepoint only once.
1618 bool os::Linux::_stack_is_executable = false;
1619 
1620 // VM operation that loads a library.  This is necessary if stack protection
1621 // of the Java stacks can be lost during loading the library.  If we
1622 // do not stop the Java threads, they can stack overflow before the stacks
1623 // are protected again.
1624 class VM_LinuxDllLoad: public VM_Operation {
1625  private:
1626   const char *_filename;
1627   char *_ebuf;
1628   int _ebuflen;
1629   void *_lib;
1630  public:
1631   VM_LinuxDllLoad(const char *fn, char *ebuf, int ebuflen) :
1632     _filename(fn), _ebuf(ebuf), _ebuflen(ebuflen), _lib(NULL) {}
1633   VMOp_Type type() const { return VMOp_LinuxDllLoad; }
1634   void doit() {
1635     _lib = os::Linux::dll_load_in_vmthread(_filename, _ebuf, _ebuflen);
1636     os::Linux::_stack_is_executable = true;
1637   }
1638   void* loaded_library() { return _lib; }
1639 };
1640 
1641 void * os::dll_load(const char *filename, char *ebuf, int ebuflen) {
1642   void * result = NULL;
1643   bool load_attempted = false;
1644 
1645   // Check whether the library to load might change execution rights
1646   // of the stack. If they are changed, the protection of the stack
1647   // guard pages will be lost. We need a safepoint to fix this.
1648   //
1649   // See Linux man page execstack(8) for more info.
1650   if (os::uses_stack_guard_pages() && !os::Linux::_stack_is_executable) {
1651     ElfFile ef(filename);
1652     if (!ef.specifies_noexecstack()) {
1653       if (!is_init_completed()) {
1654         os::Linux::_stack_is_executable = true;
1655         // This is OK - No Java threads have been created yet, and hence no
1656         // stack guard pages to fix.
1657         //
1658         // This should happen only when you are building JDK7 using a very
1659         // old version of JDK6 (e.g., with JPRT) and running test_gamma.
1660         //
1661         // Dynamic loader will make all stacks executable after
1662         // this function returns, and will not do that again.
1663         assert(Threads::first() == NULL, "no Java threads should exist yet.");
1664       } else {
1665         warning("You have loaded library %s which might have disabled stack guard. "
1666                 "The VM will try to fix the stack guard now.\n"
1667                 "It's highly recommended that you fix the library with "
1668                 "'execstack -c <libfile>', or link it with '-z noexecstack'.",
1669                 filename);
1670 
1671         assert(Thread::current()->is_Java_thread(), "must be Java thread");
1672         JavaThread *jt = JavaThread::current();
1673         if (jt->thread_state() != _thread_in_native) {
1674           // This happens when a compiler thread tries to load a hsdis-<arch>.so file
1675           // that requires ExecStack. Cannot enter safe point. Let's give up.
1676           warning("Unable to fix stack guard. Giving up.");
1677         } else {
1678           if (!LoadExecStackDllInVMThread) {
1679             // This is for the case where the DLL has an static
1680             // constructor function that executes JNI code. We cannot
1681             // load such DLLs in the VMThread.
1682             result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1683           }
1684 
1685           ThreadInVMfromNative tiv(jt);
1686           debug_only(VMNativeEntryWrapper vew;)
1687 
1688           VM_LinuxDllLoad op(filename, ebuf, ebuflen);
1689           VMThread::execute(&op);
1690           if (LoadExecStackDllInVMThread) {
1691             result = op.loaded_library();
1692           }
1693           load_attempted = true;
1694         }
1695       }
1696     }
1697   }
1698 
1699   if (!load_attempted) {
1700     result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1701   }
1702 
1703   if (result != NULL) {
1704     // Successful loading
1705     return result;
1706   }
1707 
1708   Elf32_Ehdr elf_head;
1709   int diag_msg_max_length=ebuflen-strlen(ebuf);
1710   char* diag_msg_buf=ebuf+strlen(ebuf);
1711 
1712   if (diag_msg_max_length==0) {
1713     // No more space in ebuf for additional diagnostics message
1714     return NULL;
1715   }
1716 
1717 
1718   int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1719 
1720   if (file_descriptor < 0) {
1721     // Can't open library, report dlerror() message
1722     return NULL;
1723   }
1724 
1725   bool failed_to_read_elf_head=
1726     (sizeof(elf_head)!=
1727      (::read(file_descriptor, &elf_head,sizeof(elf_head))));
1728 
1729   ::close(file_descriptor);
1730   if (failed_to_read_elf_head) {
1731     // file i/o error - report dlerror() msg
1732     return NULL;
1733   }
1734 
1735   typedef struct {
1736     Elf32_Half    code;         // Actual value as defined in elf.h
1737     Elf32_Half    compat_class; // Compatibility of archs at VM's sense
1738     unsigned char elf_class;    // 32 or 64 bit
1739     unsigned char endianess;    // MSB or LSB
1740     char*         name;         // String representation
1741   } arch_t;
1742 
1743 #ifndef EM_486
1744   #define EM_486          6               /* Intel 80486 */
1745 #endif
1746 #ifndef EM_AARCH64
1747   #define EM_AARCH64    183               /* ARM AARCH64 */
1748 #endif
1749 
1750   static const arch_t arch_array[]={
1751     {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1752     {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1753     {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1754     {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1755     {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1756     {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1757     {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1758     {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1759 #if defined(VM_LITTLE_ENDIAN)
1760     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2LSB, (char*)"Power PC 64"},
1761 #else
1762     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64 LE"},
1763 #endif
1764     {EM_ARM,         EM_ARM,     ELFCLASS32,   ELFDATA2LSB, (char*)"ARM"},
1765     {EM_S390,        EM_S390,    ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
1766     {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
1767     {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
1768     {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
1769     {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
1770     {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"},
1771     {EM_AARCH64,     EM_AARCH64, ELFCLASS64, ELFDATA2LSB, (char*)"AARCH64"},
1772   };
1773 
1774 #if  (defined IA32)
1775   static  Elf32_Half running_arch_code=EM_386;
1776 #elif   (defined AMD64)
1777   static  Elf32_Half running_arch_code=EM_X86_64;
1778 #elif  (defined IA64)
1779   static  Elf32_Half running_arch_code=EM_IA_64;
1780 #elif  (defined __sparc) && (defined _LP64)
1781   static  Elf32_Half running_arch_code=EM_SPARCV9;
1782 #elif  (defined __sparc) && (!defined _LP64)
1783   static  Elf32_Half running_arch_code=EM_SPARC;
1784 #elif  (defined __powerpc64__)
1785   static  Elf32_Half running_arch_code=EM_PPC64;
1786 #elif  (defined __powerpc__)
1787   static  Elf32_Half running_arch_code=EM_PPC;
1788 #elif  (defined AARCH64)
1789   static  Elf32_Half running_arch_code=EM_AARCH64;
1790 #elif  (defined ARM)
1791   static  Elf32_Half running_arch_code=EM_ARM;
1792 #elif  (defined S390)
1793   static  Elf32_Half running_arch_code=EM_S390;
1794 #elif  (defined ALPHA)
1795   static  Elf32_Half running_arch_code=EM_ALPHA;
1796 #elif  (defined MIPSEL)
1797   static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
1798 #elif  (defined PARISC)
1799   static  Elf32_Half running_arch_code=EM_PARISC;
1800 #elif  (defined MIPS)
1801   static  Elf32_Half running_arch_code=EM_MIPS;
1802 #elif  (defined M68K)
1803   static  Elf32_Half running_arch_code=EM_68K;
1804 #else
1805     #error Method os::dll_load requires that one of following is defined:\
1806         AARCH64, ALPHA, ARM, AMD64, IA32, IA64, M68K, MIPS, MIPSEL, PARISC, __powerpc__, __powerpc64__, S390, __sparc
1807 #endif
1808 
1809   // Identify compatability class for VM's architecture and library's architecture
1810   // Obtain string descriptions for architectures
1811 
1812   arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
1813   int running_arch_index=-1;
1814 
1815   for (unsigned int i=0; i < ARRAY_SIZE(arch_array); i++) {
1816     if (running_arch_code == arch_array[i].code) {
1817       running_arch_index    = i;
1818     }
1819     if (lib_arch.code == arch_array[i].code) {
1820       lib_arch.compat_class = arch_array[i].compat_class;
1821       lib_arch.name         = arch_array[i].name;
1822     }
1823   }
1824 
1825   assert(running_arch_index != -1,
1826          "Didn't find running architecture code (running_arch_code) in arch_array");
1827   if (running_arch_index == -1) {
1828     // Even though running architecture detection failed
1829     // we may still continue with reporting dlerror() message
1830     return NULL;
1831   }
1832 
1833   if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
1834     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
1835     return NULL;
1836   }
1837 
1838 #ifndef S390
1839   if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
1840     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
1841     return NULL;
1842   }
1843 #endif // !S390
1844 
1845   if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
1846     if (lib_arch.name!=NULL) {
1847       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1848                  " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
1849                  lib_arch.name, arch_array[running_arch_index].name);
1850     } else {
1851       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1852                  " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
1853                  lib_arch.code,
1854                  arch_array[running_arch_index].name);
1855     }
1856   }
1857 
1858   return NULL;
1859 }
1860 
1861 void * os::Linux::dlopen_helper(const char *filename, char *ebuf,
1862                                 int ebuflen) {
1863   void * result = ::dlopen(filename, RTLD_LAZY);
1864   if (result == NULL) {
1865     ::strncpy(ebuf, ::dlerror(), ebuflen - 1);
1866     ebuf[ebuflen-1] = '\0';
1867   }
1868   return result;
1869 }
1870 
1871 void * os::Linux::dll_load_in_vmthread(const char *filename, char *ebuf,
1872                                        int ebuflen) {
1873   void * result = NULL;
1874   if (LoadExecStackDllInVMThread) {
1875     result = dlopen_helper(filename, ebuf, ebuflen);
1876   }
1877 
1878   // Since 7019808, libjvm.so is linked with -noexecstack. If the VM loads a
1879   // library that requires an executable stack, or which does not have this
1880   // stack attribute set, dlopen changes the stack attribute to executable. The
1881   // read protection of the guard pages gets lost.
1882   //
1883   // Need to check _stack_is_executable again as multiple VM_LinuxDllLoad
1884   // may have been queued at the same time.
1885 
1886   if (!_stack_is_executable) {
1887     JavaThread *jt = Threads::first();
1888 
1889     while (jt) {
1890       if (!jt->stack_guard_zone_unused() &&     // Stack not yet fully initialized
1891           jt->stack_guards_enabled()) {         // No pending stack overflow exceptions
1892         if (!os::guard_memory((char *)jt->stack_end(), jt->stack_guard_zone_size())) {
1893           warning("Attempt to reguard stack yellow zone failed.");
1894         }
1895       }
1896       jt = jt->next();
1897     }
1898   }
1899 
1900   return result;
1901 }
1902 
1903 void* os::dll_lookup(void* handle, const char* name) {
1904   void* res = dlsym(handle, name);
1905   return res;
1906 }
1907 
1908 void* os::get_default_process_handle() {
1909   return (void*)::dlopen(NULL, RTLD_LAZY);
1910 }
1911 
1912 static bool _print_ascii_file(const char* filename, outputStream* st) {
1913   int fd = ::open(filename, O_RDONLY);
1914   if (fd == -1) {
1915     return false;
1916   }
1917 
1918   char buf[33];
1919   int bytes;
1920   buf[32] = '\0';
1921   while ((bytes = ::read(fd, buf, sizeof(buf)-1)) > 0) {
1922     st->print_raw(buf, bytes);
1923   }
1924 
1925   ::close(fd);
1926 
1927   return true;
1928 }
1929 
1930 void os::print_dll_info(outputStream *st) {
1931   st->print_cr("Dynamic libraries:");
1932 
1933   char fname[32];
1934   pid_t pid = os::Linux::gettid();
1935 
1936   jio_snprintf(fname, sizeof(fname), "/proc/%d/maps", pid);
1937 
1938   if (!_print_ascii_file(fname, st)) {
1939     st->print("Can not get library information for pid = %d\n", pid);
1940   }
1941 }
1942 
1943 int os::get_loaded_modules_info(os::LoadedModulesCallbackFunc callback, void *param) {
1944   FILE *procmapsFile = NULL;
1945 
1946   // Open the procfs maps file for the current process
1947   if ((procmapsFile = fopen("/proc/self/maps", "r")) != NULL) {
1948     // Allocate PATH_MAX for file name plus a reasonable size for other fields.
1949     char line[PATH_MAX + 100];
1950 
1951     // Read line by line from 'file'
1952     while (fgets(line, sizeof(line), procmapsFile) != NULL) {
1953       u8 base, top, offset, inode;
1954       char permissions[5];
1955       char device[6];
1956       char name[PATH_MAX + 1];
1957 
1958       // Parse fields from line
1959       sscanf(line, UINT64_FORMAT_X "-" UINT64_FORMAT_X " %4s " UINT64_FORMAT_X " %5s " INT64_FORMAT " %s",
1960              &base, &top, permissions, &offset, device, &inode, name);
1961 
1962       // Filter by device id '00:00' so that we only get file system mapped files.
1963       if (strcmp(device, "00:00") != 0) {
1964 
1965         // Call callback with the fields of interest
1966         if(callback(name, (address)base, (address)top, param)) {
1967           // Oops abort, callback aborted
1968           fclose(procmapsFile);
1969           return 1;
1970         }
1971       }
1972     }
1973     fclose(procmapsFile);
1974   }
1975   return 0;
1976 }
1977 
1978 void os::print_os_info_brief(outputStream* st) {
1979   os::Linux::print_distro_info(st);
1980 
1981   os::Posix::print_uname_info(st);
1982 
1983   os::Linux::print_libversion_info(st);
1984 
1985 }
1986 
1987 void os::print_os_info(outputStream* st) {
1988   st->print("OS:");
1989 
1990   os::Linux::print_distro_info(st);
1991 
1992   os::Posix::print_uname_info(st);
1993 
1994   // Print warning if unsafe chroot environment detected
1995   if (unsafe_chroot_detected) {
1996     st->print("WARNING!! ");
1997     st->print_cr("%s", unstable_chroot_error);
1998   }
1999 
2000   os::Linux::print_libversion_info(st);
2001 
2002   os::Posix::print_rlimit_info(st);
2003 
2004   os::Posix::print_load_average(st);
2005 
2006   os::Linux::print_full_memory_info(st);
2007 }
2008 
2009 // Try to identify popular distros.
2010 // Most Linux distributions have a /etc/XXX-release file, which contains
2011 // the OS version string. Newer Linux distributions have a /etc/lsb-release
2012 // file that also contains the OS version string. Some have more than one
2013 // /etc/XXX-release file (e.g. Mandrake has both /etc/mandrake-release and
2014 // /etc/redhat-release.), so the order is important.
2015 // Any Linux that is based on Redhat (i.e. Oracle, Mandrake, Sun JDS...) have
2016 // their own specific XXX-release file as well as a redhat-release file.
2017 // Because of this the XXX-release file needs to be searched for before the
2018 // redhat-release file.
2019 // Since Red Hat and SuSE have an lsb-release file that is not very descriptive the
2020 // search for redhat-release / SuSE-release needs to be before lsb-release.
2021 // Since the lsb-release file is the new standard it needs to be searched
2022 // before the older style release files.
2023 // Searching system-release (Red Hat) and os-release (other Linuxes) are a
2024 // next to last resort.  The os-release file is a new standard that contains
2025 // distribution information and the system-release file seems to be an old
2026 // standard that has been replaced by the lsb-release and os-release files.
2027 // Searching for the debian_version file is the last resort.  It contains
2028 // an informative string like "6.0.6" or "wheezy/sid". Because of this
2029 // "Debian " is printed before the contents of the debian_version file.
2030 
2031 const char* distro_files[] = {
2032   "/etc/oracle-release",
2033   "/etc/mandriva-release",
2034   "/etc/mandrake-release",
2035   "/etc/sun-release",
2036   "/etc/redhat-release",
2037   "/etc/SuSE-release",
2038   "/etc/lsb-release",
2039   "/etc/turbolinux-release",
2040   "/etc/gentoo-release",
2041   "/etc/ltib-release",
2042   "/etc/angstrom-version",
2043   "/etc/system-release",
2044   "/etc/os-release",
2045   NULL };
2046 
2047 void os::Linux::print_distro_info(outputStream* st) {
2048   for (int i = 0;; i++) {
2049     const char* file = distro_files[i];
2050     if (file == NULL) {
2051       break;  // done
2052     }
2053     // If file prints, we found it.
2054     if (_print_ascii_file(file, st)) {
2055       return;
2056     }
2057   }
2058 
2059   if (file_exists("/etc/debian_version")) {
2060     st->print("Debian ");
2061     _print_ascii_file("/etc/debian_version", st);
2062   } else {
2063     st->print("Linux");
2064   }
2065   st->cr();
2066 }
2067 
2068 static void parse_os_info_helper(FILE* fp, char* distro, size_t length, bool get_first_line) {
2069   char buf[256];
2070   while (fgets(buf, sizeof(buf), fp)) {
2071     // Edit out extra stuff in expected format
2072     if (strstr(buf, "DISTRIB_DESCRIPTION=") != NULL || strstr(buf, "PRETTY_NAME=") != NULL) {
2073       char* ptr = strstr(buf, "\"");  // the name is in quotes
2074       if (ptr != NULL) {
2075         ptr++; // go beyond first quote
2076         char* nl = strchr(ptr, '\"');
2077         if (nl != NULL) *nl = '\0';
2078         strncpy(distro, ptr, length);
2079       } else {
2080         ptr = strstr(buf, "=");
2081         ptr++; // go beyond equals then
2082         char* nl = strchr(ptr, '\n');
2083         if (nl != NULL) *nl = '\0';
2084         strncpy(distro, ptr, length);
2085       }
2086       return;
2087     } else if (get_first_line) {
2088       char* nl = strchr(buf, '\n');
2089       if (nl != NULL) *nl = '\0';
2090       strncpy(distro, buf, length);
2091       return;
2092     }
2093   }
2094   // print last line and close
2095   char* nl = strchr(buf, '\n');
2096   if (nl != NULL) *nl = '\0';
2097   strncpy(distro, buf, length);
2098 }
2099 
2100 static void parse_os_info(char* distro, size_t length, const char* file) {
2101   FILE* fp = fopen(file, "r");
2102   if (fp != NULL) {
2103     // if suse format, print out first line
2104     bool get_first_line = (strcmp(file, "/etc/SuSE-release") == 0);
2105     parse_os_info_helper(fp, distro, length, get_first_line);
2106     fclose(fp);
2107   }
2108 }
2109 
2110 void os::get_summary_os_info(char* buf, size_t buflen) {
2111   for (int i = 0;; i++) {
2112     const char* file = distro_files[i];
2113     if (file == NULL) {
2114       break; // ran out of distro_files
2115     }
2116     if (file_exists(file)) {
2117       parse_os_info(buf, buflen, file);
2118       return;
2119     }
2120   }
2121   // special case for debian
2122   if (file_exists("/etc/debian_version")) {
2123     strncpy(buf, "Debian ", buflen);
2124     parse_os_info(&buf[7], buflen-7, "/etc/debian_version");
2125   } else {
2126     strncpy(buf, "Linux", buflen);
2127   }
2128 }
2129 
2130 void os::Linux::print_libversion_info(outputStream* st) {
2131   // libc, pthread
2132   st->print("libc:");
2133   st->print("%s ", os::Linux::glibc_version());
2134   st->print("%s ", os::Linux::libpthread_version());
2135   st->cr();
2136 }
2137 
2138 void os::Linux::print_full_memory_info(outputStream* st) {
2139   st->print("\n/proc/meminfo:\n");
2140   _print_ascii_file("/proc/meminfo", st);
2141   st->cr();
2142 }
2143 
2144 void os::print_memory_info(outputStream* st) {
2145 
2146   st->print("Memory:");
2147   st->print(" %dk page", os::vm_page_size()>>10);
2148 
2149   // values in struct sysinfo are "unsigned long"
2150   struct sysinfo si;
2151   sysinfo(&si);
2152 
2153   st->print(", physical " UINT64_FORMAT "k",
2154             os::physical_memory() >> 10);
2155   st->print("(" UINT64_FORMAT "k free)",
2156             os::available_memory() >> 10);
2157   st->print(", swap " UINT64_FORMAT "k",
2158             ((jlong)si.totalswap * si.mem_unit) >> 10);
2159   st->print("(" UINT64_FORMAT "k free)",
2160             ((jlong)si.freeswap * si.mem_unit) >> 10);
2161   st->cr();
2162 }
2163 
2164 // Print the first "model name" line and the first "flags" line
2165 // that we find and nothing more. We assume "model name" comes
2166 // before "flags" so if we find a second "model name", then the
2167 // "flags" field is considered missing.
2168 static bool print_model_name_and_flags(outputStream* st, char* buf, size_t buflen) {
2169 #if defined(IA32) || defined(AMD64)
2170   // Other platforms have less repetitive cpuinfo files
2171   FILE *fp = fopen("/proc/cpuinfo", "r");
2172   if (fp) {
2173     while (!feof(fp)) {
2174       if (fgets(buf, buflen, fp)) {
2175         // Assume model name comes before flags
2176         bool model_name_printed = false;
2177         if (strstr(buf, "model name") != NULL) {
2178           if (!model_name_printed) {
2179             st->print_raw("CPU Model and flags from /proc/cpuinfo:\n");
2180             st->print_raw(buf);
2181             model_name_printed = true;
2182           } else {
2183             // model name printed but not flags?  Odd, just return
2184             fclose(fp);
2185             return true;
2186           }
2187         }
2188         // print the flags line too
2189         if (strstr(buf, "flags") != NULL) {
2190           st->print_raw(buf);
2191           fclose(fp);
2192           return true;
2193         }
2194       }
2195     }
2196     fclose(fp);
2197   }
2198 #endif // x86 platforms
2199   return false;
2200 }
2201 
2202 void os::pd_print_cpu_info(outputStream* st, char* buf, size_t buflen) {
2203   // Only print the model name if the platform provides this as a summary
2204   if (!print_model_name_and_flags(st, buf, buflen)) {
2205     st->print("\n/proc/cpuinfo:\n");
2206     if (!_print_ascii_file("/proc/cpuinfo", st)) {
2207       st->print_cr("  <Not Available>");
2208     }
2209   }
2210 }
2211 
2212 #if defined(AMD64) || defined(IA32) || defined(X32)
2213 const char* search_string = "model name";
2214 #elif defined(PPC64)
2215 const char* search_string = "cpu";
2216 #elif defined(S390)
2217 const char* search_string = "processor";
2218 #elif defined(SPARC)
2219 const char* search_string = "cpu";
2220 #else
2221 const char* search_string = "Processor";
2222 #endif
2223 
2224 // Parses the cpuinfo file for string representing the model name.
2225 void os::get_summary_cpu_info(char* cpuinfo, size_t length) {
2226   FILE* fp = fopen("/proc/cpuinfo", "r");
2227   if (fp != NULL) {
2228     while (!feof(fp)) {
2229       char buf[256];
2230       if (fgets(buf, sizeof(buf), fp)) {
2231         char* start = strstr(buf, search_string);
2232         if (start != NULL) {
2233           char *ptr = start + strlen(search_string);
2234           char *end = buf + strlen(buf);
2235           while (ptr != end) {
2236              // skip whitespace and colon for the rest of the name.
2237              if (*ptr != ' ' && *ptr != '\t' && *ptr != ':') {
2238                break;
2239              }
2240              ptr++;
2241           }
2242           if (ptr != end) {
2243             // reasonable string, get rid of newline and keep the rest
2244             char* nl = strchr(buf, '\n');
2245             if (nl != NULL) *nl = '\0';
2246             strncpy(cpuinfo, ptr, length);
2247             fclose(fp);
2248             return;
2249           }
2250         }
2251       }
2252     }
2253     fclose(fp);
2254   }
2255   // cpuinfo not found or parsing failed, just print generic string.  The entire
2256   // /proc/cpuinfo file will be printed later in the file (or enough of it for x86)
2257 #if   defined(AARCH64)
2258   strncpy(cpuinfo, "AArch64", length);
2259 #elif defined(AMD64)
2260   strncpy(cpuinfo, "x86_64", length);
2261 #elif defined(ARM)  // Order wrt. AARCH64 is relevant!
2262   strncpy(cpuinfo, "ARM", length);
2263 #elif defined(IA32)
2264   strncpy(cpuinfo, "x86_32", length);
2265 #elif defined(IA64)
2266   strncpy(cpuinfo, "IA64", length);
2267 #elif defined(PPC)
2268   strncpy(cpuinfo, "PPC64", length);
2269 #elif defined(S390)
2270   strncpy(cpuinfo, "S390", length);
2271 #elif defined(SPARC)
2272   strncpy(cpuinfo, "sparcv9", length);
2273 #elif defined(ZERO_LIBARCH)
2274   strncpy(cpuinfo, ZERO_LIBARCH, length);
2275 #else
2276   strncpy(cpuinfo, "unknown", length);
2277 #endif
2278 }
2279 
2280 static void print_signal_handler(outputStream* st, int sig,
2281                                  char* buf, size_t buflen);
2282 
2283 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
2284   st->print_cr("Signal Handlers:");
2285   print_signal_handler(st, SIGSEGV, buf, buflen);
2286   print_signal_handler(st, SIGBUS , buf, buflen);
2287   print_signal_handler(st, SIGFPE , buf, buflen);
2288   print_signal_handler(st, SIGPIPE, buf, buflen);
2289   print_signal_handler(st, SIGXFSZ, buf, buflen);
2290   print_signal_handler(st, SIGILL , buf, buflen);
2291   print_signal_handler(st, SR_signum, buf, buflen);
2292   print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
2293   print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
2294   print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
2295   print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
2296 #if defined(PPC64)
2297   print_signal_handler(st, SIGTRAP, buf, buflen);
2298 #endif
2299 }
2300 
2301 static char saved_jvm_path[MAXPATHLEN] = {0};
2302 
2303 // Find the full path to the current module, libjvm.so
2304 void os::jvm_path(char *buf, jint buflen) {
2305   // Error checking.
2306   if (buflen < MAXPATHLEN) {
2307     assert(false, "must use a large-enough buffer");
2308     buf[0] = '\0';
2309     return;
2310   }
2311   // Lazy resolve the path to current module.
2312   if (saved_jvm_path[0] != 0) {
2313     strcpy(buf, saved_jvm_path);
2314     return;
2315   }
2316 
2317   char dli_fname[MAXPATHLEN];
2318   bool ret = dll_address_to_library_name(
2319                                          CAST_FROM_FN_PTR(address, os::jvm_path),
2320                                          dli_fname, sizeof(dli_fname), NULL);
2321   assert(ret, "cannot locate libjvm");
2322   char *rp = NULL;
2323   if (ret && dli_fname[0] != '\0') {
2324     rp = realpath(dli_fname, buf);
2325   }
2326   if (rp == NULL) {
2327     return;
2328   }
2329 
2330   if (Arguments::sun_java_launcher_is_altjvm()) {
2331     // Support for the java launcher's '-XXaltjvm=<path>' option. Typical
2332     // value for buf is "<JAVA_HOME>/jre/lib/<vmtype>/libjvm.so".
2333     // If "/jre/lib/" appears at the right place in the string, then
2334     // assume we are installed in a JDK and we're done. Otherwise, check
2335     // for a JAVA_HOME environment variable and fix up the path so it
2336     // looks like libjvm.so is installed there (append a fake suffix
2337     // hotspot/libjvm.so).
2338     const char *p = buf + strlen(buf) - 1;
2339     for (int count = 0; p > buf && count < 5; ++count) {
2340       for (--p; p > buf && *p != '/'; --p)
2341         /* empty */ ;
2342     }
2343 
2344     if (strncmp(p, "/jre/lib/", 9) != 0) {
2345       // Look for JAVA_HOME in the environment.
2346       char* java_home_var = ::getenv("JAVA_HOME");
2347       if (java_home_var != NULL && java_home_var[0] != 0) {
2348         char* jrelib_p;
2349         int len;
2350 
2351         // Check the current module name "libjvm.so".
2352         p = strrchr(buf, '/');
2353         if (p == NULL) {
2354           return;
2355         }
2356         assert(strstr(p, "/libjvm") == p, "invalid library name");
2357 
2358         rp = realpath(java_home_var, buf);
2359         if (rp == NULL) {
2360           return;
2361         }
2362 
2363         // determine if this is a legacy image or modules image
2364         // modules image doesn't have "jre" subdirectory
2365         len = strlen(buf);
2366         assert(len < buflen, "Ran out of buffer room");
2367         jrelib_p = buf + len;
2368         snprintf(jrelib_p, buflen-len, "/jre/lib");
2369         if (0 != access(buf, F_OK)) {
2370           snprintf(jrelib_p, buflen-len, "/lib");
2371         }
2372 
2373         if (0 == access(buf, F_OK)) {
2374           // Use current module name "libjvm.so"
2375           len = strlen(buf);
2376           snprintf(buf + len, buflen-len, "/hotspot/libjvm.so");
2377         } else {
2378           // Go back to path of .so
2379           rp = realpath(dli_fname, buf);
2380           if (rp == NULL) {
2381             return;
2382           }
2383         }
2384       }
2385     }
2386   }
2387 
2388   strncpy(saved_jvm_path, buf, MAXPATHLEN);
2389   saved_jvm_path[MAXPATHLEN - 1] = '\0';
2390 }
2391 
2392 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
2393   // no prefix required, not even "_"
2394 }
2395 
2396 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
2397   // no suffix required
2398 }
2399 
2400 ////////////////////////////////////////////////////////////////////////////////
2401 // sun.misc.Signal support
2402 
2403 static volatile jint sigint_count = 0;
2404 
2405 static void UserHandler(int sig, void *siginfo, void *context) {
2406   // 4511530 - sem_post is serialized and handled by the manager thread. When
2407   // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
2408   // don't want to flood the manager thread with sem_post requests.
2409   if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1) {
2410     return;
2411   }
2412 
2413   // Ctrl-C is pressed during error reporting, likely because the error
2414   // handler fails to abort. Let VM die immediately.
2415   if (sig == SIGINT && is_error_reported()) {
2416     os::die();
2417   }
2418 
2419   os::signal_notify(sig);
2420 }
2421 
2422 void* os::user_handler() {
2423   return CAST_FROM_FN_PTR(void*, UserHandler);
2424 }
2425 
2426 struct timespec PosixSemaphore::create_timespec(unsigned int sec, int nsec) {
2427   struct timespec ts;
2428   // Semaphore's are always associated with CLOCK_REALTIME
2429   os::Linux::clock_gettime(CLOCK_REALTIME, &ts);
2430   // see unpackTime for discussion on overflow checking
2431   if (sec >= MAX_SECS) {
2432     ts.tv_sec += MAX_SECS;
2433     ts.tv_nsec = 0;
2434   } else {
2435     ts.tv_sec += sec;
2436     ts.tv_nsec += nsec;
2437     if (ts.tv_nsec >= NANOSECS_PER_SEC) {
2438       ts.tv_nsec -= NANOSECS_PER_SEC;
2439       ++ts.tv_sec; // note: this must be <= max_secs
2440     }
2441   }
2442 
2443   return ts;
2444 }
2445 
2446 extern "C" {
2447   typedef void (*sa_handler_t)(int);
2448   typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
2449 }
2450 
2451 void* os::signal(int signal_number, void* handler) {
2452   struct sigaction sigAct, oldSigAct;
2453 
2454   sigfillset(&(sigAct.sa_mask));
2455   sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
2456   sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
2457 
2458   if (sigaction(signal_number, &sigAct, &oldSigAct)) {
2459     // -1 means registration failed
2460     return (void *)-1;
2461   }
2462 
2463   return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
2464 }
2465 
2466 void os::signal_raise(int signal_number) {
2467   ::raise(signal_number);
2468 }
2469 
2470 // The following code is moved from os.cpp for making this
2471 // code platform specific, which it is by its very nature.
2472 
2473 // Will be modified when max signal is changed to be dynamic
2474 int os::sigexitnum_pd() {
2475   return NSIG;
2476 }
2477 
2478 // a counter for each possible signal value
2479 static volatile jint pending_signals[NSIG+1] = { 0 };
2480 
2481 // Linux(POSIX) specific hand shaking semaphore.
2482 static sem_t sig_sem;
2483 static PosixSemaphore sr_semaphore;
2484 
2485 void os::signal_init_pd() {
2486   // Initialize signal structures
2487   ::memset((void*)pending_signals, 0, sizeof(pending_signals));
2488 
2489   // Initialize signal semaphore
2490   ::sem_init(&sig_sem, 0, 0);
2491 }
2492 
2493 void os::signal_notify(int sig) {
2494   Atomic::inc(&pending_signals[sig]);
2495   ::sem_post(&sig_sem);
2496 }
2497 
2498 static int check_pending_signals(bool wait) {
2499   Atomic::store(0, &sigint_count);
2500   for (;;) {
2501     for (int i = 0; i < NSIG + 1; i++) {
2502       jint n = pending_signals[i];
2503       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2504         return i;
2505       }
2506     }
2507     if (!wait) {
2508       return -1;
2509     }
2510     JavaThread *thread = JavaThread::current();
2511     ThreadBlockInVM tbivm(thread);
2512 
2513     bool threadIsSuspended;
2514     do {
2515       thread->set_suspend_equivalent();
2516       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2517       ::sem_wait(&sig_sem);
2518 
2519       // were we externally suspended while we were waiting?
2520       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2521       if (threadIsSuspended) {
2522         // The semaphore has been incremented, but while we were waiting
2523         // another thread suspended us. We don't want to continue running
2524         // while suspended because that would surprise the thread that
2525         // suspended us.
2526         ::sem_post(&sig_sem);
2527 
2528         thread->java_suspend_self();
2529       }
2530     } while (threadIsSuspended);
2531   }
2532 }
2533 
2534 int os::signal_lookup() {
2535   return check_pending_signals(false);
2536 }
2537 
2538 int os::signal_wait() {
2539   return check_pending_signals(true);
2540 }
2541 
2542 ////////////////////////////////////////////////////////////////////////////////
2543 // Virtual Memory
2544 
2545 int os::vm_page_size() {
2546   // Seems redundant as all get out
2547   assert(os::Linux::page_size() != -1, "must call os::init");
2548   return os::Linux::page_size();
2549 }
2550 
2551 // Solaris allocates memory by pages.
2552 int os::vm_allocation_granularity() {
2553   assert(os::Linux::page_size() != -1, "must call os::init");
2554   return os::Linux::page_size();
2555 }
2556 
2557 // Rationale behind this function:
2558 //  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
2559 //  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
2560 //  samples for JITted code. Here we create private executable mapping over the code cache
2561 //  and then we can use standard (well, almost, as mapping can change) way to provide
2562 //  info for the reporting script by storing timestamp and location of symbol
2563 void linux_wrap_code(char* base, size_t size) {
2564   static volatile jint cnt = 0;
2565 
2566   if (!UseOprofile) {
2567     return;
2568   }
2569 
2570   char buf[PATH_MAX+1];
2571   int num = Atomic::add(1, &cnt);
2572 
2573   snprintf(buf, sizeof(buf), "%s/hs-vm-%d-%d",
2574            os::get_temp_directory(), os::current_process_id(), num);
2575   unlink(buf);
2576 
2577   int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
2578 
2579   if (fd != -1) {
2580     off_t rv = ::lseek(fd, size-2, SEEK_SET);
2581     if (rv != (off_t)-1) {
2582       if (::write(fd, "", 1) == 1) {
2583         mmap(base, size,
2584              PROT_READ|PROT_WRITE|PROT_EXEC,
2585              MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
2586       }
2587     }
2588     ::close(fd);
2589     unlink(buf);
2590   }
2591 }
2592 
2593 static bool recoverable_mmap_error(int err) {
2594   // See if the error is one we can let the caller handle. This
2595   // list of errno values comes from JBS-6843484. I can't find a
2596   // Linux man page that documents this specific set of errno
2597   // values so while this list currently matches Solaris, it may
2598   // change as we gain experience with this failure mode.
2599   switch (err) {
2600   case EBADF:
2601   case EINVAL:
2602   case ENOTSUP:
2603     // let the caller deal with these errors
2604     return true;
2605 
2606   default:
2607     // Any remaining errors on this OS can cause our reserved mapping
2608     // to be lost. That can cause confusion where different data
2609     // structures think they have the same memory mapped. The worst
2610     // scenario is if both the VM and a library think they have the
2611     // same memory mapped.
2612     return false;
2613   }
2614 }
2615 
2616 static void warn_fail_commit_memory(char* addr, size_t size, bool exec,
2617                                     int err) {
2618   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2619           ", %d) failed; error='%s' (errno=%d)", p2i(addr), size, exec,
2620           os::strerror(err), err);
2621 }
2622 
2623 static void warn_fail_commit_memory(char* addr, size_t size,
2624                                     size_t alignment_hint, bool exec,
2625                                     int err) {
2626   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2627           ", " SIZE_FORMAT ", %d) failed; error='%s' (errno=%d)", p2i(addr), size,
2628           alignment_hint, exec, os::strerror(err), err);
2629 }
2630 
2631 // NOTE: Linux kernel does not really reserve the pages for us.
2632 //       All it does is to check if there are enough free pages
2633 //       left at the time of mmap(). This could be a potential
2634 //       problem.
2635 int os::Linux::commit_memory_impl(char* addr, size_t size, bool exec) {
2636   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2637   uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
2638                                      MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
2639   if (res != (uintptr_t) MAP_FAILED) {
2640     if (UseNUMAInterleaving) {
2641       numa_make_global(addr, size);
2642     }
2643     return 0;
2644   }
2645 
2646   int err = errno;  // save errno from mmap() call above
2647 
2648   if (!recoverable_mmap_error(err)) {
2649     warn_fail_commit_memory(addr, size, exec, err);
2650     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "committing reserved memory.");
2651   }
2652 
2653   return err;
2654 }
2655 
2656 bool os::pd_commit_memory(char* addr, size_t size, bool exec) {
2657   return os::Linux::commit_memory_impl(addr, size, exec) == 0;
2658 }
2659 
2660 void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
2661                                   const char* mesg) {
2662   assert(mesg != NULL, "mesg must be specified");
2663   int err = os::Linux::commit_memory_impl(addr, size, exec);
2664   if (err != 0) {
2665     // the caller wants all commit errors to exit with the specified mesg:
2666     warn_fail_commit_memory(addr, size, exec, err);
2667     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "%s", mesg);
2668   }
2669 }
2670 
2671 // Define MAP_HUGETLB here so we can build HotSpot on old systems.
2672 #ifndef MAP_HUGETLB
2673   #define MAP_HUGETLB 0x40000
2674 #endif
2675 
2676 // Define MADV_HUGEPAGE here so we can build HotSpot on old systems.
2677 #ifndef MADV_HUGEPAGE
2678   #define MADV_HUGEPAGE 14
2679 #endif
2680 
2681 int os::Linux::commit_memory_impl(char* addr, size_t size,
2682                                   size_t alignment_hint, bool exec) {
2683   int err = os::Linux::commit_memory_impl(addr, size, exec);
2684   if (err == 0) {
2685     realign_memory(addr, size, alignment_hint);
2686   }
2687   return err;
2688 }
2689 
2690 bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
2691                           bool exec) {
2692   return os::Linux::commit_memory_impl(addr, size, alignment_hint, exec) == 0;
2693 }
2694 
2695 void os::pd_commit_memory_or_exit(char* addr, size_t size,
2696                                   size_t alignment_hint, bool exec,
2697                                   const char* mesg) {
2698   assert(mesg != NULL, "mesg must be specified");
2699   int err = os::Linux::commit_memory_impl(addr, size, alignment_hint, exec);
2700   if (err != 0) {
2701     // the caller wants all commit errors to exit with the specified mesg:
2702     warn_fail_commit_memory(addr, size, alignment_hint, exec, err);
2703     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "%s", mesg);
2704   }
2705 }
2706 
2707 void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2708   if (UseTransparentHugePages && alignment_hint > (size_t)vm_page_size()) {
2709     // We don't check the return value: madvise(MADV_HUGEPAGE) may not
2710     // be supported or the memory may already be backed by huge pages.
2711     ::madvise(addr, bytes, MADV_HUGEPAGE);
2712   }
2713 }
2714 
2715 void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
2716   // This method works by doing an mmap over an existing mmaping and effectively discarding
2717   // the existing pages. However it won't work for SHM-based large pages that cannot be
2718   // uncommitted at all. We don't do anything in this case to avoid creating a segment with
2719   // small pages on top of the SHM segment. This method always works for small pages, so we
2720   // allow that in any case.
2721   if (alignment_hint <= (size_t)os::vm_page_size() || can_commit_large_page_memory()) {
2722     commit_memory(addr, bytes, alignment_hint, !ExecMem);
2723   }
2724 }
2725 
2726 void os::numa_make_global(char *addr, size_t bytes) {
2727   Linux::numa_interleave_memory(addr, bytes);
2728 }
2729 
2730 // Define for numa_set_bind_policy(int). Setting the argument to 0 will set the
2731 // bind policy to MPOL_PREFERRED for the current thread.
2732 #define USE_MPOL_PREFERRED 0
2733 
2734 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2735   // To make NUMA and large pages more robust when both enabled, we need to ease
2736   // the requirements on where the memory should be allocated. MPOL_BIND is the
2737   // default policy and it will force memory to be allocated on the specified
2738   // node. Changing this to MPOL_PREFERRED will prefer to allocate the memory on
2739   // the specified node, but will not force it. Using this policy will prevent
2740   // getting SIGBUS when trying to allocate large pages on NUMA nodes with no
2741   // free large pages.
2742   Linux::numa_set_bind_policy(USE_MPOL_PREFERRED);
2743   Linux::numa_tonode_memory(addr, bytes, lgrp_hint);
2744 }
2745 
2746 bool os::numa_topology_changed() { return false; }
2747 
2748 size_t os::numa_get_groups_num() {
2749   int max_node = Linux::numa_max_node();
2750   return max_node > 0 ? max_node + 1 : 1;
2751 }
2752 
2753 int os::numa_get_group_id() {
2754   int cpu_id = Linux::sched_getcpu();
2755   if (cpu_id != -1) {
2756     int lgrp_id = Linux::get_node_by_cpu(cpu_id);
2757     if (lgrp_id != -1) {
2758       return lgrp_id;
2759     }
2760   }
2761   return 0;
2762 }
2763 
2764 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2765   for (size_t i = 0; i < size; i++) {
2766     ids[i] = i;
2767   }
2768   return size;
2769 }
2770 
2771 bool os::get_page_info(char *start, page_info* info) {
2772   return false;
2773 }
2774 
2775 char *os::scan_pages(char *start, char* end, page_info* page_expected,
2776                      page_info* page_found) {
2777   return end;
2778 }
2779 
2780 
2781 int os::Linux::sched_getcpu_syscall(void) {
2782   unsigned int cpu = 0;
2783   int retval = -1;
2784 
2785 #if defined(IA32)
2786   #ifndef SYS_getcpu
2787     #define SYS_getcpu 318
2788   #endif
2789   retval = syscall(SYS_getcpu, &cpu, NULL, NULL);
2790 #elif defined(AMD64)
2791 // Unfortunately we have to bring all these macros here from vsyscall.h
2792 // to be able to compile on old linuxes.
2793   #define __NR_vgetcpu 2
2794   #define VSYSCALL_START (-10UL << 20)
2795   #define VSYSCALL_SIZE 1024
2796   #define VSYSCALL_ADDR(vsyscall_nr) (VSYSCALL_START+VSYSCALL_SIZE*(vsyscall_nr))
2797   typedef long (*vgetcpu_t)(unsigned int *cpu, unsigned int *node, unsigned long *tcache);
2798   vgetcpu_t vgetcpu = (vgetcpu_t)VSYSCALL_ADDR(__NR_vgetcpu);
2799   retval = vgetcpu(&cpu, NULL, NULL);
2800 #endif
2801 
2802   return (retval == -1) ? retval : cpu;
2803 }
2804 
2805 // Something to do with the numa-aware allocator needs these symbols
2806 extern "C" JNIEXPORT void numa_warn(int number, char *where, ...) { }
2807 extern "C" JNIEXPORT void numa_error(char *where) { }
2808 
2809 
2810 // If we are running with libnuma version > 2, then we should
2811 // be trying to use symbols with versions 1.1
2812 // If we are running with earlier version, which did not have symbol versions,
2813 // we should use the base version.
2814 void* os::Linux::libnuma_dlsym(void* handle, const char *name) {
2815   typedef void* (*dlvsym_func_type)(void* handle, const char* name, const char* version);
2816   static dlvsym_func_type dlvsym_func;
2817   static bool initialized = false;
2818 
2819   if (!initialized) {
2820     dlvsym_func = (dlvsym_func_type)dlsym(RTLD_NEXT, "dlvsym");
2821     initialized = true;
2822   }
2823 
2824   if (dlvsym_func != NULL) {
2825     void *f = dlvsym_func(handle, name, "libnuma_1.1");
2826     if (f != NULL) {
2827       return f;
2828     }
2829   }
2830 
2831   return dlsym(handle, name);
2832 }
2833 
2834 bool os::Linux::libnuma_init() {
2835   // sched_getcpu() should be in libc.
2836   set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
2837                                   dlsym(RTLD_DEFAULT, "sched_getcpu")));
2838 
2839   // If it's not, try a direct syscall.
2840   if (sched_getcpu() == -1) {
2841     set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
2842                                     (void*)&sched_getcpu_syscall));
2843   }
2844 
2845   if (sched_getcpu() != -1) { // Does it work?
2846     void *handle = dlopen("libnuma.so.1", RTLD_LAZY);
2847     if (handle != NULL) {
2848       set_numa_node_to_cpus(CAST_TO_FN_PTR(numa_node_to_cpus_func_t,
2849                                            libnuma_dlsym(handle, "numa_node_to_cpus")));
2850       set_numa_max_node(CAST_TO_FN_PTR(numa_max_node_func_t,
2851                                        libnuma_dlsym(handle, "numa_max_node")));
2852       set_numa_available(CAST_TO_FN_PTR(numa_available_func_t,
2853                                         libnuma_dlsym(handle, "numa_available")));
2854       set_numa_tonode_memory(CAST_TO_FN_PTR(numa_tonode_memory_func_t,
2855                                             libnuma_dlsym(handle, "numa_tonode_memory")));
2856       set_numa_interleave_memory(CAST_TO_FN_PTR(numa_interleave_memory_func_t,
2857                                                 libnuma_dlsym(handle, "numa_interleave_memory")));
2858       set_numa_set_bind_policy(CAST_TO_FN_PTR(numa_set_bind_policy_func_t,
2859                                               libnuma_dlsym(handle, "numa_set_bind_policy")));
2860 
2861 
2862       if (numa_available() != -1) {
2863         set_numa_all_nodes((unsigned long*)libnuma_dlsym(handle, "numa_all_nodes"));
2864         // Create a cpu -> node mapping
2865         _cpu_to_node = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<int>(0, true);
2866         rebuild_cpu_to_node_map();
2867         return true;
2868       }
2869     }
2870   }
2871   return false;
2872 }
2873 
2874 size_t os::Linux::default_guard_size(os::ThreadType thr_type) {
2875   // Creating guard page is very expensive. Java thread has HotSpot
2876   // guard pages, only enable glibc guard page for non-Java threads.
2877   // (Remember: compiler thread is a Java thread, too!)
2878   return ((thr_type == java_thread || thr_type == compiler_thread) ? 0 : page_size());
2879 }
2880 
2881 // rebuild_cpu_to_node_map() constructs a table mapping cpud id to node id.
2882 // The table is later used in get_node_by_cpu().
2883 void os::Linux::rebuild_cpu_to_node_map() {
2884   const size_t NCPUS = 32768; // Since the buffer size computation is very obscure
2885                               // in libnuma (possible values are starting from 16,
2886                               // and continuing up with every other power of 2, but less
2887                               // than the maximum number of CPUs supported by kernel), and
2888                               // is a subject to change (in libnuma version 2 the requirements
2889                               // are more reasonable) we'll just hardcode the number they use
2890                               // in the library.
2891   const size_t BitsPerCLong = sizeof(long) * CHAR_BIT;
2892 
2893   size_t cpu_num = processor_count();
2894   size_t cpu_map_size = NCPUS / BitsPerCLong;
2895   size_t cpu_map_valid_size =
2896     MIN2((cpu_num + BitsPerCLong - 1) / BitsPerCLong, cpu_map_size);
2897 
2898   cpu_to_node()->clear();
2899   cpu_to_node()->at_grow(cpu_num - 1);
2900   size_t node_num = numa_get_groups_num();
2901 
2902   unsigned long *cpu_map = NEW_C_HEAP_ARRAY(unsigned long, cpu_map_size, mtInternal);
2903   for (size_t i = 0; i < node_num; i++) {
2904     if (numa_node_to_cpus(i, cpu_map, cpu_map_size * sizeof(unsigned long)) != -1) {
2905       for (size_t j = 0; j < cpu_map_valid_size; j++) {
2906         if (cpu_map[j] != 0) {
2907           for (size_t k = 0; k < BitsPerCLong; k++) {
2908             if (cpu_map[j] & (1UL << k)) {
2909               cpu_to_node()->at_put(j * BitsPerCLong + k, i);
2910             }
2911           }
2912         }
2913       }
2914     }
2915   }
2916   FREE_C_HEAP_ARRAY(unsigned long, cpu_map);
2917 }
2918 
2919 int os::Linux::get_node_by_cpu(int cpu_id) {
2920   if (cpu_to_node() != NULL && cpu_id >= 0 && cpu_id < cpu_to_node()->length()) {
2921     return cpu_to_node()->at(cpu_id);
2922   }
2923   return -1;
2924 }
2925 
2926 GrowableArray<int>* os::Linux::_cpu_to_node;
2927 os::Linux::sched_getcpu_func_t os::Linux::_sched_getcpu;
2928 os::Linux::numa_node_to_cpus_func_t os::Linux::_numa_node_to_cpus;
2929 os::Linux::numa_max_node_func_t os::Linux::_numa_max_node;
2930 os::Linux::numa_available_func_t os::Linux::_numa_available;
2931 os::Linux::numa_tonode_memory_func_t os::Linux::_numa_tonode_memory;
2932 os::Linux::numa_interleave_memory_func_t os::Linux::_numa_interleave_memory;
2933 os::Linux::numa_set_bind_policy_func_t os::Linux::_numa_set_bind_policy;
2934 unsigned long* os::Linux::_numa_all_nodes;
2935 
2936 bool os::pd_uncommit_memory(char* addr, size_t size) {
2937   uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
2938                                      MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
2939   return res  != (uintptr_t) MAP_FAILED;
2940 }
2941 
2942 static address get_stack_commited_bottom(address bottom, size_t size) {
2943   address nbot = bottom;
2944   address ntop = bottom + size;
2945 
2946   size_t page_sz = os::vm_page_size();
2947   unsigned pages = size / page_sz;
2948 
2949   unsigned char vec[1];
2950   unsigned imin = 1, imax = pages + 1, imid;
2951   int mincore_return_value = 0;
2952 
2953   assert(imin <= imax, "Unexpected page size");
2954 
2955   while (imin < imax) {
2956     imid = (imax + imin) / 2;
2957     nbot = ntop - (imid * page_sz);
2958 
2959     // Use a trick with mincore to check whether the page is mapped or not.
2960     // mincore sets vec to 1 if page resides in memory and to 0 if page
2961     // is swapped output but if page we are asking for is unmapped
2962     // it returns -1,ENOMEM
2963     mincore_return_value = mincore(nbot, page_sz, vec);
2964 
2965     if (mincore_return_value == -1) {
2966       // Page is not mapped go up
2967       // to find first mapped page
2968       if (errno != EAGAIN) {
2969         assert(errno == ENOMEM, "Unexpected mincore errno");
2970         imax = imid;
2971       }
2972     } else {
2973       // Page is mapped go down
2974       // to find first not mapped page
2975       imin = imid + 1;
2976     }
2977   }
2978 
2979   nbot = nbot + page_sz;
2980 
2981   // Adjust stack bottom one page up if last checked page is not mapped
2982   if (mincore_return_value == -1) {
2983     nbot = nbot + page_sz;
2984   }
2985 
2986   return nbot;
2987 }
2988 
2989 
2990 // Linux uses a growable mapping for the stack, and if the mapping for
2991 // the stack guard pages is not removed when we detach a thread the
2992 // stack cannot grow beyond the pages where the stack guard was
2993 // mapped.  If at some point later in the process the stack expands to
2994 // that point, the Linux kernel cannot expand the stack any further
2995 // because the guard pages are in the way, and a segfault occurs.
2996 //
2997 // However, it's essential not to split the stack region by unmapping
2998 // a region (leaving a hole) that's already part of the stack mapping,
2999 // so if the stack mapping has already grown beyond the guard pages at
3000 // the time we create them, we have to truncate the stack mapping.
3001 // So, we need to know the extent of the stack mapping when
3002 // create_stack_guard_pages() is called.
3003 
3004 // We only need this for stacks that are growable: at the time of
3005 // writing thread stacks don't use growable mappings (i.e. those
3006 // creeated with MAP_GROWSDOWN), and aren't marked "[stack]", so this
3007 // only applies to the main thread.
3008 
3009 // If the (growable) stack mapping already extends beyond the point
3010 // where we're going to put our guard pages, truncate the mapping at
3011 // that point by munmap()ping it.  This ensures that when we later
3012 // munmap() the guard pages we don't leave a hole in the stack
3013 // mapping. This only affects the main/initial thread
3014 
3015 bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
3016   if (os::Linux::is_initial_thread()) {
3017     // As we manually grow stack up to bottom inside create_attached_thread(),
3018     // it's likely that os::Linux::initial_thread_stack_bottom is mapped and
3019     // we don't need to do anything special.
3020     // Check it first, before calling heavy function.
3021     uintptr_t stack_extent = (uintptr_t) os::Linux::initial_thread_stack_bottom();
3022     unsigned char vec[1];
3023 
3024     if (mincore((address)stack_extent, os::vm_page_size(), vec) == -1) {
3025       // Fallback to slow path on all errors, including EAGAIN
3026       stack_extent = (uintptr_t) get_stack_commited_bottom(
3027                                                            os::Linux::initial_thread_stack_bottom(),
3028                                                            (size_t)addr - stack_extent);
3029     }
3030 
3031     if (stack_extent < (uintptr_t)addr) {
3032       ::munmap((void*)stack_extent, (uintptr_t)(addr - stack_extent));
3033     }
3034   }
3035 
3036   return os::commit_memory(addr, size, !ExecMem);
3037 }
3038 
3039 // If this is a growable mapping, remove the guard pages entirely by
3040 // munmap()ping them.  If not, just call uncommit_memory(). This only
3041 // affects the main/initial thread, but guard against future OS changes
3042 // It's safe to always unmap guard pages for initial thread because we
3043 // always place it right after end of the mapped region
3044 
3045 bool os::remove_stack_guard_pages(char* addr, size_t size) {
3046   uintptr_t stack_extent, stack_base;
3047 
3048   if (os::Linux::is_initial_thread()) {
3049     return ::munmap(addr, size) == 0;
3050   }
3051 
3052   return os::uncommit_memory(addr, size);
3053 }
3054 
3055 // If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
3056 // at 'requested_addr'. If there are existing memory mappings at the same
3057 // location, however, they will be overwritten. If 'fixed' is false,
3058 // 'requested_addr' is only treated as a hint, the return value may or
3059 // may not start from the requested address. Unlike Linux mmap(), this
3060 // function returns NULL to indicate failure.
3061 static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
3062   char * addr;
3063   int flags;
3064 
3065   flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
3066   if (fixed) {
3067     assert((uintptr_t)requested_addr % os::Linux::page_size() == 0, "unaligned address");
3068     flags |= MAP_FIXED;
3069   }
3070 
3071   // Map reserved/uncommitted pages PROT_NONE so we fail early if we
3072   // touch an uncommitted page. Otherwise, the read/write might
3073   // succeed if we have enough swap space to back the physical page.
3074   addr = (char*)::mmap(requested_addr, bytes, PROT_NONE,
3075                        flags, -1, 0);
3076 
3077   return addr == MAP_FAILED ? NULL : addr;
3078 }
3079 
3080 // Allocate (using mmap, NO_RESERVE, with small pages) at either a given request address
3081 //   (req_addr != NULL) or with a given alignment.
3082 //  - bytes shall be a multiple of alignment.
3083 //  - req_addr can be NULL. If not NULL, it must be a multiple of alignment.
3084 //  - alignment sets the alignment at which memory shall be allocated.
3085 //     It must be a multiple of allocation granularity.
3086 // Returns address of memory or NULL. If req_addr was not NULL, will only return
3087 //  req_addr or NULL.
3088 static char* anon_mmap_aligned(size_t bytes, size_t alignment, char* req_addr) {
3089 
3090   size_t extra_size = bytes;
3091   if (req_addr == NULL && alignment > 0) {
3092     extra_size += alignment;
3093   }
3094 
3095   char* start = (char*) ::mmap(req_addr, extra_size, PROT_NONE,
3096     MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
3097     -1, 0);
3098   if (start == MAP_FAILED) {
3099     start = NULL;
3100   } else {
3101     if (req_addr != NULL) {
3102       if (start != req_addr) {
3103         ::munmap(start, extra_size);
3104         start = NULL;
3105       }
3106     } else {
3107       char* const start_aligned = (char*) align_ptr_up(start, alignment);
3108       char* const end_aligned = start_aligned + bytes;
3109       char* const end = start + extra_size;
3110       if (start_aligned > start) {
3111         ::munmap(start, start_aligned - start);
3112       }
3113       if (end_aligned < end) {
3114         ::munmap(end_aligned, end - end_aligned);
3115       }
3116       start = start_aligned;
3117     }
3118   }
3119   return start;
3120 }
3121 
3122 static int anon_munmap(char * addr, size_t size) {
3123   return ::munmap(addr, size) == 0;
3124 }
3125 
3126 char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
3127                             size_t alignment_hint) {
3128   return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
3129 }
3130 
3131 bool os::pd_release_memory(char* addr, size_t size) {
3132   return anon_munmap(addr, size);
3133 }
3134 
3135 static bool linux_mprotect(char* addr, size_t size, int prot) {
3136   // Linux wants the mprotect address argument to be page aligned.
3137   char* bottom = (char*)align_size_down((intptr_t)addr, os::Linux::page_size());
3138 
3139   // According to SUSv3, mprotect() should only be used with mappings
3140   // established by mmap(), and mmap() always maps whole pages. Unaligned
3141   // 'addr' likely indicates problem in the VM (e.g. trying to change
3142   // protection of malloc'ed or statically allocated memory). Check the
3143   // caller if you hit this assert.
3144   assert(addr == bottom, "sanity check");
3145 
3146   size = align_size_up(pointer_delta(addr, bottom, 1) + size, os::Linux::page_size());
3147   return ::mprotect(bottom, size, prot) == 0;
3148 }
3149 
3150 // Set protections specified
3151 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
3152                         bool is_committed) {
3153   unsigned int p = 0;
3154   switch (prot) {
3155   case MEM_PROT_NONE: p = PROT_NONE; break;
3156   case MEM_PROT_READ: p = PROT_READ; break;
3157   case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
3158   case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
3159   default:
3160     ShouldNotReachHere();
3161   }
3162   // is_committed is unused.
3163   return linux_mprotect(addr, bytes, p);
3164 }
3165 
3166 bool os::guard_memory(char* addr, size_t size) {
3167   return linux_mprotect(addr, size, PROT_NONE);
3168 }
3169 
3170 bool os::unguard_memory(char* addr, size_t size) {
3171   return linux_mprotect(addr, size, PROT_READ|PROT_WRITE);
3172 }
3173 
3174 bool os::Linux::transparent_huge_pages_sanity_check(bool warn,
3175                                                     size_t page_size) {
3176   bool result = false;
3177   void *p = mmap(NULL, page_size * 2, PROT_READ|PROT_WRITE,
3178                  MAP_ANONYMOUS|MAP_PRIVATE,
3179                  -1, 0);
3180   if (p != MAP_FAILED) {
3181     void *aligned_p = align_ptr_up(p, page_size);
3182 
3183     result = madvise(aligned_p, page_size, MADV_HUGEPAGE) == 0;
3184 
3185     munmap(p, page_size * 2);
3186   }
3187 
3188   if (warn && !result) {
3189     warning("TransparentHugePages is not supported by the operating system.");
3190   }
3191 
3192   return result;
3193 }
3194 
3195 bool os::Linux::hugetlbfs_sanity_check(bool warn, size_t page_size) {
3196   bool result = false;
3197   void *p = mmap(NULL, page_size, PROT_READ|PROT_WRITE,
3198                  MAP_ANONYMOUS|MAP_PRIVATE|MAP_HUGETLB,
3199                  -1, 0);
3200 
3201   if (p != MAP_FAILED) {
3202     // We don't know if this really is a huge page or not.
3203     FILE *fp = fopen("/proc/self/maps", "r");
3204     if (fp) {
3205       while (!feof(fp)) {
3206         char chars[257];
3207         long x = 0;
3208         if (fgets(chars, sizeof(chars), fp)) {
3209           if (sscanf(chars, "%lx-%*x", &x) == 1
3210               && x == (long)p) {
3211             if (strstr (chars, "hugepage")) {
3212               result = true;
3213               break;
3214             }
3215           }
3216         }
3217       }
3218       fclose(fp);
3219     }
3220     munmap(p, page_size);
3221   }
3222 
3223   if (warn && !result) {
3224     warning("HugeTLBFS is not supported by the operating system.");
3225   }
3226 
3227   return result;
3228 }
3229 
3230 // Set the coredump_filter bits to include largepages in core dump (bit 6)
3231 //
3232 // From the coredump_filter documentation:
3233 //
3234 // - (bit 0) anonymous private memory
3235 // - (bit 1) anonymous shared memory
3236 // - (bit 2) file-backed private memory
3237 // - (bit 3) file-backed shared memory
3238 // - (bit 4) ELF header pages in file-backed private memory areas (it is
3239 //           effective only if the bit 2 is cleared)
3240 // - (bit 5) hugetlb private memory
3241 // - (bit 6) hugetlb shared memory
3242 //
3243 static void set_coredump_filter(void) {
3244   FILE *f;
3245   long cdm;
3246 
3247   if ((f = fopen("/proc/self/coredump_filter", "r+")) == NULL) {
3248     return;
3249   }
3250 
3251   if (fscanf(f, "%lx", &cdm) != 1) {
3252     fclose(f);
3253     return;
3254   }
3255 
3256   rewind(f);
3257 
3258   if ((cdm & LARGEPAGES_BIT) == 0) {
3259     cdm |= LARGEPAGES_BIT;
3260     fprintf(f, "%#lx", cdm);
3261   }
3262 
3263   fclose(f);
3264 }
3265 
3266 // Large page support
3267 
3268 static size_t _large_page_size = 0;
3269 
3270 size_t os::Linux::find_large_page_size() {
3271   size_t large_page_size = 0;
3272 
3273   // large_page_size on Linux is used to round up heap size. x86 uses either
3274   // 2M or 4M page, depending on whether PAE (Physical Address Extensions)
3275   // mode is enabled. AMD64/EM64T uses 2M page in 64bit mode. IA64 can use
3276   // page as large as 256M.
3277   //
3278   // Here we try to figure out page size by parsing /proc/meminfo and looking
3279   // for a line with the following format:
3280   //    Hugepagesize:     2048 kB
3281   //
3282   // If we can't determine the value (e.g. /proc is not mounted, or the text
3283   // format has been changed), we'll use the largest page size supported by
3284   // the processor.
3285 
3286 #ifndef ZERO
3287   large_page_size =
3288     AARCH64_ONLY(2 * M)
3289     AMD64_ONLY(2 * M)
3290     ARM32_ONLY(2 * M)
3291     IA32_ONLY(4 * M)
3292     IA64_ONLY(256 * M)
3293     PPC_ONLY(4 * M)
3294     S390_ONLY(1 * M)
3295     SPARC_ONLY(4 * M);
3296 #endif // ZERO
3297 
3298   FILE *fp = fopen("/proc/meminfo", "r");
3299   if (fp) {
3300     while (!feof(fp)) {
3301       int x = 0;
3302       char buf[16];
3303       if (fscanf(fp, "Hugepagesize: %d", &x) == 1) {
3304         if (x && fgets(buf, sizeof(buf), fp) && strcmp(buf, " kB\n") == 0) {
3305           large_page_size = x * K;
3306           break;
3307         }
3308       } else {
3309         // skip to next line
3310         for (;;) {
3311           int ch = fgetc(fp);
3312           if (ch == EOF || ch == (int)'\n') break;
3313         }
3314       }
3315     }
3316     fclose(fp);
3317   }
3318 
3319   if (!FLAG_IS_DEFAULT(LargePageSizeInBytes) && LargePageSizeInBytes != large_page_size) {
3320     warning("Setting LargePageSizeInBytes has no effect on this OS. Large page size is "
3321             SIZE_FORMAT "%s.", byte_size_in_proper_unit(large_page_size),
3322             proper_unit_for_byte_size(large_page_size));
3323   }
3324 
3325   return large_page_size;
3326 }
3327 
3328 size_t os::Linux::setup_large_page_size() {
3329   _large_page_size = Linux::find_large_page_size();
3330   const size_t default_page_size = (size_t)Linux::page_size();
3331   if (_large_page_size > default_page_size) {
3332     _page_sizes[0] = _large_page_size;
3333     _page_sizes[1] = default_page_size;
3334     _page_sizes[2] = 0;
3335   }
3336 
3337   return _large_page_size;
3338 }
3339 
3340 bool os::Linux::setup_large_page_type(size_t page_size) {
3341   if (FLAG_IS_DEFAULT(UseHugeTLBFS) &&
3342       FLAG_IS_DEFAULT(UseSHM) &&
3343       FLAG_IS_DEFAULT(UseTransparentHugePages)) {
3344 
3345     // The type of large pages has not been specified by the user.
3346 
3347     // Try UseHugeTLBFS and then UseSHM.
3348     UseHugeTLBFS = UseSHM = true;
3349 
3350     // Don't try UseTransparentHugePages since there are known
3351     // performance issues with it turned on. This might change in the future.
3352     UseTransparentHugePages = false;
3353   }
3354 
3355   if (UseTransparentHugePages) {
3356     bool warn_on_failure = !FLAG_IS_DEFAULT(UseTransparentHugePages);
3357     if (transparent_huge_pages_sanity_check(warn_on_failure, page_size)) {
3358       UseHugeTLBFS = false;
3359       UseSHM = false;
3360       return true;
3361     }
3362     UseTransparentHugePages = false;
3363   }
3364 
3365   if (UseHugeTLBFS) {
3366     bool warn_on_failure = !FLAG_IS_DEFAULT(UseHugeTLBFS);
3367     if (hugetlbfs_sanity_check(warn_on_failure, page_size)) {
3368       UseSHM = false;
3369       return true;
3370     }
3371     UseHugeTLBFS = false;
3372   }
3373 
3374   return UseSHM;
3375 }
3376 
3377 void os::large_page_init() {
3378   if (!UseLargePages &&
3379       !UseTransparentHugePages &&
3380       !UseHugeTLBFS &&
3381       !UseSHM) {
3382     // Not using large pages.
3383     return;
3384   }
3385 
3386   if (!FLAG_IS_DEFAULT(UseLargePages) && !UseLargePages) {
3387     // The user explicitly turned off large pages.
3388     // Ignore the rest of the large pages flags.
3389     UseTransparentHugePages = false;
3390     UseHugeTLBFS = false;
3391     UseSHM = false;
3392     return;
3393   }
3394 
3395   size_t large_page_size = Linux::setup_large_page_size();
3396   UseLargePages          = Linux::setup_large_page_type(large_page_size);
3397 
3398   set_coredump_filter();
3399 }
3400 
3401 #ifndef SHM_HUGETLB
3402   #define SHM_HUGETLB 04000
3403 #endif
3404 
3405 #define shm_warning_format(format, ...)              \
3406   do {                                               \
3407     if (UseLargePages &&                             \
3408         (!FLAG_IS_DEFAULT(UseLargePages) ||          \
3409          !FLAG_IS_DEFAULT(UseSHM) ||                 \
3410          !FLAG_IS_DEFAULT(LargePageSizeInBytes))) {  \
3411       warning(format, __VA_ARGS__);                  \
3412     }                                                \
3413   } while (0)
3414 
3415 #define shm_warning(str) shm_warning_format("%s", str)
3416 
3417 #define shm_warning_with_errno(str)                \
3418   do {                                             \
3419     int err = errno;                               \
3420     shm_warning_format(str " (error = %d)", err);  \
3421   } while (0)
3422 
3423 static char* shmat_with_alignment(int shmid, size_t bytes, size_t alignment) {
3424   assert(is_size_aligned(bytes, alignment), "Must be divisible by the alignment");
3425 
3426   if (!is_size_aligned(alignment, SHMLBA)) {
3427     assert(false, "Code below assumes that alignment is at least SHMLBA aligned");
3428     return NULL;
3429   }
3430 
3431   // To ensure that we get 'alignment' aligned memory from shmat,
3432   // we pre-reserve aligned virtual memory and then attach to that.
3433 
3434   char* pre_reserved_addr = anon_mmap_aligned(bytes, alignment, NULL);
3435   if (pre_reserved_addr == NULL) {
3436     // Couldn't pre-reserve aligned memory.
3437     shm_warning("Failed to pre-reserve aligned memory for shmat.");
3438     return NULL;
3439   }
3440 
3441   // SHM_REMAP is needed to allow shmat to map over an existing mapping.
3442   char* addr = (char*)shmat(shmid, pre_reserved_addr, SHM_REMAP);
3443 
3444   if ((intptr_t)addr == -1) {
3445     int err = errno;
3446     shm_warning_with_errno("Failed to attach shared memory.");
3447 
3448     assert(err != EACCES, "Unexpected error");
3449     assert(err != EIDRM,  "Unexpected error");
3450     assert(err != EINVAL, "Unexpected error");
3451 
3452     // Since we don't know if the kernel unmapped the pre-reserved memory area
3453     // we can't unmap it, since that would potentially unmap memory that was
3454     // mapped from other threads.
3455     return NULL;
3456   }
3457 
3458   return addr;
3459 }
3460 
3461 static char* shmat_at_address(int shmid, char* req_addr) {
3462   if (!is_ptr_aligned(req_addr, SHMLBA)) {
3463     assert(false, "Requested address needs to be SHMLBA aligned");
3464     return NULL;
3465   }
3466 
3467   char* addr = (char*)shmat(shmid, req_addr, 0);
3468 
3469   if ((intptr_t)addr == -1) {
3470     shm_warning_with_errno("Failed to attach shared memory.");
3471     return NULL;
3472   }
3473 
3474   return addr;
3475 }
3476 
3477 static char* shmat_large_pages(int shmid, size_t bytes, size_t alignment, char* req_addr) {
3478   // If a req_addr has been provided, we assume that the caller has already aligned the address.
3479   if (req_addr != NULL) {
3480     assert(is_ptr_aligned(req_addr, os::large_page_size()), "Must be divisible by the large page size");
3481     assert(is_ptr_aligned(req_addr, alignment), "Must be divisible by given alignment");
3482     return shmat_at_address(shmid, req_addr);
3483   }
3484 
3485   // Since shmid has been setup with SHM_HUGETLB, shmat will automatically
3486   // return large page size aligned memory addresses when req_addr == NULL.
3487   // However, if the alignment is larger than the large page size, we have
3488   // to manually ensure that the memory returned is 'alignment' aligned.
3489   if (alignment > os::large_page_size()) {
3490     assert(is_size_aligned(alignment, os::large_page_size()), "Must be divisible by the large page size");
3491     return shmat_with_alignment(shmid, bytes, alignment);
3492   } else {
3493     return shmat_at_address(shmid, NULL);
3494   }
3495 }
3496 
3497 char* os::Linux::reserve_memory_special_shm(size_t bytes, size_t alignment,
3498                                             char* req_addr, bool exec) {
3499   // "exec" is passed in but not used.  Creating the shared image for
3500   // the code cache doesn't have an SHM_X executable permission to check.
3501   assert(UseLargePages && UseSHM, "only for SHM large pages");
3502   assert(is_ptr_aligned(req_addr, os::large_page_size()), "Unaligned address");
3503   assert(is_ptr_aligned(req_addr, alignment), "Unaligned address");
3504 
3505   if (!is_size_aligned(bytes, os::large_page_size())) {
3506     return NULL; // Fallback to small pages.
3507   }
3508 
3509   // Create a large shared memory region to attach to based on size.
3510   // Currently, size is the total size of the heap.
3511   int shmid = shmget(IPC_PRIVATE, bytes, SHM_HUGETLB|IPC_CREAT|SHM_R|SHM_W);
3512   if (shmid == -1) {
3513     // Possible reasons for shmget failure:
3514     // 1. shmmax is too small for Java heap.
3515     //    > check shmmax value: cat /proc/sys/kernel/shmmax
3516     //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
3517     // 2. not enough large page memory.
3518     //    > check available large pages: cat /proc/meminfo
3519     //    > increase amount of large pages:
3520     //          echo new_value > /proc/sys/vm/nr_hugepages
3521     //      Note 1: different Linux may use different name for this property,
3522     //            e.g. on Redhat AS-3 it is "hugetlb_pool".
3523     //      Note 2: it's possible there's enough physical memory available but
3524     //            they are so fragmented after a long run that they can't
3525     //            coalesce into large pages. Try to reserve large pages when
3526     //            the system is still "fresh".
3527     shm_warning_with_errno("Failed to reserve shared memory.");
3528     return NULL;
3529   }
3530 
3531   // Attach to the region.
3532   char* addr = shmat_large_pages(shmid, bytes, alignment, req_addr);
3533 
3534   // Remove shmid. If shmat() is successful, the actual shared memory segment
3535   // will be deleted when it's detached by shmdt() or when the process
3536   // terminates. If shmat() is not successful this will remove the shared
3537   // segment immediately.
3538   shmctl(shmid, IPC_RMID, NULL);
3539 
3540   return addr;
3541 }
3542 
3543 static void warn_on_large_pages_failure(char* req_addr, size_t bytes,
3544                                         int error) {
3545   assert(error == ENOMEM, "Only expect to fail if no memory is available");
3546 
3547   bool warn_on_failure = UseLargePages &&
3548       (!FLAG_IS_DEFAULT(UseLargePages) ||
3549        !FLAG_IS_DEFAULT(UseHugeTLBFS) ||
3550        !FLAG_IS_DEFAULT(LargePageSizeInBytes));
3551 
3552   if (warn_on_failure) {
3553     char msg[128];
3554     jio_snprintf(msg, sizeof(msg), "Failed to reserve large pages memory req_addr: "
3555                  PTR_FORMAT " bytes: " SIZE_FORMAT " (errno = %d).", req_addr, bytes, error);
3556     warning("%s", msg);
3557   }
3558 }
3559 
3560 char* os::Linux::reserve_memory_special_huge_tlbfs_only(size_t bytes,
3561                                                         char* req_addr,
3562                                                         bool exec) {
3563   assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
3564   assert(is_size_aligned(bytes, os::large_page_size()), "Unaligned size");
3565   assert(is_ptr_aligned(req_addr, os::large_page_size()), "Unaligned address");
3566 
3567   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
3568   char* addr = (char*)::mmap(req_addr, bytes, prot,
3569                              MAP_PRIVATE|MAP_ANONYMOUS|MAP_HUGETLB,
3570                              -1, 0);
3571 
3572   if (addr == MAP_FAILED) {
3573     warn_on_large_pages_failure(req_addr, bytes, errno);
3574     return NULL;
3575   }
3576 
3577   assert(is_ptr_aligned(addr, os::large_page_size()), "Must be");
3578 
3579   return addr;
3580 }
3581 
3582 // Reserve memory using mmap(MAP_HUGETLB).
3583 //  - bytes shall be a multiple of alignment.
3584 //  - req_addr can be NULL. If not NULL, it must be a multiple of alignment.
3585 //  - alignment sets the alignment at which memory shall be allocated.
3586 //     It must be a multiple of allocation granularity.
3587 // Returns address of memory or NULL. If req_addr was not NULL, will only return
3588 //  req_addr or NULL.
3589 char* os::Linux::reserve_memory_special_huge_tlbfs_mixed(size_t bytes,
3590                                                          size_t alignment,
3591                                                          char* req_addr,
3592                                                          bool exec) {
3593   size_t large_page_size = os::large_page_size();
3594   assert(bytes >= large_page_size, "Shouldn't allocate large pages for small sizes");
3595 
3596   assert(is_ptr_aligned(req_addr, alignment), "Must be");
3597   assert(is_size_aligned(bytes, alignment), "Must be");
3598 
3599   // First reserve - but not commit - the address range in small pages.
3600   char* const start = anon_mmap_aligned(bytes, alignment, req_addr);
3601 
3602   if (start == NULL) {
3603     return NULL;
3604   }
3605 
3606   assert(is_ptr_aligned(start, alignment), "Must be");
3607 
3608   char* end = start + bytes;
3609 
3610   // Find the regions of the allocated chunk that can be promoted to large pages.
3611   char* lp_start = (char*)align_ptr_up(start, large_page_size);
3612   char* lp_end   = (char*)align_ptr_down(end, large_page_size);
3613 
3614   size_t lp_bytes = lp_end - lp_start;
3615 
3616   assert(is_size_aligned(lp_bytes, large_page_size), "Must be");
3617 
3618   if (lp_bytes == 0) {
3619     // The mapped region doesn't even span the start and the end of a large page.
3620     // Fall back to allocate a non-special area.
3621     ::munmap(start, end - start);
3622     return NULL;
3623   }
3624 
3625   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
3626 
3627   void* result;
3628 
3629   // Commit small-paged leading area.
3630   if (start != lp_start) {
3631     result = ::mmap(start, lp_start - start, prot,
3632                     MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
3633                     -1, 0);
3634     if (result == MAP_FAILED) {
3635       ::munmap(lp_start, end - lp_start);
3636       return NULL;
3637     }
3638   }
3639 
3640   // Commit large-paged area.
3641   result = ::mmap(lp_start, lp_bytes, prot,
3642                   MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED|MAP_HUGETLB,
3643                   -1, 0);
3644   if (result == MAP_FAILED) {
3645     warn_on_large_pages_failure(lp_start, lp_bytes, errno);
3646     // If the mmap above fails, the large pages region will be unmapped and we
3647     // have regions before and after with small pages. Release these regions.
3648     //
3649     // |  mapped  |  unmapped  |  mapped  |
3650     // ^          ^            ^          ^
3651     // start      lp_start     lp_end     end
3652     //
3653     ::munmap(start, lp_start - start);
3654     ::munmap(lp_end, end - lp_end);
3655     return NULL;
3656   }
3657 
3658   // Commit small-paged trailing area.
3659   if (lp_end != end) {
3660     result = ::mmap(lp_end, end - lp_end, prot,
3661                     MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
3662                     -1, 0);
3663     if (result == MAP_FAILED) {
3664       ::munmap(start, lp_end - start);
3665       return NULL;
3666     }
3667   }
3668 
3669   return start;
3670 }
3671 
3672 char* os::Linux::reserve_memory_special_huge_tlbfs(size_t bytes,
3673                                                    size_t alignment,
3674                                                    char* req_addr,
3675                                                    bool exec) {
3676   assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
3677   assert(is_ptr_aligned(req_addr, alignment), "Must be");
3678   assert(is_size_aligned(alignment, os::vm_allocation_granularity()), "Must be");
3679   assert(is_power_of_2(os::large_page_size()), "Must be");
3680   assert(bytes >= os::large_page_size(), "Shouldn't allocate large pages for small sizes");
3681 
3682   if (is_size_aligned(bytes, os::large_page_size()) && alignment <= os::large_page_size()) {
3683     return reserve_memory_special_huge_tlbfs_only(bytes, req_addr, exec);
3684   } else {
3685     return reserve_memory_special_huge_tlbfs_mixed(bytes, alignment, req_addr, exec);
3686   }
3687 }
3688 
3689 char* os::reserve_memory_special(size_t bytes, size_t alignment,
3690                                  char* req_addr, bool exec) {
3691   assert(UseLargePages, "only for large pages");
3692 
3693   char* addr;
3694   if (UseSHM) {
3695     addr = os::Linux::reserve_memory_special_shm(bytes, alignment, req_addr, exec);
3696   } else {
3697     assert(UseHugeTLBFS, "must be");
3698     addr = os::Linux::reserve_memory_special_huge_tlbfs(bytes, alignment, req_addr, exec);
3699   }
3700 
3701   if (addr != NULL) {
3702     if (UseNUMAInterleaving) {
3703       numa_make_global(addr, bytes);
3704     }
3705 
3706     // The memory is committed
3707     MemTracker::record_virtual_memory_reserve_and_commit((address)addr, bytes, CALLER_PC);
3708   }
3709 
3710   return addr;
3711 }
3712 
3713 bool os::Linux::release_memory_special_shm(char* base, size_t bytes) {
3714   // detaching the SHM segment will also delete it, see reserve_memory_special_shm()
3715   return shmdt(base) == 0;
3716 }
3717 
3718 bool os::Linux::release_memory_special_huge_tlbfs(char* base, size_t bytes) {
3719   return pd_release_memory(base, bytes);
3720 }
3721 
3722 bool os::release_memory_special(char* base, size_t bytes) {
3723   bool res;
3724   if (MemTracker::tracking_level() > NMT_minimal) {
3725     Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
3726     res = os::Linux::release_memory_special_impl(base, bytes);
3727     if (res) {
3728       tkr.record((address)base, bytes);
3729     }
3730 
3731   } else {
3732     res = os::Linux::release_memory_special_impl(base, bytes);
3733   }
3734   return res;
3735 }
3736 
3737 bool os::Linux::release_memory_special_impl(char* base, size_t bytes) {
3738   assert(UseLargePages, "only for large pages");
3739   bool res;
3740 
3741   if (UseSHM) {
3742     res = os::Linux::release_memory_special_shm(base, bytes);
3743   } else {
3744     assert(UseHugeTLBFS, "must be");
3745     res = os::Linux::release_memory_special_huge_tlbfs(base, bytes);
3746   }
3747   return res;
3748 }
3749 
3750 size_t os::large_page_size() {
3751   return _large_page_size;
3752 }
3753 
3754 // With SysV SHM the entire memory region must be allocated as shared
3755 // memory.
3756 // HugeTLBFS allows application to commit large page memory on demand.
3757 // However, when committing memory with HugeTLBFS fails, the region
3758 // that was supposed to be committed will lose the old reservation
3759 // and allow other threads to steal that memory region. Because of this
3760 // behavior we can't commit HugeTLBFS memory.
3761 bool os::can_commit_large_page_memory() {
3762   return UseTransparentHugePages;
3763 }
3764 
3765 bool os::can_execute_large_page_memory() {
3766   return UseTransparentHugePages || UseHugeTLBFS;
3767 }
3768 
3769 // Reserve memory at an arbitrary address, only if that area is
3770 // available (and not reserved for something else).
3771 
3772 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
3773   const int max_tries = 10;
3774   char* base[max_tries];
3775   size_t size[max_tries];
3776   const size_t gap = 0x000000;
3777 
3778   // Assert only that the size is a multiple of the page size, since
3779   // that's all that mmap requires, and since that's all we really know
3780   // about at this low abstraction level.  If we need higher alignment,
3781   // we can either pass an alignment to this method or verify alignment
3782   // in one of the methods further up the call chain.  See bug 5044738.
3783   assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
3784 
3785   // Repeatedly allocate blocks until the block is allocated at the
3786   // right spot.
3787 
3788   // Linux mmap allows caller to pass an address as hint; give it a try first,
3789   // if kernel honors the hint then we can return immediately.
3790   char * addr = anon_mmap(requested_addr, bytes, false);
3791   if (addr == requested_addr) {
3792     return requested_addr;
3793   }
3794 
3795   if (addr != NULL) {
3796     // mmap() is successful but it fails to reserve at the requested address
3797     anon_munmap(addr, bytes);
3798   }
3799 
3800   int i;
3801   for (i = 0; i < max_tries; ++i) {
3802     base[i] = reserve_memory(bytes);
3803 
3804     if (base[i] != NULL) {
3805       // Is this the block we wanted?
3806       if (base[i] == requested_addr) {
3807         size[i] = bytes;
3808         break;
3809       }
3810 
3811       // Does this overlap the block we wanted? Give back the overlapped
3812       // parts and try again.
3813 
3814       ptrdiff_t top_overlap = requested_addr + (bytes + gap) - base[i];
3815       if (top_overlap >= 0 && (size_t)top_overlap < bytes) {
3816         unmap_memory(base[i], top_overlap);
3817         base[i] += top_overlap;
3818         size[i] = bytes - top_overlap;
3819       } else {
3820         ptrdiff_t bottom_overlap = base[i] + bytes - requested_addr;
3821         if (bottom_overlap >= 0 && (size_t)bottom_overlap < bytes) {
3822           unmap_memory(requested_addr, bottom_overlap);
3823           size[i] = bytes - bottom_overlap;
3824         } else {
3825           size[i] = bytes;
3826         }
3827       }
3828     }
3829   }
3830 
3831   // Give back the unused reserved pieces.
3832 
3833   for (int j = 0; j < i; ++j) {
3834     if (base[j] != NULL) {
3835       unmap_memory(base[j], size[j]);
3836     }
3837   }
3838 
3839   if (i < max_tries) {
3840     return requested_addr;
3841   } else {
3842     return NULL;
3843   }
3844 }
3845 
3846 size_t os::read(int fd, void *buf, unsigned int nBytes) {
3847   return ::read(fd, buf, nBytes);
3848 }
3849 
3850 size_t os::read_at(int fd, void *buf, unsigned int nBytes, jlong offset) {
3851   return ::pread(fd, buf, nBytes, offset);
3852 }
3853 
3854 // Short sleep, direct OS call.
3855 //
3856 // Note: certain versions of Linux CFS scheduler (since 2.6.23) do not guarantee
3857 // sched_yield(2) will actually give up the CPU:
3858 //
3859 //   * Alone on this pariticular CPU, keeps running.
3860 //   * Before the introduction of "skip_buddy" with "compat_yield" disabled
3861 //     (pre 2.6.39).
3862 //
3863 // So calling this with 0 is an alternative.
3864 //
3865 void os::naked_short_sleep(jlong ms) {
3866   struct timespec req;
3867 
3868   assert(ms < 1000, "Un-interruptable sleep, short time use only");
3869   req.tv_sec = 0;
3870   if (ms > 0) {
3871     req.tv_nsec = (ms % 1000) * 1000000;
3872   } else {
3873     req.tv_nsec = 1;
3874   }
3875 
3876   nanosleep(&req, NULL);
3877 
3878   return;
3879 }
3880 
3881 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
3882 void os::infinite_sleep() {
3883   while (true) {    // sleep forever ...
3884     ::sleep(100);   // ... 100 seconds at a time
3885   }
3886 }
3887 
3888 // Used to convert frequent JVM_Yield() to nops
3889 bool os::dont_yield() {
3890   return DontYieldALot;
3891 }
3892 
3893 void os::naked_yield() {
3894   sched_yield();
3895 }
3896 
3897 ////////////////////////////////////////////////////////////////////////////////
3898 // thread priority support
3899 
3900 // Note: Normal Linux applications are run with SCHED_OTHER policy. SCHED_OTHER
3901 // only supports dynamic priority, static priority must be zero. For real-time
3902 // applications, Linux supports SCHED_RR which allows static priority (1-99).
3903 // However, for large multi-threaded applications, SCHED_RR is not only slower
3904 // than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
3905 // of 5 runs - Sep 2005).
3906 //
3907 // The following code actually changes the niceness of kernel-thread/LWP. It
3908 // has an assumption that setpriority() only modifies one kernel-thread/LWP,
3909 // not the entire user process, and user level threads are 1:1 mapped to kernel
3910 // threads. It has always been the case, but could change in the future. For
3911 // this reason, the code should not be used as default (ThreadPriorityPolicy=0).
3912 // It is only used when ThreadPriorityPolicy=1 and requires root privilege.
3913 
3914 int os::java_to_os_priority[CriticalPriority + 1] = {
3915   19,              // 0 Entry should never be used
3916 
3917    4,              // 1 MinPriority
3918    3,              // 2
3919    2,              // 3
3920 
3921    1,              // 4
3922    0,              // 5 NormPriority
3923   -1,              // 6
3924 
3925   -2,              // 7
3926   -3,              // 8
3927   -4,              // 9 NearMaxPriority
3928 
3929   -5,              // 10 MaxPriority
3930 
3931   -5               // 11 CriticalPriority
3932 };
3933 
3934 static int prio_init() {
3935   if (ThreadPriorityPolicy == 1) {
3936     // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
3937     // if effective uid is not root. Perhaps, a more elegant way of doing
3938     // this is to test CAP_SYS_NICE capability, but that will require libcap.so
3939     if (geteuid() != 0) {
3940       if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
3941         warning("-XX:ThreadPriorityPolicy requires root privilege on Linux");
3942       }
3943       ThreadPriorityPolicy = 0;
3944     }
3945   }
3946   if (UseCriticalJavaThreadPriority) {
3947     os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
3948   }
3949   return 0;
3950 }
3951 
3952 OSReturn os::set_native_priority(Thread* thread, int newpri) {
3953   if (!UseThreadPriorities || ThreadPriorityPolicy == 0) return OS_OK;
3954 
3955   int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
3956   return (ret == 0) ? OS_OK : OS_ERR;
3957 }
3958 
3959 OSReturn os::get_native_priority(const Thread* const thread,
3960                                  int *priority_ptr) {
3961   if (!UseThreadPriorities || ThreadPriorityPolicy == 0) {
3962     *priority_ptr = java_to_os_priority[NormPriority];
3963     return OS_OK;
3964   }
3965 
3966   errno = 0;
3967   *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
3968   return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
3969 }
3970 
3971 // Hint to the underlying OS that a task switch would not be good.
3972 // Void return because it's a hint and can fail.
3973 void os::hint_no_preempt() {}
3974 
3975 ////////////////////////////////////////////////////////////////////////////////
3976 // suspend/resume support
3977 
3978 //  the low-level signal-based suspend/resume support is a remnant from the
3979 //  old VM-suspension that used to be for java-suspension, safepoints etc,
3980 //  within hotspot. Now there is a single use-case for this:
3981 //    - calling get_thread_pc() on the VMThread by the flat-profiler task
3982 //      that runs in the watcher thread.
3983 //  The remaining code is greatly simplified from the more general suspension
3984 //  code that used to be used.
3985 //
3986 //  The protocol is quite simple:
3987 //  - suspend:
3988 //      - sends a signal to the target thread
3989 //      - polls the suspend state of the osthread using a yield loop
3990 //      - target thread signal handler (SR_handler) sets suspend state
3991 //        and blocks in sigsuspend until continued
3992 //  - resume:
3993 //      - sets target osthread state to continue
3994 //      - sends signal to end the sigsuspend loop in the SR_handler
3995 //
3996 //  Note that the SR_lock plays no role in this suspend/resume protocol,
3997 //  but is checked for NULL in SR_handler as a thread termination indicator.
3998 
3999 static void resume_clear_context(OSThread *osthread) {
4000   osthread->set_ucontext(NULL);
4001   osthread->set_siginfo(NULL);
4002 }
4003 
4004 static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo,
4005                                  ucontext_t* context) {
4006   osthread->set_ucontext(context);
4007   osthread->set_siginfo(siginfo);
4008 }
4009 
4010 // Handler function invoked when a thread's execution is suspended or
4011 // resumed. We have to be careful that only async-safe functions are
4012 // called here (Note: most pthread functions are not async safe and
4013 // should be avoided.)
4014 //
4015 // Note: sigwait() is a more natural fit than sigsuspend() from an
4016 // interface point of view, but sigwait() prevents the signal hander
4017 // from being run. libpthread would get very confused by not having
4018 // its signal handlers run and prevents sigwait()'s use with the
4019 // mutex granting granting signal.
4020 //
4021 // Currently only ever called on the VMThread and JavaThreads (PC sampling)
4022 //
4023 static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
4024   // Save and restore errno to avoid confusing native code with EINTR
4025   // after sigsuspend.
4026   int old_errno = errno;
4027 
4028   Thread* thread = Thread::current_or_null_safe();
4029   assert(thread != NULL, "Missing current thread in SR_handler");
4030 
4031   // On some systems we have seen signal delivery get "stuck" until the signal
4032   // mask is changed as part of thread termination. Check that the current thread
4033   // has not already terminated (via SR_lock()) - else the following assertion
4034   // will fail because the thread is no longer a JavaThread as the ~JavaThread
4035   // destructor has completed.
4036 
4037   if (thread->SR_lock() == NULL) {
4038     return;
4039   }
4040 
4041   assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
4042 
4043   OSThread* osthread = thread->osthread();
4044 
4045   os::SuspendResume::State current = osthread->sr.state();
4046   if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
4047     suspend_save_context(osthread, siginfo, context);
4048 
4049     // attempt to switch the state, we assume we had a SUSPEND_REQUEST
4050     os::SuspendResume::State state = osthread->sr.suspended();
4051     if (state == os::SuspendResume::SR_SUSPENDED) {
4052       sigset_t suspend_set;  // signals for sigsuspend()
4053       sigemptyset(&suspend_set);
4054       // get current set of blocked signals and unblock resume signal
4055       pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
4056       sigdelset(&suspend_set, SR_signum);
4057 
4058       sr_semaphore.signal();
4059       // wait here until we are resumed
4060       while (1) {
4061         sigsuspend(&suspend_set);
4062 
4063         os::SuspendResume::State result = osthread->sr.running();
4064         if (result == os::SuspendResume::SR_RUNNING) {
4065           sr_semaphore.signal();
4066           break;
4067         }
4068       }
4069 
4070     } else if (state == os::SuspendResume::SR_RUNNING) {
4071       // request was cancelled, continue
4072     } else {
4073       ShouldNotReachHere();
4074     }
4075 
4076     resume_clear_context(osthread);
4077   } else if (current == os::SuspendResume::SR_RUNNING) {
4078     // request was cancelled, continue
4079   } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
4080     // ignore
4081   } else {
4082     // ignore
4083   }
4084 
4085   errno = old_errno;
4086 }
4087 
4088 static int SR_initialize() {
4089   struct sigaction act;
4090   char *s;
4091 
4092   // Get signal number to use for suspend/resume
4093   if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
4094     int sig = ::strtol(s, 0, 10);
4095     if (sig > MAX2(SIGSEGV, SIGBUS) &&  // See 4355769.
4096         sig < NSIG) {                   // Must be legal signal and fit into sigflags[].
4097       SR_signum = sig;
4098     } else {
4099       warning("You set _JAVA_SR_SIGNUM=%d. It must be in range [%d, %d]. Using %d instead.",
4100               sig, MAX2(SIGSEGV, SIGBUS)+1, NSIG-1, SR_signum);
4101     }
4102   }
4103 
4104   assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
4105          "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
4106 
4107   sigemptyset(&SR_sigset);
4108   sigaddset(&SR_sigset, SR_signum);
4109 
4110   // Set up signal handler for suspend/resume
4111   act.sa_flags = SA_RESTART|SA_SIGINFO;
4112   act.sa_handler = (void (*)(int)) SR_handler;
4113 
4114   // SR_signum is blocked by default.
4115   // 4528190 - We also need to block pthread restart signal (32 on all
4116   // supported Linux platforms). Note that LinuxThreads need to block
4117   // this signal for all threads to work properly. So we don't have
4118   // to use hard-coded signal number when setting up the mask.
4119   pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
4120 
4121   if (sigaction(SR_signum, &act, 0) == -1) {
4122     return -1;
4123   }
4124 
4125   // Save signal flag
4126   os::Linux::set_our_sigflags(SR_signum, act.sa_flags);
4127   return 0;
4128 }
4129 
4130 static int sr_notify(OSThread* osthread) {
4131   int status = pthread_kill(osthread->pthread_id(), SR_signum);
4132   assert_status(status == 0, status, "pthread_kill");
4133   return status;
4134 }
4135 
4136 // "Randomly" selected value for how long we want to spin
4137 // before bailing out on suspending a thread, also how often
4138 // we send a signal to a thread we want to resume
4139 static const int RANDOMLY_LARGE_INTEGER = 1000000;
4140 static const int RANDOMLY_LARGE_INTEGER2 = 100;
4141 
4142 // returns true on success and false on error - really an error is fatal
4143 // but this seems the normal response to library errors
4144 static bool do_suspend(OSThread* osthread) {
4145   assert(osthread->sr.is_running(), "thread should be running");
4146   assert(!sr_semaphore.trywait(), "semaphore has invalid state");
4147 
4148   // mark as suspended and send signal
4149   if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
4150     // failed to switch, state wasn't running?
4151     ShouldNotReachHere();
4152     return false;
4153   }
4154 
4155   if (sr_notify(osthread) != 0) {
4156     ShouldNotReachHere();
4157   }
4158 
4159   // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
4160   while (true) {
4161     if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
4162       break;
4163     } else {
4164       // timeout
4165       os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
4166       if (cancelled == os::SuspendResume::SR_RUNNING) {
4167         return false;
4168       } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
4169         // make sure that we consume the signal on the semaphore as well
4170         sr_semaphore.wait();
4171         break;
4172       } else {
4173         ShouldNotReachHere();
4174         return false;
4175       }
4176     }
4177   }
4178 
4179   guarantee(osthread->sr.is_suspended(), "Must be suspended");
4180   return true;
4181 }
4182 
4183 static void do_resume(OSThread* osthread) {
4184   assert(osthread->sr.is_suspended(), "thread should be suspended");
4185   assert(!sr_semaphore.trywait(), "invalid semaphore state");
4186 
4187   if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
4188     // failed to switch to WAKEUP_REQUEST
4189     ShouldNotReachHere();
4190     return;
4191   }
4192 
4193   while (true) {
4194     if (sr_notify(osthread) == 0) {
4195       if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
4196         if (osthread->sr.is_running()) {
4197           return;
4198         }
4199       }
4200     } else {
4201       ShouldNotReachHere();
4202     }
4203   }
4204 
4205   guarantee(osthread->sr.is_running(), "Must be running!");
4206 }
4207 
4208 ///////////////////////////////////////////////////////////////////////////////////
4209 // signal handling (except suspend/resume)
4210 
4211 // This routine may be used by user applications as a "hook" to catch signals.
4212 // The user-defined signal handler must pass unrecognized signals to this
4213 // routine, and if it returns true (non-zero), then the signal handler must
4214 // return immediately.  If the flag "abort_if_unrecognized" is true, then this
4215 // routine will never retun false (zero), but instead will execute a VM panic
4216 // routine kill the process.
4217 //
4218 // If this routine returns false, it is OK to call it again.  This allows
4219 // the user-defined signal handler to perform checks either before or after
4220 // the VM performs its own checks.  Naturally, the user code would be making
4221 // a serious error if it tried to handle an exception (such as a null check
4222 // or breakpoint) that the VM was generating for its own correct operation.
4223 //
4224 // This routine may recognize any of the following kinds of signals:
4225 //    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
4226 // It should be consulted by handlers for any of those signals.
4227 //
4228 // The caller of this routine must pass in the three arguments supplied
4229 // to the function referred to in the "sa_sigaction" (not the "sa_handler")
4230 // field of the structure passed to sigaction().  This routine assumes that
4231 // the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
4232 //
4233 // Note that the VM will print warnings if it detects conflicting signal
4234 // handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
4235 //
4236 extern "C" JNIEXPORT int JVM_handle_linux_signal(int signo,
4237                                                  siginfo_t* siginfo,
4238                                                  void* ucontext,
4239                                                  int abort_if_unrecognized);
4240 
4241 void signalHandler(int sig, siginfo_t* info, void* uc) {
4242   assert(info != NULL && uc != NULL, "it must be old kernel");
4243   int orig_errno = errno;  // Preserve errno value over signal handler.
4244   JVM_handle_linux_signal(sig, info, uc, true);
4245   errno = orig_errno;
4246 }
4247 
4248 
4249 // This boolean allows users to forward their own non-matching signals
4250 // to JVM_handle_linux_signal, harmlessly.
4251 bool os::Linux::signal_handlers_are_installed = false;
4252 
4253 // For signal-chaining
4254 struct sigaction sigact[NSIG];
4255 uint64_t sigs = 0;
4256 #if (64 < NSIG-1)
4257 #error "Not all signals can be encoded in sigs. Adapt its type!"
4258 #endif
4259 bool os::Linux::libjsig_is_loaded = false;
4260 typedef struct sigaction *(*get_signal_t)(int);
4261 get_signal_t os::Linux::get_signal_action = NULL;
4262 
4263 struct sigaction* os::Linux::get_chained_signal_action(int sig) {
4264   struct sigaction *actp = NULL;
4265 
4266   if (libjsig_is_loaded) {
4267     // Retrieve the old signal handler from libjsig
4268     actp = (*get_signal_action)(sig);
4269   }
4270   if (actp == NULL) {
4271     // Retrieve the preinstalled signal handler from jvm
4272     actp = get_preinstalled_handler(sig);
4273   }
4274 
4275   return actp;
4276 }
4277 
4278 static bool call_chained_handler(struct sigaction *actp, int sig,
4279                                  siginfo_t *siginfo, void *context) {
4280   // Call the old signal handler
4281   if (actp->sa_handler == SIG_DFL) {
4282     // It's more reasonable to let jvm treat it as an unexpected exception
4283     // instead of taking the default action.
4284     return false;
4285   } else if (actp->sa_handler != SIG_IGN) {
4286     if ((actp->sa_flags & SA_NODEFER) == 0) {
4287       // automaticlly block the signal
4288       sigaddset(&(actp->sa_mask), sig);
4289     }
4290 
4291     sa_handler_t hand = NULL;
4292     sa_sigaction_t sa = NULL;
4293     bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
4294     // retrieve the chained handler
4295     if (siginfo_flag_set) {
4296       sa = actp->sa_sigaction;
4297     } else {
4298       hand = actp->sa_handler;
4299     }
4300 
4301     if ((actp->sa_flags & SA_RESETHAND) != 0) {
4302       actp->sa_handler = SIG_DFL;
4303     }
4304 
4305     // try to honor the signal mask
4306     sigset_t oset;
4307     sigemptyset(&oset);
4308     pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
4309 
4310     // call into the chained handler
4311     if (siginfo_flag_set) {
4312       (*sa)(sig, siginfo, context);
4313     } else {
4314       (*hand)(sig);
4315     }
4316 
4317     // restore the signal mask
4318     pthread_sigmask(SIG_SETMASK, &oset, NULL);
4319   }
4320   // Tell jvm's signal handler the signal is taken care of.
4321   return true;
4322 }
4323 
4324 bool os::Linux::chained_handler(int sig, siginfo_t* siginfo, void* context) {
4325   bool chained = false;
4326   // signal-chaining
4327   if (UseSignalChaining) {
4328     struct sigaction *actp = get_chained_signal_action(sig);
4329     if (actp != NULL) {
4330       chained = call_chained_handler(actp, sig, siginfo, context);
4331     }
4332   }
4333   return chained;
4334 }
4335 
4336 struct sigaction* os::Linux::get_preinstalled_handler(int sig) {
4337   if ((((uint64_t)1 << (sig-1)) & sigs) != 0) {
4338     return &sigact[sig];
4339   }
4340   return NULL;
4341 }
4342 
4343 void os::Linux::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
4344   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
4345   sigact[sig] = oldAct;
4346   sigs |= (uint64_t)1 << (sig-1);
4347 }
4348 
4349 // for diagnostic
4350 int sigflags[NSIG];
4351 
4352 int os::Linux::get_our_sigflags(int sig) {
4353   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
4354   return sigflags[sig];
4355 }
4356 
4357 void os::Linux::set_our_sigflags(int sig, int flags) {
4358   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
4359   if (sig > 0 && sig < NSIG) {
4360     sigflags[sig] = flags;
4361   }
4362 }
4363 
4364 void os::Linux::set_signal_handler(int sig, bool set_installed) {
4365   // Check for overwrite.
4366   struct sigaction oldAct;
4367   sigaction(sig, (struct sigaction*)NULL, &oldAct);
4368 
4369   void* oldhand = oldAct.sa_sigaction
4370                 ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
4371                 : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
4372   if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
4373       oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
4374       oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
4375     if (AllowUserSignalHandlers || !set_installed) {
4376       // Do not overwrite; user takes responsibility to forward to us.
4377       return;
4378     } else if (UseSignalChaining) {
4379       // save the old handler in jvm
4380       save_preinstalled_handler(sig, oldAct);
4381       // libjsig also interposes the sigaction() call below and saves the
4382       // old sigaction on it own.
4383     } else {
4384       fatal("Encountered unexpected pre-existing sigaction handler "
4385             "%#lx for signal %d.", (long)oldhand, sig);
4386     }
4387   }
4388 
4389   struct sigaction sigAct;
4390   sigfillset(&(sigAct.sa_mask));
4391   sigAct.sa_handler = SIG_DFL;
4392   if (!set_installed) {
4393     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4394   } else {
4395     sigAct.sa_sigaction = signalHandler;
4396     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4397   }
4398   // Save flags, which are set by ours
4399   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
4400   sigflags[sig] = sigAct.sa_flags;
4401 
4402   int ret = sigaction(sig, &sigAct, &oldAct);
4403   assert(ret == 0, "check");
4404 
4405   void* oldhand2  = oldAct.sa_sigaction
4406                   ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
4407                   : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
4408   assert(oldhand2 == oldhand, "no concurrent signal handler installation");
4409 }
4410 
4411 // install signal handlers for signals that HotSpot needs to
4412 // handle in order to support Java-level exception handling.
4413 
4414 void os::Linux::install_signal_handlers() {
4415   if (!signal_handlers_are_installed) {
4416     signal_handlers_are_installed = true;
4417 
4418     // signal-chaining
4419     typedef void (*signal_setting_t)();
4420     signal_setting_t begin_signal_setting = NULL;
4421     signal_setting_t end_signal_setting = NULL;
4422     begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4423                                           dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
4424     if (begin_signal_setting != NULL) {
4425       end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4426                                           dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
4427       get_signal_action = CAST_TO_FN_PTR(get_signal_t,
4428                                          dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
4429       libjsig_is_loaded = true;
4430       assert(UseSignalChaining, "should enable signal-chaining");
4431     }
4432     if (libjsig_is_loaded) {
4433       // Tell libjsig jvm is setting signal handlers
4434       (*begin_signal_setting)();
4435     }
4436 
4437     set_signal_handler(SIGSEGV, true);
4438     set_signal_handler(SIGPIPE, true);
4439     set_signal_handler(SIGBUS, true);
4440     set_signal_handler(SIGILL, true);
4441     set_signal_handler(SIGFPE, true);
4442 #if defined(PPC64)
4443     set_signal_handler(SIGTRAP, true);
4444 #endif
4445     set_signal_handler(SIGXFSZ, true);
4446 
4447     if (libjsig_is_loaded) {
4448       // Tell libjsig jvm finishes setting signal handlers
4449       (*end_signal_setting)();
4450     }
4451 
4452     // We don't activate signal checker if libjsig is in place, we trust ourselves
4453     // and if UserSignalHandler is installed all bets are off.
4454     // Log that signal checking is off only if -verbose:jni is specified.
4455     if (CheckJNICalls) {
4456       if (libjsig_is_loaded) {
4457         if (PrintJNIResolving) {
4458           tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
4459         }
4460         check_signals = false;
4461       }
4462       if (AllowUserSignalHandlers) {
4463         if (PrintJNIResolving) {
4464           tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
4465         }
4466         check_signals = false;
4467       }
4468     }
4469   }
4470 }
4471 
4472 // This is the fastest way to get thread cpu time on Linux.
4473 // Returns cpu time (user+sys) for any thread, not only for current.
4474 // POSIX compliant clocks are implemented in the kernels 2.6.16+.
4475 // It might work on 2.6.10+ with a special kernel/glibc patch.
4476 // For reference, please, see IEEE Std 1003.1-2004:
4477 //   http://www.unix.org/single_unix_specification
4478 
4479 jlong os::Linux::fast_thread_cpu_time(clockid_t clockid) {
4480   struct timespec tp;
4481   int rc = os::Linux::clock_gettime(clockid, &tp);
4482   assert(rc == 0, "clock_gettime is expected to return 0 code");
4483 
4484   return (tp.tv_sec * NANOSECS_PER_SEC) + tp.tv_nsec;
4485 }
4486 
4487 void os::Linux::initialize_os_info() {
4488   assert(_os_version == 0, "OS info already initialized");
4489 
4490   struct utsname _uname;
4491 
4492   uint32_t major;
4493   uint32_t minor;
4494   uint32_t fix;
4495 
4496   int rc;
4497 
4498   // Kernel version is unknown if
4499   // verification below fails.
4500   _os_version = 0x01000000;
4501 
4502   rc = uname(&_uname);
4503   if (rc != -1) {
4504 
4505     rc = sscanf(_uname.release,"%d.%d.%d", &major, &minor, &fix);
4506     if (rc == 3) {
4507 
4508       if (major < 256 && minor < 256 && fix < 256) {
4509         // Kernel version format is as expected,
4510         // set it overriding unknown state.
4511         _os_version = (major << 16) |
4512                       (minor << 8 ) |
4513                       (fix   << 0 ) ;
4514       }
4515     }
4516   }
4517 }
4518 
4519 uint32_t os::Linux::os_version() {
4520   assert(_os_version != 0, "not initialized");
4521   return _os_version & 0x00FFFFFF;
4522 }
4523 
4524 bool os::Linux::os_version_is_known() {
4525   assert(_os_version != 0, "not initialized");
4526   return _os_version & 0x01000000 ? false : true;
4527 }
4528 
4529 /////
4530 // glibc on Linux platform uses non-documented flag
4531 // to indicate, that some special sort of signal
4532 // trampoline is used.
4533 // We will never set this flag, and we should
4534 // ignore this flag in our diagnostic
4535 #ifdef SIGNIFICANT_SIGNAL_MASK
4536   #undef SIGNIFICANT_SIGNAL_MASK
4537 #endif
4538 #define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
4539 
4540 static const char* get_signal_handler_name(address handler,
4541                                            char* buf, int buflen) {
4542   int offset = 0;
4543   bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
4544   if (found) {
4545     // skip directory names
4546     const char *p1, *p2;
4547     p1 = buf;
4548     size_t len = strlen(os::file_separator());
4549     while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
4550     jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
4551   } else {
4552     jio_snprintf(buf, buflen, PTR_FORMAT, handler);
4553   }
4554   return buf;
4555 }
4556 
4557 static void print_signal_handler(outputStream* st, int sig,
4558                                  char* buf, size_t buflen) {
4559   struct sigaction sa;
4560 
4561   sigaction(sig, NULL, &sa);
4562 
4563   // See comment for SIGNIFICANT_SIGNAL_MASK define
4564   sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4565 
4566   st->print("%s: ", os::exception_name(sig, buf, buflen));
4567 
4568   address handler = (sa.sa_flags & SA_SIGINFO)
4569     ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
4570     : CAST_FROM_FN_PTR(address, sa.sa_handler);
4571 
4572   if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
4573     st->print("SIG_DFL");
4574   } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
4575     st->print("SIG_IGN");
4576   } else {
4577     st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
4578   }
4579 
4580   st->print(", sa_mask[0]=");
4581   os::Posix::print_signal_set_short(st, &sa.sa_mask);
4582 
4583   address rh = VMError::get_resetted_sighandler(sig);
4584   // May be, handler was resetted by VMError?
4585   if (rh != NULL) {
4586     handler = rh;
4587     sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
4588   }
4589 
4590   st->print(", sa_flags=");
4591   os::Posix::print_sa_flags(st, sa.sa_flags);
4592 
4593   // Check: is it our handler?
4594   if (handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
4595       handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
4596     // It is our signal handler
4597     // check for flags, reset system-used one!
4598     if ((int)sa.sa_flags != os::Linux::get_our_sigflags(sig)) {
4599       st->print(
4600                 ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
4601                 os::Linux::get_our_sigflags(sig));
4602     }
4603   }
4604   st->cr();
4605 }
4606 
4607 
4608 #define DO_SIGNAL_CHECK(sig)                      \
4609   do {                                            \
4610     if (!sigismember(&check_signal_done, sig)) {  \
4611       os::Linux::check_signal_handler(sig);       \
4612     }                                             \
4613   } while (0)
4614 
4615 // This method is a periodic task to check for misbehaving JNI applications
4616 // under CheckJNI, we can add any periodic checks here
4617 
4618 void os::run_periodic_checks() {
4619   if (check_signals == false) return;
4620 
4621   // SEGV and BUS if overridden could potentially prevent
4622   // generation of hs*.log in the event of a crash, debugging
4623   // such a case can be very challenging, so we absolutely
4624   // check the following for a good measure:
4625   DO_SIGNAL_CHECK(SIGSEGV);
4626   DO_SIGNAL_CHECK(SIGILL);
4627   DO_SIGNAL_CHECK(SIGFPE);
4628   DO_SIGNAL_CHECK(SIGBUS);
4629   DO_SIGNAL_CHECK(SIGPIPE);
4630   DO_SIGNAL_CHECK(SIGXFSZ);
4631 #if defined(PPC64)
4632   DO_SIGNAL_CHECK(SIGTRAP);
4633 #endif
4634 
4635   // ReduceSignalUsage allows the user to override these handlers
4636   // see comments at the very top and jvm_solaris.h
4637   if (!ReduceSignalUsage) {
4638     DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
4639     DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
4640     DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
4641     DO_SIGNAL_CHECK(BREAK_SIGNAL);
4642   }
4643 
4644   DO_SIGNAL_CHECK(SR_signum);
4645 }
4646 
4647 typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
4648 
4649 static os_sigaction_t os_sigaction = NULL;
4650 
4651 void os::Linux::check_signal_handler(int sig) {
4652   char buf[O_BUFLEN];
4653   address jvmHandler = NULL;
4654 
4655 
4656   struct sigaction act;
4657   if (os_sigaction == NULL) {
4658     // only trust the default sigaction, in case it has been interposed
4659     os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
4660     if (os_sigaction == NULL) return;
4661   }
4662 
4663   os_sigaction(sig, (struct sigaction*)NULL, &act);
4664 
4665 
4666   act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4667 
4668   address thisHandler = (act.sa_flags & SA_SIGINFO)
4669     ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
4670     : CAST_FROM_FN_PTR(address, act.sa_handler);
4671 
4672 
4673   switch (sig) {
4674   case SIGSEGV:
4675   case SIGBUS:
4676   case SIGFPE:
4677   case SIGPIPE:
4678   case SIGILL:
4679   case SIGXFSZ:
4680     jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
4681     break;
4682 
4683   case SHUTDOWN1_SIGNAL:
4684   case SHUTDOWN2_SIGNAL:
4685   case SHUTDOWN3_SIGNAL:
4686   case BREAK_SIGNAL:
4687     jvmHandler = (address)user_handler();
4688     break;
4689 
4690   default:
4691     if (sig == SR_signum) {
4692       jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
4693     } else {
4694       return;
4695     }
4696     break;
4697   }
4698 
4699   if (thisHandler != jvmHandler) {
4700     tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
4701     tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
4702     tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
4703     // No need to check this sig any longer
4704     sigaddset(&check_signal_done, sig);
4705     // Running under non-interactive shell, SHUTDOWN2_SIGNAL will be reassigned SIG_IGN
4706     if (sig == SHUTDOWN2_SIGNAL && !isatty(fileno(stdin))) {
4707       tty->print_cr("Running in non-interactive shell, %s handler is replaced by shell",
4708                     exception_name(sig, buf, O_BUFLEN));
4709     }
4710   } else if(os::Linux::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Linux::get_our_sigflags(sig)) {
4711     tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
4712     tty->print("expected:");
4713     os::Posix::print_sa_flags(tty, os::Linux::get_our_sigflags(sig));
4714     tty->cr();
4715     tty->print("  found:");
4716     os::Posix::print_sa_flags(tty, act.sa_flags);
4717     tty->cr();
4718     // No need to check this sig any longer
4719     sigaddset(&check_signal_done, sig);
4720   }
4721 
4722   // Dump all the signal
4723   if (sigismember(&check_signal_done, sig)) {
4724     print_signal_handlers(tty, buf, O_BUFLEN);
4725   }
4726 }
4727 
4728 extern void report_error(char* file_name, int line_no, char* title,
4729                          char* format, ...);
4730 
4731 // this is called _before_ the most of global arguments have been parsed
4732 void os::init(void) {
4733   char dummy;   // used to get a guess on initial stack address
4734 //  first_hrtime = gethrtime();
4735 
4736   clock_tics_per_sec = sysconf(_SC_CLK_TCK);
4737 
4738   init_random(1234567);
4739 
4740   ThreadCritical::initialize();
4741 
4742   Linux::set_page_size(sysconf(_SC_PAGESIZE));
4743   if (Linux::page_size() == -1) {
4744     fatal("os_linux.cpp: os::init: sysconf failed (%s)",
4745           os::strerror(errno));
4746   }
4747   init_page_sizes((size_t) Linux::page_size());
4748 
4749   Linux::initialize_system_info();
4750 
4751   Linux::initialize_os_info();
4752 
4753   // main_thread points to the aboriginal thread
4754   Linux::_main_thread = pthread_self();
4755 
4756   Linux::clock_init();
4757   initial_time_count = javaTimeNanos();
4758 
4759   // pthread_condattr initialization for monotonic clock
4760   int status;
4761   pthread_condattr_t* _condattr = os::Linux::condAttr();
4762   if ((status = pthread_condattr_init(_condattr)) != 0) {
4763     fatal("pthread_condattr_init: %s", os::strerror(status));
4764   }
4765   // Only set the clock if CLOCK_MONOTONIC is available
4766   if (os::supports_monotonic_clock()) {
4767     if ((status = pthread_condattr_setclock(_condattr, CLOCK_MONOTONIC)) != 0) {
4768       if (status == EINVAL) {
4769         warning("Unable to use monotonic clock with relative timed-waits" \
4770                 " - changes to the time-of-day clock may have adverse affects");
4771       } else {
4772         fatal("pthread_condattr_setclock: %s", os::strerror(status));
4773       }
4774     }
4775   }
4776   // else it defaults to CLOCK_REALTIME
4777 
4778   // retrieve entry point for pthread_setname_np
4779   Linux::_pthread_setname_np =
4780     (int(*)(pthread_t, const char*))dlsym(RTLD_DEFAULT, "pthread_setname_np");
4781 
4782 }
4783 
4784 // To install functions for atexit system call
4785 extern "C" {
4786   static void perfMemory_exit_helper() {
4787     perfMemory_exit();
4788   }
4789 }
4790 
4791 // this is called _after_ the global arguments have been parsed
4792 jint os::init_2(void) {
4793   Linux::fast_thread_clock_init();
4794 
4795   // Allocate a single page and mark it as readable for safepoint polling
4796   address polling_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
4797   guarantee(polling_page != MAP_FAILED, "os::init_2: failed to allocate polling page");
4798 
4799   os::set_polling_page(polling_page);
4800   log_info(os)("SafePoint Polling address: " INTPTR_FORMAT, p2i(polling_page));
4801 
4802   if (!UseMembar) {
4803     address mem_serialize_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
4804     guarantee(mem_serialize_page != MAP_FAILED, "mmap Failed for memory serialize page");
4805     os::set_memory_serialize_page(mem_serialize_page);
4806     log_info(os)("Memory Serialize Page address: " INTPTR_FORMAT, p2i(mem_serialize_page));
4807   }
4808 
4809   // initialize suspend/resume support - must do this before signal_sets_init()
4810   if (SR_initialize() != 0) {
4811     perror("SR_initialize failed");
4812     return JNI_ERR;
4813   }
4814 
4815   Linux::signal_sets_init();
4816   Linux::install_signal_handlers();
4817 
4818   // Check and sets minimum stack sizes against command line options
4819   if (Posix::set_minimum_stack_sizes() == JNI_ERR) {
4820     return JNI_ERR;
4821   }
4822   Linux::capture_initial_stack(JavaThread::stack_size_at_create());
4823 
4824 #if defined(IA32)
4825   workaround_expand_exec_shield_cs_limit();
4826 #endif
4827 
4828   Linux::libpthread_init();
4829   log_info(os)("HotSpot is running with %s, %s",
4830                Linux::glibc_version(), Linux::libpthread_version());
4831 
4832   if (UseNUMA) {
4833     if (!Linux::libnuma_init()) {
4834       UseNUMA = false;
4835     } else {
4836       if ((Linux::numa_max_node() < 1)) {
4837         // There's only one node(they start from 0), disable NUMA.
4838         UseNUMA = false;
4839       }
4840     }
4841     // With SHM and HugeTLBFS large pages we cannot uncommit a page, so there's no way
4842     // we can make the adaptive lgrp chunk resizing work. If the user specified
4843     // both UseNUMA and UseLargePages (or UseSHM/UseHugeTLBFS) on the command line - warn and
4844     // disable adaptive resizing.
4845     if (UseNUMA && UseLargePages && !can_commit_large_page_memory()) {
4846       if (FLAG_IS_DEFAULT(UseNUMA)) {
4847         UseNUMA = false;
4848       } else {
4849         if (FLAG_IS_DEFAULT(UseLargePages) &&
4850             FLAG_IS_DEFAULT(UseSHM) &&
4851             FLAG_IS_DEFAULT(UseHugeTLBFS)) {
4852           UseLargePages = false;
4853         } else if (UseAdaptiveSizePolicy || UseAdaptiveNUMAChunkSizing) {
4854           warning("UseNUMA is not fully compatible with SHM/HugeTLBFS large pages, disabling adaptive resizing (-XX:-UseAdaptiveSizePolicy -XX:-UseAdaptiveNUMAChunkSizing)");
4855           UseAdaptiveSizePolicy = false;
4856           UseAdaptiveNUMAChunkSizing = false;
4857         }
4858       }
4859     }
4860     if (!UseNUMA && ForceNUMA) {
4861       UseNUMA = true;
4862     }
4863   }
4864 
4865   if (MaxFDLimit) {
4866     // set the number of file descriptors to max. print out error
4867     // if getrlimit/setrlimit fails but continue regardless.
4868     struct rlimit nbr_files;
4869     int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
4870     if (status != 0) {
4871       log_info(os)("os::init_2 getrlimit failed: %s", os::strerror(errno));
4872     } else {
4873       nbr_files.rlim_cur = nbr_files.rlim_max;
4874       status = setrlimit(RLIMIT_NOFILE, &nbr_files);
4875       if (status != 0) {
4876         log_info(os)("os::init_2 setrlimit failed: %s", os::strerror(errno));
4877       }
4878     }
4879   }
4880 
4881   // Initialize lock used to serialize thread creation (see os::create_thread)
4882   Linux::set_createThread_lock(new Mutex(Mutex::leaf, "createThread_lock", false));
4883 
4884   // at-exit methods are called in the reverse order of their registration.
4885   // atexit functions are called on return from main or as a result of a
4886   // call to exit(3C). There can be only 32 of these functions registered
4887   // and atexit() does not set errno.
4888 
4889   if (PerfAllowAtExitRegistration) {
4890     // only register atexit functions if PerfAllowAtExitRegistration is set.
4891     // atexit functions can be delayed until process exit time, which
4892     // can be problematic for embedded VM situations. Embedded VMs should
4893     // call DestroyJavaVM() to assure that VM resources are released.
4894 
4895     // note: perfMemory_exit_helper atexit function may be removed in
4896     // the future if the appropriate cleanup code can be added to the
4897     // VM_Exit VMOperation's doit method.
4898     if (atexit(perfMemory_exit_helper) != 0) {
4899       warning("os::init_2 atexit(perfMemory_exit_helper) failed");
4900     }
4901   }
4902 
4903   // initialize thread priority policy
4904   prio_init();
4905 
4906   return JNI_OK;
4907 }
4908 
4909 // Mark the polling page as unreadable
4910 void os::make_polling_page_unreadable(void) {
4911   if (!guard_memory((char*)_polling_page, Linux::page_size())) {
4912     fatal("Could not disable polling page");
4913   }
4914 }
4915 
4916 // Mark the polling page as readable
4917 void os::make_polling_page_readable(void) {
4918   if (!linux_mprotect((char *)_polling_page, Linux::page_size(), PROT_READ)) {
4919     fatal("Could not enable polling page");
4920   }
4921 }
4922 
4923 // older glibc versions don't have this macro (which expands to
4924 // an optimized bit-counting function) so we have to roll our own
4925 #ifndef CPU_COUNT
4926 
4927 static int _cpu_count(const cpu_set_t* cpus) {
4928   int count = 0;
4929   // only look up to the number of configured processors
4930   for (int i = 0; i < os::processor_count(); i++) {
4931     if (CPU_ISSET(i, cpus)) {
4932       count++;
4933     }
4934   }
4935   return count;
4936 }
4937 
4938 #define CPU_COUNT(cpus) _cpu_count(cpus)
4939 
4940 #endif // CPU_COUNT
4941 
4942 // Get the current number of available processors for this process.
4943 // This value can change at any time during a process's lifetime.
4944 // sched_getaffinity gives an accurate answer as it accounts for cpusets.
4945 // If it appears there may be more than 1024 processors then we do a
4946 // dynamic check - see 6515172 for details.
4947 // If anything goes wrong we fallback to returning the number of online
4948 // processors - which can be greater than the number available to the process.
4949 int os::active_processor_count() {
4950   cpu_set_t cpus;  // can represent at most 1024 (CPU_SETSIZE) processors
4951   cpu_set_t* cpus_p = &cpus;
4952   int cpus_size = sizeof(cpu_set_t);
4953 
4954   int configured_cpus = processor_count();  // upper bound on available cpus
4955   int cpu_count = 0;
4956 
4957 // old build platforms may not support dynamic cpu sets
4958 #ifdef CPU_ALLOC
4959 
4960   // To enable easy testing of the dynamic path on different platforms we
4961   // introduce a diagnostic flag: UseCpuAllocPath
4962   if (configured_cpus >= CPU_SETSIZE || UseCpuAllocPath) {
4963     // kernel may use a mask bigger than cpu_set_t
4964     log_trace(os)("active_processor_count: using dynamic path %s"
4965                   "- configured processors: %d",
4966                   UseCpuAllocPath ? "(forced) " : "",
4967                   configured_cpus);
4968     cpus_p = CPU_ALLOC(configured_cpus);
4969     if (cpus_p != NULL) {
4970       cpus_size = CPU_ALLOC_SIZE(configured_cpus);
4971       // zero it just to be safe
4972       CPU_ZERO_S(cpus_size, cpus_p);
4973     }
4974     else {
4975        // failed to allocate so fallback to online cpus
4976        int online_cpus = ::sysconf(_SC_NPROCESSORS_ONLN);
4977        log_trace(os)("active_processor_count: "
4978                      "CPU_ALLOC failed (%s) - using "
4979                      "online processor count: %d",
4980                      os::strerror(errno), online_cpus);
4981        return online_cpus;
4982     }
4983   }
4984   else {
4985     log_trace(os)("active_processor_count: using static path - configured processors: %d",
4986                   configured_cpus);
4987   }
4988 #else // CPU_ALLOC
4989 // these stubs won't be executed
4990 #define CPU_COUNT_S(size, cpus) -1
4991 #define CPU_FREE(cpus)
4992 
4993   log_trace(os)("active_processor_count: only static path available - configured processors: %d",
4994                 configured_cpus);
4995 #endif // CPU_ALLOC
4996 
4997   // pid 0 means the current thread - which we have to assume represents the process
4998   if (sched_getaffinity(0, cpus_size, cpus_p) == 0) {
4999     if (cpus_p != &cpus) { // can only be true when CPU_ALLOC used
5000       cpu_count = CPU_COUNT_S(cpus_size, cpus_p);
5001     }
5002     else {
5003       cpu_count = CPU_COUNT(cpus_p);
5004     }
5005     log_trace(os)("active_processor_count: sched_getaffinity processor count: %d", cpu_count);
5006   }
5007   else {
5008     cpu_count = ::sysconf(_SC_NPROCESSORS_ONLN);
5009     warning("sched_getaffinity failed (%s)- using online processor count (%d) "
5010             "which may exceed available processors", os::strerror(errno), cpu_count);
5011   }
5012 
5013   if (cpus_p != &cpus) { // can only be true when CPU_ALLOC used
5014     CPU_FREE(cpus_p);
5015   }
5016 
5017   assert(cpu_count > 0 && cpu_count <= processor_count(), "sanity check");
5018   return cpu_count;
5019 }
5020 
5021 void os::set_native_thread_name(const char *name) {
5022   if (Linux::_pthread_setname_np) {
5023     char buf [16]; // according to glibc manpage, 16 chars incl. '/0'
5024     snprintf(buf, sizeof(buf), "%s", name);
5025     buf[sizeof(buf) - 1] = '\0';
5026     const int rc = Linux::_pthread_setname_np(pthread_self(), buf);
5027     // ERANGE should not happen; all other errors should just be ignored.
5028     assert(rc != ERANGE, "pthread_setname_np failed");
5029   }
5030 }
5031 
5032 bool os::distribute_processes(uint length, uint* distribution) {
5033   // Not yet implemented.
5034   return false;
5035 }
5036 
5037 bool os::bind_to_processor(uint processor_id) {
5038   // Not yet implemented.
5039   return false;
5040 }
5041 
5042 ///
5043 
5044 void os::SuspendedThreadTask::internal_do_task() {
5045   if (do_suspend(_thread->osthread())) {
5046     SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
5047     do_task(context);
5048     do_resume(_thread->osthread());
5049   }
5050 }
5051 
5052 class PcFetcher : public os::SuspendedThreadTask {
5053  public:
5054   PcFetcher(Thread* thread) : os::SuspendedThreadTask(thread) {}
5055   ExtendedPC result();
5056  protected:
5057   void do_task(const os::SuspendedThreadTaskContext& context);
5058  private:
5059   ExtendedPC _epc;
5060 };
5061 
5062 ExtendedPC PcFetcher::result() {
5063   guarantee(is_done(), "task is not done yet.");
5064   return _epc;
5065 }
5066 
5067 void PcFetcher::do_task(const os::SuspendedThreadTaskContext& context) {
5068   Thread* thread = context.thread();
5069   OSThread* osthread = thread->osthread();
5070   if (osthread->ucontext() != NULL) {
5071     _epc = os::Linux::ucontext_get_pc((const ucontext_t *) context.ucontext());
5072   } else {
5073     // NULL context is unexpected, double-check this is the VMThread
5074     guarantee(thread->is_VM_thread(), "can only be called for VMThread");
5075   }
5076 }
5077 
5078 // Suspends the target using the signal mechanism and then grabs the PC before
5079 // resuming the target. Used by the flat-profiler only
5080 ExtendedPC os::get_thread_pc(Thread* thread) {
5081   // Make sure that it is called by the watcher for the VMThread
5082   assert(Thread::current()->is_Watcher_thread(), "Must be watcher");
5083   assert(thread->is_VM_thread(), "Can only be called for VMThread");
5084 
5085   PcFetcher fetcher(thread);
5086   fetcher.run();
5087   return fetcher.result();
5088 }
5089 
5090 ////////////////////////////////////////////////////////////////////////////////
5091 // debug support
5092 
5093 bool os::find(address addr, outputStream* st) {
5094   Dl_info dlinfo;
5095   memset(&dlinfo, 0, sizeof(dlinfo));
5096   if (dladdr(addr, &dlinfo) != 0) {
5097     st->print(PTR_FORMAT ": ", p2i(addr));
5098     if (dlinfo.dli_sname != NULL && dlinfo.dli_saddr != NULL) {
5099       st->print("%s+" PTR_FORMAT, dlinfo.dli_sname,
5100                 p2i(addr) - p2i(dlinfo.dli_saddr));
5101     } else if (dlinfo.dli_fbase != NULL) {
5102       st->print("<offset " PTR_FORMAT ">", p2i(addr) - p2i(dlinfo.dli_fbase));
5103     } else {
5104       st->print("<absolute address>");
5105     }
5106     if (dlinfo.dli_fname != NULL) {
5107       st->print(" in %s", dlinfo.dli_fname);
5108     }
5109     if (dlinfo.dli_fbase != NULL) {
5110       st->print(" at " PTR_FORMAT, p2i(dlinfo.dli_fbase));
5111     }
5112     st->cr();
5113 
5114     if (Verbose) {
5115       // decode some bytes around the PC
5116       address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
5117       address end   = clamp_address_in_page(addr+40, addr, os::vm_page_size());
5118       address       lowest = (address) dlinfo.dli_sname;
5119       if (!lowest)  lowest = (address) dlinfo.dli_fbase;
5120       if (begin < lowest)  begin = lowest;
5121       Dl_info dlinfo2;
5122       if (dladdr(end, &dlinfo2) != 0 && dlinfo2.dli_saddr != dlinfo.dli_saddr
5123           && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin) {
5124         end = (address) dlinfo2.dli_saddr;
5125       }
5126       Disassembler::decode(begin, end, st);
5127     }
5128     return true;
5129   }
5130   return false;
5131 }
5132 
5133 ////////////////////////////////////////////////////////////////////////////////
5134 // misc
5135 
5136 // This does not do anything on Linux. This is basically a hook for being
5137 // able to use structured exception handling (thread-local exception filters)
5138 // on, e.g., Win32.
5139 void
5140 os::os_exception_wrapper(java_call_t f, JavaValue* value, const methodHandle& method,
5141                          JavaCallArguments* args, Thread* thread) {
5142   f(value, method, args, thread);
5143 }
5144 
5145 void os::print_statistics() {
5146 }
5147 
5148 bool os::message_box(const char* title, const char* message) {
5149   int i;
5150   fdStream err(defaultStream::error_fd());
5151   for (i = 0; i < 78; i++) err.print_raw("=");
5152   err.cr();
5153   err.print_raw_cr(title);
5154   for (i = 0; i < 78; i++) err.print_raw("-");
5155   err.cr();
5156   err.print_raw_cr(message);
5157   for (i = 0; i < 78; i++) err.print_raw("=");
5158   err.cr();
5159 
5160   char buf[16];
5161   // Prevent process from exiting upon "read error" without consuming all CPU
5162   while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
5163 
5164   return buf[0] == 'y' || buf[0] == 'Y';
5165 }
5166 
5167 int os::stat(const char *path, struct stat *sbuf) {
5168   char pathbuf[MAX_PATH];
5169   if (strlen(path) > MAX_PATH - 1) {
5170     errno = ENAMETOOLONG;
5171     return -1;
5172   }
5173   os::native_path(strcpy(pathbuf, path));
5174   return ::stat(pathbuf, sbuf);
5175 }
5176 
5177 // Is a (classpath) directory empty?
5178 bool os::dir_is_empty(const char* path) {
5179   DIR *dir = NULL;
5180   struct dirent *ptr;
5181 
5182   dir = opendir(path);
5183   if (dir == NULL) return true;
5184 
5185   // Scan the directory
5186   bool result = true;
5187   char buf[sizeof(struct dirent) + MAX_PATH];
5188   while (result && (ptr = ::readdir(dir)) != NULL) {
5189     if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
5190       result = false;
5191     }
5192   }
5193   closedir(dir);
5194   return result;
5195 }
5196 
5197 // This code originates from JDK's sysOpen and open64_w
5198 // from src/solaris/hpi/src/system_md.c
5199 
5200 int os::open(const char *path, int oflag, int mode) {
5201   if (strlen(path) > MAX_PATH - 1) {
5202     errno = ENAMETOOLONG;
5203     return -1;
5204   }
5205 
5206   // All file descriptors that are opened in the Java process and not
5207   // specifically destined for a subprocess should have the close-on-exec
5208   // flag set.  If we don't set it, then careless 3rd party native code
5209   // might fork and exec without closing all appropriate file descriptors
5210   // (e.g. as we do in closeDescriptors in UNIXProcess.c), and this in
5211   // turn might:
5212   //
5213   // - cause end-of-file to fail to be detected on some file
5214   //   descriptors, resulting in mysterious hangs, or
5215   //
5216   // - might cause an fopen in the subprocess to fail on a system
5217   //   suffering from bug 1085341.
5218   //
5219   // (Yes, the default setting of the close-on-exec flag is a Unix
5220   // design flaw)
5221   //
5222   // See:
5223   // 1085341: 32-bit stdio routines should support file descriptors >255
5224   // 4843136: (process) pipe file descriptor from Runtime.exec not being closed
5225   // 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
5226   //
5227   // Modern Linux kernels (after 2.6.23 2007) support O_CLOEXEC with open().
5228   // O_CLOEXEC is preferable to using FD_CLOEXEC on an open file descriptor
5229   // because it saves a system call and removes a small window where the flag
5230   // is unset.  On ancient Linux kernels the O_CLOEXEC flag will be ignored
5231   // and we fall back to using FD_CLOEXEC (see below).
5232 #ifdef O_CLOEXEC
5233   oflag |= O_CLOEXEC;
5234 #endif
5235 
5236   int fd = ::open64(path, oflag, mode);
5237   if (fd == -1) return -1;
5238 
5239   //If the open succeeded, the file might still be a directory
5240   {
5241     struct stat64 buf64;
5242     int ret = ::fstat64(fd, &buf64);
5243     int st_mode = buf64.st_mode;
5244 
5245     if (ret != -1) {
5246       if ((st_mode & S_IFMT) == S_IFDIR) {
5247         errno = EISDIR;
5248         ::close(fd);
5249         return -1;
5250       }
5251     } else {
5252       ::close(fd);
5253       return -1;
5254     }
5255   }
5256 
5257 #ifdef FD_CLOEXEC
5258   // Validate that the use of the O_CLOEXEC flag on open above worked.
5259   // With recent kernels, we will perform this check exactly once.
5260   static sig_atomic_t O_CLOEXEC_is_known_to_work = 0;
5261   if (!O_CLOEXEC_is_known_to_work) {
5262     int flags = ::fcntl(fd, F_GETFD);
5263     if (flags != -1) {
5264       if ((flags & FD_CLOEXEC) != 0)
5265         O_CLOEXEC_is_known_to_work = 1;
5266       else
5267         ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
5268     }
5269   }
5270 #endif
5271 
5272   return fd;
5273 }
5274 
5275 
5276 // create binary file, rewriting existing file if required
5277 int os::create_binary_file(const char* path, bool rewrite_existing) {
5278   int oflags = O_WRONLY | O_CREAT;
5279   if (!rewrite_existing) {
5280     oflags |= O_EXCL;
5281   }
5282   return ::open64(path, oflags, S_IREAD | S_IWRITE);
5283 }
5284 
5285 // return current position of file pointer
5286 jlong os::current_file_offset(int fd) {
5287   return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
5288 }
5289 
5290 // move file pointer to the specified offset
5291 jlong os::seek_to_file_offset(int fd, jlong offset) {
5292   return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
5293 }
5294 
5295 // This code originates from JDK's sysAvailable
5296 // from src/solaris/hpi/src/native_threads/src/sys_api_td.c
5297 
5298 int os::available(int fd, jlong *bytes) {
5299   jlong cur, end;
5300   int mode;
5301   struct stat64 buf64;
5302 
5303   if (::fstat64(fd, &buf64) >= 0) {
5304     mode = buf64.st_mode;
5305     if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
5306       int n;
5307       if (::ioctl(fd, FIONREAD, &n) >= 0) {
5308         *bytes = n;
5309         return 1;
5310       }
5311     }
5312   }
5313   if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
5314     return 0;
5315   } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
5316     return 0;
5317   } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
5318     return 0;
5319   }
5320   *bytes = end - cur;
5321   return 1;
5322 }
5323 
5324 // Map a block of memory.
5325 char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
5326                         char *addr, size_t bytes, bool read_only,
5327                         bool allow_exec) {
5328   int prot;
5329   int flags = MAP_PRIVATE;
5330 
5331   if (read_only) {
5332     prot = PROT_READ;
5333   } else {
5334     prot = PROT_READ | PROT_WRITE;
5335   }
5336 
5337   if (allow_exec) {
5338     prot |= PROT_EXEC;
5339   }
5340 
5341   if (addr != NULL) {
5342     flags |= MAP_FIXED;
5343   }
5344 
5345   char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
5346                                      fd, file_offset);
5347   if (mapped_address == MAP_FAILED) {
5348     return NULL;
5349   }
5350   return mapped_address;
5351 }
5352 
5353 
5354 // Remap a block of memory.
5355 char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
5356                           char *addr, size_t bytes, bool read_only,
5357                           bool allow_exec) {
5358   // same as map_memory() on this OS
5359   return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
5360                         allow_exec);
5361 }
5362 
5363 
5364 // Unmap a block of memory.
5365 bool os::pd_unmap_memory(char* addr, size_t bytes) {
5366   return munmap(addr, bytes) == 0;
5367 }
5368 
5369 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time);
5370 
5371 static clockid_t thread_cpu_clockid(Thread* thread) {
5372   pthread_t tid = thread->osthread()->pthread_id();
5373   clockid_t clockid;
5374 
5375   // Get thread clockid
5376   int rc = os::Linux::pthread_getcpuclockid(tid, &clockid);
5377   assert(rc == 0, "pthread_getcpuclockid is expected to return 0 code");
5378   return clockid;
5379 }
5380 
5381 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
5382 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
5383 // of a thread.
5384 //
5385 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
5386 // the fast estimate available on the platform.
5387 
5388 jlong os::current_thread_cpu_time() {
5389   if (os::Linux::supports_fast_thread_cpu_time()) {
5390     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5391   } else {
5392     // return user + sys since the cost is the same
5393     return slow_thread_cpu_time(Thread::current(), true /* user + sys */);
5394   }
5395 }
5396 
5397 jlong os::thread_cpu_time(Thread* thread) {
5398   // consistent with what current_thread_cpu_time() returns
5399   if (os::Linux::supports_fast_thread_cpu_time()) {
5400     return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
5401   } else {
5402     return slow_thread_cpu_time(thread, true /* user + sys */);
5403   }
5404 }
5405 
5406 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
5407   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5408     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5409   } else {
5410     return slow_thread_cpu_time(Thread::current(), user_sys_cpu_time);
5411   }
5412 }
5413 
5414 jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5415   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5416     return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
5417   } else {
5418     return slow_thread_cpu_time(thread, user_sys_cpu_time);
5419   }
5420 }
5421 
5422 //  -1 on error.
5423 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5424   pid_t  tid = thread->osthread()->thread_id();
5425   char *s;
5426   char stat[2048];
5427   int statlen;
5428   char proc_name[64];
5429   int count;
5430   long sys_time, user_time;
5431   char cdummy;
5432   int idummy;
5433   long ldummy;
5434   FILE *fp;
5435 
5436   snprintf(proc_name, 64, "/proc/self/task/%d/stat", tid);
5437   fp = fopen(proc_name, "r");
5438   if (fp == NULL) return -1;
5439   statlen = fread(stat, 1, 2047, fp);
5440   stat[statlen] = '\0';
5441   fclose(fp);
5442 
5443   // Skip pid and the command string. Note that we could be dealing with
5444   // weird command names, e.g. user could decide to rename java launcher
5445   // to "java 1.4.2 :)", then the stat file would look like
5446   //                1234 (java 1.4.2 :)) R ... ...
5447   // We don't really need to know the command string, just find the last
5448   // occurrence of ")" and then start parsing from there. See bug 4726580.
5449   s = strrchr(stat, ')');
5450   if (s == NULL) return -1;
5451 
5452   // Skip blank chars
5453   do { s++; } while (s && isspace(*s));
5454 
5455   count = sscanf(s,"%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu",
5456                  &cdummy, &idummy, &idummy, &idummy, &idummy, &idummy,
5457                  &ldummy, &ldummy, &ldummy, &ldummy, &ldummy,
5458                  &user_time, &sys_time);
5459   if (count != 13) return -1;
5460   if (user_sys_cpu_time) {
5461     return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
5462   } else {
5463     return (jlong)user_time * (1000000000 / clock_tics_per_sec);
5464   }
5465 }
5466 
5467 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5468   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5469   info_ptr->may_skip_backward = false;     // elapsed time not wall time
5470   info_ptr->may_skip_forward = false;      // elapsed time not wall time
5471   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5472 }
5473 
5474 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5475   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5476   info_ptr->may_skip_backward = false;     // elapsed time not wall time
5477   info_ptr->may_skip_forward = false;      // elapsed time not wall time
5478   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5479 }
5480 
5481 bool os::is_thread_cpu_time_supported() {
5482   return true;
5483 }
5484 
5485 // System loadavg support.  Returns -1 if load average cannot be obtained.
5486 // Linux doesn't yet have a (official) notion of processor sets,
5487 // so just return the system wide load average.
5488 int os::loadavg(double loadavg[], int nelem) {
5489   return ::getloadavg(loadavg, nelem);
5490 }
5491 
5492 void os::pause() {
5493   char filename[MAX_PATH];
5494   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
5495     jio_snprintf(filename, MAX_PATH, "%s", PauseAtStartupFile);
5496   } else {
5497     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
5498   }
5499 
5500   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
5501   if (fd != -1) {
5502     struct stat buf;
5503     ::close(fd);
5504     while (::stat(filename, &buf) == 0) {
5505       (void)::poll(NULL, 0, 100);
5506     }
5507   } else {
5508     jio_fprintf(stderr,
5509                 "Could not open pause file '%s', continuing immediately.\n", filename);
5510   }
5511 }
5512 
5513 
5514 // Refer to the comments in os_solaris.cpp park-unpark. The next two
5515 // comment paragraphs are worth repeating here:
5516 //
5517 // Assumption:
5518 //    Only one parker can exist on an event, which is why we allocate
5519 //    them per-thread. Multiple unparkers can coexist.
5520 //
5521 // _Event serves as a restricted-range semaphore.
5522 //   -1 : thread is blocked, i.e. there is a waiter
5523 //    0 : neutral: thread is running or ready,
5524 //        could have been signaled after a wait started
5525 //    1 : signaled - thread is running or ready
5526 //
5527 
5528 // utility to compute the abstime argument to timedwait:
5529 // millis is the relative timeout time
5530 // abstime will be the absolute timeout time
5531 // TODO: replace compute_abstime() with unpackTime()
5532 
5533 static struct timespec* compute_abstime(timespec* abstime, jlong millis) {
5534   if (millis < 0)  millis = 0;
5535 
5536   jlong seconds = millis / 1000;
5537   millis %= 1000;
5538   if (seconds > 50000000) { // see man cond_timedwait(3T)
5539     seconds = 50000000;
5540   }
5541 
5542   if (os::supports_monotonic_clock()) {
5543     struct timespec now;
5544     int status = os::Linux::clock_gettime(CLOCK_MONOTONIC, &now);
5545     assert_status(status == 0, status, "clock_gettime");
5546     abstime->tv_sec = now.tv_sec  + seconds;
5547     long nanos = now.tv_nsec + millis * NANOSECS_PER_MILLISEC;
5548     if (nanos >= NANOSECS_PER_SEC) {
5549       abstime->tv_sec += 1;
5550       nanos -= NANOSECS_PER_SEC;
5551     }
5552     abstime->tv_nsec = nanos;
5553   } else {
5554     struct timeval now;
5555     int status = gettimeofday(&now, NULL);
5556     assert(status == 0, "gettimeofday");
5557     abstime->tv_sec = now.tv_sec  + seconds;
5558     long usec = now.tv_usec + millis * 1000;
5559     if (usec >= 1000000) {
5560       abstime->tv_sec += 1;
5561       usec -= 1000000;
5562     }
5563     abstime->tv_nsec = usec * 1000;
5564   }
5565   return abstime;
5566 }
5567 
5568 void os::PlatformEvent::park() {       // AKA "down()"
5569   // Transitions for _Event:
5570   //   -1 => -1 : illegal
5571   //    1 =>  0 : pass - return immediately
5572   //    0 => -1 : block; then set _Event to 0 before returning
5573 
5574   // Invariant: Only the thread associated with the Event/PlatformEvent
5575   // may call park().
5576   // TODO: assert that _Assoc != NULL or _Assoc == Self
5577   assert(_nParked == 0, "invariant");
5578 
5579   int v;
5580   for (;;) {
5581     v = _Event;
5582     if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
5583   }
5584   guarantee(v >= 0, "invariant");
5585   if (v == 0) {
5586     // Do this the hard way by blocking ...
5587     int status = pthread_mutex_lock(_mutex);
5588     assert_status(status == 0, status, "mutex_lock");
5589     guarantee(_nParked == 0, "invariant");
5590     ++_nParked;
5591     while (_Event < 0) {
5592       status = pthread_cond_wait(_cond, _mutex);
5593       // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
5594       // Treat this the same as if the wait was interrupted
5595       if (status == ETIME) { status = EINTR; }
5596       assert_status(status == 0 || status == EINTR, status, "cond_wait");
5597     }
5598     --_nParked;
5599 
5600     _Event = 0;
5601     status = pthread_mutex_unlock(_mutex);
5602     assert_status(status == 0, status, "mutex_unlock");
5603     // Paranoia to ensure our locked and lock-free paths interact
5604     // correctly with each other.
5605     OrderAccess::fence();
5606   }
5607   guarantee(_Event >= 0, "invariant");
5608 }
5609 
5610 int os::PlatformEvent::park(jlong millis) {
5611   // Transitions for _Event:
5612   //   -1 => -1 : illegal
5613   //    1 =>  0 : pass - return immediately
5614   //    0 => -1 : block; then set _Event to 0 before returning
5615 
5616   guarantee(_nParked == 0, "invariant");
5617 
5618   int v;
5619   for (;;) {
5620     v = _Event;
5621     if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
5622   }
5623   guarantee(v >= 0, "invariant");
5624   if (v != 0) return OS_OK;
5625 
5626   // We do this the hard way, by blocking the thread.
5627   // Consider enforcing a minimum timeout value.
5628   struct timespec abst;
5629   compute_abstime(&abst, millis);
5630 
5631   int ret = OS_TIMEOUT;
5632   int status = pthread_mutex_lock(_mutex);
5633   assert_status(status == 0, status, "mutex_lock");
5634   guarantee(_nParked == 0, "invariant");
5635   ++_nParked;
5636 
5637   // Object.wait(timo) will return because of
5638   // (a) notification
5639   // (b) timeout
5640   // (c) thread.interrupt
5641   //
5642   // Thread.interrupt and object.notify{All} both call Event::set.
5643   // That is, we treat thread.interrupt as a special case of notification.
5644   // We ignore spurious OS wakeups unless FilterSpuriousWakeups is false.
5645   // We assume all ETIME returns are valid.
5646   //
5647   // TODO: properly differentiate simultaneous notify+interrupt.
5648   // In that case, we should propagate the notify to another waiter.
5649 
5650   while (_Event < 0) {
5651     status = pthread_cond_timedwait(_cond, _mutex, &abst);
5652     assert_status(status == 0 || status == EINTR ||
5653                   status == ETIME || status == ETIMEDOUT,
5654                   status, "cond_timedwait");
5655     if (!FilterSpuriousWakeups) break;                 // previous semantics
5656     if (status == ETIME || status == ETIMEDOUT) break;
5657     // We consume and ignore EINTR and spurious wakeups.
5658   }
5659   --_nParked;
5660   if (_Event >= 0) {
5661     ret = OS_OK;
5662   }
5663   _Event = 0;
5664   status = pthread_mutex_unlock(_mutex);
5665   assert_status(status == 0, status, "mutex_unlock");
5666   assert(_nParked == 0, "invariant");
5667   // Paranoia to ensure our locked and lock-free paths interact
5668   // correctly with each other.
5669   OrderAccess::fence();
5670   return ret;
5671 }
5672 
5673 void os::PlatformEvent::unpark() {
5674   // Transitions for _Event:
5675   //    0 => 1 : just return
5676   //    1 => 1 : just return
5677   //   -1 => either 0 or 1; must signal target thread
5678   //         That is, we can safely transition _Event from -1 to either
5679   //         0 or 1.
5680   // See also: "Semaphores in Plan 9" by Mullender & Cox
5681   //
5682   // Note: Forcing a transition from "-1" to "1" on an unpark() means
5683   // that it will take two back-to-back park() calls for the owning
5684   // thread to block. This has the benefit of forcing a spurious return
5685   // from the first park() call after an unpark() call which will help
5686   // shake out uses of park() and unpark() without condition variables.
5687 
5688   if (Atomic::xchg(1, &_Event) >= 0) return;
5689 
5690   // Wait for the thread associated with the event to vacate
5691   int status = pthread_mutex_lock(_mutex);
5692   assert_status(status == 0, status, "mutex_lock");
5693   int AnyWaiters = _nParked;
5694   assert(AnyWaiters == 0 || AnyWaiters == 1, "invariant");
5695   status = pthread_mutex_unlock(_mutex);
5696   assert_status(status == 0, status, "mutex_unlock");
5697   if (AnyWaiters != 0) {
5698     // Note that we signal() *after* dropping the lock for "immortal" Events.
5699     // This is safe and avoids a common class of  futile wakeups.  In rare
5700     // circumstances this can cause a thread to return prematurely from
5701     // cond_{timed}wait() but the spurious wakeup is benign and the victim
5702     // will simply re-test the condition and re-park itself.
5703     // This provides particular benefit if the underlying platform does not
5704     // provide wait morphing.
5705     status = pthread_cond_signal(_cond);
5706     assert_status(status == 0, status, "cond_signal");
5707   }
5708 }
5709 
5710 
5711 // JSR166
5712 // -------------------------------------------------------
5713 
5714 // The solaris and linux implementations of park/unpark are fairly
5715 // conservative for now, but can be improved. They currently use a
5716 // mutex/condvar pair, plus a a count.
5717 // Park decrements count if > 0, else does a condvar wait.  Unpark
5718 // sets count to 1 and signals condvar.  Only one thread ever waits
5719 // on the condvar. Contention seen when trying to park implies that someone
5720 // is unparking you, so don't wait. And spurious returns are fine, so there
5721 // is no need to track notifications.
5722 
5723 // This code is common to linux and solaris and will be moved to a
5724 // common place in dolphin.
5725 //
5726 // The passed in time value is either a relative time in nanoseconds
5727 // or an absolute time in milliseconds. Either way it has to be unpacked
5728 // into suitable seconds and nanoseconds components and stored in the
5729 // given timespec structure.
5730 // Given time is a 64-bit value and the time_t used in the timespec is only
5731 // a signed-32-bit value (except on 64-bit Linux) we have to watch for
5732 // overflow if times way in the future are given. Further on Solaris versions
5733 // prior to 10 there is a restriction (see cond_timedwait) that the specified
5734 // number of seconds, in abstime, is less than current_time  + 100,000,000.
5735 // As it will be 28 years before "now + 100000000" will overflow we can
5736 // ignore overflow and just impose a hard-limit on seconds using the value
5737 // of "now + 100,000,000". This places a limit on the timeout of about 3.17
5738 // years from "now".
5739 
5740 static void unpackTime(timespec* absTime, bool isAbsolute, jlong time) {
5741   assert(time > 0, "convertTime");
5742   time_t max_secs = 0;
5743 
5744   if (!os::supports_monotonic_clock() || isAbsolute) {
5745     struct timeval now;
5746     int status = gettimeofday(&now, NULL);
5747     assert(status == 0, "gettimeofday");
5748 
5749     max_secs = now.tv_sec + MAX_SECS;
5750 
5751     if (isAbsolute) {
5752       jlong secs = time / 1000;
5753       if (secs > max_secs) {
5754         absTime->tv_sec = max_secs;
5755       } else {
5756         absTime->tv_sec = secs;
5757       }
5758       absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
5759     } else {
5760       jlong secs = time / NANOSECS_PER_SEC;
5761       if (secs >= MAX_SECS) {
5762         absTime->tv_sec = max_secs;
5763         absTime->tv_nsec = 0;
5764       } else {
5765         absTime->tv_sec = now.tv_sec + secs;
5766         absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
5767         if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
5768           absTime->tv_nsec -= NANOSECS_PER_SEC;
5769           ++absTime->tv_sec; // note: this must be <= max_secs
5770         }
5771       }
5772     }
5773   } else {
5774     // must be relative using monotonic clock
5775     struct timespec now;
5776     int status = os::Linux::clock_gettime(CLOCK_MONOTONIC, &now);
5777     assert_status(status == 0, status, "clock_gettime");
5778     max_secs = now.tv_sec + MAX_SECS;
5779     jlong secs = time / NANOSECS_PER_SEC;
5780     if (secs >= MAX_SECS) {
5781       absTime->tv_sec = max_secs;
5782       absTime->tv_nsec = 0;
5783     } else {
5784       absTime->tv_sec = now.tv_sec + secs;
5785       absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_nsec;
5786       if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
5787         absTime->tv_nsec -= NANOSECS_PER_SEC;
5788         ++absTime->tv_sec; // note: this must be <= max_secs
5789       }
5790     }
5791   }
5792   assert(absTime->tv_sec >= 0, "tv_sec < 0");
5793   assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
5794   assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
5795   assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
5796 }
5797 
5798 void Parker::park(bool isAbsolute, jlong time) {
5799   // Ideally we'd do something useful while spinning, such
5800   // as calling unpackTime().
5801 
5802   // Optional fast-path check:
5803   // Return immediately if a permit is available.
5804   // We depend on Atomic::xchg() having full barrier semantics
5805   // since we are doing a lock-free update to _counter.
5806   if (Atomic::xchg(0, &_counter) > 0) return;
5807 
5808   Thread* thread = Thread::current();
5809   assert(thread->is_Java_thread(), "Must be JavaThread");
5810   JavaThread *jt = (JavaThread *)thread;
5811 
5812   // Optional optimization -- avoid state transitions if there's an interrupt pending.
5813   // Check interrupt before trying to wait
5814   if (Thread::is_interrupted(thread, false)) {
5815     return;
5816   }
5817 
5818   // Next, demultiplex/decode time arguments
5819   timespec absTime;
5820   if (time < 0 || (isAbsolute && time == 0)) { // don't wait at all
5821     return;
5822   }
5823   if (time > 0) {
5824     unpackTime(&absTime, isAbsolute, time);
5825   }
5826 
5827 
5828   // Enter safepoint region
5829   // Beware of deadlocks such as 6317397.
5830   // The per-thread Parker:: mutex is a classic leaf-lock.
5831   // In particular a thread must never block on the Threads_lock while
5832   // holding the Parker:: mutex.  If safepoints are pending both the
5833   // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
5834   ThreadBlockInVM tbivm(jt);
5835 
5836   // Don't wait if cannot get lock since interference arises from
5837   // unblocking.  Also. check interrupt before trying wait
5838   if (Thread::is_interrupted(thread, false) || pthread_mutex_trylock(_mutex) != 0) {
5839     return;
5840   }
5841 
5842   int status;
5843   if (_counter > 0)  { // no wait needed
5844     _counter = 0;
5845     status = pthread_mutex_unlock(_mutex);
5846     assert_status(status == 0, status, "invariant");
5847     // Paranoia to ensure our locked and lock-free paths interact
5848     // correctly with each other and Java-level accesses.
5849     OrderAccess::fence();
5850     return;
5851   }
5852 
5853 #ifdef ASSERT
5854   // Don't catch signals while blocked; let the running threads have the signals.
5855   // (This allows a debugger to break into the running thread.)
5856   sigset_t oldsigs;
5857   sigemptyset(&oldsigs);
5858   sigset_t* allowdebug_blocked = os::Linux::allowdebug_blocked_signals();
5859   pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
5860 #endif
5861 
5862   OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
5863   jt->set_suspend_equivalent();
5864   // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
5865 
5866   assert(_cur_index == -1, "invariant");
5867   if (time == 0) {
5868     _cur_index = REL_INDEX; // arbitrary choice when not timed
5869     status = pthread_cond_wait(&_cond[_cur_index], _mutex);
5870   } else {
5871     _cur_index = isAbsolute ? ABS_INDEX : REL_INDEX;
5872     status = pthread_cond_timedwait(&_cond[_cur_index], _mutex, &absTime);
5873   }
5874   _cur_index = -1;
5875   assert_status(status == 0 || status == EINTR ||
5876                 status == ETIME || status == ETIMEDOUT,
5877                 status, "cond_timedwait");
5878 
5879 #ifdef ASSERT
5880   pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
5881 #endif
5882 
5883   _counter = 0;
5884   status = pthread_mutex_unlock(_mutex);
5885   assert_status(status == 0, status, "invariant");
5886   // Paranoia to ensure our locked and lock-free paths interact
5887   // correctly with each other and Java-level accesses.
5888   OrderAccess::fence();
5889 
5890   // If externally suspended while waiting, re-suspend
5891   if (jt->handle_special_suspend_equivalent_condition()) {
5892     jt->java_suspend_self();
5893   }
5894 }
5895 
5896 void Parker::unpark() {
5897   int status = pthread_mutex_lock(_mutex);
5898   assert_status(status == 0, status, "invariant");
5899   const int s = _counter;
5900   _counter = 1;
5901   // must capture correct index before unlocking
5902   int index = _cur_index;
5903   status = pthread_mutex_unlock(_mutex);
5904   assert_status(status == 0, status, "invariant");
5905   if (s < 1 && index != -1) {
5906     // thread is definitely parked
5907     status = pthread_cond_signal(&_cond[index]);
5908     assert_status(status == 0, status, "invariant");
5909   }
5910 }
5911 
5912 
5913 extern char** environ;
5914 
5915 // Run the specified command in a separate process. Return its exit value,
5916 // or -1 on failure (e.g. can't fork a new process).
5917 // Unlike system(), this function can be called from signal handler. It
5918 // doesn't block SIGINT et al.
5919 int os::fork_and_exec(char* cmd) {
5920   const char * argv[4] = {"sh", "-c", cmd, NULL};
5921 
5922   pid_t pid = fork();
5923 
5924   if (pid < 0) {
5925     // fork failed
5926     return -1;
5927 
5928   } else if (pid == 0) {
5929     // child process
5930 
5931     execve("/bin/sh", (char* const*)argv, environ);
5932 
5933     // execve failed
5934     _exit(-1);
5935 
5936   } else  {
5937     // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
5938     // care about the actual exit code, for now.
5939 
5940     int status;
5941 
5942     // Wait for the child process to exit.  This returns immediately if
5943     // the child has already exited. */
5944     while (waitpid(pid, &status, 0) < 0) {
5945       switch (errno) {
5946       case ECHILD: return 0;
5947       case EINTR: break;
5948       default: return -1;
5949       }
5950     }
5951 
5952     if (WIFEXITED(status)) {
5953       // The child exited normally; get its exit code.
5954       return WEXITSTATUS(status);
5955     } else if (WIFSIGNALED(status)) {
5956       // The child exited because of a signal
5957       // The best value to return is 0x80 + signal number,
5958       // because that is what all Unix shells do, and because
5959       // it allows callers to distinguish between process exit and
5960       // process death by signal.
5961       return 0x80 + WTERMSIG(status);
5962     } else {
5963       // Unknown exit code; pass it through
5964       return status;
5965     }
5966   }
5967 }
5968 
5969 // is_headless_jre()
5970 //
5971 // Test for the existence of xawt/libmawt.so or libawt_xawt.so
5972 // in order to report if we are running in a headless jre
5973 //
5974 // Since JDK8 xawt/libmawt.so was moved into the same directory
5975 // as libawt.so, and renamed libawt_xawt.so
5976 //
5977 bool os::is_headless_jre() {
5978   struct stat statbuf;
5979   char buf[MAXPATHLEN];
5980   char libmawtpath[MAXPATHLEN];
5981   const char *xawtstr  = "/xawt/libmawt.so";
5982   const char *new_xawtstr = "/libawt_xawt.so";
5983   char *p;
5984 
5985   // Get path to libjvm.so
5986   os::jvm_path(buf, sizeof(buf));
5987 
5988   // Get rid of libjvm.so
5989   p = strrchr(buf, '/');
5990   if (p == NULL) {
5991     return false;
5992   } else {
5993     *p = '\0';
5994   }
5995 
5996   // Get rid of client or server
5997   p = strrchr(buf, '/');
5998   if (p == NULL) {
5999     return false;
6000   } else {
6001     *p = '\0';
6002   }
6003 
6004   // check xawt/libmawt.so
6005   strcpy(libmawtpath, buf);
6006   strcat(libmawtpath, xawtstr);
6007   if (::stat(libmawtpath, &statbuf) == 0) return false;
6008 
6009   // check libawt_xawt.so
6010   strcpy(libmawtpath, buf);
6011   strcat(libmawtpath, new_xawtstr);
6012   if (::stat(libmawtpath, &statbuf) == 0) return false;
6013 
6014   return true;
6015 }
6016 
6017 // Get the default path to the core file
6018 // Returns the length of the string
6019 int os::get_core_path(char* buffer, size_t bufferSize) {
6020   /*
6021    * Max length of /proc/sys/kernel/core_pattern is 128 characters.
6022    * See https://www.kernel.org/doc/Documentation/sysctl/kernel.txt
6023    */
6024   const int core_pattern_len = 129;
6025   char core_pattern[core_pattern_len] = {0};
6026 
6027   int core_pattern_file = ::open("/proc/sys/kernel/core_pattern", O_RDONLY);
6028   if (core_pattern_file == -1) {
6029     return -1;
6030   }
6031 
6032   ssize_t ret = ::read(core_pattern_file, core_pattern, core_pattern_len);
6033   ::close(core_pattern_file);
6034   if (ret <= 0 || ret >= core_pattern_len || core_pattern[0] == '\n') {
6035     return -1;
6036   }
6037   if (core_pattern[ret-1] == '\n') {
6038     core_pattern[ret-1] = '\0';
6039   } else {
6040     core_pattern[ret] = '\0';
6041   }
6042 
6043   char *pid_pos = strstr(core_pattern, "%p");
6044   int written;
6045 
6046   if (core_pattern[0] == '/') {
6047     written = jio_snprintf(buffer, bufferSize, "%s", core_pattern);
6048   } else {
6049     char cwd[PATH_MAX];
6050 
6051     const char* p = get_current_directory(cwd, PATH_MAX);
6052     if (p == NULL) {
6053       return -1;
6054     }
6055 
6056     if (core_pattern[0] == '|') {
6057       written = jio_snprintf(buffer, bufferSize,
6058                              "\"%s\" (or dumping to %s/core.%d)",
6059                              &core_pattern[1], p, current_process_id());
6060     } else {
6061       written = jio_snprintf(buffer, bufferSize, "%s/%s", p, core_pattern);
6062     }
6063   }
6064 
6065   if (written < 0) {
6066     return -1;
6067   }
6068 
6069   if (((size_t)written < bufferSize) && (pid_pos == NULL) && (core_pattern[0] != '|')) {
6070     int core_uses_pid_file = ::open("/proc/sys/kernel/core_uses_pid", O_RDONLY);
6071 
6072     if (core_uses_pid_file != -1) {
6073       char core_uses_pid = 0;
6074       ssize_t ret = ::read(core_uses_pid_file, &core_uses_pid, 1);
6075       ::close(core_uses_pid_file);
6076 
6077       if (core_uses_pid == '1') {
6078         jio_snprintf(buffer + written, bufferSize - written,
6079                                           ".%d", current_process_id());
6080       }
6081     }
6082   }
6083 
6084   return strlen(buffer);
6085 }
6086 
6087 bool os::start_debugging(char *buf, int buflen) {
6088   int len = (int)strlen(buf);
6089   char *p = &buf[len];
6090 
6091   jio_snprintf(p, buflen-len,
6092                "\n\n"
6093                "Do you want to debug the problem?\n\n"
6094                "To debug, run 'gdb /proc/%d/exe %d'; then switch to thread " UINTX_FORMAT " (" INTPTR_FORMAT ")\n"
6095                "Enter 'yes' to launch gdb automatically (PATH must include gdb)\n"
6096                "Otherwise, press RETURN to abort...",
6097                os::current_process_id(), os::current_process_id(),
6098                os::current_thread_id(), os::current_thread_id());
6099 
6100   bool yes = os::message_box("Unexpected Error", buf);
6101 
6102   if (yes) {
6103     // yes, user asked VM to launch debugger
6104     jio_snprintf(buf, sizeof(char)*buflen, "gdb /proc/%d/exe %d",
6105                  os::current_process_id(), os::current_process_id());
6106 
6107     os::fork_and_exec(buf);
6108     yes = false;
6109   }
6110   return yes;
6111 }
6112 
6113 
6114 // Java/Compiler thread:
6115 //
6116 //   Low memory addresses
6117 // P0 +------------------------+
6118 //    |                        |\  Java thread created by VM does not have glibc
6119 //    |    glibc guard page    | - guard page, attached Java thread usually has
6120 //    |                        |/  1 glibc guard page.
6121 // P1 +------------------------+ Thread::stack_base() - Thread::stack_size()
6122 //    |                        |\
6123 //    |  HotSpot Guard Pages   | - red, yellow and reserved pages
6124 //    |                        |/
6125 //    +------------------------+ JavaThread::stack_reserved_zone_base()
6126 //    |                        |\
6127 //    |      Normal Stack      | -
6128 //    |                        |/
6129 // P2 +------------------------+ Thread::stack_base()
6130 //
6131 // Non-Java thread:
6132 //
6133 //   Low memory addresses
6134 // P0 +------------------------+
6135 //    |                        |\
6136 //    |  glibc guard page      | - usually 1 page
6137 //    |                        |/
6138 // P1 +------------------------+ Thread::stack_base() - Thread::stack_size()
6139 //    |                        |\
6140 //    |      Normal Stack      | -
6141 //    |                        |/
6142 // P2 +------------------------+ Thread::stack_base()
6143 //
6144 // ** P1 (aka bottom) and size (P2 = P1 - size) are the address and stack size
6145 //    returned from pthread_attr_getstack().
6146 // ** Due to NPTL implementation error, linux takes the glibc guard page out
6147 //    of the stack size given in pthread_attr. We work around this for
6148 //    threads created by the VM. (We adapt bottom to be P1 and size accordingly.)
6149 //
6150 #ifndef ZERO
6151 static void current_stack_region(address * bottom, size_t * size) {
6152   if (os::Linux::is_initial_thread()) {
6153     // initial thread needs special handling because pthread_getattr_np()
6154     // may return bogus value.
6155     *bottom = os::Linux::initial_thread_stack_bottom();
6156     *size   = os::Linux::initial_thread_stack_size();
6157   } else {
6158     pthread_attr_t attr;
6159 
6160     int rslt = pthread_getattr_np(pthread_self(), &attr);
6161 
6162     // JVM needs to know exact stack location, abort if it fails
6163     if (rslt != 0) {
6164       if (rslt == ENOMEM) {
6165         vm_exit_out_of_memory(0, OOM_MMAP_ERROR, "pthread_getattr_np");
6166       } else {
6167         fatal("pthread_getattr_np failed with error = %d", rslt);
6168       }
6169     }
6170 
6171     if (pthread_attr_getstack(&attr, (void **)bottom, size) != 0) {
6172       fatal("Cannot locate current stack attributes!");
6173     }
6174 
6175     // Work around NPTL stack guard error.
6176     size_t guard_size = 0;
6177     rslt = pthread_attr_getguardsize(&attr, &guard_size);
6178     if (rslt != 0) {
6179       fatal("pthread_attr_getguardsize failed with error = %d", rslt);
6180     }
6181     *bottom += guard_size;
6182     *size   -= guard_size;
6183 
6184     pthread_attr_destroy(&attr);
6185 
6186   }
6187   assert(os::current_stack_pointer() >= *bottom &&
6188          os::current_stack_pointer() < *bottom + *size, "just checking");
6189 }
6190 
6191 address os::current_stack_base() {
6192   address bottom;
6193   size_t size;
6194   current_stack_region(&bottom, &size);
6195   return (bottom + size);
6196 }
6197 
6198 size_t os::current_stack_size() {
6199   // This stack size includes the usable stack and HotSpot guard pages
6200   // (for the threads that have Hotspot guard pages).
6201   address bottom;
6202   size_t size;
6203   current_stack_region(&bottom, &size);
6204   return size;
6205 }
6206 #endif
6207 
6208 static inline struct timespec get_mtime(const char* filename) {
6209   struct stat st;
6210   int ret = os::stat(filename, &st);
6211   assert(ret == 0, "failed to stat() file '%s': %s", filename, strerror(errno));
6212   return st.st_mtim;
6213 }
6214 
6215 int os::compare_file_modified_times(const char* file1, const char* file2) {
6216   struct timespec filetime1 = get_mtime(file1);
6217   struct timespec filetime2 = get_mtime(file2);
6218   int diff = filetime1.tv_sec - filetime2.tv_sec;
6219   if (diff == 0) {
6220     return filetime1.tv_nsec - filetime2.tv_nsec;
6221   }
6222   return diff;
6223 }
6224 
6225 /////////////// Unit tests ///////////////
6226 
6227 #ifndef PRODUCT
6228 
6229 #define test_log(...)              \
6230   do {                             \
6231     if (VerboseInternalVMTests) {  \
6232       tty->print_cr(__VA_ARGS__);  \
6233       tty->flush();                \
6234     }                              \
6235   } while (false)
6236 
6237 class TestReserveMemorySpecial : AllStatic {
6238  public:
6239   static void small_page_write(void* addr, size_t size) {
6240     size_t page_size = os::vm_page_size();
6241 
6242     char* end = (char*)addr + size;
6243     for (char* p = (char*)addr; p < end; p += page_size) {
6244       *p = 1;
6245     }
6246   }
6247 
6248   static void test_reserve_memory_special_huge_tlbfs_only(size_t size) {
6249     if (!UseHugeTLBFS) {
6250       return;
6251     }
6252 
6253     test_log("test_reserve_memory_special_huge_tlbfs_only(" SIZE_FORMAT ")", size);
6254 
6255     char* addr = os::Linux::reserve_memory_special_huge_tlbfs_only(size, NULL, false);
6256 
6257     if (addr != NULL) {
6258       small_page_write(addr, size);
6259 
6260       os::Linux::release_memory_special_huge_tlbfs(addr, size);
6261     }
6262   }
6263 
6264   static void test_reserve_memory_special_huge_tlbfs_only() {
6265     if (!UseHugeTLBFS) {
6266       return;
6267     }
6268 
6269     size_t lp = os::large_page_size();
6270 
6271     for (size_t size = lp; size <= lp * 10; size += lp) {
6272       test_reserve_memory_special_huge_tlbfs_only(size);
6273     }
6274   }
6275 
6276   static void test_reserve_memory_special_huge_tlbfs_mixed() {
6277     size_t lp = os::large_page_size();
6278     size_t ag = os::vm_allocation_granularity();
6279 
6280     // sizes to test
6281     const size_t sizes[] = {
6282       lp, lp + ag, lp + lp / 2, lp * 2,
6283       lp * 2 + ag, lp * 2 - ag, lp * 2 + lp / 2,
6284       lp * 10, lp * 10 + lp / 2
6285     };
6286     const int num_sizes = sizeof(sizes) / sizeof(size_t);
6287 
6288     // For each size/alignment combination, we test three scenarios:
6289     // 1) with req_addr == NULL
6290     // 2) with a non-null req_addr at which we expect to successfully allocate
6291     // 3) with a non-null req_addr which contains a pre-existing mapping, at which we
6292     //    expect the allocation to either fail or to ignore req_addr
6293 
6294     // Pre-allocate two areas; they shall be as large as the largest allocation
6295     //  and aligned to the largest alignment we will be testing.
6296     const size_t mapping_size = sizes[num_sizes - 1] * 2;
6297     char* const mapping1 = (char*) ::mmap(NULL, mapping_size,
6298       PROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
6299       -1, 0);
6300     assert(mapping1 != MAP_FAILED, "should work");
6301 
6302     char* const mapping2 = (char*) ::mmap(NULL, mapping_size,
6303       PROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
6304       -1, 0);
6305     assert(mapping2 != MAP_FAILED, "should work");
6306 
6307     // Unmap the first mapping, but leave the second mapping intact: the first
6308     // mapping will serve as a value for a "good" req_addr (case 2). The second
6309     // mapping, still intact, as "bad" req_addr (case 3).
6310     ::munmap(mapping1, mapping_size);
6311 
6312     // Case 1
6313     test_log("%s, req_addr NULL:", __FUNCTION__);
6314     test_log("size            align           result");
6315 
6316     for (int i = 0; i < num_sizes; i++) {
6317       const size_t size = sizes[i];
6318       for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6319         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, NULL, false);
6320         test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " ->  " PTR_FORMAT " %s",
6321                  size, alignment, p2i(p), (p != NULL ? "" : "(failed)"));
6322         if (p != NULL) {
6323           assert(is_ptr_aligned(p, alignment), "must be");
6324           small_page_write(p, size);
6325           os::Linux::release_memory_special_huge_tlbfs(p, size);
6326         }
6327       }
6328     }
6329 
6330     // Case 2
6331     test_log("%s, req_addr non-NULL:", __FUNCTION__);
6332     test_log("size            align           req_addr         result");
6333 
6334     for (int i = 0; i < num_sizes; i++) {
6335       const size_t size = sizes[i];
6336       for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6337         char* const req_addr = (char*) align_ptr_up(mapping1, alignment);
6338         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, req_addr, false);
6339         test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " " PTR_FORMAT " ->  " PTR_FORMAT " %s",
6340                  size, alignment, p2i(req_addr), p2i(p),
6341                  ((p != NULL ? (p == req_addr ? "(exact match)" : "") : "(failed)")));
6342         if (p != NULL) {
6343           assert(p == req_addr, "must be");
6344           small_page_write(p, size);
6345           os::Linux::release_memory_special_huge_tlbfs(p, size);
6346         }
6347       }
6348     }
6349 
6350     // Case 3
6351     test_log("%s, req_addr non-NULL with preexisting mapping:", __FUNCTION__);
6352     test_log("size            align           req_addr         result");
6353 
6354     for (int i = 0; i < num_sizes; i++) {
6355       const size_t size = sizes[i];
6356       for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6357         char* const req_addr = (char*) align_ptr_up(mapping2, alignment);
6358         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, req_addr, false);
6359         test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " " PTR_FORMAT " ->  " PTR_FORMAT " %s",
6360                  size, alignment, p2i(req_addr), p2i(p), ((p != NULL ? "" : "(failed)")));
6361         // as the area around req_addr contains already existing mappings, the API should always
6362         // return NULL (as per contract, it cannot return another address)
6363         assert(p == NULL, "must be");
6364       }
6365     }
6366 
6367     ::munmap(mapping2, mapping_size);
6368 
6369   }
6370 
6371   static void test_reserve_memory_special_huge_tlbfs() {
6372     if (!UseHugeTLBFS) {
6373       return;
6374     }
6375 
6376     test_reserve_memory_special_huge_tlbfs_only();
6377     test_reserve_memory_special_huge_tlbfs_mixed();
6378   }
6379 
6380   static void test_reserve_memory_special_shm(size_t size, size_t alignment) {
6381     if (!UseSHM) {
6382       return;
6383     }
6384 
6385     test_log("test_reserve_memory_special_shm(" SIZE_FORMAT ", " SIZE_FORMAT ")", size, alignment);
6386 
6387     char* addr = os::Linux::reserve_memory_special_shm(size, alignment, NULL, false);
6388 
6389     if (addr != NULL) {
6390       assert(is_ptr_aligned(addr, alignment), "Check");
6391       assert(is_ptr_aligned(addr, os::large_page_size()), "Check");
6392 
6393       small_page_write(addr, size);
6394 
6395       os::Linux::release_memory_special_shm(addr, size);
6396     }
6397   }
6398 
6399   static void test_reserve_memory_special_shm() {
6400     size_t lp = os::large_page_size();
6401     size_t ag = os::vm_allocation_granularity();
6402 
6403     for (size_t size = ag; size < lp * 3; size += ag) {
6404       for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6405         test_reserve_memory_special_shm(size, alignment);
6406       }
6407     }
6408   }
6409 
6410   static void test() {
6411     test_reserve_memory_special_huge_tlbfs();
6412     test_reserve_memory_special_shm();
6413   }
6414 };
6415 
6416 void TestReserveMemorySpecial_test() {
6417   TestReserveMemorySpecial::test();
6418 }
6419 
6420 #endif