1 /*
   2  * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // Must be at least Windows 2000 or XP to use IsDebuggerPresent
  26 #define _WIN32_WINNT 0x500
  27 
  28 // no precompiled headers
  29 #include "classfile/classLoader.hpp"
  30 #include "classfile/systemDictionary.hpp"
  31 #include "classfile/vmSymbols.hpp"
  32 #include "code/icBuffer.hpp"
  33 #include "code/vtableStubs.hpp"
  34 #include "compiler/compileBroker.hpp"
  35 #include "compiler/disassembler.hpp"
  36 #include "interpreter/interpreter.hpp"
  37 #include "jvm_windows.h"
  38 #include "memory/allocation.inline.hpp"
  39 #include "memory/filemap.hpp"
  40 #include "mutex_windows.inline.hpp"
  41 #include "oops/oop.inline.hpp"
  42 #include "os_share_windows.hpp"
  43 #include "prims/jniFastGetField.hpp"
  44 #include "prims/jvm.h"
  45 #include "prims/jvm_misc.hpp"
  46 #include "runtime/arguments.hpp"
  47 #include "runtime/extendedPC.hpp"
  48 #include "runtime/globals.hpp"
  49 #include "runtime/interfaceSupport.hpp"
  50 #include "runtime/java.hpp"
  51 #include "runtime/javaCalls.hpp"
  52 #include "runtime/mutexLocker.hpp"
  53 #include "runtime/objectMonitor.hpp"
  54 #include "runtime/osThread.hpp"
  55 #include "runtime/perfMemory.hpp"
  56 #include "runtime/sharedRuntime.hpp"
  57 #include "runtime/statSampler.hpp"
  58 #include "runtime/stubRoutines.hpp"
  59 #include "runtime/thread.inline.hpp"
  60 #include "runtime/threadCritical.hpp"
  61 #include "runtime/timer.hpp"
  62 #include "services/attachListener.hpp"
  63 #include "services/memTracker.hpp"
  64 #include "services/runtimeService.hpp"
  65 #include "utilities/decoder.hpp"
  66 #include "utilities/defaultStream.hpp"
  67 #include "utilities/events.hpp"
  68 #include "utilities/growableArray.hpp"
  69 #include "utilities/vmError.hpp"
  70 
  71 #ifdef _DEBUG
  72 #include <crtdbg.h>
  73 #endif
  74 
  75 
  76 #include <windows.h>
  77 #include <sys/types.h>
  78 #include <sys/stat.h>
  79 #include <sys/timeb.h>
  80 #include <objidl.h>
  81 #include <shlobj.h>
  82 
  83 #include <malloc.h>
  84 #include <signal.h>
  85 #include <direct.h>
  86 #include <errno.h>
  87 #include <fcntl.h>
  88 #include <io.h>
  89 #include <process.h>              // For _beginthreadex(), _endthreadex()
  90 #include <imagehlp.h>             // For os::dll_address_to_function_name
  91 /* for enumerating dll libraries */
  92 #include <vdmdbg.h>
  93 
  94 // for timer info max values which include all bits
  95 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
  96 
  97 // For DLL loading/load error detection
  98 // Values of PE COFF
  99 #define IMAGE_FILE_PTR_TO_SIGNATURE 0x3c
 100 #define IMAGE_FILE_SIGNATURE_LENGTH 4
 101 
 102 static HANDLE main_process;
 103 static HANDLE main_thread;
 104 static int    main_thread_id;
 105 
 106 static FILETIME process_creation_time;
 107 static FILETIME process_exit_time;
 108 static FILETIME process_user_time;
 109 static FILETIME process_kernel_time;
 110 
 111 #ifdef _M_IA64
 112 #define __CPU__ ia64
 113 #elif _M_AMD64
 114 #define __CPU__ amd64
 115 #else
 116 #define __CPU__ i486
 117 #endif
 118 
 119 // save DLL module handle, used by GetModuleFileName
 120 
 121 HINSTANCE vm_lib_handle;
 122 
 123 BOOL WINAPI DllMain(HINSTANCE hinst, DWORD reason, LPVOID reserved) {
 124   switch (reason) {
 125     case DLL_PROCESS_ATTACH:
 126       vm_lib_handle = hinst;
 127       if(ForceTimeHighResolution)
 128         timeBeginPeriod(1L);
 129       break;
 130     case DLL_PROCESS_DETACH:
 131       if(ForceTimeHighResolution)
 132         timeEndPeriod(1L);
 133       break;
 134     default:
 135       break;
 136   }
 137   return true;
 138 }
 139 
 140 static inline double fileTimeAsDouble(FILETIME* time) {
 141   const double high  = (double) ((unsigned int) ~0);
 142   const double split = 10000000.0;
 143   double result = (time->dwLowDateTime / split) +
 144                    time->dwHighDateTime * (high/split);
 145   return result;
 146 }
 147 
 148 // Implementation of os
 149 
 150 bool os::getenv(const char* name, char* buffer, int len) {
 151  int result = GetEnvironmentVariable(name, buffer, len);
 152  return result > 0 && result < len;
 153 }
 154 
 155 
 156 // No setuid programs under Windows.
 157 bool os::have_special_privileges() {
 158   return false;
 159 }
 160 
 161 
 162 // This method is  a periodic task to check for misbehaving JNI applications
 163 // under CheckJNI, we can add any periodic checks here.
 164 // For Windows at the moment does nothing
 165 void os::run_periodic_checks() {
 166   return;
 167 }
 168 
 169 // previous UnhandledExceptionFilter, if there is one
 170 static LPTOP_LEVEL_EXCEPTION_FILTER prev_uef_handler = NULL;
 171 
 172 LONG WINAPI Handle_FLT_Exception(struct _EXCEPTION_POINTERS* exceptionInfo);
 173 void os::init_system_properties_values() {
 174   /* sysclasspath, java_home, dll_dir */
 175   {
 176       char *home_path;
 177       char *dll_path;
 178       char *pslash;
 179       char *bin = "\\bin";
 180       char home_dir[MAX_PATH];
 181 
 182       if (!getenv("_ALT_JAVA_HOME_DIR", home_dir, MAX_PATH)) {
 183           os::jvm_path(home_dir, sizeof(home_dir));
 184           // Found the full path to jvm.dll.
 185           // Now cut the path to <java_home>/jre if we can.
 186           *(strrchr(home_dir, '\\')) = '\0';  /* get rid of \jvm.dll */
 187           pslash = strrchr(home_dir, '\\');
 188           if (pslash != NULL) {
 189               *pslash = '\0';                 /* get rid of \{client|server} */
 190               pslash = strrchr(home_dir, '\\');
 191               if (pslash != NULL)
 192                   *pslash = '\0';             /* get rid of \bin */
 193           }
 194       }
 195 
 196       home_path = NEW_C_HEAP_ARRAY(char, strlen(home_dir) + 1, mtInternal);
 197       if (home_path == NULL)
 198           return;
 199       strcpy(home_path, home_dir);
 200       Arguments::set_java_home(home_path);
 201 
 202       dll_path = NEW_C_HEAP_ARRAY(char, strlen(home_dir) + strlen(bin) + 1, mtInternal);
 203       if (dll_path == NULL)
 204           return;
 205       strcpy(dll_path, home_dir);
 206       strcat(dll_path, bin);
 207       Arguments::set_dll_dir(dll_path);
 208 
 209       if (!set_boot_path('\\', ';'))
 210           return;
 211   }
 212 
 213   /* library_path */
 214   #define EXT_DIR "\\lib\\ext"
 215   #define BIN_DIR "\\bin"
 216   #define PACKAGE_DIR "\\Sun\\Java"
 217   {
 218     /* Win32 library search order (See the documentation for LoadLibrary):
 219      *
 220      * 1. The directory from which application is loaded.
 221      * 2. The system wide Java Extensions directory (Java only)
 222      * 3. System directory (GetSystemDirectory)
 223      * 4. Windows directory (GetWindowsDirectory)
 224      * 5. The PATH environment variable
 225      * 6. The current directory
 226      */
 227 
 228     char *library_path;
 229     char tmp[MAX_PATH];
 230     char *path_str = ::getenv("PATH");
 231 
 232     library_path = NEW_C_HEAP_ARRAY(char, MAX_PATH * 5 + sizeof(PACKAGE_DIR) +
 233         sizeof(BIN_DIR) + (path_str ? strlen(path_str) : 0) + 10, mtInternal);
 234 
 235     library_path[0] = '\0';
 236 
 237     GetModuleFileName(NULL, tmp, sizeof(tmp));
 238     *(strrchr(tmp, '\\')) = '\0';
 239     strcat(library_path, tmp);
 240 
 241     GetWindowsDirectory(tmp, sizeof(tmp));
 242     strcat(library_path, ";");
 243     strcat(library_path, tmp);
 244     strcat(library_path, PACKAGE_DIR BIN_DIR);
 245 
 246     GetSystemDirectory(tmp, sizeof(tmp));
 247     strcat(library_path, ";");
 248     strcat(library_path, tmp);
 249 
 250     GetWindowsDirectory(tmp, sizeof(tmp));
 251     strcat(library_path, ";");
 252     strcat(library_path, tmp);
 253 
 254     if (path_str) {
 255         strcat(library_path, ";");
 256         strcat(library_path, path_str);
 257     }
 258 
 259     strcat(library_path, ";.");
 260 
 261     Arguments::set_library_path(library_path);
 262     FREE_C_HEAP_ARRAY(char, library_path, mtInternal);
 263   }
 264 
 265   /* Default extensions directory */
 266   {
 267     char path[MAX_PATH];
 268     char buf[2 * MAX_PATH + 2 * sizeof(EXT_DIR) + sizeof(PACKAGE_DIR) + 1];
 269     GetWindowsDirectory(path, MAX_PATH);
 270     sprintf(buf, "%s%s;%s%s%s", Arguments::get_java_home(), EXT_DIR,
 271         path, PACKAGE_DIR, EXT_DIR);
 272     Arguments::set_ext_dirs(buf);
 273   }
 274   #undef EXT_DIR
 275   #undef BIN_DIR
 276   #undef PACKAGE_DIR
 277 
 278   /* Default endorsed standards directory. */
 279   {
 280     #define ENDORSED_DIR "\\lib\\endorsed"
 281     size_t len = strlen(Arguments::get_java_home()) + sizeof(ENDORSED_DIR);
 282     char * buf = NEW_C_HEAP_ARRAY(char, len, mtInternal);
 283     sprintf(buf, "%s%s", Arguments::get_java_home(), ENDORSED_DIR);
 284     Arguments::set_endorsed_dirs(buf);
 285     #undef ENDORSED_DIR
 286   }
 287 
 288 #ifndef _WIN64
 289   // set our UnhandledExceptionFilter and save any previous one
 290   prev_uef_handler = SetUnhandledExceptionFilter(Handle_FLT_Exception);
 291 #endif
 292 
 293   // Done
 294   return;
 295 }
 296 
 297 void os::breakpoint() {
 298   DebugBreak();
 299 }
 300 
 301 // Invoked from the BREAKPOINT Macro
 302 extern "C" void breakpoint() {
 303   os::breakpoint();
 304 }
 305 
 306 /*
 307  * RtlCaptureStackBackTrace Windows API may not exist prior to Windows XP.
 308  * So far, this method is only used by Native Memory Tracking, which is
 309  * only supported on Windows XP or later.
 310  */
 311 address os::get_caller_pc(int n) {
 312 #ifdef _NMT_NOINLINE_
 313   n ++;
 314 #endif
 315   address pc;
 316   if (os::Kernel32Dll::RtlCaptureStackBackTrace(n + 1, 1, (PVOID*)&pc, NULL) == 1) {
 317     return pc;
 318   }
 319   return NULL;
 320 }
 321 
 322 
 323 // os::current_stack_base()
 324 //
 325 //   Returns the base of the stack, which is the stack's
 326 //   starting address.  This function must be called
 327 //   while running on the stack of the thread being queried.
 328 
 329 address os::current_stack_base() {
 330   MEMORY_BASIC_INFORMATION minfo;
 331   address stack_bottom;
 332   size_t stack_size;
 333 
 334   VirtualQuery(&minfo, &minfo, sizeof(minfo));
 335   stack_bottom =  (address)minfo.AllocationBase;
 336   stack_size = minfo.RegionSize;
 337 
 338   // Add up the sizes of all the regions with the same
 339   // AllocationBase.
 340   while( 1 )
 341   {
 342     VirtualQuery(stack_bottom+stack_size, &minfo, sizeof(minfo));
 343     if ( stack_bottom == (address)minfo.AllocationBase )
 344       stack_size += minfo.RegionSize;
 345     else
 346       break;
 347   }
 348 
 349 #ifdef _M_IA64
 350   // IA64 has memory and register stacks
 351   //
 352   // This is the stack layout you get on NT/IA64 if you specify 1MB stack limit
 353   // at thread creation (1MB backing store growing upwards, 1MB memory stack
 354   // growing downwards, 2MB summed up)
 355   //
 356   // ...
 357   // ------- top of stack (high address) -----
 358   // |
 359   // |      1MB
 360   // |      Backing Store (Register Stack)
 361   // |
 362   // |         / \
 363   // |          |
 364   // |          |
 365   // |          |
 366   // ------------------------ stack base -----
 367   // |      1MB
 368   // |      Memory Stack
 369   // |
 370   // |          |
 371   // |          |
 372   // |          |
 373   // |         \ /
 374   // |
 375   // ----- bottom of stack (low address) -----
 376   // ...
 377 
 378   stack_size = stack_size / 2;
 379 #endif
 380   return stack_bottom + stack_size;
 381 }
 382 
 383 size_t os::current_stack_size() {
 384   size_t sz;
 385   MEMORY_BASIC_INFORMATION minfo;
 386   VirtualQuery(&minfo, &minfo, sizeof(minfo));
 387   sz = (size_t)os::current_stack_base() - (size_t)minfo.AllocationBase;
 388   return sz;
 389 }
 390 
 391 struct tm* os::localtime_pd(const time_t* clock, struct tm* res) {
 392   const struct tm* time_struct_ptr = localtime(clock);
 393   if (time_struct_ptr != NULL) {
 394     *res = *time_struct_ptr;
 395     return res;
 396   }
 397   return NULL;
 398 }
 399 
 400 LONG WINAPI topLevelExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo);
 401 
 402 // Thread start routine for all new Java threads
 403 static unsigned __stdcall java_start(Thread* thread) {
 404   // Try to randomize the cache line index of hot stack frames.
 405   // This helps when threads of the same stack traces evict each other's
 406   // cache lines. The threads can be either from the same JVM instance, or
 407   // from different JVM instances. The benefit is especially true for
 408   // processors with hyperthreading technology.
 409   static int counter = 0;
 410   int pid = os::current_process_id();
 411   _alloca(((pid ^ counter++) & 7) * 128);
 412 
 413   OSThread* osthr = thread->osthread();
 414   assert(osthr->get_state() == RUNNABLE, "invalid os thread state");
 415 
 416   if (UseNUMA) {
 417     int lgrp_id = os::numa_get_group_id();
 418     if (lgrp_id != -1) {
 419       thread->set_lgrp_id(lgrp_id);
 420     }
 421   }
 422 
 423 
 424   // Install a win32 structured exception handler around every thread created
 425   // by VM, so VM can genrate error dump when an exception occurred in non-
 426   // Java thread (e.g. VM thread).
 427   __try {
 428      thread->run();
 429   } __except(topLevelExceptionFilter(
 430              (_EXCEPTION_POINTERS*)_exception_info())) {
 431       // Nothing to do.
 432   }
 433 
 434   // One less thread is executing
 435   // When the VMThread gets here, the main thread may have already exited
 436   // which frees the CodeHeap containing the Atomic::add code
 437   if (thread != VMThread::vm_thread() && VMThread::vm_thread() != NULL) {
 438     Atomic::dec_ptr((intptr_t*)&os::win32::_os_thread_count);
 439   }
 440 
 441   return 0;
 442 }
 443 
 444 static OSThread* create_os_thread(Thread* thread, HANDLE thread_handle, int thread_id) {
 445   // Allocate the OSThread object
 446   OSThread* osthread = new OSThread(NULL, NULL);
 447   if (osthread == NULL) return NULL;
 448 
 449   // Initialize support for Java interrupts
 450   HANDLE interrupt_event = CreateEvent(NULL, true, false, NULL);
 451   if (interrupt_event == NULL) {
 452     delete osthread;
 453     return NULL;
 454   }
 455   osthread->set_interrupt_event(interrupt_event);
 456 
 457   // Store info on the Win32 thread into the OSThread
 458   osthread->set_thread_handle(thread_handle);
 459   osthread->set_thread_id(thread_id);
 460 
 461   if (UseNUMA) {
 462     int lgrp_id = os::numa_get_group_id();
 463     if (lgrp_id != -1) {
 464       thread->set_lgrp_id(lgrp_id);
 465     }
 466   }
 467 
 468   // Initial thread state is INITIALIZED, not SUSPENDED
 469   osthread->set_state(INITIALIZED);
 470 
 471   return osthread;
 472 }
 473 
 474 
 475 bool os::create_attached_thread(JavaThread* thread) {
 476 #ifdef ASSERT
 477   thread->verify_not_published();
 478 #endif
 479   HANDLE thread_h;
 480   if (!DuplicateHandle(main_process, GetCurrentThread(), GetCurrentProcess(),
 481                        &thread_h, THREAD_ALL_ACCESS, false, 0)) {
 482     fatal("DuplicateHandle failed\n");
 483   }
 484   OSThread* osthread = create_os_thread(thread, thread_h,
 485                                         (int)current_thread_id());
 486   if (osthread == NULL) {
 487      return false;
 488   }
 489 
 490   // Initial thread state is RUNNABLE
 491   osthread->set_state(RUNNABLE);
 492 
 493   thread->set_osthread(osthread);
 494   return true;
 495 }
 496 
 497 bool os::create_main_thread(JavaThread* thread) {
 498 #ifdef ASSERT
 499   thread->verify_not_published();
 500 #endif
 501   if (_starting_thread == NULL) {
 502     _starting_thread = create_os_thread(thread, main_thread, main_thread_id);
 503      if (_starting_thread == NULL) {
 504         return false;
 505      }
 506   }
 507 
 508   // The primordial thread is runnable from the start)
 509   _starting_thread->set_state(RUNNABLE);
 510 
 511   thread->set_osthread(_starting_thread);
 512   return true;
 513 }
 514 
 515 // Allocate and initialize a new OSThread
 516 bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
 517   unsigned thread_id;
 518 
 519   // Allocate the OSThread object
 520   OSThread* osthread = new OSThread(NULL, NULL);
 521   if (osthread == NULL) {
 522     return false;
 523   }
 524 
 525   // Initialize support for Java interrupts
 526   HANDLE interrupt_event = CreateEvent(NULL, true, false, NULL);
 527   if (interrupt_event == NULL) {
 528     delete osthread;
 529     return NULL;
 530   }
 531   osthread->set_interrupt_event(interrupt_event);
 532   osthread->set_interrupted(false);
 533 
 534   thread->set_osthread(osthread);
 535 
 536   if (stack_size == 0) {
 537     switch (thr_type) {
 538     case os::java_thread:
 539       // Java threads use ThreadStackSize which default value can be changed with the flag -Xss
 540       if (JavaThread::stack_size_at_create() > 0)
 541         stack_size = JavaThread::stack_size_at_create();
 542       break;
 543     case os::compiler_thread:
 544       if (CompilerThreadStackSize > 0) {
 545         stack_size = (size_t)(CompilerThreadStackSize * K);
 546         break;
 547       } // else fall through:
 548         // use VMThreadStackSize if CompilerThreadStackSize is not defined
 549     case os::vm_thread:
 550     case os::pgc_thread:
 551     case os::cgc_thread:
 552     case os::watcher_thread:
 553       if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
 554       break;
 555     }
 556   }
 557 
 558   // Create the Win32 thread
 559   //
 560   // Contrary to what MSDN document says, "stack_size" in _beginthreadex()
 561   // does not specify stack size. Instead, it specifies the size of
 562   // initially committed space. The stack size is determined by
 563   // PE header in the executable. If the committed "stack_size" is larger
 564   // than default value in the PE header, the stack is rounded up to the
 565   // nearest multiple of 1MB. For example if the launcher has default
 566   // stack size of 320k, specifying any size less than 320k does not
 567   // affect the actual stack size at all, it only affects the initial
 568   // commitment. On the other hand, specifying 'stack_size' larger than
 569   // default value may cause significant increase in memory usage, because
 570   // not only the stack space will be rounded up to MB, but also the
 571   // entire space is committed upfront.
 572   //
 573   // Finally Windows XP added a new flag 'STACK_SIZE_PARAM_IS_A_RESERVATION'
 574   // for CreateThread() that can treat 'stack_size' as stack size. However we
 575   // are not supposed to call CreateThread() directly according to MSDN
 576   // document because JVM uses C runtime library. The good news is that the
 577   // flag appears to work with _beginthredex() as well.
 578 
 579 #ifndef STACK_SIZE_PARAM_IS_A_RESERVATION
 580 #define STACK_SIZE_PARAM_IS_A_RESERVATION  (0x10000)
 581 #endif
 582 
 583   HANDLE thread_handle =
 584     (HANDLE)_beginthreadex(NULL,
 585                            (unsigned)stack_size,
 586                            (unsigned (__stdcall *)(void*)) java_start,
 587                            thread,
 588                            CREATE_SUSPENDED | STACK_SIZE_PARAM_IS_A_RESERVATION,
 589                            &thread_id);
 590   if (thread_handle == NULL) {
 591     // perhaps STACK_SIZE_PARAM_IS_A_RESERVATION is not supported, try again
 592     // without the flag.
 593     thread_handle =
 594     (HANDLE)_beginthreadex(NULL,
 595                            (unsigned)stack_size,
 596                            (unsigned (__stdcall *)(void*)) java_start,
 597                            thread,
 598                            CREATE_SUSPENDED,
 599                            &thread_id);
 600   }
 601   if (thread_handle == NULL) {
 602     // Need to clean up stuff we've allocated so far
 603     CloseHandle(osthread->interrupt_event());
 604     thread->set_osthread(NULL);
 605     delete osthread;
 606     return NULL;
 607   }
 608 
 609   Atomic::inc_ptr((intptr_t*)&os::win32::_os_thread_count);
 610 
 611   // Store info on the Win32 thread into the OSThread
 612   osthread->set_thread_handle(thread_handle);
 613   osthread->set_thread_id(thread_id);
 614 
 615   // Initial thread state is INITIALIZED, not SUSPENDED
 616   osthread->set_state(INITIALIZED);
 617 
 618   // The thread is returned suspended (in state INITIALIZED), and is started higher up in the call chain
 619   return true;
 620 }
 621 
 622 
 623 // Free Win32 resources related to the OSThread
 624 void os::free_thread(OSThread* osthread) {
 625   assert(osthread != NULL, "osthread not set");
 626   CloseHandle(osthread->thread_handle());
 627   CloseHandle(osthread->interrupt_event());
 628   delete osthread;
 629 }
 630 
 631 
 632 static int    has_performance_count = 0;
 633 static jlong first_filetime;
 634 static jlong initial_performance_count;
 635 static jlong performance_frequency;
 636 
 637 
 638 jlong as_long(LARGE_INTEGER x) {
 639   jlong result = 0; // initialization to avoid warning
 640   set_high(&result, x.HighPart);
 641   set_low(&result,  x.LowPart);
 642   return result;
 643 }
 644 
 645 
 646 jlong os::elapsed_counter() {
 647   LARGE_INTEGER count;
 648   if (has_performance_count) {
 649     QueryPerformanceCounter(&count);
 650     return as_long(count) - initial_performance_count;
 651   } else {
 652     FILETIME wt;
 653     GetSystemTimeAsFileTime(&wt);
 654     return (jlong_from(wt.dwHighDateTime, wt.dwLowDateTime) - first_filetime);
 655   }
 656 }
 657 
 658 
 659 jlong os::elapsed_frequency() {
 660   if (has_performance_count) {
 661     return performance_frequency;
 662   } else {
 663    // the FILETIME time is the number of 100-nanosecond intervals since January 1,1601.
 664    return 10000000;
 665   }
 666 }
 667 
 668 
 669 julong os::available_memory() {
 670   return win32::available_memory();
 671 }
 672 
 673 julong os::win32::available_memory() {
 674   // Use GlobalMemoryStatusEx() because GlobalMemoryStatus() may return incorrect
 675   // value if total memory is larger than 4GB
 676   MEMORYSTATUSEX ms;
 677   ms.dwLength = sizeof(ms);
 678   GlobalMemoryStatusEx(&ms);
 679 
 680   return (julong)ms.ullAvailPhys;
 681 }
 682 
 683 julong os::physical_memory() {
 684   return win32::physical_memory();
 685 }
 686 
 687 bool os::has_allocatable_memory_limit(julong* limit) {
 688   MEMORYSTATUSEX ms;
 689   ms.dwLength = sizeof(ms);
 690   GlobalMemoryStatusEx(&ms);
 691 #ifdef _LP64
 692   *limit = (julong)ms.ullAvailVirtual;
 693   return true;
 694 #else
 695   // Limit to 1400m because of the 2gb address space wall
 696   *limit = MIN2((julong)1400*M, (julong)ms.ullAvailVirtual);
 697   return true;
 698 #endif
 699 }
 700 
 701 // VC6 lacks DWORD_PTR
 702 #if _MSC_VER < 1300
 703 typedef UINT_PTR DWORD_PTR;
 704 #endif
 705 
 706 int os::active_processor_count() {
 707   DWORD_PTR lpProcessAffinityMask = 0;
 708   DWORD_PTR lpSystemAffinityMask = 0;
 709   int proc_count = processor_count();
 710   if (proc_count <= sizeof(UINT_PTR) * BitsPerByte &&
 711       GetProcessAffinityMask(GetCurrentProcess(), &lpProcessAffinityMask, &lpSystemAffinityMask)) {
 712     // Nof active processors is number of bits in process affinity mask
 713     int bitcount = 0;
 714     while (lpProcessAffinityMask != 0) {
 715       lpProcessAffinityMask = lpProcessAffinityMask & (lpProcessAffinityMask-1);
 716       bitcount++;
 717     }
 718     return bitcount;
 719   } else {
 720     return proc_count;
 721   }
 722 }
 723 
 724 void os::set_native_thread_name(const char *name) {
 725   // Not yet implemented.
 726   return;
 727 }
 728 
 729 bool os::distribute_processes(uint length, uint* distribution) {
 730   // Not yet implemented.
 731   return false;
 732 }
 733 
 734 bool os::bind_to_processor(uint processor_id) {
 735   // Not yet implemented.
 736   return false;
 737 }
 738 
 739 static void initialize_performance_counter() {
 740   LARGE_INTEGER count;
 741   if (QueryPerformanceFrequency(&count)) {
 742     has_performance_count = 1;
 743     performance_frequency = as_long(count);
 744     QueryPerformanceCounter(&count);
 745     initial_performance_count = as_long(count);
 746   } else {
 747     has_performance_count = 0;
 748     FILETIME wt;
 749     GetSystemTimeAsFileTime(&wt);
 750     first_filetime = jlong_from(wt.dwHighDateTime, wt.dwLowDateTime);
 751   }
 752 }
 753 
 754 
 755 double os::elapsedTime() {
 756   return (double) elapsed_counter() / (double) elapsed_frequency();
 757 }
 758 
 759 
 760 // Windows format:
 761 //   The FILETIME structure is a 64-bit value representing the number of 100-nanosecond intervals since January 1, 1601.
 762 // Java format:
 763 //   Java standards require the number of milliseconds since 1/1/1970
 764 
 765 // Constant offset - calculated using offset()
 766 static jlong  _offset   = 116444736000000000;
 767 // Fake time counter for reproducible results when debugging
 768 static jlong  fake_time = 0;
 769 
 770 #ifdef ASSERT
 771 // Just to be safe, recalculate the offset in debug mode
 772 static jlong _calculated_offset = 0;
 773 static int   _has_calculated_offset = 0;
 774 
 775 jlong offset() {
 776   if (_has_calculated_offset) return _calculated_offset;
 777   SYSTEMTIME java_origin;
 778   java_origin.wYear          = 1970;
 779   java_origin.wMonth         = 1;
 780   java_origin.wDayOfWeek     = 0; // ignored
 781   java_origin.wDay           = 1;
 782   java_origin.wHour          = 0;
 783   java_origin.wMinute        = 0;
 784   java_origin.wSecond        = 0;
 785   java_origin.wMilliseconds  = 0;
 786   FILETIME jot;
 787   if (!SystemTimeToFileTime(&java_origin, &jot)) {
 788     fatal(err_msg("Error = %d\nWindows error", GetLastError()));
 789   }
 790   _calculated_offset = jlong_from(jot.dwHighDateTime, jot.dwLowDateTime);
 791   _has_calculated_offset = 1;
 792   assert(_calculated_offset == _offset, "Calculated and constant time offsets must be equal");
 793   return _calculated_offset;
 794 }
 795 #else
 796 jlong offset() {
 797   return _offset;
 798 }
 799 #endif
 800 
 801 jlong windows_to_java_time(FILETIME wt) {
 802   jlong a = jlong_from(wt.dwHighDateTime, wt.dwLowDateTime);
 803   return (a - offset()) / 10000;
 804 }
 805 
 806 FILETIME java_to_windows_time(jlong l) {
 807   jlong a = (l * 10000) + offset();
 808   FILETIME result;
 809   result.dwHighDateTime = high(a);
 810   result.dwLowDateTime  = low(a);
 811   return result;
 812 }
 813 
 814 bool os::supports_vtime() { return true; }
 815 bool os::enable_vtime() { return false; }
 816 bool os::vtime_enabled() { return false; }
 817 
 818 double os::elapsedVTime() {
 819   FILETIME created;
 820   FILETIME exited;
 821   FILETIME kernel;
 822   FILETIME user;
 823   if (GetThreadTimes(GetCurrentThread(), &created, &exited, &kernel, &user) != 0) {
 824     // the resolution of windows_to_java_time() should be sufficient (ms)
 825     return (double) (windows_to_java_time(kernel) + windows_to_java_time(user)) / MILLIUNITS;
 826   } else {
 827     return elapsedTime();
 828   }
 829 }
 830 
 831 jlong os::javaTimeMillis() {
 832   if (UseFakeTimers) {
 833     return fake_time++;
 834   } else {
 835     FILETIME wt;
 836     GetSystemTimeAsFileTime(&wt);
 837     return windows_to_java_time(wt);
 838   }
 839 }
 840 
 841 jlong os::javaTimeNanos() {
 842   if (!has_performance_count) {
 843     return javaTimeMillis() * NANOSECS_PER_MILLISEC; // the best we can do.
 844   } else {
 845     LARGE_INTEGER current_count;
 846     QueryPerformanceCounter(&current_count);
 847     double current = as_long(current_count);
 848     double freq = performance_frequency;
 849     jlong time = (jlong)((current/freq) * NANOSECS_PER_SEC);
 850     return time;
 851   }
 852 }
 853 
 854 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
 855   if (!has_performance_count) {
 856     // javaTimeMillis() doesn't have much percision,
 857     // but it is not going to wrap -- so all 64 bits
 858     info_ptr->max_value = ALL_64_BITS;
 859 
 860     // this is a wall clock timer, so may skip
 861     info_ptr->may_skip_backward = true;
 862     info_ptr->may_skip_forward = true;
 863   } else {
 864     jlong freq = performance_frequency;
 865     if (freq < NANOSECS_PER_SEC) {
 866       // the performance counter is 64 bits and we will
 867       // be multiplying it -- so no wrap in 64 bits
 868       info_ptr->max_value = ALL_64_BITS;
 869     } else if (freq > NANOSECS_PER_SEC) {
 870       // use the max value the counter can reach to
 871       // determine the max value which could be returned
 872       julong max_counter = (julong)ALL_64_BITS;
 873       info_ptr->max_value = (jlong)(max_counter / (freq / NANOSECS_PER_SEC));
 874     } else {
 875       // the performance counter is 64 bits and we will
 876       // be using it directly -- so no wrap in 64 bits
 877       info_ptr->max_value = ALL_64_BITS;
 878     }
 879 
 880     // using a counter, so no skipping
 881     info_ptr->may_skip_backward = false;
 882     info_ptr->may_skip_forward = false;
 883   }
 884   info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
 885 }
 886 
 887 char* os::local_time_string(char *buf, size_t buflen) {
 888   SYSTEMTIME st;
 889   GetLocalTime(&st);
 890   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
 891                st.wYear, st.wMonth, st.wDay, st.wHour, st.wMinute, st.wSecond);
 892   return buf;
 893 }
 894 
 895 bool os::getTimesSecs(double* process_real_time,
 896                      double* process_user_time,
 897                      double* process_system_time) {
 898   HANDLE h_process = GetCurrentProcess();
 899   FILETIME create_time, exit_time, kernel_time, user_time;
 900   BOOL result = GetProcessTimes(h_process,
 901                                &create_time,
 902                                &exit_time,
 903                                &kernel_time,
 904                                &user_time);
 905   if (result != 0) {
 906     FILETIME wt;
 907     GetSystemTimeAsFileTime(&wt);
 908     jlong rtc_millis = windows_to_java_time(wt);
 909     jlong user_millis = windows_to_java_time(user_time);
 910     jlong system_millis = windows_to_java_time(kernel_time);
 911     *process_real_time = ((double) rtc_millis) / ((double) MILLIUNITS);
 912     *process_user_time = ((double) user_millis) / ((double) MILLIUNITS);
 913     *process_system_time = ((double) system_millis) / ((double) MILLIUNITS);
 914     return true;
 915   } else {
 916     return false;
 917   }
 918 }
 919 
 920 void os::shutdown() {
 921 
 922   // allow PerfMemory to attempt cleanup of any persistent resources
 923   perfMemory_exit();
 924 
 925   // flush buffered output, finish log files
 926   ostream_abort();
 927 
 928   // Check for abort hook
 929   abort_hook_t abort_hook = Arguments::abort_hook();
 930   if (abort_hook != NULL) {
 931     abort_hook();
 932   }
 933 }
 934 
 935 
 936 static BOOL  (WINAPI *_MiniDumpWriteDump)  ( HANDLE, DWORD, HANDLE, MINIDUMP_TYPE, PMINIDUMP_EXCEPTION_INFORMATION,
 937                                             PMINIDUMP_USER_STREAM_INFORMATION, PMINIDUMP_CALLBACK_INFORMATION);
 938 
 939 void os::check_or_create_dump(void* exceptionRecord, void* contextRecord, char* buffer, size_t bufferSize) {
 940   HINSTANCE dbghelp;
 941   EXCEPTION_POINTERS ep;
 942   MINIDUMP_EXCEPTION_INFORMATION mei;
 943   MINIDUMP_EXCEPTION_INFORMATION* pmei;
 944 
 945   HANDLE hProcess = GetCurrentProcess();
 946   DWORD processId = GetCurrentProcessId();
 947   HANDLE dumpFile;
 948   MINIDUMP_TYPE dumpType;
 949   static const char* cwd;
 950 
 951 // Default is to always create dump for debug builds, on product builds only dump on server versions of Windows.
 952 #ifndef ASSERT
 953   // If running on a client version of Windows and user has not explicitly enabled dumping
 954   if (!os::win32::is_windows_server() && !CreateMinidumpOnCrash) {
 955     VMError::report_coredump_status("Minidumps are not enabled by default on client versions of Windows", false);
 956     return;
 957     // If running on a server version of Windows and user has explictly disabled dumping
 958   } else if (os::win32::is_windows_server() && !FLAG_IS_DEFAULT(CreateMinidumpOnCrash) && !CreateMinidumpOnCrash) {
 959     VMError::report_coredump_status("Minidump has been disabled from the command line", false);
 960     return;
 961   }
 962 #else
 963   if (!FLAG_IS_DEFAULT(CreateMinidumpOnCrash) && !CreateMinidumpOnCrash) {
 964     VMError::report_coredump_status("Minidump has been disabled from the command line", false);
 965     return;
 966   }
 967 #endif
 968 
 969   dbghelp = os::win32::load_Windows_dll("DBGHELP.DLL", NULL, 0);
 970 
 971   if (dbghelp == NULL) {
 972     VMError::report_coredump_status("Failed to load dbghelp.dll", false);
 973     return;
 974   }
 975 
 976   _MiniDumpWriteDump = CAST_TO_FN_PTR(
 977     BOOL(WINAPI *)( HANDLE, DWORD, HANDLE, MINIDUMP_TYPE, PMINIDUMP_EXCEPTION_INFORMATION,
 978     PMINIDUMP_USER_STREAM_INFORMATION, PMINIDUMP_CALLBACK_INFORMATION),
 979     GetProcAddress(dbghelp, "MiniDumpWriteDump"));
 980 
 981   if (_MiniDumpWriteDump == NULL) {
 982     VMError::report_coredump_status("Failed to find MiniDumpWriteDump() in module dbghelp.dll", false);
 983     return;
 984   }
 985 
 986   dumpType = (MINIDUMP_TYPE)(MiniDumpWithFullMemory | MiniDumpWithHandleData);
 987 
 988 // Older versions of dbghelp.h doesn't contain all the dumptypes we want, dbghelp.h with
 989 // API_VERSION_NUMBER 11 or higher contains the ones we want though
 990 #if API_VERSION_NUMBER >= 11
 991   dumpType = (MINIDUMP_TYPE)(dumpType | MiniDumpWithFullMemoryInfo | MiniDumpWithThreadInfo |
 992     MiniDumpWithUnloadedModules);
 993 #endif
 994 
 995   cwd = get_current_directory(NULL, 0);
 996   jio_snprintf(buffer, bufferSize, "%s\\hs_err_pid%u.mdmp",cwd, current_process_id());
 997   dumpFile = CreateFile(buffer, GENERIC_WRITE, 0, NULL, CREATE_ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL);
 998 
 999   if (dumpFile == INVALID_HANDLE_VALUE) {
1000     VMError::report_coredump_status("Failed to create file for dumping", false);
1001     return;
1002   }
1003   if (exceptionRecord != NULL && contextRecord != NULL) {
1004     ep.ContextRecord = (PCONTEXT) contextRecord;
1005     ep.ExceptionRecord = (PEXCEPTION_RECORD) exceptionRecord;
1006 
1007     mei.ThreadId = GetCurrentThreadId();
1008     mei.ExceptionPointers = &ep;
1009     pmei = &mei;
1010   } else {
1011     pmei = NULL;
1012   }
1013 
1014 
1015   // Older versions of dbghelp.dll (the one shipped with Win2003 for example) may not support all
1016   // the dump types we really want. If first call fails, lets fall back to just use MiniDumpWithFullMemory then.
1017   if (_MiniDumpWriteDump(hProcess, processId, dumpFile, dumpType, pmei, NULL, NULL) == false &&
1018       _MiniDumpWriteDump(hProcess, processId, dumpFile, (MINIDUMP_TYPE)MiniDumpWithFullMemory, pmei, NULL, NULL) == false) {
1019         DWORD error = GetLastError();
1020         LPTSTR msgbuf = NULL;
1021 
1022         if (FormatMessage(FORMAT_MESSAGE_ALLOCATE_BUFFER |
1023                       FORMAT_MESSAGE_FROM_SYSTEM |
1024                       FORMAT_MESSAGE_IGNORE_INSERTS,
1025                       NULL, error, 0, (LPTSTR)&msgbuf, 0, NULL) != 0) {
1026 
1027           jio_snprintf(buffer, bufferSize, "Call to MiniDumpWriteDump() failed (Error 0x%x: %s)", error, msgbuf);
1028           LocalFree(msgbuf);
1029         } else {
1030           // Call to FormatMessage failed, just include the result from GetLastError
1031           jio_snprintf(buffer, bufferSize, "Call to MiniDumpWriteDump() failed (Error 0x%x)", error);
1032         }
1033         VMError::report_coredump_status(buffer, false);
1034   } else {
1035     VMError::report_coredump_status(buffer, true);
1036   }
1037 
1038   CloseHandle(dumpFile);
1039 }
1040 
1041 
1042 
1043 void os::abort(bool dump_core)
1044 {
1045   os::shutdown();
1046   // no core dump on Windows
1047   ::exit(1);
1048 }
1049 
1050 // Die immediately, no exit hook, no abort hook, no cleanup.
1051 void os::die() {
1052   _exit(-1);
1053 }
1054 
1055 // Directory routines copied from src/win32/native/java/io/dirent_md.c
1056 //  * dirent_md.c       1.15 00/02/02
1057 //
1058 // The declarations for DIR and struct dirent are in jvm_win32.h.
1059 
1060 /* Caller must have already run dirname through JVM_NativePath, which removes
1061    duplicate slashes and converts all instances of '/' into '\\'. */
1062 
1063 DIR *
1064 os::opendir(const char *dirname)
1065 {
1066     assert(dirname != NULL, "just checking");   // hotspot change
1067     DIR *dirp = (DIR *)malloc(sizeof(DIR), mtInternal);
1068     DWORD fattr;                                // hotspot change
1069     char alt_dirname[4] = { 0, 0, 0, 0 };
1070 
1071     if (dirp == 0) {
1072         errno = ENOMEM;
1073         return 0;
1074     }
1075 
1076     /*
1077      * Win32 accepts "\" in its POSIX stat(), but refuses to treat it
1078      * as a directory in FindFirstFile().  We detect this case here and
1079      * prepend the current drive name.
1080      */
1081     if (dirname[1] == '\0' && dirname[0] == '\\') {
1082         alt_dirname[0] = _getdrive() + 'A' - 1;
1083         alt_dirname[1] = ':';
1084         alt_dirname[2] = '\\';
1085         alt_dirname[3] = '\0';
1086         dirname = alt_dirname;
1087     }
1088 
1089     dirp->path = (char *)malloc(strlen(dirname) + 5, mtInternal);
1090     if (dirp->path == 0) {
1091         free(dirp, mtInternal);
1092         errno = ENOMEM;
1093         return 0;
1094     }
1095     strcpy(dirp->path, dirname);
1096 
1097     fattr = GetFileAttributes(dirp->path);
1098     if (fattr == 0xffffffff) {
1099         free(dirp->path, mtInternal);
1100         free(dirp, mtInternal);
1101         errno = ENOENT;
1102         return 0;
1103     } else if ((fattr & FILE_ATTRIBUTE_DIRECTORY) == 0) {
1104         free(dirp->path, mtInternal);
1105         free(dirp, mtInternal);
1106         errno = ENOTDIR;
1107         return 0;
1108     }
1109 
1110     /* Append "*.*", or possibly "\\*.*", to path */
1111     if (dirp->path[1] == ':'
1112         && (dirp->path[2] == '\0'
1113             || (dirp->path[2] == '\\' && dirp->path[3] == '\0'))) {
1114         /* No '\\' needed for cases like "Z:" or "Z:\" */
1115         strcat(dirp->path, "*.*");
1116     } else {
1117         strcat(dirp->path, "\\*.*");
1118     }
1119 
1120     dirp->handle = FindFirstFile(dirp->path, &dirp->find_data);
1121     if (dirp->handle == INVALID_HANDLE_VALUE) {
1122         if (GetLastError() != ERROR_FILE_NOT_FOUND) {
1123             free(dirp->path, mtInternal);
1124             free(dirp, mtInternal);
1125             errno = EACCES;
1126             return 0;
1127         }
1128     }
1129     return dirp;
1130 }
1131 
1132 /* parameter dbuf unused on Windows */
1133 
1134 struct dirent *
1135 os::readdir(DIR *dirp, dirent *dbuf)
1136 {
1137     assert(dirp != NULL, "just checking");      // hotspot change
1138     if (dirp->handle == INVALID_HANDLE_VALUE) {
1139         return 0;
1140     }
1141 
1142     strcpy(dirp->dirent.d_name, dirp->find_data.cFileName);
1143 
1144     if (!FindNextFile(dirp->handle, &dirp->find_data)) {
1145         if (GetLastError() == ERROR_INVALID_HANDLE) {
1146             errno = EBADF;
1147             return 0;
1148         }
1149         FindClose(dirp->handle);
1150         dirp->handle = INVALID_HANDLE_VALUE;
1151     }
1152 
1153     return &dirp->dirent;
1154 }
1155 
1156 int
1157 os::closedir(DIR *dirp)
1158 {
1159     assert(dirp != NULL, "just checking");      // hotspot change
1160     if (dirp->handle != INVALID_HANDLE_VALUE) {
1161         if (!FindClose(dirp->handle)) {
1162             errno = EBADF;
1163             return -1;
1164         }
1165         dirp->handle = INVALID_HANDLE_VALUE;
1166     }
1167     free(dirp->path, mtInternal);
1168     free(dirp, mtInternal);
1169     return 0;
1170 }
1171 
1172 // This must be hard coded because it's the system's temporary
1173 // directory not the java application's temp directory, ala java.io.tmpdir.
1174 const char* os::get_temp_directory() {
1175   static char path_buf[MAX_PATH];
1176   if (GetTempPath(MAX_PATH, path_buf)>0)
1177     return path_buf;
1178   else{
1179     path_buf[0]='\0';
1180     return path_buf;
1181   }
1182 }
1183 
1184 static bool file_exists(const char* filename) {
1185   if (filename == NULL || strlen(filename) == 0) {
1186     return false;
1187   }
1188   return GetFileAttributes(filename) != INVALID_FILE_ATTRIBUTES;
1189 }
1190 
1191 bool os::dll_build_name(char *buffer, size_t buflen,
1192                         const char* pname, const char* fname) {
1193   bool retval = false;
1194   const size_t pnamelen = pname ? strlen(pname) : 0;
1195   const char c = (pnamelen > 0) ? pname[pnamelen-1] : 0;
1196 
1197   // Return error on buffer overflow.
1198   if (pnamelen + strlen(fname) + 10 > buflen) {
1199     return retval;
1200   }
1201 
1202   if (pnamelen == 0) {
1203     jio_snprintf(buffer, buflen, "%s.dll", fname);
1204     retval = true;
1205   } else if (c == ':' || c == '\\') {
1206     jio_snprintf(buffer, buflen, "%s%s.dll", pname, fname);
1207     retval = true;
1208   } else if (strchr(pname, *os::path_separator()) != NULL) {
1209     int n;
1210     char** pelements = split_path(pname, &n);
1211     if (pelements == NULL) {
1212       return false;
1213     }
1214     for (int i = 0 ; i < n ; i++) {
1215       char* path = pelements[i];
1216       // Really shouldn't be NULL, but check can't hurt
1217       size_t plen = (path == NULL) ? 0 : strlen(path);
1218       if (plen == 0) {
1219         continue; // skip the empty path values
1220       }
1221       const char lastchar = path[plen - 1];
1222       if (lastchar == ':' || lastchar == '\\') {
1223         jio_snprintf(buffer, buflen, "%s%s.dll", path, fname);
1224       } else {
1225         jio_snprintf(buffer, buflen, "%s\\%s.dll", path, fname);
1226       }
1227       if (file_exists(buffer)) {
1228         retval = true;
1229         break;
1230       }
1231     }
1232     // release the storage
1233     for (int i = 0 ; i < n ; i++) {
1234       if (pelements[i] != NULL) {
1235         FREE_C_HEAP_ARRAY(char, pelements[i], mtInternal);
1236       }
1237     }
1238     if (pelements != NULL) {
1239       FREE_C_HEAP_ARRAY(char*, pelements, mtInternal);
1240     }
1241   } else {
1242     jio_snprintf(buffer, buflen, "%s\\%s.dll", pname, fname);
1243     retval = true;
1244   }
1245   return retval;
1246 }
1247 
1248 // Needs to be in os specific directory because windows requires another
1249 // header file <direct.h>
1250 const char* os::get_current_directory(char *buf, size_t buflen) {
1251   int n = static_cast<int>(buflen);
1252   if (buflen > INT_MAX)  n = INT_MAX;
1253   return _getcwd(buf, n);
1254 }
1255 
1256 //-----------------------------------------------------------
1257 // Helper functions for fatal error handler
1258 #ifdef _WIN64
1259 // Helper routine which returns true if address in
1260 // within the NTDLL address space.
1261 //
1262 static bool _addr_in_ntdll( address addr )
1263 {
1264   HMODULE hmod;
1265   MODULEINFO minfo;
1266 
1267   hmod = GetModuleHandle("NTDLL.DLL");
1268   if ( hmod == NULL ) return false;
1269   if ( !os::PSApiDll::GetModuleInformation( GetCurrentProcess(), hmod,
1270                                &minfo, sizeof(MODULEINFO)) )
1271     return false;
1272 
1273   if ( (addr >= minfo.lpBaseOfDll) &&
1274        (addr < (address)((uintptr_t)minfo.lpBaseOfDll + (uintptr_t)minfo.SizeOfImage)))
1275     return true;
1276   else
1277     return false;
1278 }
1279 #endif
1280 
1281 
1282 // Enumerate all modules for a given process ID
1283 //
1284 // Notice that Windows 95/98/Me and Windows NT/2000/XP have
1285 // different API for doing this. We use PSAPI.DLL on NT based
1286 // Windows and ToolHelp on 95/98/Me.
1287 
1288 // Callback function that is called by enumerate_modules() on
1289 // every DLL module.
1290 // Input parameters:
1291 //    int       pid,
1292 //    char*     module_file_name,
1293 //    address   module_base_addr,
1294 //    unsigned  module_size,
1295 //    void*     param
1296 typedef int (*EnumModulesCallbackFunc)(int, char *, address, unsigned, void *);
1297 
1298 // enumerate_modules for Windows NT, using PSAPI
1299 static int _enumerate_modules_winnt( int pid, EnumModulesCallbackFunc func, void * param)
1300 {
1301   HANDLE   hProcess ;
1302 
1303 # define MAX_NUM_MODULES 128
1304   HMODULE     modules[MAX_NUM_MODULES];
1305   static char filename[ MAX_PATH ];
1306   int         result = 0;
1307 
1308   if (!os::PSApiDll::PSApiAvailable()) {
1309     return 0;
1310   }
1311 
1312   hProcess = OpenProcess(PROCESS_QUERY_INFORMATION | PROCESS_VM_READ,
1313                          FALSE, pid ) ;
1314   if (hProcess == NULL) return 0;
1315 
1316   DWORD size_needed;
1317   if (!os::PSApiDll::EnumProcessModules(hProcess, modules,
1318                            sizeof(modules), &size_needed)) {
1319       CloseHandle( hProcess );
1320       return 0;
1321   }
1322 
1323   // number of modules that are currently loaded
1324   int num_modules = size_needed / sizeof(HMODULE);
1325 
1326   for (int i = 0; i < MIN2(num_modules, MAX_NUM_MODULES); i++) {
1327     // Get Full pathname:
1328     if(!os::PSApiDll::GetModuleFileNameEx(hProcess, modules[i],
1329                              filename, sizeof(filename))) {
1330         filename[0] = '\0';
1331     }
1332 
1333     MODULEINFO modinfo;
1334     if (!os::PSApiDll::GetModuleInformation(hProcess, modules[i],
1335                                &modinfo, sizeof(modinfo))) {
1336         modinfo.lpBaseOfDll = NULL;
1337         modinfo.SizeOfImage = 0;
1338     }
1339 
1340     // Invoke callback function
1341     result = func(pid, filename, (address)modinfo.lpBaseOfDll,
1342                   modinfo.SizeOfImage, param);
1343     if (result) break;
1344   }
1345 
1346   CloseHandle( hProcess ) ;
1347   return result;
1348 }
1349 
1350 
1351 // enumerate_modules for Windows 95/98/ME, using TOOLHELP
1352 static int _enumerate_modules_windows( int pid, EnumModulesCallbackFunc func, void *param)
1353 {
1354   HANDLE                hSnapShot ;
1355   static MODULEENTRY32  modentry ;
1356   int                   result = 0;
1357 
1358   if (!os::Kernel32Dll::HelpToolsAvailable()) {
1359     return 0;
1360   }
1361 
1362   // Get a handle to a Toolhelp snapshot of the system
1363   hSnapShot = os::Kernel32Dll::CreateToolhelp32Snapshot(TH32CS_SNAPMODULE, pid ) ;
1364   if( hSnapShot == INVALID_HANDLE_VALUE ) {
1365       return FALSE ;
1366   }
1367 
1368   // iterate through all modules
1369   modentry.dwSize = sizeof(MODULEENTRY32) ;
1370   bool not_done = os::Kernel32Dll::Module32First( hSnapShot, &modentry ) != 0;
1371 
1372   while( not_done ) {
1373     // invoke the callback
1374     result=func(pid, modentry.szExePath, (address)modentry.modBaseAddr,
1375                 modentry.modBaseSize, param);
1376     if (result) break;
1377 
1378     modentry.dwSize = sizeof(MODULEENTRY32) ;
1379     not_done = os::Kernel32Dll::Module32Next( hSnapShot, &modentry ) != 0;
1380   }
1381 
1382   CloseHandle(hSnapShot);
1383   return result;
1384 }
1385 
1386 int enumerate_modules( int pid, EnumModulesCallbackFunc func, void * param )
1387 {
1388   // Get current process ID if caller doesn't provide it.
1389   if (!pid) pid = os::current_process_id();
1390 
1391   if (os::win32::is_nt()) return _enumerate_modules_winnt  (pid, func, param);
1392   else                    return _enumerate_modules_windows(pid, func, param);
1393 }
1394 
1395 struct _modinfo {
1396    address addr;
1397    char*   full_path;   // point to a char buffer
1398    int     buflen;      // size of the buffer
1399    address base_addr;
1400 };
1401 
1402 static int _locate_module_by_addr(int pid, char * mod_fname, address base_addr,
1403                                   unsigned size, void * param) {
1404    struct _modinfo *pmod = (struct _modinfo *)param;
1405    if (!pmod) return -1;
1406 
1407    if (base_addr     <= pmod->addr &&
1408        base_addr+size > pmod->addr) {
1409      // if a buffer is provided, copy path name to the buffer
1410      if (pmod->full_path) {
1411        jio_snprintf(pmod->full_path, pmod->buflen, "%s", mod_fname);
1412      }
1413      pmod->base_addr = base_addr;
1414      return 1;
1415    }
1416    return 0;
1417 }
1418 
1419 bool os::dll_address_to_library_name(address addr, char* buf,
1420                                      int buflen, int* offset) {
1421   // buf is not optional, but offset is optional
1422   assert(buf != NULL, "sanity check");
1423 
1424 // NOTE: the reason we don't use SymGetModuleInfo() is it doesn't always
1425 //       return the full path to the DLL file, sometimes it returns path
1426 //       to the corresponding PDB file (debug info); sometimes it only
1427 //       returns partial path, which makes life painful.
1428 
1429   struct _modinfo mi;
1430   mi.addr      = addr;
1431   mi.full_path = buf;
1432   mi.buflen    = buflen;
1433   int pid = os::current_process_id();
1434   if (enumerate_modules(pid, _locate_module_by_addr, (void *)&mi)) {
1435     // buf already contains path name
1436     if (offset) *offset = addr - mi.base_addr;
1437     return true;
1438   }
1439 
1440   buf[0] = '\0';
1441   if (offset) *offset = -1;
1442   return false;
1443 }
1444 
1445 bool os::dll_address_to_function_name(address addr, char *buf,
1446                                       int buflen, int *offset) {
1447   // buf is not optional, but offset is optional
1448   assert(buf != NULL, "sanity check");
1449 
1450   if (Decoder::decode(addr, buf, buflen, offset)) {
1451     return true;
1452   }
1453   if (offset != NULL)  *offset  = -1;
1454   buf[0] = '\0';
1455   return false;
1456 }
1457 
1458 // save the start and end address of jvm.dll into param[0] and param[1]
1459 static int _locate_jvm_dll(int pid, char* mod_fname, address base_addr,
1460                     unsigned size, void * param) {
1461    if (!param) return -1;
1462 
1463    if (base_addr     <= (address)_locate_jvm_dll &&
1464        base_addr+size > (address)_locate_jvm_dll) {
1465          ((address*)param)[0] = base_addr;
1466          ((address*)param)[1] = base_addr + size;
1467          return 1;
1468    }
1469    return 0;
1470 }
1471 
1472 address vm_lib_location[2];    // start and end address of jvm.dll
1473 
1474 // check if addr is inside jvm.dll
1475 bool os::address_is_in_vm(address addr) {
1476   if (!vm_lib_location[0] || !vm_lib_location[1]) {
1477     int pid = os::current_process_id();
1478     if (!enumerate_modules(pid, _locate_jvm_dll, (void *)vm_lib_location)) {
1479       assert(false, "Can't find jvm module.");
1480       return false;
1481     }
1482   }
1483 
1484   return (vm_lib_location[0] <= addr) && (addr < vm_lib_location[1]);
1485 }
1486 
1487 // print module info; param is outputStream*
1488 static int _print_module(int pid, char* fname, address base,
1489                          unsigned size, void* param) {
1490    if (!param) return -1;
1491 
1492    outputStream* st = (outputStream*)param;
1493 
1494    address end_addr = base + size;
1495    st->print(PTR_FORMAT " - " PTR_FORMAT " \t%s\n", base, end_addr, fname);
1496    return 0;
1497 }
1498 
1499 // Loads .dll/.so and
1500 // in case of error it checks if .dll/.so was built for the
1501 // same architecture as Hotspot is running on
1502 void * os::dll_load(const char *name, char *ebuf, int ebuflen)
1503 {
1504   void * result = LoadLibrary(name);
1505   if (result != NULL)
1506   {
1507     return result;
1508   }
1509 
1510   DWORD errcode = GetLastError();
1511   if (errcode == ERROR_MOD_NOT_FOUND) {
1512     strncpy(ebuf, "Can't find dependent libraries", ebuflen-1);
1513     ebuf[ebuflen-1]='\0';
1514     return NULL;
1515   }
1516 
1517   // Parsing dll below
1518   // If we can read dll-info and find that dll was built
1519   // for an architecture other than Hotspot is running in
1520   // - then print to buffer "DLL was built for a different architecture"
1521   // else call os::lasterror to obtain system error message
1522 
1523   // Read system error message into ebuf
1524   // It may or may not be overwritten below (in the for loop and just above)
1525   lasterror(ebuf, (size_t) ebuflen);
1526   ebuf[ebuflen-1]='\0';
1527   int file_descriptor=::open(name, O_RDONLY | O_BINARY, 0);
1528   if (file_descriptor<0)
1529   {
1530     return NULL;
1531   }
1532 
1533   uint32_t signature_offset;
1534   uint16_t lib_arch=0;
1535   bool failed_to_get_lib_arch=
1536   (
1537     //Go to position 3c in the dll
1538     (os::seek_to_file_offset(file_descriptor,IMAGE_FILE_PTR_TO_SIGNATURE)<0)
1539     ||
1540     // Read loacation of signature
1541     (sizeof(signature_offset)!=
1542       (os::read(file_descriptor, (void*)&signature_offset,sizeof(signature_offset))))
1543     ||
1544     //Go to COFF File Header in dll
1545     //that is located after"signature" (4 bytes long)
1546     (os::seek_to_file_offset(file_descriptor,
1547       signature_offset+IMAGE_FILE_SIGNATURE_LENGTH)<0)
1548     ||
1549     //Read field that contains code of architecture
1550     // that dll was build for
1551     (sizeof(lib_arch)!=
1552       (os::read(file_descriptor, (void*)&lib_arch,sizeof(lib_arch))))
1553   );
1554 
1555   ::close(file_descriptor);
1556   if (failed_to_get_lib_arch)
1557   {
1558     // file i/o error - report os::lasterror(...) msg
1559     return NULL;
1560   }
1561 
1562   typedef struct
1563   {
1564     uint16_t arch_code;
1565     char* arch_name;
1566   } arch_t;
1567 
1568   static const arch_t arch_array[]={
1569     {IMAGE_FILE_MACHINE_I386,      (char*)"IA 32"},
1570     {IMAGE_FILE_MACHINE_AMD64,     (char*)"AMD 64"},
1571     {IMAGE_FILE_MACHINE_IA64,      (char*)"IA 64"}
1572   };
1573   #if   (defined _M_IA64)
1574     static const uint16_t running_arch=IMAGE_FILE_MACHINE_IA64;
1575   #elif (defined _M_AMD64)
1576     static const uint16_t running_arch=IMAGE_FILE_MACHINE_AMD64;
1577   #elif (defined _M_IX86)
1578     static const uint16_t running_arch=IMAGE_FILE_MACHINE_I386;
1579   #else
1580     #error Method os::dll_load requires that one of following \
1581            is defined :_M_IA64,_M_AMD64 or _M_IX86
1582   #endif
1583 
1584 
1585   // Obtain a string for printf operation
1586   // lib_arch_str shall contain string what platform this .dll was built for
1587   // running_arch_str shall string contain what platform Hotspot was built for
1588   char *running_arch_str=NULL,*lib_arch_str=NULL;
1589   for (unsigned int i=0;i<ARRAY_SIZE(arch_array);i++)
1590   {
1591     if (lib_arch==arch_array[i].arch_code)
1592       lib_arch_str=arch_array[i].arch_name;
1593     if (running_arch==arch_array[i].arch_code)
1594       running_arch_str=arch_array[i].arch_name;
1595   }
1596 
1597   assert(running_arch_str,
1598     "Didn't find runing architecture code in arch_array");
1599 
1600   // If the architure is right
1601   // but some other error took place - report os::lasterror(...) msg
1602   if (lib_arch == running_arch)
1603   {
1604     return NULL;
1605   }
1606 
1607   if (lib_arch_str!=NULL)
1608   {
1609     ::_snprintf(ebuf, ebuflen-1,
1610       "Can't load %s-bit .dll on a %s-bit platform",
1611       lib_arch_str,running_arch_str);
1612   }
1613   else
1614   {
1615     // don't know what architecture this dll was build for
1616     ::_snprintf(ebuf, ebuflen-1,
1617       "Can't load this .dll (machine code=0x%x) on a %s-bit platform",
1618       lib_arch,running_arch_str);
1619   }
1620 
1621   return NULL;
1622 }
1623 
1624 
1625 void os::print_dll_info(outputStream *st) {
1626    int pid = os::current_process_id();
1627    st->print_cr("Dynamic libraries:");
1628    enumerate_modules(pid, _print_module, (void *)st);
1629 }
1630 
1631 void os::print_os_info_brief(outputStream* st) {
1632   os::print_os_info(st);
1633 }
1634 
1635 void os::print_os_info(outputStream* st) {
1636   st->print("OS:");
1637 
1638   os::win32::print_windows_version(st);
1639 }
1640 
1641 void os::win32::print_windows_version(outputStream* st) {
1642   OSVERSIONINFOEX osvi;
1643   SYSTEM_INFO si;
1644 
1645   ZeroMemory(&osvi, sizeof(OSVERSIONINFOEX));
1646   osvi.dwOSVersionInfoSize = sizeof(OSVERSIONINFOEX);
1647 
1648   if (!GetVersionEx((OSVERSIONINFO *)&osvi)) {
1649     st->print_cr("N/A");
1650     return;
1651   }
1652 
1653   int os_vers = osvi.dwMajorVersion * 1000 + osvi.dwMinorVersion;
1654 
1655   ZeroMemory(&si, sizeof(SYSTEM_INFO));
1656   if (os_vers >= 5002) {
1657     // Retrieve SYSTEM_INFO from GetNativeSystemInfo call so that we could
1658     // find out whether we are running on 64 bit processor or not.
1659     if (os::Kernel32Dll::GetNativeSystemInfoAvailable()) {
1660       os::Kernel32Dll::GetNativeSystemInfo(&si);
1661     } else {
1662       GetSystemInfo(&si);
1663     }
1664   }
1665 
1666   if (osvi.dwPlatformId == VER_PLATFORM_WIN32_NT) {
1667     switch (os_vers) {
1668     case 3051: st->print(" Windows NT 3.51"); break;
1669     case 4000: st->print(" Windows NT 4.0"); break;
1670     case 5000: st->print(" Windows 2000"); break;
1671     case 5001: st->print(" Windows XP"); break;
1672     case 5002:
1673       if (osvi.wProductType == VER_NT_WORKSTATION &&
1674           si.wProcessorArchitecture == PROCESSOR_ARCHITECTURE_AMD64) {
1675         st->print(" Windows XP x64 Edition");
1676       } else {
1677         st->print(" Windows Server 2003 family");
1678       }
1679       break;
1680 
1681     case 6000:
1682       if (osvi.wProductType == VER_NT_WORKSTATION) {
1683         st->print(" Windows Vista");
1684       } else {
1685         st->print(" Windows Server 2008");
1686       }
1687       break;
1688 
1689     case 6001:
1690       if (osvi.wProductType == VER_NT_WORKSTATION) {
1691         st->print(" Windows 7");
1692       } else {
1693         st->print(" Windows Server 2008 R2");
1694       }
1695       break;
1696 
1697     case 6002:
1698       if (osvi.wProductType == VER_NT_WORKSTATION) {
1699         st->print(" Windows 8");
1700       } else {
1701         st->print(" Windows Server 2012");
1702       }
1703       break;
1704 
1705     case 6003:
1706       if (osvi.wProductType == VER_NT_WORKSTATION) {
1707         st->print(" Windows 8.1");
1708       } else {
1709         st->print(" Windows Server 2012 R2");
1710       }
1711       break;
1712 
1713     default: // future os
1714       // Unrecognized windows, print out its major and minor versions
1715       st->print(" Windows NT %d.%d", osvi.dwMajorVersion, osvi.dwMinorVersion);
1716     }
1717   } else {
1718     switch (os_vers) {
1719     case 4000: st->print(" Windows 95"); break;
1720     case 4010: st->print(" Windows 98"); break;
1721     case 4090: st->print(" Windows Me"); break;
1722     default: // future windows, print out its major and minor versions
1723       st->print(" Windows %d.%d", osvi.dwMajorVersion, osvi.dwMinorVersion);
1724     }
1725   }
1726 
1727   if (os_vers >= 6000 && si.wProcessorArchitecture == PROCESSOR_ARCHITECTURE_AMD64) {
1728     st->print(" , 64 bit");
1729   }
1730 
1731   st->print(" Build %d", osvi.dwBuildNumber);
1732   st->print(" %s", osvi.szCSDVersion);           // service pack
1733   st->cr();
1734 }
1735 
1736 void os::pd_print_cpu_info(outputStream* st) {
1737   // Nothing to do for now.
1738 }
1739 
1740 void os::print_memory_info(outputStream* st) {
1741   st->print("Memory:");
1742   st->print(" %dk page", os::vm_page_size()>>10);
1743 
1744   // Use GlobalMemoryStatusEx() because GlobalMemoryStatus() may return incorrect
1745   // value if total memory is larger than 4GB
1746   MEMORYSTATUSEX ms;
1747   ms.dwLength = sizeof(ms);
1748   GlobalMemoryStatusEx(&ms);
1749 
1750   st->print(", physical %uk", os::physical_memory() >> 10);
1751   st->print("(%uk free)", os::available_memory() >> 10);
1752 
1753   st->print(", swap %uk", ms.ullTotalPageFile >> 10);
1754   st->print("(%uk free)", ms.ullAvailPageFile >> 10);
1755   st->cr();
1756 }
1757 
1758 void os::print_siginfo(outputStream *st, void *siginfo) {
1759   EXCEPTION_RECORD* er = (EXCEPTION_RECORD*)siginfo;
1760   st->print("siginfo:");
1761   st->print(" ExceptionCode=0x%x", er->ExceptionCode);
1762 
1763   if (er->ExceptionCode == EXCEPTION_ACCESS_VIOLATION &&
1764       er->NumberParameters >= 2) {
1765       switch (er->ExceptionInformation[0]) {
1766       case 0: st->print(", reading address"); break;
1767       case 1: st->print(", writing address"); break;
1768       default: st->print(", ExceptionInformation=" INTPTR_FORMAT,
1769                             er->ExceptionInformation[0]);
1770       }
1771       st->print(" " INTPTR_FORMAT, er->ExceptionInformation[1]);
1772   } else if (er->ExceptionCode == EXCEPTION_IN_PAGE_ERROR &&
1773              er->NumberParameters >= 2 && UseSharedSpaces) {
1774     FileMapInfo* mapinfo = FileMapInfo::current_info();
1775     if (mapinfo->is_in_shared_space((void*)er->ExceptionInformation[1])) {
1776       st->print("\n\nError accessing class data sharing archive."       \
1777                 " Mapped file inaccessible during execution, "          \
1778                 " possible disk/network problem.");
1779     }
1780   } else {
1781     int num = er->NumberParameters;
1782     if (num > 0) {
1783       st->print(", ExceptionInformation=");
1784       for (int i = 0; i < num; i++) {
1785         st->print(INTPTR_FORMAT " ", er->ExceptionInformation[i]);
1786       }
1787     }
1788   }
1789   st->cr();
1790 }
1791 
1792 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
1793   // do nothing
1794 }
1795 
1796 static char saved_jvm_path[MAX_PATH] = {0};
1797 
1798 // Find the full path to the current module, jvm.dll
1799 void os::jvm_path(char *buf, jint buflen) {
1800   // Error checking.
1801   if (buflen < MAX_PATH) {
1802     assert(false, "must use a large-enough buffer");
1803     buf[0] = '\0';
1804     return;
1805   }
1806   // Lazy resolve the path to current module.
1807   if (saved_jvm_path[0] != 0) {
1808     strcpy(buf, saved_jvm_path);
1809     return;
1810   }
1811 
1812   buf[0] = '\0';
1813   if (Arguments::created_by_gamma_launcher()) {
1814      // Support for the gamma launcher. Check for an
1815      // JAVA_HOME environment variable
1816      // and fix up the path so it looks like
1817      // libjvm.so is installed there (append a fake suffix
1818      // hotspot/libjvm.so).
1819      char* java_home_var = ::getenv("JAVA_HOME");
1820      if (java_home_var != NULL && java_home_var[0] != 0) {
1821 
1822         strncpy(buf, java_home_var, buflen);
1823 
1824         // determine if this is a legacy image or modules image
1825         // modules image doesn't have "jre" subdirectory
1826         size_t len = strlen(buf);
1827         char* jrebin_p = buf + len;
1828         jio_snprintf(jrebin_p, buflen-len, "\\jre\\bin\\");
1829         if (0 != _access(buf, 0)) {
1830           jio_snprintf(jrebin_p, buflen-len, "\\bin\\");
1831         }
1832         len = strlen(buf);
1833         jio_snprintf(buf + len, buflen-len, "hotspot\\jvm.dll");
1834      }
1835   }
1836 
1837   if(buf[0] == '\0') {
1838   GetModuleFileName(vm_lib_handle, buf, buflen);
1839   }
1840   strcpy(saved_jvm_path, buf);
1841 }
1842 
1843 
1844 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
1845 #ifndef _WIN64
1846   st->print("_");
1847 #endif
1848 }
1849 
1850 
1851 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
1852 #ifndef _WIN64
1853   st->print("@%d", args_size  * sizeof(int));
1854 #endif
1855 }
1856 
1857 // This method is a copy of JDK's sysGetLastErrorString
1858 // from src/windows/hpi/src/system_md.c
1859 
1860 size_t os::lasterror(char* buf, size_t len) {
1861   DWORD errval;
1862 
1863   if ((errval = GetLastError()) != 0) {
1864     // DOS error
1865     size_t n = (size_t)FormatMessage(
1866           FORMAT_MESSAGE_FROM_SYSTEM|FORMAT_MESSAGE_IGNORE_INSERTS,
1867           NULL,
1868           errval,
1869           0,
1870           buf,
1871           (DWORD)len,
1872           NULL);
1873     if (n > 3) {
1874       // Drop final '.', CR, LF
1875       if (buf[n - 1] == '\n') n--;
1876       if (buf[n - 1] == '\r') n--;
1877       if (buf[n - 1] == '.') n--;
1878       buf[n] = '\0';
1879     }
1880     return n;
1881   }
1882 
1883   if (errno != 0) {
1884     // C runtime error that has no corresponding DOS error code
1885     const char* s = strerror(errno);
1886     size_t n = strlen(s);
1887     if (n >= len) n = len - 1;
1888     strncpy(buf, s, n);
1889     buf[n] = '\0';
1890     return n;
1891   }
1892 
1893   return 0;
1894 }
1895 
1896 int os::get_last_error() {
1897   DWORD error = GetLastError();
1898   if (error == 0)
1899     error = errno;
1900   return (int)error;
1901 }
1902 
1903 // sun.misc.Signal
1904 // NOTE that this is a workaround for an apparent kernel bug where if
1905 // a signal handler for SIGBREAK is installed then that signal handler
1906 // takes priority over the console control handler for CTRL_CLOSE_EVENT.
1907 // See bug 4416763.
1908 static void (*sigbreakHandler)(int) = NULL;
1909 
1910 static void UserHandler(int sig, void *siginfo, void *context) {
1911   os::signal_notify(sig);
1912   // We need to reinstate the signal handler each time...
1913   os::signal(sig, (void*)UserHandler);
1914 }
1915 
1916 void* os::user_handler() {
1917   return (void*) UserHandler;
1918 }
1919 
1920 void* os::signal(int signal_number, void* handler) {
1921   if ((signal_number == SIGBREAK) && (!ReduceSignalUsage)) {
1922     void (*oldHandler)(int) = sigbreakHandler;
1923     sigbreakHandler = (void (*)(int)) handler;
1924     return (void*) oldHandler;
1925   } else {
1926     return (void*)::signal(signal_number, (void (*)(int))handler);
1927   }
1928 }
1929 
1930 void os::signal_raise(int signal_number) {
1931   raise(signal_number);
1932 }
1933 
1934 // The Win32 C runtime library maps all console control events other than ^C
1935 // into SIGBREAK, which makes it impossible to distinguish ^BREAK from close,
1936 // logoff, and shutdown events.  We therefore install our own console handler
1937 // that raises SIGTERM for the latter cases.
1938 //
1939 static BOOL WINAPI consoleHandler(DWORD event) {
1940   switch(event) {
1941     case CTRL_C_EVENT:
1942       if (is_error_reported()) {
1943         // Ctrl-C is pressed during error reporting, likely because the error
1944         // handler fails to abort. Let VM die immediately.
1945         os::die();
1946       }
1947 
1948       os::signal_raise(SIGINT);
1949       return TRUE;
1950       break;
1951     case CTRL_BREAK_EVENT:
1952       if (sigbreakHandler != NULL) {
1953         (*sigbreakHandler)(SIGBREAK);
1954       }
1955       return TRUE;
1956       break;
1957     case CTRL_LOGOFF_EVENT: {
1958       // Don't terminate JVM if it is running in a non-interactive session,
1959       // such as a service process.
1960       USEROBJECTFLAGS flags;
1961       HANDLE handle = GetProcessWindowStation();
1962       if (handle != NULL &&
1963           GetUserObjectInformation(handle, UOI_FLAGS, &flags,
1964             sizeof( USEROBJECTFLAGS), NULL)) {
1965         // If it is a non-interactive session, let next handler to deal
1966         // with it.
1967         if ((flags.dwFlags & WSF_VISIBLE) == 0) {
1968           return FALSE;
1969         }
1970       }
1971     }
1972     case CTRL_CLOSE_EVENT:
1973     case CTRL_SHUTDOWN_EVENT:
1974       os::signal_raise(SIGTERM);
1975       return TRUE;
1976       break;
1977     default:
1978       break;
1979   }
1980   return FALSE;
1981 }
1982 
1983 /*
1984  * The following code is moved from os.cpp for making this
1985  * code platform specific, which it is by its very nature.
1986  */
1987 
1988 // Return maximum OS signal used + 1 for internal use only
1989 // Used as exit signal for signal_thread
1990 int os::sigexitnum_pd(){
1991   return NSIG;
1992 }
1993 
1994 // a counter for each possible signal value, including signal_thread exit signal
1995 static volatile jint pending_signals[NSIG+1] = { 0 };
1996 static HANDLE sig_sem = NULL;
1997 
1998 void os::signal_init_pd() {
1999   // Initialize signal structures
2000   memset((void*)pending_signals, 0, sizeof(pending_signals));
2001 
2002   sig_sem = ::CreateSemaphore(NULL, 0, NSIG+1, NULL);
2003 
2004   // Programs embedding the VM do not want it to attempt to receive
2005   // events like CTRL_LOGOFF_EVENT, which are used to implement the
2006   // shutdown hooks mechanism introduced in 1.3.  For example, when
2007   // the VM is run as part of a Windows NT service (i.e., a servlet
2008   // engine in a web server), the correct behavior is for any console
2009   // control handler to return FALSE, not TRUE, because the OS's
2010   // "final" handler for such events allows the process to continue if
2011   // it is a service (while terminating it if it is not a service).
2012   // To make this behavior uniform and the mechanism simpler, we
2013   // completely disable the VM's usage of these console events if -Xrs
2014   // (=ReduceSignalUsage) is specified.  This means, for example, that
2015   // the CTRL-BREAK thread dump mechanism is also disabled in this
2016   // case.  See bugs 4323062, 4345157, and related bugs.
2017 
2018   if (!ReduceSignalUsage) {
2019     // Add a CTRL-C handler
2020     SetConsoleCtrlHandler(consoleHandler, TRUE);
2021   }
2022 }
2023 
2024 void os::signal_notify(int signal_number) {
2025   BOOL ret;
2026   if (sig_sem != NULL) {
2027     Atomic::inc(&pending_signals[signal_number]);
2028     ret = ::ReleaseSemaphore(sig_sem, 1, NULL);
2029     assert(ret != 0, "ReleaseSemaphore() failed");
2030   }
2031 }
2032 
2033 static int check_pending_signals(bool wait_for_signal) {
2034   DWORD ret;
2035   while (true) {
2036     for (int i = 0; i < NSIG + 1; i++) {
2037       jint n = pending_signals[i];
2038       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2039         return i;
2040       }
2041     }
2042     if (!wait_for_signal) {
2043       return -1;
2044     }
2045 
2046     JavaThread *thread = JavaThread::current();
2047 
2048     ThreadBlockInVM tbivm(thread);
2049 
2050     bool threadIsSuspended;
2051     do {
2052       thread->set_suspend_equivalent();
2053       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2054       ret = ::WaitForSingleObject(sig_sem, INFINITE);
2055       assert(ret == WAIT_OBJECT_0, "WaitForSingleObject() failed");
2056 
2057       // were we externally suspended while we were waiting?
2058       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2059       if (threadIsSuspended) {
2060         //
2061         // The semaphore has been incremented, but while we were waiting
2062         // another thread suspended us. We don't want to continue running
2063         // while suspended because that would surprise the thread that
2064         // suspended us.
2065         //
2066         ret = ::ReleaseSemaphore(sig_sem, 1, NULL);
2067         assert(ret != 0, "ReleaseSemaphore() failed");
2068 
2069         thread->java_suspend_self();
2070       }
2071     } while (threadIsSuspended);
2072   }
2073 }
2074 
2075 int os::signal_lookup() {
2076   return check_pending_signals(false);
2077 }
2078 
2079 int os::signal_wait() {
2080   return check_pending_signals(true);
2081 }
2082 
2083 // Implicit OS exception handling
2084 
2085 LONG Handle_Exception(struct _EXCEPTION_POINTERS* exceptionInfo, address handler) {
2086   JavaThread* thread = JavaThread::current();
2087   // Save pc in thread
2088 #ifdef _M_IA64
2089   // Do not blow up if no thread info available.
2090   if (thread) {
2091     // Saving PRECISE pc (with slot information) in thread.
2092     uint64_t precise_pc = (uint64_t) exceptionInfo->ExceptionRecord->ExceptionAddress;
2093     // Convert precise PC into "Unix" format
2094     precise_pc = (precise_pc & 0xFFFFFFFFFFFFFFF0) | ((precise_pc & 0xF) >> 2);
2095     thread->set_saved_exception_pc((address)precise_pc);
2096   }
2097   // Set pc to handler
2098   exceptionInfo->ContextRecord->StIIP = (DWORD64)handler;
2099   // Clear out psr.ri (= Restart Instruction) in order to continue
2100   // at the beginning of the target bundle.
2101   exceptionInfo->ContextRecord->StIPSR &= 0xFFFFF9FFFFFFFFFF;
2102   assert(((DWORD64)handler & 0xF) == 0, "Target address must point to the beginning of a bundle!");
2103 #elif _M_AMD64
2104   // Do not blow up if no thread info available.
2105   if (thread) {
2106     thread->set_saved_exception_pc((address)(DWORD_PTR)exceptionInfo->ContextRecord->Rip);
2107   }
2108   // Set pc to handler
2109   exceptionInfo->ContextRecord->Rip = (DWORD64)handler;
2110 #else
2111   // Do not blow up if no thread info available.
2112   if (thread) {
2113     thread->set_saved_exception_pc((address)(DWORD_PTR)exceptionInfo->ContextRecord->Eip);
2114   }
2115   // Set pc to handler
2116   exceptionInfo->ContextRecord->Eip = (DWORD)(DWORD_PTR)handler;
2117 #endif
2118 
2119   // Continue the execution
2120   return EXCEPTION_CONTINUE_EXECUTION;
2121 }
2122 
2123 
2124 // Used for PostMortemDump
2125 extern "C" void safepoints();
2126 extern "C" void find(int x);
2127 extern "C" void events();
2128 
2129 // According to Windows API documentation, an illegal instruction sequence should generate
2130 // the 0xC000001C exception code. However, real world experience shows that occasionnaly
2131 // the execution of an illegal instruction can generate the exception code 0xC000001E. This
2132 // seems to be an undocumented feature of Win NT 4.0 (and probably other Windows systems).
2133 
2134 #define EXCEPTION_ILLEGAL_INSTRUCTION_2 0xC000001E
2135 
2136 // From "Execution Protection in the Windows Operating System" draft 0.35
2137 // Once a system header becomes available, the "real" define should be
2138 // included or copied here.
2139 #define EXCEPTION_INFO_EXEC_VIOLATION 0x08
2140 
2141 // Handle NAT Bit consumption on IA64.
2142 #ifdef _M_IA64
2143 #define EXCEPTION_REG_NAT_CONSUMPTION    STATUS_REG_NAT_CONSUMPTION
2144 #endif
2145 
2146 // Windows Vista/2008 heap corruption check
2147 #define EXCEPTION_HEAP_CORRUPTION        0xC0000374
2148 
2149 #define def_excpt(val) #val, val
2150 
2151 struct siglabel {
2152   char *name;
2153   int   number;
2154 };
2155 
2156 // All Visual C++ exceptions thrown from code generated by the Microsoft Visual
2157 // C++ compiler contain this error code. Because this is a compiler-generated
2158 // error, the code is not listed in the Win32 API header files.
2159 // The code is actually a cryptic mnemonic device, with the initial "E"
2160 // standing for "exception" and the final 3 bytes (0x6D7363) representing the
2161 // ASCII values of "msc".
2162 
2163 #define EXCEPTION_UNCAUGHT_CXX_EXCEPTION    0xE06D7363
2164 
2165 
2166 struct siglabel exceptlabels[] = {
2167     def_excpt(EXCEPTION_ACCESS_VIOLATION),
2168     def_excpt(EXCEPTION_DATATYPE_MISALIGNMENT),
2169     def_excpt(EXCEPTION_BREAKPOINT),
2170     def_excpt(EXCEPTION_SINGLE_STEP),
2171     def_excpt(EXCEPTION_ARRAY_BOUNDS_EXCEEDED),
2172     def_excpt(EXCEPTION_FLT_DENORMAL_OPERAND),
2173     def_excpt(EXCEPTION_FLT_DIVIDE_BY_ZERO),
2174     def_excpt(EXCEPTION_FLT_INEXACT_RESULT),
2175     def_excpt(EXCEPTION_FLT_INVALID_OPERATION),
2176     def_excpt(EXCEPTION_FLT_OVERFLOW),
2177     def_excpt(EXCEPTION_FLT_STACK_CHECK),
2178     def_excpt(EXCEPTION_FLT_UNDERFLOW),
2179     def_excpt(EXCEPTION_INT_DIVIDE_BY_ZERO),
2180     def_excpt(EXCEPTION_INT_OVERFLOW),
2181     def_excpt(EXCEPTION_PRIV_INSTRUCTION),
2182     def_excpt(EXCEPTION_IN_PAGE_ERROR),
2183     def_excpt(EXCEPTION_ILLEGAL_INSTRUCTION),
2184     def_excpt(EXCEPTION_ILLEGAL_INSTRUCTION_2),
2185     def_excpt(EXCEPTION_NONCONTINUABLE_EXCEPTION),
2186     def_excpt(EXCEPTION_STACK_OVERFLOW),
2187     def_excpt(EXCEPTION_INVALID_DISPOSITION),
2188     def_excpt(EXCEPTION_GUARD_PAGE),
2189     def_excpt(EXCEPTION_INVALID_HANDLE),
2190     def_excpt(EXCEPTION_UNCAUGHT_CXX_EXCEPTION),
2191     def_excpt(EXCEPTION_HEAP_CORRUPTION),
2192 #ifdef _M_IA64
2193     def_excpt(EXCEPTION_REG_NAT_CONSUMPTION),
2194 #endif
2195     NULL, 0
2196 };
2197 
2198 const char* os::exception_name(int exception_code, char *buf, size_t size) {
2199   for (int i = 0; exceptlabels[i].name != NULL; i++) {
2200     if (exceptlabels[i].number == exception_code) {
2201        jio_snprintf(buf, size, "%s", exceptlabels[i].name);
2202        return buf;
2203     }
2204   }
2205 
2206   return NULL;
2207 }
2208 
2209 //-----------------------------------------------------------------------------
2210 LONG Handle_IDiv_Exception(struct _EXCEPTION_POINTERS* exceptionInfo) {
2211   // handle exception caused by idiv; should only happen for -MinInt/-1
2212   // (division by zero is handled explicitly)
2213 #ifdef _M_IA64
2214   assert(0, "Fix Handle_IDiv_Exception");
2215 #elif _M_AMD64
2216   PCONTEXT ctx = exceptionInfo->ContextRecord;
2217   address pc = (address)ctx->Rip;
2218   assert(pc[0] == 0xF7, "not an idiv opcode");
2219   assert((pc[1] & ~0x7) == 0xF8, "cannot handle non-register operands");
2220   assert(ctx->Rax == min_jint, "unexpected idiv exception");
2221   // set correct result values and continue after idiv instruction
2222   ctx->Rip = (DWORD)pc + 2;        // idiv reg, reg  is 2 bytes
2223   ctx->Rax = (DWORD)min_jint;      // result
2224   ctx->Rdx = (DWORD)0;             // remainder
2225   // Continue the execution
2226 #else
2227   PCONTEXT ctx = exceptionInfo->ContextRecord;
2228   address pc = (address)ctx->Eip;
2229   assert(pc[0] == 0xF7, "not an idiv opcode");
2230   assert((pc[1] & ~0x7) == 0xF8, "cannot handle non-register operands");
2231   assert(ctx->Eax == min_jint, "unexpected idiv exception");
2232   // set correct result values and continue after idiv instruction
2233   ctx->Eip = (DWORD)pc + 2;        // idiv reg, reg  is 2 bytes
2234   ctx->Eax = (DWORD)min_jint;      // result
2235   ctx->Edx = (DWORD)0;             // remainder
2236   // Continue the execution
2237 #endif
2238   return EXCEPTION_CONTINUE_EXECUTION;
2239 }
2240 
2241 //-----------------------------------------------------------------------------
2242 LONG WINAPI Handle_FLT_Exception(struct _EXCEPTION_POINTERS* exceptionInfo) {
2243   PCONTEXT ctx = exceptionInfo->ContextRecord;
2244 #ifndef  _WIN64
2245   // handle exception caused by native method modifying control word
2246   DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
2247 
2248   switch (exception_code) {
2249     case EXCEPTION_FLT_DENORMAL_OPERAND:
2250     case EXCEPTION_FLT_DIVIDE_BY_ZERO:
2251     case EXCEPTION_FLT_INEXACT_RESULT:
2252     case EXCEPTION_FLT_INVALID_OPERATION:
2253     case EXCEPTION_FLT_OVERFLOW:
2254     case EXCEPTION_FLT_STACK_CHECK:
2255     case EXCEPTION_FLT_UNDERFLOW:
2256       jint fp_control_word = (* (jint*) StubRoutines::addr_fpu_cntrl_wrd_std());
2257       if (fp_control_word != ctx->FloatSave.ControlWord) {
2258         // Restore FPCW and mask out FLT exceptions
2259         ctx->FloatSave.ControlWord = fp_control_word | 0xffffffc0;
2260         // Mask out pending FLT exceptions
2261         ctx->FloatSave.StatusWord &=  0xffffff00;
2262         return EXCEPTION_CONTINUE_EXECUTION;
2263       }
2264   }
2265 
2266   if (prev_uef_handler != NULL) {
2267     // We didn't handle this exception so pass it to the previous
2268     // UnhandledExceptionFilter.
2269     return (prev_uef_handler)(exceptionInfo);
2270   }
2271 #else // !_WIN64
2272 /*
2273   On Windows, the mxcsr control bits are non-volatile across calls
2274   See also CR 6192333
2275   */
2276       jint MxCsr = INITIAL_MXCSR;
2277         // we can't use StubRoutines::addr_mxcsr_std()
2278         // because in Win64 mxcsr is not saved there
2279       if (MxCsr != ctx->MxCsr) {
2280         ctx->MxCsr = MxCsr;
2281         return EXCEPTION_CONTINUE_EXECUTION;
2282       }
2283 #endif // !_WIN64
2284 
2285   return EXCEPTION_CONTINUE_SEARCH;
2286 }
2287 
2288 // Fatal error reporting is single threaded so we can make this a
2289 // static and preallocated.  If it's more than MAX_PATH silently ignore
2290 // it.
2291 static char saved_error_file[MAX_PATH] = {0};
2292 
2293 void os::set_error_file(const char *logfile) {
2294   if (strlen(logfile) <= MAX_PATH) {
2295     strncpy(saved_error_file, logfile, MAX_PATH);
2296   }
2297 }
2298 
2299 static inline void report_error(Thread* t, DWORD exception_code,
2300                                 address addr, void* siginfo, void* context) {
2301   VMError err(t, exception_code, addr, siginfo, context);
2302   err.report_and_die();
2303 
2304   // If UseOsErrorReporting, this will return here and save the error file
2305   // somewhere where we can find it in the minidump.
2306 }
2307 
2308 //-----------------------------------------------------------------------------
2309 LONG WINAPI topLevelExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo) {
2310   if (InterceptOSException) return EXCEPTION_CONTINUE_SEARCH;
2311   DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
2312 #ifdef _M_IA64
2313   // On Itanium, we need the "precise pc", which has the slot number coded
2314   // into the least 4 bits: 0000=slot0, 0100=slot1, 1000=slot2 (Windows format).
2315   address pc = (address) exceptionInfo->ExceptionRecord->ExceptionAddress;
2316   // Convert the pc to "Unix format", which has the slot number coded
2317   // into the least 2 bits: 0000=slot0, 0001=slot1, 0010=slot2
2318   // This is needed for IA64 because "relocation" / "implicit null check" / "poll instruction"
2319   // information is saved in the Unix format.
2320   address pc_unix_format = (address) ((((uint64_t)pc) & 0xFFFFFFFFFFFFFFF0) | ((((uint64_t)pc) & 0xF) >> 2));
2321 #elif _M_AMD64
2322   address pc = (address) exceptionInfo->ContextRecord->Rip;
2323 #else
2324   address pc = (address) exceptionInfo->ContextRecord->Eip;
2325 #endif
2326   Thread* t = ThreadLocalStorage::get_thread_slow();          // slow & steady
2327 
2328   // Handle SafeFetch32 and SafeFetchN exceptions.
2329   if (StubRoutines::is_safefetch_fault(pc)) {
2330     return Handle_Exception(exceptionInfo, StubRoutines::continuation_for_safefetch_fault(pc));
2331   }
2332 
2333 #ifndef _WIN64
2334   // Execution protection violation - win32 running on AMD64 only
2335   // Handled first to avoid misdiagnosis as a "normal" access violation;
2336   // This is safe to do because we have a new/unique ExceptionInformation
2337   // code for this condition.
2338   if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2339     PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2340     int exception_subcode = (int) exceptionRecord->ExceptionInformation[0];
2341     address addr = (address) exceptionRecord->ExceptionInformation[1];
2342 
2343     if (exception_subcode == EXCEPTION_INFO_EXEC_VIOLATION) {
2344       int page_size = os::vm_page_size();
2345 
2346       // Make sure the pc and the faulting address are sane.
2347       //
2348       // If an instruction spans a page boundary, and the page containing
2349       // the beginning of the instruction is executable but the following
2350       // page is not, the pc and the faulting address might be slightly
2351       // different - we still want to unguard the 2nd page in this case.
2352       //
2353       // 15 bytes seems to be a (very) safe value for max instruction size.
2354       bool pc_is_near_addr =
2355         (pointer_delta((void*) addr, (void*) pc, sizeof(char)) < 15);
2356       bool instr_spans_page_boundary =
2357         (align_size_down((intptr_t) pc ^ (intptr_t) addr,
2358                          (intptr_t) page_size) > 0);
2359 
2360       if (pc == addr || (pc_is_near_addr && instr_spans_page_boundary)) {
2361         static volatile address last_addr =
2362           (address) os::non_memory_address_word();
2363 
2364         // In conservative mode, don't unguard unless the address is in the VM
2365         if (UnguardOnExecutionViolation > 0 && addr != last_addr &&
2366             (UnguardOnExecutionViolation > 1 || os::address_is_in_vm(addr))) {
2367 
2368           // Set memory to RWX and retry
2369           address page_start =
2370             (address) align_size_down((intptr_t) addr, (intptr_t) page_size);
2371           bool res = os::protect_memory((char*) page_start, page_size,
2372                                         os::MEM_PROT_RWX);
2373 
2374           if (PrintMiscellaneous && Verbose) {
2375             char buf[256];
2376             jio_snprintf(buf, sizeof(buf), "Execution protection violation "
2377                          "at " INTPTR_FORMAT
2378                          ", unguarding " INTPTR_FORMAT ": %s", addr,
2379                          page_start, (res ? "success" : strerror(errno)));
2380             tty->print_raw_cr(buf);
2381           }
2382 
2383           // Set last_addr so if we fault again at the same address, we don't
2384           // end up in an endless loop.
2385           //
2386           // There are two potential complications here.  Two threads trapping
2387           // at the same address at the same time could cause one of the
2388           // threads to think it already unguarded, and abort the VM.  Likely
2389           // very rare.
2390           //
2391           // The other race involves two threads alternately trapping at
2392           // different addresses and failing to unguard the page, resulting in
2393           // an endless loop.  This condition is probably even more unlikely
2394           // than the first.
2395           //
2396           // Although both cases could be avoided by using locks or thread
2397           // local last_addr, these solutions are unnecessary complication:
2398           // this handler is a best-effort safety net, not a complete solution.
2399           // It is disabled by default and should only be used as a workaround
2400           // in case we missed any no-execute-unsafe VM code.
2401 
2402           last_addr = addr;
2403 
2404           return EXCEPTION_CONTINUE_EXECUTION;
2405         }
2406       }
2407 
2408       // Last unguard failed or not unguarding
2409       tty->print_raw_cr("Execution protection violation");
2410       report_error(t, exception_code, addr, exceptionInfo->ExceptionRecord,
2411                    exceptionInfo->ContextRecord);
2412       return EXCEPTION_CONTINUE_SEARCH;
2413     }
2414   }
2415 #endif // _WIN64
2416 
2417   // Check to see if we caught the safepoint code in the
2418   // process of write protecting the memory serialization page.
2419   // It write enables the page immediately after protecting it
2420   // so just return.
2421   if ( exception_code == EXCEPTION_ACCESS_VIOLATION ) {
2422     JavaThread* thread = (JavaThread*) t;
2423     PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2424     address addr = (address) exceptionRecord->ExceptionInformation[1];
2425     if ( os::is_memory_serialize_page(thread, addr) ) {
2426       // Block current thread until the memory serialize page permission restored.
2427       os::block_on_serialize_page_trap();
2428       return EXCEPTION_CONTINUE_EXECUTION;
2429     }
2430   }
2431 
2432   if (t != NULL && t->is_Java_thread()) {
2433     JavaThread* thread = (JavaThread*) t;
2434     bool in_java = thread->thread_state() == _thread_in_Java;
2435 
2436     // Handle potential stack overflows up front.
2437     if (exception_code == EXCEPTION_STACK_OVERFLOW) {
2438       if (os::uses_stack_guard_pages()) {
2439 #ifdef _M_IA64
2440         // Use guard page for register stack.
2441         PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2442         address addr = (address) exceptionRecord->ExceptionInformation[1];
2443         // Check for a register stack overflow on Itanium
2444         if (thread->addr_inside_register_stack_red_zone(addr)) {
2445           // Fatal red zone violation happens if the Java program
2446           // catches a StackOverflow error and does so much processing
2447           // that it runs beyond the unprotected yellow guard zone. As
2448           // a result, we are out of here.
2449           fatal("ERROR: Unrecoverable stack overflow happened. JVM will exit.");
2450         } else if(thread->addr_inside_register_stack(addr)) {
2451           // Disable the yellow zone which sets the state that
2452           // we've got a stack overflow problem.
2453           if (thread->stack_yellow_zone_enabled()) {
2454             thread->disable_stack_yellow_zone();
2455           }
2456           // Give us some room to process the exception.
2457           thread->disable_register_stack_guard();
2458           // Tracing with +Verbose.
2459           if (Verbose) {
2460             tty->print_cr("SOF Compiled Register Stack overflow at " INTPTR_FORMAT " (SIGSEGV)", pc);
2461             tty->print_cr("Register Stack access at " INTPTR_FORMAT, addr);
2462             tty->print_cr("Register Stack base " INTPTR_FORMAT, thread->register_stack_base());
2463             tty->print_cr("Register Stack [" INTPTR_FORMAT "," INTPTR_FORMAT "]",
2464                           thread->register_stack_base(),
2465                           thread->register_stack_base() + thread->stack_size());
2466           }
2467 
2468           // Reguard the permanent register stack red zone just to be sure.
2469           // We saw Windows silently disabling this without telling us.
2470           thread->enable_register_stack_red_zone();
2471 
2472           return Handle_Exception(exceptionInfo,
2473             SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
2474         }
2475 #endif
2476         if (thread->stack_yellow_zone_enabled()) {
2477           // Yellow zone violation.  The o/s has unprotected the first yellow
2478           // zone page for us.  Note:  must call disable_stack_yellow_zone to
2479           // update the enabled status, even if the zone contains only one page.
2480           thread->disable_stack_yellow_zone();
2481           // If not in java code, return and hope for the best.
2482           return in_java ? Handle_Exception(exceptionInfo,
2483             SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW))
2484             :  EXCEPTION_CONTINUE_EXECUTION;
2485         } else {
2486           // Fatal red zone violation.
2487           thread->disable_stack_red_zone();
2488           tty->print_raw_cr("An unrecoverable stack overflow has occurred.");
2489           report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2490                        exceptionInfo->ContextRecord);
2491           return EXCEPTION_CONTINUE_SEARCH;
2492         }
2493       } else if (in_java) {
2494         // JVM-managed guard pages cannot be used on win95/98.  The o/s provides
2495         // a one-time-only guard page, which it has released to us.  The next
2496         // stack overflow on this thread will result in an ACCESS_VIOLATION.
2497         return Handle_Exception(exceptionInfo,
2498           SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
2499       } else {
2500         // Can only return and hope for the best.  Further stack growth will
2501         // result in an ACCESS_VIOLATION.
2502         return EXCEPTION_CONTINUE_EXECUTION;
2503       }
2504     } else if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2505       // Either stack overflow or null pointer exception.
2506       if (in_java) {
2507         PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2508         address addr = (address) exceptionRecord->ExceptionInformation[1];
2509         address stack_end = thread->stack_base() - thread->stack_size();
2510         if (addr < stack_end && addr >= stack_end - os::vm_page_size()) {
2511           // Stack overflow.
2512           assert(!os::uses_stack_guard_pages(),
2513             "should be caught by red zone code above.");
2514           return Handle_Exception(exceptionInfo,
2515             SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
2516         }
2517         //
2518         // Check for safepoint polling and implicit null
2519         // We only expect null pointers in the stubs (vtable)
2520         // the rest are checked explicitly now.
2521         //
2522         CodeBlob* cb = CodeCache::find_blob(pc);
2523         if (cb != NULL) {
2524           if (os::is_poll_address(addr)) {
2525             address stub = SharedRuntime::get_poll_stub(pc);
2526             return Handle_Exception(exceptionInfo, stub);
2527           }
2528         }
2529         {
2530 #ifdef _WIN64
2531           //
2532           // If it's a legal stack address map the entire region in
2533           //
2534           PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2535           address addr = (address) exceptionRecord->ExceptionInformation[1];
2536           if (addr > thread->stack_yellow_zone_base() && addr < thread->stack_base() ) {
2537                   addr = (address)((uintptr_t)addr &
2538                          (~((uintptr_t)os::vm_page_size() - (uintptr_t)1)));
2539                   os::commit_memory((char *)addr, thread->stack_base() - addr,
2540                                     !ExecMem);
2541                   return EXCEPTION_CONTINUE_EXECUTION;
2542           }
2543           else
2544 #endif
2545           {
2546             // Null pointer exception.
2547 #ifdef _M_IA64
2548             // Process implicit null checks in compiled code. Note: Implicit null checks
2549             // can happen even if "ImplicitNullChecks" is disabled, e.g. in vtable stubs.
2550             if (CodeCache::contains((void*) pc_unix_format) && !MacroAssembler::needs_explicit_null_check((intptr_t) addr)) {
2551               CodeBlob *cb = CodeCache::find_blob_unsafe(pc_unix_format);
2552               // Handle implicit null check in UEP method entry
2553               if (cb && (cb->is_frame_complete_at(pc) ||
2554                          (cb->is_nmethod() && ((nmethod *)cb)->inlinecache_check_contains(pc)))) {
2555                 if (Verbose) {
2556                   intptr_t *bundle_start = (intptr_t*) ((intptr_t) pc_unix_format & 0xFFFFFFFFFFFFFFF0);
2557                   tty->print_cr("trap: null_check at " INTPTR_FORMAT " (SIGSEGV)", pc_unix_format);
2558                   tty->print_cr("      to addr " INTPTR_FORMAT, addr);
2559                   tty->print_cr("      bundle is " INTPTR_FORMAT " (high), " INTPTR_FORMAT " (low)",
2560                                 *(bundle_start + 1), *bundle_start);
2561                 }
2562                 return Handle_Exception(exceptionInfo,
2563                   SharedRuntime::continuation_for_implicit_exception(thread, pc_unix_format, SharedRuntime::IMPLICIT_NULL));
2564               }
2565             }
2566 
2567             // Implicit null checks were processed above.  Hence, we should not reach
2568             // here in the usual case => die!
2569             if (Verbose) tty->print_raw_cr("Access violation, possible null pointer exception");
2570             report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2571                          exceptionInfo->ContextRecord);
2572             return EXCEPTION_CONTINUE_SEARCH;
2573 
2574 #else // !IA64
2575 
2576             // Windows 98 reports faulting addresses incorrectly
2577             if (!MacroAssembler::needs_explicit_null_check((intptr_t)addr) ||
2578                 !os::win32::is_nt()) {
2579               address stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
2580               if (stub != NULL) return Handle_Exception(exceptionInfo, stub);
2581             }
2582             report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2583                          exceptionInfo->ContextRecord);
2584             return EXCEPTION_CONTINUE_SEARCH;
2585 #endif
2586           }
2587         }
2588       }
2589 
2590 #ifdef _WIN64
2591       // Special care for fast JNI field accessors.
2592       // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks
2593       // in and the heap gets shrunk before the field access.
2594       if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2595         address addr = JNI_FastGetField::find_slowcase_pc(pc);
2596         if (addr != (address)-1) {
2597           return Handle_Exception(exceptionInfo, addr);
2598         }
2599       }
2600 #endif
2601 
2602       // Stack overflow or null pointer exception in native code.
2603       report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2604                    exceptionInfo->ContextRecord);
2605       return EXCEPTION_CONTINUE_SEARCH;
2606     } // /EXCEPTION_ACCESS_VIOLATION
2607     // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
2608 #if defined _M_IA64
2609     else if ((exception_code == EXCEPTION_ILLEGAL_INSTRUCTION ||
2610               exception_code == EXCEPTION_ILLEGAL_INSTRUCTION_2)) {
2611       M37 handle_wrong_method_break(0, NativeJump::HANDLE_WRONG_METHOD, PR0);
2612 
2613       // Compiled method patched to be non entrant? Following conditions must apply:
2614       // 1. must be first instruction in bundle
2615       // 2. must be a break instruction with appropriate code
2616       if((((uint64_t) pc & 0x0F) == 0) &&
2617          (((IPF_Bundle*) pc)->get_slot0() == handle_wrong_method_break.bits())) {
2618         return Handle_Exception(exceptionInfo,
2619                                 (address)SharedRuntime::get_handle_wrong_method_stub());
2620       }
2621     } // /EXCEPTION_ILLEGAL_INSTRUCTION
2622 #endif
2623 
2624 
2625     if (in_java) {
2626       switch (exception_code) {
2627       case EXCEPTION_INT_DIVIDE_BY_ZERO:
2628         return Handle_Exception(exceptionInfo, SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO));
2629 
2630       case EXCEPTION_INT_OVERFLOW:
2631         return Handle_IDiv_Exception(exceptionInfo);
2632 
2633       } // switch
2634     }
2635     if (((thread->thread_state() == _thread_in_Java) ||
2636         (thread->thread_state() == _thread_in_native)) &&
2637         exception_code != EXCEPTION_UNCAUGHT_CXX_EXCEPTION)
2638     {
2639       LONG result=Handle_FLT_Exception(exceptionInfo);
2640       if (result==EXCEPTION_CONTINUE_EXECUTION) return result;
2641     }
2642   }
2643 
2644   if (exception_code != EXCEPTION_BREAKPOINT) {
2645     report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2646                  exceptionInfo->ContextRecord);
2647   }
2648   return EXCEPTION_CONTINUE_SEARCH;
2649 }
2650 
2651 #ifndef _WIN64
2652 // Special care for fast JNI accessors.
2653 // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks in and
2654 // the heap gets shrunk before the field access.
2655 // Need to install our own structured exception handler since native code may
2656 // install its own.
2657 LONG WINAPI fastJNIAccessorExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo) {
2658   DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
2659   if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2660     address pc = (address) exceptionInfo->ContextRecord->Eip;
2661     address addr = JNI_FastGetField::find_slowcase_pc(pc);
2662     if (addr != (address)-1) {
2663       return Handle_Exception(exceptionInfo, addr);
2664     }
2665   }
2666   return EXCEPTION_CONTINUE_SEARCH;
2667 }
2668 
2669 #define DEFINE_FAST_GETFIELD(Return,Fieldname,Result) \
2670 Return JNICALL jni_fast_Get##Result##Field_wrapper(JNIEnv *env, jobject obj, jfieldID fieldID) { \
2671   __try { \
2672     return (*JNI_FastGetField::jni_fast_Get##Result##Field_fp)(env, obj, fieldID); \
2673   } __except(fastJNIAccessorExceptionFilter((_EXCEPTION_POINTERS*)_exception_info())) { \
2674   } \
2675   return 0; \
2676 }
2677 
2678 DEFINE_FAST_GETFIELD(jboolean, bool,   Boolean)
2679 DEFINE_FAST_GETFIELD(jbyte,    byte,   Byte)
2680 DEFINE_FAST_GETFIELD(jchar,    char,   Char)
2681 DEFINE_FAST_GETFIELD(jshort,   short,  Short)
2682 DEFINE_FAST_GETFIELD(jint,     int,    Int)
2683 DEFINE_FAST_GETFIELD(jlong,    long,   Long)
2684 DEFINE_FAST_GETFIELD(jfloat,   float,  Float)
2685 DEFINE_FAST_GETFIELD(jdouble,  double, Double)
2686 
2687 address os::win32::fast_jni_accessor_wrapper(BasicType type) {
2688   switch (type) {
2689     case T_BOOLEAN: return (address)jni_fast_GetBooleanField_wrapper;
2690     case T_BYTE:    return (address)jni_fast_GetByteField_wrapper;
2691     case T_CHAR:    return (address)jni_fast_GetCharField_wrapper;
2692     case T_SHORT:   return (address)jni_fast_GetShortField_wrapper;
2693     case T_INT:     return (address)jni_fast_GetIntField_wrapper;
2694     case T_LONG:    return (address)jni_fast_GetLongField_wrapper;
2695     case T_FLOAT:   return (address)jni_fast_GetFloatField_wrapper;
2696     case T_DOUBLE:  return (address)jni_fast_GetDoubleField_wrapper;
2697     default:        ShouldNotReachHere();
2698   }
2699   return (address)-1;
2700 }
2701 #endif
2702 
2703 #ifndef PRODUCT
2704 void os::win32::call_test_func_with_wrapper(void (*funcPtr)(void)) {
2705   // Install a win32 structured exception handler around the test
2706   // function call so the VM can generate an error dump if needed.
2707   __try {
2708     (*funcPtr)();
2709   } __except(topLevelExceptionFilter(
2710              (_EXCEPTION_POINTERS*)_exception_info())) {
2711     // Nothing to do.
2712   }
2713 }
2714 #endif
2715 
2716 // Virtual Memory
2717 
2718 int os::vm_page_size() { return os::win32::vm_page_size(); }
2719 int os::vm_allocation_granularity() {
2720   return os::win32::vm_allocation_granularity();
2721 }
2722 
2723 // Windows large page support is available on Windows 2003. In order to use
2724 // large page memory, the administrator must first assign additional privilege
2725 // to the user:
2726 //   + select Control Panel -> Administrative Tools -> Local Security Policy
2727 //   + select Local Policies -> User Rights Assignment
2728 //   + double click "Lock pages in memory", add users and/or groups
2729 //   + reboot
2730 // Note the above steps are needed for administrator as well, as administrators
2731 // by default do not have the privilege to lock pages in memory.
2732 //
2733 // Note about Windows 2003: although the API supports committing large page
2734 // memory on a page-by-page basis and VirtualAlloc() returns success under this
2735 // scenario, I found through experiment it only uses large page if the entire
2736 // memory region is reserved and committed in a single VirtualAlloc() call.
2737 // This makes Windows large page support more or less like Solaris ISM, in
2738 // that the entire heap must be committed upfront. This probably will change
2739 // in the future, if so the code below needs to be revisited.
2740 
2741 #ifndef MEM_LARGE_PAGES
2742 #define MEM_LARGE_PAGES 0x20000000
2743 #endif
2744 
2745 static HANDLE    _hProcess;
2746 static HANDLE    _hToken;
2747 
2748 // Container for NUMA node list info
2749 class NUMANodeListHolder {
2750 private:
2751   int *_numa_used_node_list;  // allocated below
2752   int _numa_used_node_count;
2753 
2754   void free_node_list() {
2755     if (_numa_used_node_list != NULL) {
2756       FREE_C_HEAP_ARRAY(int, _numa_used_node_list, mtInternal);
2757     }
2758   }
2759 
2760 public:
2761   NUMANodeListHolder() {
2762     _numa_used_node_count = 0;
2763     _numa_used_node_list = NULL;
2764     // do rest of initialization in build routine (after function pointers are set up)
2765   }
2766 
2767   ~NUMANodeListHolder() {
2768     free_node_list();
2769   }
2770 
2771   bool build() {
2772     DWORD_PTR proc_aff_mask;
2773     DWORD_PTR sys_aff_mask;
2774     if (!GetProcessAffinityMask(GetCurrentProcess(), &proc_aff_mask, &sys_aff_mask)) return false;
2775     ULONG highest_node_number;
2776     if (!os::Kernel32Dll::GetNumaHighestNodeNumber(&highest_node_number)) return false;
2777     free_node_list();
2778     _numa_used_node_list = NEW_C_HEAP_ARRAY(int, highest_node_number + 1, mtInternal);
2779     for (unsigned int i = 0; i <= highest_node_number; i++) {
2780       ULONGLONG proc_mask_numa_node;
2781       if (!os::Kernel32Dll::GetNumaNodeProcessorMask(i, &proc_mask_numa_node)) return false;
2782       if ((proc_aff_mask & proc_mask_numa_node)!=0) {
2783         _numa_used_node_list[_numa_used_node_count++] = i;
2784       }
2785     }
2786     return (_numa_used_node_count > 1);
2787   }
2788 
2789   int get_count() {return _numa_used_node_count;}
2790   int get_node_list_entry(int n) {
2791     // for indexes out of range, returns -1
2792     return (n < _numa_used_node_count ? _numa_used_node_list[n] : -1);
2793   }
2794 
2795 } numa_node_list_holder;
2796 
2797 
2798 
2799 static size_t _large_page_size = 0;
2800 
2801 static bool resolve_functions_for_large_page_init() {
2802   return os::Kernel32Dll::GetLargePageMinimumAvailable() &&
2803     os::Advapi32Dll::AdvapiAvailable();
2804 }
2805 
2806 static bool request_lock_memory_privilege() {
2807   _hProcess = OpenProcess(PROCESS_QUERY_INFORMATION, FALSE,
2808                                 os::current_process_id());
2809 
2810   LUID luid;
2811   if (_hProcess != NULL &&
2812       os::Advapi32Dll::OpenProcessToken(_hProcess, TOKEN_ADJUST_PRIVILEGES, &_hToken) &&
2813       os::Advapi32Dll::LookupPrivilegeValue(NULL, "SeLockMemoryPrivilege", &luid)) {
2814 
2815     TOKEN_PRIVILEGES tp;
2816     tp.PrivilegeCount = 1;
2817     tp.Privileges[0].Luid = luid;
2818     tp.Privileges[0].Attributes = SE_PRIVILEGE_ENABLED;
2819 
2820     // AdjustTokenPrivileges() may return TRUE even when it couldn't change the
2821     // privilege. Check GetLastError() too. See MSDN document.
2822     if (os::Advapi32Dll::AdjustTokenPrivileges(_hToken, false, &tp, sizeof(tp), NULL, NULL) &&
2823         (GetLastError() == ERROR_SUCCESS)) {
2824       return true;
2825     }
2826   }
2827 
2828   return false;
2829 }
2830 
2831 static void cleanup_after_large_page_init() {
2832   if (_hProcess) CloseHandle(_hProcess);
2833   _hProcess = NULL;
2834   if (_hToken) CloseHandle(_hToken);
2835   _hToken = NULL;
2836 }
2837 
2838 static bool numa_interleaving_init() {
2839   bool success = false;
2840   bool use_numa_interleaving_specified = !FLAG_IS_DEFAULT(UseNUMAInterleaving);
2841 
2842   // print a warning if UseNUMAInterleaving flag is specified on command line
2843   bool warn_on_failure = use_numa_interleaving_specified;
2844 # define WARN(msg) if (warn_on_failure) { warning(msg); }
2845 
2846   // NUMAInterleaveGranularity cannot be less than vm_allocation_granularity (or _large_page_size if using large pages)
2847   size_t min_interleave_granularity = UseLargePages ? _large_page_size : os::vm_allocation_granularity();
2848   NUMAInterleaveGranularity = align_size_up(NUMAInterleaveGranularity, min_interleave_granularity);
2849 
2850   if (os::Kernel32Dll::NumaCallsAvailable()) {
2851     if (numa_node_list_holder.build()) {
2852       if (PrintMiscellaneous && Verbose) {
2853         tty->print("NUMA UsedNodeCount=%d, namely ", numa_node_list_holder.get_count());
2854         for (int i = 0; i < numa_node_list_holder.get_count(); i++) {
2855           tty->print("%d ", numa_node_list_holder.get_node_list_entry(i));
2856         }
2857         tty->print("\n");
2858       }
2859       success = true;
2860     } else {
2861       WARN("Process does not cover multiple NUMA nodes.");
2862     }
2863   } else {
2864     WARN("NUMA Interleaving is not supported by the operating system.");
2865   }
2866   if (!success) {
2867     if (use_numa_interleaving_specified) WARN("...Ignoring UseNUMAInterleaving flag.");
2868   }
2869   return success;
2870 #undef WARN
2871 }
2872 
2873 // this routine is used whenever we need to reserve a contiguous VA range
2874 // but we need to make separate VirtualAlloc calls for each piece of the range
2875 // Reasons for doing this:
2876 //  * UseLargePagesIndividualAllocation was set (normally only needed on WS2003 but possible to be set otherwise)
2877 //  * UseNUMAInterleaving requires a separate node for each piece
2878 static char* allocate_pages_individually(size_t bytes, char* addr, DWORD flags, DWORD prot,
2879                                          bool should_inject_error=false) {
2880   char * p_buf;
2881   // note: at setup time we guaranteed that NUMAInterleaveGranularity was aligned up to a page size
2882   size_t page_size = UseLargePages ? _large_page_size : os::vm_allocation_granularity();
2883   size_t chunk_size = UseNUMAInterleaving ? NUMAInterleaveGranularity : page_size;
2884 
2885   // first reserve enough address space in advance since we want to be
2886   // able to break a single contiguous virtual address range into multiple
2887   // large page commits but WS2003 does not allow reserving large page space
2888   // so we just use 4K pages for reserve, this gives us a legal contiguous
2889   // address space. then we will deallocate that reservation, and re alloc
2890   // using large pages
2891   const size_t size_of_reserve = bytes + chunk_size;
2892   if (bytes > size_of_reserve) {
2893     // Overflowed.
2894     return NULL;
2895   }
2896   p_buf = (char *) VirtualAlloc(addr,
2897                                 size_of_reserve,  // size of Reserve
2898                                 MEM_RESERVE,
2899                                 PAGE_READWRITE);
2900   // If reservation failed, return NULL
2901   if (p_buf == NULL) return NULL;
2902   MemTracker::record_virtual_memory_reserve((address)p_buf, size_of_reserve, mtNone, CALLER_PC);
2903   os::release_memory(p_buf, bytes + chunk_size);
2904 
2905   // we still need to round up to a page boundary (in case we are using large pages)
2906   // but not to a chunk boundary (in case InterleavingGranularity doesn't align with page size)
2907   // instead we handle this in the bytes_to_rq computation below
2908   p_buf = (char *) align_size_up((size_t)p_buf, page_size);
2909 
2910   // now go through and allocate one chunk at a time until all bytes are
2911   // allocated
2912   size_t  bytes_remaining = bytes;
2913   // An overflow of align_size_up() would have been caught above
2914   // in the calculation of size_of_reserve.
2915   char * next_alloc_addr = p_buf;
2916   HANDLE hProc = GetCurrentProcess();
2917 
2918 #ifdef ASSERT
2919   // Variable for the failure injection
2920   long ran_num = os::random();
2921   size_t fail_after = ran_num % bytes;
2922 #endif
2923 
2924   int count=0;
2925   while (bytes_remaining) {
2926     // select bytes_to_rq to get to the next chunk_size boundary
2927 
2928     size_t bytes_to_rq = MIN2(bytes_remaining, chunk_size - ((size_t)next_alloc_addr % chunk_size));
2929     // Note allocate and commit
2930     char * p_new;
2931 
2932 #ifdef ASSERT
2933     bool inject_error_now = should_inject_error && (bytes_remaining <= fail_after);
2934 #else
2935     const bool inject_error_now = false;
2936 #endif
2937 
2938     if (inject_error_now) {
2939       p_new = NULL;
2940     } else {
2941       if (!UseNUMAInterleaving) {
2942         p_new = (char *) VirtualAlloc(next_alloc_addr,
2943                                       bytes_to_rq,
2944                                       flags,
2945                                       prot);
2946       } else {
2947         // get the next node to use from the used_node_list
2948         assert(numa_node_list_holder.get_count() > 0, "Multiple NUMA nodes expected");
2949         DWORD node = numa_node_list_holder.get_node_list_entry(count % numa_node_list_holder.get_count());
2950         p_new = (char *)os::Kernel32Dll::VirtualAllocExNuma(hProc,
2951                                                             next_alloc_addr,
2952                                                             bytes_to_rq,
2953                                                             flags,
2954                                                             prot,
2955                                                             node);
2956       }
2957     }
2958 
2959     if (p_new == NULL) {
2960       // Free any allocated pages
2961       if (next_alloc_addr > p_buf) {
2962         // Some memory was committed so release it.
2963         size_t bytes_to_release = bytes - bytes_remaining;
2964         // NMT has yet to record any individual blocks, so it
2965         // need to create a dummy 'reserve' record to match
2966         // the release.
2967         MemTracker::record_virtual_memory_reserve((address)p_buf,
2968           bytes_to_release, mtNone, CALLER_PC);
2969         os::release_memory(p_buf, bytes_to_release);
2970       }
2971 #ifdef ASSERT
2972       if (should_inject_error) {
2973         if (TracePageSizes && Verbose) {
2974           tty->print_cr("Reserving pages individually failed.");
2975         }
2976       }
2977 #endif
2978       return NULL;
2979     }
2980 
2981     bytes_remaining -= bytes_to_rq;
2982     next_alloc_addr += bytes_to_rq;
2983     count++;
2984   }
2985   // Although the memory is allocated individually, it is returned as one.
2986   // NMT records it as one block.
2987   address pc = CALLER_PC;
2988   if ((flags & MEM_COMMIT) != 0) {
2989     MemTracker::record_virtual_memory_reserve_and_commit((address)p_buf, bytes, mtNone, pc);
2990   } else {
2991     MemTracker::record_virtual_memory_reserve((address)p_buf, bytes, mtNone, pc);
2992   }
2993 
2994   // made it this far, success
2995   return p_buf;
2996 }
2997 
2998 
2999 
3000 void os::large_page_init() {
3001   if (!UseLargePages) return;
3002 
3003   // print a warning if any large page related flag is specified on command line
3004   bool warn_on_failure = !FLAG_IS_DEFAULT(UseLargePages) ||
3005                          !FLAG_IS_DEFAULT(LargePageSizeInBytes);
3006   bool success = false;
3007 
3008 # define WARN(msg) if (warn_on_failure) { warning(msg); }
3009   if (resolve_functions_for_large_page_init()) {
3010     if (request_lock_memory_privilege()) {
3011       size_t s = os::Kernel32Dll::GetLargePageMinimum();
3012       if (s) {
3013 #if defined(IA32) || defined(AMD64)
3014         if (s > 4*M || LargePageSizeInBytes > 4*M) {
3015           WARN("JVM cannot use large pages bigger than 4mb.");
3016         } else {
3017 #endif
3018           if (LargePageSizeInBytes && LargePageSizeInBytes % s == 0) {
3019             _large_page_size = LargePageSizeInBytes;
3020           } else {
3021             _large_page_size = s;
3022           }
3023           success = true;
3024 #if defined(IA32) || defined(AMD64)
3025         }
3026 #endif
3027       } else {
3028         WARN("Large page is not supported by the processor.");
3029       }
3030     } else {
3031       WARN("JVM cannot use large page memory because it does not have enough privilege to lock pages in memory.");
3032     }
3033   } else {
3034     WARN("Large page is not supported by the operating system.");
3035   }
3036 #undef WARN
3037 
3038   const size_t default_page_size = (size_t) vm_page_size();
3039   if (success && _large_page_size > default_page_size) {
3040     _page_sizes[0] = _large_page_size;
3041     _page_sizes[1] = default_page_size;
3042     _page_sizes[2] = 0;
3043   }
3044 
3045   cleanup_after_large_page_init();
3046   UseLargePages = success;
3047 }
3048 
3049 // On win32, one cannot release just a part of reserved memory, it's an
3050 // all or nothing deal.  When we split a reservation, we must break the
3051 // reservation into two reservations.
3052 void os::pd_split_reserved_memory(char *base, size_t size, size_t split,
3053                               bool realloc) {
3054   if (size > 0) {
3055     release_memory(base, size);
3056     if (realloc) {
3057       reserve_memory(split, base);
3058     }
3059     if (size != split) {
3060       reserve_memory(size - split, base + split);
3061     }
3062   }
3063 }
3064 
3065 // Multiple threads can race in this code but it's not possible to unmap small sections of
3066 // virtual space to get requested alignment, like posix-like os's.
3067 // Windows prevents multiple thread from remapping over each other so this loop is thread-safe.
3068 char* os::reserve_memory_aligned(size_t size, size_t alignment) {
3069   assert((alignment & (os::vm_allocation_granularity() - 1)) == 0,
3070       "Alignment must be a multiple of allocation granularity (page size)");
3071   assert((size & (alignment -1)) == 0, "size must be 'alignment' aligned");
3072 
3073   size_t extra_size = size + alignment;
3074   assert(extra_size >= size, "overflow, size is too large to allow alignment");
3075 
3076   char* aligned_base = NULL;
3077 
3078   do {
3079     char* extra_base = os::reserve_memory(extra_size, NULL, alignment);
3080     if (extra_base == NULL) {
3081       return NULL;
3082     }
3083     // Do manual alignment
3084     aligned_base = (char*) align_size_up((uintptr_t) extra_base, alignment);
3085 
3086     os::release_memory(extra_base, extra_size);
3087 
3088     aligned_base = os::reserve_memory(size, aligned_base);
3089 
3090   } while (aligned_base == NULL);
3091 
3092   return aligned_base;
3093 }
3094 
3095 char* os::pd_reserve_memory(size_t bytes, char* addr, size_t alignment_hint) {
3096   assert((size_t)addr % os::vm_allocation_granularity() == 0,
3097          "reserve alignment");
3098   assert(bytes % os::vm_allocation_granularity() == 0, "reserve block size");
3099   char* res;
3100   // note that if UseLargePages is on, all the areas that require interleaving
3101   // will go thru reserve_memory_special rather than thru here.
3102   bool use_individual = (UseNUMAInterleaving && !UseLargePages);
3103   if (!use_individual) {
3104     res = (char*)VirtualAlloc(addr, bytes, MEM_RESERVE, PAGE_READWRITE);
3105   } else {
3106     elapsedTimer reserveTimer;
3107     if( Verbose && PrintMiscellaneous ) reserveTimer.start();
3108     // in numa interleaving, we have to allocate pages individually
3109     // (well really chunks of NUMAInterleaveGranularity size)
3110     res = allocate_pages_individually(bytes, addr, MEM_RESERVE, PAGE_READWRITE);
3111     if (res == NULL) {
3112       warning("NUMA page allocation failed");
3113     }
3114     if( Verbose && PrintMiscellaneous ) {
3115       reserveTimer.stop();
3116       tty->print_cr("reserve_memory of %Ix bytes took " JLONG_FORMAT " ms (" JLONG_FORMAT " ticks)", bytes,
3117                     reserveTimer.milliseconds(), reserveTimer.ticks());
3118     }
3119   }
3120   assert(res == NULL || addr == NULL || addr == res,
3121          "Unexpected address from reserve.");
3122 
3123   return res;
3124 }
3125 
3126 // Reserve memory at an arbitrary address, only if that area is
3127 // available (and not reserved for something else).
3128 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
3129   // Windows os::reserve_memory() fails of the requested address range is
3130   // not avilable.
3131   return reserve_memory(bytes, requested_addr);
3132 }
3133 
3134 size_t os::large_page_size() {
3135   return _large_page_size;
3136 }
3137 
3138 bool os::can_commit_large_page_memory() {
3139   // Windows only uses large page memory when the entire region is reserved
3140   // and committed in a single VirtualAlloc() call. This may change in the
3141   // future, but with Windows 2003 it's not possible to commit on demand.
3142   return false;
3143 }
3144 
3145 bool os::can_execute_large_page_memory() {
3146   return true;
3147 }
3148 
3149 char* os::reserve_memory_special(size_t bytes, size_t alignment, char* addr, bool exec) {
3150   assert(UseLargePages, "only for large pages");
3151 
3152   if (!is_size_aligned(bytes, os::large_page_size()) || alignment > os::large_page_size()) {
3153     return NULL; // Fallback to small pages.
3154   }
3155 
3156   const DWORD prot = exec ? PAGE_EXECUTE_READWRITE : PAGE_READWRITE;
3157   const DWORD flags = MEM_RESERVE | MEM_COMMIT | MEM_LARGE_PAGES;
3158 
3159   // with large pages, there are two cases where we need to use Individual Allocation
3160   // 1) the UseLargePagesIndividualAllocation flag is set (set by default on WS2003)
3161   // 2) NUMA Interleaving is enabled, in which case we use a different node for each page
3162   if (UseLargePagesIndividualAllocation || UseNUMAInterleaving) {
3163     if (TracePageSizes && Verbose) {
3164        tty->print_cr("Reserving large pages individually.");
3165     }
3166     char * p_buf = allocate_pages_individually(bytes, addr, flags, prot, LargePagesIndividualAllocationInjectError);
3167     if (p_buf == NULL) {
3168       // give an appropriate warning message
3169       if (UseNUMAInterleaving) {
3170         warning("NUMA large page allocation failed, UseLargePages flag ignored");
3171       }
3172       if (UseLargePagesIndividualAllocation) {
3173         warning("Individually allocated large pages failed, "
3174                 "use -XX:-UseLargePagesIndividualAllocation to turn off");
3175       }
3176       return NULL;
3177     }
3178 
3179     return p_buf;
3180 
3181   } else {
3182     if (TracePageSizes && Verbose) {
3183        tty->print_cr("Reserving large pages in a single large chunk.");
3184     }
3185     // normal policy just allocate it all at once
3186     DWORD flag = MEM_RESERVE | MEM_COMMIT | MEM_LARGE_PAGES;
3187     char * res = (char *)VirtualAlloc(addr, bytes, flag, prot);
3188     if (res != NULL) {
3189       address pc = CALLER_PC;
3190       MemTracker::record_virtual_memory_reserve_and_commit((address)res, bytes, mtNone, pc);
3191     }
3192 
3193     return res;
3194   }
3195 }
3196 
3197 bool os::release_memory_special(char* base, size_t bytes) {
3198   assert(base != NULL, "Sanity check");
3199   return release_memory(base, bytes);
3200 }
3201 
3202 void os::print_statistics() {
3203 }
3204 
3205 static void warn_fail_commit_memory(char* addr, size_t bytes, bool exec) {
3206   int err = os::get_last_error();
3207   char buf[256];
3208   size_t buf_len = os::lasterror(buf, sizeof(buf));
3209   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
3210           ", %d) failed; error='%s' (DOS error/errno=%d)", addr, bytes,
3211           exec, buf_len != 0 ? buf : "<no_error_string>", err);
3212 }
3213 
3214 bool os::pd_commit_memory(char* addr, size_t bytes, bool exec) {
3215   if (bytes == 0) {
3216     // Don't bother the OS with noops.
3217     return true;
3218   }
3219   assert((size_t) addr % os::vm_page_size() == 0, "commit on page boundaries");
3220   assert(bytes % os::vm_page_size() == 0, "commit in page-sized chunks");
3221   // Don't attempt to print anything if the OS call fails. We're
3222   // probably low on resources, so the print itself may cause crashes.
3223 
3224   // unless we have NUMAInterleaving enabled, the range of a commit
3225   // is always within a reserve covered by a single VirtualAlloc
3226   // in that case we can just do a single commit for the requested size
3227   if (!UseNUMAInterleaving) {
3228     if (VirtualAlloc(addr, bytes, MEM_COMMIT, PAGE_READWRITE) == NULL) {
3229       NOT_PRODUCT(warn_fail_commit_memory(addr, bytes, exec);)
3230       return false;
3231     }
3232     if (exec) {
3233       DWORD oldprot;
3234       // Windows doc says to use VirtualProtect to get execute permissions
3235       if (!VirtualProtect(addr, bytes, PAGE_EXECUTE_READWRITE, &oldprot)) {
3236         NOT_PRODUCT(warn_fail_commit_memory(addr, bytes, exec);)
3237         return false;
3238       }
3239     }
3240     return true;
3241   } else {
3242 
3243     // when NUMAInterleaving is enabled, the commit might cover a range that
3244     // came from multiple VirtualAlloc reserves (using allocate_pages_individually).
3245     // VirtualQuery can help us determine that.  The RegionSize that VirtualQuery
3246     // returns represents the number of bytes that can be committed in one step.
3247     size_t bytes_remaining = bytes;
3248     char * next_alloc_addr = addr;
3249     while (bytes_remaining > 0) {
3250       MEMORY_BASIC_INFORMATION alloc_info;
3251       VirtualQuery(next_alloc_addr, &alloc_info, sizeof(alloc_info));
3252       size_t bytes_to_rq = MIN2(bytes_remaining, (size_t)alloc_info.RegionSize);
3253       if (VirtualAlloc(next_alloc_addr, bytes_to_rq, MEM_COMMIT,
3254                        PAGE_READWRITE) == NULL) {
3255         NOT_PRODUCT(warn_fail_commit_memory(next_alloc_addr, bytes_to_rq,
3256                                             exec);)
3257         return false;
3258       }
3259       if (exec) {
3260         DWORD oldprot;
3261         if (!VirtualProtect(next_alloc_addr, bytes_to_rq,
3262                             PAGE_EXECUTE_READWRITE, &oldprot)) {
3263           NOT_PRODUCT(warn_fail_commit_memory(next_alloc_addr, bytes_to_rq,
3264                                               exec);)
3265           return false;
3266         }
3267       }
3268       bytes_remaining -= bytes_to_rq;
3269       next_alloc_addr += bytes_to_rq;
3270     }
3271   }
3272   // if we made it this far, return true
3273   return true;
3274 }
3275 
3276 bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
3277                        bool exec) {
3278   // alignment_hint is ignored on this OS
3279   return pd_commit_memory(addr, size, exec);
3280 }
3281 
3282 void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
3283                                   const char* mesg) {
3284   assert(mesg != NULL, "mesg must be specified");
3285   if (!pd_commit_memory(addr, size, exec)) {
3286     warn_fail_commit_memory(addr, size, exec);
3287     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, mesg);
3288   }
3289 }
3290 
3291 void os::pd_commit_memory_or_exit(char* addr, size_t size,
3292                                   size_t alignment_hint, bool exec,
3293                                   const char* mesg) {
3294   // alignment_hint is ignored on this OS
3295   pd_commit_memory_or_exit(addr, size, exec, mesg);
3296 }
3297 
3298 bool os::pd_uncommit_memory(char* addr, size_t bytes) {
3299   if (bytes == 0) {
3300     // Don't bother the OS with noops.
3301     return true;
3302   }
3303   assert((size_t) addr % os::vm_page_size() == 0, "uncommit on page boundaries");
3304   assert(bytes % os::vm_page_size() == 0, "uncommit in page-sized chunks");
3305   return (VirtualFree(addr, bytes, MEM_DECOMMIT) != 0);
3306 }
3307 
3308 bool os::pd_release_memory(char* addr, size_t bytes) {
3309   return VirtualFree(addr, 0, MEM_RELEASE) != 0;
3310 }
3311 
3312 bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
3313   return os::commit_memory(addr, size, !ExecMem);
3314 }
3315 
3316 bool os::remove_stack_guard_pages(char* addr, size_t size) {
3317   return os::uncommit_memory(addr, size);
3318 }
3319 
3320 // Set protections specified
3321 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
3322                         bool is_committed) {
3323   unsigned int p = 0;
3324   switch (prot) {
3325   case MEM_PROT_NONE: p = PAGE_NOACCESS; break;
3326   case MEM_PROT_READ: p = PAGE_READONLY; break;
3327   case MEM_PROT_RW:   p = PAGE_READWRITE; break;
3328   case MEM_PROT_RWX:  p = PAGE_EXECUTE_READWRITE; break;
3329   default:
3330     ShouldNotReachHere();
3331   }
3332 
3333   DWORD old_status;
3334 
3335   // Strange enough, but on Win32 one can change protection only for committed
3336   // memory, not a big deal anyway, as bytes less or equal than 64K
3337   if (!is_committed) {
3338     commit_memory_or_exit(addr, bytes, prot == MEM_PROT_RWX,
3339                           "cannot commit protection page");
3340   }
3341   // One cannot use os::guard_memory() here, as on Win32 guard page
3342   // have different (one-shot) semantics, from MSDN on PAGE_GUARD:
3343   //
3344   // Pages in the region become guard pages. Any attempt to access a guard page
3345   // causes the system to raise a STATUS_GUARD_PAGE exception and turn off
3346   // the guard page status. Guard pages thus act as a one-time access alarm.
3347   return VirtualProtect(addr, bytes, p, &old_status) != 0;
3348 }
3349 
3350 bool os::guard_memory(char* addr, size_t bytes) {
3351   DWORD old_status;
3352   return VirtualProtect(addr, bytes, PAGE_READWRITE | PAGE_GUARD, &old_status) != 0;
3353 }
3354 
3355 bool os::unguard_memory(char* addr, size_t bytes) {
3356   DWORD old_status;
3357   return VirtualProtect(addr, bytes, PAGE_READWRITE, &old_status) != 0;
3358 }
3359 
3360 void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) { }
3361 void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) { }
3362 void os::numa_make_global(char *addr, size_t bytes)    { }
3363 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint)    { }
3364 bool os::numa_topology_changed()                       { return false; }
3365 size_t os::numa_get_groups_num()                       { return MAX2(numa_node_list_holder.get_count(), 1); }
3366 int os::numa_get_group_id()                            { return 0; }
3367 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
3368   if (numa_node_list_holder.get_count() == 0 && size > 0) {
3369     // Provide an answer for UMA systems
3370     ids[0] = 0;
3371     return 1;
3372   } else {
3373     // check for size bigger than actual groups_num
3374     size = MIN2(size, numa_get_groups_num());
3375     for (int i = 0; i < (int)size; i++) {
3376       ids[i] = numa_node_list_holder.get_node_list_entry(i);
3377     }
3378     return size;
3379   }
3380 }
3381 
3382 bool os::get_page_info(char *start, page_info* info) {
3383   return false;
3384 }
3385 
3386 char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
3387   return end;
3388 }
3389 
3390 char* os::non_memory_address_word() {
3391   // Must never look like an address returned by reserve_memory,
3392   // even in its subfields (as defined by the CPU immediate fields,
3393   // if the CPU splits constants across multiple instructions).
3394   return (char*)-1;
3395 }
3396 
3397 #define MAX_ERROR_COUNT 100
3398 #define SYS_THREAD_ERROR 0xffffffffUL
3399 
3400 void os::pd_start_thread(Thread* thread) {
3401   DWORD ret = ResumeThread(thread->osthread()->thread_handle());
3402   // Returns previous suspend state:
3403   // 0:  Thread was not suspended
3404   // 1:  Thread is running now
3405   // >1: Thread is still suspended.
3406   assert(ret != SYS_THREAD_ERROR, "StartThread failed"); // should propagate back
3407 }
3408 
3409 class HighResolutionInterval : public CHeapObj<mtThread> {
3410   // The default timer resolution seems to be 10 milliseconds.
3411   // (Where is this written down?)
3412   // If someone wants to sleep for only a fraction of the default,
3413   // then we set the timer resolution down to 1 millisecond for
3414   // the duration of their interval.
3415   // We carefully set the resolution back, since otherwise we
3416   // seem to incur an overhead (3%?) that we don't need.
3417   // CONSIDER: if ms is small, say 3, then we should run with a high resolution time.
3418   // Buf if ms is large, say 500, or 503, we should avoid the call to timeBeginPeriod().
3419   // Alternatively, we could compute the relative error (503/500 = .6%) and only use
3420   // timeBeginPeriod() if the relative error exceeded some threshold.
3421   // timeBeginPeriod() has been linked to problems with clock drift on win32 systems and
3422   // to decreased efficiency related to increased timer "tick" rates.  We want to minimize
3423   // (a) calls to timeBeginPeriod() and timeEndPeriod() and (b) time spent with high
3424   // resolution timers running.
3425 private:
3426     jlong resolution;
3427 public:
3428   HighResolutionInterval(jlong ms) {
3429     resolution = ms % 10L;
3430     if (resolution != 0) {
3431       MMRESULT result = timeBeginPeriod(1L);
3432     }
3433   }
3434   ~HighResolutionInterval() {
3435     if (resolution != 0) {
3436       MMRESULT result = timeEndPeriod(1L);
3437     }
3438     resolution = 0L;
3439   }
3440 };
3441 
3442 int os::sleep(Thread* thread, jlong ms, bool interruptable) {
3443   jlong limit = (jlong) MAXDWORD;
3444 
3445   while(ms > limit) {
3446     int res;
3447     if ((res = sleep(thread, limit, interruptable)) != OS_TIMEOUT)
3448       return res;
3449     ms -= limit;
3450   }
3451 
3452   assert(thread == Thread::current(),  "thread consistency check");
3453   OSThread* osthread = thread->osthread();
3454   OSThreadWaitState osts(osthread, false /* not Object.wait() */);
3455   int result;
3456   if (interruptable) {
3457     assert(thread->is_Java_thread(), "must be java thread");
3458     JavaThread *jt = (JavaThread *) thread;
3459     ThreadBlockInVM tbivm(jt);
3460 
3461     jt->set_suspend_equivalent();
3462     // cleared by handle_special_suspend_equivalent_condition() or
3463     // java_suspend_self() via check_and_wait_while_suspended()
3464 
3465     HANDLE events[1];
3466     events[0] = osthread->interrupt_event();
3467     HighResolutionInterval *phri=NULL;
3468     if(!ForceTimeHighResolution)
3469       phri = new HighResolutionInterval( ms );
3470     if (WaitForMultipleObjects(1, events, FALSE, (DWORD)ms) == WAIT_TIMEOUT) {
3471       result = OS_TIMEOUT;
3472     } else {
3473       ResetEvent(osthread->interrupt_event());
3474       osthread->set_interrupted(false);
3475       result = OS_INTRPT;
3476     }
3477     delete phri; //if it is NULL, harmless
3478 
3479     // were we externally suspended while we were waiting?
3480     jt->check_and_wait_while_suspended();
3481   } else {
3482     assert(!thread->is_Java_thread(), "must not be java thread");
3483     Sleep((long) ms);
3484     result = OS_TIMEOUT;
3485   }
3486   return result;
3487 }
3488 
3489 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
3490 void os::infinite_sleep() {
3491   while (true) {    // sleep forever ...
3492     Sleep(100000);  // ... 100 seconds at a time
3493   }
3494 }
3495 
3496 typedef BOOL (WINAPI * STTSignature)(void) ;
3497 
3498 os::YieldResult os::NakedYield() {
3499   // Use either SwitchToThread() or Sleep(0)
3500   // Consider passing back the return value from SwitchToThread().
3501   if (os::Kernel32Dll::SwitchToThreadAvailable()) {
3502     return SwitchToThread() ? os::YIELD_SWITCHED : os::YIELD_NONEREADY ;
3503   } else {
3504     Sleep(0);
3505   }
3506   return os::YIELD_UNKNOWN ;
3507 }
3508 
3509 void os::yield() {  os::NakedYield(); }
3510 
3511 void os::yield_all(int attempts) {
3512   // Yields to all threads, including threads with lower priorities
3513   Sleep(1);
3514 }
3515 
3516 // Win32 only gives you access to seven real priorities at a time,
3517 // so we compress Java's ten down to seven.  It would be better
3518 // if we dynamically adjusted relative priorities.
3519 
3520 int os::java_to_os_priority[CriticalPriority + 1] = {
3521   THREAD_PRIORITY_IDLE,                         // 0  Entry should never be used
3522   THREAD_PRIORITY_LOWEST,                       // 1  MinPriority
3523   THREAD_PRIORITY_LOWEST,                       // 2
3524   THREAD_PRIORITY_BELOW_NORMAL,                 // 3
3525   THREAD_PRIORITY_BELOW_NORMAL,                 // 4
3526   THREAD_PRIORITY_NORMAL,                       // 5  NormPriority
3527   THREAD_PRIORITY_NORMAL,                       // 6
3528   THREAD_PRIORITY_ABOVE_NORMAL,                 // 7
3529   THREAD_PRIORITY_ABOVE_NORMAL,                 // 8
3530   THREAD_PRIORITY_HIGHEST,                      // 9  NearMaxPriority
3531   THREAD_PRIORITY_HIGHEST,                      // 10 MaxPriority
3532   THREAD_PRIORITY_HIGHEST                       // 11 CriticalPriority
3533 };
3534 
3535 int prio_policy1[CriticalPriority + 1] = {
3536   THREAD_PRIORITY_IDLE,                         // 0  Entry should never be used
3537   THREAD_PRIORITY_LOWEST,                       // 1  MinPriority
3538   THREAD_PRIORITY_LOWEST,                       // 2
3539   THREAD_PRIORITY_BELOW_NORMAL,                 // 3
3540   THREAD_PRIORITY_BELOW_NORMAL,                 // 4
3541   THREAD_PRIORITY_NORMAL,                       // 5  NormPriority
3542   THREAD_PRIORITY_ABOVE_NORMAL,                 // 6
3543   THREAD_PRIORITY_ABOVE_NORMAL,                 // 7
3544   THREAD_PRIORITY_HIGHEST,                      // 8
3545   THREAD_PRIORITY_HIGHEST,                      // 9  NearMaxPriority
3546   THREAD_PRIORITY_TIME_CRITICAL,                // 10 MaxPriority
3547   THREAD_PRIORITY_TIME_CRITICAL                 // 11 CriticalPriority
3548 };
3549 
3550 static int prio_init() {
3551   // If ThreadPriorityPolicy is 1, switch tables
3552   if (ThreadPriorityPolicy == 1) {
3553     int i;
3554     for (i = 0; i < CriticalPriority + 1; i++) {
3555       os::java_to_os_priority[i] = prio_policy1[i];
3556     }
3557   }
3558   if (UseCriticalJavaThreadPriority) {
3559     os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority] ;
3560   }
3561   return 0;
3562 }
3563 
3564 OSReturn os::set_native_priority(Thread* thread, int priority) {
3565   if (!UseThreadPriorities) return OS_OK;
3566   bool ret = SetThreadPriority(thread->osthread()->thread_handle(), priority) != 0;
3567   return ret ? OS_OK : OS_ERR;
3568 }
3569 
3570 OSReturn os::get_native_priority(const Thread* const thread, int* priority_ptr) {
3571   if ( !UseThreadPriorities ) {
3572     *priority_ptr = java_to_os_priority[NormPriority];
3573     return OS_OK;
3574   }
3575   int os_prio = GetThreadPriority(thread->osthread()->thread_handle());
3576   if (os_prio == THREAD_PRIORITY_ERROR_RETURN) {
3577     assert(false, "GetThreadPriority failed");
3578     return OS_ERR;
3579   }
3580   *priority_ptr = os_prio;
3581   return OS_OK;
3582 }
3583 
3584 
3585 // Hint to the underlying OS that a task switch would not be good.
3586 // Void return because it's a hint and can fail.
3587 void os::hint_no_preempt() {}
3588 
3589 void os::interrupt(Thread* thread) {
3590   assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
3591          "possibility of dangling Thread pointer");
3592 
3593   OSThread* osthread = thread->osthread();
3594   osthread->set_interrupted(true);
3595   // More than one thread can get here with the same value of osthread,
3596   // resulting in multiple notifications.  We do, however, want the store
3597   // to interrupted() to be visible to other threads before we post
3598   // the interrupt event.
3599   OrderAccess::release();
3600   SetEvent(osthread->interrupt_event());
3601   // For JSR166:  unpark after setting status
3602   if (thread->is_Java_thread())
3603     ((JavaThread*)thread)->parker()->unpark();
3604 
3605   ParkEvent * ev = thread->_ParkEvent ;
3606   if (ev != NULL) ev->unpark() ;
3607 
3608 }
3609 
3610 
3611 bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
3612   assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
3613          "possibility of dangling Thread pointer");
3614 
3615   OSThread* osthread = thread->osthread();
3616   bool interrupted = osthread->interrupted();
3617   // There is no synchronization between the setting of the interrupt
3618   // and it being cleared here. It is critical - see 6535709 - that
3619   // we only clear the interrupt state, and reset the interrupt event,
3620   // if we are going to report that we were indeed interrupted - else
3621   // an interrupt can be "lost", leading to spurious wakeups or lost wakeups
3622   // depending on the timing
3623   if (interrupted && clear_interrupted) {
3624     osthread->set_interrupted(false);
3625     ResetEvent(osthread->interrupt_event());
3626   } // Otherwise leave the interrupted state alone
3627 
3628   return interrupted;
3629 }
3630 
3631 // Get's a pc (hint) for a running thread. Currently used only for profiling.
3632 ExtendedPC os::get_thread_pc(Thread* thread) {
3633   CONTEXT context;
3634   context.ContextFlags = CONTEXT_CONTROL;
3635   HANDLE handle = thread->osthread()->thread_handle();
3636 #ifdef _M_IA64
3637   assert(0, "Fix get_thread_pc");
3638   return ExtendedPC(NULL);
3639 #else
3640   if (GetThreadContext(handle, &context)) {
3641 #ifdef _M_AMD64
3642     return ExtendedPC((address) context.Rip);
3643 #else
3644     return ExtendedPC((address) context.Eip);
3645 #endif
3646   } else {
3647     return ExtendedPC(NULL);
3648   }
3649 #endif
3650 }
3651 
3652 // GetCurrentThreadId() returns DWORD
3653 intx os::current_thread_id()          { return GetCurrentThreadId(); }
3654 
3655 static int _initial_pid = 0;
3656 
3657 int os::current_process_id()
3658 {
3659   return (_initial_pid ? _initial_pid : _getpid());
3660 }
3661 
3662 int    os::win32::_vm_page_size       = 0;
3663 int    os::win32::_vm_allocation_granularity = 0;
3664 int    os::win32::_processor_type     = 0;
3665 // Processor level is not available on non-NT systems, use vm_version instead
3666 int    os::win32::_processor_level    = 0;
3667 julong os::win32::_physical_memory    = 0;
3668 size_t os::win32::_default_stack_size = 0;
3669 
3670          intx os::win32::_os_thread_limit    = 0;
3671 volatile intx os::win32::_os_thread_count    = 0;
3672 
3673 bool   os::win32::_is_nt              = false;
3674 bool   os::win32::_is_windows_2003    = false;
3675 bool   os::win32::_is_windows_server  = false;
3676 
3677 void os::win32::initialize_system_info() {
3678   SYSTEM_INFO si;
3679   GetSystemInfo(&si);
3680   _vm_page_size    = si.dwPageSize;
3681   _vm_allocation_granularity = si.dwAllocationGranularity;
3682   _processor_type  = si.dwProcessorType;
3683   _processor_level = si.wProcessorLevel;
3684   set_processor_count(si.dwNumberOfProcessors);
3685 
3686   MEMORYSTATUSEX ms;
3687   ms.dwLength = sizeof(ms);
3688 
3689   // also returns dwAvailPhys (free physical memory bytes), dwTotalVirtual, dwAvailVirtual,
3690   // dwMemoryLoad (% of memory in use)
3691   GlobalMemoryStatusEx(&ms);
3692   _physical_memory = ms.ullTotalPhys;
3693 
3694   OSVERSIONINFOEX oi;
3695   oi.dwOSVersionInfoSize = sizeof(OSVERSIONINFOEX);
3696   GetVersionEx((OSVERSIONINFO*)&oi);
3697   switch(oi.dwPlatformId) {
3698     case VER_PLATFORM_WIN32_WINDOWS: _is_nt = false; break;
3699     case VER_PLATFORM_WIN32_NT:
3700       _is_nt = true;
3701       {
3702         int os_vers = oi.dwMajorVersion * 1000 + oi.dwMinorVersion;
3703         if (os_vers == 5002) {
3704           _is_windows_2003 = true;
3705         }
3706         if (oi.wProductType == VER_NT_DOMAIN_CONTROLLER ||
3707           oi.wProductType == VER_NT_SERVER) {
3708             _is_windows_server = true;
3709         }
3710       }
3711       break;
3712     default: fatal("Unknown platform");
3713   }
3714 
3715   _default_stack_size = os::current_stack_size();
3716   assert(_default_stack_size > (size_t) _vm_page_size, "invalid stack size");
3717   assert((_default_stack_size & (_vm_page_size - 1)) == 0,
3718     "stack size not a multiple of page size");
3719 
3720   initialize_performance_counter();
3721 
3722   // Win95/Win98 scheduler bug work-around. The Win95/98 scheduler is
3723   // known to deadlock the system, if the VM issues to thread operations with
3724   // a too high frequency, e.g., such as changing the priorities.
3725   // The 6000 seems to work well - no deadlocks has been notices on the test
3726   // programs that we have seen experience this problem.
3727   if (!os::win32::is_nt()) {
3728     StarvationMonitorInterval = 6000;
3729   }
3730 }
3731 
3732 
3733 HINSTANCE os::win32::load_Windows_dll(const char* name, char *ebuf, int ebuflen) {
3734   char path[MAX_PATH];
3735   DWORD size;
3736   DWORD pathLen = (DWORD)sizeof(path);
3737   HINSTANCE result = NULL;
3738 
3739   // only allow library name without path component
3740   assert(strchr(name, '\\') == NULL, "path not allowed");
3741   assert(strchr(name, ':') == NULL, "path not allowed");
3742   if (strchr(name, '\\') != NULL || strchr(name, ':') != NULL) {
3743     jio_snprintf(ebuf, ebuflen,
3744       "Invalid parameter while calling os::win32::load_windows_dll(): cannot take path: %s", name);
3745     return NULL;
3746   }
3747 
3748   // search system directory
3749   if ((size = GetSystemDirectory(path, pathLen)) > 0) {
3750     strcat(path, "\\");
3751     strcat(path, name);
3752     if ((result = (HINSTANCE)os::dll_load(path, ebuf, ebuflen)) != NULL) {
3753       return result;
3754     }
3755   }
3756 
3757   // try Windows directory
3758   if ((size = GetWindowsDirectory(path, pathLen)) > 0) {
3759     strcat(path, "\\");
3760     strcat(path, name);
3761     if ((result = (HINSTANCE)os::dll_load(path, ebuf, ebuflen)) != NULL) {
3762       return result;
3763     }
3764   }
3765 
3766   jio_snprintf(ebuf, ebuflen,
3767     "os::win32::load_windows_dll() cannot load %s from system directories.", name);
3768   return NULL;
3769 }
3770 
3771 void os::win32::setmode_streams() {
3772   _setmode(_fileno(stdin), _O_BINARY);
3773   _setmode(_fileno(stdout), _O_BINARY);
3774   _setmode(_fileno(stderr), _O_BINARY);
3775 }
3776 
3777 
3778 bool os::is_debugger_attached() {
3779   return IsDebuggerPresent() ? true : false;
3780 }
3781 
3782 
3783 void os::wait_for_keypress_at_exit(void) {
3784   if (PauseAtExit) {
3785     fprintf(stderr, "Press any key to continue...\n");
3786     fgetc(stdin);
3787   }
3788 }
3789 
3790 
3791 int os::message_box(const char* title, const char* message) {
3792   int result = MessageBox(NULL, message, title,
3793                           MB_YESNO | MB_ICONERROR | MB_SYSTEMMODAL | MB_DEFAULT_DESKTOP_ONLY);
3794   return result == IDYES;
3795 }
3796 
3797 int os::allocate_thread_local_storage() {
3798   return TlsAlloc();
3799 }
3800 
3801 
3802 void os::free_thread_local_storage(int index) {
3803   TlsFree(index);
3804 }
3805 
3806 
3807 void os::thread_local_storage_at_put(int index, void* value) {
3808   TlsSetValue(index, value);
3809   assert(thread_local_storage_at(index) == value, "Just checking");
3810 }
3811 
3812 
3813 void* os::thread_local_storage_at(int index) {
3814   return TlsGetValue(index);
3815 }
3816 
3817 
3818 #ifndef PRODUCT
3819 #ifndef _WIN64
3820 // Helpers to check whether NX protection is enabled
3821 int nx_exception_filter(_EXCEPTION_POINTERS *pex) {
3822   if (pex->ExceptionRecord->ExceptionCode == EXCEPTION_ACCESS_VIOLATION &&
3823       pex->ExceptionRecord->NumberParameters > 0 &&
3824       pex->ExceptionRecord->ExceptionInformation[0] ==
3825       EXCEPTION_INFO_EXEC_VIOLATION) {
3826     return EXCEPTION_EXECUTE_HANDLER;
3827   }
3828   return EXCEPTION_CONTINUE_SEARCH;
3829 }
3830 
3831 void nx_check_protection() {
3832   // If NX is enabled we'll get an exception calling into code on the stack
3833   char code[] = { (char)0xC3 }; // ret
3834   void *code_ptr = (void *)code;
3835   __try {
3836     __asm call code_ptr
3837   } __except(nx_exception_filter((_EXCEPTION_POINTERS*)_exception_info())) {
3838     tty->print_raw_cr("NX protection detected.");
3839   }
3840 }
3841 #endif // _WIN64
3842 #endif // PRODUCT
3843 
3844 // this is called _before_ the global arguments have been parsed
3845 void os::init(void) {
3846   _initial_pid = _getpid();
3847 
3848   init_random(1234567);
3849 
3850   win32::initialize_system_info();
3851   win32::setmode_streams();
3852   init_page_sizes((size_t) win32::vm_page_size());
3853 
3854   // For better scalability on MP systems (must be called after initialize_system_info)
3855 #ifndef PRODUCT
3856   if (is_MP()) {
3857     NoYieldsInMicrolock = true;
3858   }
3859 #endif
3860   // This may be overridden later when argument processing is done.
3861   FLAG_SET_ERGO(bool, UseLargePagesIndividualAllocation,
3862     os::win32::is_windows_2003());
3863 
3864   // Initialize main_process and main_thread
3865   main_process = GetCurrentProcess();  // Remember main_process is a pseudo handle
3866  if (!DuplicateHandle(main_process, GetCurrentThread(), main_process,
3867                        &main_thread, THREAD_ALL_ACCESS, false, 0)) {
3868     fatal("DuplicateHandle failed\n");
3869   }
3870   main_thread_id = (int) GetCurrentThreadId();
3871 }
3872 
3873 // To install functions for atexit processing
3874 extern "C" {
3875   static void perfMemory_exit_helper() {
3876     perfMemory_exit();
3877   }
3878 }
3879 
3880 static jint initSock();
3881 
3882 // this is called _after_ the global arguments have been parsed
3883 jint os::init_2(void) {
3884   // Allocate a single page and mark it as readable for safepoint polling
3885   address polling_page = (address)VirtualAlloc(NULL, os::vm_page_size(), MEM_RESERVE, PAGE_READONLY);
3886   guarantee( polling_page != NULL, "Reserve Failed for polling page");
3887 
3888   address return_page  = (address)VirtualAlloc(polling_page, os::vm_page_size(), MEM_COMMIT, PAGE_READONLY);
3889   guarantee( return_page != NULL, "Commit Failed for polling page");
3890 
3891   os::set_polling_page( polling_page );
3892 
3893 #ifndef PRODUCT
3894   if( Verbose && PrintMiscellaneous )
3895     tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n", (intptr_t)polling_page);
3896 #endif
3897 
3898   if (!UseMembar) {
3899     address mem_serialize_page = (address)VirtualAlloc(NULL, os::vm_page_size(), MEM_RESERVE, PAGE_READWRITE);
3900     guarantee( mem_serialize_page != NULL, "Reserve Failed for memory serialize page");
3901 
3902     return_page  = (address)VirtualAlloc(mem_serialize_page, os::vm_page_size(), MEM_COMMIT, PAGE_READWRITE);
3903     guarantee( return_page != NULL, "Commit Failed for memory serialize page");
3904 
3905     os::set_memory_serialize_page( mem_serialize_page );
3906 
3907 #ifndef PRODUCT
3908     if(Verbose && PrintMiscellaneous)
3909       tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n", (intptr_t)mem_serialize_page);
3910 #endif
3911   }
3912 
3913   // Setup Windows Exceptions
3914 
3915   // for debugging float code generation bugs
3916   if (ForceFloatExceptions) {
3917 #ifndef  _WIN64
3918     static long fp_control_word = 0;
3919     __asm { fstcw fp_control_word }
3920     // see Intel PPro Manual, Vol. 2, p 7-16
3921     const long precision = 0x20;
3922     const long underflow = 0x10;
3923     const long overflow  = 0x08;
3924     const long zero_div  = 0x04;
3925     const long denorm    = 0x02;
3926     const long invalid   = 0x01;
3927     fp_control_word |= invalid;
3928     __asm { fldcw fp_control_word }
3929 #endif
3930   }
3931 
3932   // If stack_commit_size is 0, windows will reserve the default size,
3933   // but only commit a small portion of it.
3934   size_t stack_commit_size = round_to(ThreadStackSize*K, os::vm_page_size());
3935   size_t default_reserve_size = os::win32::default_stack_size();
3936   size_t actual_reserve_size = stack_commit_size;
3937   if (stack_commit_size < default_reserve_size) {
3938     // If stack_commit_size == 0, we want this too
3939     actual_reserve_size = default_reserve_size;
3940   }
3941 
3942   // Check minimum allowable stack size for thread creation and to initialize
3943   // the java system classes, including StackOverflowError - depends on page
3944   // size.  Add a page for compiler2 recursion in main thread.
3945   // Add in 2*BytesPerWord times page size to account for VM stack during
3946   // class initialization depending on 32 or 64 bit VM.
3947   size_t min_stack_allowed =
3948             (size_t)(StackYellowPages+StackRedPages+StackShadowPages+
3949             2*BytesPerWord COMPILER2_PRESENT(+1)) * os::vm_page_size();
3950   if (actual_reserve_size < min_stack_allowed) {
3951     tty->print_cr("\nThe stack size specified is too small, "
3952                   "Specify at least %dk",
3953                   min_stack_allowed / K);
3954     return JNI_ERR;
3955   }
3956 
3957   JavaThread::set_stack_size_at_create(stack_commit_size);
3958 
3959   // Calculate theoretical max. size of Threads to guard gainst artifical
3960   // out-of-memory situations, where all available address-space has been
3961   // reserved by thread stacks.
3962   assert(actual_reserve_size != 0, "Must have a stack");
3963 
3964   // Calculate the thread limit when we should start doing Virtual Memory
3965   // banging. Currently when the threads will have used all but 200Mb of space.
3966   //
3967   // TODO: consider performing a similar calculation for commit size instead
3968   // as reserve size, since on a 64-bit platform we'll run into that more
3969   // often than running out of virtual memory space.  We can use the
3970   // lower value of the two calculations as the os_thread_limit.
3971   size_t max_address_space = ((size_t)1 << (BitsPerWord - 1)) - (200 * K * K);
3972   win32::_os_thread_limit = (intx)(max_address_space / actual_reserve_size);
3973 
3974   // at exit methods are called in the reverse order of their registration.
3975   // there is no limit to the number of functions registered. atexit does
3976   // not set errno.
3977 
3978   if (PerfAllowAtExitRegistration) {
3979     // only register atexit functions if PerfAllowAtExitRegistration is set.
3980     // atexit functions can be delayed until process exit time, which
3981     // can be problematic for embedded VM situations. Embedded VMs should
3982     // call DestroyJavaVM() to assure that VM resources are released.
3983 
3984     // note: perfMemory_exit_helper atexit function may be removed in
3985     // the future if the appropriate cleanup code can be added to the
3986     // VM_Exit VMOperation's doit method.
3987     if (atexit(perfMemory_exit_helper) != 0) {
3988       warning("os::init_2 atexit(perfMemory_exit_helper) failed");
3989     }
3990   }
3991 
3992 #ifndef _WIN64
3993   // Print something if NX is enabled (win32 on AMD64)
3994   NOT_PRODUCT(if (PrintMiscellaneous && Verbose) nx_check_protection());
3995 #endif
3996 
3997   // initialize thread priority policy
3998   prio_init();
3999 
4000   if (UseNUMA && !ForceNUMA) {
4001     UseNUMA = false; // We don't fully support this yet
4002   }
4003 
4004   if (UseNUMAInterleaving) {
4005     // first check whether this Windows OS supports VirtualAllocExNuma, if not ignore this flag
4006     bool success = numa_interleaving_init();
4007     if (!success) UseNUMAInterleaving = false;
4008   }
4009 
4010   if (initSock() != JNI_OK) {
4011     return JNI_ERR;
4012   }
4013 
4014   return JNI_OK;
4015 }
4016 
4017 void os::init_3(void) {
4018   return;
4019 }
4020 
4021 // Mark the polling page as unreadable
4022 void os::make_polling_page_unreadable(void) {
4023   DWORD old_status;
4024   if( !VirtualProtect((char *)_polling_page, os::vm_page_size(), PAGE_NOACCESS, &old_status) )
4025     fatal("Could not disable polling page");
4026 };
4027 
4028 // Mark the polling page as readable
4029 void os::make_polling_page_readable(void) {
4030   DWORD old_status;
4031   if( !VirtualProtect((char *)_polling_page, os::vm_page_size(), PAGE_READONLY, &old_status) )
4032     fatal("Could not enable polling page");
4033 };
4034 
4035 
4036 int os::stat(const char *path, struct stat *sbuf) {
4037   char pathbuf[MAX_PATH];
4038   if (strlen(path) > MAX_PATH - 1) {
4039     errno = ENAMETOOLONG;
4040     return -1;
4041   }
4042   os::native_path(strcpy(pathbuf, path));
4043   int ret = ::stat(pathbuf, sbuf);
4044   if (sbuf != NULL && UseUTCFileTimestamp) {
4045     // Fix for 6539723.  st_mtime returned from stat() is dependent on
4046     // the system timezone and so can return different values for the
4047     // same file if/when daylight savings time changes.  This adjustment
4048     // makes sure the same timestamp is returned regardless of the TZ.
4049     //
4050     // See:
4051     // http://msdn.microsoft.com/library/
4052     //   default.asp?url=/library/en-us/sysinfo/base/
4053     //   time_zone_information_str.asp
4054     // and
4055     // http://msdn.microsoft.com/library/default.asp?url=
4056     //   /library/en-us/sysinfo/base/settimezoneinformation.asp
4057     //
4058     // NOTE: there is a insidious bug here:  If the timezone is changed
4059     // after the call to stat() but before 'GetTimeZoneInformation()', then
4060     // the adjustment we do here will be wrong and we'll return the wrong
4061     // value (which will likely end up creating an invalid class data
4062     // archive).  Absent a better API for this, or some time zone locking
4063     // mechanism, we'll have to live with this risk.
4064     TIME_ZONE_INFORMATION tz;
4065     DWORD tzid = GetTimeZoneInformation(&tz);
4066     int daylightBias =
4067       (tzid == TIME_ZONE_ID_DAYLIGHT) ?  tz.DaylightBias : tz.StandardBias;
4068     sbuf->st_mtime += (tz.Bias + daylightBias) * 60;
4069   }
4070   return ret;
4071 }
4072 
4073 
4074 #define FT2INT64(ft) \
4075   ((jlong)((jlong)(ft).dwHighDateTime << 32 | (julong)(ft).dwLowDateTime))
4076 
4077 
4078 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
4079 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
4080 // of a thread.
4081 //
4082 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
4083 // the fast estimate available on the platform.
4084 
4085 // current_thread_cpu_time() is not optimized for Windows yet
4086 jlong os::current_thread_cpu_time() {
4087   // return user + sys since the cost is the same
4088   return os::thread_cpu_time(Thread::current(), true /* user+sys */);
4089 }
4090 
4091 jlong os::thread_cpu_time(Thread* thread) {
4092   // consistent with what current_thread_cpu_time() returns.
4093   return os::thread_cpu_time(thread, true /* user+sys */);
4094 }
4095 
4096 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
4097   return os::thread_cpu_time(Thread::current(), user_sys_cpu_time);
4098 }
4099 
4100 jlong os::thread_cpu_time(Thread* thread, bool user_sys_cpu_time) {
4101   // This code is copy from clasic VM -> hpi::sysThreadCPUTime
4102   // If this function changes, os::is_thread_cpu_time_supported() should too
4103   if (os::win32::is_nt()) {
4104     FILETIME CreationTime;
4105     FILETIME ExitTime;
4106     FILETIME KernelTime;
4107     FILETIME UserTime;
4108 
4109     if ( GetThreadTimes(thread->osthread()->thread_handle(),
4110                     &CreationTime, &ExitTime, &KernelTime, &UserTime) == 0)
4111       return -1;
4112     else
4113       if (user_sys_cpu_time) {
4114         return (FT2INT64(UserTime) + FT2INT64(KernelTime)) * 100;
4115       } else {
4116         return FT2INT64(UserTime) * 100;
4117       }
4118   } else {
4119     return (jlong) timeGetTime() * 1000000;
4120   }
4121 }
4122 
4123 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4124   info_ptr->max_value = ALL_64_BITS;        // the max value -- all 64 bits
4125   info_ptr->may_skip_backward = false;      // GetThreadTimes returns absolute time
4126   info_ptr->may_skip_forward = false;       // GetThreadTimes returns absolute time
4127   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;   // user+system time is returned
4128 }
4129 
4130 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4131   info_ptr->max_value = ALL_64_BITS;        // the max value -- all 64 bits
4132   info_ptr->may_skip_backward = false;      // GetThreadTimes returns absolute time
4133   info_ptr->may_skip_forward = false;       // GetThreadTimes returns absolute time
4134   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;   // user+system time is returned
4135 }
4136 
4137 bool os::is_thread_cpu_time_supported() {
4138   // see os::thread_cpu_time
4139   if (os::win32::is_nt()) {
4140     FILETIME CreationTime;
4141     FILETIME ExitTime;
4142     FILETIME KernelTime;
4143     FILETIME UserTime;
4144 
4145     if ( GetThreadTimes(GetCurrentThread(),
4146                     &CreationTime, &ExitTime, &KernelTime, &UserTime) == 0)
4147       return false;
4148     else
4149       return true;
4150   } else {
4151     return false;
4152   }
4153 }
4154 
4155 // Windows does't provide a loadavg primitive so this is stubbed out for now.
4156 // It does have primitives (PDH API) to get CPU usage and run queue length.
4157 // "\\Processor(_Total)\\% Processor Time", "\\System\\Processor Queue Length"
4158 // If we wanted to implement loadavg on Windows, we have a few options:
4159 //
4160 // a) Query CPU usage and run queue length and "fake" an answer by
4161 //    returning the CPU usage if it's under 100%, and the run queue
4162 //    length otherwise.  It turns out that querying is pretty slow
4163 //    on Windows, on the order of 200 microseconds on a fast machine.
4164 //    Note that on the Windows the CPU usage value is the % usage
4165 //    since the last time the API was called (and the first call
4166 //    returns 100%), so we'd have to deal with that as well.
4167 //
4168 // b) Sample the "fake" answer using a sampling thread and store
4169 //    the answer in a global variable.  The call to loadavg would
4170 //    just return the value of the global, avoiding the slow query.
4171 //
4172 // c) Sample a better answer using exponential decay to smooth the
4173 //    value.  This is basically the algorithm used by UNIX kernels.
4174 //
4175 // Note that sampling thread starvation could affect both (b) and (c).
4176 int os::loadavg(double loadavg[], int nelem) {
4177   return -1;
4178 }
4179 
4180 
4181 // DontYieldALot=false by default: dutifully perform all yields as requested by JVM_Yield()
4182 bool os::dont_yield() {
4183   return DontYieldALot;
4184 }
4185 
4186 // This method is a slightly reworked copy of JDK's sysOpen
4187 // from src/windows/hpi/src/sys_api_md.c
4188 
4189 int os::open(const char *path, int oflag, int mode) {
4190   char pathbuf[MAX_PATH];
4191 
4192   if (strlen(path) > MAX_PATH - 1) {
4193     errno = ENAMETOOLONG;
4194           return -1;
4195   }
4196   os::native_path(strcpy(pathbuf, path));
4197   return ::open(pathbuf, oflag | O_BINARY | O_NOINHERIT, mode);
4198 }
4199 
4200 FILE* os::open(int fd, const char* mode) {
4201   return ::_fdopen(fd, mode);
4202 }
4203 
4204 // Is a (classpath) directory empty?
4205 bool os::dir_is_empty(const char* path) {
4206   WIN32_FIND_DATA fd;
4207   HANDLE f = FindFirstFile(path, &fd);
4208   if (f == INVALID_HANDLE_VALUE) {
4209     return true;
4210   }
4211   FindClose(f);
4212   return false;
4213 }
4214 
4215 // create binary file, rewriting existing file if required
4216 int os::create_binary_file(const char* path, bool rewrite_existing) {
4217   int oflags = _O_CREAT | _O_WRONLY | _O_BINARY;
4218   if (!rewrite_existing) {
4219     oflags |= _O_EXCL;
4220   }
4221   return ::open(path, oflags, _S_IREAD | _S_IWRITE);
4222 }
4223 
4224 // return current position of file pointer
4225 jlong os::current_file_offset(int fd) {
4226   return (jlong)::_lseeki64(fd, (__int64)0L, SEEK_CUR);
4227 }
4228 
4229 // move file pointer to the specified offset
4230 jlong os::seek_to_file_offset(int fd, jlong offset) {
4231   return (jlong)::_lseeki64(fd, (__int64)offset, SEEK_SET);
4232 }
4233 
4234 
4235 jlong os::lseek(int fd, jlong offset, int whence) {
4236   return (jlong) ::_lseeki64(fd, offset, whence);
4237 }
4238 
4239 // This method is a slightly reworked copy of JDK's sysNativePath
4240 // from src/windows/hpi/src/path_md.c
4241 
4242 /* Convert a pathname to native format.  On win32, this involves forcing all
4243    separators to be '\\' rather than '/' (both are legal inputs, but Win95
4244    sometimes rejects '/') and removing redundant separators.  The input path is
4245    assumed to have been converted into the character encoding used by the local
4246    system.  Because this might be a double-byte encoding, care is taken to
4247    treat double-byte lead characters correctly.
4248 
4249    This procedure modifies the given path in place, as the result is never
4250    longer than the original.  There is no error return; this operation always
4251    succeeds. */
4252 char * os::native_path(char *path) {
4253   char *src = path, *dst = path, *end = path;
4254   char *colon = NULL;           /* If a drive specifier is found, this will
4255                                         point to the colon following the drive
4256                                         letter */
4257 
4258   /* Assumption: '/', '\\', ':', and drive letters are never lead bytes */
4259   assert(((!::IsDBCSLeadByte('/'))
4260     && (!::IsDBCSLeadByte('\\'))
4261     && (!::IsDBCSLeadByte(':'))),
4262     "Illegal lead byte");
4263 
4264   /* Check for leading separators */
4265 #define isfilesep(c) ((c) == '/' || (c) == '\\')
4266   while (isfilesep(*src)) {
4267     src++;
4268   }
4269 
4270   if (::isalpha(*src) && !::IsDBCSLeadByte(*src) && src[1] == ':') {
4271     /* Remove leading separators if followed by drive specifier.  This
4272       hack is necessary to support file URLs containing drive
4273       specifiers (e.g., "file://c:/path").  As a side effect,
4274       "/c:/path" can be used as an alternative to "c:/path". */
4275     *dst++ = *src++;
4276     colon = dst;
4277     *dst++ = ':';
4278     src++;
4279   } else {
4280     src = path;
4281     if (isfilesep(src[0]) && isfilesep(src[1])) {
4282       /* UNC pathname: Retain first separator; leave src pointed at
4283          second separator so that further separators will be collapsed
4284          into the second separator.  The result will be a pathname
4285          beginning with "\\\\" followed (most likely) by a host name. */
4286       src = dst = path + 1;
4287       path[0] = '\\';     /* Force first separator to '\\' */
4288     }
4289   }
4290 
4291   end = dst;
4292 
4293   /* Remove redundant separators from remainder of path, forcing all
4294       separators to be '\\' rather than '/'. Also, single byte space
4295       characters are removed from the end of the path because those
4296       are not legal ending characters on this operating system.
4297   */
4298   while (*src != '\0') {
4299     if (isfilesep(*src)) {
4300       *dst++ = '\\'; src++;
4301       while (isfilesep(*src)) src++;
4302       if (*src == '\0') {
4303         /* Check for trailing separator */
4304         end = dst;
4305         if (colon == dst - 2) break;                      /* "z:\\" */
4306         if (dst == path + 1) break;                       /* "\\" */
4307         if (dst == path + 2 && isfilesep(path[0])) {
4308           /* "\\\\" is not collapsed to "\\" because "\\\\" marks the
4309             beginning of a UNC pathname.  Even though it is not, by
4310             itself, a valid UNC pathname, we leave it as is in order
4311             to be consistent with the path canonicalizer as well
4312             as the win32 APIs, which treat this case as an invalid
4313             UNC pathname rather than as an alias for the root
4314             directory of the current drive. */
4315           break;
4316         }
4317         end = --dst;  /* Path does not denote a root directory, so
4318                                     remove trailing separator */
4319         break;
4320       }
4321       end = dst;
4322     } else {
4323       if (::IsDBCSLeadByte(*src)) { /* Copy a double-byte character */
4324         *dst++ = *src++;
4325         if (*src) *dst++ = *src++;
4326         end = dst;
4327       } else {         /* Copy a single-byte character */
4328         char c = *src++;
4329         *dst++ = c;
4330         /* Space is not a legal ending character */
4331         if (c != ' ') end = dst;
4332       }
4333     }
4334   }
4335 
4336   *end = '\0';
4337 
4338   /* For "z:", add "." to work around a bug in the C runtime library */
4339   if (colon == dst - 1) {
4340           path[2] = '.';
4341           path[3] = '\0';
4342   }
4343 
4344   return path;
4345 }
4346 
4347 // This code is a copy of JDK's sysSetLength
4348 // from src/windows/hpi/src/sys_api_md.c
4349 
4350 int os::ftruncate(int fd, jlong length) {
4351   HANDLE h = (HANDLE)::_get_osfhandle(fd);
4352   long high = (long)(length >> 32);
4353   DWORD ret;
4354 
4355   if (h == (HANDLE)(-1)) {
4356     return -1;
4357   }
4358 
4359   ret = ::SetFilePointer(h, (long)(length), &high, FILE_BEGIN);
4360   if ((ret == 0xFFFFFFFF) && (::GetLastError() != NO_ERROR)) {
4361       return -1;
4362   }
4363 
4364   if (::SetEndOfFile(h) == FALSE) {
4365     return -1;
4366   }
4367 
4368   return 0;
4369 }
4370 
4371 
4372 // This code is a copy of JDK's sysSync
4373 // from src/windows/hpi/src/sys_api_md.c
4374 // except for the legacy workaround for a bug in Win 98
4375 
4376 int os::fsync(int fd) {
4377   HANDLE handle = (HANDLE)::_get_osfhandle(fd);
4378 
4379   if ( (!::FlushFileBuffers(handle)) &&
4380          (GetLastError() != ERROR_ACCESS_DENIED) ) {
4381     /* from winerror.h */
4382     return -1;
4383   }
4384   return 0;
4385 }
4386 
4387 static int nonSeekAvailable(int, long *);
4388 static int stdinAvailable(int, long *);
4389 
4390 #define S_ISCHR(mode)   (((mode) & _S_IFCHR) == _S_IFCHR)
4391 #define S_ISFIFO(mode)  (((mode) & _S_IFIFO) == _S_IFIFO)
4392 
4393 // This code is a copy of JDK's sysAvailable
4394 // from src/windows/hpi/src/sys_api_md.c
4395 
4396 int os::available(int fd, jlong *bytes) {
4397   jlong cur, end;
4398   struct _stati64 stbuf64;
4399 
4400   if (::_fstati64(fd, &stbuf64) >= 0) {
4401     int mode = stbuf64.st_mode;
4402     if (S_ISCHR(mode) || S_ISFIFO(mode)) {
4403       int ret;
4404       long lpbytes;
4405       if (fd == 0) {
4406         ret = stdinAvailable(fd, &lpbytes);
4407       } else {
4408         ret = nonSeekAvailable(fd, &lpbytes);
4409       }
4410       (*bytes) = (jlong)(lpbytes);
4411       return ret;
4412     }
4413     if ((cur = ::_lseeki64(fd, 0L, SEEK_CUR)) == -1) {
4414       return FALSE;
4415     } else if ((end = ::_lseeki64(fd, 0L, SEEK_END)) == -1) {
4416       return FALSE;
4417     } else if (::_lseeki64(fd, cur, SEEK_SET) == -1) {
4418       return FALSE;
4419     }
4420     *bytes = end - cur;
4421     return TRUE;
4422   } else {
4423     return FALSE;
4424   }
4425 }
4426 
4427 // This code is a copy of JDK's nonSeekAvailable
4428 // from src/windows/hpi/src/sys_api_md.c
4429 
4430 static int nonSeekAvailable(int fd, long *pbytes) {
4431   /* This is used for available on non-seekable devices
4432     * (like both named and anonymous pipes, such as pipes
4433     *  connected to an exec'd process).
4434     * Standard Input is a special case.
4435     *
4436     */
4437   HANDLE han;
4438 
4439   if ((han = (HANDLE) ::_get_osfhandle(fd)) == (HANDLE)(-1)) {
4440     return FALSE;
4441   }
4442 
4443   if (! ::PeekNamedPipe(han, NULL, 0, NULL, (LPDWORD)pbytes, NULL)) {
4444         /* PeekNamedPipe fails when at EOF.  In that case we
4445          * simply make *pbytes = 0 which is consistent with the
4446          * behavior we get on Solaris when an fd is at EOF.
4447          * The only alternative is to raise an Exception,
4448          * which isn't really warranted.
4449          */
4450     if (::GetLastError() != ERROR_BROKEN_PIPE) {
4451       return FALSE;
4452     }
4453     *pbytes = 0;
4454   }
4455   return TRUE;
4456 }
4457 
4458 #define MAX_INPUT_EVENTS 2000
4459 
4460 // This code is a copy of JDK's stdinAvailable
4461 // from src/windows/hpi/src/sys_api_md.c
4462 
4463 static int stdinAvailable(int fd, long *pbytes) {
4464   HANDLE han;
4465   DWORD numEventsRead = 0;      /* Number of events read from buffer */
4466   DWORD numEvents = 0;  /* Number of events in buffer */
4467   DWORD i = 0;          /* Loop index */
4468   DWORD curLength = 0;  /* Position marker */
4469   DWORD actualLength = 0;       /* Number of bytes readable */
4470   BOOL error = FALSE;         /* Error holder */
4471   INPUT_RECORD *lpBuffer;     /* Pointer to records of input events */
4472 
4473   if ((han = ::GetStdHandle(STD_INPUT_HANDLE)) == INVALID_HANDLE_VALUE) {
4474         return FALSE;
4475   }
4476 
4477   /* Construct an array of input records in the console buffer */
4478   error = ::GetNumberOfConsoleInputEvents(han, &numEvents);
4479   if (error == 0) {
4480     return nonSeekAvailable(fd, pbytes);
4481   }
4482 
4483   /* lpBuffer must fit into 64K or else PeekConsoleInput fails */
4484   if (numEvents > MAX_INPUT_EVENTS) {
4485     numEvents = MAX_INPUT_EVENTS;
4486   }
4487 
4488   lpBuffer = (INPUT_RECORD *)os::malloc(numEvents * sizeof(INPUT_RECORD), mtInternal);
4489   if (lpBuffer == NULL) {
4490     return FALSE;
4491   }
4492 
4493   error = ::PeekConsoleInput(han, lpBuffer, numEvents, &numEventsRead);
4494   if (error == 0) {
4495     os::free(lpBuffer, mtInternal);
4496     return FALSE;
4497   }
4498 
4499   /* Examine input records for the number of bytes available */
4500   for(i=0; i<numEvents; i++) {
4501     if (lpBuffer[i].EventType == KEY_EVENT) {
4502 
4503       KEY_EVENT_RECORD *keyRecord = (KEY_EVENT_RECORD *)
4504                                       &(lpBuffer[i].Event);
4505       if (keyRecord->bKeyDown == TRUE) {
4506         CHAR *keyPressed = (CHAR *) &(keyRecord->uChar);
4507         curLength++;
4508         if (*keyPressed == '\r') {
4509           actualLength = curLength;
4510         }
4511       }
4512     }
4513   }
4514 
4515   if(lpBuffer != NULL) {
4516     os::free(lpBuffer, mtInternal);
4517   }
4518 
4519   *pbytes = (long) actualLength;
4520   return TRUE;
4521 }
4522 
4523 // Map a block of memory.
4524 char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
4525                      char *addr, size_t bytes, bool read_only,
4526                      bool allow_exec) {
4527   HANDLE hFile;
4528   char* base;
4529 
4530   hFile = CreateFile(file_name, GENERIC_READ, FILE_SHARE_READ, NULL,
4531                      OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL);
4532   if (hFile == NULL) {
4533     if (PrintMiscellaneous && Verbose) {
4534       DWORD err = GetLastError();
4535       tty->print_cr("CreateFile() failed: GetLastError->%ld.", err);
4536     }
4537     return NULL;
4538   }
4539 
4540   if (allow_exec) {
4541     // CreateFileMapping/MapViewOfFileEx can't map executable memory
4542     // unless it comes from a PE image (which the shared archive is not.)
4543     // Even VirtualProtect refuses to give execute access to mapped memory
4544     // that was not previously executable.
4545     //
4546     // Instead, stick the executable region in anonymous memory.  Yuck.
4547     // Penalty is that ~4 pages will not be shareable - in the future
4548     // we might consider DLLizing the shared archive with a proper PE
4549     // header so that mapping executable + sharing is possible.
4550 
4551     base = (char*) VirtualAlloc(addr, bytes, MEM_COMMIT | MEM_RESERVE,
4552                                 PAGE_READWRITE);
4553     if (base == NULL) {
4554       if (PrintMiscellaneous && Verbose) {
4555         DWORD err = GetLastError();
4556         tty->print_cr("VirtualAlloc() failed: GetLastError->%ld.", err);
4557       }
4558       CloseHandle(hFile);
4559       return NULL;
4560     }
4561 
4562     DWORD bytes_read;
4563     OVERLAPPED overlapped;
4564     overlapped.Offset = (DWORD)file_offset;
4565     overlapped.OffsetHigh = 0;
4566     overlapped.hEvent = NULL;
4567     // ReadFile guarantees that if the return value is true, the requested
4568     // number of bytes were read before returning.
4569     bool res = ReadFile(hFile, base, (DWORD)bytes, &bytes_read, &overlapped) != 0;
4570     if (!res) {
4571       if (PrintMiscellaneous && Verbose) {
4572         DWORD err = GetLastError();
4573         tty->print_cr("ReadFile() failed: GetLastError->%ld.", err);
4574       }
4575       release_memory(base, bytes);
4576       CloseHandle(hFile);
4577       return NULL;
4578     }
4579   } else {
4580     HANDLE hMap = CreateFileMapping(hFile, NULL, PAGE_WRITECOPY, 0, 0,
4581                                     NULL /*file_name*/);
4582     if (hMap == NULL) {
4583       if (PrintMiscellaneous && Verbose) {
4584         DWORD err = GetLastError();
4585         tty->print_cr("CreateFileMapping() failed: GetLastError->%ld.", err);
4586       }
4587       CloseHandle(hFile);
4588       return NULL;
4589     }
4590 
4591     DWORD access = read_only ? FILE_MAP_READ : FILE_MAP_COPY;
4592     base = (char*)MapViewOfFileEx(hMap, access, 0, (DWORD)file_offset,
4593                                   (DWORD)bytes, addr);
4594     if (base == NULL) {
4595       if (PrintMiscellaneous && Verbose) {
4596         DWORD err = GetLastError();
4597         tty->print_cr("MapViewOfFileEx() failed: GetLastError->%ld.", err);
4598       }
4599       CloseHandle(hMap);
4600       CloseHandle(hFile);
4601       return NULL;
4602     }
4603 
4604     if (CloseHandle(hMap) == 0) {
4605       if (PrintMiscellaneous && Verbose) {
4606         DWORD err = GetLastError();
4607         tty->print_cr("CloseHandle(hMap) failed: GetLastError->%ld.", err);
4608       }
4609       CloseHandle(hFile);
4610       return base;
4611     }
4612   }
4613 
4614   if (allow_exec) {
4615     DWORD old_protect;
4616     DWORD exec_access = read_only ? PAGE_EXECUTE_READ : PAGE_EXECUTE_READWRITE;
4617     bool res = VirtualProtect(base, bytes, exec_access, &old_protect) != 0;
4618 
4619     if (!res) {
4620       if (PrintMiscellaneous && Verbose) {
4621         DWORD err = GetLastError();
4622         tty->print_cr("VirtualProtect() failed: GetLastError->%ld.", err);
4623       }
4624       // Don't consider this a hard error, on IA32 even if the
4625       // VirtualProtect fails, we should still be able to execute
4626       CloseHandle(hFile);
4627       return base;
4628     }
4629   }
4630 
4631   if (CloseHandle(hFile) == 0) {
4632     if (PrintMiscellaneous && Verbose) {
4633       DWORD err = GetLastError();
4634       tty->print_cr("CloseHandle(hFile) failed: GetLastError->%ld.", err);
4635     }
4636     return base;
4637   }
4638 
4639   return base;
4640 }
4641 
4642 
4643 // Remap a block of memory.
4644 char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
4645                        char *addr, size_t bytes, bool read_only,
4646                        bool allow_exec) {
4647   // This OS does not allow existing memory maps to be remapped so we
4648   // have to unmap the memory before we remap it.
4649   if (!os::unmap_memory(addr, bytes)) {
4650     return NULL;
4651   }
4652 
4653   // There is a very small theoretical window between the unmap_memory()
4654   // call above and the map_memory() call below where a thread in native
4655   // code may be able to access an address that is no longer mapped.
4656 
4657   return os::map_memory(fd, file_name, file_offset, addr, bytes,
4658            read_only, allow_exec);
4659 }
4660 
4661 
4662 // Unmap a block of memory.
4663 // Returns true=success, otherwise false.
4664 
4665 bool os::pd_unmap_memory(char* addr, size_t bytes) {
4666   BOOL result = UnmapViewOfFile(addr);
4667   if (result == 0) {
4668     if (PrintMiscellaneous && Verbose) {
4669       DWORD err = GetLastError();
4670       tty->print_cr("UnmapViewOfFile() failed: GetLastError->%ld.", err);
4671     }
4672     return false;
4673   }
4674   return true;
4675 }
4676 
4677 void os::pause() {
4678   char filename[MAX_PATH];
4679   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
4680     jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
4681   } else {
4682     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
4683   }
4684 
4685   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
4686   if (fd != -1) {
4687     struct stat buf;
4688     ::close(fd);
4689     while (::stat(filename, &buf) == 0) {
4690       Sleep(100);
4691     }
4692   } else {
4693     jio_fprintf(stderr,
4694       "Could not open pause file '%s', continuing immediately.\n", filename);
4695   }
4696 }
4697 
4698 os::WatcherThreadCrashProtection::WatcherThreadCrashProtection() {
4699   assert(Thread::current()->is_Watcher_thread(), "Must be WatcherThread");
4700 }
4701 
4702 /*
4703  * See the caveats for this class in os_windows.hpp
4704  * Protects the callback call so that raised OS EXCEPTIONS causes a jump back
4705  * into this method and returns false. If no OS EXCEPTION was raised, returns
4706  * true.
4707  * The callback is supposed to provide the method that should be protected.
4708  */
4709 bool os::WatcherThreadCrashProtection::call(os::CrashProtectionCallback& cb) {
4710   assert(Thread::current()->is_Watcher_thread(), "Only for WatcherThread");
4711   assert(!WatcherThread::watcher_thread()->has_crash_protection(),
4712       "crash_protection already set?");
4713 
4714   bool success = true;
4715   __try {
4716     WatcherThread::watcher_thread()->set_crash_protection(this);
4717     cb.call();
4718   } __except(EXCEPTION_EXECUTE_HANDLER) {
4719     // only for protection, nothing to do
4720     success = false;
4721   }
4722   WatcherThread::watcher_thread()->set_crash_protection(NULL);
4723   return success;
4724 }
4725 
4726 // An Event wraps a win32 "CreateEvent" kernel handle.
4727 //
4728 // We have a number of choices regarding "CreateEvent" win32 handle leakage:
4729 //
4730 // 1:  When a thread dies return the Event to the EventFreeList, clear the ParkHandle
4731 //     field, and call CloseHandle() on the win32 event handle.  Unpark() would
4732 //     need to be modified to tolerate finding a NULL (invalid) win32 event handle.
4733 //     In addition, an unpark() operation might fetch the handle field, but the
4734 //     event could recycle between the fetch and the SetEvent() operation.
4735 //     SetEvent() would either fail because the handle was invalid, or inadvertently work,
4736 //     as the win32 handle value had been recycled.  In an ideal world calling SetEvent()
4737 //     on an stale but recycled handle would be harmless, but in practice this might
4738 //     confuse other non-Sun code, so it's not a viable approach.
4739 //
4740 // 2:  Once a win32 event handle is associated with an Event, it remains associated
4741 //     with the Event.  The event handle is never closed.  This could be construed
4742 //     as handle leakage, but only up to the maximum # of threads that have been extant
4743 //     at any one time.  This shouldn't be an issue, as windows platforms typically
4744 //     permit a process to have hundreds of thousands of open handles.
4745 //
4746 // 3:  Same as (1), but periodically, at stop-the-world time, rundown the EventFreeList
4747 //     and release unused handles.
4748 //
4749 // 4:  Add a CRITICAL_SECTION to the Event to protect LD+SetEvent from LD;ST(null);CloseHandle.
4750 //     It's not clear, however, that we wouldn't be trading one type of leak for another.
4751 //
4752 // 5.  Use an RCU-like mechanism (Read-Copy Update).
4753 //     Or perhaps something similar to Maged Michael's "Hazard pointers".
4754 //
4755 // We use (2).
4756 //
4757 // TODO-FIXME:
4758 // 1.  Reconcile Doug's JSR166 j.u.c park-unpark with the objectmonitor implementation.
4759 // 2.  Consider wrapping the WaitForSingleObject(Ex) calls in SEH try/finally blocks
4760 //     to recover from (or at least detect) the dreaded Windows 841176 bug.
4761 // 3.  Collapse the interrupt_event, the JSR166 parker event, and the objectmonitor ParkEvent
4762 //     into a single win32 CreateEvent() handle.
4763 //
4764 // _Event transitions in park()
4765 //   -1 => -1 : illegal
4766 //    1 =>  0 : pass - return immediately
4767 //    0 => -1 : block
4768 //
4769 // _Event serves as a restricted-range semaphore :
4770 //    -1 : thread is blocked
4771 //     0 : neutral  - thread is running or ready
4772 //     1 : signaled - thread is running or ready
4773 //
4774 // Another possible encoding of _Event would be
4775 // with explicit "PARKED" and "SIGNALED" bits.
4776 
4777 int os::PlatformEvent::park (jlong Millis) {
4778     guarantee (_ParkHandle != NULL , "Invariant") ;
4779     guarantee (Millis > 0          , "Invariant") ;
4780     int v ;
4781 
4782     // CONSIDER: defer assigning a CreateEvent() handle to the Event until
4783     // the initial park() operation.
4784 
4785     for (;;) {
4786         v = _Event ;
4787         if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
4788     }
4789     guarantee ((v == 0) || (v == 1), "invariant") ;
4790     if (v != 0) return OS_OK ;
4791 
4792     // Do this the hard way by blocking ...
4793     // TODO: consider a brief spin here, gated on the success of recent
4794     // spin attempts by this thread.
4795     //
4796     // We decompose long timeouts into series of shorter timed waits.
4797     // Evidently large timo values passed in WaitForSingleObject() are problematic on some
4798     // versions of Windows.  See EventWait() for details.  This may be superstition.  Or not.
4799     // We trust the WAIT_TIMEOUT indication and don't track the elapsed wait time
4800     // with os::javaTimeNanos().  Furthermore, we assume that spurious returns from
4801     // ::WaitForSingleObject() caused by latent ::setEvent() operations will tend
4802     // to happen early in the wait interval.  Specifically, after a spurious wakeup (rv ==
4803     // WAIT_OBJECT_0 but _Event is still < 0) we don't bother to recompute Millis to compensate
4804     // for the already waited time.  This policy does not admit any new outcomes.
4805     // In the future, however, we might want to track the accumulated wait time and
4806     // adjust Millis accordingly if we encounter a spurious wakeup.
4807 
4808     const int MAXTIMEOUT = 0x10000000 ;
4809     DWORD rv = WAIT_TIMEOUT ;
4810     while (_Event < 0 && Millis > 0) {
4811        DWORD prd = Millis ;     // set prd = MAX (Millis, MAXTIMEOUT)
4812        if (Millis > MAXTIMEOUT) {
4813           prd = MAXTIMEOUT ;
4814        }
4815        rv = ::WaitForSingleObject (_ParkHandle, prd) ;
4816        assert (rv == WAIT_OBJECT_0 || rv == WAIT_TIMEOUT, "WaitForSingleObject failed") ;
4817        if (rv == WAIT_TIMEOUT) {
4818            Millis -= prd ;
4819        }
4820     }
4821     v = _Event ;
4822     _Event = 0 ;
4823     // see comment at end of os::PlatformEvent::park() below:
4824     OrderAccess::fence() ;
4825     // If we encounter a nearly simultanous timeout expiry and unpark()
4826     // we return OS_OK indicating we awoke via unpark().
4827     // Implementor's license -- returning OS_TIMEOUT would be equally valid, however.
4828     return (v >= 0) ? OS_OK : OS_TIMEOUT ;
4829 }
4830 
4831 void os::PlatformEvent::park () {
4832     guarantee (_ParkHandle != NULL, "Invariant") ;
4833     // Invariant: Only the thread associated with the Event/PlatformEvent
4834     // may call park().
4835     int v ;
4836     for (;;) {
4837         v = _Event ;
4838         if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
4839     }
4840     guarantee ((v == 0) || (v == 1), "invariant") ;
4841     if (v != 0) return ;
4842 
4843     // Do this the hard way by blocking ...
4844     // TODO: consider a brief spin here, gated on the success of recent
4845     // spin attempts by this thread.
4846     while (_Event < 0) {
4847        DWORD rv = ::WaitForSingleObject (_ParkHandle, INFINITE) ;
4848        assert (rv == WAIT_OBJECT_0, "WaitForSingleObject failed") ;
4849     }
4850 
4851     // Usually we'll find _Event == 0 at this point, but as
4852     // an optional optimization we clear it, just in case can
4853     // multiple unpark() operations drove _Event up to 1.
4854     _Event = 0 ;
4855     OrderAccess::fence() ;
4856     guarantee (_Event >= 0, "invariant") ;
4857 }
4858 
4859 void os::PlatformEvent::unpark() {
4860   guarantee (_ParkHandle != NULL, "Invariant") ;
4861 
4862   // Transitions for _Event:
4863   //    0 :=> 1
4864   //    1 :=> 1
4865   //   -1 :=> either 0 or 1; must signal target thread
4866   //          That is, we can safely transition _Event from -1 to either
4867   //          0 or 1. Forcing 1 is slightly more efficient for back-to-back
4868   //          unpark() calls.
4869   // See also: "Semaphores in Plan 9" by Mullender & Cox
4870   //
4871   // Note: Forcing a transition from "-1" to "1" on an unpark() means
4872   // that it will take two back-to-back park() calls for the owning
4873   // thread to block. This has the benefit of forcing a spurious return
4874   // from the first park() call after an unpark() call which will help
4875   // shake out uses of park() and unpark() without condition variables.
4876 
4877   if (Atomic::xchg(1, &_Event) >= 0) return;
4878 
4879   ::SetEvent(_ParkHandle);
4880 }
4881 
4882 
4883 // JSR166
4884 // -------------------------------------------------------
4885 
4886 /*
4887  * The Windows implementation of Park is very straightforward: Basic
4888  * operations on Win32 Events turn out to have the right semantics to
4889  * use them directly. We opportunistically resuse the event inherited
4890  * from Monitor.
4891  */
4892 
4893 
4894 void Parker::park(bool isAbsolute, jlong time) {
4895   guarantee (_ParkEvent != NULL, "invariant") ;
4896   // First, demultiplex/decode time arguments
4897   if (time < 0) { // don't wait
4898     return;
4899   }
4900   else if (time == 0 && !isAbsolute) {
4901     time = INFINITE;
4902   }
4903   else if  (isAbsolute) {
4904     time -= os::javaTimeMillis(); // convert to relative time
4905     if (time <= 0) // already elapsed
4906       return;
4907   }
4908   else { // relative
4909     time /= 1000000; // Must coarsen from nanos to millis
4910     if (time == 0)   // Wait for the minimal time unit if zero
4911       time = 1;
4912   }
4913 
4914   JavaThread* thread = (JavaThread*)(Thread::current());
4915   assert(thread->is_Java_thread(), "Must be JavaThread");
4916   JavaThread *jt = (JavaThread *)thread;
4917 
4918   // Don't wait if interrupted or already triggered
4919   if (Thread::is_interrupted(thread, false) ||
4920     WaitForSingleObject(_ParkEvent, 0) == WAIT_OBJECT_0) {
4921     ResetEvent(_ParkEvent);
4922     return;
4923   }
4924   else {
4925     ThreadBlockInVM tbivm(jt);
4926     OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
4927     jt->set_suspend_equivalent();
4928 
4929     WaitForSingleObject(_ParkEvent,  time);
4930     ResetEvent(_ParkEvent);
4931 
4932     // If externally suspended while waiting, re-suspend
4933     if (jt->handle_special_suspend_equivalent_condition()) {
4934       jt->java_suspend_self();
4935     }
4936   }
4937 }
4938 
4939 void Parker::unpark() {
4940   guarantee (_ParkEvent != NULL, "invariant") ;
4941   SetEvent(_ParkEvent);
4942 }
4943 
4944 // Run the specified command in a separate process. Return its exit value,
4945 // or -1 on failure (e.g. can't create a new process).
4946 int os::fork_and_exec(char* cmd) {
4947   STARTUPINFO si;
4948   PROCESS_INFORMATION pi;
4949 
4950   memset(&si, 0, sizeof(si));
4951   si.cb = sizeof(si);
4952   memset(&pi, 0, sizeof(pi));
4953   BOOL rslt = CreateProcess(NULL,   // executable name - use command line
4954                             cmd,    // command line
4955                             NULL,   // process security attribute
4956                             NULL,   // thread security attribute
4957                             TRUE,   // inherits system handles
4958                             0,      // no creation flags
4959                             NULL,   // use parent's environment block
4960                             NULL,   // use parent's starting directory
4961                             &si,    // (in) startup information
4962                             &pi);   // (out) process information
4963 
4964   if (rslt) {
4965     // Wait until child process exits.
4966     WaitForSingleObject(pi.hProcess, INFINITE);
4967 
4968     DWORD exit_code;
4969     GetExitCodeProcess(pi.hProcess, &exit_code);
4970 
4971     // Close process and thread handles.
4972     CloseHandle(pi.hProcess);
4973     CloseHandle(pi.hThread);
4974 
4975     return (int)exit_code;
4976   } else {
4977     return -1;
4978   }
4979 }
4980 
4981 //--------------------------------------------------------------------------------------------------
4982 // Non-product code
4983 
4984 static int mallocDebugIntervalCounter = 0;
4985 static int mallocDebugCounter = 0;
4986 bool os::check_heap(bool force) {
4987   if (++mallocDebugCounter < MallocVerifyStart && !force) return true;
4988   if (++mallocDebugIntervalCounter >= MallocVerifyInterval || force) {
4989     // Note: HeapValidate executes two hardware breakpoints when it finds something
4990     // wrong; at these points, eax contains the address of the offending block (I think).
4991     // To get to the exlicit error message(s) below, just continue twice.
4992     HANDLE heap = GetProcessHeap();
4993     { HeapLock(heap);
4994       PROCESS_HEAP_ENTRY phe;
4995       phe.lpData = NULL;
4996       while (HeapWalk(heap, &phe) != 0) {
4997         if ((phe.wFlags & PROCESS_HEAP_ENTRY_BUSY) &&
4998             !HeapValidate(heap, 0, phe.lpData)) {
4999           tty->print_cr("C heap has been corrupted (time: %d allocations)", mallocDebugCounter);
5000           tty->print_cr("corrupted block near address %#x, length %d", phe.lpData, phe.cbData);
5001           fatal("corrupted C heap");
5002         }
5003       }
5004       DWORD err = GetLastError();
5005       if (err != ERROR_NO_MORE_ITEMS && err != ERROR_CALL_NOT_IMPLEMENTED) {
5006         fatal(err_msg("heap walk aborted with error %d", err));
5007       }
5008       HeapUnlock(heap);
5009     }
5010     mallocDebugIntervalCounter = 0;
5011   }
5012   return true;
5013 }
5014 
5015 
5016 bool os::find(address addr, outputStream* st) {
5017   // Nothing yet
5018   return false;
5019 }
5020 
5021 LONG WINAPI os::win32::serialize_fault_filter(struct _EXCEPTION_POINTERS* e) {
5022   DWORD exception_code = e->ExceptionRecord->ExceptionCode;
5023 
5024   if ( exception_code == EXCEPTION_ACCESS_VIOLATION ) {
5025     JavaThread* thread = (JavaThread*)ThreadLocalStorage::get_thread_slow();
5026     PEXCEPTION_RECORD exceptionRecord = e->ExceptionRecord;
5027     address addr = (address) exceptionRecord->ExceptionInformation[1];
5028 
5029     if (os::is_memory_serialize_page(thread, addr))
5030       return EXCEPTION_CONTINUE_EXECUTION;
5031   }
5032 
5033   return EXCEPTION_CONTINUE_SEARCH;
5034 }
5035 
5036 // We don't build a headless jre for Windows
5037 bool os::is_headless_jre() { return false; }
5038 
5039 static jint initSock() {
5040   WSADATA wsadata;
5041 
5042   if (!os::WinSock2Dll::WinSock2Available()) {
5043     jio_fprintf(stderr, "Could not load Winsock (error: %d)\n",
5044       ::GetLastError());
5045     return JNI_ERR;
5046   }
5047 
5048   if (os::WinSock2Dll::WSAStartup(MAKEWORD(2,2), &wsadata) != 0) {
5049     jio_fprintf(stderr, "Could not initialize Winsock (error: %d)\n",
5050       ::GetLastError());
5051     return JNI_ERR;
5052   }
5053   return JNI_OK;
5054 }
5055 
5056 struct hostent* os::get_host_by_name(char* name) {
5057   return (struct hostent*)os::WinSock2Dll::gethostbyname(name);
5058 }
5059 
5060 int os::socket_close(int fd) {
5061   return ::closesocket(fd);
5062 }
5063 
5064 int os::socket_available(int fd, jint *pbytes) {
5065   int ret = ::ioctlsocket(fd, FIONREAD, (u_long*)pbytes);
5066   return (ret < 0) ? 0 : 1;
5067 }
5068 
5069 int os::socket(int domain, int type, int protocol) {
5070   return ::socket(domain, type, protocol);
5071 }
5072 
5073 int os::listen(int fd, int count) {
5074   return ::listen(fd, count);
5075 }
5076 
5077 int os::connect(int fd, struct sockaddr* him, socklen_t len) {
5078   return ::connect(fd, him, len);
5079 }
5080 
5081 int os::accept(int fd, struct sockaddr* him, socklen_t* len) {
5082   return ::accept(fd, him, len);
5083 }
5084 
5085 int os::sendto(int fd, char* buf, size_t len, uint flags,
5086                struct sockaddr* to, socklen_t tolen) {
5087 
5088   return ::sendto(fd, buf, (int)len, flags, to, tolen);
5089 }
5090 
5091 int os::recvfrom(int fd, char *buf, size_t nBytes, uint flags,
5092                  sockaddr* from, socklen_t* fromlen) {
5093 
5094   return ::recvfrom(fd, buf, (int)nBytes, flags, from, fromlen);
5095 }
5096 
5097 int os::recv(int fd, char* buf, size_t nBytes, uint flags) {
5098   return ::recv(fd, buf, (int)nBytes, flags);
5099 }
5100 
5101 int os::send(int fd, char* buf, size_t nBytes, uint flags) {
5102   return ::send(fd, buf, (int)nBytes, flags);
5103 }
5104 
5105 int os::raw_send(int fd, char* buf, size_t nBytes, uint flags) {
5106   return ::send(fd, buf, (int)nBytes, flags);
5107 }
5108 
5109 int os::timeout(int fd, long timeout) {
5110   fd_set tbl;
5111   struct timeval t;
5112 
5113   t.tv_sec  = timeout / 1000;
5114   t.tv_usec = (timeout % 1000) * 1000;
5115 
5116   tbl.fd_count    = 1;
5117   tbl.fd_array[0] = fd;
5118 
5119   return ::select(1, &tbl, 0, 0, &t);
5120 }
5121 
5122 int os::get_host_name(char* name, int namelen) {
5123   return ::gethostname(name, namelen);
5124 }
5125 
5126 int os::socket_shutdown(int fd, int howto) {
5127   return ::shutdown(fd, howto);
5128 }
5129 
5130 int os::bind(int fd, struct sockaddr* him, socklen_t len) {
5131   return ::bind(fd, him, len);
5132 }
5133 
5134 int os::get_sock_name(int fd, struct sockaddr* him, socklen_t* len) {
5135   return ::getsockname(fd, him, len);
5136 }
5137 
5138 int os::get_sock_opt(int fd, int level, int optname,
5139                      char* optval, socklen_t* optlen) {
5140   return ::getsockopt(fd, level, optname, optval, optlen);
5141 }
5142 
5143 int os::set_sock_opt(int fd, int level, int optname,
5144                      const char* optval, socklen_t optlen) {
5145   return ::setsockopt(fd, level, optname, optval, optlen);
5146 }
5147 
5148 // WINDOWS CONTEXT Flags for THREAD_SAMPLING
5149 #if defined(IA32)
5150 #  define sampling_context_flags (CONTEXT_FULL | CONTEXT_FLOATING_POINT | CONTEXT_EXTENDED_REGISTERS)
5151 #elif defined (AMD64)
5152 #  define sampling_context_flags (CONTEXT_FULL | CONTEXT_FLOATING_POINT)
5153 #endif
5154 
5155 // returns true if thread could be suspended,
5156 // false otherwise
5157 static bool do_suspend(HANDLE* h) {
5158   if (h != NULL) {
5159     if (SuspendThread(*h) != ~0) {
5160       return true;
5161     }
5162   }
5163   return false;
5164 }
5165 
5166 // resume the thread
5167 // calling resume on an active thread is a no-op
5168 static void do_resume(HANDLE* h) {
5169   if (h != NULL) {
5170     ResumeThread(*h);
5171   }
5172 }
5173 
5174 // retrieve a suspend/resume context capable handle
5175 // from the tid. Caller validates handle return value.
5176 void get_thread_handle_for_extended_context(HANDLE* h, OSThread::thread_id_t tid) {
5177   if (h != NULL) {
5178     *h = OpenThread(THREAD_SUSPEND_RESUME | THREAD_GET_CONTEXT | THREAD_QUERY_INFORMATION, FALSE, tid);
5179   }
5180 }
5181 
5182 //
5183 // Thread sampling implementation
5184 //
5185 void os::SuspendedThreadTask::internal_do_task() {
5186   CONTEXT    ctxt;
5187   HANDLE     h = NULL;
5188 
5189   // get context capable handle for thread
5190   get_thread_handle_for_extended_context(&h, _thread->osthread()->thread_id());
5191 
5192   // sanity
5193   if (h == NULL || h == INVALID_HANDLE_VALUE) {
5194     return;
5195   }
5196 
5197   // suspend the thread
5198   if (do_suspend(&h)) {
5199     ctxt.ContextFlags = sampling_context_flags;
5200     // get thread context
5201     GetThreadContext(h, &ctxt);
5202     SuspendedThreadTaskContext context(_thread, &ctxt);
5203     // pass context to Thread Sampling impl
5204     do_task(context);
5205     // resume thread
5206     do_resume(&h);
5207   }
5208 
5209   // close handle
5210   CloseHandle(h);
5211 }
5212 
5213 
5214 // Kernel32 API
5215 typedef SIZE_T (WINAPI* GetLargePageMinimum_Fn)(void);
5216 typedef LPVOID (WINAPI *VirtualAllocExNuma_Fn) (HANDLE, LPVOID, SIZE_T, DWORD, DWORD, DWORD);
5217 typedef BOOL (WINAPI *GetNumaHighestNodeNumber_Fn) (PULONG);
5218 typedef BOOL (WINAPI *GetNumaNodeProcessorMask_Fn) (UCHAR, PULONGLONG);
5219 typedef USHORT (WINAPI* RtlCaptureStackBackTrace_Fn)(ULONG, ULONG, PVOID*, PULONG);
5220 
5221 GetLargePageMinimum_Fn      os::Kernel32Dll::_GetLargePageMinimum = NULL;
5222 VirtualAllocExNuma_Fn       os::Kernel32Dll::_VirtualAllocExNuma = NULL;
5223 GetNumaHighestNodeNumber_Fn os::Kernel32Dll::_GetNumaHighestNodeNumber = NULL;
5224 GetNumaNodeProcessorMask_Fn os::Kernel32Dll::_GetNumaNodeProcessorMask = NULL;
5225 RtlCaptureStackBackTrace_Fn os::Kernel32Dll::_RtlCaptureStackBackTrace = NULL;
5226 
5227 
5228 BOOL                        os::Kernel32Dll::initialized = FALSE;
5229 SIZE_T os::Kernel32Dll::GetLargePageMinimum() {
5230   assert(initialized && _GetLargePageMinimum != NULL,
5231     "GetLargePageMinimumAvailable() not yet called");
5232   return _GetLargePageMinimum();
5233 }
5234 
5235 BOOL os::Kernel32Dll::GetLargePageMinimumAvailable() {
5236   if (!initialized) {
5237     initialize();
5238   }
5239   return _GetLargePageMinimum != NULL;
5240 }
5241 
5242 BOOL os::Kernel32Dll::NumaCallsAvailable() {
5243   if (!initialized) {
5244     initialize();
5245   }
5246   return _VirtualAllocExNuma != NULL;
5247 }
5248 
5249 LPVOID os::Kernel32Dll::VirtualAllocExNuma(HANDLE hProc, LPVOID addr, SIZE_T bytes, DWORD flags, DWORD prot, DWORD node) {
5250   assert(initialized && _VirtualAllocExNuma != NULL,
5251     "NUMACallsAvailable() not yet called");
5252 
5253   return _VirtualAllocExNuma(hProc, addr, bytes, flags, prot, node);
5254 }
5255 
5256 BOOL os::Kernel32Dll::GetNumaHighestNodeNumber(PULONG ptr_highest_node_number) {
5257   assert(initialized && _GetNumaHighestNodeNumber != NULL,
5258     "NUMACallsAvailable() not yet called");
5259 
5260   return _GetNumaHighestNodeNumber(ptr_highest_node_number);
5261 }
5262 
5263 BOOL os::Kernel32Dll::GetNumaNodeProcessorMask(UCHAR node, PULONGLONG proc_mask) {
5264   assert(initialized && _GetNumaNodeProcessorMask != NULL,
5265     "NUMACallsAvailable() not yet called");
5266 
5267   return _GetNumaNodeProcessorMask(node, proc_mask);
5268 }
5269 
5270 USHORT os::Kernel32Dll::RtlCaptureStackBackTrace(ULONG FrameToSkip,
5271   ULONG FrameToCapture, PVOID* BackTrace, PULONG BackTraceHash) {
5272     if (!initialized) {
5273       initialize();
5274     }
5275 
5276     if (_RtlCaptureStackBackTrace != NULL) {
5277       return _RtlCaptureStackBackTrace(FrameToSkip, FrameToCapture,
5278         BackTrace, BackTraceHash);
5279     } else {
5280       return 0;
5281     }
5282 }
5283 
5284 void os::Kernel32Dll::initializeCommon() {
5285   if (!initialized) {
5286     HMODULE handle = ::GetModuleHandle("Kernel32.dll");
5287     assert(handle != NULL, "Just check");
5288     _GetLargePageMinimum = (GetLargePageMinimum_Fn)::GetProcAddress(handle, "GetLargePageMinimum");
5289     _VirtualAllocExNuma = (VirtualAllocExNuma_Fn)::GetProcAddress(handle, "VirtualAllocExNuma");
5290     _GetNumaHighestNodeNumber = (GetNumaHighestNodeNumber_Fn)::GetProcAddress(handle, "GetNumaHighestNodeNumber");
5291     _GetNumaNodeProcessorMask = (GetNumaNodeProcessorMask_Fn)::GetProcAddress(handle, "GetNumaNodeProcessorMask");
5292     _RtlCaptureStackBackTrace = (RtlCaptureStackBackTrace_Fn)::GetProcAddress(handle, "RtlCaptureStackBackTrace");
5293     initialized = TRUE;
5294   }
5295 }
5296 
5297 
5298 
5299 #ifndef JDK6_OR_EARLIER
5300 
5301 void os::Kernel32Dll::initialize() {
5302   initializeCommon();
5303 }
5304 
5305 
5306 // Kernel32 API
5307 inline BOOL os::Kernel32Dll::SwitchToThread() {
5308   return ::SwitchToThread();
5309 }
5310 
5311 inline BOOL os::Kernel32Dll::SwitchToThreadAvailable() {
5312   return true;
5313 }
5314 
5315   // Help tools
5316 inline BOOL os::Kernel32Dll::HelpToolsAvailable() {
5317   return true;
5318 }
5319 
5320 inline HANDLE os::Kernel32Dll::CreateToolhelp32Snapshot(DWORD dwFlags,DWORD th32ProcessId) {
5321   return ::CreateToolhelp32Snapshot(dwFlags, th32ProcessId);
5322 }
5323 
5324 inline BOOL os::Kernel32Dll::Module32First(HANDLE hSnapshot,LPMODULEENTRY32 lpme) {
5325   return ::Module32First(hSnapshot, lpme);
5326 }
5327 
5328 inline BOOL os::Kernel32Dll::Module32Next(HANDLE hSnapshot,LPMODULEENTRY32 lpme) {
5329   return ::Module32Next(hSnapshot, lpme);
5330 }
5331 
5332 
5333 inline BOOL os::Kernel32Dll::GetNativeSystemInfoAvailable() {
5334   return true;
5335 }
5336 
5337 inline void os::Kernel32Dll::GetNativeSystemInfo(LPSYSTEM_INFO lpSystemInfo) {
5338   ::GetNativeSystemInfo(lpSystemInfo);
5339 }
5340 
5341 // PSAPI API
5342 inline BOOL os::PSApiDll::EnumProcessModules(HANDLE hProcess, HMODULE *lpModule, DWORD cb, LPDWORD lpcbNeeded) {
5343   return ::EnumProcessModules(hProcess, lpModule, cb, lpcbNeeded);
5344 }
5345 
5346 inline DWORD os::PSApiDll::GetModuleFileNameEx(HANDLE hProcess, HMODULE hModule, LPTSTR lpFilename, DWORD nSize) {
5347   return ::GetModuleFileNameEx(hProcess, hModule, lpFilename, nSize);
5348 }
5349 
5350 inline BOOL os::PSApiDll::GetModuleInformation(HANDLE hProcess, HMODULE hModule, LPMODULEINFO lpmodinfo, DWORD cb) {
5351   return ::GetModuleInformation(hProcess, hModule, lpmodinfo, cb);
5352 }
5353 
5354 inline BOOL os::PSApiDll::PSApiAvailable() {
5355   return true;
5356 }
5357 
5358 
5359 // WinSock2 API
5360 inline BOOL os::WinSock2Dll::WSAStartup(WORD wVersionRequested, LPWSADATA lpWSAData) {
5361   return ::WSAStartup(wVersionRequested, lpWSAData);
5362 }
5363 
5364 inline struct hostent* os::WinSock2Dll::gethostbyname(const char *name) {
5365   return ::gethostbyname(name);
5366 }
5367 
5368 inline BOOL os::WinSock2Dll::WinSock2Available() {
5369   return true;
5370 }
5371 
5372 // Advapi API
5373 inline BOOL os::Advapi32Dll::AdjustTokenPrivileges(HANDLE TokenHandle,
5374    BOOL DisableAllPrivileges, PTOKEN_PRIVILEGES NewState, DWORD BufferLength,
5375    PTOKEN_PRIVILEGES PreviousState, PDWORD ReturnLength) {
5376      return ::AdjustTokenPrivileges(TokenHandle, DisableAllPrivileges, NewState,
5377        BufferLength, PreviousState, ReturnLength);
5378 }
5379 
5380 inline BOOL os::Advapi32Dll::OpenProcessToken(HANDLE ProcessHandle, DWORD DesiredAccess,
5381   PHANDLE TokenHandle) {
5382     return ::OpenProcessToken(ProcessHandle, DesiredAccess, TokenHandle);
5383 }
5384 
5385 inline BOOL os::Advapi32Dll::LookupPrivilegeValue(LPCTSTR lpSystemName, LPCTSTR lpName, PLUID lpLuid) {
5386   return ::LookupPrivilegeValue(lpSystemName, lpName, lpLuid);
5387 }
5388 
5389 inline BOOL os::Advapi32Dll::AdvapiAvailable() {
5390   return true;
5391 }
5392 
5393 void* os::get_default_process_handle() {
5394   return (void*)GetModuleHandle(NULL);
5395 }
5396 
5397 // Builds a platform dependent Agent_OnLoad_<lib_name> function name
5398 // which is used to find statically linked in agents.
5399 // Additionally for windows, takes into account __stdcall names.
5400 // Parameters:
5401 //            sym_name: Symbol in library we are looking for
5402 //            lib_name: Name of library to look in, NULL for shared libs.
5403 //            is_absolute_path == true if lib_name is absolute path to agent
5404 //                                     such as "C:/a/b/L.dll"
5405 //            == false if only the base name of the library is passed in
5406 //               such as "L"
5407 char* os::build_agent_function_name(const char *sym_name, const char *lib_name,
5408                                     bool is_absolute_path) {
5409   char *agent_entry_name;
5410   size_t len;
5411   size_t name_len;
5412   size_t prefix_len = strlen(JNI_LIB_PREFIX);
5413   size_t suffix_len = strlen(JNI_LIB_SUFFIX);
5414   const char *start;
5415 
5416   if (lib_name != NULL) {
5417     len = name_len = strlen(lib_name);
5418     if (is_absolute_path) {
5419       // Need to strip path, prefix and suffix
5420       if ((start = strrchr(lib_name, *os::file_separator())) != NULL) {
5421         lib_name = ++start;
5422       } else {
5423         // Need to check for drive prefix
5424         if ((start = strchr(lib_name, ':')) != NULL) {
5425           lib_name = ++start;
5426         }
5427       }
5428       if (len <= (prefix_len + suffix_len)) {
5429         return NULL;
5430       }
5431       lib_name += prefix_len;
5432       name_len = strlen(lib_name) - suffix_len;
5433     }
5434   }
5435   len = (lib_name != NULL ? name_len : 0) + strlen(sym_name) + 2;
5436   agent_entry_name = NEW_C_HEAP_ARRAY_RETURN_NULL(char, len, mtThread);
5437   if (agent_entry_name == NULL) {
5438     return NULL;
5439   }
5440   if (lib_name != NULL) {
5441     const char *p = strrchr(sym_name, '@');
5442     if (p != NULL && p != sym_name) {
5443       // sym_name == _Agent_OnLoad@XX
5444       strncpy(agent_entry_name, sym_name, (p - sym_name));
5445       agent_entry_name[(p-sym_name)] = '\0';
5446       // agent_entry_name == _Agent_OnLoad
5447       strcat(agent_entry_name, "_");
5448       strncat(agent_entry_name, lib_name, name_len);
5449       strcat(agent_entry_name, p);
5450       // agent_entry_name == _Agent_OnLoad_lib_name@XX
5451     } else {
5452       strcpy(agent_entry_name, sym_name);
5453       strcat(agent_entry_name, "_");
5454       strncat(agent_entry_name, lib_name, name_len);
5455     }
5456   } else {
5457     strcpy(agent_entry_name, sym_name);
5458   }
5459   return agent_entry_name;
5460 }
5461 
5462 #else
5463 // Kernel32 API
5464 typedef BOOL (WINAPI* SwitchToThread_Fn)(void);
5465 typedef HANDLE (WINAPI* CreateToolhelp32Snapshot_Fn)(DWORD,DWORD);
5466 typedef BOOL (WINAPI* Module32First_Fn)(HANDLE,LPMODULEENTRY32);
5467 typedef BOOL (WINAPI* Module32Next_Fn)(HANDLE,LPMODULEENTRY32);
5468 typedef void (WINAPI* GetNativeSystemInfo_Fn)(LPSYSTEM_INFO);
5469 
5470 SwitchToThread_Fn           os::Kernel32Dll::_SwitchToThread = NULL;
5471 CreateToolhelp32Snapshot_Fn os::Kernel32Dll::_CreateToolhelp32Snapshot = NULL;
5472 Module32First_Fn            os::Kernel32Dll::_Module32First = NULL;
5473 Module32Next_Fn             os::Kernel32Dll::_Module32Next = NULL;
5474 GetNativeSystemInfo_Fn      os::Kernel32Dll::_GetNativeSystemInfo = NULL;
5475 
5476 void os::Kernel32Dll::initialize() {
5477   if (!initialized) {
5478     HMODULE handle = ::GetModuleHandle("Kernel32.dll");
5479     assert(handle != NULL, "Just check");
5480 
5481     _SwitchToThread = (SwitchToThread_Fn)::GetProcAddress(handle, "SwitchToThread");
5482     _CreateToolhelp32Snapshot = (CreateToolhelp32Snapshot_Fn)
5483       ::GetProcAddress(handle, "CreateToolhelp32Snapshot");
5484     _Module32First = (Module32First_Fn)::GetProcAddress(handle, "Module32First");
5485     _Module32Next = (Module32Next_Fn)::GetProcAddress(handle, "Module32Next");
5486     _GetNativeSystemInfo = (GetNativeSystemInfo_Fn)::GetProcAddress(handle, "GetNativeSystemInfo");
5487     initializeCommon();  // resolve the functions that always need resolving
5488 
5489     initialized = TRUE;
5490   }
5491 }
5492 
5493 BOOL os::Kernel32Dll::SwitchToThread() {
5494   assert(initialized && _SwitchToThread != NULL,
5495     "SwitchToThreadAvailable() not yet called");
5496   return _SwitchToThread();
5497 }
5498 
5499 
5500 BOOL os::Kernel32Dll::SwitchToThreadAvailable() {
5501   if (!initialized) {
5502     initialize();
5503   }
5504   return _SwitchToThread != NULL;
5505 }
5506 
5507 // Help tools
5508 BOOL os::Kernel32Dll::HelpToolsAvailable() {
5509   if (!initialized) {
5510     initialize();
5511   }
5512   return _CreateToolhelp32Snapshot != NULL &&
5513          _Module32First != NULL &&
5514          _Module32Next != NULL;
5515 }
5516 
5517 HANDLE os::Kernel32Dll::CreateToolhelp32Snapshot(DWORD dwFlags,DWORD th32ProcessId) {
5518   assert(initialized && _CreateToolhelp32Snapshot != NULL,
5519     "HelpToolsAvailable() not yet called");
5520 
5521   return _CreateToolhelp32Snapshot(dwFlags, th32ProcessId);
5522 }
5523 
5524 BOOL os::Kernel32Dll::Module32First(HANDLE hSnapshot,LPMODULEENTRY32 lpme) {
5525   assert(initialized && _Module32First != NULL,
5526     "HelpToolsAvailable() not yet called");
5527 
5528   return _Module32First(hSnapshot, lpme);
5529 }
5530 
5531 inline BOOL os::Kernel32Dll::Module32Next(HANDLE hSnapshot,LPMODULEENTRY32 lpme) {
5532   assert(initialized && _Module32Next != NULL,
5533     "HelpToolsAvailable() not yet called");
5534 
5535   return _Module32Next(hSnapshot, lpme);
5536 }
5537 
5538 
5539 BOOL os::Kernel32Dll::GetNativeSystemInfoAvailable() {
5540   if (!initialized) {
5541     initialize();
5542   }
5543   return _GetNativeSystemInfo != NULL;
5544 }
5545 
5546 void os::Kernel32Dll::GetNativeSystemInfo(LPSYSTEM_INFO lpSystemInfo) {
5547   assert(initialized && _GetNativeSystemInfo != NULL,
5548     "GetNativeSystemInfoAvailable() not yet called");
5549 
5550   _GetNativeSystemInfo(lpSystemInfo);
5551 }
5552 
5553 // PSAPI API
5554 
5555 
5556 typedef BOOL (WINAPI *EnumProcessModules_Fn)(HANDLE, HMODULE *, DWORD, LPDWORD);
5557 typedef BOOL (WINAPI *GetModuleFileNameEx_Fn)(HANDLE, HMODULE, LPTSTR, DWORD);;
5558 typedef BOOL (WINAPI *GetModuleInformation_Fn)(HANDLE, HMODULE, LPMODULEINFO, DWORD);
5559 
5560 EnumProcessModules_Fn   os::PSApiDll::_EnumProcessModules = NULL;
5561 GetModuleFileNameEx_Fn  os::PSApiDll::_GetModuleFileNameEx = NULL;
5562 GetModuleInformation_Fn os::PSApiDll::_GetModuleInformation = NULL;
5563 BOOL                    os::PSApiDll::initialized = FALSE;
5564 
5565 void os::PSApiDll::initialize() {
5566   if (!initialized) {
5567     HMODULE handle = os::win32::load_Windows_dll("PSAPI.DLL", NULL, 0);
5568     if (handle != NULL) {
5569       _EnumProcessModules = (EnumProcessModules_Fn)::GetProcAddress(handle,
5570         "EnumProcessModules");
5571       _GetModuleFileNameEx = (GetModuleFileNameEx_Fn)::GetProcAddress(handle,
5572         "GetModuleFileNameExA");
5573       _GetModuleInformation = (GetModuleInformation_Fn)::GetProcAddress(handle,
5574         "GetModuleInformation");
5575     }
5576     initialized = TRUE;
5577   }
5578 }
5579 
5580 
5581 
5582 BOOL os::PSApiDll::EnumProcessModules(HANDLE hProcess, HMODULE *lpModule, DWORD cb, LPDWORD lpcbNeeded) {
5583   assert(initialized && _EnumProcessModules != NULL,
5584     "PSApiAvailable() not yet called");
5585   return _EnumProcessModules(hProcess, lpModule, cb, lpcbNeeded);
5586 }
5587 
5588 DWORD os::PSApiDll::GetModuleFileNameEx(HANDLE hProcess, HMODULE hModule, LPTSTR lpFilename, DWORD nSize) {
5589   assert(initialized && _GetModuleFileNameEx != NULL,
5590     "PSApiAvailable() not yet called");
5591   return _GetModuleFileNameEx(hProcess, hModule, lpFilename, nSize);
5592 }
5593 
5594 BOOL os::PSApiDll::GetModuleInformation(HANDLE hProcess, HMODULE hModule, LPMODULEINFO lpmodinfo, DWORD cb) {
5595   assert(initialized && _GetModuleInformation != NULL,
5596     "PSApiAvailable() not yet called");
5597   return _GetModuleInformation(hProcess, hModule, lpmodinfo, cb);
5598 }
5599 
5600 BOOL os::PSApiDll::PSApiAvailable() {
5601   if (!initialized) {
5602     initialize();
5603   }
5604   return _EnumProcessModules != NULL &&
5605     _GetModuleFileNameEx != NULL &&
5606     _GetModuleInformation != NULL;
5607 }
5608 
5609 
5610 // WinSock2 API
5611 typedef int (PASCAL FAR* WSAStartup_Fn)(WORD, LPWSADATA);
5612 typedef struct hostent *(PASCAL FAR *gethostbyname_Fn)(...);
5613 
5614 WSAStartup_Fn    os::WinSock2Dll::_WSAStartup = NULL;
5615 gethostbyname_Fn os::WinSock2Dll::_gethostbyname = NULL;
5616 BOOL             os::WinSock2Dll::initialized = FALSE;
5617 
5618 void os::WinSock2Dll::initialize() {
5619   if (!initialized) {
5620     HMODULE handle = os::win32::load_Windows_dll("ws2_32.dll", NULL, 0);
5621     if (handle != NULL) {
5622       _WSAStartup = (WSAStartup_Fn)::GetProcAddress(handle, "WSAStartup");
5623       _gethostbyname = (gethostbyname_Fn)::GetProcAddress(handle, "gethostbyname");
5624     }
5625     initialized = TRUE;
5626   }
5627 }
5628 
5629 
5630 BOOL os::WinSock2Dll::WSAStartup(WORD wVersionRequested, LPWSADATA lpWSAData) {
5631   assert(initialized && _WSAStartup != NULL,
5632     "WinSock2Available() not yet called");
5633   return _WSAStartup(wVersionRequested, lpWSAData);
5634 }
5635 
5636 struct hostent* os::WinSock2Dll::gethostbyname(const char *name) {
5637   assert(initialized && _gethostbyname != NULL,
5638     "WinSock2Available() not yet called");
5639   return _gethostbyname(name);
5640 }
5641 
5642 BOOL os::WinSock2Dll::WinSock2Available() {
5643   if (!initialized) {
5644     initialize();
5645   }
5646   return _WSAStartup != NULL &&
5647     _gethostbyname != NULL;
5648 }
5649 
5650 typedef BOOL (WINAPI *AdjustTokenPrivileges_Fn)(HANDLE, BOOL, PTOKEN_PRIVILEGES, DWORD, PTOKEN_PRIVILEGES, PDWORD);
5651 typedef BOOL (WINAPI *OpenProcessToken_Fn)(HANDLE, DWORD, PHANDLE);
5652 typedef BOOL (WINAPI *LookupPrivilegeValue_Fn)(LPCTSTR, LPCTSTR, PLUID);
5653 
5654 AdjustTokenPrivileges_Fn os::Advapi32Dll::_AdjustTokenPrivileges = NULL;
5655 OpenProcessToken_Fn      os::Advapi32Dll::_OpenProcessToken = NULL;
5656 LookupPrivilegeValue_Fn  os::Advapi32Dll::_LookupPrivilegeValue = NULL;
5657 BOOL                     os::Advapi32Dll::initialized = FALSE;
5658 
5659 void os::Advapi32Dll::initialize() {
5660   if (!initialized) {
5661     HMODULE handle = os::win32::load_Windows_dll("advapi32.dll", NULL, 0);
5662     if (handle != NULL) {
5663       _AdjustTokenPrivileges = (AdjustTokenPrivileges_Fn)::GetProcAddress(handle,
5664         "AdjustTokenPrivileges");
5665       _OpenProcessToken = (OpenProcessToken_Fn)::GetProcAddress(handle,
5666         "OpenProcessToken");
5667       _LookupPrivilegeValue = (LookupPrivilegeValue_Fn)::GetProcAddress(handle,
5668         "LookupPrivilegeValueA");
5669     }
5670     initialized = TRUE;
5671   }
5672 }
5673 
5674 BOOL os::Advapi32Dll::AdjustTokenPrivileges(HANDLE TokenHandle,
5675    BOOL DisableAllPrivileges, PTOKEN_PRIVILEGES NewState, DWORD BufferLength,
5676    PTOKEN_PRIVILEGES PreviousState, PDWORD ReturnLength) {
5677    assert(initialized && _AdjustTokenPrivileges != NULL,
5678      "AdvapiAvailable() not yet called");
5679    return _AdjustTokenPrivileges(TokenHandle, DisableAllPrivileges, NewState,
5680        BufferLength, PreviousState, ReturnLength);
5681 }
5682 
5683 BOOL os::Advapi32Dll::OpenProcessToken(HANDLE ProcessHandle, DWORD DesiredAccess,
5684   PHANDLE TokenHandle) {
5685    assert(initialized && _OpenProcessToken != NULL,
5686      "AdvapiAvailable() not yet called");
5687     return _OpenProcessToken(ProcessHandle, DesiredAccess, TokenHandle);
5688 }
5689 
5690 BOOL os::Advapi32Dll::LookupPrivilegeValue(LPCTSTR lpSystemName, LPCTSTR lpName, PLUID lpLuid) {
5691    assert(initialized && _LookupPrivilegeValue != NULL,
5692      "AdvapiAvailable() not yet called");
5693   return _LookupPrivilegeValue(lpSystemName, lpName, lpLuid);
5694 }
5695 
5696 BOOL os::Advapi32Dll::AdvapiAvailable() {
5697   if (!initialized) {
5698     initialize();
5699   }
5700   return _AdjustTokenPrivileges != NULL &&
5701     _OpenProcessToken != NULL &&
5702     _LookupPrivilegeValue != NULL;
5703 }
5704 
5705 #endif
5706 
5707 #ifndef PRODUCT
5708 
5709 // test the code path in reserve_memory_special() that tries to allocate memory in a single
5710 // contiguous memory block at a particular address.
5711 // The test first tries to find a good approximate address to allocate at by using the same
5712 // method to allocate some memory at any address. The test then tries to allocate memory in
5713 // the vicinity (not directly after it to avoid possible by-chance use of that location)
5714 // This is of course only some dodgy assumption, there is no guarantee that the vicinity of
5715 // the previously allocated memory is available for allocation. The only actual failure
5716 // that is reported is when the test tries to allocate at a particular location but gets a
5717 // different valid one. A NULL return value at this point is not considered an error but may
5718 // be legitimate.
5719 // If -XX:+VerboseInternalVMTests is enabled, print some explanatory messages.
5720 void TestReserveMemorySpecial_test() {
5721   if (!UseLargePages) {
5722     if (VerboseInternalVMTests) {
5723       gclog_or_tty->print("Skipping test because large pages are disabled");
5724     }
5725     return;
5726   }
5727   // save current value of globals
5728   bool old_use_large_pages_individual_allocation = UseLargePagesIndividualAllocation;
5729   bool old_use_numa_interleaving = UseNUMAInterleaving;
5730 
5731   // set globals to make sure we hit the correct code path
5732   UseLargePagesIndividualAllocation = UseNUMAInterleaving = false;
5733 
5734   // do an allocation at an address selected by the OS to get a good one.
5735   const size_t large_allocation_size = os::large_page_size() * 4;
5736   char* result = os::reserve_memory_special(large_allocation_size, os::large_page_size(), NULL, false);
5737   if (result == NULL) {
5738     if (VerboseInternalVMTests) {
5739       gclog_or_tty->print("Failed to allocate control block with size "SIZE_FORMAT". Skipping remainder of test.",
5740         large_allocation_size);
5741     }
5742   } else {
5743     os::release_memory_special(result, large_allocation_size);
5744 
5745     // allocate another page within the recently allocated memory area which seems to be a good location. At least
5746     // we managed to get it once.
5747     const size_t expected_allocation_size = os::large_page_size();
5748     char* expected_location = result + os::large_page_size();
5749     char* actual_location = os::reserve_memory_special(expected_allocation_size, os::large_page_size(), expected_location, false);
5750     if (actual_location == NULL) {
5751       if (VerboseInternalVMTests) {
5752         gclog_or_tty->print("Failed to allocate any memory at "PTR_FORMAT" size "SIZE_FORMAT". Skipping remainder of test.",
5753           expected_location, large_allocation_size);
5754       }
5755     } else {
5756       // release memory
5757       os::release_memory_special(actual_location, expected_allocation_size);
5758       // only now check, after releasing any memory to avoid any leaks.
5759       assert(actual_location == expected_location,
5760         err_msg("Failed to allocate memory at requested location "PTR_FORMAT" of size "SIZE_FORMAT", is "PTR_FORMAT" instead",
5761           expected_location, expected_allocation_size, actual_location));
5762     }
5763   }
5764 
5765   // restore globals
5766   UseLargePagesIndividualAllocation = old_use_large_pages_individual_allocation;
5767   UseNUMAInterleaving = old_use_numa_interleaving;
5768 }
5769 #endif // PRODUCT
5770