1 /*
   2  * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // Must be at least Windows 2000 or XP to use IsDebuggerPresent
  26 #define _WIN32_WINNT 0x500
  27 
  28 // no precompiled headers
  29 #include "classfile/classLoader.hpp"
  30 #include "classfile/systemDictionary.hpp"
  31 #include "classfile/vmSymbols.hpp"
  32 #include "code/icBuffer.hpp"
  33 #include "code/vtableStubs.hpp"
  34 #include "compiler/compileBroker.hpp"
  35 #include "compiler/disassembler.hpp"
  36 #include "interpreter/interpreter.hpp"
  37 #include "jvm_windows.h"
  38 #include "memory/allocation.inline.hpp"
  39 #include "memory/filemap.hpp"
  40 #include "mutex_windows.inline.hpp"
  41 #include "oops/oop.inline.hpp"
  42 #include "os_share_windows.hpp"
  43 #include "prims/jniFastGetField.hpp"
  44 #include "prims/jvm.h"
  45 #include "prims/jvm_misc.hpp"
  46 #include "runtime/arguments.hpp"
  47 #include "runtime/extendedPC.hpp"
  48 #include "runtime/globals.hpp"
  49 #include "runtime/interfaceSupport.hpp"
  50 #include "runtime/java.hpp"
  51 #include "runtime/javaCalls.hpp"
  52 #include "runtime/mutexLocker.hpp"
  53 #include "runtime/objectMonitor.hpp"
  54 #include "runtime/osThread.hpp"
  55 #include "runtime/perfMemory.hpp"
  56 #include "runtime/sharedRuntime.hpp"
  57 #include "runtime/statSampler.hpp"
  58 #include "runtime/stubRoutines.hpp"
  59 #include "runtime/thread.inline.hpp"
  60 #include "runtime/threadCritical.hpp"
  61 #include "runtime/timer.hpp"
  62 #include "services/attachListener.hpp"
  63 #include "services/memTracker.hpp"
  64 #include "services/runtimeService.hpp"
  65 #include "utilities/decoder.hpp"
  66 #include "utilities/defaultStream.hpp"
  67 #include "utilities/events.hpp"
  68 #include "utilities/growableArray.hpp"
  69 #include "utilities/vmError.hpp"
  70 
  71 #ifdef _DEBUG
  72 #include <crtdbg.h>
  73 #endif
  74 
  75 
  76 #include <windows.h>
  77 #include <sys/types.h>
  78 #include <sys/stat.h>
  79 #include <sys/timeb.h>
  80 #include <objidl.h>
  81 #include <shlobj.h>
  82 
  83 #include <malloc.h>
  84 #include <signal.h>
  85 #include <direct.h>
  86 #include <errno.h>
  87 #include <fcntl.h>
  88 #include <io.h>
  89 #include <process.h>              // For _beginthreadex(), _endthreadex()
  90 #include <imagehlp.h>             // For os::dll_address_to_function_name
  91 /* for enumerating dll libraries */
  92 #include <vdmdbg.h>
  93 
  94 // for timer info max values which include all bits
  95 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
  96 
  97 // For DLL loading/load error detection
  98 // Values of PE COFF
  99 #define IMAGE_FILE_PTR_TO_SIGNATURE 0x3c
 100 #define IMAGE_FILE_SIGNATURE_LENGTH 4
 101 
 102 static HANDLE main_process;
 103 static HANDLE main_thread;
 104 static int    main_thread_id;
 105 
 106 static FILETIME process_creation_time;
 107 static FILETIME process_exit_time;
 108 static FILETIME process_user_time;
 109 static FILETIME process_kernel_time;
 110 
 111 #ifdef _M_IA64
 112 #define __CPU__ ia64
 113 #elif _M_AMD64
 114 #define __CPU__ amd64
 115 #else
 116 #define __CPU__ i486
 117 #endif
 118 
 119 // save DLL module handle, used by GetModuleFileName
 120 
 121 HINSTANCE vm_lib_handle;
 122 
 123 BOOL WINAPI DllMain(HINSTANCE hinst, DWORD reason, LPVOID reserved) {
 124   switch (reason) {
 125     case DLL_PROCESS_ATTACH:
 126       vm_lib_handle = hinst;
 127       if(ForceTimeHighResolution)
 128         timeBeginPeriod(1L);
 129       break;
 130     case DLL_PROCESS_DETACH:
 131       if(ForceTimeHighResolution)
 132         timeEndPeriod(1L);
 133       break;
 134     default:
 135       break;
 136   }
 137   return true;
 138 }
 139 
 140 static inline double fileTimeAsDouble(FILETIME* time) {
 141   const double high  = (double) ((unsigned int) ~0);
 142   const double split = 10000000.0;
 143   double result = (time->dwLowDateTime / split) +
 144                    time->dwHighDateTime * (high/split);
 145   return result;
 146 }
 147 
 148 // Implementation of os
 149 
 150 bool os::getenv(const char* name, char* buffer, int len) {
 151  int result = GetEnvironmentVariable(name, buffer, len);
 152  return result > 0 && result < len;
 153 }
 154 
 155 
 156 // No setuid programs under Windows.
 157 bool os::have_special_privileges() {
 158   return false;
 159 }
 160 
 161 
 162 // This method is  a periodic task to check for misbehaving JNI applications
 163 // under CheckJNI, we can add any periodic checks here.
 164 // For Windows at the moment does nothing
 165 void os::run_periodic_checks() {
 166   return;
 167 }
 168 
 169 // previous UnhandledExceptionFilter, if there is one
 170 static LPTOP_LEVEL_EXCEPTION_FILTER prev_uef_handler = NULL;
 171 
 172 LONG WINAPI Handle_FLT_Exception(struct _EXCEPTION_POINTERS* exceptionInfo);
 173 void os::init_system_properties_values() {
 174   /* sysclasspath, java_home, dll_dir */
 175   {
 176       char *home_path;
 177       char *dll_path;
 178       char *pslash;
 179       char *bin = "\\bin";
 180       char home_dir[MAX_PATH];
 181 
 182       if (!getenv("_ALT_JAVA_HOME_DIR", home_dir, MAX_PATH)) {
 183           os::jvm_path(home_dir, sizeof(home_dir));
 184           // Found the full path to jvm.dll.
 185           // Now cut the path to <java_home>/jre if we can.
 186           *(strrchr(home_dir, '\\')) = '\0';  /* get rid of \jvm.dll */
 187           pslash = strrchr(home_dir, '\\');
 188           if (pslash != NULL) {
 189               *pslash = '\0';                 /* get rid of \{client|server} */
 190               pslash = strrchr(home_dir, '\\');
 191               if (pslash != NULL)
 192                   *pslash = '\0';             /* get rid of \bin */
 193           }
 194       }
 195 
 196       home_path = NEW_C_HEAP_ARRAY(char, strlen(home_dir) + 1, mtInternal);
 197       if (home_path == NULL)
 198           return;
 199       strcpy(home_path, home_dir);
 200       Arguments::set_java_home(home_path);
 201 
 202       dll_path = NEW_C_HEAP_ARRAY(char, strlen(home_dir) + strlen(bin) + 1, mtInternal);
 203       if (dll_path == NULL)
 204           return;
 205       strcpy(dll_path, home_dir);
 206       strcat(dll_path, bin);
 207       Arguments::set_dll_dir(dll_path);
 208 
 209       if (!set_boot_path('\\', ';'))
 210           return;
 211   }
 212 
 213   /* library_path */
 214   #define EXT_DIR "\\lib\\ext"
 215   #define BIN_DIR "\\bin"
 216   #define PACKAGE_DIR "\\Sun\\Java"
 217   {
 218     /* Win32 library search order (See the documentation for LoadLibrary):
 219      *
 220      * 1. The directory from which application is loaded.
 221      * 2. The system wide Java Extensions directory (Java only)
 222      * 3. System directory (GetSystemDirectory)
 223      * 4. Windows directory (GetWindowsDirectory)
 224      * 5. The PATH environment variable
 225      * 6. The current directory
 226      */
 227 
 228     char *library_path;
 229     char tmp[MAX_PATH];
 230     char *path_str = ::getenv("PATH");
 231 
 232     library_path = NEW_C_HEAP_ARRAY(char, MAX_PATH * 5 + sizeof(PACKAGE_DIR) +
 233         sizeof(BIN_DIR) + (path_str ? strlen(path_str) : 0) + 10, mtInternal);
 234 
 235     library_path[0] = '\0';
 236 
 237     GetModuleFileName(NULL, tmp, sizeof(tmp));
 238     *(strrchr(tmp, '\\')) = '\0';
 239     strcat(library_path, tmp);
 240 
 241     GetWindowsDirectory(tmp, sizeof(tmp));
 242     strcat(library_path, ";");
 243     strcat(library_path, tmp);
 244     strcat(library_path, PACKAGE_DIR BIN_DIR);
 245 
 246     GetSystemDirectory(tmp, sizeof(tmp));
 247     strcat(library_path, ";");
 248     strcat(library_path, tmp);
 249 
 250     GetWindowsDirectory(tmp, sizeof(tmp));
 251     strcat(library_path, ";");
 252     strcat(library_path, tmp);
 253 
 254     if (path_str) {
 255         strcat(library_path, ";");
 256         strcat(library_path, path_str);
 257     }
 258 
 259     strcat(library_path, ";.");
 260 
 261     Arguments::set_library_path(library_path);
 262     FREE_C_HEAP_ARRAY(char, library_path, mtInternal);
 263   }
 264 
 265   /* Default extensions directory */
 266   {
 267     char path[MAX_PATH];
 268     char buf[2 * MAX_PATH + 2 * sizeof(EXT_DIR) + sizeof(PACKAGE_DIR) + 1];
 269     GetWindowsDirectory(path, MAX_PATH);
 270     sprintf(buf, "%s%s;%s%s%s", Arguments::get_java_home(), EXT_DIR,
 271         path, PACKAGE_DIR, EXT_DIR);
 272     Arguments::set_ext_dirs(buf);
 273   }
 274   #undef EXT_DIR
 275   #undef BIN_DIR
 276   #undef PACKAGE_DIR
 277 
 278   /* Default endorsed standards directory. */
 279   {
 280     #define ENDORSED_DIR "\\lib\\endorsed"
 281     size_t len = strlen(Arguments::get_java_home()) + sizeof(ENDORSED_DIR);
 282     char * buf = NEW_C_HEAP_ARRAY(char, len, mtInternal);
 283     sprintf(buf, "%s%s", Arguments::get_java_home(), ENDORSED_DIR);
 284     Arguments::set_endorsed_dirs(buf);
 285     #undef ENDORSED_DIR
 286   }
 287 
 288 #ifndef _WIN64
 289   // set our UnhandledExceptionFilter and save any previous one
 290   prev_uef_handler = SetUnhandledExceptionFilter(Handle_FLT_Exception);
 291 #endif
 292 
 293   // Done
 294   return;
 295 }
 296 
 297 void os::breakpoint() {
 298   DebugBreak();
 299 }
 300 
 301 // Invoked from the BREAKPOINT Macro
 302 extern "C" void breakpoint() {
 303   os::breakpoint();
 304 }
 305 
 306 /*
 307  * RtlCaptureStackBackTrace Windows API may not exist prior to Windows XP.
 308  * So far, this method is only used by Native Memory Tracking, which is
 309  * only supported on Windows XP or later.
 310  */
 311 address os::get_caller_pc(int n) {
 312 #ifdef _NMT_NOINLINE_
 313   n ++;
 314 #endif
 315   address pc;
 316   if (os::Kernel32Dll::RtlCaptureStackBackTrace(n + 1, 1, (PVOID*)&pc, NULL) == 1) {
 317     return pc;
 318   }
 319   return NULL;
 320 }
 321 
 322 
 323 // os::current_stack_base()
 324 //
 325 //   Returns the base of the stack, which is the stack's
 326 //   starting address.  This function must be called
 327 //   while running on the stack of the thread being queried.
 328 
 329 address os::current_stack_base() {
 330   MEMORY_BASIC_INFORMATION minfo;
 331   address stack_bottom;
 332   size_t stack_size;
 333 
 334   VirtualQuery(&minfo, &minfo, sizeof(minfo));
 335   stack_bottom =  (address)minfo.AllocationBase;
 336   stack_size = minfo.RegionSize;
 337 
 338   // Add up the sizes of all the regions with the same
 339   // AllocationBase.
 340   while( 1 )
 341   {
 342     VirtualQuery(stack_bottom+stack_size, &minfo, sizeof(minfo));
 343     if ( stack_bottom == (address)minfo.AllocationBase )
 344       stack_size += minfo.RegionSize;
 345     else
 346       break;
 347   }
 348 
 349 #ifdef _M_IA64
 350   // IA64 has memory and register stacks
 351   //
 352   // This is the stack layout you get on NT/IA64 if you specify 1MB stack limit
 353   // at thread creation (1MB backing store growing upwards, 1MB memory stack
 354   // growing downwards, 2MB summed up)
 355   //
 356   // ...
 357   // ------- top of stack (high address) -----
 358   // |
 359   // |      1MB
 360   // |      Backing Store (Register Stack)
 361   // |
 362   // |         / \
 363   // |          |
 364   // |          |
 365   // |          |
 366   // ------------------------ stack base -----
 367   // |      1MB
 368   // |      Memory Stack
 369   // |
 370   // |          |
 371   // |          |
 372   // |          |
 373   // |         \ /
 374   // |
 375   // ----- bottom of stack (low address) -----
 376   // ...
 377 
 378   stack_size = stack_size / 2;
 379 #endif
 380   return stack_bottom + stack_size;
 381 }
 382 
 383 size_t os::current_stack_size() {
 384   size_t sz;
 385   MEMORY_BASIC_INFORMATION minfo;
 386   VirtualQuery(&minfo, &minfo, sizeof(minfo));
 387   sz = (size_t)os::current_stack_base() - (size_t)minfo.AllocationBase;
 388   return sz;
 389 }
 390 
 391 struct tm* os::localtime_pd(const time_t* clock, struct tm* res) {
 392   const struct tm* time_struct_ptr = localtime(clock);
 393   if (time_struct_ptr != NULL) {
 394     *res = *time_struct_ptr;
 395     return res;
 396   }
 397   return NULL;
 398 }
 399 
 400 LONG WINAPI topLevelExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo);
 401 
 402 // Thread start routine for all new Java threads
 403 static unsigned __stdcall java_start(Thread* thread) {
 404   // Try to randomize the cache line index of hot stack frames.
 405   // This helps when threads of the same stack traces evict each other's
 406   // cache lines. The threads can be either from the same JVM instance, or
 407   // from different JVM instances. The benefit is especially true for
 408   // processors with hyperthreading technology.
 409   static int counter = 0;
 410   int pid = os::current_process_id();
 411   _alloca(((pid ^ counter++) & 7) * 128);
 412 
 413   OSThread* osthr = thread->osthread();
 414   assert(osthr->get_state() == RUNNABLE, "invalid os thread state");
 415 
 416   if (UseNUMA) {
 417     int lgrp_id = os::numa_get_group_id();
 418     if (lgrp_id != -1) {
 419       thread->set_lgrp_id(lgrp_id);
 420     }
 421   }
 422 
 423 
 424   // Install a win32 structured exception handler around every thread created
 425   // by VM, so VM can genrate error dump when an exception occurred in non-
 426   // Java thread (e.g. VM thread).
 427   __try {
 428      thread->run();
 429   } __except(topLevelExceptionFilter(
 430              (_EXCEPTION_POINTERS*)_exception_info())) {
 431       // Nothing to do.
 432   }
 433 
 434   // One less thread is executing
 435   // When the VMThread gets here, the main thread may have already exited
 436   // which frees the CodeHeap containing the Atomic::add code
 437   if (thread != VMThread::vm_thread() && VMThread::vm_thread() != NULL) {
 438     Atomic::dec_ptr((intptr_t*)&os::win32::_os_thread_count);
 439   }
 440 
 441   return 0;
 442 }
 443 
 444 static OSThread* create_os_thread(Thread* thread, HANDLE thread_handle, int thread_id) {
 445   // Allocate the OSThread object
 446   OSThread* osthread = new OSThread(NULL, NULL);
 447   if (osthread == NULL) return NULL;
 448 
 449   // Initialize support for Java interrupts
 450   HANDLE interrupt_event = CreateEvent(NULL, true, false, NULL);
 451   if (interrupt_event == NULL) {
 452     delete osthread;
 453     return NULL;
 454   }
 455   osthread->set_interrupt_event(interrupt_event);
 456 
 457   // Store info on the Win32 thread into the OSThread
 458   osthread->set_thread_handle(thread_handle);
 459   osthread->set_thread_id(thread_id);
 460 
 461   if (UseNUMA) {
 462     int lgrp_id = os::numa_get_group_id();
 463     if (lgrp_id != -1) {
 464       thread->set_lgrp_id(lgrp_id);
 465     }
 466   }
 467 
 468   // Initial thread state is INITIALIZED, not SUSPENDED
 469   osthread->set_state(INITIALIZED);
 470 
 471   return osthread;
 472 }
 473 
 474 
 475 bool os::create_attached_thread(JavaThread* thread) {
 476 #ifdef ASSERT
 477   thread->verify_not_published();
 478 #endif
 479   HANDLE thread_h;
 480   if (!DuplicateHandle(main_process, GetCurrentThread(), GetCurrentProcess(),
 481                        &thread_h, THREAD_ALL_ACCESS, false, 0)) {
 482     fatal("DuplicateHandle failed\n");
 483   }
 484   OSThread* osthread = create_os_thread(thread, thread_h,
 485                                         (int)current_thread_id());
 486   if (osthread == NULL) {
 487      return false;
 488   }
 489 
 490   // Initial thread state is RUNNABLE
 491   osthread->set_state(RUNNABLE);
 492 
 493   thread->set_osthread(osthread);
 494   return true;
 495 }
 496 
 497 bool os::create_main_thread(JavaThread* thread) {
 498 #ifdef ASSERT
 499   thread->verify_not_published();
 500 #endif
 501   if (_starting_thread == NULL) {
 502     _starting_thread = create_os_thread(thread, main_thread, main_thread_id);
 503      if (_starting_thread == NULL) {
 504         return false;
 505      }
 506   }
 507 
 508   // The primordial thread is runnable from the start)
 509   _starting_thread->set_state(RUNNABLE);
 510 
 511   thread->set_osthread(_starting_thread);
 512   return true;
 513 }
 514 
 515 // Allocate and initialize a new OSThread
 516 bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
 517   unsigned thread_id;
 518 
 519   // Allocate the OSThread object
 520   OSThread* osthread = new OSThread(NULL, NULL);
 521   if (osthread == NULL) {
 522     return false;
 523   }
 524 
 525   // Initialize support for Java interrupts
 526   HANDLE interrupt_event = CreateEvent(NULL, true, false, NULL);
 527   if (interrupt_event == NULL) {
 528     delete osthread;
 529     return NULL;
 530   }
 531   osthread->set_interrupt_event(interrupt_event);
 532   osthread->set_interrupted(false);
 533 
 534   thread->set_osthread(osthread);
 535 
 536   if (stack_size == 0) {
 537     switch (thr_type) {
 538     case os::java_thread:
 539       // Java threads use ThreadStackSize which default value can be changed with the flag -Xss
 540       if (JavaThread::stack_size_at_create() > 0)
 541         stack_size = JavaThread::stack_size_at_create();
 542       break;
 543     case os::compiler_thread:
 544       if (CompilerThreadStackSize > 0) {
 545         stack_size = (size_t)(CompilerThreadStackSize * K);
 546         break;
 547       } // else fall through:
 548         // use VMThreadStackSize if CompilerThreadStackSize is not defined
 549     case os::vm_thread:
 550     case os::pgc_thread:
 551     case os::cgc_thread:
 552     case os::watcher_thread:
 553       if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
 554       break;
 555     }
 556   }
 557 
 558   // Create the Win32 thread
 559   //
 560   // Contrary to what MSDN document says, "stack_size" in _beginthreadex()
 561   // does not specify stack size. Instead, it specifies the size of
 562   // initially committed space. The stack size is determined by
 563   // PE header in the executable. If the committed "stack_size" is larger
 564   // than default value in the PE header, the stack is rounded up to the
 565   // nearest multiple of 1MB. For example if the launcher has default
 566   // stack size of 320k, specifying any size less than 320k does not
 567   // affect the actual stack size at all, it only affects the initial
 568   // commitment. On the other hand, specifying 'stack_size' larger than
 569   // default value may cause significant increase in memory usage, because
 570   // not only the stack space will be rounded up to MB, but also the
 571   // entire space is committed upfront.
 572   //
 573   // Finally Windows XP added a new flag 'STACK_SIZE_PARAM_IS_A_RESERVATION'
 574   // for CreateThread() that can treat 'stack_size' as stack size. However we
 575   // are not supposed to call CreateThread() directly according to MSDN
 576   // document because JVM uses C runtime library. The good news is that the
 577   // flag appears to work with _beginthredex() as well.
 578 
 579 #ifndef STACK_SIZE_PARAM_IS_A_RESERVATION
 580 #define STACK_SIZE_PARAM_IS_A_RESERVATION  (0x10000)
 581 #endif
 582 
 583   HANDLE thread_handle =
 584     (HANDLE)_beginthreadex(NULL,
 585                            (unsigned)stack_size,
 586                            (unsigned (__stdcall *)(void*)) java_start,
 587                            thread,
 588                            CREATE_SUSPENDED | STACK_SIZE_PARAM_IS_A_RESERVATION,
 589                            &thread_id);
 590   if (thread_handle == NULL) {
 591     // perhaps STACK_SIZE_PARAM_IS_A_RESERVATION is not supported, try again
 592     // without the flag.
 593     thread_handle =
 594     (HANDLE)_beginthreadex(NULL,
 595                            (unsigned)stack_size,
 596                            (unsigned (__stdcall *)(void*)) java_start,
 597                            thread,
 598                            CREATE_SUSPENDED,
 599                            &thread_id);
 600   }
 601   if (thread_handle == NULL) {
 602     // Need to clean up stuff we've allocated so far
 603     CloseHandle(osthread->interrupt_event());
 604     thread->set_osthread(NULL);
 605     delete osthread;
 606     return NULL;
 607   }
 608 
 609   Atomic::inc_ptr((intptr_t*)&os::win32::_os_thread_count);
 610 
 611   // Store info on the Win32 thread into the OSThread
 612   osthread->set_thread_handle(thread_handle);
 613   osthread->set_thread_id(thread_id);
 614 
 615   // Initial thread state is INITIALIZED, not SUSPENDED
 616   osthread->set_state(INITIALIZED);
 617 
 618   // The thread is returned suspended (in state INITIALIZED), and is started higher up in the call chain
 619   return true;
 620 }
 621 
 622 
 623 // Free Win32 resources related to the OSThread
 624 void os::free_thread(OSThread* osthread) {
 625   assert(osthread != NULL, "osthread not set");
 626   CloseHandle(osthread->thread_handle());
 627   CloseHandle(osthread->interrupt_event());
 628   delete osthread;
 629 }
 630 
 631 static jlong first_filetime;
 632 static jlong initial_performance_count;
 633 static jlong performance_frequency;
 634 
 635 
 636 jlong as_long(LARGE_INTEGER x) {
 637   jlong result = 0; // initialization to avoid warning
 638   set_high(&result, x.HighPart);
 639   set_low(&result,  x.LowPart);
 640   return result;
 641 }
 642 
 643 
 644 jlong os::elapsed_counter() {
 645   LARGE_INTEGER count;
 646   if (win32::_has_performance_count) {
 647     QueryPerformanceCounter(&count);
 648     return as_long(count) - initial_performance_count;
 649   } else {
 650     FILETIME wt;
 651     GetSystemTimeAsFileTime(&wt);
 652     return (jlong_from(wt.dwHighDateTime, wt.dwLowDateTime) - first_filetime);
 653   }
 654 }
 655 
 656 
 657 jlong os::elapsed_frequency() {
 658   if (win32::_has_performance_count) {
 659     return performance_frequency;
 660   } else {
 661    // the FILETIME time is the number of 100-nanosecond intervals since January 1,1601.
 662    return 10000000;
 663   }
 664 }
 665 
 666 
 667 julong os::available_memory() {
 668   return win32::available_memory();
 669 }
 670 
 671 julong os::win32::available_memory() {
 672   // Use GlobalMemoryStatusEx() because GlobalMemoryStatus() may return incorrect
 673   // value if total memory is larger than 4GB
 674   MEMORYSTATUSEX ms;
 675   ms.dwLength = sizeof(ms);
 676   GlobalMemoryStatusEx(&ms);
 677 
 678   return (julong)ms.ullAvailPhys;
 679 }
 680 
 681 julong os::physical_memory() {
 682   return win32::physical_memory();
 683 }
 684 
 685 bool os::has_allocatable_memory_limit(julong* limit) {
 686   MEMORYSTATUSEX ms;
 687   ms.dwLength = sizeof(ms);
 688   GlobalMemoryStatusEx(&ms);
 689 #ifdef _LP64
 690   *limit = (julong)ms.ullAvailVirtual;
 691   return true;
 692 #else
 693   // Limit to 1400m because of the 2gb address space wall
 694   *limit = MIN2((julong)1400*M, (julong)ms.ullAvailVirtual);
 695   return true;
 696 #endif
 697 }
 698 
 699 // VC6 lacks DWORD_PTR
 700 #if _MSC_VER < 1300
 701 typedef UINT_PTR DWORD_PTR;
 702 #endif
 703 
 704 int os::active_processor_count() {
 705   DWORD_PTR lpProcessAffinityMask = 0;
 706   DWORD_PTR lpSystemAffinityMask = 0;
 707   int proc_count = processor_count();
 708   if (proc_count <= sizeof(UINT_PTR) * BitsPerByte &&
 709       GetProcessAffinityMask(GetCurrentProcess(), &lpProcessAffinityMask, &lpSystemAffinityMask)) {
 710     // Nof active processors is number of bits in process affinity mask
 711     int bitcount = 0;
 712     while (lpProcessAffinityMask != 0) {
 713       lpProcessAffinityMask = lpProcessAffinityMask & (lpProcessAffinityMask-1);
 714       bitcount++;
 715     }
 716     return bitcount;
 717   } else {
 718     return proc_count;
 719   }
 720 }
 721 
 722 void os::set_native_thread_name(const char *name) {
 723   // Not yet implemented.
 724   return;
 725 }
 726 
 727 bool os::distribute_processes(uint length, uint* distribution) {
 728   // Not yet implemented.
 729   return false;
 730 }
 731 
 732 bool os::bind_to_processor(uint processor_id) {
 733   // Not yet implemented.
 734   return false;
 735 }
 736 
 737 void os::win32::initialize_performance_counter() {
 738   LARGE_INTEGER count;
 739   if (QueryPerformanceFrequency(&count)) {
 740     win32::_has_performance_count = 1;
 741     performance_frequency = as_long(count);
 742     QueryPerformanceCounter(&count);
 743     initial_performance_count = as_long(count);
 744   } else {
 745     win32::_has_performance_count = 0;
 746     FILETIME wt;
 747     GetSystemTimeAsFileTime(&wt);
 748     first_filetime = jlong_from(wt.dwHighDateTime, wt.dwLowDateTime);
 749   }
 750 }
 751 
 752 
 753 double os::elapsedTime() {
 754   return (double) elapsed_counter() / (double) elapsed_frequency();
 755 }
 756 
 757 
 758 // Windows format:
 759 //   The FILETIME structure is a 64-bit value representing the number of 100-nanosecond intervals since January 1, 1601.
 760 // Java format:
 761 //   Java standards require the number of milliseconds since 1/1/1970
 762 
 763 // Constant offset - calculated using offset()
 764 static jlong  _offset   = 116444736000000000;
 765 // Fake time counter for reproducible results when debugging
 766 static jlong  fake_time = 0;
 767 
 768 #ifdef ASSERT
 769 // Just to be safe, recalculate the offset in debug mode
 770 static jlong _calculated_offset = 0;
 771 static int   _has_calculated_offset = 0;
 772 
 773 jlong offset() {
 774   if (_has_calculated_offset) return _calculated_offset;
 775   SYSTEMTIME java_origin;
 776   java_origin.wYear          = 1970;
 777   java_origin.wMonth         = 1;
 778   java_origin.wDayOfWeek     = 0; // ignored
 779   java_origin.wDay           = 1;
 780   java_origin.wHour          = 0;
 781   java_origin.wMinute        = 0;
 782   java_origin.wSecond        = 0;
 783   java_origin.wMilliseconds  = 0;
 784   FILETIME jot;
 785   if (!SystemTimeToFileTime(&java_origin, &jot)) {
 786     fatal(err_msg("Error = %d\nWindows error", GetLastError()));
 787   }
 788   _calculated_offset = jlong_from(jot.dwHighDateTime, jot.dwLowDateTime);
 789   _has_calculated_offset = 1;
 790   assert(_calculated_offset == _offset, "Calculated and constant time offsets must be equal");
 791   return _calculated_offset;
 792 }
 793 #else
 794 jlong offset() {
 795   return _offset;
 796 }
 797 #endif
 798 
 799 jlong windows_to_java_time(FILETIME wt) {
 800   jlong a = jlong_from(wt.dwHighDateTime, wt.dwLowDateTime);
 801   return (a - offset()) / 10000;
 802 }
 803 
 804 FILETIME java_to_windows_time(jlong l) {
 805   jlong a = (l * 10000) + offset();
 806   FILETIME result;
 807   result.dwHighDateTime = high(a);
 808   result.dwLowDateTime  = low(a);
 809   return result;
 810 }
 811 
 812 bool os::supports_vtime() { return true; }
 813 bool os::enable_vtime() { return false; }
 814 bool os::vtime_enabled() { return false; }
 815 
 816 double os::elapsedVTime() {
 817   FILETIME created;
 818   FILETIME exited;
 819   FILETIME kernel;
 820   FILETIME user;
 821   if (GetThreadTimes(GetCurrentThread(), &created, &exited, &kernel, &user) != 0) {
 822     // the resolution of windows_to_java_time() should be sufficient (ms)
 823     return (double) (windows_to_java_time(kernel) + windows_to_java_time(user)) / MILLIUNITS;
 824   } else {
 825     return elapsedTime();
 826   }
 827 }
 828 
 829 jlong os::javaTimeMillis() {
 830   if (UseFakeTimers) {
 831     return fake_time++;
 832   } else {
 833     FILETIME wt;
 834     GetSystemTimeAsFileTime(&wt);
 835     return windows_to_java_time(wt);
 836   }
 837 }
 838 
 839 jlong os::javaTimeNanos() {
 840   if (!win32::_has_performance_count) {
 841     return javaTimeMillis() * NANOSECS_PER_MILLISEC; // the best we can do.
 842   } else {
 843     LARGE_INTEGER current_count;
 844     QueryPerformanceCounter(&current_count);
 845     double current = as_long(current_count);
 846     double freq = performance_frequency;
 847     jlong time = (jlong)((current/freq) * NANOSECS_PER_SEC);
 848     return time;
 849   }
 850 }
 851 
 852 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
 853   if (!win32::_has_performance_count) {
 854     // javaTimeMillis() doesn't have much percision,
 855     // but it is not going to wrap -- so all 64 bits
 856     info_ptr->max_value = ALL_64_BITS;
 857 
 858     // this is a wall clock timer, so may skip
 859     info_ptr->may_skip_backward = true;
 860     info_ptr->may_skip_forward = true;
 861   } else {
 862     jlong freq = performance_frequency;
 863     if (freq < NANOSECS_PER_SEC) {
 864       // the performance counter is 64 bits and we will
 865       // be multiplying it -- so no wrap in 64 bits
 866       info_ptr->max_value = ALL_64_BITS;
 867     } else if (freq > NANOSECS_PER_SEC) {
 868       // use the max value the counter can reach to
 869       // determine the max value which could be returned
 870       julong max_counter = (julong)ALL_64_BITS;
 871       info_ptr->max_value = (jlong)(max_counter / (freq / NANOSECS_PER_SEC));
 872     } else {
 873       // the performance counter is 64 bits and we will
 874       // be using it directly -- so no wrap in 64 bits
 875       info_ptr->max_value = ALL_64_BITS;
 876     }
 877 
 878     // using a counter, so no skipping
 879     info_ptr->may_skip_backward = false;
 880     info_ptr->may_skip_forward = false;
 881   }
 882   info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
 883 }
 884 
 885 char* os::local_time_string(char *buf, size_t buflen) {
 886   SYSTEMTIME st;
 887   GetLocalTime(&st);
 888   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
 889                st.wYear, st.wMonth, st.wDay, st.wHour, st.wMinute, st.wSecond);
 890   return buf;
 891 }
 892 
 893 bool os::getTimesSecs(double* process_real_time,
 894                      double* process_user_time,
 895                      double* process_system_time) {
 896   HANDLE h_process = GetCurrentProcess();
 897   FILETIME create_time, exit_time, kernel_time, user_time;
 898   BOOL result = GetProcessTimes(h_process,
 899                                &create_time,
 900                                &exit_time,
 901                                &kernel_time,
 902                                &user_time);
 903   if (result != 0) {
 904     FILETIME wt;
 905     GetSystemTimeAsFileTime(&wt);
 906     jlong rtc_millis = windows_to_java_time(wt);
 907     jlong user_millis = windows_to_java_time(user_time);
 908     jlong system_millis = windows_to_java_time(kernel_time);
 909     *process_real_time = ((double) rtc_millis) / ((double) MILLIUNITS);
 910     *process_user_time = ((double) user_millis) / ((double) MILLIUNITS);
 911     *process_system_time = ((double) system_millis) / ((double) MILLIUNITS);
 912     return true;
 913   } else {
 914     return false;
 915   }
 916 }
 917 
 918 void os::shutdown() {
 919 
 920   // allow PerfMemory to attempt cleanup of any persistent resources
 921   perfMemory_exit();
 922 
 923   // flush buffered output, finish log files
 924   ostream_abort();
 925 
 926   // Check for abort hook
 927   abort_hook_t abort_hook = Arguments::abort_hook();
 928   if (abort_hook != NULL) {
 929     abort_hook();
 930   }
 931 }
 932 
 933 
 934 static BOOL  (WINAPI *_MiniDumpWriteDump)  ( HANDLE, DWORD, HANDLE, MINIDUMP_TYPE, PMINIDUMP_EXCEPTION_INFORMATION,
 935                                             PMINIDUMP_USER_STREAM_INFORMATION, PMINIDUMP_CALLBACK_INFORMATION);
 936 
 937 void os::check_or_create_dump(void* exceptionRecord, void* contextRecord, char* buffer, size_t bufferSize) {
 938   HINSTANCE dbghelp;
 939   EXCEPTION_POINTERS ep;
 940   MINIDUMP_EXCEPTION_INFORMATION mei;
 941   MINIDUMP_EXCEPTION_INFORMATION* pmei;
 942 
 943   HANDLE hProcess = GetCurrentProcess();
 944   DWORD processId = GetCurrentProcessId();
 945   HANDLE dumpFile;
 946   MINIDUMP_TYPE dumpType;
 947   static const char* cwd;
 948 
 949 // Default is to always create dump for debug builds, on product builds only dump on server versions of Windows.
 950 #ifndef ASSERT
 951   // If running on a client version of Windows and user has not explicitly enabled dumping
 952   if (!os::win32::is_windows_server() && !CreateMinidumpOnCrash) {
 953     VMError::report_coredump_status("Minidumps are not enabled by default on client versions of Windows", false);
 954     return;
 955     // If running on a server version of Windows and user has explictly disabled dumping
 956   } else if (os::win32::is_windows_server() && !FLAG_IS_DEFAULT(CreateMinidumpOnCrash) && !CreateMinidumpOnCrash) {
 957     VMError::report_coredump_status("Minidump has been disabled from the command line", false);
 958     return;
 959   }
 960 #else
 961   if (!FLAG_IS_DEFAULT(CreateMinidumpOnCrash) && !CreateMinidumpOnCrash) {
 962     VMError::report_coredump_status("Minidump has been disabled from the command line", false);
 963     return;
 964   }
 965 #endif
 966 
 967   dbghelp = os::win32::load_Windows_dll("DBGHELP.DLL", NULL, 0);
 968 
 969   if (dbghelp == NULL) {
 970     VMError::report_coredump_status("Failed to load dbghelp.dll", false);
 971     return;
 972   }
 973 
 974   _MiniDumpWriteDump = CAST_TO_FN_PTR(
 975     BOOL(WINAPI *)( HANDLE, DWORD, HANDLE, MINIDUMP_TYPE, PMINIDUMP_EXCEPTION_INFORMATION,
 976     PMINIDUMP_USER_STREAM_INFORMATION, PMINIDUMP_CALLBACK_INFORMATION),
 977     GetProcAddress(dbghelp, "MiniDumpWriteDump"));
 978 
 979   if (_MiniDumpWriteDump == NULL) {
 980     VMError::report_coredump_status("Failed to find MiniDumpWriteDump() in module dbghelp.dll", false);
 981     return;
 982   }
 983 
 984   dumpType = (MINIDUMP_TYPE)(MiniDumpWithFullMemory | MiniDumpWithHandleData);
 985 
 986 // Older versions of dbghelp.h doesn't contain all the dumptypes we want, dbghelp.h with
 987 // API_VERSION_NUMBER 11 or higher contains the ones we want though
 988 #if API_VERSION_NUMBER >= 11
 989   dumpType = (MINIDUMP_TYPE)(dumpType | MiniDumpWithFullMemoryInfo | MiniDumpWithThreadInfo |
 990     MiniDumpWithUnloadedModules);
 991 #endif
 992 
 993   cwd = get_current_directory(NULL, 0);
 994   jio_snprintf(buffer, bufferSize, "%s\\hs_err_pid%u.mdmp",cwd, current_process_id());
 995   dumpFile = CreateFile(buffer, GENERIC_WRITE, 0, NULL, CREATE_ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL);
 996 
 997   if (dumpFile == INVALID_HANDLE_VALUE) {
 998     VMError::report_coredump_status("Failed to create file for dumping", false);
 999     return;
1000   }
1001   if (exceptionRecord != NULL && contextRecord != NULL) {
1002     ep.ContextRecord = (PCONTEXT) contextRecord;
1003     ep.ExceptionRecord = (PEXCEPTION_RECORD) exceptionRecord;
1004 
1005     mei.ThreadId = GetCurrentThreadId();
1006     mei.ExceptionPointers = &ep;
1007     pmei = &mei;
1008   } else {
1009     pmei = NULL;
1010   }
1011 
1012 
1013   // Older versions of dbghelp.dll (the one shipped with Win2003 for example) may not support all
1014   // the dump types we really want. If first call fails, lets fall back to just use MiniDumpWithFullMemory then.
1015   if (_MiniDumpWriteDump(hProcess, processId, dumpFile, dumpType, pmei, NULL, NULL) == false &&
1016       _MiniDumpWriteDump(hProcess, processId, dumpFile, (MINIDUMP_TYPE)MiniDumpWithFullMemory, pmei, NULL, NULL) == false) {
1017         DWORD error = GetLastError();
1018         LPTSTR msgbuf = NULL;
1019 
1020         if (FormatMessage(FORMAT_MESSAGE_ALLOCATE_BUFFER |
1021                       FORMAT_MESSAGE_FROM_SYSTEM |
1022                       FORMAT_MESSAGE_IGNORE_INSERTS,
1023                       NULL, error, 0, (LPTSTR)&msgbuf, 0, NULL) != 0) {
1024 
1025           jio_snprintf(buffer, bufferSize, "Call to MiniDumpWriteDump() failed (Error 0x%x: %s)", error, msgbuf);
1026           LocalFree(msgbuf);
1027         } else {
1028           // Call to FormatMessage failed, just include the result from GetLastError
1029           jio_snprintf(buffer, bufferSize, "Call to MiniDumpWriteDump() failed (Error 0x%x)", error);
1030         }
1031         VMError::report_coredump_status(buffer, false);
1032   } else {
1033     VMError::report_coredump_status(buffer, true);
1034   }
1035 
1036   CloseHandle(dumpFile);
1037 }
1038 
1039 
1040 
1041 void os::abort(bool dump_core)
1042 {
1043   os::shutdown();
1044   // no core dump on Windows
1045   ::exit(1);
1046 }
1047 
1048 // Die immediately, no exit hook, no abort hook, no cleanup.
1049 void os::die() {
1050   _exit(-1);
1051 }
1052 
1053 // Directory routines copied from src/win32/native/java/io/dirent_md.c
1054 //  * dirent_md.c       1.15 00/02/02
1055 //
1056 // The declarations for DIR and struct dirent are in jvm_win32.h.
1057 
1058 /* Caller must have already run dirname through JVM_NativePath, which removes
1059    duplicate slashes and converts all instances of '/' into '\\'. */
1060 
1061 DIR *
1062 os::opendir(const char *dirname)
1063 {
1064     assert(dirname != NULL, "just checking");   // hotspot change
1065     DIR *dirp = (DIR *)malloc(sizeof(DIR), mtInternal);
1066     DWORD fattr;                                // hotspot change
1067     char alt_dirname[4] = { 0, 0, 0, 0 };
1068 
1069     if (dirp == 0) {
1070         errno = ENOMEM;
1071         return 0;
1072     }
1073 
1074     /*
1075      * Win32 accepts "\" in its POSIX stat(), but refuses to treat it
1076      * as a directory in FindFirstFile().  We detect this case here and
1077      * prepend the current drive name.
1078      */
1079     if (dirname[1] == '\0' && dirname[0] == '\\') {
1080         alt_dirname[0] = _getdrive() + 'A' - 1;
1081         alt_dirname[1] = ':';
1082         alt_dirname[2] = '\\';
1083         alt_dirname[3] = '\0';
1084         dirname = alt_dirname;
1085     }
1086 
1087     dirp->path = (char *)malloc(strlen(dirname) + 5, mtInternal);
1088     if (dirp->path == 0) {
1089         free(dirp, mtInternal);
1090         errno = ENOMEM;
1091         return 0;
1092     }
1093     strcpy(dirp->path, dirname);
1094 
1095     fattr = GetFileAttributes(dirp->path);
1096     if (fattr == 0xffffffff) {
1097         free(dirp->path, mtInternal);
1098         free(dirp, mtInternal);
1099         errno = ENOENT;
1100         return 0;
1101     } else if ((fattr & FILE_ATTRIBUTE_DIRECTORY) == 0) {
1102         free(dirp->path, mtInternal);
1103         free(dirp, mtInternal);
1104         errno = ENOTDIR;
1105         return 0;
1106     }
1107 
1108     /* Append "*.*", or possibly "\\*.*", to path */
1109     if (dirp->path[1] == ':'
1110         && (dirp->path[2] == '\0'
1111             || (dirp->path[2] == '\\' && dirp->path[3] == '\0'))) {
1112         /* No '\\' needed for cases like "Z:" or "Z:\" */
1113         strcat(dirp->path, "*.*");
1114     } else {
1115         strcat(dirp->path, "\\*.*");
1116     }
1117 
1118     dirp->handle = FindFirstFile(dirp->path, &dirp->find_data);
1119     if (dirp->handle == INVALID_HANDLE_VALUE) {
1120         if (GetLastError() != ERROR_FILE_NOT_FOUND) {
1121             free(dirp->path, mtInternal);
1122             free(dirp, mtInternal);
1123             errno = EACCES;
1124             return 0;
1125         }
1126     }
1127     return dirp;
1128 }
1129 
1130 /* parameter dbuf unused on Windows */
1131 
1132 struct dirent *
1133 os::readdir(DIR *dirp, dirent *dbuf)
1134 {
1135     assert(dirp != NULL, "just checking");      // hotspot change
1136     if (dirp->handle == INVALID_HANDLE_VALUE) {
1137         return 0;
1138     }
1139 
1140     strcpy(dirp->dirent.d_name, dirp->find_data.cFileName);
1141 
1142     if (!FindNextFile(dirp->handle, &dirp->find_data)) {
1143         if (GetLastError() == ERROR_INVALID_HANDLE) {
1144             errno = EBADF;
1145             return 0;
1146         }
1147         FindClose(dirp->handle);
1148         dirp->handle = INVALID_HANDLE_VALUE;
1149     }
1150 
1151     return &dirp->dirent;
1152 }
1153 
1154 int
1155 os::closedir(DIR *dirp)
1156 {
1157     assert(dirp != NULL, "just checking");      // hotspot change
1158     if (dirp->handle != INVALID_HANDLE_VALUE) {
1159         if (!FindClose(dirp->handle)) {
1160             errno = EBADF;
1161             return -1;
1162         }
1163         dirp->handle = INVALID_HANDLE_VALUE;
1164     }
1165     free(dirp->path, mtInternal);
1166     free(dirp, mtInternal);
1167     return 0;
1168 }
1169 
1170 // This must be hard coded because it's the system's temporary
1171 // directory not the java application's temp directory, ala java.io.tmpdir.
1172 const char* os::get_temp_directory() {
1173   static char path_buf[MAX_PATH];
1174   if (GetTempPath(MAX_PATH, path_buf)>0)
1175     return path_buf;
1176   else{
1177     path_buf[0]='\0';
1178     return path_buf;
1179   }
1180 }
1181 
1182 static bool file_exists(const char* filename) {
1183   if (filename == NULL || strlen(filename) == 0) {
1184     return false;
1185   }
1186   return GetFileAttributes(filename) != INVALID_FILE_ATTRIBUTES;
1187 }
1188 
1189 bool os::dll_build_name(char *buffer, size_t buflen,
1190                         const char* pname, const char* fname) {
1191   bool retval = false;
1192   const size_t pnamelen = pname ? strlen(pname) : 0;
1193   const char c = (pnamelen > 0) ? pname[pnamelen-1] : 0;
1194 
1195   // Return error on buffer overflow.
1196   if (pnamelen + strlen(fname) + 10 > buflen) {
1197     return retval;
1198   }
1199 
1200   if (pnamelen == 0) {
1201     jio_snprintf(buffer, buflen, "%s.dll", fname);
1202     retval = true;
1203   } else if (c == ':' || c == '\\') {
1204     jio_snprintf(buffer, buflen, "%s%s.dll", pname, fname);
1205     retval = true;
1206   } else if (strchr(pname, *os::path_separator()) != NULL) {
1207     int n;
1208     char** pelements = split_path(pname, &n);
1209     if (pelements == NULL) {
1210       return false;
1211     }
1212     for (int i = 0 ; i < n ; i++) {
1213       char* path = pelements[i];
1214       // Really shouldn't be NULL, but check can't hurt
1215       size_t plen = (path == NULL) ? 0 : strlen(path);
1216       if (plen == 0) {
1217         continue; // skip the empty path values
1218       }
1219       const char lastchar = path[plen - 1];
1220       if (lastchar == ':' || lastchar == '\\') {
1221         jio_snprintf(buffer, buflen, "%s%s.dll", path, fname);
1222       } else {
1223         jio_snprintf(buffer, buflen, "%s\\%s.dll", path, fname);
1224       }
1225       if (file_exists(buffer)) {
1226         retval = true;
1227         break;
1228       }
1229     }
1230     // release the storage
1231     for (int i = 0 ; i < n ; i++) {
1232       if (pelements[i] != NULL) {
1233         FREE_C_HEAP_ARRAY(char, pelements[i], mtInternal);
1234       }
1235     }
1236     if (pelements != NULL) {
1237       FREE_C_HEAP_ARRAY(char*, pelements, mtInternal);
1238     }
1239   } else {
1240     jio_snprintf(buffer, buflen, "%s\\%s.dll", pname, fname);
1241     retval = true;
1242   }
1243   return retval;
1244 }
1245 
1246 // Needs to be in os specific directory because windows requires another
1247 // header file <direct.h>
1248 const char* os::get_current_directory(char *buf, size_t buflen) {
1249   int n = static_cast<int>(buflen);
1250   if (buflen > INT_MAX)  n = INT_MAX;
1251   return _getcwd(buf, n);
1252 }
1253 
1254 //-----------------------------------------------------------
1255 // Helper functions for fatal error handler
1256 #ifdef _WIN64
1257 // Helper routine which returns true if address in
1258 // within the NTDLL address space.
1259 //
1260 static bool _addr_in_ntdll( address addr )
1261 {
1262   HMODULE hmod;
1263   MODULEINFO minfo;
1264 
1265   hmod = GetModuleHandle("NTDLL.DLL");
1266   if ( hmod == NULL ) return false;
1267   if ( !os::PSApiDll::GetModuleInformation( GetCurrentProcess(), hmod,
1268                                &minfo, sizeof(MODULEINFO)) )
1269     return false;
1270 
1271   if ( (addr >= minfo.lpBaseOfDll) &&
1272        (addr < (address)((uintptr_t)minfo.lpBaseOfDll + (uintptr_t)minfo.SizeOfImage)))
1273     return true;
1274   else
1275     return false;
1276 }
1277 #endif
1278 
1279 
1280 // Enumerate all modules for a given process ID
1281 //
1282 // Notice that Windows 95/98/Me and Windows NT/2000/XP have
1283 // different API for doing this. We use PSAPI.DLL on NT based
1284 // Windows and ToolHelp on 95/98/Me.
1285 
1286 // Callback function that is called by enumerate_modules() on
1287 // every DLL module.
1288 // Input parameters:
1289 //    int       pid,
1290 //    char*     module_file_name,
1291 //    address   module_base_addr,
1292 //    unsigned  module_size,
1293 //    void*     param
1294 typedef int (*EnumModulesCallbackFunc)(int, char *, address, unsigned, void *);
1295 
1296 // enumerate_modules for Windows NT, using PSAPI
1297 static int _enumerate_modules_winnt( int pid, EnumModulesCallbackFunc func, void * param)
1298 {
1299   HANDLE   hProcess ;
1300 
1301 # define MAX_NUM_MODULES 128
1302   HMODULE     modules[MAX_NUM_MODULES];
1303   static char filename[ MAX_PATH ];
1304   int         result = 0;
1305 
1306   if (!os::PSApiDll::PSApiAvailable()) {
1307     return 0;
1308   }
1309 
1310   hProcess = OpenProcess(PROCESS_QUERY_INFORMATION | PROCESS_VM_READ,
1311                          FALSE, pid ) ;
1312   if (hProcess == NULL) return 0;
1313 
1314   DWORD size_needed;
1315   if (!os::PSApiDll::EnumProcessModules(hProcess, modules,
1316                            sizeof(modules), &size_needed)) {
1317       CloseHandle( hProcess );
1318       return 0;
1319   }
1320 
1321   // number of modules that are currently loaded
1322   int num_modules = size_needed / sizeof(HMODULE);
1323 
1324   for (int i = 0; i < MIN2(num_modules, MAX_NUM_MODULES); i++) {
1325     // Get Full pathname:
1326     if(!os::PSApiDll::GetModuleFileNameEx(hProcess, modules[i],
1327                              filename, sizeof(filename))) {
1328         filename[0] = '\0';
1329     }
1330 
1331     MODULEINFO modinfo;
1332     if (!os::PSApiDll::GetModuleInformation(hProcess, modules[i],
1333                                &modinfo, sizeof(modinfo))) {
1334         modinfo.lpBaseOfDll = NULL;
1335         modinfo.SizeOfImage = 0;
1336     }
1337 
1338     // Invoke callback function
1339     result = func(pid, filename, (address)modinfo.lpBaseOfDll,
1340                   modinfo.SizeOfImage, param);
1341     if (result) break;
1342   }
1343 
1344   CloseHandle( hProcess ) ;
1345   return result;
1346 }
1347 
1348 
1349 // enumerate_modules for Windows 95/98/ME, using TOOLHELP
1350 static int _enumerate_modules_windows( int pid, EnumModulesCallbackFunc func, void *param)
1351 {
1352   HANDLE                hSnapShot ;
1353   static MODULEENTRY32  modentry ;
1354   int                   result = 0;
1355 
1356   if (!os::Kernel32Dll::HelpToolsAvailable()) {
1357     return 0;
1358   }
1359 
1360   // Get a handle to a Toolhelp snapshot of the system
1361   hSnapShot = os::Kernel32Dll::CreateToolhelp32Snapshot(TH32CS_SNAPMODULE, pid ) ;
1362   if( hSnapShot == INVALID_HANDLE_VALUE ) {
1363       return FALSE ;
1364   }
1365 
1366   // iterate through all modules
1367   modentry.dwSize = sizeof(MODULEENTRY32) ;
1368   bool not_done = os::Kernel32Dll::Module32First( hSnapShot, &modentry ) != 0;
1369 
1370   while( not_done ) {
1371     // invoke the callback
1372     result=func(pid, modentry.szExePath, (address)modentry.modBaseAddr,
1373                 modentry.modBaseSize, param);
1374     if (result) break;
1375 
1376     modentry.dwSize = sizeof(MODULEENTRY32) ;
1377     not_done = os::Kernel32Dll::Module32Next( hSnapShot, &modentry ) != 0;
1378   }
1379 
1380   CloseHandle(hSnapShot);
1381   return result;
1382 }
1383 
1384 int enumerate_modules( int pid, EnumModulesCallbackFunc func, void * param )
1385 {
1386   // Get current process ID if caller doesn't provide it.
1387   if (!pid) pid = os::current_process_id();
1388 
1389   if (os::win32::is_nt()) return _enumerate_modules_winnt  (pid, func, param);
1390   else                    return _enumerate_modules_windows(pid, func, param);
1391 }
1392 
1393 struct _modinfo {
1394    address addr;
1395    char*   full_path;   // point to a char buffer
1396    int     buflen;      // size of the buffer
1397    address base_addr;
1398 };
1399 
1400 static int _locate_module_by_addr(int pid, char * mod_fname, address base_addr,
1401                                   unsigned size, void * param) {
1402    struct _modinfo *pmod = (struct _modinfo *)param;
1403    if (!pmod) return -1;
1404 
1405    if (base_addr     <= pmod->addr &&
1406        base_addr+size > pmod->addr) {
1407      // if a buffer is provided, copy path name to the buffer
1408      if (pmod->full_path) {
1409        jio_snprintf(pmod->full_path, pmod->buflen, "%s", mod_fname);
1410      }
1411      pmod->base_addr = base_addr;
1412      return 1;
1413    }
1414    return 0;
1415 }
1416 
1417 bool os::dll_address_to_library_name(address addr, char* buf,
1418                                      int buflen, int* offset) {
1419   // buf is not optional, but offset is optional
1420   assert(buf != NULL, "sanity check");
1421 
1422 // NOTE: the reason we don't use SymGetModuleInfo() is it doesn't always
1423 //       return the full path to the DLL file, sometimes it returns path
1424 //       to the corresponding PDB file (debug info); sometimes it only
1425 //       returns partial path, which makes life painful.
1426 
1427   struct _modinfo mi;
1428   mi.addr      = addr;
1429   mi.full_path = buf;
1430   mi.buflen    = buflen;
1431   int pid = os::current_process_id();
1432   if (enumerate_modules(pid, _locate_module_by_addr, (void *)&mi)) {
1433     // buf already contains path name
1434     if (offset) *offset = addr - mi.base_addr;
1435     return true;
1436   }
1437 
1438   buf[0] = '\0';
1439   if (offset) *offset = -1;
1440   return false;
1441 }
1442 
1443 bool os::dll_address_to_function_name(address addr, char *buf,
1444                                       int buflen, int *offset) {
1445   // buf is not optional, but offset is optional
1446   assert(buf != NULL, "sanity check");
1447 
1448   if (Decoder::decode(addr, buf, buflen, offset)) {
1449     return true;
1450   }
1451   if (offset != NULL)  *offset  = -1;
1452   buf[0] = '\0';
1453   return false;
1454 }
1455 
1456 // save the start and end address of jvm.dll into param[0] and param[1]
1457 static int _locate_jvm_dll(int pid, char* mod_fname, address base_addr,
1458                     unsigned size, void * param) {
1459    if (!param) return -1;
1460 
1461    if (base_addr     <= (address)_locate_jvm_dll &&
1462        base_addr+size > (address)_locate_jvm_dll) {
1463          ((address*)param)[0] = base_addr;
1464          ((address*)param)[1] = base_addr + size;
1465          return 1;
1466    }
1467    return 0;
1468 }
1469 
1470 address vm_lib_location[2];    // start and end address of jvm.dll
1471 
1472 // check if addr is inside jvm.dll
1473 bool os::address_is_in_vm(address addr) {
1474   if (!vm_lib_location[0] || !vm_lib_location[1]) {
1475     int pid = os::current_process_id();
1476     if (!enumerate_modules(pid, _locate_jvm_dll, (void *)vm_lib_location)) {
1477       assert(false, "Can't find jvm module.");
1478       return false;
1479     }
1480   }
1481 
1482   return (vm_lib_location[0] <= addr) && (addr < vm_lib_location[1]);
1483 }
1484 
1485 // print module info; param is outputStream*
1486 static int _print_module(int pid, char* fname, address base,
1487                          unsigned size, void* param) {
1488    if (!param) return -1;
1489 
1490    outputStream* st = (outputStream*)param;
1491 
1492    address end_addr = base + size;
1493    st->print(PTR_FORMAT " - " PTR_FORMAT " \t%s\n", base, end_addr, fname);
1494    return 0;
1495 }
1496 
1497 // Loads .dll/.so and
1498 // in case of error it checks if .dll/.so was built for the
1499 // same architecture as Hotspot is running on
1500 void * os::dll_load(const char *name, char *ebuf, int ebuflen)
1501 {
1502   void * result = LoadLibrary(name);
1503   if (result != NULL)
1504   {
1505     return result;
1506   }
1507 
1508   DWORD errcode = GetLastError();
1509   if (errcode == ERROR_MOD_NOT_FOUND) {
1510     strncpy(ebuf, "Can't find dependent libraries", ebuflen-1);
1511     ebuf[ebuflen-1]='\0';
1512     return NULL;
1513   }
1514 
1515   // Parsing dll below
1516   // If we can read dll-info and find that dll was built
1517   // for an architecture other than Hotspot is running in
1518   // - then print to buffer "DLL was built for a different architecture"
1519   // else call os::lasterror to obtain system error message
1520 
1521   // Read system error message into ebuf
1522   // It may or may not be overwritten below (in the for loop and just above)
1523   lasterror(ebuf, (size_t) ebuflen);
1524   ebuf[ebuflen-1]='\0';
1525   int file_descriptor=::open(name, O_RDONLY | O_BINARY, 0);
1526   if (file_descriptor<0)
1527   {
1528     return NULL;
1529   }
1530 
1531   uint32_t signature_offset;
1532   uint16_t lib_arch=0;
1533   bool failed_to_get_lib_arch=
1534   (
1535     //Go to position 3c in the dll
1536     (os::seek_to_file_offset(file_descriptor,IMAGE_FILE_PTR_TO_SIGNATURE)<0)
1537     ||
1538     // Read loacation of signature
1539     (sizeof(signature_offset)!=
1540       (os::read(file_descriptor, (void*)&signature_offset,sizeof(signature_offset))))
1541     ||
1542     //Go to COFF File Header in dll
1543     //that is located after"signature" (4 bytes long)
1544     (os::seek_to_file_offset(file_descriptor,
1545       signature_offset+IMAGE_FILE_SIGNATURE_LENGTH)<0)
1546     ||
1547     //Read field that contains code of architecture
1548     // that dll was build for
1549     (sizeof(lib_arch)!=
1550       (os::read(file_descriptor, (void*)&lib_arch,sizeof(lib_arch))))
1551   );
1552 
1553   ::close(file_descriptor);
1554   if (failed_to_get_lib_arch)
1555   {
1556     // file i/o error - report os::lasterror(...) msg
1557     return NULL;
1558   }
1559 
1560   typedef struct
1561   {
1562     uint16_t arch_code;
1563     char* arch_name;
1564   } arch_t;
1565 
1566   static const arch_t arch_array[]={
1567     {IMAGE_FILE_MACHINE_I386,      (char*)"IA 32"},
1568     {IMAGE_FILE_MACHINE_AMD64,     (char*)"AMD 64"},
1569     {IMAGE_FILE_MACHINE_IA64,      (char*)"IA 64"}
1570   };
1571   #if   (defined _M_IA64)
1572     static const uint16_t running_arch=IMAGE_FILE_MACHINE_IA64;
1573   #elif (defined _M_AMD64)
1574     static const uint16_t running_arch=IMAGE_FILE_MACHINE_AMD64;
1575   #elif (defined _M_IX86)
1576     static const uint16_t running_arch=IMAGE_FILE_MACHINE_I386;
1577   #else
1578     #error Method os::dll_load requires that one of following \
1579            is defined :_M_IA64,_M_AMD64 or _M_IX86
1580   #endif
1581 
1582 
1583   // Obtain a string for printf operation
1584   // lib_arch_str shall contain string what platform this .dll was built for
1585   // running_arch_str shall string contain what platform Hotspot was built for
1586   char *running_arch_str=NULL,*lib_arch_str=NULL;
1587   for (unsigned int i=0;i<ARRAY_SIZE(arch_array);i++)
1588   {
1589     if (lib_arch==arch_array[i].arch_code)
1590       lib_arch_str=arch_array[i].arch_name;
1591     if (running_arch==arch_array[i].arch_code)
1592       running_arch_str=arch_array[i].arch_name;
1593   }
1594 
1595   assert(running_arch_str,
1596     "Didn't find runing architecture code in arch_array");
1597 
1598   // If the architure is right
1599   // but some other error took place - report os::lasterror(...) msg
1600   if (lib_arch == running_arch)
1601   {
1602     return NULL;
1603   }
1604 
1605   if (lib_arch_str!=NULL)
1606   {
1607     ::_snprintf(ebuf, ebuflen-1,
1608       "Can't load %s-bit .dll on a %s-bit platform",
1609       lib_arch_str,running_arch_str);
1610   }
1611   else
1612   {
1613     // don't know what architecture this dll was build for
1614     ::_snprintf(ebuf, ebuflen-1,
1615       "Can't load this .dll (machine code=0x%x) on a %s-bit platform",
1616       lib_arch,running_arch_str);
1617   }
1618 
1619   return NULL;
1620 }
1621 
1622 
1623 void os::print_dll_info(outputStream *st) {
1624    int pid = os::current_process_id();
1625    st->print_cr("Dynamic libraries:");
1626    enumerate_modules(pid, _print_module, (void *)st);
1627 }
1628 
1629 void os::print_os_info_brief(outputStream* st) {
1630   os::print_os_info(st);
1631 }
1632 
1633 void os::print_os_info(outputStream* st) {
1634   st->print("OS:");
1635 
1636   os::win32::print_windows_version(st);
1637 }
1638 
1639 void os::win32::print_windows_version(outputStream* st) {
1640   OSVERSIONINFOEX osvi;
1641   SYSTEM_INFO si;
1642 
1643   ZeroMemory(&osvi, sizeof(OSVERSIONINFOEX));
1644   osvi.dwOSVersionInfoSize = sizeof(OSVERSIONINFOEX);
1645 
1646   if (!GetVersionEx((OSVERSIONINFO *)&osvi)) {
1647     st->print_cr("N/A");
1648     return;
1649   }
1650 
1651   int os_vers = osvi.dwMajorVersion * 1000 + osvi.dwMinorVersion;
1652 
1653   ZeroMemory(&si, sizeof(SYSTEM_INFO));
1654   if (os_vers >= 5002) {
1655     // Retrieve SYSTEM_INFO from GetNativeSystemInfo call so that we could
1656     // find out whether we are running on 64 bit processor or not.
1657     if (os::Kernel32Dll::GetNativeSystemInfoAvailable()) {
1658       os::Kernel32Dll::GetNativeSystemInfo(&si);
1659     } else {
1660       GetSystemInfo(&si);
1661     }
1662   }
1663 
1664   if (osvi.dwPlatformId == VER_PLATFORM_WIN32_NT) {
1665     switch (os_vers) {
1666     case 3051: st->print(" Windows NT 3.51"); break;
1667     case 4000: st->print(" Windows NT 4.0"); break;
1668     case 5000: st->print(" Windows 2000"); break;
1669     case 5001: st->print(" Windows XP"); break;
1670     case 5002:
1671       if (osvi.wProductType == VER_NT_WORKSTATION &&
1672           si.wProcessorArchitecture == PROCESSOR_ARCHITECTURE_AMD64) {
1673         st->print(" Windows XP x64 Edition");
1674       } else {
1675         st->print(" Windows Server 2003 family");
1676       }
1677       break;
1678 
1679     case 6000:
1680       if (osvi.wProductType == VER_NT_WORKSTATION) {
1681         st->print(" Windows Vista");
1682       } else {
1683         st->print(" Windows Server 2008");
1684       }
1685       break;
1686 
1687     case 6001:
1688       if (osvi.wProductType == VER_NT_WORKSTATION) {
1689         st->print(" Windows 7");
1690       } else {
1691         st->print(" Windows Server 2008 R2");
1692       }
1693       break;
1694 
1695     case 6002:
1696       if (osvi.wProductType == VER_NT_WORKSTATION) {
1697         st->print(" Windows 8");
1698       } else {
1699         st->print(" Windows Server 2012");
1700       }
1701       break;
1702 
1703     case 6003:
1704       if (osvi.wProductType == VER_NT_WORKSTATION) {
1705         st->print(" Windows 8.1");
1706       } else {
1707         st->print(" Windows Server 2012 R2");
1708       }
1709       break;
1710 
1711     default: // future os
1712       // Unrecognized windows, print out its major and minor versions
1713       st->print(" Windows NT %d.%d", osvi.dwMajorVersion, osvi.dwMinorVersion);
1714     }
1715   } else {
1716     switch (os_vers) {
1717     case 4000: st->print(" Windows 95"); break;
1718     case 4010: st->print(" Windows 98"); break;
1719     case 4090: st->print(" Windows Me"); break;
1720     default: // future windows, print out its major and minor versions
1721       st->print(" Windows %d.%d", osvi.dwMajorVersion, osvi.dwMinorVersion);
1722     }
1723   }
1724 
1725   if (os_vers >= 6000 && si.wProcessorArchitecture == PROCESSOR_ARCHITECTURE_AMD64) {
1726     st->print(" , 64 bit");
1727   }
1728 
1729   st->print(" Build %d", osvi.dwBuildNumber);
1730   st->print(" %s", osvi.szCSDVersion);           // service pack
1731   st->cr();
1732 }
1733 
1734 void os::pd_print_cpu_info(outputStream* st) {
1735   // Nothing to do for now.
1736 }
1737 
1738 void os::print_memory_info(outputStream* st) {
1739   st->print("Memory:");
1740   st->print(" %dk page", os::vm_page_size()>>10);
1741 
1742   // Use GlobalMemoryStatusEx() because GlobalMemoryStatus() may return incorrect
1743   // value if total memory is larger than 4GB
1744   MEMORYSTATUSEX ms;
1745   ms.dwLength = sizeof(ms);
1746   GlobalMemoryStatusEx(&ms);
1747 
1748   st->print(", physical %uk", os::physical_memory() >> 10);
1749   st->print("(%uk free)", os::available_memory() >> 10);
1750 
1751   st->print(", swap %uk", ms.ullTotalPageFile >> 10);
1752   st->print("(%uk free)", ms.ullAvailPageFile >> 10);
1753   st->cr();
1754 }
1755 
1756 void os::print_siginfo(outputStream *st, void *siginfo) {
1757   EXCEPTION_RECORD* er = (EXCEPTION_RECORD*)siginfo;
1758   st->print("siginfo:");
1759   st->print(" ExceptionCode=0x%x", er->ExceptionCode);
1760 
1761   if (er->ExceptionCode == EXCEPTION_ACCESS_VIOLATION &&
1762       er->NumberParameters >= 2) {
1763       switch (er->ExceptionInformation[0]) {
1764       case 0: st->print(", reading address"); break;
1765       case 1: st->print(", writing address"); break;
1766       default: st->print(", ExceptionInformation=" INTPTR_FORMAT,
1767                             er->ExceptionInformation[0]);
1768       }
1769       st->print(" " INTPTR_FORMAT, er->ExceptionInformation[1]);
1770   } else if (er->ExceptionCode == EXCEPTION_IN_PAGE_ERROR &&
1771              er->NumberParameters >= 2 && UseSharedSpaces) {
1772     FileMapInfo* mapinfo = FileMapInfo::current_info();
1773     if (mapinfo->is_in_shared_space((void*)er->ExceptionInformation[1])) {
1774       st->print("\n\nError accessing class data sharing archive."       \
1775                 " Mapped file inaccessible during execution, "          \
1776                 " possible disk/network problem.");
1777     }
1778   } else {
1779     int num = er->NumberParameters;
1780     if (num > 0) {
1781       st->print(", ExceptionInformation=");
1782       for (int i = 0; i < num; i++) {
1783         st->print(INTPTR_FORMAT " ", er->ExceptionInformation[i]);
1784       }
1785     }
1786   }
1787   st->cr();
1788 }
1789 
1790 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
1791   // do nothing
1792 }
1793 
1794 static char saved_jvm_path[MAX_PATH] = {0};
1795 
1796 // Find the full path to the current module, jvm.dll
1797 void os::jvm_path(char *buf, jint buflen) {
1798   // Error checking.
1799   if (buflen < MAX_PATH) {
1800     assert(false, "must use a large-enough buffer");
1801     buf[0] = '\0';
1802     return;
1803   }
1804   // Lazy resolve the path to current module.
1805   if (saved_jvm_path[0] != 0) {
1806     strcpy(buf, saved_jvm_path);
1807     return;
1808   }
1809 
1810   buf[0] = '\0';
1811   if (Arguments::sun_java_launcher_is_altjvm()) {
1812     // Support for the java launcher's '-XXaltjvm=<path>' option. Check
1813     // for a JAVA_HOME environment variable and fix up the path so it
1814     // looks like jvm.dll is installed there (append a fake suffix
1815     // hotspot/jvm.dll).
1816     char* java_home_var = ::getenv("JAVA_HOME");
1817     if (java_home_var != NULL && java_home_var[0] != 0) {
1818       strncpy(buf, java_home_var, buflen);
1819 
1820       // determine if this is a legacy image or modules image
1821       // modules image doesn't have "jre" subdirectory
1822       size_t len = strlen(buf);
1823       char* jrebin_p = buf + len;
1824       jio_snprintf(jrebin_p, buflen-len, "\\jre\\bin\\");
1825       if (0 != _access(buf, 0)) {
1826         jio_snprintf(jrebin_p, buflen-len, "\\bin\\");
1827       }
1828       len = strlen(buf);
1829       jio_snprintf(buf + len, buflen-len, "hotspot\\jvm.dll");
1830     }
1831   }
1832 
1833   if (buf[0] == '\0') {
1834     GetModuleFileName(vm_lib_handle, buf, buflen);
1835   }
1836   strcpy(saved_jvm_path, buf);
1837 }
1838 
1839 
1840 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
1841 #ifndef _WIN64
1842   st->print("_");
1843 #endif
1844 }
1845 
1846 
1847 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
1848 #ifndef _WIN64
1849   st->print("@%d", args_size  * sizeof(int));
1850 #endif
1851 }
1852 
1853 // This method is a copy of JDK's sysGetLastErrorString
1854 // from src/windows/hpi/src/system_md.c
1855 
1856 size_t os::lasterror(char* buf, size_t len) {
1857   DWORD errval;
1858 
1859   if ((errval = GetLastError()) != 0) {
1860     // DOS error
1861     size_t n = (size_t)FormatMessage(
1862           FORMAT_MESSAGE_FROM_SYSTEM|FORMAT_MESSAGE_IGNORE_INSERTS,
1863           NULL,
1864           errval,
1865           0,
1866           buf,
1867           (DWORD)len,
1868           NULL);
1869     if (n > 3) {
1870       // Drop final '.', CR, LF
1871       if (buf[n - 1] == '\n') n--;
1872       if (buf[n - 1] == '\r') n--;
1873       if (buf[n - 1] == '.') n--;
1874       buf[n] = '\0';
1875     }
1876     return n;
1877   }
1878 
1879   if (errno != 0) {
1880     // C runtime error that has no corresponding DOS error code
1881     const char* s = strerror(errno);
1882     size_t n = strlen(s);
1883     if (n >= len) n = len - 1;
1884     strncpy(buf, s, n);
1885     buf[n] = '\0';
1886     return n;
1887   }
1888 
1889   return 0;
1890 }
1891 
1892 int os::get_last_error() {
1893   DWORD error = GetLastError();
1894   if (error == 0)
1895     error = errno;
1896   return (int)error;
1897 }
1898 
1899 // sun.misc.Signal
1900 // NOTE that this is a workaround for an apparent kernel bug where if
1901 // a signal handler for SIGBREAK is installed then that signal handler
1902 // takes priority over the console control handler for CTRL_CLOSE_EVENT.
1903 // See bug 4416763.
1904 static void (*sigbreakHandler)(int) = NULL;
1905 
1906 static void UserHandler(int sig, void *siginfo, void *context) {
1907   os::signal_notify(sig);
1908   // We need to reinstate the signal handler each time...
1909   os::signal(sig, (void*)UserHandler);
1910 }
1911 
1912 void* os::user_handler() {
1913   return (void*) UserHandler;
1914 }
1915 
1916 void* os::signal(int signal_number, void* handler) {
1917   if ((signal_number == SIGBREAK) && (!ReduceSignalUsage)) {
1918     void (*oldHandler)(int) = sigbreakHandler;
1919     sigbreakHandler = (void (*)(int)) handler;
1920     return (void*) oldHandler;
1921   } else {
1922     return (void*)::signal(signal_number, (void (*)(int))handler);
1923   }
1924 }
1925 
1926 void os::signal_raise(int signal_number) {
1927   raise(signal_number);
1928 }
1929 
1930 // The Win32 C runtime library maps all console control events other than ^C
1931 // into SIGBREAK, which makes it impossible to distinguish ^BREAK from close,
1932 // logoff, and shutdown events.  We therefore install our own console handler
1933 // that raises SIGTERM for the latter cases.
1934 //
1935 static BOOL WINAPI consoleHandler(DWORD event) {
1936   switch(event) {
1937     case CTRL_C_EVENT:
1938       if (is_error_reported()) {
1939         // Ctrl-C is pressed during error reporting, likely because the error
1940         // handler fails to abort. Let VM die immediately.
1941         os::die();
1942       }
1943 
1944       os::signal_raise(SIGINT);
1945       return TRUE;
1946       break;
1947     case CTRL_BREAK_EVENT:
1948       if (sigbreakHandler != NULL) {
1949         (*sigbreakHandler)(SIGBREAK);
1950       }
1951       return TRUE;
1952       break;
1953     case CTRL_LOGOFF_EVENT: {
1954       // Don't terminate JVM if it is running in a non-interactive session,
1955       // such as a service process.
1956       USEROBJECTFLAGS flags;
1957       HANDLE handle = GetProcessWindowStation();
1958       if (handle != NULL &&
1959           GetUserObjectInformation(handle, UOI_FLAGS, &flags,
1960             sizeof( USEROBJECTFLAGS), NULL)) {
1961         // If it is a non-interactive session, let next handler to deal
1962         // with it.
1963         if ((flags.dwFlags & WSF_VISIBLE) == 0) {
1964           return FALSE;
1965         }
1966       }
1967     }
1968     case CTRL_CLOSE_EVENT:
1969     case CTRL_SHUTDOWN_EVENT:
1970       os::signal_raise(SIGTERM);
1971       return TRUE;
1972       break;
1973     default:
1974       break;
1975   }
1976   return FALSE;
1977 }
1978 
1979 /*
1980  * The following code is moved from os.cpp for making this
1981  * code platform specific, which it is by its very nature.
1982  */
1983 
1984 // Return maximum OS signal used + 1 for internal use only
1985 // Used as exit signal for signal_thread
1986 int os::sigexitnum_pd(){
1987   return NSIG;
1988 }
1989 
1990 // a counter for each possible signal value, including signal_thread exit signal
1991 static volatile jint pending_signals[NSIG+1] = { 0 };
1992 static HANDLE sig_sem = NULL;
1993 
1994 void os::signal_init_pd() {
1995   // Initialize signal structures
1996   memset((void*)pending_signals, 0, sizeof(pending_signals));
1997 
1998   sig_sem = ::CreateSemaphore(NULL, 0, NSIG+1, NULL);
1999 
2000   // Programs embedding the VM do not want it to attempt to receive
2001   // events like CTRL_LOGOFF_EVENT, which are used to implement the
2002   // shutdown hooks mechanism introduced in 1.3.  For example, when
2003   // the VM is run as part of a Windows NT service (i.e., a servlet
2004   // engine in a web server), the correct behavior is for any console
2005   // control handler to return FALSE, not TRUE, because the OS's
2006   // "final" handler for such events allows the process to continue if
2007   // it is a service (while terminating it if it is not a service).
2008   // To make this behavior uniform and the mechanism simpler, we
2009   // completely disable the VM's usage of these console events if -Xrs
2010   // (=ReduceSignalUsage) is specified.  This means, for example, that
2011   // the CTRL-BREAK thread dump mechanism is also disabled in this
2012   // case.  See bugs 4323062, 4345157, and related bugs.
2013 
2014   if (!ReduceSignalUsage) {
2015     // Add a CTRL-C handler
2016     SetConsoleCtrlHandler(consoleHandler, TRUE);
2017   }
2018 }
2019 
2020 void os::signal_notify(int signal_number) {
2021   BOOL ret;
2022   if (sig_sem != NULL) {
2023     Atomic::inc(&pending_signals[signal_number]);
2024     ret = ::ReleaseSemaphore(sig_sem, 1, NULL);
2025     assert(ret != 0, "ReleaseSemaphore() failed");
2026   }
2027 }
2028 
2029 static int check_pending_signals(bool wait_for_signal) {
2030   DWORD ret;
2031   while (true) {
2032     for (int i = 0; i < NSIG + 1; i++) {
2033       jint n = pending_signals[i];
2034       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2035         return i;
2036       }
2037     }
2038     if (!wait_for_signal) {
2039       return -1;
2040     }
2041 
2042     JavaThread *thread = JavaThread::current();
2043 
2044     ThreadBlockInVM tbivm(thread);
2045 
2046     bool threadIsSuspended;
2047     do {
2048       thread->set_suspend_equivalent();
2049       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2050       ret = ::WaitForSingleObject(sig_sem, INFINITE);
2051       assert(ret == WAIT_OBJECT_0, "WaitForSingleObject() failed");
2052 
2053       // were we externally suspended while we were waiting?
2054       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2055       if (threadIsSuspended) {
2056         //
2057         // The semaphore has been incremented, but while we were waiting
2058         // another thread suspended us. We don't want to continue running
2059         // while suspended because that would surprise the thread that
2060         // suspended us.
2061         //
2062         ret = ::ReleaseSemaphore(sig_sem, 1, NULL);
2063         assert(ret != 0, "ReleaseSemaphore() failed");
2064 
2065         thread->java_suspend_self();
2066       }
2067     } while (threadIsSuspended);
2068   }
2069 }
2070 
2071 int os::signal_lookup() {
2072   return check_pending_signals(false);
2073 }
2074 
2075 int os::signal_wait() {
2076   return check_pending_signals(true);
2077 }
2078 
2079 // Implicit OS exception handling
2080 
2081 LONG Handle_Exception(struct _EXCEPTION_POINTERS* exceptionInfo, address handler) {
2082   JavaThread* thread = JavaThread::current();
2083   // Save pc in thread
2084 #ifdef _M_IA64
2085   // Do not blow up if no thread info available.
2086   if (thread) {
2087     // Saving PRECISE pc (with slot information) in thread.
2088     uint64_t precise_pc = (uint64_t) exceptionInfo->ExceptionRecord->ExceptionAddress;
2089     // Convert precise PC into "Unix" format
2090     precise_pc = (precise_pc & 0xFFFFFFFFFFFFFFF0) | ((precise_pc & 0xF) >> 2);
2091     thread->set_saved_exception_pc((address)precise_pc);
2092   }
2093   // Set pc to handler
2094   exceptionInfo->ContextRecord->StIIP = (DWORD64)handler;
2095   // Clear out psr.ri (= Restart Instruction) in order to continue
2096   // at the beginning of the target bundle.
2097   exceptionInfo->ContextRecord->StIPSR &= 0xFFFFF9FFFFFFFFFF;
2098   assert(((DWORD64)handler & 0xF) == 0, "Target address must point to the beginning of a bundle!");
2099 #elif _M_AMD64
2100   // Do not blow up if no thread info available.
2101   if (thread) {
2102     thread->set_saved_exception_pc((address)(DWORD_PTR)exceptionInfo->ContextRecord->Rip);
2103   }
2104   // Set pc to handler
2105   exceptionInfo->ContextRecord->Rip = (DWORD64)handler;
2106 #else
2107   // Do not blow up if no thread info available.
2108   if (thread) {
2109     thread->set_saved_exception_pc((address)(DWORD_PTR)exceptionInfo->ContextRecord->Eip);
2110   }
2111   // Set pc to handler
2112   exceptionInfo->ContextRecord->Eip = (DWORD)(DWORD_PTR)handler;
2113 #endif
2114 
2115   // Continue the execution
2116   return EXCEPTION_CONTINUE_EXECUTION;
2117 }
2118 
2119 
2120 // Used for PostMortemDump
2121 extern "C" void safepoints();
2122 extern "C" void find(int x);
2123 extern "C" void events();
2124 
2125 // According to Windows API documentation, an illegal instruction sequence should generate
2126 // the 0xC000001C exception code. However, real world experience shows that occasionnaly
2127 // the execution of an illegal instruction can generate the exception code 0xC000001E. This
2128 // seems to be an undocumented feature of Win NT 4.0 (and probably other Windows systems).
2129 
2130 #define EXCEPTION_ILLEGAL_INSTRUCTION_2 0xC000001E
2131 
2132 // From "Execution Protection in the Windows Operating System" draft 0.35
2133 // Once a system header becomes available, the "real" define should be
2134 // included or copied here.
2135 #define EXCEPTION_INFO_EXEC_VIOLATION 0x08
2136 
2137 // Handle NAT Bit consumption on IA64.
2138 #ifdef _M_IA64
2139 #define EXCEPTION_REG_NAT_CONSUMPTION    STATUS_REG_NAT_CONSUMPTION
2140 #endif
2141 
2142 // Windows Vista/2008 heap corruption check
2143 #define EXCEPTION_HEAP_CORRUPTION        0xC0000374
2144 
2145 #define def_excpt(val) #val, val
2146 
2147 struct siglabel {
2148   char *name;
2149   int   number;
2150 };
2151 
2152 // All Visual C++ exceptions thrown from code generated by the Microsoft Visual
2153 // C++ compiler contain this error code. Because this is a compiler-generated
2154 // error, the code is not listed in the Win32 API header files.
2155 // The code is actually a cryptic mnemonic device, with the initial "E"
2156 // standing for "exception" and the final 3 bytes (0x6D7363) representing the
2157 // ASCII values of "msc".
2158 
2159 #define EXCEPTION_UNCAUGHT_CXX_EXCEPTION    0xE06D7363
2160 
2161 
2162 struct siglabel exceptlabels[] = {
2163     def_excpt(EXCEPTION_ACCESS_VIOLATION),
2164     def_excpt(EXCEPTION_DATATYPE_MISALIGNMENT),
2165     def_excpt(EXCEPTION_BREAKPOINT),
2166     def_excpt(EXCEPTION_SINGLE_STEP),
2167     def_excpt(EXCEPTION_ARRAY_BOUNDS_EXCEEDED),
2168     def_excpt(EXCEPTION_FLT_DENORMAL_OPERAND),
2169     def_excpt(EXCEPTION_FLT_DIVIDE_BY_ZERO),
2170     def_excpt(EXCEPTION_FLT_INEXACT_RESULT),
2171     def_excpt(EXCEPTION_FLT_INVALID_OPERATION),
2172     def_excpt(EXCEPTION_FLT_OVERFLOW),
2173     def_excpt(EXCEPTION_FLT_STACK_CHECK),
2174     def_excpt(EXCEPTION_FLT_UNDERFLOW),
2175     def_excpt(EXCEPTION_INT_DIVIDE_BY_ZERO),
2176     def_excpt(EXCEPTION_INT_OVERFLOW),
2177     def_excpt(EXCEPTION_PRIV_INSTRUCTION),
2178     def_excpt(EXCEPTION_IN_PAGE_ERROR),
2179     def_excpt(EXCEPTION_ILLEGAL_INSTRUCTION),
2180     def_excpt(EXCEPTION_ILLEGAL_INSTRUCTION_2),
2181     def_excpt(EXCEPTION_NONCONTINUABLE_EXCEPTION),
2182     def_excpt(EXCEPTION_STACK_OVERFLOW),
2183     def_excpt(EXCEPTION_INVALID_DISPOSITION),
2184     def_excpt(EXCEPTION_GUARD_PAGE),
2185     def_excpt(EXCEPTION_INVALID_HANDLE),
2186     def_excpt(EXCEPTION_UNCAUGHT_CXX_EXCEPTION),
2187     def_excpt(EXCEPTION_HEAP_CORRUPTION),
2188 #ifdef _M_IA64
2189     def_excpt(EXCEPTION_REG_NAT_CONSUMPTION),
2190 #endif
2191     NULL, 0
2192 };
2193 
2194 const char* os::exception_name(int exception_code, char *buf, size_t size) {
2195   for (int i = 0; exceptlabels[i].name != NULL; i++) {
2196     if (exceptlabels[i].number == exception_code) {
2197        jio_snprintf(buf, size, "%s", exceptlabels[i].name);
2198        return buf;
2199     }
2200   }
2201 
2202   return NULL;
2203 }
2204 
2205 //-----------------------------------------------------------------------------
2206 LONG Handle_IDiv_Exception(struct _EXCEPTION_POINTERS* exceptionInfo) {
2207   // handle exception caused by idiv; should only happen for -MinInt/-1
2208   // (division by zero is handled explicitly)
2209 #ifdef _M_IA64
2210   assert(0, "Fix Handle_IDiv_Exception");
2211 #elif _M_AMD64
2212   PCONTEXT ctx = exceptionInfo->ContextRecord;
2213   address pc = (address)ctx->Rip;
2214   assert(pc[0] == 0xF7, "not an idiv opcode");
2215   assert((pc[1] & ~0x7) == 0xF8, "cannot handle non-register operands");
2216   assert(ctx->Rax == min_jint, "unexpected idiv exception");
2217   // set correct result values and continue after idiv instruction
2218   ctx->Rip = (DWORD)pc + 2;        // idiv reg, reg  is 2 bytes
2219   ctx->Rax = (DWORD)min_jint;      // result
2220   ctx->Rdx = (DWORD)0;             // remainder
2221   // Continue the execution
2222 #else
2223   PCONTEXT ctx = exceptionInfo->ContextRecord;
2224   address pc = (address)ctx->Eip;
2225   assert(pc[0] == 0xF7, "not an idiv opcode");
2226   assert((pc[1] & ~0x7) == 0xF8, "cannot handle non-register operands");
2227   assert(ctx->Eax == min_jint, "unexpected idiv exception");
2228   // set correct result values and continue after idiv instruction
2229   ctx->Eip = (DWORD)pc + 2;        // idiv reg, reg  is 2 bytes
2230   ctx->Eax = (DWORD)min_jint;      // result
2231   ctx->Edx = (DWORD)0;             // remainder
2232   // Continue the execution
2233 #endif
2234   return EXCEPTION_CONTINUE_EXECUTION;
2235 }
2236 
2237 //-----------------------------------------------------------------------------
2238 LONG WINAPI Handle_FLT_Exception(struct _EXCEPTION_POINTERS* exceptionInfo) {
2239   PCONTEXT ctx = exceptionInfo->ContextRecord;
2240 #ifndef  _WIN64
2241   // handle exception caused by native method modifying control word
2242   DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
2243 
2244   switch (exception_code) {
2245     case EXCEPTION_FLT_DENORMAL_OPERAND:
2246     case EXCEPTION_FLT_DIVIDE_BY_ZERO:
2247     case EXCEPTION_FLT_INEXACT_RESULT:
2248     case EXCEPTION_FLT_INVALID_OPERATION:
2249     case EXCEPTION_FLT_OVERFLOW:
2250     case EXCEPTION_FLT_STACK_CHECK:
2251     case EXCEPTION_FLT_UNDERFLOW:
2252       jint fp_control_word = (* (jint*) StubRoutines::addr_fpu_cntrl_wrd_std());
2253       if (fp_control_word != ctx->FloatSave.ControlWord) {
2254         // Restore FPCW and mask out FLT exceptions
2255         ctx->FloatSave.ControlWord = fp_control_word | 0xffffffc0;
2256         // Mask out pending FLT exceptions
2257         ctx->FloatSave.StatusWord &=  0xffffff00;
2258         return EXCEPTION_CONTINUE_EXECUTION;
2259       }
2260   }
2261 
2262   if (prev_uef_handler != NULL) {
2263     // We didn't handle this exception so pass it to the previous
2264     // UnhandledExceptionFilter.
2265     return (prev_uef_handler)(exceptionInfo);
2266   }
2267 #else // !_WIN64
2268 /*
2269   On Windows, the mxcsr control bits are non-volatile across calls
2270   See also CR 6192333
2271   */
2272       jint MxCsr = INITIAL_MXCSR;
2273         // we can't use StubRoutines::addr_mxcsr_std()
2274         // because in Win64 mxcsr is not saved there
2275       if (MxCsr != ctx->MxCsr) {
2276         ctx->MxCsr = MxCsr;
2277         return EXCEPTION_CONTINUE_EXECUTION;
2278       }
2279 #endif // !_WIN64
2280 
2281   return EXCEPTION_CONTINUE_SEARCH;
2282 }
2283 
2284 // Fatal error reporting is single threaded so we can make this a
2285 // static and preallocated.  If it's more than MAX_PATH silently ignore
2286 // it.
2287 static char saved_error_file[MAX_PATH] = {0};
2288 
2289 void os::set_error_file(const char *logfile) {
2290   if (strlen(logfile) <= MAX_PATH) {
2291     strncpy(saved_error_file, logfile, MAX_PATH);
2292   }
2293 }
2294 
2295 static inline void report_error(Thread* t, DWORD exception_code,
2296                                 address addr, void* siginfo, void* context) {
2297   VMError err(t, exception_code, addr, siginfo, context);
2298   err.report_and_die();
2299 
2300   // If UseOsErrorReporting, this will return here and save the error file
2301   // somewhere where we can find it in the minidump.
2302 }
2303 
2304 //-----------------------------------------------------------------------------
2305 LONG WINAPI topLevelExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo) {
2306   if (InterceptOSException) return EXCEPTION_CONTINUE_SEARCH;
2307   DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
2308 #ifdef _M_IA64
2309   // On Itanium, we need the "precise pc", which has the slot number coded
2310   // into the least 4 bits: 0000=slot0, 0100=slot1, 1000=slot2 (Windows format).
2311   address pc = (address) exceptionInfo->ExceptionRecord->ExceptionAddress;
2312   // Convert the pc to "Unix format", which has the slot number coded
2313   // into the least 2 bits: 0000=slot0, 0001=slot1, 0010=slot2
2314   // This is needed for IA64 because "relocation" / "implicit null check" / "poll instruction"
2315   // information is saved in the Unix format.
2316   address pc_unix_format = (address) ((((uint64_t)pc) & 0xFFFFFFFFFFFFFFF0) | ((((uint64_t)pc) & 0xF) >> 2));
2317 #elif _M_AMD64
2318   address pc = (address) exceptionInfo->ContextRecord->Rip;
2319 #else
2320   address pc = (address) exceptionInfo->ContextRecord->Eip;
2321 #endif
2322   Thread* t = ThreadLocalStorage::get_thread_slow();          // slow & steady
2323 
2324   // Handle SafeFetch32 and SafeFetchN exceptions.
2325   if (StubRoutines::is_safefetch_fault(pc)) {
2326     return Handle_Exception(exceptionInfo, StubRoutines::continuation_for_safefetch_fault(pc));
2327   }
2328 
2329 #ifndef _WIN64
2330   // Execution protection violation - win32 running on AMD64 only
2331   // Handled first to avoid misdiagnosis as a "normal" access violation;
2332   // This is safe to do because we have a new/unique ExceptionInformation
2333   // code for this condition.
2334   if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2335     PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2336     int exception_subcode = (int) exceptionRecord->ExceptionInformation[0];
2337     address addr = (address) exceptionRecord->ExceptionInformation[1];
2338 
2339     if (exception_subcode == EXCEPTION_INFO_EXEC_VIOLATION) {
2340       int page_size = os::vm_page_size();
2341 
2342       // Make sure the pc and the faulting address are sane.
2343       //
2344       // If an instruction spans a page boundary, and the page containing
2345       // the beginning of the instruction is executable but the following
2346       // page is not, the pc and the faulting address might be slightly
2347       // different - we still want to unguard the 2nd page in this case.
2348       //
2349       // 15 bytes seems to be a (very) safe value for max instruction size.
2350       bool pc_is_near_addr =
2351         (pointer_delta((void*) addr, (void*) pc, sizeof(char)) < 15);
2352       bool instr_spans_page_boundary =
2353         (align_size_down((intptr_t) pc ^ (intptr_t) addr,
2354                          (intptr_t) page_size) > 0);
2355 
2356       if (pc == addr || (pc_is_near_addr && instr_spans_page_boundary)) {
2357         static volatile address last_addr =
2358           (address) os::non_memory_address_word();
2359 
2360         // In conservative mode, don't unguard unless the address is in the VM
2361         if (UnguardOnExecutionViolation > 0 && addr != last_addr &&
2362             (UnguardOnExecutionViolation > 1 || os::address_is_in_vm(addr))) {
2363 
2364           // Set memory to RWX and retry
2365           address page_start =
2366             (address) align_size_down((intptr_t) addr, (intptr_t) page_size);
2367           bool res = os::protect_memory((char*) page_start, page_size,
2368                                         os::MEM_PROT_RWX);
2369 
2370           if (PrintMiscellaneous && Verbose) {
2371             char buf[256];
2372             jio_snprintf(buf, sizeof(buf), "Execution protection violation "
2373                          "at " INTPTR_FORMAT
2374                          ", unguarding " INTPTR_FORMAT ": %s", addr,
2375                          page_start, (res ? "success" : strerror(errno)));
2376             tty->print_raw_cr(buf);
2377           }
2378 
2379           // Set last_addr so if we fault again at the same address, we don't
2380           // end up in an endless loop.
2381           //
2382           // There are two potential complications here.  Two threads trapping
2383           // at the same address at the same time could cause one of the
2384           // threads to think it already unguarded, and abort the VM.  Likely
2385           // very rare.
2386           //
2387           // The other race involves two threads alternately trapping at
2388           // different addresses and failing to unguard the page, resulting in
2389           // an endless loop.  This condition is probably even more unlikely
2390           // than the first.
2391           //
2392           // Although both cases could be avoided by using locks or thread
2393           // local last_addr, these solutions are unnecessary complication:
2394           // this handler is a best-effort safety net, not a complete solution.
2395           // It is disabled by default and should only be used as a workaround
2396           // in case we missed any no-execute-unsafe VM code.
2397 
2398           last_addr = addr;
2399 
2400           return EXCEPTION_CONTINUE_EXECUTION;
2401         }
2402       }
2403 
2404       // Last unguard failed or not unguarding
2405       tty->print_raw_cr("Execution protection violation");
2406       report_error(t, exception_code, addr, exceptionInfo->ExceptionRecord,
2407                    exceptionInfo->ContextRecord);
2408       return EXCEPTION_CONTINUE_SEARCH;
2409     }
2410   }
2411 #endif // _WIN64
2412 
2413   // Check to see if we caught the safepoint code in the
2414   // process of write protecting the memory serialization page.
2415   // It write enables the page immediately after protecting it
2416   // so just return.
2417   if ( exception_code == EXCEPTION_ACCESS_VIOLATION ) {
2418     JavaThread* thread = (JavaThread*) t;
2419     PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2420     address addr = (address) exceptionRecord->ExceptionInformation[1];
2421     if ( os::is_memory_serialize_page(thread, addr) ) {
2422       // Block current thread until the memory serialize page permission restored.
2423       os::block_on_serialize_page_trap();
2424       return EXCEPTION_CONTINUE_EXECUTION;
2425     }
2426   }
2427 
2428   if (t != NULL && t->is_Java_thread()) {
2429     JavaThread* thread = (JavaThread*) t;
2430     bool in_java = thread->thread_state() == _thread_in_Java;
2431 
2432     // Handle potential stack overflows up front.
2433     if (exception_code == EXCEPTION_STACK_OVERFLOW) {
2434       if (os::uses_stack_guard_pages()) {
2435 #ifdef _M_IA64
2436         // Use guard page for register stack.
2437         PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2438         address addr = (address) exceptionRecord->ExceptionInformation[1];
2439         // Check for a register stack overflow on Itanium
2440         if (thread->addr_inside_register_stack_red_zone(addr)) {
2441           // Fatal red zone violation happens if the Java program
2442           // catches a StackOverflow error and does so much processing
2443           // that it runs beyond the unprotected yellow guard zone. As
2444           // a result, we are out of here.
2445           fatal("ERROR: Unrecoverable stack overflow happened. JVM will exit.");
2446         } else if(thread->addr_inside_register_stack(addr)) {
2447           // Disable the yellow zone which sets the state that
2448           // we've got a stack overflow problem.
2449           if (thread->stack_yellow_zone_enabled()) {
2450             thread->disable_stack_yellow_zone();
2451           }
2452           // Give us some room to process the exception.
2453           thread->disable_register_stack_guard();
2454           // Tracing with +Verbose.
2455           if (Verbose) {
2456             tty->print_cr("SOF Compiled Register Stack overflow at " INTPTR_FORMAT " (SIGSEGV)", pc);
2457             tty->print_cr("Register Stack access at " INTPTR_FORMAT, addr);
2458             tty->print_cr("Register Stack base " INTPTR_FORMAT, thread->register_stack_base());
2459             tty->print_cr("Register Stack [" INTPTR_FORMAT "," INTPTR_FORMAT "]",
2460                           thread->register_stack_base(),
2461                           thread->register_stack_base() + thread->stack_size());
2462           }
2463 
2464           // Reguard the permanent register stack red zone just to be sure.
2465           // We saw Windows silently disabling this without telling us.
2466           thread->enable_register_stack_red_zone();
2467 
2468           return Handle_Exception(exceptionInfo,
2469             SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
2470         }
2471 #endif
2472         if (thread->stack_yellow_zone_enabled()) {
2473           // Yellow zone violation.  The o/s has unprotected the first yellow
2474           // zone page for us.  Note:  must call disable_stack_yellow_zone to
2475           // update the enabled status, even if the zone contains only one page.
2476           thread->disable_stack_yellow_zone();
2477           // If not in java code, return and hope for the best.
2478           return in_java ? Handle_Exception(exceptionInfo,
2479             SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW))
2480             :  EXCEPTION_CONTINUE_EXECUTION;
2481         } else {
2482           // Fatal red zone violation.
2483           thread->disable_stack_red_zone();
2484           tty->print_raw_cr("An unrecoverable stack overflow has occurred.");
2485           report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2486                        exceptionInfo->ContextRecord);
2487           return EXCEPTION_CONTINUE_SEARCH;
2488         }
2489       } else if (in_java) {
2490         // JVM-managed guard pages cannot be used on win95/98.  The o/s provides
2491         // a one-time-only guard page, which it has released to us.  The next
2492         // stack overflow on this thread will result in an ACCESS_VIOLATION.
2493         return Handle_Exception(exceptionInfo,
2494           SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
2495       } else {
2496         // Can only return and hope for the best.  Further stack growth will
2497         // result in an ACCESS_VIOLATION.
2498         return EXCEPTION_CONTINUE_EXECUTION;
2499       }
2500     } else if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2501       // Either stack overflow or null pointer exception.
2502       if (in_java) {
2503         PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2504         address addr = (address) exceptionRecord->ExceptionInformation[1];
2505         address stack_end = thread->stack_base() - thread->stack_size();
2506         if (addr < stack_end && addr >= stack_end - os::vm_page_size()) {
2507           // Stack overflow.
2508           assert(!os::uses_stack_guard_pages(),
2509             "should be caught by red zone code above.");
2510           return Handle_Exception(exceptionInfo,
2511             SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
2512         }
2513         //
2514         // Check for safepoint polling and implicit null
2515         // We only expect null pointers in the stubs (vtable)
2516         // the rest are checked explicitly now.
2517         //
2518         CodeBlob* cb = CodeCache::find_blob(pc);
2519         if (cb != NULL) {
2520           if (os::is_poll_address(addr)) {
2521             address stub = SharedRuntime::get_poll_stub(pc);
2522             return Handle_Exception(exceptionInfo, stub);
2523           }
2524         }
2525         {
2526 #ifdef _WIN64
2527           //
2528           // If it's a legal stack address map the entire region in
2529           //
2530           PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2531           address addr = (address) exceptionRecord->ExceptionInformation[1];
2532           if (addr > thread->stack_yellow_zone_base() && addr < thread->stack_base() ) {
2533                   addr = (address)((uintptr_t)addr &
2534                          (~((uintptr_t)os::vm_page_size() - (uintptr_t)1)));
2535                   os::commit_memory((char *)addr, thread->stack_base() - addr,
2536                                     !ExecMem);
2537                   return EXCEPTION_CONTINUE_EXECUTION;
2538           }
2539           else
2540 #endif
2541           {
2542             // Null pointer exception.
2543 #ifdef _M_IA64
2544             // Process implicit null checks in compiled code. Note: Implicit null checks
2545             // can happen even if "ImplicitNullChecks" is disabled, e.g. in vtable stubs.
2546             if (CodeCache::contains((void*) pc_unix_format) && !MacroAssembler::needs_explicit_null_check((intptr_t) addr)) {
2547               CodeBlob *cb = CodeCache::find_blob_unsafe(pc_unix_format);
2548               // Handle implicit null check in UEP method entry
2549               if (cb && (cb->is_frame_complete_at(pc) ||
2550                          (cb->is_nmethod() && ((nmethod *)cb)->inlinecache_check_contains(pc)))) {
2551                 if (Verbose) {
2552                   intptr_t *bundle_start = (intptr_t*) ((intptr_t) pc_unix_format & 0xFFFFFFFFFFFFFFF0);
2553                   tty->print_cr("trap: null_check at " INTPTR_FORMAT " (SIGSEGV)", pc_unix_format);
2554                   tty->print_cr("      to addr " INTPTR_FORMAT, addr);
2555                   tty->print_cr("      bundle is " INTPTR_FORMAT " (high), " INTPTR_FORMAT " (low)",
2556                                 *(bundle_start + 1), *bundle_start);
2557                 }
2558                 return Handle_Exception(exceptionInfo,
2559                   SharedRuntime::continuation_for_implicit_exception(thread, pc_unix_format, SharedRuntime::IMPLICIT_NULL));
2560               }
2561             }
2562 
2563             // Implicit null checks were processed above.  Hence, we should not reach
2564             // here in the usual case => die!
2565             if (Verbose) tty->print_raw_cr("Access violation, possible null pointer exception");
2566             report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2567                          exceptionInfo->ContextRecord);
2568             return EXCEPTION_CONTINUE_SEARCH;
2569 
2570 #else // !IA64
2571 
2572             // Windows 98 reports faulting addresses incorrectly
2573             if (!MacroAssembler::needs_explicit_null_check((intptr_t)addr) ||
2574                 !os::win32::is_nt()) {
2575               address stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
2576               if (stub != NULL) return Handle_Exception(exceptionInfo, stub);
2577             }
2578             report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2579                          exceptionInfo->ContextRecord);
2580             return EXCEPTION_CONTINUE_SEARCH;
2581 #endif
2582           }
2583         }
2584       }
2585 
2586 #ifdef _WIN64
2587       // Special care for fast JNI field accessors.
2588       // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks
2589       // in and the heap gets shrunk before the field access.
2590       if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2591         address addr = JNI_FastGetField::find_slowcase_pc(pc);
2592         if (addr != (address)-1) {
2593           return Handle_Exception(exceptionInfo, addr);
2594         }
2595       }
2596 #endif
2597 
2598       // Stack overflow or null pointer exception in native code.
2599       report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2600                    exceptionInfo->ContextRecord);
2601       return EXCEPTION_CONTINUE_SEARCH;
2602     } // /EXCEPTION_ACCESS_VIOLATION
2603     // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
2604 #if defined _M_IA64
2605     else if ((exception_code == EXCEPTION_ILLEGAL_INSTRUCTION ||
2606               exception_code == EXCEPTION_ILLEGAL_INSTRUCTION_2)) {
2607       M37 handle_wrong_method_break(0, NativeJump::HANDLE_WRONG_METHOD, PR0);
2608 
2609       // Compiled method patched to be non entrant? Following conditions must apply:
2610       // 1. must be first instruction in bundle
2611       // 2. must be a break instruction with appropriate code
2612       if((((uint64_t) pc & 0x0F) == 0) &&
2613          (((IPF_Bundle*) pc)->get_slot0() == handle_wrong_method_break.bits())) {
2614         return Handle_Exception(exceptionInfo,
2615                                 (address)SharedRuntime::get_handle_wrong_method_stub());
2616       }
2617     } // /EXCEPTION_ILLEGAL_INSTRUCTION
2618 #endif
2619 
2620 
2621     if (in_java) {
2622       switch (exception_code) {
2623       case EXCEPTION_INT_DIVIDE_BY_ZERO:
2624         return Handle_Exception(exceptionInfo, SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO));
2625 
2626       case EXCEPTION_INT_OVERFLOW:
2627         return Handle_IDiv_Exception(exceptionInfo);
2628 
2629       } // switch
2630     }
2631     if (((thread->thread_state() == _thread_in_Java) ||
2632         (thread->thread_state() == _thread_in_native)) &&
2633         exception_code != EXCEPTION_UNCAUGHT_CXX_EXCEPTION)
2634     {
2635       LONG result=Handle_FLT_Exception(exceptionInfo);
2636       if (result==EXCEPTION_CONTINUE_EXECUTION) return result;
2637     }
2638   }
2639 
2640   if (exception_code != EXCEPTION_BREAKPOINT) {
2641     report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2642                  exceptionInfo->ContextRecord);
2643   }
2644   return EXCEPTION_CONTINUE_SEARCH;
2645 }
2646 
2647 #ifndef _WIN64
2648 // Special care for fast JNI accessors.
2649 // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks in and
2650 // the heap gets shrunk before the field access.
2651 // Need to install our own structured exception handler since native code may
2652 // install its own.
2653 LONG WINAPI fastJNIAccessorExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo) {
2654   DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
2655   if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2656     address pc = (address) exceptionInfo->ContextRecord->Eip;
2657     address addr = JNI_FastGetField::find_slowcase_pc(pc);
2658     if (addr != (address)-1) {
2659       return Handle_Exception(exceptionInfo, addr);
2660     }
2661   }
2662   return EXCEPTION_CONTINUE_SEARCH;
2663 }
2664 
2665 #define DEFINE_FAST_GETFIELD(Return,Fieldname,Result) \
2666 Return JNICALL jni_fast_Get##Result##Field_wrapper(JNIEnv *env, jobject obj, jfieldID fieldID) { \
2667   __try { \
2668     return (*JNI_FastGetField::jni_fast_Get##Result##Field_fp)(env, obj, fieldID); \
2669   } __except(fastJNIAccessorExceptionFilter((_EXCEPTION_POINTERS*)_exception_info())) { \
2670   } \
2671   return 0; \
2672 }
2673 
2674 DEFINE_FAST_GETFIELD(jboolean, bool,   Boolean)
2675 DEFINE_FAST_GETFIELD(jbyte,    byte,   Byte)
2676 DEFINE_FAST_GETFIELD(jchar,    char,   Char)
2677 DEFINE_FAST_GETFIELD(jshort,   short,  Short)
2678 DEFINE_FAST_GETFIELD(jint,     int,    Int)
2679 DEFINE_FAST_GETFIELD(jlong,    long,   Long)
2680 DEFINE_FAST_GETFIELD(jfloat,   float,  Float)
2681 DEFINE_FAST_GETFIELD(jdouble,  double, Double)
2682 
2683 address os::win32::fast_jni_accessor_wrapper(BasicType type) {
2684   switch (type) {
2685     case T_BOOLEAN: return (address)jni_fast_GetBooleanField_wrapper;
2686     case T_BYTE:    return (address)jni_fast_GetByteField_wrapper;
2687     case T_CHAR:    return (address)jni_fast_GetCharField_wrapper;
2688     case T_SHORT:   return (address)jni_fast_GetShortField_wrapper;
2689     case T_INT:     return (address)jni_fast_GetIntField_wrapper;
2690     case T_LONG:    return (address)jni_fast_GetLongField_wrapper;
2691     case T_FLOAT:   return (address)jni_fast_GetFloatField_wrapper;
2692     case T_DOUBLE:  return (address)jni_fast_GetDoubleField_wrapper;
2693     default:        ShouldNotReachHere();
2694   }
2695   return (address)-1;
2696 }
2697 #endif
2698 
2699 #ifndef PRODUCT
2700 void os::win32::call_test_func_with_wrapper(void (*funcPtr)(void)) {
2701   // Install a win32 structured exception handler around the test
2702   // function call so the VM can generate an error dump if needed.
2703   __try {
2704     (*funcPtr)();
2705   } __except(topLevelExceptionFilter(
2706              (_EXCEPTION_POINTERS*)_exception_info())) {
2707     // Nothing to do.
2708   }
2709 }
2710 #endif
2711 
2712 // Virtual Memory
2713 
2714 int os::vm_page_size() { return os::win32::vm_page_size(); }
2715 int os::vm_allocation_granularity() {
2716   return os::win32::vm_allocation_granularity();
2717 }
2718 
2719 // Windows large page support is available on Windows 2003. In order to use
2720 // large page memory, the administrator must first assign additional privilege
2721 // to the user:
2722 //   + select Control Panel -> Administrative Tools -> Local Security Policy
2723 //   + select Local Policies -> User Rights Assignment
2724 //   + double click "Lock pages in memory", add users and/or groups
2725 //   + reboot
2726 // Note the above steps are needed for administrator as well, as administrators
2727 // by default do not have the privilege to lock pages in memory.
2728 //
2729 // Note about Windows 2003: although the API supports committing large page
2730 // memory on a page-by-page basis and VirtualAlloc() returns success under this
2731 // scenario, I found through experiment it only uses large page if the entire
2732 // memory region is reserved and committed in a single VirtualAlloc() call.
2733 // This makes Windows large page support more or less like Solaris ISM, in
2734 // that the entire heap must be committed upfront. This probably will change
2735 // in the future, if so the code below needs to be revisited.
2736 
2737 #ifndef MEM_LARGE_PAGES
2738 #define MEM_LARGE_PAGES 0x20000000
2739 #endif
2740 
2741 static HANDLE    _hProcess;
2742 static HANDLE    _hToken;
2743 
2744 // Container for NUMA node list info
2745 class NUMANodeListHolder {
2746 private:
2747   int *_numa_used_node_list;  // allocated below
2748   int _numa_used_node_count;
2749 
2750   void free_node_list() {
2751     if (_numa_used_node_list != NULL) {
2752       FREE_C_HEAP_ARRAY(int, _numa_used_node_list, mtInternal);
2753     }
2754   }
2755 
2756 public:
2757   NUMANodeListHolder() {
2758     _numa_used_node_count = 0;
2759     _numa_used_node_list = NULL;
2760     // do rest of initialization in build routine (after function pointers are set up)
2761   }
2762 
2763   ~NUMANodeListHolder() {
2764     free_node_list();
2765   }
2766 
2767   bool build() {
2768     DWORD_PTR proc_aff_mask;
2769     DWORD_PTR sys_aff_mask;
2770     if (!GetProcessAffinityMask(GetCurrentProcess(), &proc_aff_mask, &sys_aff_mask)) return false;
2771     ULONG highest_node_number;
2772     if (!os::Kernel32Dll::GetNumaHighestNodeNumber(&highest_node_number)) return false;
2773     free_node_list();
2774     _numa_used_node_list = NEW_C_HEAP_ARRAY(int, highest_node_number + 1, mtInternal);
2775     for (unsigned int i = 0; i <= highest_node_number; i++) {
2776       ULONGLONG proc_mask_numa_node;
2777       if (!os::Kernel32Dll::GetNumaNodeProcessorMask(i, &proc_mask_numa_node)) return false;
2778       if ((proc_aff_mask & proc_mask_numa_node)!=0) {
2779         _numa_used_node_list[_numa_used_node_count++] = i;
2780       }
2781     }
2782     return (_numa_used_node_count > 1);
2783   }
2784 
2785   int get_count() {return _numa_used_node_count;}
2786   int get_node_list_entry(int n) {
2787     // for indexes out of range, returns -1
2788     return (n < _numa_used_node_count ? _numa_used_node_list[n] : -1);
2789   }
2790 
2791 } numa_node_list_holder;
2792 
2793 
2794 
2795 static size_t _large_page_size = 0;
2796 
2797 static bool resolve_functions_for_large_page_init() {
2798   return os::Kernel32Dll::GetLargePageMinimumAvailable() &&
2799     os::Advapi32Dll::AdvapiAvailable();
2800 }
2801 
2802 static bool request_lock_memory_privilege() {
2803   _hProcess = OpenProcess(PROCESS_QUERY_INFORMATION, FALSE,
2804                                 os::current_process_id());
2805 
2806   LUID luid;
2807   if (_hProcess != NULL &&
2808       os::Advapi32Dll::OpenProcessToken(_hProcess, TOKEN_ADJUST_PRIVILEGES, &_hToken) &&
2809       os::Advapi32Dll::LookupPrivilegeValue(NULL, "SeLockMemoryPrivilege", &luid)) {
2810 
2811     TOKEN_PRIVILEGES tp;
2812     tp.PrivilegeCount = 1;
2813     tp.Privileges[0].Luid = luid;
2814     tp.Privileges[0].Attributes = SE_PRIVILEGE_ENABLED;
2815 
2816     // AdjustTokenPrivileges() may return TRUE even when it couldn't change the
2817     // privilege. Check GetLastError() too. See MSDN document.
2818     if (os::Advapi32Dll::AdjustTokenPrivileges(_hToken, false, &tp, sizeof(tp), NULL, NULL) &&
2819         (GetLastError() == ERROR_SUCCESS)) {
2820       return true;
2821     }
2822   }
2823 
2824   return false;
2825 }
2826 
2827 static void cleanup_after_large_page_init() {
2828   if (_hProcess) CloseHandle(_hProcess);
2829   _hProcess = NULL;
2830   if (_hToken) CloseHandle(_hToken);
2831   _hToken = NULL;
2832 }
2833 
2834 static bool numa_interleaving_init() {
2835   bool success = false;
2836   bool use_numa_interleaving_specified = !FLAG_IS_DEFAULT(UseNUMAInterleaving);
2837 
2838   // print a warning if UseNUMAInterleaving flag is specified on command line
2839   bool warn_on_failure = use_numa_interleaving_specified;
2840 # define WARN(msg) if (warn_on_failure) { warning(msg); }
2841 
2842   // NUMAInterleaveGranularity cannot be less than vm_allocation_granularity (or _large_page_size if using large pages)
2843   size_t min_interleave_granularity = UseLargePages ? _large_page_size : os::vm_allocation_granularity();
2844   NUMAInterleaveGranularity = align_size_up(NUMAInterleaveGranularity, min_interleave_granularity);
2845 
2846   if (os::Kernel32Dll::NumaCallsAvailable()) {
2847     if (numa_node_list_holder.build()) {
2848       if (PrintMiscellaneous && Verbose) {
2849         tty->print("NUMA UsedNodeCount=%d, namely ", numa_node_list_holder.get_count());
2850         for (int i = 0; i < numa_node_list_holder.get_count(); i++) {
2851           tty->print("%d ", numa_node_list_holder.get_node_list_entry(i));
2852         }
2853         tty->print("\n");
2854       }
2855       success = true;
2856     } else {
2857       WARN("Process does not cover multiple NUMA nodes.");
2858     }
2859   } else {
2860     WARN("NUMA Interleaving is not supported by the operating system.");
2861   }
2862   if (!success) {
2863     if (use_numa_interleaving_specified) WARN("...Ignoring UseNUMAInterleaving flag.");
2864   }
2865   return success;
2866 #undef WARN
2867 }
2868 
2869 // this routine is used whenever we need to reserve a contiguous VA range
2870 // but we need to make separate VirtualAlloc calls for each piece of the range
2871 // Reasons for doing this:
2872 //  * UseLargePagesIndividualAllocation was set (normally only needed on WS2003 but possible to be set otherwise)
2873 //  * UseNUMAInterleaving requires a separate node for each piece
2874 static char* allocate_pages_individually(size_t bytes, char* addr, DWORD flags, DWORD prot,
2875                                          bool should_inject_error=false) {
2876   char * p_buf;
2877   // note: at setup time we guaranteed that NUMAInterleaveGranularity was aligned up to a page size
2878   size_t page_size = UseLargePages ? _large_page_size : os::vm_allocation_granularity();
2879   size_t chunk_size = UseNUMAInterleaving ? NUMAInterleaveGranularity : page_size;
2880 
2881   // first reserve enough address space in advance since we want to be
2882   // able to break a single contiguous virtual address range into multiple
2883   // large page commits but WS2003 does not allow reserving large page space
2884   // so we just use 4K pages for reserve, this gives us a legal contiguous
2885   // address space. then we will deallocate that reservation, and re alloc
2886   // using large pages
2887   const size_t size_of_reserve = bytes + chunk_size;
2888   if (bytes > size_of_reserve) {
2889     // Overflowed.
2890     return NULL;
2891   }
2892   p_buf = (char *) VirtualAlloc(addr,
2893                                 size_of_reserve,  // size of Reserve
2894                                 MEM_RESERVE,
2895                                 PAGE_READWRITE);
2896   // If reservation failed, return NULL
2897   if (p_buf == NULL) return NULL;
2898   MemTracker::record_virtual_memory_reserve((address)p_buf, size_of_reserve, mtNone, CALLER_PC);
2899   os::release_memory(p_buf, bytes + chunk_size);
2900 
2901   // we still need to round up to a page boundary (in case we are using large pages)
2902   // but not to a chunk boundary (in case InterleavingGranularity doesn't align with page size)
2903   // instead we handle this in the bytes_to_rq computation below
2904   p_buf = (char *) align_size_up((size_t)p_buf, page_size);
2905 
2906   // now go through and allocate one chunk at a time until all bytes are
2907   // allocated
2908   size_t  bytes_remaining = bytes;
2909   // An overflow of align_size_up() would have been caught above
2910   // in the calculation of size_of_reserve.
2911   char * next_alloc_addr = p_buf;
2912   HANDLE hProc = GetCurrentProcess();
2913 
2914 #ifdef ASSERT
2915   // Variable for the failure injection
2916   long ran_num = os::random();
2917   size_t fail_after = ran_num % bytes;
2918 #endif
2919 
2920   int count=0;
2921   while (bytes_remaining) {
2922     // select bytes_to_rq to get to the next chunk_size boundary
2923 
2924     size_t bytes_to_rq = MIN2(bytes_remaining, chunk_size - ((size_t)next_alloc_addr % chunk_size));
2925     // Note allocate and commit
2926     char * p_new;
2927 
2928 #ifdef ASSERT
2929     bool inject_error_now = should_inject_error && (bytes_remaining <= fail_after);
2930 #else
2931     const bool inject_error_now = false;
2932 #endif
2933 
2934     if (inject_error_now) {
2935       p_new = NULL;
2936     } else {
2937       if (!UseNUMAInterleaving) {
2938         p_new = (char *) VirtualAlloc(next_alloc_addr,
2939                                       bytes_to_rq,
2940                                       flags,
2941                                       prot);
2942       } else {
2943         // get the next node to use from the used_node_list
2944         assert(numa_node_list_holder.get_count() > 0, "Multiple NUMA nodes expected");
2945         DWORD node = numa_node_list_holder.get_node_list_entry(count % numa_node_list_holder.get_count());
2946         p_new = (char *)os::Kernel32Dll::VirtualAllocExNuma(hProc,
2947                                                             next_alloc_addr,
2948                                                             bytes_to_rq,
2949                                                             flags,
2950                                                             prot,
2951                                                             node);
2952       }
2953     }
2954 
2955     if (p_new == NULL) {
2956       // Free any allocated pages
2957       if (next_alloc_addr > p_buf) {
2958         // Some memory was committed so release it.
2959         size_t bytes_to_release = bytes - bytes_remaining;
2960         // NMT has yet to record any individual blocks, so it
2961         // need to create a dummy 'reserve' record to match
2962         // the release.
2963         MemTracker::record_virtual_memory_reserve((address)p_buf,
2964           bytes_to_release, mtNone, CALLER_PC);
2965         os::release_memory(p_buf, bytes_to_release);
2966       }
2967 #ifdef ASSERT
2968       if (should_inject_error) {
2969         if (TracePageSizes && Verbose) {
2970           tty->print_cr("Reserving pages individually failed.");
2971         }
2972       }
2973 #endif
2974       return NULL;
2975     }
2976 
2977     bytes_remaining -= bytes_to_rq;
2978     next_alloc_addr += bytes_to_rq;
2979     count++;
2980   }
2981   // Although the memory is allocated individually, it is returned as one.
2982   // NMT records it as one block.
2983   address pc = CALLER_PC;
2984   if ((flags & MEM_COMMIT) != 0) {
2985     MemTracker::record_virtual_memory_reserve_and_commit((address)p_buf, bytes, mtNone, pc);
2986   } else {
2987     MemTracker::record_virtual_memory_reserve((address)p_buf, bytes, mtNone, pc);
2988   }
2989 
2990   // made it this far, success
2991   return p_buf;
2992 }
2993 
2994 
2995 
2996 void os::large_page_init() {
2997   if (!UseLargePages) return;
2998 
2999   // print a warning if any large page related flag is specified on command line
3000   bool warn_on_failure = !FLAG_IS_DEFAULT(UseLargePages) ||
3001                          !FLAG_IS_DEFAULT(LargePageSizeInBytes);
3002   bool success = false;
3003 
3004 # define WARN(msg) if (warn_on_failure) { warning(msg); }
3005   if (resolve_functions_for_large_page_init()) {
3006     if (request_lock_memory_privilege()) {
3007       size_t s = os::Kernel32Dll::GetLargePageMinimum();
3008       if (s) {
3009 #if defined(IA32) || defined(AMD64)
3010         if (s > 4*M || LargePageSizeInBytes > 4*M) {
3011           WARN("JVM cannot use large pages bigger than 4mb.");
3012         } else {
3013 #endif
3014           if (LargePageSizeInBytes && LargePageSizeInBytes % s == 0) {
3015             _large_page_size = LargePageSizeInBytes;
3016           } else {
3017             _large_page_size = s;
3018           }
3019           success = true;
3020 #if defined(IA32) || defined(AMD64)
3021         }
3022 #endif
3023       } else {
3024         WARN("Large page is not supported by the processor.");
3025       }
3026     } else {
3027       WARN("JVM cannot use large page memory because it does not have enough privilege to lock pages in memory.");
3028     }
3029   } else {
3030     WARN("Large page is not supported by the operating system.");
3031   }
3032 #undef WARN
3033 
3034   const size_t default_page_size = (size_t) vm_page_size();
3035   if (success && _large_page_size > default_page_size) {
3036     _page_sizes[0] = _large_page_size;
3037     _page_sizes[1] = default_page_size;
3038     _page_sizes[2] = 0;
3039   }
3040 
3041   cleanup_after_large_page_init();
3042   UseLargePages = success;
3043 }
3044 
3045 // On win32, one cannot release just a part of reserved memory, it's an
3046 // all or nothing deal.  When we split a reservation, we must break the
3047 // reservation into two reservations.
3048 void os::pd_split_reserved_memory(char *base, size_t size, size_t split,
3049                               bool realloc) {
3050   if (size > 0) {
3051     release_memory(base, size);
3052     if (realloc) {
3053       reserve_memory(split, base);
3054     }
3055     if (size != split) {
3056       reserve_memory(size - split, base + split);
3057     }
3058   }
3059 }
3060 
3061 // Multiple threads can race in this code but it's not possible to unmap small sections of
3062 // virtual space to get requested alignment, like posix-like os's.
3063 // Windows prevents multiple thread from remapping over each other so this loop is thread-safe.
3064 char* os::reserve_memory_aligned(size_t size, size_t alignment) {
3065   assert((alignment & (os::vm_allocation_granularity() - 1)) == 0,
3066       "Alignment must be a multiple of allocation granularity (page size)");
3067   assert((size & (alignment -1)) == 0, "size must be 'alignment' aligned");
3068 
3069   size_t extra_size = size + alignment;
3070   assert(extra_size >= size, "overflow, size is too large to allow alignment");
3071 
3072   char* aligned_base = NULL;
3073 
3074   do {
3075     char* extra_base = os::reserve_memory(extra_size, NULL, alignment);
3076     if (extra_base == NULL) {
3077       return NULL;
3078     }
3079     // Do manual alignment
3080     aligned_base = (char*) align_size_up((uintptr_t) extra_base, alignment);
3081 
3082     os::release_memory(extra_base, extra_size);
3083 
3084     aligned_base = os::reserve_memory(size, aligned_base);
3085 
3086   } while (aligned_base == NULL);
3087 
3088   return aligned_base;
3089 }
3090 
3091 char* os::pd_reserve_memory(size_t bytes, char* addr, size_t alignment_hint) {
3092   assert((size_t)addr % os::vm_allocation_granularity() == 0,
3093          "reserve alignment");
3094   assert(bytes % os::vm_allocation_granularity() == 0, "reserve block size");
3095   char* res;
3096   // note that if UseLargePages is on, all the areas that require interleaving
3097   // will go thru reserve_memory_special rather than thru here.
3098   bool use_individual = (UseNUMAInterleaving && !UseLargePages);
3099   if (!use_individual) {
3100     res = (char*)VirtualAlloc(addr, bytes, MEM_RESERVE, PAGE_READWRITE);
3101   } else {
3102     elapsedTimer reserveTimer;
3103     if( Verbose && PrintMiscellaneous ) reserveTimer.start();
3104     // in numa interleaving, we have to allocate pages individually
3105     // (well really chunks of NUMAInterleaveGranularity size)
3106     res = allocate_pages_individually(bytes, addr, MEM_RESERVE, PAGE_READWRITE);
3107     if (res == NULL) {
3108       warning("NUMA page allocation failed");
3109     }
3110     if( Verbose && PrintMiscellaneous ) {
3111       reserveTimer.stop();
3112       tty->print_cr("reserve_memory of %Ix bytes took " JLONG_FORMAT " ms (" JLONG_FORMAT " ticks)", bytes,
3113                     reserveTimer.milliseconds(), reserveTimer.ticks());
3114     }
3115   }
3116   assert(res == NULL || addr == NULL || addr == res,
3117          "Unexpected address from reserve.");
3118 
3119   return res;
3120 }
3121 
3122 // Reserve memory at an arbitrary address, only if that area is
3123 // available (and not reserved for something else).
3124 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
3125   // Windows os::reserve_memory() fails of the requested address range is
3126   // not avilable.
3127   return reserve_memory(bytes, requested_addr);
3128 }
3129 
3130 size_t os::large_page_size() {
3131   return _large_page_size;
3132 }
3133 
3134 bool os::can_commit_large_page_memory() {
3135   // Windows only uses large page memory when the entire region is reserved
3136   // and committed in a single VirtualAlloc() call. This may change in the
3137   // future, but with Windows 2003 it's not possible to commit on demand.
3138   return false;
3139 }
3140 
3141 bool os::can_execute_large_page_memory() {
3142   return true;
3143 }
3144 
3145 char* os::reserve_memory_special(size_t bytes, size_t alignment, char* addr, bool exec) {
3146   assert(UseLargePages, "only for large pages");
3147 
3148   if (!is_size_aligned(bytes, os::large_page_size()) || alignment > os::large_page_size()) {
3149     return NULL; // Fallback to small pages.
3150   }
3151 
3152   const DWORD prot = exec ? PAGE_EXECUTE_READWRITE : PAGE_READWRITE;
3153   const DWORD flags = MEM_RESERVE | MEM_COMMIT | MEM_LARGE_PAGES;
3154 
3155   // with large pages, there are two cases where we need to use Individual Allocation
3156   // 1) the UseLargePagesIndividualAllocation flag is set (set by default on WS2003)
3157   // 2) NUMA Interleaving is enabled, in which case we use a different node for each page
3158   if (UseLargePagesIndividualAllocation || UseNUMAInterleaving) {
3159     if (TracePageSizes && Verbose) {
3160        tty->print_cr("Reserving large pages individually.");
3161     }
3162     char * p_buf = allocate_pages_individually(bytes, addr, flags, prot, LargePagesIndividualAllocationInjectError);
3163     if (p_buf == NULL) {
3164       // give an appropriate warning message
3165       if (UseNUMAInterleaving) {
3166         warning("NUMA large page allocation failed, UseLargePages flag ignored");
3167       }
3168       if (UseLargePagesIndividualAllocation) {
3169         warning("Individually allocated large pages failed, "
3170                 "use -XX:-UseLargePagesIndividualAllocation to turn off");
3171       }
3172       return NULL;
3173     }
3174 
3175     return p_buf;
3176 
3177   } else {
3178     if (TracePageSizes && Verbose) {
3179        tty->print_cr("Reserving large pages in a single large chunk.");
3180     }
3181     // normal policy just allocate it all at once
3182     DWORD flag = MEM_RESERVE | MEM_COMMIT | MEM_LARGE_PAGES;
3183     char * res = (char *)VirtualAlloc(addr, bytes, flag, prot);
3184     if (res != NULL) {
3185       address pc = CALLER_PC;
3186       MemTracker::record_virtual_memory_reserve_and_commit((address)res, bytes, mtNone, pc);
3187     }
3188 
3189     return res;
3190   }
3191 }
3192 
3193 bool os::release_memory_special(char* base, size_t bytes) {
3194   assert(base != NULL, "Sanity check");
3195   return release_memory(base, bytes);
3196 }
3197 
3198 void os::print_statistics() {
3199 }
3200 
3201 static void warn_fail_commit_memory(char* addr, size_t bytes, bool exec) {
3202   int err = os::get_last_error();
3203   char buf[256];
3204   size_t buf_len = os::lasterror(buf, sizeof(buf));
3205   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
3206           ", %d) failed; error='%s' (DOS error/errno=%d)", addr, bytes,
3207           exec, buf_len != 0 ? buf : "<no_error_string>", err);
3208 }
3209 
3210 bool os::pd_commit_memory(char* addr, size_t bytes, bool exec) {
3211   if (bytes == 0) {
3212     // Don't bother the OS with noops.
3213     return true;
3214   }
3215   assert((size_t) addr % os::vm_page_size() == 0, "commit on page boundaries");
3216   assert(bytes % os::vm_page_size() == 0, "commit in page-sized chunks");
3217   // Don't attempt to print anything if the OS call fails. We're
3218   // probably low on resources, so the print itself may cause crashes.
3219 
3220   // unless we have NUMAInterleaving enabled, the range of a commit
3221   // is always within a reserve covered by a single VirtualAlloc
3222   // in that case we can just do a single commit for the requested size
3223   if (!UseNUMAInterleaving) {
3224     if (VirtualAlloc(addr, bytes, MEM_COMMIT, PAGE_READWRITE) == NULL) {
3225       NOT_PRODUCT(warn_fail_commit_memory(addr, bytes, exec);)
3226       return false;
3227     }
3228     if (exec) {
3229       DWORD oldprot;
3230       // Windows doc says to use VirtualProtect to get execute permissions
3231       if (!VirtualProtect(addr, bytes, PAGE_EXECUTE_READWRITE, &oldprot)) {
3232         NOT_PRODUCT(warn_fail_commit_memory(addr, bytes, exec);)
3233         return false;
3234       }
3235     }
3236     return true;
3237   } else {
3238 
3239     // when NUMAInterleaving is enabled, the commit might cover a range that
3240     // came from multiple VirtualAlloc reserves (using allocate_pages_individually).
3241     // VirtualQuery can help us determine that.  The RegionSize that VirtualQuery
3242     // returns represents the number of bytes that can be committed in one step.
3243     size_t bytes_remaining = bytes;
3244     char * next_alloc_addr = addr;
3245     while (bytes_remaining > 0) {
3246       MEMORY_BASIC_INFORMATION alloc_info;
3247       VirtualQuery(next_alloc_addr, &alloc_info, sizeof(alloc_info));
3248       size_t bytes_to_rq = MIN2(bytes_remaining, (size_t)alloc_info.RegionSize);
3249       if (VirtualAlloc(next_alloc_addr, bytes_to_rq, MEM_COMMIT,
3250                        PAGE_READWRITE) == NULL) {
3251         NOT_PRODUCT(warn_fail_commit_memory(next_alloc_addr, bytes_to_rq,
3252                                             exec);)
3253         return false;
3254       }
3255       if (exec) {
3256         DWORD oldprot;
3257         if (!VirtualProtect(next_alloc_addr, bytes_to_rq,
3258                             PAGE_EXECUTE_READWRITE, &oldprot)) {
3259           NOT_PRODUCT(warn_fail_commit_memory(next_alloc_addr, bytes_to_rq,
3260                                               exec);)
3261           return false;
3262         }
3263       }
3264       bytes_remaining -= bytes_to_rq;
3265       next_alloc_addr += bytes_to_rq;
3266     }
3267   }
3268   // if we made it this far, return true
3269   return true;
3270 }
3271 
3272 bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
3273                        bool exec) {
3274   // alignment_hint is ignored on this OS
3275   return pd_commit_memory(addr, size, exec);
3276 }
3277 
3278 void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
3279                                   const char* mesg) {
3280   assert(mesg != NULL, "mesg must be specified");
3281   if (!pd_commit_memory(addr, size, exec)) {
3282     warn_fail_commit_memory(addr, size, exec);
3283     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, mesg);
3284   }
3285 }
3286 
3287 void os::pd_commit_memory_or_exit(char* addr, size_t size,
3288                                   size_t alignment_hint, bool exec,
3289                                   const char* mesg) {
3290   // alignment_hint is ignored on this OS
3291   pd_commit_memory_or_exit(addr, size, exec, mesg);
3292 }
3293 
3294 bool os::pd_uncommit_memory(char* addr, size_t bytes) {
3295   if (bytes == 0) {
3296     // Don't bother the OS with noops.
3297     return true;
3298   }
3299   assert((size_t) addr % os::vm_page_size() == 0, "uncommit on page boundaries");
3300   assert(bytes % os::vm_page_size() == 0, "uncommit in page-sized chunks");
3301   return (VirtualFree(addr, bytes, MEM_DECOMMIT) != 0);
3302 }
3303 
3304 bool os::pd_release_memory(char* addr, size_t bytes) {
3305   return VirtualFree(addr, 0, MEM_RELEASE) != 0;
3306 }
3307 
3308 bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
3309   return os::commit_memory(addr, size, !ExecMem);
3310 }
3311 
3312 bool os::remove_stack_guard_pages(char* addr, size_t size) {
3313   return os::uncommit_memory(addr, size);
3314 }
3315 
3316 // Set protections specified
3317 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
3318                         bool is_committed) {
3319   unsigned int p = 0;
3320   switch (prot) {
3321   case MEM_PROT_NONE: p = PAGE_NOACCESS; break;
3322   case MEM_PROT_READ: p = PAGE_READONLY; break;
3323   case MEM_PROT_RW:   p = PAGE_READWRITE; break;
3324   case MEM_PROT_RWX:  p = PAGE_EXECUTE_READWRITE; break;
3325   default:
3326     ShouldNotReachHere();
3327   }
3328 
3329   DWORD old_status;
3330 
3331   // Strange enough, but on Win32 one can change protection only for committed
3332   // memory, not a big deal anyway, as bytes less or equal than 64K
3333   if (!is_committed) {
3334     commit_memory_or_exit(addr, bytes, prot == MEM_PROT_RWX,
3335                           "cannot commit protection page");
3336   }
3337   // One cannot use os::guard_memory() here, as on Win32 guard page
3338   // have different (one-shot) semantics, from MSDN on PAGE_GUARD:
3339   //
3340   // Pages in the region become guard pages. Any attempt to access a guard page
3341   // causes the system to raise a STATUS_GUARD_PAGE exception and turn off
3342   // the guard page status. Guard pages thus act as a one-time access alarm.
3343   return VirtualProtect(addr, bytes, p, &old_status) != 0;
3344 }
3345 
3346 bool os::guard_memory(char* addr, size_t bytes) {
3347   DWORD old_status;
3348   return VirtualProtect(addr, bytes, PAGE_READWRITE | PAGE_GUARD, &old_status) != 0;
3349 }
3350 
3351 bool os::unguard_memory(char* addr, size_t bytes) {
3352   DWORD old_status;
3353   return VirtualProtect(addr, bytes, PAGE_READWRITE, &old_status) != 0;
3354 }
3355 
3356 void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) { }
3357 void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) { }
3358 void os::numa_make_global(char *addr, size_t bytes)    { }
3359 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint)    { }
3360 bool os::numa_topology_changed()                       { return false; }
3361 size_t os::numa_get_groups_num()                       { return MAX2(numa_node_list_holder.get_count(), 1); }
3362 int os::numa_get_group_id()                            { return 0; }
3363 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
3364   if (numa_node_list_holder.get_count() == 0 && size > 0) {
3365     // Provide an answer for UMA systems
3366     ids[0] = 0;
3367     return 1;
3368   } else {
3369     // check for size bigger than actual groups_num
3370     size = MIN2(size, numa_get_groups_num());
3371     for (int i = 0; i < (int)size; i++) {
3372       ids[i] = numa_node_list_holder.get_node_list_entry(i);
3373     }
3374     return size;
3375   }
3376 }
3377 
3378 bool os::get_page_info(char *start, page_info* info) {
3379   return false;
3380 }
3381 
3382 char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
3383   return end;
3384 }
3385 
3386 char* os::non_memory_address_word() {
3387   // Must never look like an address returned by reserve_memory,
3388   // even in its subfields (as defined by the CPU immediate fields,
3389   // if the CPU splits constants across multiple instructions).
3390   return (char*)-1;
3391 }
3392 
3393 #define MAX_ERROR_COUNT 100
3394 #define SYS_THREAD_ERROR 0xffffffffUL
3395 
3396 void os::pd_start_thread(Thread* thread) {
3397   DWORD ret = ResumeThread(thread->osthread()->thread_handle());
3398   // Returns previous suspend state:
3399   // 0:  Thread was not suspended
3400   // 1:  Thread is running now
3401   // >1: Thread is still suspended.
3402   assert(ret != SYS_THREAD_ERROR, "StartThread failed"); // should propagate back
3403 }
3404 
3405 class HighResolutionInterval : public CHeapObj<mtThread> {
3406   // The default timer resolution seems to be 10 milliseconds.
3407   // (Where is this written down?)
3408   // If someone wants to sleep for only a fraction of the default,
3409   // then we set the timer resolution down to 1 millisecond for
3410   // the duration of their interval.
3411   // We carefully set the resolution back, since otherwise we
3412   // seem to incur an overhead (3%?) that we don't need.
3413   // CONSIDER: if ms is small, say 3, then we should run with a high resolution time.
3414   // Buf if ms is large, say 500, or 503, we should avoid the call to timeBeginPeriod().
3415   // Alternatively, we could compute the relative error (503/500 = .6%) and only use
3416   // timeBeginPeriod() if the relative error exceeded some threshold.
3417   // timeBeginPeriod() has been linked to problems with clock drift on win32 systems and
3418   // to decreased efficiency related to increased timer "tick" rates.  We want to minimize
3419   // (a) calls to timeBeginPeriod() and timeEndPeriod() and (b) time spent with high
3420   // resolution timers running.
3421 private:
3422     jlong resolution;
3423 public:
3424   HighResolutionInterval(jlong ms) {
3425     resolution = ms % 10L;
3426     if (resolution != 0) {
3427       MMRESULT result = timeBeginPeriod(1L);
3428     }
3429   }
3430   ~HighResolutionInterval() {
3431     if (resolution != 0) {
3432       MMRESULT result = timeEndPeriod(1L);
3433     }
3434     resolution = 0L;
3435   }
3436 };
3437 
3438 int os::sleep(Thread* thread, jlong ms, bool interruptable) {
3439   jlong limit = (jlong) MAXDWORD;
3440 
3441   while(ms > limit) {
3442     int res;
3443     if ((res = sleep(thread, limit, interruptable)) != OS_TIMEOUT)
3444       return res;
3445     ms -= limit;
3446   }
3447 
3448   assert(thread == Thread::current(),  "thread consistency check");
3449   OSThread* osthread = thread->osthread();
3450   OSThreadWaitState osts(osthread, false /* not Object.wait() */);
3451   int result;
3452   if (interruptable) {
3453     assert(thread->is_Java_thread(), "must be java thread");
3454     JavaThread *jt = (JavaThread *) thread;
3455     ThreadBlockInVM tbivm(jt);
3456 
3457     jt->set_suspend_equivalent();
3458     // cleared by handle_special_suspend_equivalent_condition() or
3459     // java_suspend_self() via check_and_wait_while_suspended()
3460 
3461     HANDLE events[1];
3462     events[0] = osthread->interrupt_event();
3463     HighResolutionInterval *phri=NULL;
3464     if(!ForceTimeHighResolution)
3465       phri = new HighResolutionInterval( ms );
3466     if (WaitForMultipleObjects(1, events, FALSE, (DWORD)ms) == WAIT_TIMEOUT) {
3467       result = OS_TIMEOUT;
3468     } else {
3469       ResetEvent(osthread->interrupt_event());
3470       osthread->set_interrupted(false);
3471       result = OS_INTRPT;
3472     }
3473     delete phri; //if it is NULL, harmless
3474 
3475     // were we externally suspended while we were waiting?
3476     jt->check_and_wait_while_suspended();
3477   } else {
3478     assert(!thread->is_Java_thread(), "must not be java thread");
3479     Sleep((long) ms);
3480     result = OS_TIMEOUT;
3481   }
3482   return result;
3483 }
3484 
3485 //
3486 // Short sleep, direct OS call.
3487 //
3488 // ms = 0, means allow others (if any) to run.
3489 //
3490 void os::naked_short_sleep(jlong ms) {
3491   assert(ms < 1000, "Un-interruptable sleep, short time use only");
3492   Sleep(ms);
3493 }
3494 
3495 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
3496 void os::infinite_sleep() {
3497   while (true) {    // sleep forever ...
3498     Sleep(100000);  // ... 100 seconds at a time
3499   }
3500 }
3501 
3502 typedef BOOL (WINAPI * STTSignature)(void) ;
3503 
3504 os::YieldResult os::NakedYield() {
3505   // Use either SwitchToThread() or Sleep(0)
3506   // Consider passing back the return value from SwitchToThread().
3507   if (os::Kernel32Dll::SwitchToThreadAvailable()) {
3508     return SwitchToThread() ? os::YIELD_SWITCHED : os::YIELD_NONEREADY ;
3509   } else {
3510     Sleep(0);
3511   }
3512   return os::YIELD_UNKNOWN ;
3513 }
3514 
3515 void os::yield() {  os::NakedYield(); }
3516 
3517 void os::yield_all(int attempts) {
3518   // Yields to all threads, including threads with lower priorities
3519   Sleep(1);
3520 }
3521 
3522 // Win32 only gives you access to seven real priorities at a time,
3523 // so we compress Java's ten down to seven.  It would be better
3524 // if we dynamically adjusted relative priorities.
3525 
3526 int os::java_to_os_priority[CriticalPriority + 1] = {
3527   THREAD_PRIORITY_IDLE,                         // 0  Entry should never be used
3528   THREAD_PRIORITY_LOWEST,                       // 1  MinPriority
3529   THREAD_PRIORITY_LOWEST,                       // 2
3530   THREAD_PRIORITY_BELOW_NORMAL,                 // 3
3531   THREAD_PRIORITY_BELOW_NORMAL,                 // 4
3532   THREAD_PRIORITY_NORMAL,                       // 5  NormPriority
3533   THREAD_PRIORITY_NORMAL,                       // 6
3534   THREAD_PRIORITY_ABOVE_NORMAL,                 // 7
3535   THREAD_PRIORITY_ABOVE_NORMAL,                 // 8
3536   THREAD_PRIORITY_HIGHEST,                      // 9  NearMaxPriority
3537   THREAD_PRIORITY_HIGHEST,                      // 10 MaxPriority
3538   THREAD_PRIORITY_HIGHEST                       // 11 CriticalPriority
3539 };
3540 
3541 int prio_policy1[CriticalPriority + 1] = {
3542   THREAD_PRIORITY_IDLE,                         // 0  Entry should never be used
3543   THREAD_PRIORITY_LOWEST,                       // 1  MinPriority
3544   THREAD_PRIORITY_LOWEST,                       // 2
3545   THREAD_PRIORITY_BELOW_NORMAL,                 // 3
3546   THREAD_PRIORITY_BELOW_NORMAL,                 // 4
3547   THREAD_PRIORITY_NORMAL,                       // 5  NormPriority
3548   THREAD_PRIORITY_ABOVE_NORMAL,                 // 6
3549   THREAD_PRIORITY_ABOVE_NORMAL,                 // 7
3550   THREAD_PRIORITY_HIGHEST,                      // 8
3551   THREAD_PRIORITY_HIGHEST,                      // 9  NearMaxPriority
3552   THREAD_PRIORITY_TIME_CRITICAL,                // 10 MaxPriority
3553   THREAD_PRIORITY_TIME_CRITICAL                 // 11 CriticalPriority
3554 };
3555 
3556 static int prio_init() {
3557   // If ThreadPriorityPolicy is 1, switch tables
3558   if (ThreadPriorityPolicy == 1) {
3559     int i;
3560     for (i = 0; i < CriticalPriority + 1; i++) {
3561       os::java_to_os_priority[i] = prio_policy1[i];
3562     }
3563   }
3564   if (UseCriticalJavaThreadPriority) {
3565     os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority] ;
3566   }
3567   return 0;
3568 }
3569 
3570 OSReturn os::set_native_priority(Thread* thread, int priority) {
3571   if (!UseThreadPriorities) return OS_OK;
3572   bool ret = SetThreadPriority(thread->osthread()->thread_handle(), priority) != 0;
3573   return ret ? OS_OK : OS_ERR;
3574 }
3575 
3576 OSReturn os::get_native_priority(const Thread* const thread, int* priority_ptr) {
3577   if ( !UseThreadPriorities ) {
3578     *priority_ptr = java_to_os_priority[NormPriority];
3579     return OS_OK;
3580   }
3581   int os_prio = GetThreadPriority(thread->osthread()->thread_handle());
3582   if (os_prio == THREAD_PRIORITY_ERROR_RETURN) {
3583     assert(false, "GetThreadPriority failed");
3584     return OS_ERR;
3585   }
3586   *priority_ptr = os_prio;
3587   return OS_OK;
3588 }
3589 
3590 
3591 // Hint to the underlying OS that a task switch would not be good.
3592 // Void return because it's a hint and can fail.
3593 void os::hint_no_preempt() {}
3594 
3595 void os::interrupt(Thread* thread) {
3596   assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
3597          "possibility of dangling Thread pointer");
3598 
3599   OSThread* osthread = thread->osthread();
3600   osthread->set_interrupted(true);
3601   // More than one thread can get here with the same value of osthread,
3602   // resulting in multiple notifications.  We do, however, want the store
3603   // to interrupted() to be visible to other threads before we post
3604   // the interrupt event.
3605   OrderAccess::release();
3606   SetEvent(osthread->interrupt_event());
3607   // For JSR166:  unpark after setting status
3608   if (thread->is_Java_thread())
3609     ((JavaThread*)thread)->parker()->unpark();
3610 
3611   ParkEvent * ev = thread->_ParkEvent ;
3612   if (ev != NULL) ev->unpark() ;
3613 
3614 }
3615 
3616 
3617 bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
3618   assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
3619          "possibility of dangling Thread pointer");
3620 
3621   OSThread* osthread = thread->osthread();
3622   bool interrupted = osthread->interrupted();
3623   // There is no synchronization between the setting of the interrupt
3624   // and it being cleared here. It is critical - see 6535709 - that
3625   // we only clear the interrupt state, and reset the interrupt event,
3626   // if we are going to report that we were indeed interrupted - else
3627   // an interrupt can be "lost", leading to spurious wakeups or lost wakeups
3628   // depending on the timing
3629   if (interrupted && clear_interrupted) {
3630     osthread->set_interrupted(false);
3631     ResetEvent(osthread->interrupt_event());
3632   } // Otherwise leave the interrupted state alone
3633 
3634   return interrupted;
3635 }
3636 
3637 // Get's a pc (hint) for a running thread. Currently used only for profiling.
3638 ExtendedPC os::get_thread_pc(Thread* thread) {
3639   CONTEXT context;
3640   context.ContextFlags = CONTEXT_CONTROL;
3641   HANDLE handle = thread->osthread()->thread_handle();
3642 #ifdef _M_IA64
3643   assert(0, "Fix get_thread_pc");
3644   return ExtendedPC(NULL);
3645 #else
3646   if (GetThreadContext(handle, &context)) {
3647 #ifdef _M_AMD64
3648     return ExtendedPC((address) context.Rip);
3649 #else
3650     return ExtendedPC((address) context.Eip);
3651 #endif
3652   } else {
3653     return ExtendedPC(NULL);
3654   }
3655 #endif
3656 }
3657 
3658 // GetCurrentThreadId() returns DWORD
3659 intx os::current_thread_id()          { return GetCurrentThreadId(); }
3660 
3661 static int _initial_pid = 0;
3662 
3663 int os::current_process_id()
3664 {
3665   return (_initial_pid ? _initial_pid : _getpid());
3666 }
3667 
3668 int    os::win32::_vm_page_size       = 0;
3669 int    os::win32::_vm_allocation_granularity = 0;
3670 int    os::win32::_processor_type     = 0;
3671 // Processor level is not available on non-NT systems, use vm_version instead
3672 int    os::win32::_processor_level    = 0;
3673 julong os::win32::_physical_memory    = 0;
3674 size_t os::win32::_default_stack_size = 0;
3675 
3676          intx os::win32::_os_thread_limit    = 0;
3677 volatile intx os::win32::_os_thread_count    = 0;
3678 
3679 bool   os::win32::_is_nt              = false;
3680 bool   os::win32::_is_windows_2003    = false;
3681 bool   os::win32::_is_windows_server  = false;
3682 
3683 bool   os::win32::_has_performance_count = 0;
3684 
3685 void os::win32::initialize_system_info() {
3686   SYSTEM_INFO si;
3687   GetSystemInfo(&si);
3688   _vm_page_size    = si.dwPageSize;
3689   _vm_allocation_granularity = si.dwAllocationGranularity;
3690   _processor_type  = si.dwProcessorType;
3691   _processor_level = si.wProcessorLevel;
3692   set_processor_count(si.dwNumberOfProcessors);
3693 
3694   MEMORYSTATUSEX ms;
3695   ms.dwLength = sizeof(ms);
3696 
3697   // also returns dwAvailPhys (free physical memory bytes), dwTotalVirtual, dwAvailVirtual,
3698   // dwMemoryLoad (% of memory in use)
3699   GlobalMemoryStatusEx(&ms);
3700   _physical_memory = ms.ullTotalPhys;
3701 
3702   OSVERSIONINFOEX oi;
3703   oi.dwOSVersionInfoSize = sizeof(OSVERSIONINFOEX);
3704   GetVersionEx((OSVERSIONINFO*)&oi);
3705   switch(oi.dwPlatformId) {
3706     case VER_PLATFORM_WIN32_WINDOWS: _is_nt = false; break;
3707     case VER_PLATFORM_WIN32_NT:
3708       _is_nt = true;
3709       {
3710         int os_vers = oi.dwMajorVersion * 1000 + oi.dwMinorVersion;
3711         if (os_vers == 5002) {
3712           _is_windows_2003 = true;
3713         }
3714         if (oi.wProductType == VER_NT_DOMAIN_CONTROLLER ||
3715           oi.wProductType == VER_NT_SERVER) {
3716             _is_windows_server = true;
3717         }
3718       }
3719       break;
3720     default: fatal("Unknown platform");
3721   }
3722 
3723   _default_stack_size = os::current_stack_size();
3724   assert(_default_stack_size > (size_t) _vm_page_size, "invalid stack size");
3725   assert((_default_stack_size & (_vm_page_size - 1)) == 0,
3726     "stack size not a multiple of page size");
3727 
3728   initialize_performance_counter();
3729 
3730   // Win95/Win98 scheduler bug work-around. The Win95/98 scheduler is
3731   // known to deadlock the system, if the VM issues to thread operations with
3732   // a too high frequency, e.g., such as changing the priorities.
3733   // The 6000 seems to work well - no deadlocks has been notices on the test
3734   // programs that we have seen experience this problem.
3735   if (!os::win32::is_nt()) {
3736     StarvationMonitorInterval = 6000;
3737   }
3738 }
3739 
3740 
3741 HINSTANCE os::win32::load_Windows_dll(const char* name, char *ebuf, int ebuflen) {
3742   char path[MAX_PATH];
3743   DWORD size;
3744   DWORD pathLen = (DWORD)sizeof(path);
3745   HINSTANCE result = NULL;
3746 
3747   // only allow library name without path component
3748   assert(strchr(name, '\\') == NULL, "path not allowed");
3749   assert(strchr(name, ':') == NULL, "path not allowed");
3750   if (strchr(name, '\\') != NULL || strchr(name, ':') != NULL) {
3751     jio_snprintf(ebuf, ebuflen,
3752       "Invalid parameter while calling os::win32::load_windows_dll(): cannot take path: %s", name);
3753     return NULL;
3754   }
3755 
3756   // search system directory
3757   if ((size = GetSystemDirectory(path, pathLen)) > 0) {
3758     strcat(path, "\\");
3759     strcat(path, name);
3760     if ((result = (HINSTANCE)os::dll_load(path, ebuf, ebuflen)) != NULL) {
3761       return result;
3762     }
3763   }
3764 
3765   // try Windows directory
3766   if ((size = GetWindowsDirectory(path, pathLen)) > 0) {
3767     strcat(path, "\\");
3768     strcat(path, name);
3769     if ((result = (HINSTANCE)os::dll_load(path, ebuf, ebuflen)) != NULL) {
3770       return result;
3771     }
3772   }
3773 
3774   jio_snprintf(ebuf, ebuflen,
3775     "os::win32::load_windows_dll() cannot load %s from system directories.", name);
3776   return NULL;
3777 }
3778 
3779 void os::win32::setmode_streams() {
3780   _setmode(_fileno(stdin), _O_BINARY);
3781   _setmode(_fileno(stdout), _O_BINARY);
3782   _setmode(_fileno(stderr), _O_BINARY);
3783 }
3784 
3785 
3786 bool os::is_debugger_attached() {
3787   return IsDebuggerPresent() ? true : false;
3788 }
3789 
3790 
3791 void os::wait_for_keypress_at_exit(void) {
3792   if (PauseAtExit) {
3793     fprintf(stderr, "Press any key to continue...\n");
3794     fgetc(stdin);
3795   }
3796 }
3797 
3798 
3799 int os::message_box(const char* title, const char* message) {
3800   int result = MessageBox(NULL, message, title,
3801                           MB_YESNO | MB_ICONERROR | MB_SYSTEMMODAL | MB_DEFAULT_DESKTOP_ONLY);
3802   return result == IDYES;
3803 }
3804 
3805 int os::allocate_thread_local_storage() {
3806   return TlsAlloc();
3807 }
3808 
3809 
3810 void os::free_thread_local_storage(int index) {
3811   TlsFree(index);
3812 }
3813 
3814 
3815 void os::thread_local_storage_at_put(int index, void* value) {
3816   TlsSetValue(index, value);
3817   assert(thread_local_storage_at(index) == value, "Just checking");
3818 }
3819 
3820 
3821 void* os::thread_local_storage_at(int index) {
3822   return TlsGetValue(index);
3823 }
3824 
3825 
3826 #ifndef PRODUCT
3827 #ifndef _WIN64
3828 // Helpers to check whether NX protection is enabled
3829 int nx_exception_filter(_EXCEPTION_POINTERS *pex) {
3830   if (pex->ExceptionRecord->ExceptionCode == EXCEPTION_ACCESS_VIOLATION &&
3831       pex->ExceptionRecord->NumberParameters > 0 &&
3832       pex->ExceptionRecord->ExceptionInformation[0] ==
3833       EXCEPTION_INFO_EXEC_VIOLATION) {
3834     return EXCEPTION_EXECUTE_HANDLER;
3835   }
3836   return EXCEPTION_CONTINUE_SEARCH;
3837 }
3838 
3839 void nx_check_protection() {
3840   // If NX is enabled we'll get an exception calling into code on the stack
3841   char code[] = { (char)0xC3 }; // ret
3842   void *code_ptr = (void *)code;
3843   __try {
3844     __asm call code_ptr
3845   } __except(nx_exception_filter((_EXCEPTION_POINTERS*)_exception_info())) {
3846     tty->print_raw_cr("NX protection detected.");
3847   }
3848 }
3849 #endif // _WIN64
3850 #endif // PRODUCT
3851 
3852 // this is called _before_ the global arguments have been parsed
3853 void os::init(void) {
3854   _initial_pid = _getpid();
3855 
3856   init_random(1234567);
3857 
3858   win32::initialize_system_info();
3859   win32::setmode_streams();
3860   init_page_sizes((size_t) win32::vm_page_size());
3861 
3862   // For better scalability on MP systems (must be called after initialize_system_info)
3863 #ifndef PRODUCT
3864   if (is_MP()) {
3865     NoYieldsInMicrolock = true;
3866   }
3867 #endif
3868   // This may be overridden later when argument processing is done.
3869   FLAG_SET_ERGO(bool, UseLargePagesIndividualAllocation,
3870     os::win32::is_windows_2003());
3871 
3872   // Initialize main_process and main_thread
3873   main_process = GetCurrentProcess();  // Remember main_process is a pseudo handle
3874  if (!DuplicateHandle(main_process, GetCurrentThread(), main_process,
3875                        &main_thread, THREAD_ALL_ACCESS, false, 0)) {
3876     fatal("DuplicateHandle failed\n");
3877   }
3878   main_thread_id = (int) GetCurrentThreadId();
3879 }
3880 
3881 // To install functions for atexit processing
3882 extern "C" {
3883   static void perfMemory_exit_helper() {
3884     perfMemory_exit();
3885   }
3886 }
3887 
3888 static jint initSock();
3889 
3890 // this is called _after_ the global arguments have been parsed
3891 jint os::init_2(void) {
3892   // Allocate a single page and mark it as readable for safepoint polling
3893   address polling_page = (address)VirtualAlloc(NULL, os::vm_page_size(), MEM_RESERVE, PAGE_READONLY);
3894   guarantee( polling_page != NULL, "Reserve Failed for polling page");
3895 
3896   address return_page  = (address)VirtualAlloc(polling_page, os::vm_page_size(), MEM_COMMIT, PAGE_READONLY);
3897   guarantee( return_page != NULL, "Commit Failed for polling page");
3898 
3899   os::set_polling_page( polling_page );
3900 
3901 #ifndef PRODUCT
3902   if( Verbose && PrintMiscellaneous )
3903     tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n", (intptr_t)polling_page);
3904 #endif
3905 
3906   if (!UseMembar) {
3907     address mem_serialize_page = (address)VirtualAlloc(NULL, os::vm_page_size(), MEM_RESERVE, PAGE_READWRITE);
3908     guarantee( mem_serialize_page != NULL, "Reserve Failed for memory serialize page");
3909 
3910     return_page  = (address)VirtualAlloc(mem_serialize_page, os::vm_page_size(), MEM_COMMIT, PAGE_READWRITE);
3911     guarantee( return_page != NULL, "Commit Failed for memory serialize page");
3912 
3913     os::set_memory_serialize_page( mem_serialize_page );
3914 
3915 #ifndef PRODUCT
3916     if(Verbose && PrintMiscellaneous)
3917       tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n", (intptr_t)mem_serialize_page);
3918 #endif
3919   }
3920 
3921   // Setup Windows Exceptions
3922 
3923   // for debugging float code generation bugs
3924   if (ForceFloatExceptions) {
3925 #ifndef  _WIN64
3926     static long fp_control_word = 0;
3927     __asm { fstcw fp_control_word }
3928     // see Intel PPro Manual, Vol. 2, p 7-16
3929     const long precision = 0x20;
3930     const long underflow = 0x10;
3931     const long overflow  = 0x08;
3932     const long zero_div  = 0x04;
3933     const long denorm    = 0x02;
3934     const long invalid   = 0x01;
3935     fp_control_word |= invalid;
3936     __asm { fldcw fp_control_word }
3937 #endif
3938   }
3939 
3940   // If stack_commit_size is 0, windows will reserve the default size,
3941   // but only commit a small portion of it.
3942   size_t stack_commit_size = round_to(ThreadStackSize*K, os::vm_page_size());
3943   size_t default_reserve_size = os::win32::default_stack_size();
3944   size_t actual_reserve_size = stack_commit_size;
3945   if (stack_commit_size < default_reserve_size) {
3946     // If stack_commit_size == 0, we want this too
3947     actual_reserve_size = default_reserve_size;
3948   }
3949 
3950   // Check minimum allowable stack size for thread creation and to initialize
3951   // the java system classes, including StackOverflowError - depends on page
3952   // size.  Add a page for compiler2 recursion in main thread.
3953   // Add in 2*BytesPerWord times page size to account for VM stack during
3954   // class initialization depending on 32 or 64 bit VM.
3955   size_t min_stack_allowed =
3956             (size_t)(StackYellowPages+StackRedPages+StackShadowPages+
3957             2*BytesPerWord COMPILER2_PRESENT(+1)) * os::vm_page_size();
3958   if (actual_reserve_size < min_stack_allowed) {
3959     tty->print_cr("\nThe stack size specified is too small, "
3960                   "Specify at least %dk",
3961                   min_stack_allowed / K);
3962     return JNI_ERR;
3963   }
3964 
3965   JavaThread::set_stack_size_at_create(stack_commit_size);
3966 
3967   // Calculate theoretical max. size of Threads to guard gainst artifical
3968   // out-of-memory situations, where all available address-space has been
3969   // reserved by thread stacks.
3970   assert(actual_reserve_size != 0, "Must have a stack");
3971 
3972   // Calculate the thread limit when we should start doing Virtual Memory
3973   // banging. Currently when the threads will have used all but 200Mb of space.
3974   //
3975   // TODO: consider performing a similar calculation for commit size instead
3976   // as reserve size, since on a 64-bit platform we'll run into that more
3977   // often than running out of virtual memory space.  We can use the
3978   // lower value of the two calculations as the os_thread_limit.
3979   size_t max_address_space = ((size_t)1 << (BitsPerWord - 1)) - (200 * K * K);
3980   win32::_os_thread_limit = (intx)(max_address_space / actual_reserve_size);
3981 
3982   // at exit methods are called in the reverse order of their registration.
3983   // there is no limit to the number of functions registered. atexit does
3984   // not set errno.
3985 
3986   if (PerfAllowAtExitRegistration) {
3987     // only register atexit functions if PerfAllowAtExitRegistration is set.
3988     // atexit functions can be delayed until process exit time, which
3989     // can be problematic for embedded VM situations. Embedded VMs should
3990     // call DestroyJavaVM() to assure that VM resources are released.
3991 
3992     // note: perfMemory_exit_helper atexit function may be removed in
3993     // the future if the appropriate cleanup code can be added to the
3994     // VM_Exit VMOperation's doit method.
3995     if (atexit(perfMemory_exit_helper) != 0) {
3996       warning("os::init_2 atexit(perfMemory_exit_helper) failed");
3997     }
3998   }
3999 
4000 #ifndef _WIN64
4001   // Print something if NX is enabled (win32 on AMD64)
4002   NOT_PRODUCT(if (PrintMiscellaneous && Verbose) nx_check_protection());
4003 #endif
4004 
4005   // initialize thread priority policy
4006   prio_init();
4007 
4008   if (UseNUMA && !ForceNUMA) {
4009     UseNUMA = false; // We don't fully support this yet
4010   }
4011 
4012   if (UseNUMAInterleaving) {
4013     // first check whether this Windows OS supports VirtualAllocExNuma, if not ignore this flag
4014     bool success = numa_interleaving_init();
4015     if (!success) UseNUMAInterleaving = false;
4016   }
4017 
4018   if (initSock() != JNI_OK) {
4019     return JNI_ERR;
4020   }
4021 
4022   return JNI_OK;
4023 }
4024 
4025 void os::init_3(void) {
4026   return;
4027 }
4028 
4029 // Mark the polling page as unreadable
4030 void os::make_polling_page_unreadable(void) {
4031   DWORD old_status;
4032   if( !VirtualProtect((char *)_polling_page, os::vm_page_size(), PAGE_NOACCESS, &old_status) )
4033     fatal("Could not disable polling page");
4034 };
4035 
4036 // Mark the polling page as readable
4037 void os::make_polling_page_readable(void) {
4038   DWORD old_status;
4039   if( !VirtualProtect((char *)_polling_page, os::vm_page_size(), PAGE_READONLY, &old_status) )
4040     fatal("Could not enable polling page");
4041 };
4042 
4043 
4044 int os::stat(const char *path, struct stat *sbuf) {
4045   char pathbuf[MAX_PATH];
4046   if (strlen(path) > MAX_PATH - 1) {
4047     errno = ENAMETOOLONG;
4048     return -1;
4049   }
4050   os::native_path(strcpy(pathbuf, path));
4051   int ret = ::stat(pathbuf, sbuf);
4052   if (sbuf != NULL && UseUTCFileTimestamp) {
4053     // Fix for 6539723.  st_mtime returned from stat() is dependent on
4054     // the system timezone and so can return different values for the
4055     // same file if/when daylight savings time changes.  This adjustment
4056     // makes sure the same timestamp is returned regardless of the TZ.
4057     //
4058     // See:
4059     // http://msdn.microsoft.com/library/
4060     //   default.asp?url=/library/en-us/sysinfo/base/
4061     //   time_zone_information_str.asp
4062     // and
4063     // http://msdn.microsoft.com/library/default.asp?url=
4064     //   /library/en-us/sysinfo/base/settimezoneinformation.asp
4065     //
4066     // NOTE: there is a insidious bug here:  If the timezone is changed
4067     // after the call to stat() but before 'GetTimeZoneInformation()', then
4068     // the adjustment we do here will be wrong and we'll return the wrong
4069     // value (which will likely end up creating an invalid class data
4070     // archive).  Absent a better API for this, or some time zone locking
4071     // mechanism, we'll have to live with this risk.
4072     TIME_ZONE_INFORMATION tz;
4073     DWORD tzid = GetTimeZoneInformation(&tz);
4074     int daylightBias =
4075       (tzid == TIME_ZONE_ID_DAYLIGHT) ?  tz.DaylightBias : tz.StandardBias;
4076     sbuf->st_mtime += (tz.Bias + daylightBias) * 60;
4077   }
4078   return ret;
4079 }
4080 
4081 
4082 #define FT2INT64(ft) \
4083   ((jlong)((jlong)(ft).dwHighDateTime << 32 | (julong)(ft).dwLowDateTime))
4084 
4085 
4086 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
4087 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
4088 // of a thread.
4089 //
4090 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
4091 // the fast estimate available on the platform.
4092 
4093 // current_thread_cpu_time() is not optimized for Windows yet
4094 jlong os::current_thread_cpu_time() {
4095   // return user + sys since the cost is the same
4096   return os::thread_cpu_time(Thread::current(), true /* user+sys */);
4097 }
4098 
4099 jlong os::thread_cpu_time(Thread* thread) {
4100   // consistent with what current_thread_cpu_time() returns.
4101   return os::thread_cpu_time(thread, true /* user+sys */);
4102 }
4103 
4104 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
4105   return os::thread_cpu_time(Thread::current(), user_sys_cpu_time);
4106 }
4107 
4108 jlong os::thread_cpu_time(Thread* thread, bool user_sys_cpu_time) {
4109   // This code is copy from clasic VM -> hpi::sysThreadCPUTime
4110   // If this function changes, os::is_thread_cpu_time_supported() should too
4111   if (os::win32::is_nt()) {
4112     FILETIME CreationTime;
4113     FILETIME ExitTime;
4114     FILETIME KernelTime;
4115     FILETIME UserTime;
4116 
4117     if ( GetThreadTimes(thread->osthread()->thread_handle(),
4118                     &CreationTime, &ExitTime, &KernelTime, &UserTime) == 0)
4119       return -1;
4120     else
4121       if (user_sys_cpu_time) {
4122         return (FT2INT64(UserTime) + FT2INT64(KernelTime)) * 100;
4123       } else {
4124         return FT2INT64(UserTime) * 100;
4125       }
4126   } else {
4127     return (jlong) timeGetTime() * 1000000;
4128   }
4129 }
4130 
4131 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4132   info_ptr->max_value = ALL_64_BITS;        // the max value -- all 64 bits
4133   info_ptr->may_skip_backward = false;      // GetThreadTimes returns absolute time
4134   info_ptr->may_skip_forward = false;       // GetThreadTimes returns absolute time
4135   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;   // user+system time is returned
4136 }
4137 
4138 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4139   info_ptr->max_value = ALL_64_BITS;        // the max value -- all 64 bits
4140   info_ptr->may_skip_backward = false;      // GetThreadTimes returns absolute time
4141   info_ptr->may_skip_forward = false;       // GetThreadTimes returns absolute time
4142   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;   // user+system time is returned
4143 }
4144 
4145 bool os::is_thread_cpu_time_supported() {
4146   // see os::thread_cpu_time
4147   if (os::win32::is_nt()) {
4148     FILETIME CreationTime;
4149     FILETIME ExitTime;
4150     FILETIME KernelTime;
4151     FILETIME UserTime;
4152 
4153     if ( GetThreadTimes(GetCurrentThread(),
4154                     &CreationTime, &ExitTime, &KernelTime, &UserTime) == 0)
4155       return false;
4156     else
4157       return true;
4158   } else {
4159     return false;
4160   }
4161 }
4162 
4163 // Windows does't provide a loadavg primitive so this is stubbed out for now.
4164 // It does have primitives (PDH API) to get CPU usage and run queue length.
4165 // "\\Processor(_Total)\\% Processor Time", "\\System\\Processor Queue Length"
4166 // If we wanted to implement loadavg on Windows, we have a few options:
4167 //
4168 // a) Query CPU usage and run queue length and "fake" an answer by
4169 //    returning the CPU usage if it's under 100%, and the run queue
4170 //    length otherwise.  It turns out that querying is pretty slow
4171 //    on Windows, on the order of 200 microseconds on a fast machine.
4172 //    Note that on the Windows the CPU usage value is the % usage
4173 //    since the last time the API was called (and the first call
4174 //    returns 100%), so we'd have to deal with that as well.
4175 //
4176 // b) Sample the "fake" answer using a sampling thread and store
4177 //    the answer in a global variable.  The call to loadavg would
4178 //    just return the value of the global, avoiding the slow query.
4179 //
4180 // c) Sample a better answer using exponential decay to smooth the
4181 //    value.  This is basically the algorithm used by UNIX kernels.
4182 //
4183 // Note that sampling thread starvation could affect both (b) and (c).
4184 int os::loadavg(double loadavg[], int nelem) {
4185   return -1;
4186 }
4187 
4188 
4189 // DontYieldALot=false by default: dutifully perform all yields as requested by JVM_Yield()
4190 bool os::dont_yield() {
4191   return DontYieldALot;
4192 }
4193 
4194 // This method is a slightly reworked copy of JDK's sysOpen
4195 // from src/windows/hpi/src/sys_api_md.c
4196 
4197 int os::open(const char *path, int oflag, int mode) {
4198   char pathbuf[MAX_PATH];
4199 
4200   if (strlen(path) > MAX_PATH - 1) {
4201     errno = ENAMETOOLONG;
4202           return -1;
4203   }
4204   os::native_path(strcpy(pathbuf, path));
4205   return ::open(pathbuf, oflag | O_BINARY | O_NOINHERIT, mode);
4206 }
4207 
4208 FILE* os::open(int fd, const char* mode) {
4209   return ::_fdopen(fd, mode);
4210 }
4211 
4212 // Is a (classpath) directory empty?
4213 bool os::dir_is_empty(const char* path) {
4214   WIN32_FIND_DATA fd;
4215   HANDLE f = FindFirstFile(path, &fd);
4216   if (f == INVALID_HANDLE_VALUE) {
4217     return true;
4218   }
4219   FindClose(f);
4220   return false;
4221 }
4222 
4223 // create binary file, rewriting existing file if required
4224 int os::create_binary_file(const char* path, bool rewrite_existing) {
4225   int oflags = _O_CREAT | _O_WRONLY | _O_BINARY;
4226   if (!rewrite_existing) {
4227     oflags |= _O_EXCL;
4228   }
4229   return ::open(path, oflags, _S_IREAD | _S_IWRITE);
4230 }
4231 
4232 // return current position of file pointer
4233 jlong os::current_file_offset(int fd) {
4234   return (jlong)::_lseeki64(fd, (__int64)0L, SEEK_CUR);
4235 }
4236 
4237 // move file pointer to the specified offset
4238 jlong os::seek_to_file_offset(int fd, jlong offset) {
4239   return (jlong)::_lseeki64(fd, (__int64)offset, SEEK_SET);
4240 }
4241 
4242 
4243 jlong os::lseek(int fd, jlong offset, int whence) {
4244   return (jlong) ::_lseeki64(fd, offset, whence);
4245 }
4246 
4247 // This method is a slightly reworked copy of JDK's sysNativePath
4248 // from src/windows/hpi/src/path_md.c
4249 
4250 /* Convert a pathname to native format.  On win32, this involves forcing all
4251    separators to be '\\' rather than '/' (both are legal inputs, but Win95
4252    sometimes rejects '/') and removing redundant separators.  The input path is
4253    assumed to have been converted into the character encoding used by the local
4254    system.  Because this might be a double-byte encoding, care is taken to
4255    treat double-byte lead characters correctly.
4256 
4257    This procedure modifies the given path in place, as the result is never
4258    longer than the original.  There is no error return; this operation always
4259    succeeds. */
4260 char * os::native_path(char *path) {
4261   char *src = path, *dst = path, *end = path;
4262   char *colon = NULL;           /* If a drive specifier is found, this will
4263                                         point to the colon following the drive
4264                                         letter */
4265 
4266   /* Assumption: '/', '\\', ':', and drive letters are never lead bytes */
4267   assert(((!::IsDBCSLeadByte('/'))
4268     && (!::IsDBCSLeadByte('\\'))
4269     && (!::IsDBCSLeadByte(':'))),
4270     "Illegal lead byte");
4271 
4272   /* Check for leading separators */
4273 #define isfilesep(c) ((c) == '/' || (c) == '\\')
4274   while (isfilesep(*src)) {
4275     src++;
4276   }
4277 
4278   if (::isalpha(*src) && !::IsDBCSLeadByte(*src) && src[1] == ':') {
4279     /* Remove leading separators if followed by drive specifier.  This
4280       hack is necessary to support file URLs containing drive
4281       specifiers (e.g., "file://c:/path").  As a side effect,
4282       "/c:/path" can be used as an alternative to "c:/path". */
4283     *dst++ = *src++;
4284     colon = dst;
4285     *dst++ = ':';
4286     src++;
4287   } else {
4288     src = path;
4289     if (isfilesep(src[0]) && isfilesep(src[1])) {
4290       /* UNC pathname: Retain first separator; leave src pointed at
4291          second separator so that further separators will be collapsed
4292          into the second separator.  The result will be a pathname
4293          beginning with "\\\\" followed (most likely) by a host name. */
4294       src = dst = path + 1;
4295       path[0] = '\\';     /* Force first separator to '\\' */
4296     }
4297   }
4298 
4299   end = dst;
4300 
4301   /* Remove redundant separators from remainder of path, forcing all
4302       separators to be '\\' rather than '/'. Also, single byte space
4303       characters are removed from the end of the path because those
4304       are not legal ending characters on this operating system.
4305   */
4306   while (*src != '\0') {
4307     if (isfilesep(*src)) {
4308       *dst++ = '\\'; src++;
4309       while (isfilesep(*src)) src++;
4310       if (*src == '\0') {
4311         /* Check for trailing separator */
4312         end = dst;
4313         if (colon == dst - 2) break;                      /* "z:\\" */
4314         if (dst == path + 1) break;                       /* "\\" */
4315         if (dst == path + 2 && isfilesep(path[0])) {
4316           /* "\\\\" is not collapsed to "\\" because "\\\\" marks the
4317             beginning of a UNC pathname.  Even though it is not, by
4318             itself, a valid UNC pathname, we leave it as is in order
4319             to be consistent with the path canonicalizer as well
4320             as the win32 APIs, which treat this case as an invalid
4321             UNC pathname rather than as an alias for the root
4322             directory of the current drive. */
4323           break;
4324         }
4325         end = --dst;  /* Path does not denote a root directory, so
4326                                     remove trailing separator */
4327         break;
4328       }
4329       end = dst;
4330     } else {
4331       if (::IsDBCSLeadByte(*src)) { /* Copy a double-byte character */
4332         *dst++ = *src++;
4333         if (*src) *dst++ = *src++;
4334         end = dst;
4335       } else {         /* Copy a single-byte character */
4336         char c = *src++;
4337         *dst++ = c;
4338         /* Space is not a legal ending character */
4339         if (c != ' ') end = dst;
4340       }
4341     }
4342   }
4343 
4344   *end = '\0';
4345 
4346   /* For "z:", add "." to work around a bug in the C runtime library */
4347   if (colon == dst - 1) {
4348           path[2] = '.';
4349           path[3] = '\0';
4350   }
4351 
4352   return path;
4353 }
4354 
4355 // This code is a copy of JDK's sysSetLength
4356 // from src/windows/hpi/src/sys_api_md.c
4357 
4358 int os::ftruncate(int fd, jlong length) {
4359   HANDLE h = (HANDLE)::_get_osfhandle(fd);
4360   long high = (long)(length >> 32);
4361   DWORD ret;
4362 
4363   if (h == (HANDLE)(-1)) {
4364     return -1;
4365   }
4366 
4367   ret = ::SetFilePointer(h, (long)(length), &high, FILE_BEGIN);
4368   if ((ret == 0xFFFFFFFF) && (::GetLastError() != NO_ERROR)) {
4369       return -1;
4370   }
4371 
4372   if (::SetEndOfFile(h) == FALSE) {
4373     return -1;
4374   }
4375 
4376   return 0;
4377 }
4378 
4379 
4380 // This code is a copy of JDK's sysSync
4381 // from src/windows/hpi/src/sys_api_md.c
4382 // except for the legacy workaround for a bug in Win 98
4383 
4384 int os::fsync(int fd) {
4385   HANDLE handle = (HANDLE)::_get_osfhandle(fd);
4386 
4387   if ( (!::FlushFileBuffers(handle)) &&
4388          (GetLastError() != ERROR_ACCESS_DENIED) ) {
4389     /* from winerror.h */
4390     return -1;
4391   }
4392   return 0;
4393 }
4394 
4395 static int nonSeekAvailable(int, long *);
4396 static int stdinAvailable(int, long *);
4397 
4398 #define S_ISCHR(mode)   (((mode) & _S_IFCHR) == _S_IFCHR)
4399 #define S_ISFIFO(mode)  (((mode) & _S_IFIFO) == _S_IFIFO)
4400 
4401 // This code is a copy of JDK's sysAvailable
4402 // from src/windows/hpi/src/sys_api_md.c
4403 
4404 int os::available(int fd, jlong *bytes) {
4405   jlong cur, end;
4406   struct _stati64 stbuf64;
4407 
4408   if (::_fstati64(fd, &stbuf64) >= 0) {
4409     int mode = stbuf64.st_mode;
4410     if (S_ISCHR(mode) || S_ISFIFO(mode)) {
4411       int ret;
4412       long lpbytes;
4413       if (fd == 0) {
4414         ret = stdinAvailable(fd, &lpbytes);
4415       } else {
4416         ret = nonSeekAvailable(fd, &lpbytes);
4417       }
4418       (*bytes) = (jlong)(lpbytes);
4419       return ret;
4420     }
4421     if ((cur = ::_lseeki64(fd, 0L, SEEK_CUR)) == -1) {
4422       return FALSE;
4423     } else if ((end = ::_lseeki64(fd, 0L, SEEK_END)) == -1) {
4424       return FALSE;
4425     } else if (::_lseeki64(fd, cur, SEEK_SET) == -1) {
4426       return FALSE;
4427     }
4428     *bytes = end - cur;
4429     return TRUE;
4430   } else {
4431     return FALSE;
4432   }
4433 }
4434 
4435 // This code is a copy of JDK's nonSeekAvailable
4436 // from src/windows/hpi/src/sys_api_md.c
4437 
4438 static int nonSeekAvailable(int fd, long *pbytes) {
4439   /* This is used for available on non-seekable devices
4440     * (like both named and anonymous pipes, such as pipes
4441     *  connected to an exec'd process).
4442     * Standard Input is a special case.
4443     *
4444     */
4445   HANDLE han;
4446 
4447   if ((han = (HANDLE) ::_get_osfhandle(fd)) == (HANDLE)(-1)) {
4448     return FALSE;
4449   }
4450 
4451   if (! ::PeekNamedPipe(han, NULL, 0, NULL, (LPDWORD)pbytes, NULL)) {
4452         /* PeekNamedPipe fails when at EOF.  In that case we
4453          * simply make *pbytes = 0 which is consistent with the
4454          * behavior we get on Solaris when an fd is at EOF.
4455          * The only alternative is to raise an Exception,
4456          * which isn't really warranted.
4457          */
4458     if (::GetLastError() != ERROR_BROKEN_PIPE) {
4459       return FALSE;
4460     }
4461     *pbytes = 0;
4462   }
4463   return TRUE;
4464 }
4465 
4466 #define MAX_INPUT_EVENTS 2000
4467 
4468 // This code is a copy of JDK's stdinAvailable
4469 // from src/windows/hpi/src/sys_api_md.c
4470 
4471 static int stdinAvailable(int fd, long *pbytes) {
4472   HANDLE han;
4473   DWORD numEventsRead = 0;      /* Number of events read from buffer */
4474   DWORD numEvents = 0;  /* Number of events in buffer */
4475   DWORD i = 0;          /* Loop index */
4476   DWORD curLength = 0;  /* Position marker */
4477   DWORD actualLength = 0;       /* Number of bytes readable */
4478   BOOL error = FALSE;         /* Error holder */
4479   INPUT_RECORD *lpBuffer;     /* Pointer to records of input events */
4480 
4481   if ((han = ::GetStdHandle(STD_INPUT_HANDLE)) == INVALID_HANDLE_VALUE) {
4482         return FALSE;
4483   }
4484 
4485   /* Construct an array of input records in the console buffer */
4486   error = ::GetNumberOfConsoleInputEvents(han, &numEvents);
4487   if (error == 0) {
4488     return nonSeekAvailable(fd, pbytes);
4489   }
4490 
4491   /* lpBuffer must fit into 64K or else PeekConsoleInput fails */
4492   if (numEvents > MAX_INPUT_EVENTS) {
4493     numEvents = MAX_INPUT_EVENTS;
4494   }
4495 
4496   lpBuffer = (INPUT_RECORD *)os::malloc(numEvents * sizeof(INPUT_RECORD), mtInternal);
4497   if (lpBuffer == NULL) {
4498     return FALSE;
4499   }
4500 
4501   error = ::PeekConsoleInput(han, lpBuffer, numEvents, &numEventsRead);
4502   if (error == 0) {
4503     os::free(lpBuffer, mtInternal);
4504     return FALSE;
4505   }
4506 
4507   /* Examine input records for the number of bytes available */
4508   for(i=0; i<numEvents; i++) {
4509     if (lpBuffer[i].EventType == KEY_EVENT) {
4510 
4511       KEY_EVENT_RECORD *keyRecord = (KEY_EVENT_RECORD *)
4512                                       &(lpBuffer[i].Event);
4513       if (keyRecord->bKeyDown == TRUE) {
4514         CHAR *keyPressed = (CHAR *) &(keyRecord->uChar);
4515         curLength++;
4516         if (*keyPressed == '\r') {
4517           actualLength = curLength;
4518         }
4519       }
4520     }
4521   }
4522 
4523   if(lpBuffer != NULL) {
4524     os::free(lpBuffer, mtInternal);
4525   }
4526 
4527   *pbytes = (long) actualLength;
4528   return TRUE;
4529 }
4530 
4531 // Map a block of memory.
4532 char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
4533                      char *addr, size_t bytes, bool read_only,
4534                      bool allow_exec) {
4535   HANDLE hFile;
4536   char* base;
4537 
4538   hFile = CreateFile(file_name, GENERIC_READ, FILE_SHARE_READ, NULL,
4539                      OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL);
4540   if (hFile == NULL) {
4541     if (PrintMiscellaneous && Verbose) {
4542       DWORD err = GetLastError();
4543       tty->print_cr("CreateFile() failed: GetLastError->%ld.", err);
4544     }
4545     return NULL;
4546   }
4547 
4548   if (allow_exec) {
4549     // CreateFileMapping/MapViewOfFileEx can't map executable memory
4550     // unless it comes from a PE image (which the shared archive is not.)
4551     // Even VirtualProtect refuses to give execute access to mapped memory
4552     // that was not previously executable.
4553     //
4554     // Instead, stick the executable region in anonymous memory.  Yuck.
4555     // Penalty is that ~4 pages will not be shareable - in the future
4556     // we might consider DLLizing the shared archive with a proper PE
4557     // header so that mapping executable + sharing is possible.
4558 
4559     base = (char*) VirtualAlloc(addr, bytes, MEM_COMMIT | MEM_RESERVE,
4560                                 PAGE_READWRITE);
4561     if (base == NULL) {
4562       if (PrintMiscellaneous && Verbose) {
4563         DWORD err = GetLastError();
4564         tty->print_cr("VirtualAlloc() failed: GetLastError->%ld.", err);
4565       }
4566       CloseHandle(hFile);
4567       return NULL;
4568     }
4569 
4570     DWORD bytes_read;
4571     OVERLAPPED overlapped;
4572     overlapped.Offset = (DWORD)file_offset;
4573     overlapped.OffsetHigh = 0;
4574     overlapped.hEvent = NULL;
4575     // ReadFile guarantees that if the return value is true, the requested
4576     // number of bytes were read before returning.
4577     bool res = ReadFile(hFile, base, (DWORD)bytes, &bytes_read, &overlapped) != 0;
4578     if (!res) {
4579       if (PrintMiscellaneous && Verbose) {
4580         DWORD err = GetLastError();
4581         tty->print_cr("ReadFile() failed: GetLastError->%ld.", err);
4582       }
4583       release_memory(base, bytes);
4584       CloseHandle(hFile);
4585       return NULL;
4586     }
4587   } else {
4588     HANDLE hMap = CreateFileMapping(hFile, NULL, PAGE_WRITECOPY, 0, 0,
4589                                     NULL /*file_name*/);
4590     if (hMap == NULL) {
4591       if (PrintMiscellaneous && Verbose) {
4592         DWORD err = GetLastError();
4593         tty->print_cr("CreateFileMapping() failed: GetLastError->%ld.", err);
4594       }
4595       CloseHandle(hFile);
4596       return NULL;
4597     }
4598 
4599     DWORD access = read_only ? FILE_MAP_READ : FILE_MAP_COPY;
4600     base = (char*)MapViewOfFileEx(hMap, access, 0, (DWORD)file_offset,
4601                                   (DWORD)bytes, addr);
4602     if (base == NULL) {
4603       if (PrintMiscellaneous && Verbose) {
4604         DWORD err = GetLastError();
4605         tty->print_cr("MapViewOfFileEx() failed: GetLastError->%ld.", err);
4606       }
4607       CloseHandle(hMap);
4608       CloseHandle(hFile);
4609       return NULL;
4610     }
4611 
4612     if (CloseHandle(hMap) == 0) {
4613       if (PrintMiscellaneous && Verbose) {
4614         DWORD err = GetLastError();
4615         tty->print_cr("CloseHandle(hMap) failed: GetLastError->%ld.", err);
4616       }
4617       CloseHandle(hFile);
4618       return base;
4619     }
4620   }
4621 
4622   if (allow_exec) {
4623     DWORD old_protect;
4624     DWORD exec_access = read_only ? PAGE_EXECUTE_READ : PAGE_EXECUTE_READWRITE;
4625     bool res = VirtualProtect(base, bytes, exec_access, &old_protect) != 0;
4626 
4627     if (!res) {
4628       if (PrintMiscellaneous && Verbose) {
4629         DWORD err = GetLastError();
4630         tty->print_cr("VirtualProtect() failed: GetLastError->%ld.", err);
4631       }
4632       // Don't consider this a hard error, on IA32 even if the
4633       // VirtualProtect fails, we should still be able to execute
4634       CloseHandle(hFile);
4635       return base;
4636     }
4637   }
4638 
4639   if (CloseHandle(hFile) == 0) {
4640     if (PrintMiscellaneous && Verbose) {
4641       DWORD err = GetLastError();
4642       tty->print_cr("CloseHandle(hFile) failed: GetLastError->%ld.", err);
4643     }
4644     return base;
4645   }
4646 
4647   return base;
4648 }
4649 
4650 
4651 // Remap a block of memory.
4652 char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
4653                        char *addr, size_t bytes, bool read_only,
4654                        bool allow_exec) {
4655   // This OS does not allow existing memory maps to be remapped so we
4656   // have to unmap the memory before we remap it.
4657   if (!os::unmap_memory(addr, bytes)) {
4658     return NULL;
4659   }
4660 
4661   // There is a very small theoretical window between the unmap_memory()
4662   // call above and the map_memory() call below where a thread in native
4663   // code may be able to access an address that is no longer mapped.
4664 
4665   return os::map_memory(fd, file_name, file_offset, addr, bytes,
4666            read_only, allow_exec);
4667 }
4668 
4669 
4670 // Unmap a block of memory.
4671 // Returns true=success, otherwise false.
4672 
4673 bool os::pd_unmap_memory(char* addr, size_t bytes) {
4674   BOOL result = UnmapViewOfFile(addr);
4675   if (result == 0) {
4676     if (PrintMiscellaneous && Verbose) {
4677       DWORD err = GetLastError();
4678       tty->print_cr("UnmapViewOfFile() failed: GetLastError->%ld.", err);
4679     }
4680     return false;
4681   }
4682   return true;
4683 }
4684 
4685 void os::pause() {
4686   char filename[MAX_PATH];
4687   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
4688     jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
4689   } else {
4690     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
4691   }
4692 
4693   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
4694   if (fd != -1) {
4695     struct stat buf;
4696     ::close(fd);
4697     while (::stat(filename, &buf) == 0) {
4698       Sleep(100);
4699     }
4700   } else {
4701     jio_fprintf(stderr,
4702       "Could not open pause file '%s', continuing immediately.\n", filename);
4703   }
4704 }
4705 
4706 os::WatcherThreadCrashProtection::WatcherThreadCrashProtection() {
4707   assert(Thread::current()->is_Watcher_thread(), "Must be WatcherThread");
4708 }
4709 
4710 /*
4711  * See the caveats for this class in os_windows.hpp
4712  * Protects the callback call so that raised OS EXCEPTIONS causes a jump back
4713  * into this method and returns false. If no OS EXCEPTION was raised, returns
4714  * true.
4715  * The callback is supposed to provide the method that should be protected.
4716  */
4717 bool os::WatcherThreadCrashProtection::call(os::CrashProtectionCallback& cb) {
4718   assert(Thread::current()->is_Watcher_thread(), "Only for WatcherThread");
4719   assert(!WatcherThread::watcher_thread()->has_crash_protection(),
4720       "crash_protection already set?");
4721 
4722   bool success = true;
4723   __try {
4724     WatcherThread::watcher_thread()->set_crash_protection(this);
4725     cb.call();
4726   } __except(EXCEPTION_EXECUTE_HANDLER) {
4727     // only for protection, nothing to do
4728     success = false;
4729   }
4730   WatcherThread::watcher_thread()->set_crash_protection(NULL);
4731   return success;
4732 }
4733 
4734 // An Event wraps a win32 "CreateEvent" kernel handle.
4735 //
4736 // We have a number of choices regarding "CreateEvent" win32 handle leakage:
4737 //
4738 // 1:  When a thread dies return the Event to the EventFreeList, clear the ParkHandle
4739 //     field, and call CloseHandle() on the win32 event handle.  Unpark() would
4740 //     need to be modified to tolerate finding a NULL (invalid) win32 event handle.
4741 //     In addition, an unpark() operation might fetch the handle field, but the
4742 //     event could recycle between the fetch and the SetEvent() operation.
4743 //     SetEvent() would either fail because the handle was invalid, or inadvertently work,
4744 //     as the win32 handle value had been recycled.  In an ideal world calling SetEvent()
4745 //     on an stale but recycled handle would be harmless, but in practice this might
4746 //     confuse other non-Sun code, so it's not a viable approach.
4747 //
4748 // 2:  Once a win32 event handle is associated with an Event, it remains associated
4749 //     with the Event.  The event handle is never closed.  This could be construed
4750 //     as handle leakage, but only up to the maximum # of threads that have been extant
4751 //     at any one time.  This shouldn't be an issue, as windows platforms typically
4752 //     permit a process to have hundreds of thousands of open handles.
4753 //
4754 // 3:  Same as (1), but periodically, at stop-the-world time, rundown the EventFreeList
4755 //     and release unused handles.
4756 //
4757 // 4:  Add a CRITICAL_SECTION to the Event to protect LD+SetEvent from LD;ST(null);CloseHandle.
4758 //     It's not clear, however, that we wouldn't be trading one type of leak for another.
4759 //
4760 // 5.  Use an RCU-like mechanism (Read-Copy Update).
4761 //     Or perhaps something similar to Maged Michael's "Hazard pointers".
4762 //
4763 // We use (2).
4764 //
4765 // TODO-FIXME:
4766 // 1.  Reconcile Doug's JSR166 j.u.c park-unpark with the objectmonitor implementation.
4767 // 2.  Consider wrapping the WaitForSingleObject(Ex) calls in SEH try/finally blocks
4768 //     to recover from (or at least detect) the dreaded Windows 841176 bug.
4769 // 3.  Collapse the interrupt_event, the JSR166 parker event, and the objectmonitor ParkEvent
4770 //     into a single win32 CreateEvent() handle.
4771 //
4772 // _Event transitions in park()
4773 //   -1 => -1 : illegal
4774 //    1 =>  0 : pass - return immediately
4775 //    0 => -1 : block
4776 //
4777 // _Event serves as a restricted-range semaphore :
4778 //    -1 : thread is blocked
4779 //     0 : neutral  - thread is running or ready
4780 //     1 : signaled - thread is running or ready
4781 //
4782 // Another possible encoding of _Event would be
4783 // with explicit "PARKED" and "SIGNALED" bits.
4784 
4785 int os::PlatformEvent::park (jlong Millis) {
4786     guarantee (_ParkHandle != NULL , "Invariant") ;
4787     guarantee (Millis > 0          , "Invariant") ;
4788     int v ;
4789 
4790     // CONSIDER: defer assigning a CreateEvent() handle to the Event until
4791     // the initial park() operation.
4792 
4793     for (;;) {
4794         v = _Event ;
4795         if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
4796     }
4797     guarantee ((v == 0) || (v == 1), "invariant") ;
4798     if (v != 0) return OS_OK ;
4799 
4800     // Do this the hard way by blocking ...
4801     // TODO: consider a brief spin here, gated on the success of recent
4802     // spin attempts by this thread.
4803     //
4804     // We decompose long timeouts into series of shorter timed waits.
4805     // Evidently large timo values passed in WaitForSingleObject() are problematic on some
4806     // versions of Windows.  See EventWait() for details.  This may be superstition.  Or not.
4807     // We trust the WAIT_TIMEOUT indication and don't track the elapsed wait time
4808     // with os::javaTimeNanos().  Furthermore, we assume that spurious returns from
4809     // ::WaitForSingleObject() caused by latent ::setEvent() operations will tend
4810     // to happen early in the wait interval.  Specifically, after a spurious wakeup (rv ==
4811     // WAIT_OBJECT_0 but _Event is still < 0) we don't bother to recompute Millis to compensate
4812     // for the already waited time.  This policy does not admit any new outcomes.
4813     // In the future, however, we might want to track the accumulated wait time and
4814     // adjust Millis accordingly if we encounter a spurious wakeup.
4815 
4816     const int MAXTIMEOUT = 0x10000000 ;
4817     DWORD rv = WAIT_TIMEOUT ;
4818     while (_Event < 0 && Millis > 0) {
4819        DWORD prd = Millis ;     // set prd = MAX (Millis, MAXTIMEOUT)
4820        if (Millis > MAXTIMEOUT) {
4821           prd = MAXTIMEOUT ;
4822        }
4823        rv = ::WaitForSingleObject (_ParkHandle, prd) ;
4824        assert (rv == WAIT_OBJECT_0 || rv == WAIT_TIMEOUT, "WaitForSingleObject failed") ;
4825        if (rv == WAIT_TIMEOUT) {
4826            Millis -= prd ;
4827        }
4828     }
4829     v = _Event ;
4830     _Event = 0 ;
4831     // see comment at end of os::PlatformEvent::park() below:
4832     OrderAccess::fence() ;
4833     // If we encounter a nearly simultanous timeout expiry and unpark()
4834     // we return OS_OK indicating we awoke via unpark().
4835     // Implementor's license -- returning OS_TIMEOUT would be equally valid, however.
4836     return (v >= 0) ? OS_OK : OS_TIMEOUT ;
4837 }
4838 
4839 void os::PlatformEvent::park () {
4840     guarantee (_ParkHandle != NULL, "Invariant") ;
4841     // Invariant: Only the thread associated with the Event/PlatformEvent
4842     // may call park().
4843     int v ;
4844     for (;;) {
4845         v = _Event ;
4846         if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
4847     }
4848     guarantee ((v == 0) || (v == 1), "invariant") ;
4849     if (v != 0) return ;
4850 
4851     // Do this the hard way by blocking ...
4852     // TODO: consider a brief spin here, gated on the success of recent
4853     // spin attempts by this thread.
4854     while (_Event < 0) {
4855        DWORD rv = ::WaitForSingleObject (_ParkHandle, INFINITE) ;
4856        assert (rv == WAIT_OBJECT_0, "WaitForSingleObject failed") ;
4857     }
4858 
4859     // Usually we'll find _Event == 0 at this point, but as
4860     // an optional optimization we clear it, just in case can
4861     // multiple unpark() operations drove _Event up to 1.
4862     _Event = 0 ;
4863     OrderAccess::fence() ;
4864     guarantee (_Event >= 0, "invariant") ;
4865 }
4866 
4867 void os::PlatformEvent::unpark() {
4868   guarantee (_ParkHandle != NULL, "Invariant") ;
4869 
4870   // Transitions for _Event:
4871   //    0 :=> 1
4872   //    1 :=> 1
4873   //   -1 :=> either 0 or 1; must signal target thread
4874   //          That is, we can safely transition _Event from -1 to either
4875   //          0 or 1. Forcing 1 is slightly more efficient for back-to-back
4876   //          unpark() calls.
4877   // See also: "Semaphores in Plan 9" by Mullender & Cox
4878   //
4879   // Note: Forcing a transition from "-1" to "1" on an unpark() means
4880   // that it will take two back-to-back park() calls for the owning
4881   // thread to block. This has the benefit of forcing a spurious return
4882   // from the first park() call after an unpark() call which will help
4883   // shake out uses of park() and unpark() without condition variables.
4884 
4885   if (Atomic::xchg(1, &_Event) >= 0) return;
4886 
4887   ::SetEvent(_ParkHandle);
4888 }
4889 
4890 
4891 // JSR166
4892 // -------------------------------------------------------
4893 
4894 /*
4895  * The Windows implementation of Park is very straightforward: Basic
4896  * operations on Win32 Events turn out to have the right semantics to
4897  * use them directly. We opportunistically resuse the event inherited
4898  * from Monitor.
4899  */
4900 
4901 
4902 void Parker::park(bool isAbsolute, jlong time) {
4903   guarantee (_ParkEvent != NULL, "invariant") ;
4904   // First, demultiplex/decode time arguments
4905   if (time < 0) { // don't wait
4906     return;
4907   }
4908   else if (time == 0 && !isAbsolute) {
4909     time = INFINITE;
4910   }
4911   else if  (isAbsolute) {
4912     time -= os::javaTimeMillis(); // convert to relative time
4913     if (time <= 0) // already elapsed
4914       return;
4915   }
4916   else { // relative
4917     time /= 1000000; // Must coarsen from nanos to millis
4918     if (time == 0)   // Wait for the minimal time unit if zero
4919       time = 1;
4920   }
4921 
4922   JavaThread* thread = (JavaThread*)(Thread::current());
4923   assert(thread->is_Java_thread(), "Must be JavaThread");
4924   JavaThread *jt = (JavaThread *)thread;
4925 
4926   // Don't wait if interrupted or already triggered
4927   if (Thread::is_interrupted(thread, false) ||
4928     WaitForSingleObject(_ParkEvent, 0) == WAIT_OBJECT_0) {
4929     ResetEvent(_ParkEvent);
4930     return;
4931   }
4932   else {
4933     ThreadBlockInVM tbivm(jt);
4934     OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
4935     jt->set_suspend_equivalent();
4936 
4937     WaitForSingleObject(_ParkEvent,  time);
4938     ResetEvent(_ParkEvent);
4939 
4940     // If externally suspended while waiting, re-suspend
4941     if (jt->handle_special_suspend_equivalent_condition()) {
4942       jt->java_suspend_self();
4943     }
4944   }
4945 }
4946 
4947 void Parker::unpark() {
4948   guarantee (_ParkEvent != NULL, "invariant") ;
4949   SetEvent(_ParkEvent);
4950 }
4951 
4952 // Run the specified command in a separate process. Return its exit value,
4953 // or -1 on failure (e.g. can't create a new process).
4954 int os::fork_and_exec(char* cmd) {
4955   STARTUPINFO si;
4956   PROCESS_INFORMATION pi;
4957 
4958   memset(&si, 0, sizeof(si));
4959   si.cb = sizeof(si);
4960   memset(&pi, 0, sizeof(pi));
4961   BOOL rslt = CreateProcess(NULL,   // executable name - use command line
4962                             cmd,    // command line
4963                             NULL,   // process security attribute
4964                             NULL,   // thread security attribute
4965                             TRUE,   // inherits system handles
4966                             0,      // no creation flags
4967                             NULL,   // use parent's environment block
4968                             NULL,   // use parent's starting directory
4969                             &si,    // (in) startup information
4970                             &pi);   // (out) process information
4971 
4972   if (rslt) {
4973     // Wait until child process exits.
4974     WaitForSingleObject(pi.hProcess, INFINITE);
4975 
4976     DWORD exit_code;
4977     GetExitCodeProcess(pi.hProcess, &exit_code);
4978 
4979     // Close process and thread handles.
4980     CloseHandle(pi.hProcess);
4981     CloseHandle(pi.hThread);
4982 
4983     return (int)exit_code;
4984   } else {
4985     return -1;
4986   }
4987 }
4988 
4989 //--------------------------------------------------------------------------------------------------
4990 // Non-product code
4991 
4992 static int mallocDebugIntervalCounter = 0;
4993 static int mallocDebugCounter = 0;
4994 bool os::check_heap(bool force) {
4995   if (++mallocDebugCounter < MallocVerifyStart && !force) return true;
4996   if (++mallocDebugIntervalCounter >= MallocVerifyInterval || force) {
4997     // Note: HeapValidate executes two hardware breakpoints when it finds something
4998     // wrong; at these points, eax contains the address of the offending block (I think).
4999     // To get to the exlicit error message(s) below, just continue twice.
5000     HANDLE heap = GetProcessHeap();
5001     { HeapLock(heap);
5002       PROCESS_HEAP_ENTRY phe;
5003       phe.lpData = NULL;
5004       while (HeapWalk(heap, &phe) != 0) {
5005         if ((phe.wFlags & PROCESS_HEAP_ENTRY_BUSY) &&
5006             !HeapValidate(heap, 0, phe.lpData)) {
5007           tty->print_cr("C heap has been corrupted (time: %d allocations)", mallocDebugCounter);
5008           tty->print_cr("corrupted block near address %#x, length %d", phe.lpData, phe.cbData);
5009           fatal("corrupted C heap");
5010         }
5011       }
5012       DWORD err = GetLastError();
5013       if (err != ERROR_NO_MORE_ITEMS && err != ERROR_CALL_NOT_IMPLEMENTED) {
5014         fatal(err_msg("heap walk aborted with error %d", err));
5015       }
5016       HeapUnlock(heap);
5017     }
5018     mallocDebugIntervalCounter = 0;
5019   }
5020   return true;
5021 }
5022 
5023 
5024 bool os::find(address addr, outputStream* st) {
5025   // Nothing yet
5026   return false;
5027 }
5028 
5029 LONG WINAPI os::win32::serialize_fault_filter(struct _EXCEPTION_POINTERS* e) {
5030   DWORD exception_code = e->ExceptionRecord->ExceptionCode;
5031 
5032   if ( exception_code == EXCEPTION_ACCESS_VIOLATION ) {
5033     JavaThread* thread = (JavaThread*)ThreadLocalStorage::get_thread_slow();
5034     PEXCEPTION_RECORD exceptionRecord = e->ExceptionRecord;
5035     address addr = (address) exceptionRecord->ExceptionInformation[1];
5036 
5037     if (os::is_memory_serialize_page(thread, addr))
5038       return EXCEPTION_CONTINUE_EXECUTION;
5039   }
5040 
5041   return EXCEPTION_CONTINUE_SEARCH;
5042 }
5043 
5044 // We don't build a headless jre for Windows
5045 bool os::is_headless_jre() { return false; }
5046 
5047 static jint initSock() {
5048   WSADATA wsadata;
5049 
5050   if (!os::WinSock2Dll::WinSock2Available()) {
5051     jio_fprintf(stderr, "Could not load Winsock (error: %d)\n",
5052       ::GetLastError());
5053     return JNI_ERR;
5054   }
5055 
5056   if (os::WinSock2Dll::WSAStartup(MAKEWORD(2,2), &wsadata) != 0) {
5057     jio_fprintf(stderr, "Could not initialize Winsock (error: %d)\n",
5058       ::GetLastError());
5059     return JNI_ERR;
5060   }
5061   return JNI_OK;
5062 }
5063 
5064 struct hostent* os::get_host_by_name(char* name) {
5065   return (struct hostent*)os::WinSock2Dll::gethostbyname(name);
5066 }
5067 
5068 int os::socket_close(int fd) {
5069   return ::closesocket(fd);
5070 }
5071 
5072 int os::socket_available(int fd, jint *pbytes) {
5073   int ret = ::ioctlsocket(fd, FIONREAD, (u_long*)pbytes);
5074   return (ret < 0) ? 0 : 1;
5075 }
5076 
5077 int os::socket(int domain, int type, int protocol) {
5078   return ::socket(domain, type, protocol);
5079 }
5080 
5081 int os::listen(int fd, int count) {
5082   return ::listen(fd, count);
5083 }
5084 
5085 int os::connect(int fd, struct sockaddr* him, socklen_t len) {
5086   return ::connect(fd, him, len);
5087 }
5088 
5089 int os::accept(int fd, struct sockaddr* him, socklen_t* len) {
5090   return ::accept(fd, him, len);
5091 }
5092 
5093 int os::sendto(int fd, char* buf, size_t len, uint flags,
5094                struct sockaddr* to, socklen_t tolen) {
5095 
5096   return ::sendto(fd, buf, (int)len, flags, to, tolen);
5097 }
5098 
5099 int os::recvfrom(int fd, char *buf, size_t nBytes, uint flags,
5100                  sockaddr* from, socklen_t* fromlen) {
5101 
5102   return ::recvfrom(fd, buf, (int)nBytes, flags, from, fromlen);
5103 }
5104 
5105 int os::recv(int fd, char* buf, size_t nBytes, uint flags) {
5106   return ::recv(fd, buf, (int)nBytes, flags);
5107 }
5108 
5109 int os::send(int fd, char* buf, size_t nBytes, uint flags) {
5110   return ::send(fd, buf, (int)nBytes, flags);
5111 }
5112 
5113 int os::raw_send(int fd, char* buf, size_t nBytes, uint flags) {
5114   return ::send(fd, buf, (int)nBytes, flags);
5115 }
5116 
5117 int os::timeout(int fd, long timeout) {
5118   fd_set tbl;
5119   struct timeval t;
5120 
5121   t.tv_sec  = timeout / 1000;
5122   t.tv_usec = (timeout % 1000) * 1000;
5123 
5124   tbl.fd_count    = 1;
5125   tbl.fd_array[0] = fd;
5126 
5127   return ::select(1, &tbl, 0, 0, &t);
5128 }
5129 
5130 int os::get_host_name(char* name, int namelen) {
5131   return ::gethostname(name, namelen);
5132 }
5133 
5134 int os::socket_shutdown(int fd, int howto) {
5135   return ::shutdown(fd, howto);
5136 }
5137 
5138 int os::bind(int fd, struct sockaddr* him, socklen_t len) {
5139   return ::bind(fd, him, len);
5140 }
5141 
5142 int os::get_sock_name(int fd, struct sockaddr* him, socklen_t* len) {
5143   return ::getsockname(fd, him, len);
5144 }
5145 
5146 int os::get_sock_opt(int fd, int level, int optname,
5147                      char* optval, socklen_t* optlen) {
5148   return ::getsockopt(fd, level, optname, optval, optlen);
5149 }
5150 
5151 int os::set_sock_opt(int fd, int level, int optname,
5152                      const char* optval, socklen_t optlen) {
5153   return ::setsockopt(fd, level, optname, optval, optlen);
5154 }
5155 
5156 // WINDOWS CONTEXT Flags for THREAD_SAMPLING
5157 #if defined(IA32)
5158 #  define sampling_context_flags (CONTEXT_FULL | CONTEXT_FLOATING_POINT | CONTEXT_EXTENDED_REGISTERS)
5159 #elif defined (AMD64)
5160 #  define sampling_context_flags (CONTEXT_FULL | CONTEXT_FLOATING_POINT)
5161 #endif
5162 
5163 // returns true if thread could be suspended,
5164 // false otherwise
5165 static bool do_suspend(HANDLE* h) {
5166   if (h != NULL) {
5167     if (SuspendThread(*h) != ~0) {
5168       return true;
5169     }
5170   }
5171   return false;
5172 }
5173 
5174 // resume the thread
5175 // calling resume on an active thread is a no-op
5176 static void do_resume(HANDLE* h) {
5177   if (h != NULL) {
5178     ResumeThread(*h);
5179   }
5180 }
5181 
5182 // retrieve a suspend/resume context capable handle
5183 // from the tid. Caller validates handle return value.
5184 void get_thread_handle_for_extended_context(HANDLE* h, OSThread::thread_id_t tid) {
5185   if (h != NULL) {
5186     *h = OpenThread(THREAD_SUSPEND_RESUME | THREAD_GET_CONTEXT | THREAD_QUERY_INFORMATION, FALSE, tid);
5187   }
5188 }
5189 
5190 //
5191 // Thread sampling implementation
5192 //
5193 void os::SuspendedThreadTask::internal_do_task() {
5194   CONTEXT    ctxt;
5195   HANDLE     h = NULL;
5196 
5197   // get context capable handle for thread
5198   get_thread_handle_for_extended_context(&h, _thread->osthread()->thread_id());
5199 
5200   // sanity
5201   if (h == NULL || h == INVALID_HANDLE_VALUE) {
5202     return;
5203   }
5204 
5205   // suspend the thread
5206   if (do_suspend(&h)) {
5207     ctxt.ContextFlags = sampling_context_flags;
5208     // get thread context
5209     GetThreadContext(h, &ctxt);
5210     SuspendedThreadTaskContext context(_thread, &ctxt);
5211     // pass context to Thread Sampling impl
5212     do_task(context);
5213     // resume thread
5214     do_resume(&h);
5215   }
5216 
5217   // close handle
5218   CloseHandle(h);
5219 }
5220 
5221 
5222 // Kernel32 API
5223 typedef SIZE_T (WINAPI* GetLargePageMinimum_Fn)(void);
5224 typedef LPVOID (WINAPI *VirtualAllocExNuma_Fn) (HANDLE, LPVOID, SIZE_T, DWORD, DWORD, DWORD);
5225 typedef BOOL (WINAPI *GetNumaHighestNodeNumber_Fn) (PULONG);
5226 typedef BOOL (WINAPI *GetNumaNodeProcessorMask_Fn) (UCHAR, PULONGLONG);
5227 typedef USHORT (WINAPI* RtlCaptureStackBackTrace_Fn)(ULONG, ULONG, PVOID*, PULONG);
5228 
5229 GetLargePageMinimum_Fn      os::Kernel32Dll::_GetLargePageMinimum = NULL;
5230 VirtualAllocExNuma_Fn       os::Kernel32Dll::_VirtualAllocExNuma = NULL;
5231 GetNumaHighestNodeNumber_Fn os::Kernel32Dll::_GetNumaHighestNodeNumber = NULL;
5232 GetNumaNodeProcessorMask_Fn os::Kernel32Dll::_GetNumaNodeProcessorMask = NULL;
5233 RtlCaptureStackBackTrace_Fn os::Kernel32Dll::_RtlCaptureStackBackTrace = NULL;
5234 
5235 
5236 BOOL                        os::Kernel32Dll::initialized = FALSE;
5237 SIZE_T os::Kernel32Dll::GetLargePageMinimum() {
5238   assert(initialized && _GetLargePageMinimum != NULL,
5239     "GetLargePageMinimumAvailable() not yet called");
5240   return _GetLargePageMinimum();
5241 }
5242 
5243 BOOL os::Kernel32Dll::GetLargePageMinimumAvailable() {
5244   if (!initialized) {
5245     initialize();
5246   }
5247   return _GetLargePageMinimum != NULL;
5248 }
5249 
5250 BOOL os::Kernel32Dll::NumaCallsAvailable() {
5251   if (!initialized) {
5252     initialize();
5253   }
5254   return _VirtualAllocExNuma != NULL;
5255 }
5256 
5257 LPVOID os::Kernel32Dll::VirtualAllocExNuma(HANDLE hProc, LPVOID addr, SIZE_T bytes, DWORD flags, DWORD prot, DWORD node) {
5258   assert(initialized && _VirtualAllocExNuma != NULL,
5259     "NUMACallsAvailable() not yet called");
5260 
5261   return _VirtualAllocExNuma(hProc, addr, bytes, flags, prot, node);
5262 }
5263 
5264 BOOL os::Kernel32Dll::GetNumaHighestNodeNumber(PULONG ptr_highest_node_number) {
5265   assert(initialized && _GetNumaHighestNodeNumber != NULL,
5266     "NUMACallsAvailable() not yet called");
5267 
5268   return _GetNumaHighestNodeNumber(ptr_highest_node_number);
5269 }
5270 
5271 BOOL os::Kernel32Dll::GetNumaNodeProcessorMask(UCHAR node, PULONGLONG proc_mask) {
5272   assert(initialized && _GetNumaNodeProcessorMask != NULL,
5273     "NUMACallsAvailable() not yet called");
5274 
5275   return _GetNumaNodeProcessorMask(node, proc_mask);
5276 }
5277 
5278 USHORT os::Kernel32Dll::RtlCaptureStackBackTrace(ULONG FrameToSkip,
5279   ULONG FrameToCapture, PVOID* BackTrace, PULONG BackTraceHash) {
5280     if (!initialized) {
5281       initialize();
5282     }
5283 
5284     if (_RtlCaptureStackBackTrace != NULL) {
5285       return _RtlCaptureStackBackTrace(FrameToSkip, FrameToCapture,
5286         BackTrace, BackTraceHash);
5287     } else {
5288       return 0;
5289     }
5290 }
5291 
5292 void os::Kernel32Dll::initializeCommon() {
5293   if (!initialized) {
5294     HMODULE handle = ::GetModuleHandle("Kernel32.dll");
5295     assert(handle != NULL, "Just check");
5296     _GetLargePageMinimum = (GetLargePageMinimum_Fn)::GetProcAddress(handle, "GetLargePageMinimum");
5297     _VirtualAllocExNuma = (VirtualAllocExNuma_Fn)::GetProcAddress(handle, "VirtualAllocExNuma");
5298     _GetNumaHighestNodeNumber = (GetNumaHighestNodeNumber_Fn)::GetProcAddress(handle, "GetNumaHighestNodeNumber");
5299     _GetNumaNodeProcessorMask = (GetNumaNodeProcessorMask_Fn)::GetProcAddress(handle, "GetNumaNodeProcessorMask");
5300     _RtlCaptureStackBackTrace = (RtlCaptureStackBackTrace_Fn)::GetProcAddress(handle, "RtlCaptureStackBackTrace");
5301     initialized = TRUE;
5302   }
5303 }
5304 
5305 
5306 
5307 #ifndef JDK6_OR_EARLIER
5308 
5309 void os::Kernel32Dll::initialize() {
5310   initializeCommon();
5311 }
5312 
5313 
5314 // Kernel32 API
5315 inline BOOL os::Kernel32Dll::SwitchToThread() {
5316   return ::SwitchToThread();
5317 }
5318 
5319 inline BOOL os::Kernel32Dll::SwitchToThreadAvailable() {
5320   return true;
5321 }
5322 
5323   // Help tools
5324 inline BOOL os::Kernel32Dll::HelpToolsAvailable() {
5325   return true;
5326 }
5327 
5328 inline HANDLE os::Kernel32Dll::CreateToolhelp32Snapshot(DWORD dwFlags,DWORD th32ProcessId) {
5329   return ::CreateToolhelp32Snapshot(dwFlags, th32ProcessId);
5330 }
5331 
5332 inline BOOL os::Kernel32Dll::Module32First(HANDLE hSnapshot,LPMODULEENTRY32 lpme) {
5333   return ::Module32First(hSnapshot, lpme);
5334 }
5335 
5336 inline BOOL os::Kernel32Dll::Module32Next(HANDLE hSnapshot,LPMODULEENTRY32 lpme) {
5337   return ::Module32Next(hSnapshot, lpme);
5338 }
5339 
5340 
5341 inline BOOL os::Kernel32Dll::GetNativeSystemInfoAvailable() {
5342   return true;
5343 }
5344 
5345 inline void os::Kernel32Dll::GetNativeSystemInfo(LPSYSTEM_INFO lpSystemInfo) {
5346   ::GetNativeSystemInfo(lpSystemInfo);
5347 }
5348 
5349 // PSAPI API
5350 inline BOOL os::PSApiDll::EnumProcessModules(HANDLE hProcess, HMODULE *lpModule, DWORD cb, LPDWORD lpcbNeeded) {
5351   return ::EnumProcessModules(hProcess, lpModule, cb, lpcbNeeded);
5352 }
5353 
5354 inline DWORD os::PSApiDll::GetModuleFileNameEx(HANDLE hProcess, HMODULE hModule, LPTSTR lpFilename, DWORD nSize) {
5355   return ::GetModuleFileNameEx(hProcess, hModule, lpFilename, nSize);
5356 }
5357 
5358 inline BOOL os::PSApiDll::GetModuleInformation(HANDLE hProcess, HMODULE hModule, LPMODULEINFO lpmodinfo, DWORD cb) {
5359   return ::GetModuleInformation(hProcess, hModule, lpmodinfo, cb);
5360 }
5361 
5362 inline BOOL os::PSApiDll::PSApiAvailable() {
5363   return true;
5364 }
5365 
5366 
5367 // WinSock2 API
5368 inline BOOL os::WinSock2Dll::WSAStartup(WORD wVersionRequested, LPWSADATA lpWSAData) {
5369   return ::WSAStartup(wVersionRequested, lpWSAData);
5370 }
5371 
5372 inline struct hostent* os::WinSock2Dll::gethostbyname(const char *name) {
5373   return ::gethostbyname(name);
5374 }
5375 
5376 inline BOOL os::WinSock2Dll::WinSock2Available() {
5377   return true;
5378 }
5379 
5380 // Advapi API
5381 inline BOOL os::Advapi32Dll::AdjustTokenPrivileges(HANDLE TokenHandle,
5382    BOOL DisableAllPrivileges, PTOKEN_PRIVILEGES NewState, DWORD BufferLength,
5383    PTOKEN_PRIVILEGES PreviousState, PDWORD ReturnLength) {
5384      return ::AdjustTokenPrivileges(TokenHandle, DisableAllPrivileges, NewState,
5385        BufferLength, PreviousState, ReturnLength);
5386 }
5387 
5388 inline BOOL os::Advapi32Dll::OpenProcessToken(HANDLE ProcessHandle, DWORD DesiredAccess,
5389   PHANDLE TokenHandle) {
5390     return ::OpenProcessToken(ProcessHandle, DesiredAccess, TokenHandle);
5391 }
5392 
5393 inline BOOL os::Advapi32Dll::LookupPrivilegeValue(LPCTSTR lpSystemName, LPCTSTR lpName, PLUID lpLuid) {
5394   return ::LookupPrivilegeValue(lpSystemName, lpName, lpLuid);
5395 }
5396 
5397 inline BOOL os::Advapi32Dll::AdvapiAvailable() {
5398   return true;
5399 }
5400 
5401 void* os::get_default_process_handle() {
5402   return (void*)GetModuleHandle(NULL);
5403 }
5404 
5405 // Builds a platform dependent Agent_OnLoad_<lib_name> function name
5406 // which is used to find statically linked in agents.
5407 // Additionally for windows, takes into account __stdcall names.
5408 // Parameters:
5409 //            sym_name: Symbol in library we are looking for
5410 //            lib_name: Name of library to look in, NULL for shared libs.
5411 //            is_absolute_path == true if lib_name is absolute path to agent
5412 //                                     such as "C:/a/b/L.dll"
5413 //            == false if only the base name of the library is passed in
5414 //               such as "L"
5415 char* os::build_agent_function_name(const char *sym_name, const char *lib_name,
5416                                     bool is_absolute_path) {
5417   char *agent_entry_name;
5418   size_t len;
5419   size_t name_len;
5420   size_t prefix_len = strlen(JNI_LIB_PREFIX);
5421   size_t suffix_len = strlen(JNI_LIB_SUFFIX);
5422   const char *start;
5423 
5424   if (lib_name != NULL) {
5425     len = name_len = strlen(lib_name);
5426     if (is_absolute_path) {
5427       // Need to strip path, prefix and suffix
5428       if ((start = strrchr(lib_name, *os::file_separator())) != NULL) {
5429         lib_name = ++start;
5430       } else {
5431         // Need to check for drive prefix
5432         if ((start = strchr(lib_name, ':')) != NULL) {
5433           lib_name = ++start;
5434         }
5435       }
5436       if (len <= (prefix_len + suffix_len)) {
5437         return NULL;
5438       }
5439       lib_name += prefix_len;
5440       name_len = strlen(lib_name) - suffix_len;
5441     }
5442   }
5443   len = (lib_name != NULL ? name_len : 0) + strlen(sym_name) + 2;
5444   agent_entry_name = NEW_C_HEAP_ARRAY_RETURN_NULL(char, len, mtThread);
5445   if (agent_entry_name == NULL) {
5446     return NULL;
5447   }
5448   if (lib_name != NULL) {
5449     const char *p = strrchr(sym_name, '@');
5450     if (p != NULL && p != sym_name) {
5451       // sym_name == _Agent_OnLoad@XX
5452       strncpy(agent_entry_name, sym_name, (p - sym_name));
5453       agent_entry_name[(p-sym_name)] = '\0';
5454       // agent_entry_name == _Agent_OnLoad
5455       strcat(agent_entry_name, "_");
5456       strncat(agent_entry_name, lib_name, name_len);
5457       strcat(agent_entry_name, p);
5458       // agent_entry_name == _Agent_OnLoad_lib_name@XX
5459     } else {
5460       strcpy(agent_entry_name, sym_name);
5461       strcat(agent_entry_name, "_");
5462       strncat(agent_entry_name, lib_name, name_len);
5463     }
5464   } else {
5465     strcpy(agent_entry_name, sym_name);
5466   }
5467   return agent_entry_name;
5468 }
5469 
5470 #else
5471 // Kernel32 API
5472 typedef BOOL (WINAPI* SwitchToThread_Fn)(void);
5473 typedef HANDLE (WINAPI* CreateToolhelp32Snapshot_Fn)(DWORD,DWORD);
5474 typedef BOOL (WINAPI* Module32First_Fn)(HANDLE,LPMODULEENTRY32);
5475 typedef BOOL (WINAPI* Module32Next_Fn)(HANDLE,LPMODULEENTRY32);
5476 typedef void (WINAPI* GetNativeSystemInfo_Fn)(LPSYSTEM_INFO);
5477 
5478 SwitchToThread_Fn           os::Kernel32Dll::_SwitchToThread = NULL;
5479 CreateToolhelp32Snapshot_Fn os::Kernel32Dll::_CreateToolhelp32Snapshot = NULL;
5480 Module32First_Fn            os::Kernel32Dll::_Module32First = NULL;
5481 Module32Next_Fn             os::Kernel32Dll::_Module32Next = NULL;
5482 GetNativeSystemInfo_Fn      os::Kernel32Dll::_GetNativeSystemInfo = NULL;
5483 
5484 void os::Kernel32Dll::initialize() {
5485   if (!initialized) {
5486     HMODULE handle = ::GetModuleHandle("Kernel32.dll");
5487     assert(handle != NULL, "Just check");
5488 
5489     _SwitchToThread = (SwitchToThread_Fn)::GetProcAddress(handle, "SwitchToThread");
5490     _CreateToolhelp32Snapshot = (CreateToolhelp32Snapshot_Fn)
5491       ::GetProcAddress(handle, "CreateToolhelp32Snapshot");
5492     _Module32First = (Module32First_Fn)::GetProcAddress(handle, "Module32First");
5493     _Module32Next = (Module32Next_Fn)::GetProcAddress(handle, "Module32Next");
5494     _GetNativeSystemInfo = (GetNativeSystemInfo_Fn)::GetProcAddress(handle, "GetNativeSystemInfo");
5495     initializeCommon();  // resolve the functions that always need resolving
5496 
5497     initialized = TRUE;
5498   }
5499 }
5500 
5501 BOOL os::Kernel32Dll::SwitchToThread() {
5502   assert(initialized && _SwitchToThread != NULL,
5503     "SwitchToThreadAvailable() not yet called");
5504   return _SwitchToThread();
5505 }
5506 
5507 
5508 BOOL os::Kernel32Dll::SwitchToThreadAvailable() {
5509   if (!initialized) {
5510     initialize();
5511   }
5512   return _SwitchToThread != NULL;
5513 }
5514 
5515 // Help tools
5516 BOOL os::Kernel32Dll::HelpToolsAvailable() {
5517   if (!initialized) {
5518     initialize();
5519   }
5520   return _CreateToolhelp32Snapshot != NULL &&
5521          _Module32First != NULL &&
5522          _Module32Next != NULL;
5523 }
5524 
5525 HANDLE os::Kernel32Dll::CreateToolhelp32Snapshot(DWORD dwFlags,DWORD th32ProcessId) {
5526   assert(initialized && _CreateToolhelp32Snapshot != NULL,
5527     "HelpToolsAvailable() not yet called");
5528 
5529   return _CreateToolhelp32Snapshot(dwFlags, th32ProcessId);
5530 }
5531 
5532 BOOL os::Kernel32Dll::Module32First(HANDLE hSnapshot,LPMODULEENTRY32 lpme) {
5533   assert(initialized && _Module32First != NULL,
5534     "HelpToolsAvailable() not yet called");
5535 
5536   return _Module32First(hSnapshot, lpme);
5537 }
5538 
5539 inline BOOL os::Kernel32Dll::Module32Next(HANDLE hSnapshot,LPMODULEENTRY32 lpme) {
5540   assert(initialized && _Module32Next != NULL,
5541     "HelpToolsAvailable() not yet called");
5542 
5543   return _Module32Next(hSnapshot, lpme);
5544 }
5545 
5546 
5547 BOOL os::Kernel32Dll::GetNativeSystemInfoAvailable() {
5548   if (!initialized) {
5549     initialize();
5550   }
5551   return _GetNativeSystemInfo != NULL;
5552 }
5553 
5554 void os::Kernel32Dll::GetNativeSystemInfo(LPSYSTEM_INFO lpSystemInfo) {
5555   assert(initialized && _GetNativeSystemInfo != NULL,
5556     "GetNativeSystemInfoAvailable() not yet called");
5557 
5558   _GetNativeSystemInfo(lpSystemInfo);
5559 }
5560 
5561 // PSAPI API
5562 
5563 
5564 typedef BOOL (WINAPI *EnumProcessModules_Fn)(HANDLE, HMODULE *, DWORD, LPDWORD);
5565 typedef BOOL (WINAPI *GetModuleFileNameEx_Fn)(HANDLE, HMODULE, LPTSTR, DWORD);;
5566 typedef BOOL (WINAPI *GetModuleInformation_Fn)(HANDLE, HMODULE, LPMODULEINFO, DWORD);
5567 
5568 EnumProcessModules_Fn   os::PSApiDll::_EnumProcessModules = NULL;
5569 GetModuleFileNameEx_Fn  os::PSApiDll::_GetModuleFileNameEx = NULL;
5570 GetModuleInformation_Fn os::PSApiDll::_GetModuleInformation = NULL;
5571 BOOL                    os::PSApiDll::initialized = FALSE;
5572 
5573 void os::PSApiDll::initialize() {
5574   if (!initialized) {
5575     HMODULE handle = os::win32::load_Windows_dll("PSAPI.DLL", NULL, 0);
5576     if (handle != NULL) {
5577       _EnumProcessModules = (EnumProcessModules_Fn)::GetProcAddress(handle,
5578         "EnumProcessModules");
5579       _GetModuleFileNameEx = (GetModuleFileNameEx_Fn)::GetProcAddress(handle,
5580         "GetModuleFileNameExA");
5581       _GetModuleInformation = (GetModuleInformation_Fn)::GetProcAddress(handle,
5582         "GetModuleInformation");
5583     }
5584     initialized = TRUE;
5585   }
5586 }
5587 
5588 
5589 
5590 BOOL os::PSApiDll::EnumProcessModules(HANDLE hProcess, HMODULE *lpModule, DWORD cb, LPDWORD lpcbNeeded) {
5591   assert(initialized && _EnumProcessModules != NULL,
5592     "PSApiAvailable() not yet called");
5593   return _EnumProcessModules(hProcess, lpModule, cb, lpcbNeeded);
5594 }
5595 
5596 DWORD os::PSApiDll::GetModuleFileNameEx(HANDLE hProcess, HMODULE hModule, LPTSTR lpFilename, DWORD nSize) {
5597   assert(initialized && _GetModuleFileNameEx != NULL,
5598     "PSApiAvailable() not yet called");
5599   return _GetModuleFileNameEx(hProcess, hModule, lpFilename, nSize);
5600 }
5601 
5602 BOOL os::PSApiDll::GetModuleInformation(HANDLE hProcess, HMODULE hModule, LPMODULEINFO lpmodinfo, DWORD cb) {
5603   assert(initialized && _GetModuleInformation != NULL,
5604     "PSApiAvailable() not yet called");
5605   return _GetModuleInformation(hProcess, hModule, lpmodinfo, cb);
5606 }
5607 
5608 BOOL os::PSApiDll::PSApiAvailable() {
5609   if (!initialized) {
5610     initialize();
5611   }
5612   return _EnumProcessModules != NULL &&
5613     _GetModuleFileNameEx != NULL &&
5614     _GetModuleInformation != NULL;
5615 }
5616 
5617 
5618 // WinSock2 API
5619 typedef int (PASCAL FAR* WSAStartup_Fn)(WORD, LPWSADATA);
5620 typedef struct hostent *(PASCAL FAR *gethostbyname_Fn)(...);
5621 
5622 WSAStartup_Fn    os::WinSock2Dll::_WSAStartup = NULL;
5623 gethostbyname_Fn os::WinSock2Dll::_gethostbyname = NULL;
5624 BOOL             os::WinSock2Dll::initialized = FALSE;
5625 
5626 void os::WinSock2Dll::initialize() {
5627   if (!initialized) {
5628     HMODULE handle = os::win32::load_Windows_dll("ws2_32.dll", NULL, 0);
5629     if (handle != NULL) {
5630       _WSAStartup = (WSAStartup_Fn)::GetProcAddress(handle, "WSAStartup");
5631       _gethostbyname = (gethostbyname_Fn)::GetProcAddress(handle, "gethostbyname");
5632     }
5633     initialized = TRUE;
5634   }
5635 }
5636 
5637 
5638 BOOL os::WinSock2Dll::WSAStartup(WORD wVersionRequested, LPWSADATA lpWSAData) {
5639   assert(initialized && _WSAStartup != NULL,
5640     "WinSock2Available() not yet called");
5641   return _WSAStartup(wVersionRequested, lpWSAData);
5642 }
5643 
5644 struct hostent* os::WinSock2Dll::gethostbyname(const char *name) {
5645   assert(initialized && _gethostbyname != NULL,
5646     "WinSock2Available() not yet called");
5647   return _gethostbyname(name);
5648 }
5649 
5650 BOOL os::WinSock2Dll::WinSock2Available() {
5651   if (!initialized) {
5652     initialize();
5653   }
5654   return _WSAStartup != NULL &&
5655     _gethostbyname != NULL;
5656 }
5657 
5658 typedef BOOL (WINAPI *AdjustTokenPrivileges_Fn)(HANDLE, BOOL, PTOKEN_PRIVILEGES, DWORD, PTOKEN_PRIVILEGES, PDWORD);
5659 typedef BOOL (WINAPI *OpenProcessToken_Fn)(HANDLE, DWORD, PHANDLE);
5660 typedef BOOL (WINAPI *LookupPrivilegeValue_Fn)(LPCTSTR, LPCTSTR, PLUID);
5661 
5662 AdjustTokenPrivileges_Fn os::Advapi32Dll::_AdjustTokenPrivileges = NULL;
5663 OpenProcessToken_Fn      os::Advapi32Dll::_OpenProcessToken = NULL;
5664 LookupPrivilegeValue_Fn  os::Advapi32Dll::_LookupPrivilegeValue = NULL;
5665 BOOL                     os::Advapi32Dll::initialized = FALSE;
5666 
5667 void os::Advapi32Dll::initialize() {
5668   if (!initialized) {
5669     HMODULE handle = os::win32::load_Windows_dll("advapi32.dll", NULL, 0);
5670     if (handle != NULL) {
5671       _AdjustTokenPrivileges = (AdjustTokenPrivileges_Fn)::GetProcAddress(handle,
5672         "AdjustTokenPrivileges");
5673       _OpenProcessToken = (OpenProcessToken_Fn)::GetProcAddress(handle,
5674         "OpenProcessToken");
5675       _LookupPrivilegeValue = (LookupPrivilegeValue_Fn)::GetProcAddress(handle,
5676         "LookupPrivilegeValueA");
5677     }
5678     initialized = TRUE;
5679   }
5680 }
5681 
5682 BOOL os::Advapi32Dll::AdjustTokenPrivileges(HANDLE TokenHandle,
5683    BOOL DisableAllPrivileges, PTOKEN_PRIVILEGES NewState, DWORD BufferLength,
5684    PTOKEN_PRIVILEGES PreviousState, PDWORD ReturnLength) {
5685    assert(initialized && _AdjustTokenPrivileges != NULL,
5686      "AdvapiAvailable() not yet called");
5687    return _AdjustTokenPrivileges(TokenHandle, DisableAllPrivileges, NewState,
5688        BufferLength, PreviousState, ReturnLength);
5689 }
5690 
5691 BOOL os::Advapi32Dll::OpenProcessToken(HANDLE ProcessHandle, DWORD DesiredAccess,
5692   PHANDLE TokenHandle) {
5693    assert(initialized && _OpenProcessToken != NULL,
5694      "AdvapiAvailable() not yet called");
5695     return _OpenProcessToken(ProcessHandle, DesiredAccess, TokenHandle);
5696 }
5697 
5698 BOOL os::Advapi32Dll::LookupPrivilegeValue(LPCTSTR lpSystemName, LPCTSTR lpName, PLUID lpLuid) {
5699    assert(initialized && _LookupPrivilegeValue != NULL,
5700      "AdvapiAvailable() not yet called");
5701   return _LookupPrivilegeValue(lpSystemName, lpName, lpLuid);
5702 }
5703 
5704 BOOL os::Advapi32Dll::AdvapiAvailable() {
5705   if (!initialized) {
5706     initialize();
5707   }
5708   return _AdjustTokenPrivileges != NULL &&
5709     _OpenProcessToken != NULL &&
5710     _LookupPrivilegeValue != NULL;
5711 }
5712 
5713 #endif
5714 
5715 #ifndef PRODUCT
5716 
5717 // test the code path in reserve_memory_special() that tries to allocate memory in a single
5718 // contiguous memory block at a particular address.
5719 // The test first tries to find a good approximate address to allocate at by using the same
5720 // method to allocate some memory at any address. The test then tries to allocate memory in
5721 // the vicinity (not directly after it to avoid possible by-chance use of that location)
5722 // This is of course only some dodgy assumption, there is no guarantee that the vicinity of
5723 // the previously allocated memory is available for allocation. The only actual failure
5724 // that is reported is when the test tries to allocate at a particular location but gets a
5725 // different valid one. A NULL return value at this point is not considered an error but may
5726 // be legitimate.
5727 // If -XX:+VerboseInternalVMTests is enabled, print some explanatory messages.
5728 void TestReserveMemorySpecial_test() {
5729   if (!UseLargePages) {
5730     if (VerboseInternalVMTests) {
5731       gclog_or_tty->print("Skipping test because large pages are disabled");
5732     }
5733     return;
5734   }
5735   // save current value of globals
5736   bool old_use_large_pages_individual_allocation = UseLargePagesIndividualAllocation;
5737   bool old_use_numa_interleaving = UseNUMAInterleaving;
5738 
5739   // set globals to make sure we hit the correct code path
5740   UseLargePagesIndividualAllocation = UseNUMAInterleaving = false;
5741 
5742   // do an allocation at an address selected by the OS to get a good one.
5743   const size_t large_allocation_size = os::large_page_size() * 4;
5744   char* result = os::reserve_memory_special(large_allocation_size, os::large_page_size(), NULL, false);
5745   if (result == NULL) {
5746     if (VerboseInternalVMTests) {
5747       gclog_or_tty->print("Failed to allocate control block with size "SIZE_FORMAT". Skipping remainder of test.",
5748         large_allocation_size);
5749     }
5750   } else {
5751     os::release_memory_special(result, large_allocation_size);
5752 
5753     // allocate another page within the recently allocated memory area which seems to be a good location. At least
5754     // we managed to get it once.
5755     const size_t expected_allocation_size = os::large_page_size();
5756     char* expected_location = result + os::large_page_size();
5757     char* actual_location = os::reserve_memory_special(expected_allocation_size, os::large_page_size(), expected_location, false);
5758     if (actual_location == NULL) {
5759       if (VerboseInternalVMTests) {
5760         gclog_or_tty->print("Failed to allocate any memory at "PTR_FORMAT" size "SIZE_FORMAT". Skipping remainder of test.",
5761           expected_location, large_allocation_size);
5762       }
5763     } else {
5764       // release memory
5765       os::release_memory_special(actual_location, expected_allocation_size);
5766       // only now check, after releasing any memory to avoid any leaks.
5767       assert(actual_location == expected_location,
5768         err_msg("Failed to allocate memory at requested location "PTR_FORMAT" of size "SIZE_FORMAT", is "PTR_FORMAT" instead",
5769           expected_location, expected_allocation_size, actual_location));
5770     }
5771   }
5772 
5773   // restore globals
5774   UseLargePagesIndividualAllocation = old_use_large_pages_individual_allocation;
5775   UseNUMAInterleaving = old_use_numa_interleaving;
5776 }
5777 #endif // PRODUCT
5778