1 /*
   2  * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // Must be at least Windows 2000 or XP to use IsDebuggerPresent
  26 #define _WIN32_WINNT 0x500
  27 
  28 // no precompiled headers
  29 #include "classfile/classLoader.hpp"
  30 #include "classfile/systemDictionary.hpp"
  31 #include "classfile/vmSymbols.hpp"
  32 #include "code/icBuffer.hpp"
  33 #include "code/vtableStubs.hpp"
  34 #include "compiler/compileBroker.hpp"
  35 #include "compiler/disassembler.hpp"
  36 #include "interpreter/interpreter.hpp"
  37 #include "jvm_windows.h"
  38 #include "memory/allocation.inline.hpp"
  39 #include "memory/filemap.hpp"
  40 #include "mutex_windows.inline.hpp"
  41 #include "oops/oop.inline.hpp"
  42 #include "os_share_windows.hpp"
  43 #include "prims/jniFastGetField.hpp"
  44 #include "prims/jvm.h"
  45 #include "prims/jvm_misc.hpp"
  46 #include "runtime/arguments.hpp"
  47 #include "runtime/extendedPC.hpp"
  48 #include "runtime/globals.hpp"
  49 #include "runtime/interfaceSupport.hpp"
  50 #include "runtime/java.hpp"
  51 #include "runtime/javaCalls.hpp"
  52 #include "runtime/mutexLocker.hpp"
  53 #include "runtime/objectMonitor.hpp"
  54 #include "runtime/osThread.hpp"
  55 #include "runtime/perfMemory.hpp"
  56 #include "runtime/sharedRuntime.hpp"
  57 #include "runtime/statSampler.hpp"
  58 #include "runtime/stubRoutines.hpp"
  59 #include "runtime/thread.inline.hpp"
  60 #include "runtime/threadCritical.hpp"
  61 #include "runtime/timer.hpp"
  62 #include "services/attachListener.hpp"
  63 #include "services/memTracker.hpp"
  64 #include "services/runtimeService.hpp"
  65 #include "utilities/decoder.hpp"
  66 #include "utilities/defaultStream.hpp"
  67 #include "utilities/events.hpp"
  68 #include "utilities/growableArray.hpp"
  69 #include "utilities/vmError.hpp"
  70 
  71 #ifdef _DEBUG
  72 #include <crtdbg.h>
  73 #endif
  74 
  75 
  76 #include <windows.h>
  77 #include <sys/types.h>
  78 #include <sys/stat.h>
  79 #include <sys/timeb.h>
  80 #include <objidl.h>
  81 #include <shlobj.h>
  82 
  83 #include <malloc.h>
  84 #include <signal.h>
  85 #include <direct.h>
  86 #include <errno.h>
  87 #include <fcntl.h>
  88 #include <io.h>
  89 #include <process.h>              // For _beginthreadex(), _endthreadex()
  90 #include <imagehlp.h>             // For os::dll_address_to_function_name
  91 /* for enumerating dll libraries */
  92 #include <vdmdbg.h>
  93 
  94 // for timer info max values which include all bits
  95 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
  96 
  97 // For DLL loading/load error detection
  98 // Values of PE COFF
  99 #define IMAGE_FILE_PTR_TO_SIGNATURE 0x3c
 100 #define IMAGE_FILE_SIGNATURE_LENGTH 4
 101 
 102 static HANDLE main_process;
 103 static HANDLE main_thread;
 104 static int    main_thread_id;
 105 
 106 static FILETIME process_creation_time;
 107 static FILETIME process_exit_time;
 108 static FILETIME process_user_time;
 109 static FILETIME process_kernel_time;
 110 
 111 #ifdef _M_IA64
 112 #define __CPU__ ia64
 113 #elif _M_AMD64
 114 #define __CPU__ amd64
 115 #else
 116 #define __CPU__ i486
 117 #endif
 118 
 119 // save DLL module handle, used by GetModuleFileName
 120 
 121 HINSTANCE vm_lib_handle;
 122 
 123 BOOL WINAPI DllMain(HINSTANCE hinst, DWORD reason, LPVOID reserved) {
 124   switch (reason) {
 125     case DLL_PROCESS_ATTACH:
 126       vm_lib_handle = hinst;
 127       if(ForceTimeHighResolution)
 128         timeBeginPeriod(1L);
 129       break;
 130     case DLL_PROCESS_DETACH:
 131       if(ForceTimeHighResolution)
 132         timeEndPeriod(1L);
 133       break;
 134     default:
 135       break;
 136   }
 137   return true;
 138 }
 139 
 140 static inline double fileTimeAsDouble(FILETIME* time) {
 141   const double high  = (double) ((unsigned int) ~0);
 142   const double split = 10000000.0;
 143   double result = (time->dwLowDateTime / split) +
 144                    time->dwHighDateTime * (high/split);
 145   return result;
 146 }
 147 
 148 // Implementation of os
 149 
 150 bool os::getenv(const char* name, char* buffer, int len) {
 151  int result = GetEnvironmentVariable(name, buffer, len);
 152  return result > 0 && result < len;
 153 }
 154 
 155 
 156 // No setuid programs under Windows.
 157 bool os::have_special_privileges() {
 158   return false;
 159 }
 160 
 161 
 162 // This method is  a periodic task to check for misbehaving JNI applications
 163 // under CheckJNI, we can add any periodic checks here.
 164 // For Windows at the moment does nothing
 165 void os::run_periodic_checks() {
 166   return;
 167 }
 168 
 169 // previous UnhandledExceptionFilter, if there is one
 170 static LPTOP_LEVEL_EXCEPTION_FILTER prev_uef_handler = NULL;
 171 
 172 LONG WINAPI Handle_FLT_Exception(struct _EXCEPTION_POINTERS* exceptionInfo);
 173 void os::init_system_properties_values() {
 174   /* sysclasspath, java_home, dll_dir */
 175   {
 176       char *home_path;
 177       char *dll_path;
 178       char *pslash;
 179       char *bin = "\\bin";
 180       char home_dir[MAX_PATH];
 181 
 182       if (!getenv("_ALT_JAVA_HOME_DIR", home_dir, MAX_PATH)) {
 183           os::jvm_path(home_dir, sizeof(home_dir));
 184           // Found the full path to jvm.dll.
 185           // Now cut the path to <java_home>/jre if we can.
 186           *(strrchr(home_dir, '\\')) = '\0';  /* get rid of \jvm.dll */
 187           pslash = strrchr(home_dir, '\\');
 188           if (pslash != NULL) {
 189               *pslash = '\0';                 /* get rid of \{client|server} */
 190               pslash = strrchr(home_dir, '\\');
 191               if (pslash != NULL)
 192                   *pslash = '\0';             /* get rid of \bin */
 193           }
 194       }
 195 
 196       home_path = NEW_C_HEAP_ARRAY(char, strlen(home_dir) + 1, mtInternal);
 197       if (home_path == NULL)
 198           return;
 199       strcpy(home_path, home_dir);
 200       Arguments::set_java_home(home_path);
 201 
 202       dll_path = NEW_C_HEAP_ARRAY(char, strlen(home_dir) + strlen(bin) + 1, mtInternal);
 203       if (dll_path == NULL)
 204           return;
 205       strcpy(dll_path, home_dir);
 206       strcat(dll_path, bin);
 207       Arguments::set_dll_dir(dll_path);
 208 
 209       if (!set_boot_path('\\', ';'))
 210           return;
 211   }
 212 
 213   /* library_path */
 214   #define EXT_DIR "\\lib\\ext"
 215   #define BIN_DIR "\\bin"
 216   #define PACKAGE_DIR "\\Sun\\Java"
 217   {
 218     /* Win32 library search order (See the documentation for LoadLibrary):
 219      *
 220      * 1. The directory from which application is loaded.
 221      * 2. The system wide Java Extensions directory (Java only)
 222      * 3. System directory (GetSystemDirectory)
 223      * 4. Windows directory (GetWindowsDirectory)
 224      * 5. The PATH environment variable
 225      * 6. The current directory
 226      */
 227 
 228     char *library_path;
 229     char tmp[MAX_PATH];
 230     char *path_str = ::getenv("PATH");
 231 
 232     library_path = NEW_C_HEAP_ARRAY(char, MAX_PATH * 5 + sizeof(PACKAGE_DIR) +
 233         sizeof(BIN_DIR) + (path_str ? strlen(path_str) : 0) + 10, mtInternal);
 234 
 235     library_path[0] = '\0';
 236 
 237     GetModuleFileName(NULL, tmp, sizeof(tmp));
 238     *(strrchr(tmp, '\\')) = '\0';
 239     strcat(library_path, tmp);
 240 
 241     GetWindowsDirectory(tmp, sizeof(tmp));
 242     strcat(library_path, ";");
 243     strcat(library_path, tmp);
 244     strcat(library_path, PACKAGE_DIR BIN_DIR);
 245 
 246     GetSystemDirectory(tmp, sizeof(tmp));
 247     strcat(library_path, ";");
 248     strcat(library_path, tmp);
 249 
 250     GetWindowsDirectory(tmp, sizeof(tmp));
 251     strcat(library_path, ";");
 252     strcat(library_path, tmp);
 253 
 254     if (path_str) {
 255         strcat(library_path, ";");
 256         strcat(library_path, path_str);
 257     }
 258 
 259     strcat(library_path, ";.");
 260 
 261     Arguments::set_library_path(library_path);
 262     FREE_C_HEAP_ARRAY(char, library_path, mtInternal);
 263   }
 264 
 265   /* Default extensions directory */
 266   {
 267     char path[MAX_PATH];
 268     char buf[2 * MAX_PATH + 2 * sizeof(EXT_DIR) + sizeof(PACKAGE_DIR) + 1];
 269     GetWindowsDirectory(path, MAX_PATH);
 270     sprintf(buf, "%s%s;%s%s%s", Arguments::get_java_home(), EXT_DIR,
 271         path, PACKAGE_DIR, EXT_DIR);
 272     Arguments::set_ext_dirs(buf);
 273   }
 274   #undef EXT_DIR
 275   #undef BIN_DIR
 276   #undef PACKAGE_DIR
 277 
 278   /* Default endorsed standards directory. */
 279   {
 280     #define ENDORSED_DIR "\\lib\\endorsed"
 281     size_t len = strlen(Arguments::get_java_home()) + sizeof(ENDORSED_DIR);
 282     char * buf = NEW_C_HEAP_ARRAY(char, len, mtInternal);
 283     sprintf(buf, "%s%s", Arguments::get_java_home(), ENDORSED_DIR);
 284     Arguments::set_endorsed_dirs(buf);
 285     #undef ENDORSED_DIR
 286   }
 287 
 288 #ifndef _WIN64
 289   // set our UnhandledExceptionFilter and save any previous one
 290   prev_uef_handler = SetUnhandledExceptionFilter(Handle_FLT_Exception);
 291 #endif
 292 
 293   // Done
 294   return;
 295 }
 296 
 297 void os::breakpoint() {
 298   DebugBreak();
 299 }
 300 
 301 // Invoked from the BREAKPOINT Macro
 302 extern "C" void breakpoint() {
 303   os::breakpoint();
 304 }
 305 
 306 /*
 307  * RtlCaptureStackBackTrace Windows API may not exist prior to Windows XP.
 308  * So far, this method is only used by Native Memory Tracking, which is
 309  * only supported on Windows XP or later.
 310  */
 311 address os::get_caller_pc(int n) {
 312 #ifdef _NMT_NOINLINE_
 313   n ++;
 314 #endif
 315   address pc;
 316   if (os::Kernel32Dll::RtlCaptureStackBackTrace(n + 1, 1, (PVOID*)&pc, NULL) == 1) {
 317     return pc;
 318   }
 319   return NULL;
 320 }
 321 
 322 
 323 // os::current_stack_base()
 324 //
 325 //   Returns the base of the stack, which is the stack's
 326 //   starting address.  This function must be called
 327 //   while running on the stack of the thread being queried.
 328 
 329 address os::current_stack_base() {
 330   MEMORY_BASIC_INFORMATION minfo;
 331   address stack_bottom;
 332   size_t stack_size;
 333 
 334   VirtualQuery(&minfo, &minfo, sizeof(minfo));
 335   stack_bottom =  (address)minfo.AllocationBase;
 336   stack_size = minfo.RegionSize;
 337 
 338   // Add up the sizes of all the regions with the same
 339   // AllocationBase.
 340   while( 1 )
 341   {
 342     VirtualQuery(stack_bottom+stack_size, &minfo, sizeof(minfo));
 343     if ( stack_bottom == (address)minfo.AllocationBase )
 344       stack_size += minfo.RegionSize;
 345     else
 346       break;
 347   }
 348 
 349 #ifdef _M_IA64
 350   // IA64 has memory and register stacks
 351   //
 352   // This is the stack layout you get on NT/IA64 if you specify 1MB stack limit
 353   // at thread creation (1MB backing store growing upwards, 1MB memory stack
 354   // growing downwards, 2MB summed up)
 355   //
 356   // ...
 357   // ------- top of stack (high address) -----
 358   // |
 359   // |      1MB
 360   // |      Backing Store (Register Stack)
 361   // |
 362   // |         / \
 363   // |          |
 364   // |          |
 365   // |          |
 366   // ------------------------ stack base -----
 367   // |      1MB
 368   // |      Memory Stack
 369   // |
 370   // |          |
 371   // |          |
 372   // |          |
 373   // |         \ /
 374   // |
 375   // ----- bottom of stack (low address) -----
 376   // ...
 377 
 378   stack_size = stack_size / 2;
 379 #endif
 380   return stack_bottom + stack_size;
 381 }
 382 
 383 size_t os::current_stack_size() {
 384   size_t sz;
 385   MEMORY_BASIC_INFORMATION minfo;
 386   VirtualQuery(&minfo, &minfo, sizeof(minfo));
 387   sz = (size_t)os::current_stack_base() - (size_t)minfo.AllocationBase;
 388   return sz;
 389 }
 390 
 391 struct tm* os::localtime_pd(const time_t* clock, struct tm* res) {
 392   const struct tm* time_struct_ptr = localtime(clock);
 393   if (time_struct_ptr != NULL) {
 394     *res = *time_struct_ptr;
 395     return res;
 396   }
 397   return NULL;
 398 }
 399 
 400 LONG WINAPI topLevelExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo);
 401 
 402 // Thread start routine for all new Java threads
 403 static unsigned __stdcall java_start(Thread* thread) {
 404   // Try to randomize the cache line index of hot stack frames.
 405   // This helps when threads of the same stack traces evict each other's
 406   // cache lines. The threads can be either from the same JVM instance, or
 407   // from different JVM instances. The benefit is especially true for
 408   // processors with hyperthreading technology.
 409   static int counter = 0;
 410   int pid = os::current_process_id();
 411   _alloca(((pid ^ counter++) & 7) * 128);
 412 
 413   OSThread* osthr = thread->osthread();
 414   assert(osthr->get_state() == RUNNABLE, "invalid os thread state");
 415 
 416   if (UseNUMA) {
 417     int lgrp_id = os::numa_get_group_id();
 418     if (lgrp_id != -1) {
 419       thread->set_lgrp_id(lgrp_id);
 420     }
 421   }
 422 
 423 
 424   // Install a win32 structured exception handler around every thread created
 425   // by VM, so VM can genrate error dump when an exception occurred in non-
 426   // Java thread (e.g. VM thread).
 427   __try {
 428      thread->run();
 429   } __except(topLevelExceptionFilter(
 430              (_EXCEPTION_POINTERS*)_exception_info())) {
 431       // Nothing to do.
 432   }
 433 
 434   // One less thread is executing
 435   // When the VMThread gets here, the main thread may have already exited
 436   // which frees the CodeHeap containing the Atomic::add code
 437   if (thread != VMThread::vm_thread() && VMThread::vm_thread() != NULL) {
 438     Atomic::dec_ptr((intptr_t*)&os::win32::_os_thread_count);
 439   }
 440 
 441   return 0;
 442 }
 443 
 444 static OSThread* create_os_thread(Thread* thread, HANDLE thread_handle, int thread_id) {
 445   // Allocate the OSThread object
 446   OSThread* osthread = new OSThread(NULL, NULL);
 447   if (osthread == NULL) return NULL;
 448 
 449   // Initialize support for Java interrupts
 450   HANDLE interrupt_event = CreateEvent(NULL, true, false, NULL);
 451   if (interrupt_event == NULL) {
 452     delete osthread;
 453     return NULL;
 454   }
 455   osthread->set_interrupt_event(interrupt_event);
 456 
 457   // Store info on the Win32 thread into the OSThread
 458   osthread->set_thread_handle(thread_handle);
 459   osthread->set_thread_id(thread_id);
 460 
 461   if (UseNUMA) {
 462     int lgrp_id = os::numa_get_group_id();
 463     if (lgrp_id != -1) {
 464       thread->set_lgrp_id(lgrp_id);
 465     }
 466   }
 467 
 468   // Initial thread state is INITIALIZED, not SUSPENDED
 469   osthread->set_state(INITIALIZED);
 470 
 471   return osthread;
 472 }
 473 
 474 
 475 bool os::create_attached_thread(JavaThread* thread) {
 476 #ifdef ASSERT
 477   thread->verify_not_published();
 478 #endif
 479   HANDLE thread_h;
 480   if (!DuplicateHandle(main_process, GetCurrentThread(), GetCurrentProcess(),
 481                        &thread_h, THREAD_ALL_ACCESS, false, 0)) {
 482     fatal("DuplicateHandle failed\n");
 483   }
 484   OSThread* osthread = create_os_thread(thread, thread_h,
 485                                         (int)current_thread_id());
 486   if (osthread == NULL) {
 487      return false;
 488   }
 489 
 490   // Initial thread state is RUNNABLE
 491   osthread->set_state(RUNNABLE);
 492 
 493   thread->set_osthread(osthread);
 494   return true;
 495 }
 496 
 497 bool os::create_main_thread(JavaThread* thread) {
 498 #ifdef ASSERT
 499   thread->verify_not_published();
 500 #endif
 501   if (_starting_thread == NULL) {
 502     _starting_thread = create_os_thread(thread, main_thread, main_thread_id);
 503      if (_starting_thread == NULL) {
 504         return false;
 505      }
 506   }
 507 
 508   // The primordial thread is runnable from the start)
 509   _starting_thread->set_state(RUNNABLE);
 510 
 511   thread->set_osthread(_starting_thread);
 512   return true;
 513 }
 514 
 515 // Allocate and initialize a new OSThread
 516 bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
 517   unsigned thread_id;
 518 
 519   // Allocate the OSThread object
 520   OSThread* osthread = new OSThread(NULL, NULL);
 521   if (osthread == NULL) {
 522     return false;
 523   }
 524 
 525   // Initialize support for Java interrupts
 526   HANDLE interrupt_event = CreateEvent(NULL, true, false, NULL);
 527   if (interrupt_event == NULL) {
 528     delete osthread;
 529     return NULL;
 530   }
 531   osthread->set_interrupt_event(interrupt_event);
 532   osthread->set_interrupted(false);
 533 
 534   thread->set_osthread(osthread);
 535 
 536   if (stack_size == 0) {
 537     switch (thr_type) {
 538     case os::java_thread:
 539       // Java threads use ThreadStackSize which default value can be changed with the flag -Xss
 540       if (JavaThread::stack_size_at_create() > 0)
 541         stack_size = JavaThread::stack_size_at_create();
 542       break;
 543     case os::compiler_thread:
 544       if (CompilerThreadStackSize > 0) {
 545         stack_size = (size_t)(CompilerThreadStackSize * K);
 546         break;
 547       } // else fall through:
 548         // use VMThreadStackSize if CompilerThreadStackSize is not defined
 549     case os::vm_thread:
 550     case os::pgc_thread:
 551     case os::cgc_thread:
 552     case os::watcher_thread:
 553       if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
 554       break;
 555     }
 556   }
 557 
 558   // Create the Win32 thread
 559   //
 560   // Contrary to what MSDN document says, "stack_size" in _beginthreadex()
 561   // does not specify stack size. Instead, it specifies the size of
 562   // initially committed space. The stack size is determined by
 563   // PE header in the executable. If the committed "stack_size" is larger
 564   // than default value in the PE header, the stack is rounded up to the
 565   // nearest multiple of 1MB. For example if the launcher has default
 566   // stack size of 320k, specifying any size less than 320k does not
 567   // affect the actual stack size at all, it only affects the initial
 568   // commitment. On the other hand, specifying 'stack_size' larger than
 569   // default value may cause significant increase in memory usage, because
 570   // not only the stack space will be rounded up to MB, but also the
 571   // entire space is committed upfront.
 572   //
 573   // Finally Windows XP added a new flag 'STACK_SIZE_PARAM_IS_A_RESERVATION'
 574   // for CreateThread() that can treat 'stack_size' as stack size. However we
 575   // are not supposed to call CreateThread() directly according to MSDN
 576   // document because JVM uses C runtime library. The good news is that the
 577   // flag appears to work with _beginthredex() as well.
 578 
 579 #ifndef STACK_SIZE_PARAM_IS_A_RESERVATION
 580 #define STACK_SIZE_PARAM_IS_A_RESERVATION  (0x10000)
 581 #endif
 582 
 583   HANDLE thread_handle =
 584     (HANDLE)_beginthreadex(NULL,
 585                            (unsigned)stack_size,
 586                            (unsigned (__stdcall *)(void*)) java_start,
 587                            thread,
 588                            CREATE_SUSPENDED | STACK_SIZE_PARAM_IS_A_RESERVATION,
 589                            &thread_id);
 590   if (thread_handle == NULL) {
 591     // perhaps STACK_SIZE_PARAM_IS_A_RESERVATION is not supported, try again
 592     // without the flag.
 593     thread_handle =
 594     (HANDLE)_beginthreadex(NULL,
 595                            (unsigned)stack_size,
 596                            (unsigned (__stdcall *)(void*)) java_start,
 597                            thread,
 598                            CREATE_SUSPENDED,
 599                            &thread_id);
 600   }
 601   if (thread_handle == NULL) {
 602     // Need to clean up stuff we've allocated so far
 603     CloseHandle(osthread->interrupt_event());
 604     thread->set_osthread(NULL);
 605     delete osthread;
 606     return NULL;
 607   }
 608 
 609   Atomic::inc_ptr((intptr_t*)&os::win32::_os_thread_count);
 610 
 611   // Store info on the Win32 thread into the OSThread
 612   osthread->set_thread_handle(thread_handle);
 613   osthread->set_thread_id(thread_id);
 614 
 615   // Initial thread state is INITIALIZED, not SUSPENDED
 616   osthread->set_state(INITIALIZED);
 617 
 618   // The thread is returned suspended (in state INITIALIZED), and is started higher up in the call chain
 619   return true;
 620 }
 621 
 622 
 623 // Free Win32 resources related to the OSThread
 624 void os::free_thread(OSThread* osthread) {
 625   assert(osthread != NULL, "osthread not set");
 626   CloseHandle(osthread->thread_handle());
 627   CloseHandle(osthread->interrupt_event());
 628   delete osthread;
 629 }
 630 
 631 static jlong first_filetime;
 632 static jlong initial_performance_count;
 633 static jlong performance_frequency;
 634 
 635 
 636 jlong as_long(LARGE_INTEGER x) {
 637   jlong result = 0; // initialization to avoid warning
 638   set_high(&result, x.HighPart);
 639   set_low(&result,  x.LowPart);
 640   return result;
 641 }
 642 
 643 
 644 jlong os::elapsed_counter() {
 645   LARGE_INTEGER count;
 646   if (win32::_has_performance_count) {
 647     QueryPerformanceCounter(&count);
 648     return as_long(count) - initial_performance_count;
 649   } else {
 650     FILETIME wt;
 651     GetSystemTimeAsFileTime(&wt);
 652     return (jlong_from(wt.dwHighDateTime, wt.dwLowDateTime) - first_filetime);
 653   }
 654 }
 655 
 656 
 657 jlong os::elapsed_frequency() {
 658   if (win32::_has_performance_count) {
 659     return performance_frequency;
 660   } else {
 661    // the FILETIME time is the number of 100-nanosecond intervals since January 1,1601.
 662    return 10000000;
 663   }
 664 }
 665 
 666 
 667 julong os::available_memory() {
 668   return win32::available_memory();
 669 }
 670 
 671 julong os::win32::available_memory() {
 672   // Use GlobalMemoryStatusEx() because GlobalMemoryStatus() may return incorrect
 673   // value if total memory is larger than 4GB
 674   MEMORYSTATUSEX ms;
 675   ms.dwLength = sizeof(ms);
 676   GlobalMemoryStatusEx(&ms);
 677 
 678   return (julong)ms.ullAvailPhys;
 679 }
 680 
 681 julong os::physical_memory() {
 682   return win32::physical_memory();
 683 }
 684 
 685 bool os::has_allocatable_memory_limit(julong* limit) {
 686   MEMORYSTATUSEX ms;
 687   ms.dwLength = sizeof(ms);
 688   GlobalMemoryStatusEx(&ms);
 689 #ifdef _LP64
 690   *limit = (julong)ms.ullAvailVirtual;
 691   return true;
 692 #else
 693   // Limit to 1400m because of the 2gb address space wall
 694   *limit = MIN2((julong)1400*M, (julong)ms.ullAvailVirtual);
 695   return true;
 696 #endif
 697 }
 698 
 699 // VC6 lacks DWORD_PTR
 700 #if _MSC_VER < 1300
 701 typedef UINT_PTR DWORD_PTR;
 702 #endif
 703 
 704 int os::active_processor_count() {
 705   DWORD_PTR lpProcessAffinityMask = 0;
 706   DWORD_PTR lpSystemAffinityMask = 0;
 707   int proc_count = processor_count();
 708   if (proc_count <= sizeof(UINT_PTR) * BitsPerByte &&
 709       GetProcessAffinityMask(GetCurrentProcess(), &lpProcessAffinityMask, &lpSystemAffinityMask)) {
 710     // Nof active processors is number of bits in process affinity mask
 711     int bitcount = 0;
 712     while (lpProcessAffinityMask != 0) {
 713       lpProcessAffinityMask = lpProcessAffinityMask & (lpProcessAffinityMask-1);
 714       bitcount++;
 715     }
 716     return bitcount;
 717   } else {
 718     return proc_count;
 719   }
 720 }
 721 
 722 void os::set_native_thread_name(const char *name) {
 723   // Not yet implemented.
 724   return;
 725 }
 726 
 727 bool os::distribute_processes(uint length, uint* distribution) {
 728   // Not yet implemented.
 729   return false;
 730 }
 731 
 732 bool os::bind_to_processor(uint processor_id) {
 733   // Not yet implemented.
 734   return false;
 735 }
 736 
 737 void os::win32::initialize_performance_counter() {
 738   LARGE_INTEGER count;
 739   if (QueryPerformanceFrequency(&count)) {
 740     win32::_has_performance_count = 1;
 741     performance_frequency = as_long(count);
 742     QueryPerformanceCounter(&count);
 743     initial_performance_count = as_long(count);
 744   } else {
 745     win32::_has_performance_count = 0;
 746     FILETIME wt;
 747     GetSystemTimeAsFileTime(&wt);
 748     first_filetime = jlong_from(wt.dwHighDateTime, wt.dwLowDateTime);
 749   }
 750 }
 751 
 752 
 753 double os::elapsedTime() {
 754   return (double) elapsed_counter() / (double) elapsed_frequency();
 755 }
 756 
 757 
 758 // Windows format:
 759 //   The FILETIME structure is a 64-bit value representing the number of 100-nanosecond intervals since January 1, 1601.
 760 // Java format:
 761 //   Java standards require the number of milliseconds since 1/1/1970
 762 
 763 // Constant offset - calculated using offset()
 764 static jlong  _offset   = 116444736000000000;
 765 // Fake time counter for reproducible results when debugging
 766 static jlong  fake_time = 0;
 767 
 768 #ifdef ASSERT
 769 // Just to be safe, recalculate the offset in debug mode
 770 static jlong _calculated_offset = 0;
 771 static int   _has_calculated_offset = 0;
 772 
 773 jlong offset() {
 774   if (_has_calculated_offset) return _calculated_offset;
 775   SYSTEMTIME java_origin;
 776   java_origin.wYear          = 1970;
 777   java_origin.wMonth         = 1;
 778   java_origin.wDayOfWeek     = 0; // ignored
 779   java_origin.wDay           = 1;
 780   java_origin.wHour          = 0;
 781   java_origin.wMinute        = 0;
 782   java_origin.wSecond        = 0;
 783   java_origin.wMilliseconds  = 0;
 784   FILETIME jot;
 785   if (!SystemTimeToFileTime(&java_origin, &jot)) {
 786     fatal(err_msg("Error = %d\nWindows error", GetLastError()));
 787   }
 788   _calculated_offset = jlong_from(jot.dwHighDateTime, jot.dwLowDateTime);
 789   _has_calculated_offset = 1;
 790   assert(_calculated_offset == _offset, "Calculated and constant time offsets must be equal");
 791   return _calculated_offset;
 792 }
 793 #else
 794 jlong offset() {
 795   return _offset;
 796 }
 797 #endif
 798 
 799 jlong windows_to_java_time(FILETIME wt) {
 800   jlong a = jlong_from(wt.dwHighDateTime, wt.dwLowDateTime);
 801   return (a - offset()) / 10000;
 802 }
 803 
 804 FILETIME java_to_windows_time(jlong l) {
 805   jlong a = (l * 10000) + offset();
 806   FILETIME result;
 807   result.dwHighDateTime = high(a);
 808   result.dwLowDateTime  = low(a);
 809   return result;
 810 }
 811 
 812 bool os::supports_vtime() { return true; }
 813 bool os::enable_vtime() { return false; }
 814 bool os::vtime_enabled() { return false; }
 815 
 816 double os::elapsedVTime() {
 817   FILETIME created;
 818   FILETIME exited;
 819   FILETIME kernel;
 820   FILETIME user;
 821   if (GetThreadTimes(GetCurrentThread(), &created, &exited, &kernel, &user) != 0) {
 822     // the resolution of windows_to_java_time() should be sufficient (ms)
 823     return (double) (windows_to_java_time(kernel) + windows_to_java_time(user)) / MILLIUNITS;
 824   } else {
 825     return elapsedTime();
 826   }
 827 }
 828 
 829 jlong os::javaTimeMillis() {
 830   if (UseFakeTimers) {
 831     return fake_time++;
 832   } else {
 833     FILETIME wt;
 834     GetSystemTimeAsFileTime(&wt);
 835     return windows_to_java_time(wt);
 836   }
 837 }
 838 
 839 jlong os::javaTimeNanos() {
 840   if (!win32::_has_performance_count) {
 841     return javaTimeMillis() * NANOSECS_PER_MILLISEC; // the best we can do.
 842   } else {
 843     LARGE_INTEGER current_count;
 844     QueryPerformanceCounter(&current_count);
 845     double current = as_long(current_count);
 846     double freq = performance_frequency;
 847     jlong time = (jlong)((current/freq) * NANOSECS_PER_SEC);
 848     return time;
 849   }
 850 }
 851 
 852 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
 853   if (!win32::_has_performance_count) {
 854     // javaTimeMillis() doesn't have much percision,
 855     // but it is not going to wrap -- so all 64 bits
 856     info_ptr->max_value = ALL_64_BITS;
 857 
 858     // this is a wall clock timer, so may skip
 859     info_ptr->may_skip_backward = true;
 860     info_ptr->may_skip_forward = true;
 861   } else {
 862     jlong freq = performance_frequency;
 863     if (freq < NANOSECS_PER_SEC) {
 864       // the performance counter is 64 bits and we will
 865       // be multiplying it -- so no wrap in 64 bits
 866       info_ptr->max_value = ALL_64_BITS;
 867     } else if (freq > NANOSECS_PER_SEC) {
 868       // use the max value the counter can reach to
 869       // determine the max value which could be returned
 870       julong max_counter = (julong)ALL_64_BITS;
 871       info_ptr->max_value = (jlong)(max_counter / (freq / NANOSECS_PER_SEC));
 872     } else {
 873       // the performance counter is 64 bits and we will
 874       // be using it directly -- so no wrap in 64 bits
 875       info_ptr->max_value = ALL_64_BITS;
 876     }
 877 
 878     // using a counter, so no skipping
 879     info_ptr->may_skip_backward = false;
 880     info_ptr->may_skip_forward = false;
 881   }
 882   info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
 883 }
 884 
 885 char* os::local_time_string(char *buf, size_t buflen) {
 886   SYSTEMTIME st;
 887   GetLocalTime(&st);
 888   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
 889                st.wYear, st.wMonth, st.wDay, st.wHour, st.wMinute, st.wSecond);
 890   return buf;
 891 }
 892 
 893 bool os::getTimesSecs(double* process_real_time,
 894                      double* process_user_time,
 895                      double* process_system_time) {
 896   HANDLE h_process = GetCurrentProcess();
 897   FILETIME create_time, exit_time, kernel_time, user_time;
 898   BOOL result = GetProcessTimes(h_process,
 899                                &create_time,
 900                                &exit_time,
 901                                &kernel_time,
 902                                &user_time);
 903   if (result != 0) {
 904     FILETIME wt;
 905     GetSystemTimeAsFileTime(&wt);
 906     jlong rtc_millis = windows_to_java_time(wt);
 907     jlong user_millis = windows_to_java_time(user_time);
 908     jlong system_millis = windows_to_java_time(kernel_time);
 909     *process_real_time = ((double) rtc_millis) / ((double) MILLIUNITS);
 910     *process_user_time = ((double) user_millis) / ((double) MILLIUNITS);
 911     *process_system_time = ((double) system_millis) / ((double) MILLIUNITS);
 912     return true;
 913   } else {
 914     return false;
 915   }
 916 }
 917 
 918 void os::shutdown() {
 919 
 920   // allow PerfMemory to attempt cleanup of any persistent resources
 921   perfMemory_exit();
 922 
 923   // flush buffered output, finish log files
 924   ostream_abort();
 925 
 926   // Check for abort hook
 927   abort_hook_t abort_hook = Arguments::abort_hook();
 928   if (abort_hook != NULL) {
 929     abort_hook();
 930   }
 931 }
 932 
 933 
 934 static BOOL  (WINAPI *_MiniDumpWriteDump)  ( HANDLE, DWORD, HANDLE, MINIDUMP_TYPE, PMINIDUMP_EXCEPTION_INFORMATION,
 935                                             PMINIDUMP_USER_STREAM_INFORMATION, PMINIDUMP_CALLBACK_INFORMATION);
 936 
 937 void os::check_or_create_dump(void* exceptionRecord, void* contextRecord, char* buffer, size_t bufferSize) {
 938   HINSTANCE dbghelp;
 939   EXCEPTION_POINTERS ep;
 940   MINIDUMP_EXCEPTION_INFORMATION mei;
 941   MINIDUMP_EXCEPTION_INFORMATION* pmei;
 942 
 943   HANDLE hProcess = GetCurrentProcess();
 944   DWORD processId = GetCurrentProcessId();
 945   HANDLE dumpFile;
 946   MINIDUMP_TYPE dumpType;
 947   static const char* cwd;
 948 
 949 // Default is to always create dump for debug builds, on product builds only dump on server versions of Windows.
 950 #ifndef ASSERT
 951   // If running on a client version of Windows and user has not explicitly enabled dumping
 952   if (!os::win32::is_windows_server() && !CreateMinidumpOnCrash) {
 953     VMError::report_coredump_status("Minidumps are not enabled by default on client versions of Windows", false);
 954     return;
 955     // If running on a server version of Windows and user has explictly disabled dumping
 956   } else if (os::win32::is_windows_server() && !FLAG_IS_DEFAULT(CreateMinidumpOnCrash) && !CreateMinidumpOnCrash) {
 957     VMError::report_coredump_status("Minidump has been disabled from the command line", false);
 958     return;
 959   }
 960 #else
 961   if (!FLAG_IS_DEFAULT(CreateMinidumpOnCrash) && !CreateMinidumpOnCrash) {
 962     VMError::report_coredump_status("Minidump has been disabled from the command line", false);
 963     return;
 964   }
 965 #endif
 966 
 967   dbghelp = os::win32::load_Windows_dll("DBGHELP.DLL", NULL, 0);
 968 
 969   if (dbghelp == NULL) {
 970     VMError::report_coredump_status("Failed to load dbghelp.dll", false);
 971     return;
 972   }
 973 
 974   _MiniDumpWriteDump = CAST_TO_FN_PTR(
 975     BOOL(WINAPI *)( HANDLE, DWORD, HANDLE, MINIDUMP_TYPE, PMINIDUMP_EXCEPTION_INFORMATION,
 976     PMINIDUMP_USER_STREAM_INFORMATION, PMINIDUMP_CALLBACK_INFORMATION),
 977     GetProcAddress(dbghelp, "MiniDumpWriteDump"));
 978 
 979   if (_MiniDumpWriteDump == NULL) {
 980     VMError::report_coredump_status("Failed to find MiniDumpWriteDump() in module dbghelp.dll", false);
 981     return;
 982   }
 983 
 984   dumpType = (MINIDUMP_TYPE)(MiniDumpWithFullMemory | MiniDumpWithHandleData);
 985 
 986 // Older versions of dbghelp.h doesn't contain all the dumptypes we want, dbghelp.h with
 987 // API_VERSION_NUMBER 11 or higher contains the ones we want though
 988 #if API_VERSION_NUMBER >= 11
 989   dumpType = (MINIDUMP_TYPE)(dumpType | MiniDumpWithFullMemoryInfo | MiniDumpWithThreadInfo |
 990     MiniDumpWithUnloadedModules);
 991 #endif
 992 
 993   cwd = get_current_directory(NULL, 0);
 994   jio_snprintf(buffer, bufferSize, "%s\\hs_err_pid%u.mdmp",cwd, current_process_id());
 995   dumpFile = CreateFile(buffer, GENERIC_WRITE, 0, NULL, CREATE_ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL);
 996 
 997   if (dumpFile == INVALID_HANDLE_VALUE) {
 998     VMError::report_coredump_status("Failed to create file for dumping", false);
 999     return;
1000   }
1001   if (exceptionRecord != NULL && contextRecord != NULL) {
1002     ep.ContextRecord = (PCONTEXT) contextRecord;
1003     ep.ExceptionRecord = (PEXCEPTION_RECORD) exceptionRecord;
1004 
1005     mei.ThreadId = GetCurrentThreadId();
1006     mei.ExceptionPointers = &ep;
1007     pmei = &mei;
1008   } else {
1009     pmei = NULL;
1010   }
1011 
1012 
1013   // Older versions of dbghelp.dll (the one shipped with Win2003 for example) may not support all
1014   // the dump types we really want. If first call fails, lets fall back to just use MiniDumpWithFullMemory then.
1015   if (_MiniDumpWriteDump(hProcess, processId, dumpFile, dumpType, pmei, NULL, NULL) == false &&
1016       _MiniDumpWriteDump(hProcess, processId, dumpFile, (MINIDUMP_TYPE)MiniDumpWithFullMemory, pmei, NULL, NULL) == false) {
1017         DWORD error = GetLastError();
1018         LPTSTR msgbuf = NULL;
1019 
1020         if (FormatMessage(FORMAT_MESSAGE_ALLOCATE_BUFFER |
1021                       FORMAT_MESSAGE_FROM_SYSTEM |
1022                       FORMAT_MESSAGE_IGNORE_INSERTS,
1023                       NULL, error, 0, (LPTSTR)&msgbuf, 0, NULL) != 0) {
1024 
1025           jio_snprintf(buffer, bufferSize, "Call to MiniDumpWriteDump() failed (Error 0x%x: %s)", error, msgbuf);
1026           LocalFree(msgbuf);
1027         } else {
1028           // Call to FormatMessage failed, just include the result from GetLastError
1029           jio_snprintf(buffer, bufferSize, "Call to MiniDumpWriteDump() failed (Error 0x%x)", error);
1030         }
1031         VMError::report_coredump_status(buffer, false);
1032   } else {
1033     VMError::report_coredump_status(buffer, true);
1034   }
1035 
1036   CloseHandle(dumpFile);
1037 }
1038 
1039 
1040 
1041 void os::abort(bool dump_core)
1042 {
1043   os::shutdown();
1044   // no core dump on Windows
1045   ::exit(1);
1046 }
1047 
1048 // Die immediately, no exit hook, no abort hook, no cleanup.
1049 void os::die() {
1050   _exit(-1);
1051 }
1052 
1053 // Directory routines copied from src/win32/native/java/io/dirent_md.c
1054 //  * dirent_md.c       1.15 00/02/02
1055 //
1056 // The declarations for DIR and struct dirent are in jvm_win32.h.
1057 
1058 /* Caller must have already run dirname through JVM_NativePath, which removes
1059    duplicate slashes and converts all instances of '/' into '\\'. */
1060 
1061 DIR *
1062 os::opendir(const char *dirname)
1063 {
1064     assert(dirname != NULL, "just checking");   // hotspot change
1065     DIR *dirp = (DIR *)malloc(sizeof(DIR), mtInternal);
1066     DWORD fattr;                                // hotspot change
1067     char alt_dirname[4] = { 0, 0, 0, 0 };
1068 
1069     if (dirp == 0) {
1070         errno = ENOMEM;
1071         return 0;
1072     }
1073 
1074     /*
1075      * Win32 accepts "\" in its POSIX stat(), but refuses to treat it
1076      * as a directory in FindFirstFile().  We detect this case here and
1077      * prepend the current drive name.
1078      */
1079     if (dirname[1] == '\0' && dirname[0] == '\\') {
1080         alt_dirname[0] = _getdrive() + 'A' - 1;
1081         alt_dirname[1] = ':';
1082         alt_dirname[2] = '\\';
1083         alt_dirname[3] = '\0';
1084         dirname = alt_dirname;
1085     }
1086 
1087     dirp->path = (char *)malloc(strlen(dirname) + 5, mtInternal);
1088     if (dirp->path == 0) {
1089         free(dirp, mtInternal);
1090         errno = ENOMEM;
1091         return 0;
1092     }
1093     strcpy(dirp->path, dirname);
1094 
1095     fattr = GetFileAttributes(dirp->path);
1096     if (fattr == 0xffffffff) {
1097         free(dirp->path, mtInternal);
1098         free(dirp, mtInternal);
1099         errno = ENOENT;
1100         return 0;
1101     } else if ((fattr & FILE_ATTRIBUTE_DIRECTORY) == 0) {
1102         free(dirp->path, mtInternal);
1103         free(dirp, mtInternal);
1104         errno = ENOTDIR;
1105         return 0;
1106     }
1107 
1108     /* Append "*.*", or possibly "\\*.*", to path */
1109     if (dirp->path[1] == ':'
1110         && (dirp->path[2] == '\0'
1111             || (dirp->path[2] == '\\' && dirp->path[3] == '\0'))) {
1112         /* No '\\' needed for cases like "Z:" or "Z:\" */
1113         strcat(dirp->path, "*.*");
1114     } else {
1115         strcat(dirp->path, "\\*.*");
1116     }
1117 
1118     dirp->handle = FindFirstFile(dirp->path, &dirp->find_data);
1119     if (dirp->handle == INVALID_HANDLE_VALUE) {
1120         if (GetLastError() != ERROR_FILE_NOT_FOUND) {
1121             free(dirp->path, mtInternal);
1122             free(dirp, mtInternal);
1123             errno = EACCES;
1124             return 0;
1125         }
1126     }
1127     return dirp;
1128 }
1129 
1130 /* parameter dbuf unused on Windows */
1131 
1132 struct dirent *
1133 os::readdir(DIR *dirp, dirent *dbuf)
1134 {
1135     assert(dirp != NULL, "just checking");      // hotspot change
1136     if (dirp->handle == INVALID_HANDLE_VALUE) {
1137         return 0;
1138     }
1139 
1140     strcpy(dirp->dirent.d_name, dirp->find_data.cFileName);
1141 
1142     if (!FindNextFile(dirp->handle, &dirp->find_data)) {
1143         if (GetLastError() == ERROR_INVALID_HANDLE) {
1144             errno = EBADF;
1145             return 0;
1146         }
1147         FindClose(dirp->handle);
1148         dirp->handle = INVALID_HANDLE_VALUE;
1149     }
1150 
1151     return &dirp->dirent;
1152 }
1153 
1154 int
1155 os::closedir(DIR *dirp)
1156 {
1157     assert(dirp != NULL, "just checking");      // hotspot change
1158     if (dirp->handle != INVALID_HANDLE_VALUE) {
1159         if (!FindClose(dirp->handle)) {
1160             errno = EBADF;
1161             return -1;
1162         }
1163         dirp->handle = INVALID_HANDLE_VALUE;
1164     }
1165     free(dirp->path, mtInternal);
1166     free(dirp, mtInternal);
1167     return 0;
1168 }
1169 
1170 // This must be hard coded because it's the system's temporary
1171 // directory not the java application's temp directory, ala java.io.tmpdir.
1172 const char* os::get_temp_directory() {
1173   static char path_buf[MAX_PATH];
1174   if (GetTempPath(MAX_PATH, path_buf)>0)
1175     return path_buf;
1176   else{
1177     path_buf[0]='\0';
1178     return path_buf;
1179   }
1180 }
1181 
1182 static bool file_exists(const char* filename) {
1183   if (filename == NULL || strlen(filename) == 0) {
1184     return false;
1185   }
1186   return GetFileAttributes(filename) != INVALID_FILE_ATTRIBUTES;
1187 }
1188 
1189 bool os::dll_build_name(char *buffer, size_t buflen,
1190                         const char* pname, const char* fname) {
1191   bool retval = false;
1192   const size_t pnamelen = pname ? strlen(pname) : 0;
1193   const char c = (pnamelen > 0) ? pname[pnamelen-1] : 0;
1194 
1195   // Return error on buffer overflow.
1196   if (pnamelen + strlen(fname) + 10 > buflen) {
1197     return retval;
1198   }
1199 
1200   if (pnamelen == 0) {
1201     jio_snprintf(buffer, buflen, "%s.dll", fname);
1202     retval = true;
1203   } else if (c == ':' || c == '\\') {
1204     jio_snprintf(buffer, buflen, "%s%s.dll", pname, fname);
1205     retval = true;
1206   } else if (strchr(pname, *os::path_separator()) != NULL) {
1207     int n;
1208     char** pelements = split_path(pname, &n);
1209     if (pelements == NULL) {
1210       return false;
1211     }
1212     for (int i = 0 ; i < n ; i++) {
1213       char* path = pelements[i];
1214       // Really shouldn't be NULL, but check can't hurt
1215       size_t plen = (path == NULL) ? 0 : strlen(path);
1216       if (plen == 0) {
1217         continue; // skip the empty path values
1218       }
1219       const char lastchar = path[plen - 1];
1220       if (lastchar == ':' || lastchar == '\\') {
1221         jio_snprintf(buffer, buflen, "%s%s.dll", path, fname);
1222       } else {
1223         jio_snprintf(buffer, buflen, "%s\\%s.dll", path, fname);
1224       }
1225       if (file_exists(buffer)) {
1226         retval = true;
1227         break;
1228       }
1229     }
1230     // release the storage
1231     for (int i = 0 ; i < n ; i++) {
1232       if (pelements[i] != NULL) {
1233         FREE_C_HEAP_ARRAY(char, pelements[i], mtInternal);
1234       }
1235     }
1236     if (pelements != NULL) {
1237       FREE_C_HEAP_ARRAY(char*, pelements, mtInternal);
1238     }
1239   } else {
1240     jio_snprintf(buffer, buflen, "%s\\%s.dll", pname, fname);
1241     retval = true;
1242   }
1243   return retval;
1244 }
1245 
1246 // Needs to be in os specific directory because windows requires another
1247 // header file <direct.h>
1248 const char* os::get_current_directory(char *buf, size_t buflen) {
1249   int n = static_cast<int>(buflen);
1250   if (buflen > INT_MAX)  n = INT_MAX;
1251   return _getcwd(buf, n);
1252 }
1253 
1254 //-----------------------------------------------------------
1255 // Helper functions for fatal error handler
1256 #ifdef _WIN64
1257 // Helper routine which returns true if address in
1258 // within the NTDLL address space.
1259 //
1260 static bool _addr_in_ntdll( address addr )
1261 {
1262   HMODULE hmod;
1263   MODULEINFO minfo;
1264 
1265   hmod = GetModuleHandle("NTDLL.DLL");
1266   if ( hmod == NULL ) return false;
1267   if ( !os::PSApiDll::GetModuleInformation( GetCurrentProcess(), hmod,
1268                                &minfo, sizeof(MODULEINFO)) )
1269     return false;
1270 
1271   if ( (addr >= minfo.lpBaseOfDll) &&
1272        (addr < (address)((uintptr_t)minfo.lpBaseOfDll + (uintptr_t)minfo.SizeOfImage)))
1273     return true;
1274   else
1275     return false;
1276 }
1277 #endif
1278 
1279 
1280 // Enumerate all modules for a given process ID
1281 //
1282 // Notice that Windows 95/98/Me and Windows NT/2000/XP have
1283 // different API for doing this. We use PSAPI.DLL on NT based
1284 // Windows and ToolHelp on 95/98/Me.
1285 
1286 // Callback function that is called by enumerate_modules() on
1287 // every DLL module.
1288 // Input parameters:
1289 //    int       pid,
1290 //    char*     module_file_name,
1291 //    address   module_base_addr,
1292 //    unsigned  module_size,
1293 //    void*     param
1294 typedef int (*EnumModulesCallbackFunc)(int, char *, address, unsigned, void *);
1295 
1296 // enumerate_modules for Windows NT, using PSAPI
1297 static int _enumerate_modules_winnt( int pid, EnumModulesCallbackFunc func, void * param)
1298 {
1299   HANDLE   hProcess ;
1300 
1301 # define MAX_NUM_MODULES 128
1302   HMODULE     modules[MAX_NUM_MODULES];
1303   static char filename[ MAX_PATH ];
1304   int         result = 0;
1305 
1306   if (!os::PSApiDll::PSApiAvailable()) {
1307     return 0;
1308   }
1309 
1310   hProcess = OpenProcess(PROCESS_QUERY_INFORMATION | PROCESS_VM_READ,
1311                          FALSE, pid ) ;
1312   if (hProcess == NULL) return 0;
1313 
1314   DWORD size_needed;
1315   if (!os::PSApiDll::EnumProcessModules(hProcess, modules,
1316                            sizeof(modules), &size_needed)) {
1317       CloseHandle( hProcess );
1318       return 0;
1319   }
1320 
1321   // number of modules that are currently loaded
1322   int num_modules = size_needed / sizeof(HMODULE);
1323 
1324   for (int i = 0; i < MIN2(num_modules, MAX_NUM_MODULES); i++) {
1325     // Get Full pathname:
1326     if(!os::PSApiDll::GetModuleFileNameEx(hProcess, modules[i],
1327                              filename, sizeof(filename))) {
1328         filename[0] = '\0';
1329     }
1330 
1331     MODULEINFO modinfo;
1332     if (!os::PSApiDll::GetModuleInformation(hProcess, modules[i],
1333                                &modinfo, sizeof(modinfo))) {
1334         modinfo.lpBaseOfDll = NULL;
1335         modinfo.SizeOfImage = 0;
1336     }
1337 
1338     // Invoke callback function
1339     result = func(pid, filename, (address)modinfo.lpBaseOfDll,
1340                   modinfo.SizeOfImage, param);
1341     if (result) break;
1342   }
1343 
1344   CloseHandle( hProcess ) ;
1345   return result;
1346 }
1347 
1348 
1349 // enumerate_modules for Windows 95/98/ME, using TOOLHELP
1350 static int _enumerate_modules_windows( int pid, EnumModulesCallbackFunc func, void *param)
1351 {
1352   HANDLE                hSnapShot ;
1353   static MODULEENTRY32  modentry ;
1354   int                   result = 0;
1355 
1356   if (!os::Kernel32Dll::HelpToolsAvailable()) {
1357     return 0;
1358   }
1359 
1360   // Get a handle to a Toolhelp snapshot of the system
1361   hSnapShot = os::Kernel32Dll::CreateToolhelp32Snapshot(TH32CS_SNAPMODULE, pid ) ;
1362   if( hSnapShot == INVALID_HANDLE_VALUE ) {
1363       return FALSE ;
1364   }
1365 
1366   // iterate through all modules
1367   modentry.dwSize = sizeof(MODULEENTRY32) ;
1368   bool not_done = os::Kernel32Dll::Module32First( hSnapShot, &modentry ) != 0;
1369 
1370   while( not_done ) {
1371     // invoke the callback
1372     result=func(pid, modentry.szExePath, (address)modentry.modBaseAddr,
1373                 modentry.modBaseSize, param);
1374     if (result) break;
1375 
1376     modentry.dwSize = sizeof(MODULEENTRY32) ;
1377     not_done = os::Kernel32Dll::Module32Next( hSnapShot, &modentry ) != 0;
1378   }
1379 
1380   CloseHandle(hSnapShot);
1381   return result;
1382 }
1383 
1384 int enumerate_modules( int pid, EnumModulesCallbackFunc func, void * param )
1385 {
1386   // Get current process ID if caller doesn't provide it.
1387   if (!pid) pid = os::current_process_id();
1388 
1389   if (os::win32::is_nt()) return _enumerate_modules_winnt  (pid, func, param);
1390   else                    return _enumerate_modules_windows(pid, func, param);
1391 }
1392 
1393 struct _modinfo {
1394    address addr;
1395    char*   full_path;   // point to a char buffer
1396    int     buflen;      // size of the buffer
1397    address base_addr;
1398 };
1399 
1400 static int _locate_module_by_addr(int pid, char * mod_fname, address base_addr,
1401                                   unsigned size, void * param) {
1402    struct _modinfo *pmod = (struct _modinfo *)param;
1403    if (!pmod) return -1;
1404 
1405    if (base_addr     <= pmod->addr &&
1406        base_addr+size > pmod->addr) {
1407      // if a buffer is provided, copy path name to the buffer
1408      if (pmod->full_path) {
1409        jio_snprintf(pmod->full_path, pmod->buflen, "%s", mod_fname);
1410      }
1411      pmod->base_addr = base_addr;
1412      return 1;
1413    }
1414    return 0;
1415 }
1416 
1417 bool os::dll_address_to_library_name(address addr, char* buf,
1418                                      int buflen, int* offset) {
1419   // buf is not optional, but offset is optional
1420   assert(buf != NULL, "sanity check");
1421 
1422 // NOTE: the reason we don't use SymGetModuleInfo() is it doesn't always
1423 //       return the full path to the DLL file, sometimes it returns path
1424 //       to the corresponding PDB file (debug info); sometimes it only
1425 //       returns partial path, which makes life painful.
1426 
1427   struct _modinfo mi;
1428   mi.addr      = addr;
1429   mi.full_path = buf;
1430   mi.buflen    = buflen;
1431   int pid = os::current_process_id();
1432   if (enumerate_modules(pid, _locate_module_by_addr, (void *)&mi)) {
1433     // buf already contains path name
1434     if (offset) *offset = addr - mi.base_addr;
1435     return true;
1436   }
1437 
1438   buf[0] = '\0';
1439   if (offset) *offset = -1;
1440   return false;
1441 }
1442 
1443 bool os::dll_address_to_function_name(address addr, char *buf,
1444                                       int buflen, int *offset) {
1445   // buf is not optional, but offset is optional
1446   assert(buf != NULL, "sanity check");
1447 
1448   if (Decoder::decode(addr, buf, buflen, offset)) {
1449     return true;
1450   }
1451   if (offset != NULL)  *offset  = -1;
1452   buf[0] = '\0';
1453   return false;
1454 }
1455 
1456 // save the start and end address of jvm.dll into param[0] and param[1]
1457 static int _locate_jvm_dll(int pid, char* mod_fname, address base_addr,
1458                     unsigned size, void * param) {
1459    if (!param) return -1;
1460 
1461    if (base_addr     <= (address)_locate_jvm_dll &&
1462        base_addr+size > (address)_locate_jvm_dll) {
1463          ((address*)param)[0] = base_addr;
1464          ((address*)param)[1] = base_addr + size;
1465          return 1;
1466    }
1467    return 0;
1468 }
1469 
1470 address vm_lib_location[2];    // start and end address of jvm.dll
1471 
1472 // check if addr is inside jvm.dll
1473 bool os::address_is_in_vm(address addr) {
1474   if (!vm_lib_location[0] || !vm_lib_location[1]) {
1475     int pid = os::current_process_id();
1476     if (!enumerate_modules(pid, _locate_jvm_dll, (void *)vm_lib_location)) {
1477       assert(false, "Can't find jvm module.");
1478       return false;
1479     }
1480   }
1481 
1482   return (vm_lib_location[0] <= addr) && (addr < vm_lib_location[1]);
1483 }
1484 
1485 // print module info; param is outputStream*
1486 static int _print_module(int pid, char* fname, address base,
1487                          unsigned size, void* param) {
1488    if (!param) return -1;
1489 
1490    outputStream* st = (outputStream*)param;
1491 
1492    address end_addr = base + size;
1493    st->print(PTR_FORMAT " - " PTR_FORMAT " \t%s\n", base, end_addr, fname);
1494    return 0;
1495 }
1496 
1497 // Loads .dll/.so and
1498 // in case of error it checks if .dll/.so was built for the
1499 // same architecture as Hotspot is running on
1500 void * os::dll_load(const char *name, char *ebuf, int ebuflen)
1501 {
1502   void * result = LoadLibrary(name);
1503   if (result != NULL)
1504   {
1505     return result;
1506   }
1507 
1508   DWORD errcode = GetLastError();
1509   if (errcode == ERROR_MOD_NOT_FOUND) {
1510     strncpy(ebuf, "Can't find dependent libraries", ebuflen-1);
1511     ebuf[ebuflen-1]='\0';
1512     return NULL;
1513   }
1514 
1515   // Parsing dll below
1516   // If we can read dll-info and find that dll was built
1517   // for an architecture other than Hotspot is running in
1518   // - then print to buffer "DLL was built for a different architecture"
1519   // else call os::lasterror to obtain system error message
1520 
1521   // Read system error message into ebuf
1522   // It may or may not be overwritten below (in the for loop and just above)
1523   lasterror(ebuf, (size_t) ebuflen);
1524   ebuf[ebuflen-1]='\0';
1525   int file_descriptor=::open(name, O_RDONLY | O_BINARY, 0);
1526   if (file_descriptor<0)
1527   {
1528     return NULL;
1529   }
1530 
1531   uint32_t signature_offset;
1532   uint16_t lib_arch=0;
1533   bool failed_to_get_lib_arch=
1534   (
1535     //Go to position 3c in the dll
1536     (os::seek_to_file_offset(file_descriptor,IMAGE_FILE_PTR_TO_SIGNATURE)<0)
1537     ||
1538     // Read loacation of signature
1539     (sizeof(signature_offset)!=
1540       (os::read(file_descriptor, (void*)&signature_offset,sizeof(signature_offset))))
1541     ||
1542     //Go to COFF File Header in dll
1543     //that is located after"signature" (4 bytes long)
1544     (os::seek_to_file_offset(file_descriptor,
1545       signature_offset+IMAGE_FILE_SIGNATURE_LENGTH)<0)
1546     ||
1547     //Read field that contains code of architecture
1548     // that dll was build for
1549     (sizeof(lib_arch)!=
1550       (os::read(file_descriptor, (void*)&lib_arch,sizeof(lib_arch))))
1551   );
1552 
1553   ::close(file_descriptor);
1554   if (failed_to_get_lib_arch)
1555   {
1556     // file i/o error - report os::lasterror(...) msg
1557     return NULL;
1558   }
1559 
1560   typedef struct
1561   {
1562     uint16_t arch_code;
1563     char* arch_name;
1564   } arch_t;
1565 
1566   static const arch_t arch_array[]={
1567     {IMAGE_FILE_MACHINE_I386,      (char*)"IA 32"},
1568     {IMAGE_FILE_MACHINE_AMD64,     (char*)"AMD 64"},
1569     {IMAGE_FILE_MACHINE_IA64,      (char*)"IA 64"}
1570   };
1571   #if   (defined _M_IA64)
1572     static const uint16_t running_arch=IMAGE_FILE_MACHINE_IA64;
1573   #elif (defined _M_AMD64)
1574     static const uint16_t running_arch=IMAGE_FILE_MACHINE_AMD64;
1575   #elif (defined _M_IX86)
1576     static const uint16_t running_arch=IMAGE_FILE_MACHINE_I386;
1577   #else
1578     #error Method os::dll_load requires that one of following \
1579            is defined :_M_IA64,_M_AMD64 or _M_IX86
1580   #endif
1581 
1582 
1583   // Obtain a string for printf operation
1584   // lib_arch_str shall contain string what platform this .dll was built for
1585   // running_arch_str shall string contain what platform Hotspot was built for
1586   char *running_arch_str=NULL,*lib_arch_str=NULL;
1587   for (unsigned int i=0;i<ARRAY_SIZE(arch_array);i++)
1588   {
1589     if (lib_arch==arch_array[i].arch_code)
1590       lib_arch_str=arch_array[i].arch_name;
1591     if (running_arch==arch_array[i].arch_code)
1592       running_arch_str=arch_array[i].arch_name;
1593   }
1594 
1595   assert(running_arch_str,
1596     "Didn't find runing architecture code in arch_array");
1597 
1598   // If the architure is right
1599   // but some other error took place - report os::lasterror(...) msg
1600   if (lib_arch == running_arch)
1601   {
1602     return NULL;
1603   }
1604 
1605   if (lib_arch_str!=NULL)
1606   {
1607     ::_snprintf(ebuf, ebuflen-1,
1608       "Can't load %s-bit .dll on a %s-bit platform",
1609       lib_arch_str,running_arch_str);
1610   }
1611   else
1612   {
1613     // don't know what architecture this dll was build for
1614     ::_snprintf(ebuf, ebuflen-1,
1615       "Can't load this .dll (machine code=0x%x) on a %s-bit platform",
1616       lib_arch,running_arch_str);
1617   }
1618 
1619   return NULL;
1620 }
1621 
1622 
1623 void os::print_dll_info(outputStream *st) {
1624    int pid = os::current_process_id();
1625    st->print_cr("Dynamic libraries:");
1626    enumerate_modules(pid, _print_module, (void *)st);
1627 }
1628 
1629 void os::print_os_info_brief(outputStream* st) {
1630   os::print_os_info(st);
1631 }
1632 
1633 void os::print_os_info(outputStream* st) {
1634   st->print("OS:");
1635 
1636   os::win32::print_windows_version(st);
1637 }
1638 
1639 void os::win32::print_windows_version(outputStream* st) {
1640   OSVERSIONINFOEX osvi;
1641   SYSTEM_INFO si;
1642 
1643   ZeroMemory(&osvi, sizeof(OSVERSIONINFOEX));
1644   osvi.dwOSVersionInfoSize = sizeof(OSVERSIONINFOEX);
1645 
1646   if (!GetVersionEx((OSVERSIONINFO *)&osvi)) {
1647     st->print_cr("N/A");
1648     return;
1649   }
1650 
1651   int os_vers = osvi.dwMajorVersion * 1000 + osvi.dwMinorVersion;
1652 
1653   ZeroMemory(&si, sizeof(SYSTEM_INFO));
1654   if (os_vers >= 5002) {
1655     // Retrieve SYSTEM_INFO from GetNativeSystemInfo call so that we could
1656     // find out whether we are running on 64 bit processor or not.
1657     if (os::Kernel32Dll::GetNativeSystemInfoAvailable()) {
1658       os::Kernel32Dll::GetNativeSystemInfo(&si);
1659     } else {
1660       GetSystemInfo(&si);
1661     }
1662   }
1663 
1664   if (osvi.dwPlatformId == VER_PLATFORM_WIN32_NT) {
1665     switch (os_vers) {
1666     case 3051: st->print(" Windows NT 3.51"); break;
1667     case 4000: st->print(" Windows NT 4.0"); break;
1668     case 5000: st->print(" Windows 2000"); break;
1669     case 5001: st->print(" Windows XP"); break;
1670     case 5002:
1671       if (osvi.wProductType == VER_NT_WORKSTATION &&
1672           si.wProcessorArchitecture == PROCESSOR_ARCHITECTURE_AMD64) {
1673         st->print(" Windows XP x64 Edition");
1674       } else {
1675         st->print(" Windows Server 2003 family");
1676       }
1677       break;
1678 
1679     case 6000:
1680       if (osvi.wProductType == VER_NT_WORKSTATION) {
1681         st->print(" Windows Vista");
1682       } else {
1683         st->print(" Windows Server 2008");
1684       }
1685       break;
1686 
1687     case 6001:
1688       if (osvi.wProductType == VER_NT_WORKSTATION) {
1689         st->print(" Windows 7");
1690       } else {
1691         st->print(" Windows Server 2008 R2");
1692       }
1693       break;
1694 
1695     case 6002:
1696       if (osvi.wProductType == VER_NT_WORKSTATION) {
1697         st->print(" Windows 8");
1698       } else {
1699         st->print(" Windows Server 2012");
1700       }
1701       break;
1702 
1703     case 6003:
1704       if (osvi.wProductType == VER_NT_WORKSTATION) {
1705         st->print(" Windows 8.1");
1706       } else {
1707         st->print(" Windows Server 2012 R2");
1708       }
1709       break;
1710 
1711     default: // future os
1712       // Unrecognized windows, print out its major and minor versions
1713       st->print(" Windows NT %d.%d", osvi.dwMajorVersion, osvi.dwMinorVersion);
1714     }
1715   } else {
1716     switch (os_vers) {
1717     case 4000: st->print(" Windows 95"); break;
1718     case 4010: st->print(" Windows 98"); break;
1719     case 4090: st->print(" Windows Me"); break;
1720     default: // future windows, print out its major and minor versions
1721       st->print(" Windows %d.%d", osvi.dwMajorVersion, osvi.dwMinorVersion);
1722     }
1723   }
1724 
1725   if (os_vers >= 6000 && si.wProcessorArchitecture == PROCESSOR_ARCHITECTURE_AMD64) {
1726     st->print(" , 64 bit");
1727   }
1728 
1729   st->print(" Build %d", osvi.dwBuildNumber);
1730   st->print(" %s", osvi.szCSDVersion);           // service pack
1731   st->cr();
1732 }
1733 
1734 void os::pd_print_cpu_info(outputStream* st) {
1735   // Nothing to do for now.
1736 }
1737 
1738 void os::print_memory_info(outputStream* st) {
1739   st->print("Memory:");
1740   st->print(" %dk page", os::vm_page_size()>>10);
1741 
1742   // Use GlobalMemoryStatusEx() because GlobalMemoryStatus() may return incorrect
1743   // value if total memory is larger than 4GB
1744   MEMORYSTATUSEX ms;
1745   ms.dwLength = sizeof(ms);
1746   GlobalMemoryStatusEx(&ms);
1747 
1748   st->print(", physical %uk", os::physical_memory() >> 10);
1749   st->print("(%uk free)", os::available_memory() >> 10);
1750 
1751   st->print(", swap %uk", ms.ullTotalPageFile >> 10);
1752   st->print("(%uk free)", ms.ullAvailPageFile >> 10);
1753   st->cr();
1754 }
1755 
1756 void os::print_siginfo(outputStream *st, void *siginfo) {
1757   EXCEPTION_RECORD* er = (EXCEPTION_RECORD*)siginfo;
1758   st->print("siginfo:");
1759   st->print(" ExceptionCode=0x%x", er->ExceptionCode);
1760 
1761   if (er->ExceptionCode == EXCEPTION_ACCESS_VIOLATION &&
1762       er->NumberParameters >= 2) {
1763       switch (er->ExceptionInformation[0]) {
1764       case 0: st->print(", reading address"); break;
1765       case 1: st->print(", writing address"); break;
1766       default: st->print(", ExceptionInformation=" INTPTR_FORMAT,
1767                             er->ExceptionInformation[0]);
1768       }
1769       st->print(" " INTPTR_FORMAT, er->ExceptionInformation[1]);
1770   } else if (er->ExceptionCode == EXCEPTION_IN_PAGE_ERROR &&
1771              er->NumberParameters >= 2 && UseSharedSpaces) {
1772     FileMapInfo* mapinfo = FileMapInfo::current_info();
1773     if (mapinfo->is_in_shared_space((void*)er->ExceptionInformation[1])) {
1774       st->print("\n\nError accessing class data sharing archive."       \
1775                 " Mapped file inaccessible during execution, "          \
1776                 " possible disk/network problem.");
1777     }
1778   } else {
1779     int num = er->NumberParameters;
1780     if (num > 0) {
1781       st->print(", ExceptionInformation=");
1782       for (int i = 0; i < num; i++) {
1783         st->print(INTPTR_FORMAT " ", er->ExceptionInformation[i]);
1784       }
1785     }
1786   }
1787   st->cr();
1788 }
1789 
1790 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
1791   // do nothing
1792 }
1793 
1794 static char saved_jvm_path[MAX_PATH] = {0};
1795 
1796 // Find the full path to the current module, jvm.dll
1797 void os::jvm_path(char *buf, jint buflen) {
1798   // Error checking.
1799   if (buflen < MAX_PATH) {
1800     assert(false, "must use a large-enough buffer");
1801     buf[0] = '\0';
1802     return;
1803   }
1804   // Lazy resolve the path to current module.
1805   if (saved_jvm_path[0] != 0) {
1806     strcpy(buf, saved_jvm_path);
1807     return;
1808   }
1809 
1810   buf[0] = '\0';
1811   if (Arguments::sun_java_launcher_is_altjvm()) {
1812     // Support for the java launcher's '-XXaltjvm=<path>' option. Check
1813     // for a JAVA_HOME environment variable and fix up the path so it
1814     // looks like jvm.dll is installed there (append a fake suffix
1815     // hotspot/jvm.dll).
1816     char* java_home_var = ::getenv("JAVA_HOME");
1817     if (java_home_var != NULL && java_home_var[0] != 0) {
1818       strncpy(buf, java_home_var, buflen);
1819 
1820       // determine if this is a legacy image or modules image
1821       // modules image doesn't have "jre" subdirectory
1822       size_t len = strlen(buf);
1823       char* jrebin_p = buf + len;
1824       jio_snprintf(jrebin_p, buflen-len, "\\jre\\bin\\");
1825       if (0 != _access(buf, 0)) {
1826         jio_snprintf(jrebin_p, buflen-len, "\\bin\\");
1827       }
1828       len = strlen(buf);
1829       jio_snprintf(buf + len, buflen-len, "hotspot\\jvm.dll");
1830     }
1831   }
1832 
1833   if (buf[0] == '\0') {
1834     GetModuleFileName(vm_lib_handle, buf, buflen);
1835   }
1836   strcpy(saved_jvm_path, buf);
1837 }
1838 
1839 
1840 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
1841 #ifndef _WIN64
1842   st->print("_");
1843 #endif
1844 }
1845 
1846 
1847 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
1848 #ifndef _WIN64
1849   st->print("@%d", args_size  * sizeof(int));
1850 #endif
1851 }
1852 
1853 // This method is a copy of JDK's sysGetLastErrorString
1854 // from src/windows/hpi/src/system_md.c
1855 
1856 size_t os::lasterror(char* buf, size_t len) {
1857   DWORD errval;
1858 
1859   if ((errval = GetLastError()) != 0) {
1860     // DOS error
1861     size_t n = (size_t)FormatMessage(
1862           FORMAT_MESSAGE_FROM_SYSTEM|FORMAT_MESSAGE_IGNORE_INSERTS,
1863           NULL,
1864           errval,
1865           0,
1866           buf,
1867           (DWORD)len,
1868           NULL);
1869     if (n > 3) {
1870       // Drop final '.', CR, LF
1871       if (buf[n - 1] == '\n') n--;
1872       if (buf[n - 1] == '\r') n--;
1873       if (buf[n - 1] == '.') n--;
1874       buf[n] = '\0';
1875     }
1876     return n;
1877   }
1878 
1879   if (errno != 0) {
1880     // C runtime error that has no corresponding DOS error code
1881     const char* s = strerror(errno);
1882     size_t n = strlen(s);
1883     if (n >= len) n = len - 1;
1884     strncpy(buf, s, n);
1885     buf[n] = '\0';
1886     return n;
1887   }
1888 
1889   return 0;
1890 }
1891 
1892 int os::get_last_error() {
1893   DWORD error = GetLastError();
1894   if (error == 0)
1895     error = errno;
1896   return (int)error;
1897 }
1898 
1899 // sun.misc.Signal
1900 // NOTE that this is a workaround for an apparent kernel bug where if
1901 // a signal handler for SIGBREAK is installed then that signal handler
1902 // takes priority over the console control handler for CTRL_CLOSE_EVENT.
1903 // See bug 4416763.
1904 static void (*sigbreakHandler)(int) = NULL;
1905 
1906 static void UserHandler(int sig, void *siginfo, void *context) {
1907   os::signal_notify(sig);
1908   // We need to reinstate the signal handler each time...
1909   os::signal(sig, (void*)UserHandler);
1910 }
1911 
1912 void* os::user_handler() {
1913   return (void*) UserHandler;
1914 }
1915 
1916 void* os::signal(int signal_number, void* handler) {
1917   if ((signal_number == SIGBREAK) && (!ReduceSignalUsage)) {
1918     void (*oldHandler)(int) = sigbreakHandler;
1919     sigbreakHandler = (void (*)(int)) handler;
1920     return (void*) oldHandler;
1921   } else {
1922     return (void*)::signal(signal_number, (void (*)(int))handler);
1923   }
1924 }
1925 
1926 void os::signal_raise(int signal_number) {
1927   raise(signal_number);
1928 }
1929 
1930 // The Win32 C runtime library maps all console control events other than ^C
1931 // into SIGBREAK, which makes it impossible to distinguish ^BREAK from close,
1932 // logoff, and shutdown events.  We therefore install our own console handler
1933 // that raises SIGTERM for the latter cases.
1934 //
1935 static BOOL WINAPI consoleHandler(DWORD event) {
1936   switch(event) {
1937     case CTRL_C_EVENT:
1938       if (is_error_reported()) {
1939         // Ctrl-C is pressed during error reporting, likely because the error
1940         // handler fails to abort. Let VM die immediately.
1941         os::die();
1942       }
1943 
1944       os::signal_raise(SIGINT);
1945       return TRUE;
1946       break;
1947     case CTRL_BREAK_EVENT:
1948       if (sigbreakHandler != NULL) {
1949         (*sigbreakHandler)(SIGBREAK);
1950       }
1951       return TRUE;
1952       break;
1953     case CTRL_LOGOFF_EVENT: {
1954       // Don't terminate JVM if it is running in a non-interactive session,
1955       // such as a service process.
1956       USEROBJECTFLAGS flags;
1957       HANDLE handle = GetProcessWindowStation();
1958       if (handle != NULL &&
1959           GetUserObjectInformation(handle, UOI_FLAGS, &flags,
1960             sizeof( USEROBJECTFLAGS), NULL)) {
1961         // If it is a non-interactive session, let next handler to deal
1962         // with it.
1963         if ((flags.dwFlags & WSF_VISIBLE) == 0) {
1964           return FALSE;
1965         }
1966       }
1967     }
1968     case CTRL_CLOSE_EVENT:
1969     case CTRL_SHUTDOWN_EVENT:
1970       os::signal_raise(SIGTERM);
1971       return TRUE;
1972       break;
1973     default:
1974       break;
1975   }
1976   return FALSE;
1977 }
1978 
1979 /*
1980  * The following code is moved from os.cpp for making this
1981  * code platform specific, which it is by its very nature.
1982  */
1983 
1984 // Return maximum OS signal used + 1 for internal use only
1985 // Used as exit signal for signal_thread
1986 int os::sigexitnum_pd(){
1987   return NSIG;
1988 }
1989 
1990 // a counter for each possible signal value, including signal_thread exit signal
1991 static volatile jint pending_signals[NSIG+1] = { 0 };
1992 static HANDLE sig_sem = NULL;
1993 
1994 void os::signal_init_pd() {
1995   // Initialize signal structures
1996   memset((void*)pending_signals, 0, sizeof(pending_signals));
1997 
1998   sig_sem = ::CreateSemaphore(NULL, 0, NSIG+1, NULL);
1999 
2000   // Programs embedding the VM do not want it to attempt to receive
2001   // events like CTRL_LOGOFF_EVENT, which are used to implement the
2002   // shutdown hooks mechanism introduced in 1.3.  For example, when
2003   // the VM is run as part of a Windows NT service (i.e., a servlet
2004   // engine in a web server), the correct behavior is for any console
2005   // control handler to return FALSE, not TRUE, because the OS's
2006   // "final" handler for such events allows the process to continue if
2007   // it is a service (while terminating it if it is not a service).
2008   // To make this behavior uniform and the mechanism simpler, we
2009   // completely disable the VM's usage of these console events if -Xrs
2010   // (=ReduceSignalUsage) is specified.  This means, for example, that
2011   // the CTRL-BREAK thread dump mechanism is also disabled in this
2012   // case.  See bugs 4323062, 4345157, and related bugs.
2013 
2014   if (!ReduceSignalUsage) {
2015     // Add a CTRL-C handler
2016     SetConsoleCtrlHandler(consoleHandler, TRUE);
2017   }
2018 }
2019 
2020 void os::signal_notify(int signal_number) {
2021   BOOL ret;
2022   if (sig_sem != NULL) {
2023     Atomic::inc(&pending_signals[signal_number]);
2024     ret = ::ReleaseSemaphore(sig_sem, 1, NULL);
2025     assert(ret != 0, "ReleaseSemaphore() failed");
2026   }
2027 }
2028 
2029 static int check_pending_signals(bool wait_for_signal) {
2030   DWORD ret;
2031   while (true) {
2032     for (int i = 0; i < NSIG + 1; i++) {
2033       jint n = pending_signals[i];
2034       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2035         return i;
2036       }
2037     }
2038     if (!wait_for_signal) {
2039       return -1;
2040     }
2041 
2042     JavaThread *thread = JavaThread::current();
2043 
2044     ThreadBlockInVM tbivm(thread);
2045 
2046     bool threadIsSuspended;
2047     do {
2048       thread->set_suspend_equivalent();
2049       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2050       ret = ::WaitForSingleObject(sig_sem, INFINITE);
2051       assert(ret == WAIT_OBJECT_0, "WaitForSingleObject() failed");
2052 
2053       // were we externally suspended while we were waiting?
2054       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2055       if (threadIsSuspended) {
2056         //
2057         // The semaphore has been incremented, but while we were waiting
2058         // another thread suspended us. We don't want to continue running
2059         // while suspended because that would surprise the thread that
2060         // suspended us.
2061         //
2062         ret = ::ReleaseSemaphore(sig_sem, 1, NULL);
2063         assert(ret != 0, "ReleaseSemaphore() failed");
2064 
2065         thread->java_suspend_self();
2066       }
2067     } while (threadIsSuspended);
2068   }
2069 }
2070 
2071 int os::signal_lookup() {
2072   return check_pending_signals(false);
2073 }
2074 
2075 int os::signal_wait() {
2076   return check_pending_signals(true);
2077 }
2078 
2079 // Implicit OS exception handling
2080 
2081 LONG Handle_Exception(struct _EXCEPTION_POINTERS* exceptionInfo, address handler) {
2082   JavaThread* thread = JavaThread::current();
2083   // Save pc in thread
2084 #ifdef _M_IA64
2085   // Do not blow up if no thread info available.
2086   if (thread) {
2087     // Saving PRECISE pc (with slot information) in thread.
2088     uint64_t precise_pc = (uint64_t) exceptionInfo->ExceptionRecord->ExceptionAddress;
2089     // Convert precise PC into "Unix" format
2090     precise_pc = (precise_pc & 0xFFFFFFFFFFFFFFF0) | ((precise_pc & 0xF) >> 2);
2091     thread->set_saved_exception_pc((address)precise_pc);
2092   }
2093   // Set pc to handler
2094   exceptionInfo->ContextRecord->StIIP = (DWORD64)handler;
2095   // Clear out psr.ri (= Restart Instruction) in order to continue
2096   // at the beginning of the target bundle.
2097   exceptionInfo->ContextRecord->StIPSR &= 0xFFFFF9FFFFFFFFFF;
2098   assert(((DWORD64)handler & 0xF) == 0, "Target address must point to the beginning of a bundle!");
2099 #elif _M_AMD64
2100   // Do not blow up if no thread info available.
2101   if (thread) {
2102     thread->set_saved_exception_pc((address)(DWORD_PTR)exceptionInfo->ContextRecord->Rip);
2103   }
2104   // Set pc to handler
2105   exceptionInfo->ContextRecord->Rip = (DWORD64)handler;
2106 #else
2107   // Do not blow up if no thread info available.
2108   if (thread) {
2109     thread->set_saved_exception_pc((address)(DWORD_PTR)exceptionInfo->ContextRecord->Eip);
2110   }
2111   // Set pc to handler
2112   exceptionInfo->ContextRecord->Eip = (DWORD)(DWORD_PTR)handler;
2113 #endif
2114 
2115   // Continue the execution
2116   return EXCEPTION_CONTINUE_EXECUTION;
2117 }
2118 
2119 
2120 // Used for PostMortemDump
2121 extern "C" void safepoints();
2122 extern "C" void find(int x);
2123 extern "C" void events();
2124 
2125 // According to Windows API documentation, an illegal instruction sequence should generate
2126 // the 0xC000001C exception code. However, real world experience shows that occasionnaly
2127 // the execution of an illegal instruction can generate the exception code 0xC000001E. This
2128 // seems to be an undocumented feature of Win NT 4.0 (and probably other Windows systems).
2129 
2130 #define EXCEPTION_ILLEGAL_INSTRUCTION_2 0xC000001E
2131 
2132 // From "Execution Protection in the Windows Operating System" draft 0.35
2133 // Once a system header becomes available, the "real" define should be
2134 // included or copied here.
2135 #define EXCEPTION_INFO_EXEC_VIOLATION 0x08
2136 
2137 // Handle NAT Bit consumption on IA64.
2138 #ifdef _M_IA64
2139 #define EXCEPTION_REG_NAT_CONSUMPTION    STATUS_REG_NAT_CONSUMPTION
2140 #endif
2141 
2142 // Windows Vista/2008 heap corruption check
2143 #define EXCEPTION_HEAP_CORRUPTION        0xC0000374
2144 
2145 #define def_excpt(val) #val, val
2146 
2147 struct siglabel {
2148   char *name;
2149   int   number;
2150 };
2151 
2152 // All Visual C++ exceptions thrown from code generated by the Microsoft Visual
2153 // C++ compiler contain this error code. Because this is a compiler-generated
2154 // error, the code is not listed in the Win32 API header files.
2155 // The code is actually a cryptic mnemonic device, with the initial "E"
2156 // standing for "exception" and the final 3 bytes (0x6D7363) representing the
2157 // ASCII values of "msc".
2158 
2159 #define EXCEPTION_UNCAUGHT_CXX_EXCEPTION    0xE06D7363
2160 
2161 
2162 struct siglabel exceptlabels[] = {
2163     def_excpt(EXCEPTION_ACCESS_VIOLATION),
2164     def_excpt(EXCEPTION_DATATYPE_MISALIGNMENT),
2165     def_excpt(EXCEPTION_BREAKPOINT),
2166     def_excpt(EXCEPTION_SINGLE_STEP),
2167     def_excpt(EXCEPTION_ARRAY_BOUNDS_EXCEEDED),
2168     def_excpt(EXCEPTION_FLT_DENORMAL_OPERAND),
2169     def_excpt(EXCEPTION_FLT_DIVIDE_BY_ZERO),
2170     def_excpt(EXCEPTION_FLT_INEXACT_RESULT),
2171     def_excpt(EXCEPTION_FLT_INVALID_OPERATION),
2172     def_excpt(EXCEPTION_FLT_OVERFLOW),
2173     def_excpt(EXCEPTION_FLT_STACK_CHECK),
2174     def_excpt(EXCEPTION_FLT_UNDERFLOW),
2175     def_excpt(EXCEPTION_INT_DIVIDE_BY_ZERO),
2176     def_excpt(EXCEPTION_INT_OVERFLOW),
2177     def_excpt(EXCEPTION_PRIV_INSTRUCTION),
2178     def_excpt(EXCEPTION_IN_PAGE_ERROR),
2179     def_excpt(EXCEPTION_ILLEGAL_INSTRUCTION),
2180     def_excpt(EXCEPTION_ILLEGAL_INSTRUCTION_2),
2181     def_excpt(EXCEPTION_NONCONTINUABLE_EXCEPTION),
2182     def_excpt(EXCEPTION_STACK_OVERFLOW),
2183     def_excpt(EXCEPTION_INVALID_DISPOSITION),
2184     def_excpt(EXCEPTION_GUARD_PAGE),
2185     def_excpt(EXCEPTION_INVALID_HANDLE),
2186     def_excpt(EXCEPTION_UNCAUGHT_CXX_EXCEPTION),
2187     def_excpt(EXCEPTION_HEAP_CORRUPTION),
2188 #ifdef _M_IA64
2189     def_excpt(EXCEPTION_REG_NAT_CONSUMPTION),
2190 #endif
2191     NULL, 0
2192 };
2193 
2194 const char* os::exception_name(int exception_code, char *buf, size_t size) {
2195   for (int i = 0; exceptlabels[i].name != NULL; i++) {
2196     if (exceptlabels[i].number == exception_code) {
2197        jio_snprintf(buf, size, "%s", exceptlabels[i].name);
2198        return buf;
2199     }
2200   }
2201 
2202   return NULL;
2203 }
2204 
2205 //-----------------------------------------------------------------------------
2206 LONG Handle_IDiv_Exception(struct _EXCEPTION_POINTERS* exceptionInfo) {
2207   // handle exception caused by idiv; should only happen for -MinInt/-1
2208   // (division by zero is handled explicitly)
2209 #ifdef _M_IA64
2210   assert(0, "Fix Handle_IDiv_Exception");
2211 #elif _M_AMD64
2212   PCONTEXT ctx = exceptionInfo->ContextRecord;
2213   address pc = (address)ctx->Rip;
2214   assert(pc[0] == 0xF7, "not an idiv opcode");
2215   assert((pc[1] & ~0x7) == 0xF8, "cannot handle non-register operands");
2216   assert(ctx->Rax == min_jint, "unexpected idiv exception");
2217   // set correct result values and continue after idiv instruction
2218   ctx->Rip = (DWORD)pc + 2;        // idiv reg, reg  is 2 bytes
2219   ctx->Rax = (DWORD)min_jint;      // result
2220   ctx->Rdx = (DWORD)0;             // remainder
2221   // Continue the execution
2222 #else
2223   PCONTEXT ctx = exceptionInfo->ContextRecord;
2224   address pc = (address)ctx->Eip;
2225   assert(pc[0] == 0xF7, "not an idiv opcode");
2226   assert((pc[1] & ~0x7) == 0xF8, "cannot handle non-register operands");
2227   assert(ctx->Eax == min_jint, "unexpected idiv exception");
2228   // set correct result values and continue after idiv instruction
2229   ctx->Eip = (DWORD)pc + 2;        // idiv reg, reg  is 2 bytes
2230   ctx->Eax = (DWORD)min_jint;      // result
2231   ctx->Edx = (DWORD)0;             // remainder
2232   // Continue the execution
2233 #endif
2234   return EXCEPTION_CONTINUE_EXECUTION;
2235 }
2236 
2237 //-----------------------------------------------------------------------------
2238 LONG WINAPI Handle_FLT_Exception(struct _EXCEPTION_POINTERS* exceptionInfo) {
2239   PCONTEXT ctx = exceptionInfo->ContextRecord;
2240 #ifndef  _WIN64
2241   // handle exception caused by native method modifying control word
2242   DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
2243 
2244   switch (exception_code) {
2245     case EXCEPTION_FLT_DENORMAL_OPERAND:
2246     case EXCEPTION_FLT_DIVIDE_BY_ZERO:
2247     case EXCEPTION_FLT_INEXACT_RESULT:
2248     case EXCEPTION_FLT_INVALID_OPERATION:
2249     case EXCEPTION_FLT_OVERFLOW:
2250     case EXCEPTION_FLT_STACK_CHECK:
2251     case EXCEPTION_FLT_UNDERFLOW:
2252       jint fp_control_word = (* (jint*) StubRoutines::addr_fpu_cntrl_wrd_std());
2253       if (fp_control_word != ctx->FloatSave.ControlWord) {
2254         // Restore FPCW and mask out FLT exceptions
2255         ctx->FloatSave.ControlWord = fp_control_word | 0xffffffc0;
2256         // Mask out pending FLT exceptions
2257         ctx->FloatSave.StatusWord &=  0xffffff00;
2258         return EXCEPTION_CONTINUE_EXECUTION;
2259       }
2260   }
2261 
2262   if (prev_uef_handler != NULL) {
2263     // We didn't handle this exception so pass it to the previous
2264     // UnhandledExceptionFilter.
2265     return (prev_uef_handler)(exceptionInfo);
2266   }
2267 #else // !_WIN64
2268 /*
2269   On Windows, the mxcsr control bits are non-volatile across calls
2270   See also CR 6192333
2271   */
2272       jint MxCsr = INITIAL_MXCSR;
2273         // we can't use StubRoutines::addr_mxcsr_std()
2274         // because in Win64 mxcsr is not saved there
2275       if (MxCsr != ctx->MxCsr) {
2276         ctx->MxCsr = MxCsr;
2277         return EXCEPTION_CONTINUE_EXECUTION;
2278       }
2279 #endif // !_WIN64
2280 
2281   return EXCEPTION_CONTINUE_SEARCH;
2282 }
2283 
2284 // Fatal error reporting is single threaded so we can make this a
2285 // static and preallocated.  If it's more than MAX_PATH silently ignore
2286 // it.
2287 static char saved_error_file[MAX_PATH] = {0};
2288 
2289 void os::set_error_file(const char *logfile) {
2290   if (strlen(logfile) <= MAX_PATH) {
2291     strncpy(saved_error_file, logfile, MAX_PATH);
2292   }
2293 }
2294 
2295 static inline void report_error(Thread* t, DWORD exception_code,
2296                                 address addr, void* siginfo, void* context) {
2297   VMError err(t, exception_code, addr, siginfo, context);
2298   err.report_and_die();
2299 
2300   // If UseOsErrorReporting, this will return here and save the error file
2301   // somewhere where we can find it in the minidump.
2302 }
2303 
2304 //-----------------------------------------------------------------------------
2305 LONG WINAPI topLevelExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo) {
2306   if (InterceptOSException) return EXCEPTION_CONTINUE_SEARCH;
2307   DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
2308 #ifdef _M_IA64
2309   // On Itanium, we need the "precise pc", which has the slot number coded
2310   // into the least 4 bits: 0000=slot0, 0100=slot1, 1000=slot2 (Windows format).
2311   address pc = (address) exceptionInfo->ExceptionRecord->ExceptionAddress;
2312   // Convert the pc to "Unix format", which has the slot number coded
2313   // into the least 2 bits: 0000=slot0, 0001=slot1, 0010=slot2
2314   // This is needed for IA64 because "relocation" / "implicit null check" / "poll instruction"
2315   // information is saved in the Unix format.
2316   address pc_unix_format = (address) ((((uint64_t)pc) & 0xFFFFFFFFFFFFFFF0) | ((((uint64_t)pc) & 0xF) >> 2));
2317 #elif _M_AMD64
2318   address pc = (address) exceptionInfo->ContextRecord->Rip;
2319 #else
2320   address pc = (address) exceptionInfo->ContextRecord->Eip;
2321 #endif
2322   Thread* t = ThreadLocalStorage::get_thread_slow();          // slow & steady
2323 
2324   // Handle SafeFetch32 and SafeFetchN exceptions.
2325   if (StubRoutines::is_safefetch_fault(pc)) {
2326     return Handle_Exception(exceptionInfo, StubRoutines::continuation_for_safefetch_fault(pc));
2327   }
2328 
2329 #ifndef _WIN64
2330   // Execution protection violation - win32 running on AMD64 only
2331   // Handled first to avoid misdiagnosis as a "normal" access violation;
2332   // This is safe to do because we have a new/unique ExceptionInformation
2333   // code for this condition.
2334   if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2335     PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2336     int exception_subcode = (int) exceptionRecord->ExceptionInformation[0];
2337     address addr = (address) exceptionRecord->ExceptionInformation[1];
2338 
2339     if (exception_subcode == EXCEPTION_INFO_EXEC_VIOLATION) {
2340       int page_size = os::vm_page_size();
2341 
2342       // Make sure the pc and the faulting address are sane.
2343       //
2344       // If an instruction spans a page boundary, and the page containing
2345       // the beginning of the instruction is executable but the following
2346       // page is not, the pc and the faulting address might be slightly
2347       // different - we still want to unguard the 2nd page in this case.
2348       //
2349       // 15 bytes seems to be a (very) safe value for max instruction size.
2350       bool pc_is_near_addr =
2351         (pointer_delta((void*) addr, (void*) pc, sizeof(char)) < 15);
2352       bool instr_spans_page_boundary =
2353         (align_size_down((intptr_t) pc ^ (intptr_t) addr,
2354                          (intptr_t) page_size) > 0);
2355 
2356       if (pc == addr || (pc_is_near_addr && instr_spans_page_boundary)) {
2357         static volatile address last_addr =
2358           (address) os::non_memory_address_word();
2359 
2360         // In conservative mode, don't unguard unless the address is in the VM
2361         if (UnguardOnExecutionViolation > 0 && addr != last_addr &&
2362             (UnguardOnExecutionViolation > 1 || os::address_is_in_vm(addr))) {
2363 
2364           // Set memory to RWX and retry
2365           address page_start =
2366             (address) align_size_down((intptr_t) addr, (intptr_t) page_size);
2367           bool res = os::protect_memory((char*) page_start, page_size,
2368                                         os::MEM_PROT_RWX);
2369 
2370           if (PrintMiscellaneous && Verbose) {
2371             char buf[256];
2372             jio_snprintf(buf, sizeof(buf), "Execution protection violation "
2373                          "at " INTPTR_FORMAT
2374                          ", unguarding " INTPTR_FORMAT ": %s", addr,
2375                          page_start, (res ? "success" : strerror(errno)));
2376             tty->print_raw_cr(buf);
2377           }
2378 
2379           // Set last_addr so if we fault again at the same address, we don't
2380           // end up in an endless loop.
2381           //
2382           // There are two potential complications here.  Two threads trapping
2383           // at the same address at the same time could cause one of the
2384           // threads to think it already unguarded, and abort the VM.  Likely
2385           // very rare.
2386           //
2387           // The other race involves two threads alternately trapping at
2388           // different addresses and failing to unguard the page, resulting in
2389           // an endless loop.  This condition is probably even more unlikely
2390           // than the first.
2391           //
2392           // Although both cases could be avoided by using locks or thread
2393           // local last_addr, these solutions are unnecessary complication:
2394           // this handler is a best-effort safety net, not a complete solution.
2395           // It is disabled by default and should only be used as a workaround
2396           // in case we missed any no-execute-unsafe VM code.
2397 
2398           last_addr = addr;
2399 
2400           return EXCEPTION_CONTINUE_EXECUTION;
2401         }
2402       }
2403 
2404       // Last unguard failed or not unguarding
2405       tty->print_raw_cr("Execution protection violation");
2406       report_error(t, exception_code, addr, exceptionInfo->ExceptionRecord,
2407                    exceptionInfo->ContextRecord);
2408       return EXCEPTION_CONTINUE_SEARCH;
2409     }
2410   }
2411 #endif // _WIN64
2412 
2413   // Check to see if we caught the safepoint code in the
2414   // process of write protecting the memory serialization page.
2415   // It write enables the page immediately after protecting it
2416   // so just return.
2417   if ( exception_code == EXCEPTION_ACCESS_VIOLATION ) {
2418     JavaThread* thread = (JavaThread*) t;
2419     PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2420     address addr = (address) exceptionRecord->ExceptionInformation[1];
2421     if ( os::is_memory_serialize_page(thread, addr) ) {
2422       // Block current thread until the memory serialize page permission restored.
2423       os::block_on_serialize_page_trap();
2424       return EXCEPTION_CONTINUE_EXECUTION;
2425     }
2426   }
2427 
2428   if (t != NULL && t->is_Java_thread()) {
2429     JavaThread* thread = (JavaThread*) t;
2430     bool in_java = thread->thread_state() == _thread_in_Java;
2431 
2432     // Handle potential stack overflows up front.
2433     if (exception_code == EXCEPTION_STACK_OVERFLOW) {
2434       if (os::uses_stack_guard_pages()) {
2435 #ifdef _M_IA64
2436         // Use guard page for register stack.
2437         PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2438         address addr = (address) exceptionRecord->ExceptionInformation[1];
2439         // Check for a register stack overflow on Itanium
2440         if (thread->addr_inside_register_stack_red_zone(addr)) {
2441           // Fatal red zone violation happens if the Java program
2442           // catches a StackOverflow error and does so much processing
2443           // that it runs beyond the unprotected yellow guard zone. As
2444           // a result, we are out of here.
2445           fatal("ERROR: Unrecoverable stack overflow happened. JVM will exit.");
2446         } else if(thread->addr_inside_register_stack(addr)) {
2447           // Disable the yellow zone which sets the state that
2448           // we've got a stack overflow problem.
2449           if (thread->stack_yellow_zone_enabled()) {
2450             thread->disable_stack_yellow_zone();
2451           }
2452           // Give us some room to process the exception.
2453           thread->disable_register_stack_guard();
2454           // Tracing with +Verbose.
2455           if (Verbose) {
2456             tty->print_cr("SOF Compiled Register Stack overflow at " INTPTR_FORMAT " (SIGSEGV)", pc);
2457             tty->print_cr("Register Stack access at " INTPTR_FORMAT, addr);
2458             tty->print_cr("Register Stack base " INTPTR_FORMAT, thread->register_stack_base());
2459             tty->print_cr("Register Stack [" INTPTR_FORMAT "," INTPTR_FORMAT "]",
2460                           thread->register_stack_base(),
2461                           thread->register_stack_base() + thread->stack_size());
2462           }
2463 
2464           // Reguard the permanent register stack red zone just to be sure.
2465           // We saw Windows silently disabling this without telling us.
2466           thread->enable_register_stack_red_zone();
2467 
2468           return Handle_Exception(exceptionInfo,
2469             SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
2470         }
2471 #endif
2472         if (thread->stack_yellow_zone_enabled()) {
2473           // Yellow zone violation.  The o/s has unprotected the first yellow
2474           // zone page for us.  Note:  must call disable_stack_yellow_zone to
2475           // update the enabled status, even if the zone contains only one page.
2476           thread->disable_stack_yellow_zone();
2477           // If not in java code, return and hope for the best.
2478           return in_java ? Handle_Exception(exceptionInfo,
2479             SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW))
2480             :  EXCEPTION_CONTINUE_EXECUTION;
2481         } else {
2482           // Fatal red zone violation.
2483           thread->disable_stack_red_zone();
2484           tty->print_raw_cr("An unrecoverable stack overflow has occurred.");
2485           report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2486                        exceptionInfo->ContextRecord);
2487           return EXCEPTION_CONTINUE_SEARCH;
2488         }
2489       } else if (in_java) {
2490         // JVM-managed guard pages cannot be used on win95/98.  The o/s provides
2491         // a one-time-only guard page, which it has released to us.  The next
2492         // stack overflow on this thread will result in an ACCESS_VIOLATION.
2493         return Handle_Exception(exceptionInfo,
2494           SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
2495       } else {
2496         // Can only return and hope for the best.  Further stack growth will
2497         // result in an ACCESS_VIOLATION.
2498         return EXCEPTION_CONTINUE_EXECUTION;
2499       }
2500     } else if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2501       // Either stack overflow or null pointer exception.
2502       if (in_java) {
2503         PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2504         address addr = (address) exceptionRecord->ExceptionInformation[1];
2505         address stack_end = thread->stack_base() - thread->stack_size();
2506         if (addr < stack_end && addr >= stack_end - os::vm_page_size()) {
2507           // Stack overflow.
2508           assert(!os::uses_stack_guard_pages(),
2509             "should be caught by red zone code above.");
2510           return Handle_Exception(exceptionInfo,
2511             SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
2512         }
2513         //
2514         // Check for safepoint polling and implicit null
2515         // We only expect null pointers in the stubs (vtable)
2516         // the rest are checked explicitly now.
2517         //
2518         CodeBlob* cb = CodeCache::find_blob(pc);
2519         if (cb != NULL) {
2520           if (os::is_poll_address(addr)) {
2521             address stub = SharedRuntime::get_poll_stub(pc);
2522             return Handle_Exception(exceptionInfo, stub);
2523           }
2524         }
2525         {
2526 #ifdef _WIN64
2527           //
2528           // If it's a legal stack address map the entire region in
2529           //
2530           PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2531           address addr = (address) exceptionRecord->ExceptionInformation[1];
2532           if (addr > thread->stack_yellow_zone_base() && addr < thread->stack_base() ) {
2533                   addr = (address)((uintptr_t)addr &
2534                          (~((uintptr_t)os::vm_page_size() - (uintptr_t)1)));
2535                   os::commit_memory((char *)addr, thread->stack_base() - addr,
2536                                     !ExecMem);
2537                   return EXCEPTION_CONTINUE_EXECUTION;
2538           }
2539           else
2540 #endif
2541           {
2542             // Null pointer exception.
2543 #ifdef _M_IA64
2544             // Process implicit null checks in compiled code. Note: Implicit null checks
2545             // can happen even if "ImplicitNullChecks" is disabled, e.g. in vtable stubs.
2546             if (CodeCache::contains((void*) pc_unix_format) && !MacroAssembler::needs_explicit_null_check((intptr_t) addr)) {
2547               CodeBlob *cb = CodeCache::find_blob_unsafe(pc_unix_format);
2548               // Handle implicit null check in UEP method entry
2549               if (cb && (cb->is_frame_complete_at(pc) ||
2550                          (cb->is_nmethod() && ((nmethod *)cb)->inlinecache_check_contains(pc)))) {
2551                 if (Verbose) {
2552                   intptr_t *bundle_start = (intptr_t*) ((intptr_t) pc_unix_format & 0xFFFFFFFFFFFFFFF0);
2553                   tty->print_cr("trap: null_check at " INTPTR_FORMAT " (SIGSEGV)", pc_unix_format);
2554                   tty->print_cr("      to addr " INTPTR_FORMAT, addr);
2555                   tty->print_cr("      bundle is " INTPTR_FORMAT " (high), " INTPTR_FORMAT " (low)",
2556                                 *(bundle_start + 1), *bundle_start);
2557                 }
2558                 return Handle_Exception(exceptionInfo,
2559                   SharedRuntime::continuation_for_implicit_exception(thread, pc_unix_format, SharedRuntime::IMPLICIT_NULL));
2560               }
2561             }
2562 
2563             // Implicit null checks were processed above.  Hence, we should not reach
2564             // here in the usual case => die!
2565             if (Verbose) tty->print_raw_cr("Access violation, possible null pointer exception");
2566             report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2567                          exceptionInfo->ContextRecord);
2568             return EXCEPTION_CONTINUE_SEARCH;
2569 
2570 #else // !IA64
2571 
2572             // Windows 98 reports faulting addresses incorrectly
2573             if (!MacroAssembler::needs_explicit_null_check((intptr_t)addr) ||
2574                 !os::win32::is_nt()) {
2575               address stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
2576               if (stub != NULL) return Handle_Exception(exceptionInfo, stub);
2577             }
2578             report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2579                          exceptionInfo->ContextRecord);
2580             return EXCEPTION_CONTINUE_SEARCH;
2581 #endif
2582           }
2583         }
2584       }
2585 
2586 #ifdef _WIN64
2587       // Special care for fast JNI field accessors.
2588       // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks
2589       // in and the heap gets shrunk before the field access.
2590       if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2591         address addr = JNI_FastGetField::find_slowcase_pc(pc);
2592         if (addr != (address)-1) {
2593           return Handle_Exception(exceptionInfo, addr);
2594         }
2595       }
2596 #endif
2597 
2598       // Stack overflow or null pointer exception in native code.
2599       report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2600                    exceptionInfo->ContextRecord);
2601       return EXCEPTION_CONTINUE_SEARCH;
2602     } // /EXCEPTION_ACCESS_VIOLATION
2603     // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
2604 #if defined _M_IA64
2605     else if ((exception_code == EXCEPTION_ILLEGAL_INSTRUCTION ||
2606               exception_code == EXCEPTION_ILLEGAL_INSTRUCTION_2)) {
2607       M37 handle_wrong_method_break(0, NativeJump::HANDLE_WRONG_METHOD, PR0);
2608 
2609       // Compiled method patched to be non entrant? Following conditions must apply:
2610       // 1. must be first instruction in bundle
2611       // 2. must be a break instruction with appropriate code
2612       if((((uint64_t) pc & 0x0F) == 0) &&
2613          (((IPF_Bundle*) pc)->get_slot0() == handle_wrong_method_break.bits())) {
2614         return Handle_Exception(exceptionInfo,
2615                                 (address)SharedRuntime::get_handle_wrong_method_stub());
2616       }
2617     } // /EXCEPTION_ILLEGAL_INSTRUCTION
2618 #endif
2619 
2620 
2621     if (in_java) {
2622       switch (exception_code) {
2623       case EXCEPTION_INT_DIVIDE_BY_ZERO:
2624         return Handle_Exception(exceptionInfo, SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO));
2625 
2626       case EXCEPTION_INT_OVERFLOW:
2627         return Handle_IDiv_Exception(exceptionInfo);
2628 
2629       } // switch
2630     }
2631     if (((thread->thread_state() == _thread_in_Java) ||
2632         (thread->thread_state() == _thread_in_native)) &&
2633         exception_code != EXCEPTION_UNCAUGHT_CXX_EXCEPTION)
2634     {
2635       LONG result=Handle_FLT_Exception(exceptionInfo);
2636       if (result==EXCEPTION_CONTINUE_EXECUTION) return result;
2637     }
2638   }
2639 
2640   if (exception_code != EXCEPTION_BREAKPOINT) {
2641     report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2642                  exceptionInfo->ContextRecord);
2643   }
2644   return EXCEPTION_CONTINUE_SEARCH;
2645 }
2646 
2647 #ifndef _WIN64
2648 // Special care for fast JNI accessors.
2649 // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks in and
2650 // the heap gets shrunk before the field access.
2651 // Need to install our own structured exception handler since native code may
2652 // install its own.
2653 LONG WINAPI fastJNIAccessorExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo) {
2654   DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
2655   if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2656     address pc = (address) exceptionInfo->ContextRecord->Eip;
2657     address addr = JNI_FastGetField::find_slowcase_pc(pc);
2658     if (addr != (address)-1) {
2659       return Handle_Exception(exceptionInfo, addr);
2660     }
2661   }
2662   return EXCEPTION_CONTINUE_SEARCH;
2663 }
2664 
2665 #define DEFINE_FAST_GETFIELD(Return,Fieldname,Result) \
2666 Return JNICALL jni_fast_Get##Result##Field_wrapper(JNIEnv *env, jobject obj, jfieldID fieldID) { \
2667   __try { \
2668     return (*JNI_FastGetField::jni_fast_Get##Result##Field_fp)(env, obj, fieldID); \
2669   } __except(fastJNIAccessorExceptionFilter((_EXCEPTION_POINTERS*)_exception_info())) { \
2670   } \
2671   return 0; \
2672 }
2673 
2674 DEFINE_FAST_GETFIELD(jboolean, bool,   Boolean)
2675 DEFINE_FAST_GETFIELD(jbyte,    byte,   Byte)
2676 DEFINE_FAST_GETFIELD(jchar,    char,   Char)
2677 DEFINE_FAST_GETFIELD(jshort,   short,  Short)
2678 DEFINE_FAST_GETFIELD(jint,     int,    Int)
2679 DEFINE_FAST_GETFIELD(jlong,    long,   Long)
2680 DEFINE_FAST_GETFIELD(jfloat,   float,  Float)
2681 DEFINE_FAST_GETFIELD(jdouble,  double, Double)
2682 
2683 address os::win32::fast_jni_accessor_wrapper(BasicType type) {
2684   switch (type) {
2685     case T_BOOLEAN: return (address)jni_fast_GetBooleanField_wrapper;
2686     case T_BYTE:    return (address)jni_fast_GetByteField_wrapper;
2687     case T_CHAR:    return (address)jni_fast_GetCharField_wrapper;
2688     case T_SHORT:   return (address)jni_fast_GetShortField_wrapper;
2689     case T_INT:     return (address)jni_fast_GetIntField_wrapper;
2690     case T_LONG:    return (address)jni_fast_GetLongField_wrapper;
2691     case T_FLOAT:   return (address)jni_fast_GetFloatField_wrapper;
2692     case T_DOUBLE:  return (address)jni_fast_GetDoubleField_wrapper;
2693     default:        ShouldNotReachHere();
2694   }
2695   return (address)-1;
2696 }
2697 #endif
2698 
2699 #ifndef PRODUCT
2700 void os::win32::call_test_func_with_wrapper(void (*funcPtr)(void)) {
2701   // Install a win32 structured exception handler around the test
2702   // function call so the VM can generate an error dump if needed.
2703   __try {
2704     (*funcPtr)();
2705   } __except(topLevelExceptionFilter(
2706              (_EXCEPTION_POINTERS*)_exception_info())) {
2707     // Nothing to do.
2708   }
2709 }
2710 #endif
2711 
2712 // Virtual Memory
2713 
2714 int os::vm_page_size() { return os::win32::vm_page_size(); }
2715 int os::vm_allocation_granularity() {
2716   return os::win32::vm_allocation_granularity();
2717 }
2718 
2719 // Windows large page support is available on Windows 2003. In order to use
2720 // large page memory, the administrator must first assign additional privilege
2721 // to the user:
2722 //   + select Control Panel -> Administrative Tools -> Local Security Policy
2723 //   + select Local Policies -> User Rights Assignment
2724 //   + double click "Lock pages in memory", add users and/or groups
2725 //   + reboot
2726 // Note the above steps are needed for administrator as well, as administrators
2727 // by default do not have the privilege to lock pages in memory.
2728 //
2729 // Note about Windows 2003: although the API supports committing large page
2730 // memory on a page-by-page basis and VirtualAlloc() returns success under this
2731 // scenario, I found through experiment it only uses large page if the entire
2732 // memory region is reserved and committed in a single VirtualAlloc() call.
2733 // This makes Windows large page support more or less like Solaris ISM, in
2734 // that the entire heap must be committed upfront. This probably will change
2735 // in the future, if so the code below needs to be revisited.
2736 
2737 #ifndef MEM_LARGE_PAGES
2738 #define MEM_LARGE_PAGES 0x20000000
2739 #endif
2740 
2741 static HANDLE    _hProcess;
2742 static HANDLE    _hToken;
2743 
2744 // Container for NUMA node list info
2745 class NUMANodeListHolder {
2746 private:
2747   int *_numa_used_node_list;  // allocated below
2748   int _numa_used_node_count;
2749 
2750   void free_node_list() {
2751     if (_numa_used_node_list != NULL) {
2752       FREE_C_HEAP_ARRAY(int, _numa_used_node_list, mtInternal);
2753     }
2754   }
2755 
2756 public:
2757   NUMANodeListHolder() {
2758     _numa_used_node_count = 0;
2759     _numa_used_node_list = NULL;
2760     // do rest of initialization in build routine (after function pointers are set up)
2761   }
2762 
2763   ~NUMANodeListHolder() {
2764     free_node_list();
2765   }
2766 
2767   bool build() {
2768     DWORD_PTR proc_aff_mask;
2769     DWORD_PTR sys_aff_mask;
2770     if (!GetProcessAffinityMask(GetCurrentProcess(), &proc_aff_mask, &sys_aff_mask)) return false;
2771     ULONG highest_node_number;
2772     if (!os::Kernel32Dll::GetNumaHighestNodeNumber(&highest_node_number)) return false;
2773     free_node_list();
2774     _numa_used_node_list = NEW_C_HEAP_ARRAY(int, highest_node_number + 1, mtInternal);
2775     for (unsigned int i = 0; i <= highest_node_number; i++) {
2776       ULONGLONG proc_mask_numa_node;
2777       if (!os::Kernel32Dll::GetNumaNodeProcessorMask(i, &proc_mask_numa_node)) return false;
2778       if ((proc_aff_mask & proc_mask_numa_node)!=0) {
2779         _numa_used_node_list[_numa_used_node_count++] = i;
2780       }
2781     }
2782     return (_numa_used_node_count > 1);
2783   }
2784 
2785   int get_count() {return _numa_used_node_count;}
2786   int get_node_list_entry(int n) {
2787     // for indexes out of range, returns -1
2788     return (n < _numa_used_node_count ? _numa_used_node_list[n] : -1);
2789   }
2790 
2791 } numa_node_list_holder;
2792 
2793 
2794 
2795 static size_t _large_page_size = 0;
2796 
2797 static bool resolve_functions_for_large_page_init() {
2798   return os::Kernel32Dll::GetLargePageMinimumAvailable() &&
2799     os::Advapi32Dll::AdvapiAvailable();
2800 }
2801 
2802 static bool request_lock_memory_privilege() {
2803   _hProcess = OpenProcess(PROCESS_QUERY_INFORMATION, FALSE,
2804                                 os::current_process_id());
2805 
2806   LUID luid;
2807   if (_hProcess != NULL &&
2808       os::Advapi32Dll::OpenProcessToken(_hProcess, TOKEN_ADJUST_PRIVILEGES, &_hToken) &&
2809       os::Advapi32Dll::LookupPrivilegeValue(NULL, "SeLockMemoryPrivilege", &luid)) {
2810 
2811     TOKEN_PRIVILEGES tp;
2812     tp.PrivilegeCount = 1;
2813     tp.Privileges[0].Luid = luid;
2814     tp.Privileges[0].Attributes = SE_PRIVILEGE_ENABLED;
2815 
2816     // AdjustTokenPrivileges() may return TRUE even when it couldn't change the
2817     // privilege. Check GetLastError() too. See MSDN document.
2818     if (os::Advapi32Dll::AdjustTokenPrivileges(_hToken, false, &tp, sizeof(tp), NULL, NULL) &&
2819         (GetLastError() == ERROR_SUCCESS)) {
2820       return true;
2821     }
2822   }
2823 
2824   return false;
2825 }
2826 
2827 static void cleanup_after_large_page_init() {
2828   if (_hProcess) CloseHandle(_hProcess);
2829   _hProcess = NULL;
2830   if (_hToken) CloseHandle(_hToken);
2831   _hToken = NULL;
2832 }
2833 
2834 static bool numa_interleaving_init() {
2835   bool success = false;
2836   bool use_numa_interleaving_specified = !FLAG_IS_DEFAULT(UseNUMAInterleaving);
2837 
2838   // print a warning if UseNUMAInterleaving flag is specified on command line
2839   bool warn_on_failure = use_numa_interleaving_specified;
2840 # define WARN(msg) if (warn_on_failure) { warning(msg); }
2841 
2842   // NUMAInterleaveGranularity cannot be less than vm_allocation_granularity (or _large_page_size if using large pages)
2843   size_t min_interleave_granularity = UseLargePages ? _large_page_size : os::vm_allocation_granularity();
2844   NUMAInterleaveGranularity = align_size_up(NUMAInterleaveGranularity, min_interleave_granularity);
2845 
2846   if (os::Kernel32Dll::NumaCallsAvailable()) {
2847     if (numa_node_list_holder.build()) {
2848       if (PrintMiscellaneous && Verbose) {
2849         tty->print("NUMA UsedNodeCount=%d, namely ", numa_node_list_holder.get_count());
2850         for (int i = 0; i < numa_node_list_holder.get_count(); i++) {
2851           tty->print("%d ", numa_node_list_holder.get_node_list_entry(i));
2852         }
2853         tty->print("\n");
2854       }
2855       success = true;
2856     } else {
2857       WARN("Process does not cover multiple NUMA nodes.");
2858     }
2859   } else {
2860     WARN("NUMA Interleaving is not supported by the operating system.");
2861   }
2862   if (!success) {
2863     if (use_numa_interleaving_specified) WARN("...Ignoring UseNUMAInterleaving flag.");
2864   }
2865   return success;
2866 #undef WARN
2867 }
2868 
2869 // this routine is used whenever we need to reserve a contiguous VA range
2870 // but we need to make separate VirtualAlloc calls for each piece of the range
2871 // Reasons for doing this:
2872 //  * UseLargePagesIndividualAllocation was set (normally only needed on WS2003 but possible to be set otherwise)
2873 //  * UseNUMAInterleaving requires a separate node for each piece
2874 static char* allocate_pages_individually(size_t bytes, char* addr, DWORD flags, DWORD prot,
2875                                          bool should_inject_error=false) {
2876   char * p_buf;
2877   // note: at setup time we guaranteed that NUMAInterleaveGranularity was aligned up to a page size
2878   size_t page_size = UseLargePages ? _large_page_size : os::vm_allocation_granularity();
2879   size_t chunk_size = UseNUMAInterleaving ? NUMAInterleaveGranularity : page_size;
2880 
2881   // first reserve enough address space in advance since we want to be
2882   // able to break a single contiguous virtual address range into multiple
2883   // large page commits but WS2003 does not allow reserving large page space
2884   // so we just use 4K pages for reserve, this gives us a legal contiguous
2885   // address space. then we will deallocate that reservation, and re alloc
2886   // using large pages
2887   const size_t size_of_reserve = bytes + chunk_size;
2888   if (bytes > size_of_reserve) {
2889     // Overflowed.
2890     return NULL;
2891   }
2892   p_buf = (char *) VirtualAlloc(addr,
2893                                 size_of_reserve,  // size of Reserve
2894                                 MEM_RESERVE,
2895                                 PAGE_READWRITE);
2896   // If reservation failed, return NULL
2897   if (p_buf == NULL) return NULL;
2898   MemTracker::record_virtual_memory_reserve((address)p_buf, size_of_reserve, mtNone, CALLER_PC);
2899   os::release_memory(p_buf, bytes + chunk_size);
2900 
2901   // we still need to round up to a page boundary (in case we are using large pages)
2902   // but not to a chunk boundary (in case InterleavingGranularity doesn't align with page size)
2903   // instead we handle this in the bytes_to_rq computation below
2904   p_buf = (char *) align_size_up((size_t)p_buf, page_size);
2905 
2906   // now go through and allocate one chunk at a time until all bytes are
2907   // allocated
2908   size_t  bytes_remaining = bytes;
2909   // An overflow of align_size_up() would have been caught above
2910   // in the calculation of size_of_reserve.
2911   char * next_alloc_addr = p_buf;
2912   HANDLE hProc = GetCurrentProcess();
2913 
2914 #ifdef ASSERT
2915   // Variable for the failure injection
2916   long ran_num = os::random();
2917   size_t fail_after = ran_num % bytes;
2918 #endif
2919 
2920   int count=0;
2921   while (bytes_remaining) {
2922     // select bytes_to_rq to get to the next chunk_size boundary
2923 
2924     size_t bytes_to_rq = MIN2(bytes_remaining, chunk_size - ((size_t)next_alloc_addr % chunk_size));
2925     // Note allocate and commit
2926     char * p_new;
2927 
2928 #ifdef ASSERT
2929     bool inject_error_now = should_inject_error && (bytes_remaining <= fail_after);
2930 #else
2931     const bool inject_error_now = false;
2932 #endif
2933 
2934     if (inject_error_now) {
2935       p_new = NULL;
2936     } else {
2937       if (!UseNUMAInterleaving) {
2938         p_new = (char *) VirtualAlloc(next_alloc_addr,
2939                                       bytes_to_rq,
2940                                       flags,
2941                                       prot);
2942       } else {
2943         // get the next node to use from the used_node_list
2944         assert(numa_node_list_holder.get_count() > 0, "Multiple NUMA nodes expected");
2945         DWORD node = numa_node_list_holder.get_node_list_entry(count % numa_node_list_holder.get_count());
2946         p_new = (char *)os::Kernel32Dll::VirtualAllocExNuma(hProc,
2947                                                             next_alloc_addr,
2948                                                             bytes_to_rq,
2949                                                             flags,
2950                                                             prot,
2951                                                             node);
2952       }
2953     }
2954 
2955     if (p_new == NULL) {
2956       // Free any allocated pages
2957       if (next_alloc_addr > p_buf) {
2958         // Some memory was committed so release it.
2959         size_t bytes_to_release = bytes - bytes_remaining;
2960         // NMT has yet to record any individual blocks, so it
2961         // need to create a dummy 'reserve' record to match
2962         // the release.
2963         MemTracker::record_virtual_memory_reserve((address)p_buf,
2964           bytes_to_release, mtNone, CALLER_PC);
2965         os::release_memory(p_buf, bytes_to_release);
2966       }
2967 #ifdef ASSERT
2968       if (should_inject_error) {
2969         if (TracePageSizes && Verbose) {
2970           tty->print_cr("Reserving pages individually failed.");
2971         }
2972       }
2973 #endif
2974       return NULL;
2975     }
2976 
2977     bytes_remaining -= bytes_to_rq;
2978     next_alloc_addr += bytes_to_rq;
2979     count++;
2980   }
2981   // Although the memory is allocated individually, it is returned as one.
2982   // NMT records it as one block.
2983   address pc = CALLER_PC;
2984   if ((flags & MEM_COMMIT) != 0) {
2985     MemTracker::record_virtual_memory_reserve_and_commit((address)p_buf, bytes, mtNone, pc);
2986   } else {
2987     MemTracker::record_virtual_memory_reserve((address)p_buf, bytes, mtNone, pc);
2988   }
2989 
2990   // made it this far, success
2991   return p_buf;
2992 }
2993 
2994 
2995 
2996 void os::large_page_init() {
2997   if (!UseLargePages) return;
2998 
2999   // print a warning if any large page related flag is specified on command line
3000   bool warn_on_failure = !FLAG_IS_DEFAULT(UseLargePages) ||
3001                          !FLAG_IS_DEFAULT(LargePageSizeInBytes);
3002   bool success = false;
3003 
3004 # define WARN(msg) if (warn_on_failure) { warning(msg); }
3005   if (resolve_functions_for_large_page_init()) {
3006     if (request_lock_memory_privilege()) {
3007       size_t s = os::Kernel32Dll::GetLargePageMinimum();
3008       if (s) {
3009 #if defined(IA32) || defined(AMD64)
3010         if (s > 4*M || LargePageSizeInBytes > 4*M) {
3011           WARN("JVM cannot use large pages bigger than 4mb.");
3012         } else {
3013 #endif
3014           if (LargePageSizeInBytes && LargePageSizeInBytes % s == 0) {
3015             _large_page_size = LargePageSizeInBytes;
3016           } else {
3017             _large_page_size = s;
3018           }
3019           success = true;
3020 #if defined(IA32) || defined(AMD64)
3021         }
3022 #endif
3023       } else {
3024         WARN("Large page is not supported by the processor.");
3025       }
3026     } else {
3027       WARN("JVM cannot use large page memory because it does not have enough privilege to lock pages in memory.");
3028     }
3029   } else {
3030     WARN("Large page is not supported by the operating system.");
3031   }
3032 #undef WARN
3033 
3034   const size_t default_page_size = (size_t) vm_page_size();
3035   if (success && _large_page_size > default_page_size) {
3036     _page_sizes[0] = _large_page_size;
3037     _page_sizes[1] = default_page_size;
3038     _page_sizes[2] = 0;
3039   }
3040 
3041   cleanup_after_large_page_init();
3042   UseLargePages = success;
3043 }
3044 
3045 // On win32, one cannot release just a part of reserved memory, it's an
3046 // all or nothing deal.  When we split a reservation, we must break the
3047 // reservation into two reservations.
3048 void os::pd_split_reserved_memory(char *base, size_t size, size_t split,
3049                               bool realloc) {
3050   if (size > 0) {
3051     release_memory(base, size);
3052     if (realloc) {
3053       reserve_memory(split, base);
3054     }
3055     if (size != split) {
3056       reserve_memory(size - split, base + split);
3057     }
3058   }
3059 }
3060 
3061 // Multiple threads can race in this code but it's not possible to unmap small sections of
3062 // virtual space to get requested alignment, like posix-like os's.
3063 // Windows prevents multiple thread from remapping over each other so this loop is thread-safe.
3064 char* os::reserve_memory_aligned(size_t size, size_t alignment) {
3065   assert((alignment & (os::vm_allocation_granularity() - 1)) == 0,
3066       "Alignment must be a multiple of allocation granularity (page size)");
3067   assert((size & (alignment -1)) == 0, "size must be 'alignment' aligned");
3068 
3069   size_t extra_size = size + alignment;
3070   assert(extra_size >= size, "overflow, size is too large to allow alignment");
3071 
3072   char* aligned_base = NULL;
3073 
3074   do {
3075     char* extra_base = os::reserve_memory(extra_size, NULL, alignment);
3076     if (extra_base == NULL) {
3077       return NULL;
3078     }
3079     // Do manual alignment
3080     aligned_base = (char*) align_size_up((uintptr_t) extra_base, alignment);
3081 
3082     os::release_memory(extra_base, extra_size);
3083 
3084     aligned_base = os::reserve_memory(size, aligned_base);
3085 
3086   } while (aligned_base == NULL);
3087 
3088   return aligned_base;
3089 }
3090 
3091 char* os::pd_reserve_memory(size_t bytes, char* addr, size_t alignment_hint) {
3092   assert((size_t)addr % os::vm_allocation_granularity() == 0,
3093          "reserve alignment");
3094   assert(bytes % os::vm_allocation_granularity() == 0, "reserve block size");
3095   char* res;
3096   // note that if UseLargePages is on, all the areas that require interleaving
3097   // will go thru reserve_memory_special rather than thru here.
3098   bool use_individual = (UseNUMAInterleaving && !UseLargePages);
3099   if (!use_individual) {
3100     res = (char*)VirtualAlloc(addr, bytes, MEM_RESERVE, PAGE_READWRITE);
3101   } else {
3102     elapsedTimer reserveTimer;
3103     if( Verbose && PrintMiscellaneous ) reserveTimer.start();
3104     // in numa interleaving, we have to allocate pages individually
3105     // (well really chunks of NUMAInterleaveGranularity size)
3106     res = allocate_pages_individually(bytes, addr, MEM_RESERVE, PAGE_READWRITE);
3107     if (res == NULL) {
3108       warning("NUMA page allocation failed");
3109     }
3110     if( Verbose && PrintMiscellaneous ) {
3111       reserveTimer.stop();
3112       tty->print_cr("reserve_memory of %Ix bytes took " JLONG_FORMAT " ms (" JLONG_FORMAT " ticks)", bytes,
3113                     reserveTimer.milliseconds(), reserveTimer.ticks());
3114     }
3115   }
3116   assert(res == NULL || addr == NULL || addr == res,
3117          "Unexpected address from reserve.");
3118 
3119   return res;
3120 }
3121 
3122 // Reserve memory at an arbitrary address, only if that area is
3123 // available (and not reserved for something else).
3124 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
3125   // Windows os::reserve_memory() fails of the requested address range is
3126   // not avilable.
3127   return reserve_memory(bytes, requested_addr);
3128 }
3129 
3130 size_t os::large_page_size() {
3131   return _large_page_size;
3132 }
3133 
3134 bool os::can_commit_large_page_memory() {
3135   // Windows only uses large page memory when the entire region is reserved
3136   // and committed in a single VirtualAlloc() call. This may change in the
3137   // future, but with Windows 2003 it's not possible to commit on demand.
3138   return false;
3139 }
3140 
3141 bool os::can_execute_large_page_memory() {
3142   return true;
3143 }
3144 
3145 char* os::reserve_memory_special(size_t bytes, size_t alignment, char* addr, bool exec) {
3146   assert(UseLargePages, "only for large pages");
3147 
3148   if (!is_size_aligned(bytes, os::large_page_size()) || alignment > os::large_page_size()) {
3149     return NULL; // Fallback to small pages.
3150   }
3151 
3152   const DWORD prot = exec ? PAGE_EXECUTE_READWRITE : PAGE_READWRITE;
3153   const DWORD flags = MEM_RESERVE | MEM_COMMIT | MEM_LARGE_PAGES;
3154 
3155   // with large pages, there are two cases where we need to use Individual Allocation
3156   // 1) the UseLargePagesIndividualAllocation flag is set (set by default on WS2003)
3157   // 2) NUMA Interleaving is enabled, in which case we use a different node for each page
3158   if (UseLargePagesIndividualAllocation || UseNUMAInterleaving) {
3159     if (TracePageSizes && Verbose) {
3160        tty->print_cr("Reserving large pages individually.");
3161     }
3162     char * p_buf = allocate_pages_individually(bytes, addr, flags, prot, LargePagesIndividualAllocationInjectError);
3163     if (p_buf == NULL) {
3164       // give an appropriate warning message
3165       if (UseNUMAInterleaving) {
3166         warning("NUMA large page allocation failed, UseLargePages flag ignored");
3167       }
3168       if (UseLargePagesIndividualAllocation) {
3169         warning("Individually allocated large pages failed, "
3170                 "use -XX:-UseLargePagesIndividualAllocation to turn off");
3171       }
3172       return NULL;
3173     }
3174 
3175     return p_buf;
3176 
3177   } else {
3178     if (TracePageSizes && Verbose) {
3179        tty->print_cr("Reserving large pages in a single large chunk.");
3180     }
3181     // normal policy just allocate it all at once
3182     DWORD flag = MEM_RESERVE | MEM_COMMIT | MEM_LARGE_PAGES;
3183     char * res = (char *)VirtualAlloc(addr, bytes, flag, prot);
3184     if (res != NULL) {
3185       address pc = CALLER_PC;
3186       MemTracker::record_virtual_memory_reserve_and_commit((address)res, bytes, mtNone, pc);
3187     }
3188 
3189     return res;
3190   }
3191 }
3192 
3193 bool os::release_memory_special(char* base, size_t bytes) {
3194   assert(base != NULL, "Sanity check");
3195   return release_memory(base, bytes);
3196 }
3197 
3198 void os::print_statistics() {
3199 }
3200 
3201 static void warn_fail_commit_memory(char* addr, size_t bytes, bool exec) {
3202   int err = os::get_last_error();
3203   char buf[256];
3204   size_t buf_len = os::lasterror(buf, sizeof(buf));
3205   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
3206           ", %d) failed; error='%s' (DOS error/errno=%d)", addr, bytes,
3207           exec, buf_len != 0 ? buf : "<no_error_string>", err);
3208 }
3209 
3210 bool os::pd_commit_memory(char* addr, size_t bytes, bool exec) {
3211   if (bytes == 0) {
3212     // Don't bother the OS with noops.
3213     return true;
3214   }
3215   assert((size_t) addr % os::vm_page_size() == 0, "commit on page boundaries");
3216   assert(bytes % os::vm_page_size() == 0, "commit in page-sized chunks");
3217   // Don't attempt to print anything if the OS call fails. We're
3218   // probably low on resources, so the print itself may cause crashes.
3219 
3220   // unless we have NUMAInterleaving enabled, the range of a commit
3221   // is always within a reserve covered by a single VirtualAlloc
3222   // in that case we can just do a single commit for the requested size
3223   if (!UseNUMAInterleaving) {
3224     if (VirtualAlloc(addr, bytes, MEM_COMMIT, PAGE_READWRITE) == NULL) {
3225       NOT_PRODUCT(warn_fail_commit_memory(addr, bytes, exec);)
3226       return false;
3227     }
3228     if (exec) {
3229       DWORD oldprot;
3230       // Windows doc says to use VirtualProtect to get execute permissions
3231       if (!VirtualProtect(addr, bytes, PAGE_EXECUTE_READWRITE, &oldprot)) {
3232         NOT_PRODUCT(warn_fail_commit_memory(addr, bytes, exec);)
3233         return false;
3234       }
3235     }
3236     return true;
3237   } else {
3238 
3239     // when NUMAInterleaving is enabled, the commit might cover a range that
3240     // came from multiple VirtualAlloc reserves (using allocate_pages_individually).
3241     // VirtualQuery can help us determine that.  The RegionSize that VirtualQuery
3242     // returns represents the number of bytes that can be committed in one step.
3243     size_t bytes_remaining = bytes;
3244     char * next_alloc_addr = addr;
3245     while (bytes_remaining > 0) {
3246       MEMORY_BASIC_INFORMATION alloc_info;
3247       VirtualQuery(next_alloc_addr, &alloc_info, sizeof(alloc_info));
3248       size_t bytes_to_rq = MIN2(bytes_remaining, (size_t)alloc_info.RegionSize);
3249       if (VirtualAlloc(next_alloc_addr, bytes_to_rq, MEM_COMMIT,
3250                        PAGE_READWRITE) == NULL) {
3251         NOT_PRODUCT(warn_fail_commit_memory(next_alloc_addr, bytes_to_rq,
3252                                             exec);)
3253         return false;
3254       }
3255       if (exec) {
3256         DWORD oldprot;
3257         if (!VirtualProtect(next_alloc_addr, bytes_to_rq,
3258                             PAGE_EXECUTE_READWRITE, &oldprot)) {
3259           NOT_PRODUCT(warn_fail_commit_memory(next_alloc_addr, bytes_to_rq,
3260                                               exec);)
3261           return false;
3262         }
3263       }
3264       bytes_remaining -= bytes_to_rq;
3265       next_alloc_addr += bytes_to_rq;
3266     }
3267   }
3268   // if we made it this far, return true
3269   return true;
3270 }
3271 
3272 bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
3273                        bool exec) {
3274   // alignment_hint is ignored on this OS
3275   return pd_commit_memory(addr, size, exec);
3276 }
3277 
3278 void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
3279                                   const char* mesg) {
3280   assert(mesg != NULL, "mesg must be specified");
3281   if (!pd_commit_memory(addr, size, exec)) {
3282     warn_fail_commit_memory(addr, size, exec);
3283     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, mesg);
3284   }
3285 }
3286 
3287 void os::pd_commit_memory_or_exit(char* addr, size_t size,
3288                                   size_t alignment_hint, bool exec,
3289                                   const char* mesg) {
3290   // alignment_hint is ignored on this OS
3291   pd_commit_memory_or_exit(addr, size, exec, mesg);
3292 }
3293 
3294 bool os::pd_uncommit_memory(char* addr, size_t bytes) {
3295   if (bytes == 0) {
3296     // Don't bother the OS with noops.
3297     return true;
3298   }
3299   assert((size_t) addr % os::vm_page_size() == 0, "uncommit on page boundaries");
3300   assert(bytes % os::vm_page_size() == 0, "uncommit in page-sized chunks");
3301   return (VirtualFree(addr, bytes, MEM_DECOMMIT) != 0);
3302 }
3303 
3304 bool os::pd_release_memory(char* addr, size_t bytes) {
3305   return VirtualFree(addr, 0, MEM_RELEASE) != 0;
3306 }
3307 
3308 bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
3309   return os::commit_memory(addr, size, !ExecMem);
3310 }
3311 
3312 bool os::remove_stack_guard_pages(char* addr, size_t size) {
3313   return os::uncommit_memory(addr, size);
3314 }
3315 
3316 // Set protections specified
3317 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
3318                         bool is_committed) {
3319   unsigned int p = 0;
3320   switch (prot) {
3321   case MEM_PROT_NONE: p = PAGE_NOACCESS; break;
3322   case MEM_PROT_READ: p = PAGE_READONLY; break;
3323   case MEM_PROT_RW:   p = PAGE_READWRITE; break;
3324   case MEM_PROT_RWX:  p = PAGE_EXECUTE_READWRITE; break;
3325   default:
3326     ShouldNotReachHere();
3327   }
3328 
3329   DWORD old_status;
3330 
3331   // Strange enough, but on Win32 one can change protection only for committed
3332   // memory, not a big deal anyway, as bytes less or equal than 64K
3333   if (!is_committed) {
3334     commit_memory_or_exit(addr, bytes, prot == MEM_PROT_RWX,
3335                           "cannot commit protection page");
3336   }
3337   // One cannot use os::guard_memory() here, as on Win32 guard page
3338   // have different (one-shot) semantics, from MSDN on PAGE_GUARD:
3339   //
3340   // Pages in the region become guard pages. Any attempt to access a guard page
3341   // causes the system to raise a STATUS_GUARD_PAGE exception and turn off
3342   // the guard page status. Guard pages thus act as a one-time access alarm.
3343   return VirtualProtect(addr, bytes, p, &old_status) != 0;
3344 }
3345 
3346 bool os::guard_memory(char* addr, size_t bytes) {
3347   DWORD old_status;
3348   return VirtualProtect(addr, bytes, PAGE_READWRITE | PAGE_GUARD, &old_status) != 0;
3349 }
3350 
3351 bool os::unguard_memory(char* addr, size_t bytes) {
3352   DWORD old_status;
3353   return VirtualProtect(addr, bytes, PAGE_READWRITE, &old_status) != 0;
3354 }
3355 
3356 void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) { }
3357 void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) { }
3358 void os::numa_make_global(char *addr, size_t bytes)    { }
3359 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint)    { }
3360 bool os::numa_topology_changed()                       { return false; }
3361 size_t os::numa_get_groups_num()                       { return MAX2(numa_node_list_holder.get_count(), 1); }
3362 int os::numa_get_group_id()                            { return 0; }
3363 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
3364   if (numa_node_list_holder.get_count() == 0 && size > 0) {
3365     // Provide an answer for UMA systems
3366     ids[0] = 0;
3367     return 1;
3368   } else {
3369     // check for size bigger than actual groups_num
3370     size = MIN2(size, numa_get_groups_num());
3371     for (int i = 0; i < (int)size; i++) {
3372       ids[i] = numa_node_list_holder.get_node_list_entry(i);
3373     }
3374     return size;
3375   }
3376 }
3377 
3378 bool os::get_page_info(char *start, page_info* info) {
3379   return false;
3380 }
3381 
3382 char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
3383   return end;
3384 }
3385 
3386 char* os::non_memory_address_word() {
3387   // Must never look like an address returned by reserve_memory,
3388   // even in its subfields (as defined by the CPU immediate fields,
3389   // if the CPU splits constants across multiple instructions).
3390   return (char*)-1;
3391 }
3392 
3393 #define MAX_ERROR_COUNT 100
3394 #define SYS_THREAD_ERROR 0xffffffffUL
3395 
3396 void os::pd_start_thread(Thread* thread) {
3397   DWORD ret = ResumeThread(thread->osthread()->thread_handle());
3398   // Returns previous suspend state:
3399   // 0:  Thread was not suspended
3400   // 1:  Thread is running now
3401   // >1: Thread is still suspended.
3402   assert(ret != SYS_THREAD_ERROR, "StartThread failed"); // should propagate back
3403 }
3404 
3405 class HighResolutionInterval : public CHeapObj<mtThread> {
3406   // The default timer resolution seems to be 10 milliseconds.
3407   // (Where is this written down?)
3408   // If someone wants to sleep for only a fraction of the default,
3409   // then we set the timer resolution down to 1 millisecond for
3410   // the duration of their interval.
3411   // We carefully set the resolution back, since otherwise we
3412   // seem to incur an overhead (3%?) that we don't need.
3413   // CONSIDER: if ms is small, say 3, then we should run with a high resolution time.
3414   // Buf if ms is large, say 500, or 503, we should avoid the call to timeBeginPeriod().
3415   // Alternatively, we could compute the relative error (503/500 = .6%) and only use
3416   // timeBeginPeriod() if the relative error exceeded some threshold.
3417   // timeBeginPeriod() has been linked to problems with clock drift on win32 systems and
3418   // to decreased efficiency related to increased timer "tick" rates.  We want to minimize
3419   // (a) calls to timeBeginPeriod() and timeEndPeriod() and (b) time spent with high
3420   // resolution timers running.
3421 private:
3422     jlong resolution;
3423 public:
3424   HighResolutionInterval(jlong ms) {
3425     resolution = ms % 10L;
3426     if (resolution != 0) {
3427       MMRESULT result = timeBeginPeriod(1L);
3428     }
3429   }
3430   ~HighResolutionInterval() {
3431     if (resolution != 0) {
3432       MMRESULT result = timeEndPeriod(1L);
3433     }
3434     resolution = 0L;
3435   }
3436 };
3437 
3438 int os::sleep(Thread* thread, jlong ms, bool interruptable) {
3439   jlong limit = (jlong) MAXDWORD;
3440 
3441   while(ms > limit) {
3442     int res;
3443     if ((res = sleep(thread, limit, interruptable)) != OS_TIMEOUT)
3444       return res;
3445     ms -= limit;
3446   }
3447 
3448   assert(thread == Thread::current(),  "thread consistency check");
3449   OSThread* osthread = thread->osthread();
3450   OSThreadWaitState osts(osthread, false /* not Object.wait() */);
3451   int result;
3452   if (interruptable) {
3453     assert(thread->is_Java_thread(), "must be java thread");
3454     JavaThread *jt = (JavaThread *) thread;
3455     ThreadBlockInVM tbivm(jt);
3456 
3457     jt->set_suspend_equivalent();
3458     // cleared by handle_special_suspend_equivalent_condition() or
3459     // java_suspend_self() via check_and_wait_while_suspended()
3460 
3461     HANDLE events[1];
3462     events[0] = osthread->interrupt_event();
3463     HighResolutionInterval *phri=NULL;
3464     if(!ForceTimeHighResolution)
3465       phri = new HighResolutionInterval( ms );
3466     if (WaitForMultipleObjects(1, events, FALSE, (DWORD)ms) == WAIT_TIMEOUT) {
3467       result = OS_TIMEOUT;
3468     } else {
3469       ResetEvent(osthread->interrupt_event());
3470       osthread->set_interrupted(false);
3471       result = OS_INTRPT;
3472     }
3473     delete phri; //if it is NULL, harmless
3474 
3475     // were we externally suspended while we were waiting?
3476     jt->check_and_wait_while_suspended();
3477   } else {
3478     assert(!thread->is_Java_thread(), "must not be java thread");
3479     Sleep((long) ms);
3480     result = OS_TIMEOUT;
3481   }
3482   return result;
3483 }
3484 
3485 //
3486 // Short sleep, direct OS call.
3487 //
3488 // ms = 0, means allow others (if any) to run.
3489 //
3490 void os::naked_short_sleep(jlong ms) {
3491   assert(ms < 1000, "Un-interruptable sleep, short time use only");
3492   Sleep(ms);
3493 }
3494 
3495 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
3496 void os::infinite_sleep() {
3497   while (true) {    // sleep forever ...
3498     Sleep(100000);  // ... 100 seconds at a time
3499   }
3500 }
3501 
3502 typedef BOOL (WINAPI * STTSignature)(void) ;
3503 
3504 os::YieldResult os::NakedYield() {
3505   // Use either SwitchToThread() or Sleep(0)
3506   // Consider passing back the return value from SwitchToThread().
3507   if (os::Kernel32Dll::SwitchToThreadAvailable()) {
3508     return SwitchToThread() ? os::YIELD_SWITCHED : os::YIELD_NONEREADY ;
3509   } else {
3510     Sleep(0);
3511   }
3512   return os::YIELD_UNKNOWN ;
3513 }
3514 
3515 void os::yield() {  os::NakedYield(); }
3516 
3517 void os::yield_all(int attempts) {
3518   // Yields to all threads, including threads with lower priorities
3519   Sleep(1);
3520 }
3521 
3522 // Win32 only gives you access to seven real priorities at a time,
3523 // so we compress Java's ten down to seven.  It would be better
3524 // if we dynamically adjusted relative priorities.
3525 
3526 int os::java_to_os_priority[CriticalPriority + 1] = {
3527   THREAD_PRIORITY_IDLE,                         // 0  Entry should never be used
3528   THREAD_PRIORITY_LOWEST,                       // 1  MinPriority
3529   THREAD_PRIORITY_LOWEST,                       // 2
3530   THREAD_PRIORITY_BELOW_NORMAL,                 // 3
3531   THREAD_PRIORITY_BELOW_NORMAL,                 // 4
3532   THREAD_PRIORITY_NORMAL,                       // 5  NormPriority
3533   THREAD_PRIORITY_NORMAL,                       // 6
3534   THREAD_PRIORITY_ABOVE_NORMAL,                 // 7
3535   THREAD_PRIORITY_ABOVE_NORMAL,                 // 8
3536   THREAD_PRIORITY_HIGHEST,                      // 9  NearMaxPriority
3537   THREAD_PRIORITY_HIGHEST,                      // 10 MaxPriority
3538   THREAD_PRIORITY_HIGHEST                       // 11 CriticalPriority
3539 };
3540 
3541 int prio_policy1[CriticalPriority + 1] = {
3542   THREAD_PRIORITY_IDLE,                         // 0  Entry should never be used
3543   THREAD_PRIORITY_LOWEST,                       // 1  MinPriority
3544   THREAD_PRIORITY_LOWEST,                       // 2
3545   THREAD_PRIORITY_BELOW_NORMAL,                 // 3
3546   THREAD_PRIORITY_BELOW_NORMAL,                 // 4
3547   THREAD_PRIORITY_NORMAL,                       // 5  NormPriority
3548   THREAD_PRIORITY_ABOVE_NORMAL,                 // 6
3549   THREAD_PRIORITY_ABOVE_NORMAL,                 // 7
3550   THREAD_PRIORITY_HIGHEST,                      // 8
3551   THREAD_PRIORITY_HIGHEST,                      // 9  NearMaxPriority
3552   THREAD_PRIORITY_TIME_CRITICAL,                // 10 MaxPriority
3553   THREAD_PRIORITY_TIME_CRITICAL                 // 11 CriticalPriority
3554 };
3555 
3556 static int prio_init() {
3557   // If ThreadPriorityPolicy is 1, switch tables
3558   if (ThreadPriorityPolicy == 1) {
3559     int i;
3560     for (i = 0; i < CriticalPriority + 1; i++) {
3561       os::java_to_os_priority[i] = prio_policy1[i];
3562     }
3563   }
3564   if (UseCriticalJavaThreadPriority) {
3565     os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority] ;
3566   }
3567   return 0;
3568 }
3569 
3570 OSReturn os::set_native_priority(Thread* thread, int priority) {
3571   if (!UseThreadPriorities) return OS_OK;
3572   bool ret = SetThreadPriority(thread->osthread()->thread_handle(), priority) != 0;
3573   return ret ? OS_OK : OS_ERR;
3574 }
3575 
3576 OSReturn os::get_native_priority(const Thread* const thread, int* priority_ptr) {
3577   if ( !UseThreadPriorities ) {
3578     *priority_ptr = java_to_os_priority[NormPriority];
3579     return OS_OK;
3580   }
3581   int os_prio = GetThreadPriority(thread->osthread()->thread_handle());
3582   if (os_prio == THREAD_PRIORITY_ERROR_RETURN) {
3583     assert(false, "GetThreadPriority failed");
3584     return OS_ERR;
3585   }
3586   *priority_ptr = os_prio;
3587   return OS_OK;
3588 }
3589 
3590 
3591 // Hint to the underlying OS that a task switch would not be good.
3592 // Void return because it's a hint and can fail.
3593 void os::hint_no_preempt() {}
3594 
3595 void os::interrupt(Thread* thread) {
3596   assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
3597          "possibility of dangling Thread pointer");
3598 
3599   OSThread* osthread = thread->osthread();
3600   osthread->set_interrupted(true);
3601   // More than one thread can get here with the same value of osthread,
3602   // resulting in multiple notifications.  We do, however, want the store
3603   // to interrupted() to be visible to other threads before we post
3604   // the interrupt event.
3605   OrderAccess::release();
3606   SetEvent(osthread->interrupt_event());
3607   // For JSR166:  unpark after setting status
3608   if (thread->is_Java_thread())
3609     ((JavaThread*)thread)->parker()->unpark();
3610 
3611   ParkEvent * ev = thread->_ParkEvent ;
3612   if (ev != NULL) ev->unpark() ;
3613 
3614 }
3615 
3616 
3617 bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
3618   assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
3619          "possibility of dangling Thread pointer");
3620 
3621   OSThread* osthread = thread->osthread();
3622   // There is no synchronization between the setting of the interrupt
3623   // and it being cleared here. It is critical - see 6535709 - that
3624   // we only clear the interrupt state, and reset the interrupt event,
3625   // if we are going to report that we were indeed interrupted - else
3626   // an interrupt can be "lost", leading to spurious wakeups or lost wakeups
3627   // depending on the timing. By checking thread interrupt event to see
3628   // if the thread gets real interrupt thus prevent spurious wakeup.
3629   bool interrupted = osthread->interrupted() && (WaitForSingleObject(osthread->interrupt_event(), 0) == WAIT_OBJECT_0);
3630   if (interrupted && clear_interrupted) {
3631     osthread->set_interrupted(false);
3632     ResetEvent(osthread->interrupt_event());
3633   } // Otherwise leave the interrupted state alone
3634 
3635   return interrupted;
3636 }
3637 
3638 // Get's a pc (hint) for a running thread. Currently used only for profiling.
3639 ExtendedPC os::get_thread_pc(Thread* thread) {
3640   CONTEXT context;
3641   context.ContextFlags = CONTEXT_CONTROL;
3642   HANDLE handle = thread->osthread()->thread_handle();
3643 #ifdef _M_IA64
3644   assert(0, "Fix get_thread_pc");
3645   return ExtendedPC(NULL);
3646 #else
3647   if (GetThreadContext(handle, &context)) {
3648 #ifdef _M_AMD64
3649     return ExtendedPC((address) context.Rip);
3650 #else
3651     return ExtendedPC((address) context.Eip);
3652 #endif
3653   } else {
3654     return ExtendedPC(NULL);
3655   }
3656 #endif
3657 }
3658 
3659 // GetCurrentThreadId() returns DWORD
3660 intx os::current_thread_id()          { return GetCurrentThreadId(); }
3661 
3662 static int _initial_pid = 0;
3663 
3664 int os::current_process_id()
3665 {
3666   return (_initial_pid ? _initial_pid : _getpid());
3667 }
3668 
3669 int    os::win32::_vm_page_size       = 0;
3670 int    os::win32::_vm_allocation_granularity = 0;
3671 int    os::win32::_processor_type     = 0;
3672 // Processor level is not available on non-NT systems, use vm_version instead
3673 int    os::win32::_processor_level    = 0;
3674 julong os::win32::_physical_memory    = 0;
3675 size_t os::win32::_default_stack_size = 0;
3676 
3677          intx os::win32::_os_thread_limit    = 0;
3678 volatile intx os::win32::_os_thread_count    = 0;
3679 
3680 bool   os::win32::_is_nt              = false;
3681 bool   os::win32::_is_windows_2003    = false;
3682 bool   os::win32::_is_windows_server  = false;
3683 
3684 bool   os::win32::_has_performance_count = 0;
3685 
3686 void os::win32::initialize_system_info() {
3687   SYSTEM_INFO si;
3688   GetSystemInfo(&si);
3689   _vm_page_size    = si.dwPageSize;
3690   _vm_allocation_granularity = si.dwAllocationGranularity;
3691   _processor_type  = si.dwProcessorType;
3692   _processor_level = si.wProcessorLevel;
3693   set_processor_count(si.dwNumberOfProcessors);
3694 
3695   MEMORYSTATUSEX ms;
3696   ms.dwLength = sizeof(ms);
3697 
3698   // also returns dwAvailPhys (free physical memory bytes), dwTotalVirtual, dwAvailVirtual,
3699   // dwMemoryLoad (% of memory in use)
3700   GlobalMemoryStatusEx(&ms);
3701   _physical_memory = ms.ullTotalPhys;
3702 
3703   OSVERSIONINFOEX oi;
3704   oi.dwOSVersionInfoSize = sizeof(OSVERSIONINFOEX);
3705   GetVersionEx((OSVERSIONINFO*)&oi);
3706   switch(oi.dwPlatformId) {
3707     case VER_PLATFORM_WIN32_WINDOWS: _is_nt = false; break;
3708     case VER_PLATFORM_WIN32_NT:
3709       _is_nt = true;
3710       {
3711         int os_vers = oi.dwMajorVersion * 1000 + oi.dwMinorVersion;
3712         if (os_vers == 5002) {
3713           _is_windows_2003 = true;
3714         }
3715         if (oi.wProductType == VER_NT_DOMAIN_CONTROLLER ||
3716           oi.wProductType == VER_NT_SERVER) {
3717             _is_windows_server = true;
3718         }
3719       }
3720       break;
3721     default: fatal("Unknown platform");
3722   }
3723 
3724   _default_stack_size = os::current_stack_size();
3725   assert(_default_stack_size > (size_t) _vm_page_size, "invalid stack size");
3726   assert((_default_stack_size & (_vm_page_size - 1)) == 0,
3727     "stack size not a multiple of page size");
3728 
3729   initialize_performance_counter();
3730 
3731   // Win95/Win98 scheduler bug work-around. The Win95/98 scheduler is
3732   // known to deadlock the system, if the VM issues to thread operations with
3733   // a too high frequency, e.g., such as changing the priorities.
3734   // The 6000 seems to work well - no deadlocks has been notices on the test
3735   // programs that we have seen experience this problem.
3736   if (!os::win32::is_nt()) {
3737     StarvationMonitorInterval = 6000;
3738   }
3739 }
3740 
3741 
3742 HINSTANCE os::win32::load_Windows_dll(const char* name, char *ebuf, int ebuflen) {
3743   char path[MAX_PATH];
3744   DWORD size;
3745   DWORD pathLen = (DWORD)sizeof(path);
3746   HINSTANCE result = NULL;
3747 
3748   // only allow library name without path component
3749   assert(strchr(name, '\\') == NULL, "path not allowed");
3750   assert(strchr(name, ':') == NULL, "path not allowed");
3751   if (strchr(name, '\\') != NULL || strchr(name, ':') != NULL) {
3752     jio_snprintf(ebuf, ebuflen,
3753       "Invalid parameter while calling os::win32::load_windows_dll(): cannot take path: %s", name);
3754     return NULL;
3755   }
3756 
3757   // search system directory
3758   if ((size = GetSystemDirectory(path, pathLen)) > 0) {
3759     strcat(path, "\\");
3760     strcat(path, name);
3761     if ((result = (HINSTANCE)os::dll_load(path, ebuf, ebuflen)) != NULL) {
3762       return result;
3763     }
3764   }
3765 
3766   // try Windows directory
3767   if ((size = GetWindowsDirectory(path, pathLen)) > 0) {
3768     strcat(path, "\\");
3769     strcat(path, name);
3770     if ((result = (HINSTANCE)os::dll_load(path, ebuf, ebuflen)) != NULL) {
3771       return result;
3772     }
3773   }
3774 
3775   jio_snprintf(ebuf, ebuflen,
3776     "os::win32::load_windows_dll() cannot load %s from system directories.", name);
3777   return NULL;
3778 }
3779 
3780 void os::win32::setmode_streams() {
3781   _setmode(_fileno(stdin), _O_BINARY);
3782   _setmode(_fileno(stdout), _O_BINARY);
3783   _setmode(_fileno(stderr), _O_BINARY);
3784 }
3785 
3786 
3787 bool os::is_debugger_attached() {
3788   return IsDebuggerPresent() ? true : false;
3789 }
3790 
3791 
3792 void os::wait_for_keypress_at_exit(void) {
3793   if (PauseAtExit) {
3794     fprintf(stderr, "Press any key to continue...\n");
3795     fgetc(stdin);
3796   }
3797 }
3798 
3799 
3800 int os::message_box(const char* title, const char* message) {
3801   int result = MessageBox(NULL, message, title,
3802                           MB_YESNO | MB_ICONERROR | MB_SYSTEMMODAL | MB_DEFAULT_DESKTOP_ONLY);
3803   return result == IDYES;
3804 }
3805 
3806 int os::allocate_thread_local_storage() {
3807   return TlsAlloc();
3808 }
3809 
3810 
3811 void os::free_thread_local_storage(int index) {
3812   TlsFree(index);
3813 }
3814 
3815 
3816 void os::thread_local_storage_at_put(int index, void* value) {
3817   TlsSetValue(index, value);
3818   assert(thread_local_storage_at(index) == value, "Just checking");
3819 }
3820 
3821 
3822 void* os::thread_local_storage_at(int index) {
3823   return TlsGetValue(index);
3824 }
3825 
3826 
3827 #ifndef PRODUCT
3828 #ifndef _WIN64
3829 // Helpers to check whether NX protection is enabled
3830 int nx_exception_filter(_EXCEPTION_POINTERS *pex) {
3831   if (pex->ExceptionRecord->ExceptionCode == EXCEPTION_ACCESS_VIOLATION &&
3832       pex->ExceptionRecord->NumberParameters > 0 &&
3833       pex->ExceptionRecord->ExceptionInformation[0] ==
3834       EXCEPTION_INFO_EXEC_VIOLATION) {
3835     return EXCEPTION_EXECUTE_HANDLER;
3836   }
3837   return EXCEPTION_CONTINUE_SEARCH;
3838 }
3839 
3840 void nx_check_protection() {
3841   // If NX is enabled we'll get an exception calling into code on the stack
3842   char code[] = { (char)0xC3 }; // ret
3843   void *code_ptr = (void *)code;
3844   __try {
3845     __asm call code_ptr
3846   } __except(nx_exception_filter((_EXCEPTION_POINTERS*)_exception_info())) {
3847     tty->print_raw_cr("NX protection detected.");
3848   }
3849 }
3850 #endif // _WIN64
3851 #endif // PRODUCT
3852 
3853 // this is called _before_ the global arguments have been parsed
3854 void os::init(void) {
3855   _initial_pid = _getpid();
3856 
3857   init_random(1234567);
3858 
3859   win32::initialize_system_info();
3860   win32::setmode_streams();
3861   init_page_sizes((size_t) win32::vm_page_size());
3862 
3863   // For better scalability on MP systems (must be called after initialize_system_info)
3864 #ifndef PRODUCT
3865   if (is_MP()) {
3866     NoYieldsInMicrolock = true;
3867   }
3868 #endif
3869   // This may be overridden later when argument processing is done.
3870   FLAG_SET_ERGO(bool, UseLargePagesIndividualAllocation,
3871     os::win32::is_windows_2003());
3872 
3873   // Initialize main_process and main_thread
3874   main_process = GetCurrentProcess();  // Remember main_process is a pseudo handle
3875  if (!DuplicateHandle(main_process, GetCurrentThread(), main_process,
3876                        &main_thread, THREAD_ALL_ACCESS, false, 0)) {
3877     fatal("DuplicateHandle failed\n");
3878   }
3879   main_thread_id = (int) GetCurrentThreadId();
3880 }
3881 
3882 // To install functions for atexit processing
3883 extern "C" {
3884   static void perfMemory_exit_helper() {
3885     perfMemory_exit();
3886   }
3887 }
3888 
3889 static jint initSock();
3890 
3891 // this is called _after_ the global arguments have been parsed
3892 jint os::init_2(void) {
3893   // Allocate a single page and mark it as readable for safepoint polling
3894   address polling_page = (address)VirtualAlloc(NULL, os::vm_page_size(), MEM_RESERVE, PAGE_READONLY);
3895   guarantee( polling_page != NULL, "Reserve Failed for polling page");
3896 
3897   address return_page  = (address)VirtualAlloc(polling_page, os::vm_page_size(), MEM_COMMIT, PAGE_READONLY);
3898   guarantee( return_page != NULL, "Commit Failed for polling page");
3899 
3900   os::set_polling_page( polling_page );
3901 
3902 #ifndef PRODUCT
3903   if( Verbose && PrintMiscellaneous )
3904     tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n", (intptr_t)polling_page);
3905 #endif
3906 
3907   if (!UseMembar) {
3908     address mem_serialize_page = (address)VirtualAlloc(NULL, os::vm_page_size(), MEM_RESERVE, PAGE_READWRITE);
3909     guarantee( mem_serialize_page != NULL, "Reserve Failed for memory serialize page");
3910 
3911     return_page  = (address)VirtualAlloc(mem_serialize_page, os::vm_page_size(), MEM_COMMIT, PAGE_READWRITE);
3912     guarantee( return_page != NULL, "Commit Failed for memory serialize page");
3913 
3914     os::set_memory_serialize_page( mem_serialize_page );
3915 
3916 #ifndef PRODUCT
3917     if(Verbose && PrintMiscellaneous)
3918       tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n", (intptr_t)mem_serialize_page);
3919 #endif
3920   }
3921 
3922   // Setup Windows Exceptions
3923 
3924   // for debugging float code generation bugs
3925   if (ForceFloatExceptions) {
3926 #ifndef  _WIN64
3927     static long fp_control_word = 0;
3928     __asm { fstcw fp_control_word }
3929     // see Intel PPro Manual, Vol. 2, p 7-16
3930     const long precision = 0x20;
3931     const long underflow = 0x10;
3932     const long overflow  = 0x08;
3933     const long zero_div  = 0x04;
3934     const long denorm    = 0x02;
3935     const long invalid   = 0x01;
3936     fp_control_word |= invalid;
3937     __asm { fldcw fp_control_word }
3938 #endif
3939   }
3940 
3941   // If stack_commit_size is 0, windows will reserve the default size,
3942   // but only commit a small portion of it.
3943   size_t stack_commit_size = round_to(ThreadStackSize*K, os::vm_page_size());
3944   size_t default_reserve_size = os::win32::default_stack_size();
3945   size_t actual_reserve_size = stack_commit_size;
3946   if (stack_commit_size < default_reserve_size) {
3947     // If stack_commit_size == 0, we want this too
3948     actual_reserve_size = default_reserve_size;
3949   }
3950 
3951   // Check minimum allowable stack size for thread creation and to initialize
3952   // the java system classes, including StackOverflowError - depends on page
3953   // size.  Add a page for compiler2 recursion in main thread.
3954   // Add in 2*BytesPerWord times page size to account for VM stack during
3955   // class initialization depending on 32 or 64 bit VM.
3956   size_t min_stack_allowed =
3957             (size_t)(StackYellowPages+StackRedPages+StackShadowPages+
3958             2*BytesPerWord COMPILER2_PRESENT(+1)) * os::vm_page_size();
3959   if (actual_reserve_size < min_stack_allowed) {
3960     tty->print_cr("\nThe stack size specified is too small, "
3961                   "Specify at least %dk",
3962                   min_stack_allowed / K);
3963     return JNI_ERR;
3964   }
3965 
3966   JavaThread::set_stack_size_at_create(stack_commit_size);
3967 
3968   // Calculate theoretical max. size of Threads to guard gainst artifical
3969   // out-of-memory situations, where all available address-space has been
3970   // reserved by thread stacks.
3971   assert(actual_reserve_size != 0, "Must have a stack");
3972 
3973   // Calculate the thread limit when we should start doing Virtual Memory
3974   // banging. Currently when the threads will have used all but 200Mb of space.
3975   //
3976   // TODO: consider performing a similar calculation for commit size instead
3977   // as reserve size, since on a 64-bit platform we'll run into that more
3978   // often than running out of virtual memory space.  We can use the
3979   // lower value of the two calculations as the os_thread_limit.
3980   size_t max_address_space = ((size_t)1 << (BitsPerWord - 1)) - (200 * K * K);
3981   win32::_os_thread_limit = (intx)(max_address_space / actual_reserve_size);
3982 
3983   // at exit methods are called in the reverse order of their registration.
3984   // there is no limit to the number of functions registered. atexit does
3985   // not set errno.
3986 
3987   if (PerfAllowAtExitRegistration) {
3988     // only register atexit functions if PerfAllowAtExitRegistration is set.
3989     // atexit functions can be delayed until process exit time, which
3990     // can be problematic for embedded VM situations. Embedded VMs should
3991     // call DestroyJavaVM() to assure that VM resources are released.
3992 
3993     // note: perfMemory_exit_helper atexit function may be removed in
3994     // the future if the appropriate cleanup code can be added to the
3995     // VM_Exit VMOperation's doit method.
3996     if (atexit(perfMemory_exit_helper) != 0) {
3997       warning("os::init_2 atexit(perfMemory_exit_helper) failed");
3998     }
3999   }
4000 
4001 #ifndef _WIN64
4002   // Print something if NX is enabled (win32 on AMD64)
4003   NOT_PRODUCT(if (PrintMiscellaneous && Verbose) nx_check_protection());
4004 #endif
4005 
4006   // initialize thread priority policy
4007   prio_init();
4008 
4009   if (UseNUMA && !ForceNUMA) {
4010     UseNUMA = false; // We don't fully support this yet
4011   }
4012 
4013   if (UseNUMAInterleaving) {
4014     // first check whether this Windows OS supports VirtualAllocExNuma, if not ignore this flag
4015     bool success = numa_interleaving_init();
4016     if (!success) UseNUMAInterleaving = false;
4017   }
4018 
4019   if (initSock() != JNI_OK) {
4020     return JNI_ERR;
4021   }
4022 
4023   return JNI_OK;
4024 }
4025 
4026 void os::init_3(void) {
4027   return;
4028 }
4029 
4030 // Mark the polling page as unreadable
4031 void os::make_polling_page_unreadable(void) {
4032   DWORD old_status;
4033   if( !VirtualProtect((char *)_polling_page, os::vm_page_size(), PAGE_NOACCESS, &old_status) )
4034     fatal("Could not disable polling page");
4035 };
4036 
4037 // Mark the polling page as readable
4038 void os::make_polling_page_readable(void) {
4039   DWORD old_status;
4040   if( !VirtualProtect((char *)_polling_page, os::vm_page_size(), PAGE_READONLY, &old_status) )
4041     fatal("Could not enable polling page");
4042 };
4043 
4044 
4045 int os::stat(const char *path, struct stat *sbuf) {
4046   char pathbuf[MAX_PATH];
4047   if (strlen(path) > MAX_PATH - 1) {
4048     errno = ENAMETOOLONG;
4049     return -1;
4050   }
4051   os::native_path(strcpy(pathbuf, path));
4052   int ret = ::stat(pathbuf, sbuf);
4053   if (sbuf != NULL && UseUTCFileTimestamp) {
4054     // Fix for 6539723.  st_mtime returned from stat() is dependent on
4055     // the system timezone and so can return different values for the
4056     // same file if/when daylight savings time changes.  This adjustment
4057     // makes sure the same timestamp is returned regardless of the TZ.
4058     //
4059     // See:
4060     // http://msdn.microsoft.com/library/
4061     //   default.asp?url=/library/en-us/sysinfo/base/
4062     //   time_zone_information_str.asp
4063     // and
4064     // http://msdn.microsoft.com/library/default.asp?url=
4065     //   /library/en-us/sysinfo/base/settimezoneinformation.asp
4066     //
4067     // NOTE: there is a insidious bug here:  If the timezone is changed
4068     // after the call to stat() but before 'GetTimeZoneInformation()', then
4069     // the adjustment we do here will be wrong and we'll return the wrong
4070     // value (which will likely end up creating an invalid class data
4071     // archive).  Absent a better API for this, or some time zone locking
4072     // mechanism, we'll have to live with this risk.
4073     TIME_ZONE_INFORMATION tz;
4074     DWORD tzid = GetTimeZoneInformation(&tz);
4075     int daylightBias =
4076       (tzid == TIME_ZONE_ID_DAYLIGHT) ?  tz.DaylightBias : tz.StandardBias;
4077     sbuf->st_mtime += (tz.Bias + daylightBias) * 60;
4078   }
4079   return ret;
4080 }
4081 
4082 
4083 #define FT2INT64(ft) \
4084   ((jlong)((jlong)(ft).dwHighDateTime << 32 | (julong)(ft).dwLowDateTime))
4085 
4086 
4087 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
4088 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
4089 // of a thread.
4090 //
4091 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
4092 // the fast estimate available on the platform.
4093 
4094 // current_thread_cpu_time() is not optimized for Windows yet
4095 jlong os::current_thread_cpu_time() {
4096   // return user + sys since the cost is the same
4097   return os::thread_cpu_time(Thread::current(), true /* user+sys */);
4098 }
4099 
4100 jlong os::thread_cpu_time(Thread* thread) {
4101   // consistent with what current_thread_cpu_time() returns.
4102   return os::thread_cpu_time(thread, true /* user+sys */);
4103 }
4104 
4105 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
4106   return os::thread_cpu_time(Thread::current(), user_sys_cpu_time);
4107 }
4108 
4109 jlong os::thread_cpu_time(Thread* thread, bool user_sys_cpu_time) {
4110   // This code is copy from clasic VM -> hpi::sysThreadCPUTime
4111   // If this function changes, os::is_thread_cpu_time_supported() should too
4112   if (os::win32::is_nt()) {
4113     FILETIME CreationTime;
4114     FILETIME ExitTime;
4115     FILETIME KernelTime;
4116     FILETIME UserTime;
4117 
4118     if ( GetThreadTimes(thread->osthread()->thread_handle(),
4119                     &CreationTime, &ExitTime, &KernelTime, &UserTime) == 0)
4120       return -1;
4121     else
4122       if (user_sys_cpu_time) {
4123         return (FT2INT64(UserTime) + FT2INT64(KernelTime)) * 100;
4124       } else {
4125         return FT2INT64(UserTime) * 100;
4126       }
4127   } else {
4128     return (jlong) timeGetTime() * 1000000;
4129   }
4130 }
4131 
4132 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4133   info_ptr->max_value = ALL_64_BITS;        // the max value -- all 64 bits
4134   info_ptr->may_skip_backward = false;      // GetThreadTimes returns absolute time
4135   info_ptr->may_skip_forward = false;       // GetThreadTimes returns absolute time
4136   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;   // user+system time is returned
4137 }
4138 
4139 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4140   info_ptr->max_value = ALL_64_BITS;        // the max value -- all 64 bits
4141   info_ptr->may_skip_backward = false;      // GetThreadTimes returns absolute time
4142   info_ptr->may_skip_forward = false;       // GetThreadTimes returns absolute time
4143   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;   // user+system time is returned
4144 }
4145 
4146 bool os::is_thread_cpu_time_supported() {
4147   // see os::thread_cpu_time
4148   if (os::win32::is_nt()) {
4149     FILETIME CreationTime;
4150     FILETIME ExitTime;
4151     FILETIME KernelTime;
4152     FILETIME UserTime;
4153 
4154     if ( GetThreadTimes(GetCurrentThread(),
4155                     &CreationTime, &ExitTime, &KernelTime, &UserTime) == 0)
4156       return false;
4157     else
4158       return true;
4159   } else {
4160     return false;
4161   }
4162 }
4163 
4164 // Windows does't provide a loadavg primitive so this is stubbed out for now.
4165 // It does have primitives (PDH API) to get CPU usage and run queue length.
4166 // "\\Processor(_Total)\\% Processor Time", "\\System\\Processor Queue Length"
4167 // If we wanted to implement loadavg on Windows, we have a few options:
4168 //
4169 // a) Query CPU usage and run queue length and "fake" an answer by
4170 //    returning the CPU usage if it's under 100%, and the run queue
4171 //    length otherwise.  It turns out that querying is pretty slow
4172 //    on Windows, on the order of 200 microseconds on a fast machine.
4173 //    Note that on the Windows the CPU usage value is the % usage
4174 //    since the last time the API was called (and the first call
4175 //    returns 100%), so we'd have to deal with that as well.
4176 //
4177 // b) Sample the "fake" answer using a sampling thread and store
4178 //    the answer in a global variable.  The call to loadavg would
4179 //    just return the value of the global, avoiding the slow query.
4180 //
4181 // c) Sample a better answer using exponential decay to smooth the
4182 //    value.  This is basically the algorithm used by UNIX kernels.
4183 //
4184 // Note that sampling thread starvation could affect both (b) and (c).
4185 int os::loadavg(double loadavg[], int nelem) {
4186   return -1;
4187 }
4188 
4189 
4190 // DontYieldALot=false by default: dutifully perform all yields as requested by JVM_Yield()
4191 bool os::dont_yield() {
4192   return DontYieldALot;
4193 }
4194 
4195 // This method is a slightly reworked copy of JDK's sysOpen
4196 // from src/windows/hpi/src/sys_api_md.c
4197 
4198 int os::open(const char *path, int oflag, int mode) {
4199   char pathbuf[MAX_PATH];
4200 
4201   if (strlen(path) > MAX_PATH - 1) {
4202     errno = ENAMETOOLONG;
4203           return -1;
4204   }
4205   os::native_path(strcpy(pathbuf, path));
4206   return ::open(pathbuf, oflag | O_BINARY | O_NOINHERIT, mode);
4207 }
4208 
4209 FILE* os::open(int fd, const char* mode) {
4210   return ::_fdopen(fd, mode);
4211 }
4212 
4213 // Is a (classpath) directory empty?
4214 bool os::dir_is_empty(const char* path) {
4215   WIN32_FIND_DATA fd;
4216   HANDLE f = FindFirstFile(path, &fd);
4217   if (f == INVALID_HANDLE_VALUE) {
4218     return true;
4219   }
4220   FindClose(f);
4221   return false;
4222 }
4223 
4224 // create binary file, rewriting existing file if required
4225 int os::create_binary_file(const char* path, bool rewrite_existing) {
4226   int oflags = _O_CREAT | _O_WRONLY | _O_BINARY;
4227   if (!rewrite_existing) {
4228     oflags |= _O_EXCL;
4229   }
4230   return ::open(path, oflags, _S_IREAD | _S_IWRITE);
4231 }
4232 
4233 // return current position of file pointer
4234 jlong os::current_file_offset(int fd) {
4235   return (jlong)::_lseeki64(fd, (__int64)0L, SEEK_CUR);
4236 }
4237 
4238 // move file pointer to the specified offset
4239 jlong os::seek_to_file_offset(int fd, jlong offset) {
4240   return (jlong)::_lseeki64(fd, (__int64)offset, SEEK_SET);
4241 }
4242 
4243 
4244 jlong os::lseek(int fd, jlong offset, int whence) {
4245   return (jlong) ::_lseeki64(fd, offset, whence);
4246 }
4247 
4248 // This method is a slightly reworked copy of JDK's sysNativePath
4249 // from src/windows/hpi/src/path_md.c
4250 
4251 /* Convert a pathname to native format.  On win32, this involves forcing all
4252    separators to be '\\' rather than '/' (both are legal inputs, but Win95
4253    sometimes rejects '/') and removing redundant separators.  The input path is
4254    assumed to have been converted into the character encoding used by the local
4255    system.  Because this might be a double-byte encoding, care is taken to
4256    treat double-byte lead characters correctly.
4257 
4258    This procedure modifies the given path in place, as the result is never
4259    longer than the original.  There is no error return; this operation always
4260    succeeds. */
4261 char * os::native_path(char *path) {
4262   char *src = path, *dst = path, *end = path;
4263   char *colon = NULL;           /* If a drive specifier is found, this will
4264                                         point to the colon following the drive
4265                                         letter */
4266 
4267   /* Assumption: '/', '\\', ':', and drive letters are never lead bytes */
4268   assert(((!::IsDBCSLeadByte('/'))
4269     && (!::IsDBCSLeadByte('\\'))
4270     && (!::IsDBCSLeadByte(':'))),
4271     "Illegal lead byte");
4272 
4273   /* Check for leading separators */
4274 #define isfilesep(c) ((c) == '/' || (c) == '\\')
4275   while (isfilesep(*src)) {
4276     src++;
4277   }
4278 
4279   if (::isalpha(*src) && !::IsDBCSLeadByte(*src) && src[1] == ':') {
4280     /* Remove leading separators if followed by drive specifier.  This
4281       hack is necessary to support file URLs containing drive
4282       specifiers (e.g., "file://c:/path").  As a side effect,
4283       "/c:/path" can be used as an alternative to "c:/path". */
4284     *dst++ = *src++;
4285     colon = dst;
4286     *dst++ = ':';
4287     src++;
4288   } else {
4289     src = path;
4290     if (isfilesep(src[0]) && isfilesep(src[1])) {
4291       /* UNC pathname: Retain first separator; leave src pointed at
4292          second separator so that further separators will be collapsed
4293          into the second separator.  The result will be a pathname
4294          beginning with "\\\\" followed (most likely) by a host name. */
4295       src = dst = path + 1;
4296       path[0] = '\\';     /* Force first separator to '\\' */
4297     }
4298   }
4299 
4300   end = dst;
4301 
4302   /* Remove redundant separators from remainder of path, forcing all
4303       separators to be '\\' rather than '/'. Also, single byte space
4304       characters are removed from the end of the path because those
4305       are not legal ending characters on this operating system.
4306   */
4307   while (*src != '\0') {
4308     if (isfilesep(*src)) {
4309       *dst++ = '\\'; src++;
4310       while (isfilesep(*src)) src++;
4311       if (*src == '\0') {
4312         /* Check for trailing separator */
4313         end = dst;
4314         if (colon == dst - 2) break;                      /* "z:\\" */
4315         if (dst == path + 1) break;                       /* "\\" */
4316         if (dst == path + 2 && isfilesep(path[0])) {
4317           /* "\\\\" is not collapsed to "\\" because "\\\\" marks the
4318             beginning of a UNC pathname.  Even though it is not, by
4319             itself, a valid UNC pathname, we leave it as is in order
4320             to be consistent with the path canonicalizer as well
4321             as the win32 APIs, which treat this case as an invalid
4322             UNC pathname rather than as an alias for the root
4323             directory of the current drive. */
4324           break;
4325         }
4326         end = --dst;  /* Path does not denote a root directory, so
4327                                     remove trailing separator */
4328         break;
4329       }
4330       end = dst;
4331     } else {
4332       if (::IsDBCSLeadByte(*src)) { /* Copy a double-byte character */
4333         *dst++ = *src++;
4334         if (*src) *dst++ = *src++;
4335         end = dst;
4336       } else {         /* Copy a single-byte character */
4337         char c = *src++;
4338         *dst++ = c;
4339         /* Space is not a legal ending character */
4340         if (c != ' ') end = dst;
4341       }
4342     }
4343   }
4344 
4345   *end = '\0';
4346 
4347   /* For "z:", add "." to work around a bug in the C runtime library */
4348   if (colon == dst - 1) {
4349           path[2] = '.';
4350           path[3] = '\0';
4351   }
4352 
4353   return path;
4354 }
4355 
4356 // This code is a copy of JDK's sysSetLength
4357 // from src/windows/hpi/src/sys_api_md.c
4358 
4359 int os::ftruncate(int fd, jlong length) {
4360   HANDLE h = (HANDLE)::_get_osfhandle(fd);
4361   long high = (long)(length >> 32);
4362   DWORD ret;
4363 
4364   if (h == (HANDLE)(-1)) {
4365     return -1;
4366   }
4367 
4368   ret = ::SetFilePointer(h, (long)(length), &high, FILE_BEGIN);
4369   if ((ret == 0xFFFFFFFF) && (::GetLastError() != NO_ERROR)) {
4370       return -1;
4371   }
4372 
4373   if (::SetEndOfFile(h) == FALSE) {
4374     return -1;
4375   }
4376 
4377   return 0;
4378 }
4379 
4380 
4381 // This code is a copy of JDK's sysSync
4382 // from src/windows/hpi/src/sys_api_md.c
4383 // except for the legacy workaround for a bug in Win 98
4384 
4385 int os::fsync(int fd) {
4386   HANDLE handle = (HANDLE)::_get_osfhandle(fd);
4387 
4388   if ( (!::FlushFileBuffers(handle)) &&
4389          (GetLastError() != ERROR_ACCESS_DENIED) ) {
4390     /* from winerror.h */
4391     return -1;
4392   }
4393   return 0;
4394 }
4395 
4396 static int nonSeekAvailable(int, long *);
4397 static int stdinAvailable(int, long *);
4398 
4399 #define S_ISCHR(mode)   (((mode) & _S_IFCHR) == _S_IFCHR)
4400 #define S_ISFIFO(mode)  (((mode) & _S_IFIFO) == _S_IFIFO)
4401 
4402 // This code is a copy of JDK's sysAvailable
4403 // from src/windows/hpi/src/sys_api_md.c
4404 
4405 int os::available(int fd, jlong *bytes) {
4406   jlong cur, end;
4407   struct _stati64 stbuf64;
4408 
4409   if (::_fstati64(fd, &stbuf64) >= 0) {
4410     int mode = stbuf64.st_mode;
4411     if (S_ISCHR(mode) || S_ISFIFO(mode)) {
4412       int ret;
4413       long lpbytes;
4414       if (fd == 0) {
4415         ret = stdinAvailable(fd, &lpbytes);
4416       } else {
4417         ret = nonSeekAvailable(fd, &lpbytes);
4418       }
4419       (*bytes) = (jlong)(lpbytes);
4420       return ret;
4421     }
4422     if ((cur = ::_lseeki64(fd, 0L, SEEK_CUR)) == -1) {
4423       return FALSE;
4424     } else if ((end = ::_lseeki64(fd, 0L, SEEK_END)) == -1) {
4425       return FALSE;
4426     } else if (::_lseeki64(fd, cur, SEEK_SET) == -1) {
4427       return FALSE;
4428     }
4429     *bytes = end - cur;
4430     return TRUE;
4431   } else {
4432     return FALSE;
4433   }
4434 }
4435 
4436 // This code is a copy of JDK's nonSeekAvailable
4437 // from src/windows/hpi/src/sys_api_md.c
4438 
4439 static int nonSeekAvailable(int fd, long *pbytes) {
4440   /* This is used for available on non-seekable devices
4441     * (like both named and anonymous pipes, such as pipes
4442     *  connected to an exec'd process).
4443     * Standard Input is a special case.
4444     *
4445     */
4446   HANDLE han;
4447 
4448   if ((han = (HANDLE) ::_get_osfhandle(fd)) == (HANDLE)(-1)) {
4449     return FALSE;
4450   }
4451 
4452   if (! ::PeekNamedPipe(han, NULL, 0, NULL, (LPDWORD)pbytes, NULL)) {
4453         /* PeekNamedPipe fails when at EOF.  In that case we
4454          * simply make *pbytes = 0 which is consistent with the
4455          * behavior we get on Solaris when an fd is at EOF.
4456          * The only alternative is to raise an Exception,
4457          * which isn't really warranted.
4458          */
4459     if (::GetLastError() != ERROR_BROKEN_PIPE) {
4460       return FALSE;
4461     }
4462     *pbytes = 0;
4463   }
4464   return TRUE;
4465 }
4466 
4467 #define MAX_INPUT_EVENTS 2000
4468 
4469 // This code is a copy of JDK's stdinAvailable
4470 // from src/windows/hpi/src/sys_api_md.c
4471 
4472 static int stdinAvailable(int fd, long *pbytes) {
4473   HANDLE han;
4474   DWORD numEventsRead = 0;      /* Number of events read from buffer */
4475   DWORD numEvents = 0;  /* Number of events in buffer */
4476   DWORD i = 0;          /* Loop index */
4477   DWORD curLength = 0;  /* Position marker */
4478   DWORD actualLength = 0;       /* Number of bytes readable */
4479   BOOL error = FALSE;         /* Error holder */
4480   INPUT_RECORD *lpBuffer;     /* Pointer to records of input events */
4481 
4482   if ((han = ::GetStdHandle(STD_INPUT_HANDLE)) == INVALID_HANDLE_VALUE) {
4483         return FALSE;
4484   }
4485 
4486   /* Construct an array of input records in the console buffer */
4487   error = ::GetNumberOfConsoleInputEvents(han, &numEvents);
4488   if (error == 0) {
4489     return nonSeekAvailable(fd, pbytes);
4490   }
4491 
4492   /* lpBuffer must fit into 64K or else PeekConsoleInput fails */
4493   if (numEvents > MAX_INPUT_EVENTS) {
4494     numEvents = MAX_INPUT_EVENTS;
4495   }
4496 
4497   lpBuffer = (INPUT_RECORD *)os::malloc(numEvents * sizeof(INPUT_RECORD), mtInternal);
4498   if (lpBuffer == NULL) {
4499     return FALSE;
4500   }
4501 
4502   error = ::PeekConsoleInput(han, lpBuffer, numEvents, &numEventsRead);
4503   if (error == 0) {
4504     os::free(lpBuffer, mtInternal);
4505     return FALSE;
4506   }
4507 
4508   /* Examine input records for the number of bytes available */
4509   for(i=0; i<numEvents; i++) {
4510     if (lpBuffer[i].EventType == KEY_EVENT) {
4511 
4512       KEY_EVENT_RECORD *keyRecord = (KEY_EVENT_RECORD *)
4513                                       &(lpBuffer[i].Event);
4514       if (keyRecord->bKeyDown == TRUE) {
4515         CHAR *keyPressed = (CHAR *) &(keyRecord->uChar);
4516         curLength++;
4517         if (*keyPressed == '\r') {
4518           actualLength = curLength;
4519         }
4520       }
4521     }
4522   }
4523 
4524   if(lpBuffer != NULL) {
4525     os::free(lpBuffer, mtInternal);
4526   }
4527 
4528   *pbytes = (long) actualLength;
4529   return TRUE;
4530 }
4531 
4532 // Map a block of memory.
4533 char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
4534                      char *addr, size_t bytes, bool read_only,
4535                      bool allow_exec) {
4536   HANDLE hFile;
4537   char* base;
4538 
4539   hFile = CreateFile(file_name, GENERIC_READ, FILE_SHARE_READ, NULL,
4540                      OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL);
4541   if (hFile == NULL) {
4542     if (PrintMiscellaneous && Verbose) {
4543       DWORD err = GetLastError();
4544       tty->print_cr("CreateFile() failed: GetLastError->%ld.", err);
4545     }
4546     return NULL;
4547   }
4548 
4549   if (allow_exec) {
4550     // CreateFileMapping/MapViewOfFileEx can't map executable memory
4551     // unless it comes from a PE image (which the shared archive is not.)
4552     // Even VirtualProtect refuses to give execute access to mapped memory
4553     // that was not previously executable.
4554     //
4555     // Instead, stick the executable region in anonymous memory.  Yuck.
4556     // Penalty is that ~4 pages will not be shareable - in the future
4557     // we might consider DLLizing the shared archive with a proper PE
4558     // header so that mapping executable + sharing is possible.
4559 
4560     base = (char*) VirtualAlloc(addr, bytes, MEM_COMMIT | MEM_RESERVE,
4561                                 PAGE_READWRITE);
4562     if (base == NULL) {
4563       if (PrintMiscellaneous && Verbose) {
4564         DWORD err = GetLastError();
4565         tty->print_cr("VirtualAlloc() failed: GetLastError->%ld.", err);
4566       }
4567       CloseHandle(hFile);
4568       return NULL;
4569     }
4570 
4571     DWORD bytes_read;
4572     OVERLAPPED overlapped;
4573     overlapped.Offset = (DWORD)file_offset;
4574     overlapped.OffsetHigh = 0;
4575     overlapped.hEvent = NULL;
4576     // ReadFile guarantees that if the return value is true, the requested
4577     // number of bytes were read before returning.
4578     bool res = ReadFile(hFile, base, (DWORD)bytes, &bytes_read, &overlapped) != 0;
4579     if (!res) {
4580       if (PrintMiscellaneous && Verbose) {
4581         DWORD err = GetLastError();
4582         tty->print_cr("ReadFile() failed: GetLastError->%ld.", err);
4583       }
4584       release_memory(base, bytes);
4585       CloseHandle(hFile);
4586       return NULL;
4587     }
4588   } else {
4589     HANDLE hMap = CreateFileMapping(hFile, NULL, PAGE_WRITECOPY, 0, 0,
4590                                     NULL /*file_name*/);
4591     if (hMap == NULL) {
4592       if (PrintMiscellaneous && Verbose) {
4593         DWORD err = GetLastError();
4594         tty->print_cr("CreateFileMapping() failed: GetLastError->%ld.", err);
4595       }
4596       CloseHandle(hFile);
4597       return NULL;
4598     }
4599 
4600     DWORD access = read_only ? FILE_MAP_READ : FILE_MAP_COPY;
4601     base = (char*)MapViewOfFileEx(hMap, access, 0, (DWORD)file_offset,
4602                                   (DWORD)bytes, addr);
4603     if (base == NULL) {
4604       if (PrintMiscellaneous && Verbose) {
4605         DWORD err = GetLastError();
4606         tty->print_cr("MapViewOfFileEx() failed: GetLastError->%ld.", err);
4607       }
4608       CloseHandle(hMap);
4609       CloseHandle(hFile);
4610       return NULL;
4611     }
4612 
4613     if (CloseHandle(hMap) == 0) {
4614       if (PrintMiscellaneous && Verbose) {
4615         DWORD err = GetLastError();
4616         tty->print_cr("CloseHandle(hMap) failed: GetLastError->%ld.", err);
4617       }
4618       CloseHandle(hFile);
4619       return base;
4620     }
4621   }
4622 
4623   if (allow_exec) {
4624     DWORD old_protect;
4625     DWORD exec_access = read_only ? PAGE_EXECUTE_READ : PAGE_EXECUTE_READWRITE;
4626     bool res = VirtualProtect(base, bytes, exec_access, &old_protect) != 0;
4627 
4628     if (!res) {
4629       if (PrintMiscellaneous && Verbose) {
4630         DWORD err = GetLastError();
4631         tty->print_cr("VirtualProtect() failed: GetLastError->%ld.", err);
4632       }
4633       // Don't consider this a hard error, on IA32 even if the
4634       // VirtualProtect fails, we should still be able to execute
4635       CloseHandle(hFile);
4636       return base;
4637     }
4638   }
4639 
4640   if (CloseHandle(hFile) == 0) {
4641     if (PrintMiscellaneous && Verbose) {
4642       DWORD err = GetLastError();
4643       tty->print_cr("CloseHandle(hFile) failed: GetLastError->%ld.", err);
4644     }
4645     return base;
4646   }
4647 
4648   return base;
4649 }
4650 
4651 
4652 // Remap a block of memory.
4653 char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
4654                        char *addr, size_t bytes, bool read_only,
4655                        bool allow_exec) {
4656   // This OS does not allow existing memory maps to be remapped so we
4657   // have to unmap the memory before we remap it.
4658   if (!os::unmap_memory(addr, bytes)) {
4659     return NULL;
4660   }
4661 
4662   // There is a very small theoretical window between the unmap_memory()
4663   // call above and the map_memory() call below where a thread in native
4664   // code may be able to access an address that is no longer mapped.
4665 
4666   return os::map_memory(fd, file_name, file_offset, addr, bytes,
4667            read_only, allow_exec);
4668 }
4669 
4670 
4671 // Unmap a block of memory.
4672 // Returns true=success, otherwise false.
4673 
4674 bool os::pd_unmap_memory(char* addr, size_t bytes) {
4675   BOOL result = UnmapViewOfFile(addr);
4676   if (result == 0) {
4677     if (PrintMiscellaneous && Verbose) {
4678       DWORD err = GetLastError();
4679       tty->print_cr("UnmapViewOfFile() failed: GetLastError->%ld.", err);
4680     }
4681     return false;
4682   }
4683   return true;
4684 }
4685 
4686 void os::pause() {
4687   char filename[MAX_PATH];
4688   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
4689     jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
4690   } else {
4691     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
4692   }
4693 
4694   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
4695   if (fd != -1) {
4696     struct stat buf;
4697     ::close(fd);
4698     while (::stat(filename, &buf) == 0) {
4699       Sleep(100);
4700     }
4701   } else {
4702     jio_fprintf(stderr,
4703       "Could not open pause file '%s', continuing immediately.\n", filename);
4704   }
4705 }
4706 
4707 os::WatcherThreadCrashProtection::WatcherThreadCrashProtection() {
4708   assert(Thread::current()->is_Watcher_thread(), "Must be WatcherThread");
4709 }
4710 
4711 /*
4712  * See the caveats for this class in os_windows.hpp
4713  * Protects the callback call so that raised OS EXCEPTIONS causes a jump back
4714  * into this method and returns false. If no OS EXCEPTION was raised, returns
4715  * true.
4716  * The callback is supposed to provide the method that should be protected.
4717  */
4718 bool os::WatcherThreadCrashProtection::call(os::CrashProtectionCallback& cb) {
4719   assert(Thread::current()->is_Watcher_thread(), "Only for WatcherThread");
4720   assert(!WatcherThread::watcher_thread()->has_crash_protection(),
4721       "crash_protection already set?");
4722 
4723   bool success = true;
4724   __try {
4725     WatcherThread::watcher_thread()->set_crash_protection(this);
4726     cb.call();
4727   } __except(EXCEPTION_EXECUTE_HANDLER) {
4728     // only for protection, nothing to do
4729     success = false;
4730   }
4731   WatcherThread::watcher_thread()->set_crash_protection(NULL);
4732   return success;
4733 }
4734 
4735 // An Event wraps a win32 "CreateEvent" kernel handle.
4736 //
4737 // We have a number of choices regarding "CreateEvent" win32 handle leakage:
4738 //
4739 // 1:  When a thread dies return the Event to the EventFreeList, clear the ParkHandle
4740 //     field, and call CloseHandle() on the win32 event handle.  Unpark() would
4741 //     need to be modified to tolerate finding a NULL (invalid) win32 event handle.
4742 //     In addition, an unpark() operation might fetch the handle field, but the
4743 //     event could recycle between the fetch and the SetEvent() operation.
4744 //     SetEvent() would either fail because the handle was invalid, or inadvertently work,
4745 //     as the win32 handle value had been recycled.  In an ideal world calling SetEvent()
4746 //     on an stale but recycled handle would be harmless, but in practice this might
4747 //     confuse other non-Sun code, so it's not a viable approach.
4748 //
4749 // 2:  Once a win32 event handle is associated with an Event, it remains associated
4750 //     with the Event.  The event handle is never closed.  This could be construed
4751 //     as handle leakage, but only up to the maximum # of threads that have been extant
4752 //     at any one time.  This shouldn't be an issue, as windows platforms typically
4753 //     permit a process to have hundreds of thousands of open handles.
4754 //
4755 // 3:  Same as (1), but periodically, at stop-the-world time, rundown the EventFreeList
4756 //     and release unused handles.
4757 //
4758 // 4:  Add a CRITICAL_SECTION to the Event to protect LD+SetEvent from LD;ST(null);CloseHandle.
4759 //     It's not clear, however, that we wouldn't be trading one type of leak for another.
4760 //
4761 // 5.  Use an RCU-like mechanism (Read-Copy Update).
4762 //     Or perhaps something similar to Maged Michael's "Hazard pointers".
4763 //
4764 // We use (2).
4765 //
4766 // TODO-FIXME:
4767 // 1.  Reconcile Doug's JSR166 j.u.c park-unpark with the objectmonitor implementation.
4768 // 2.  Consider wrapping the WaitForSingleObject(Ex) calls in SEH try/finally blocks
4769 //     to recover from (or at least detect) the dreaded Windows 841176 bug.
4770 // 3.  Collapse the interrupt_event, the JSR166 parker event, and the objectmonitor ParkEvent
4771 //     into a single win32 CreateEvent() handle.
4772 //
4773 // _Event transitions in park()
4774 //   -1 => -1 : illegal
4775 //    1 =>  0 : pass - return immediately
4776 //    0 => -1 : block
4777 //
4778 // _Event serves as a restricted-range semaphore :
4779 //    -1 : thread is blocked
4780 //     0 : neutral  - thread is running or ready
4781 //     1 : signaled - thread is running or ready
4782 //
4783 // Another possible encoding of _Event would be
4784 // with explicit "PARKED" and "SIGNALED" bits.
4785 
4786 int os::PlatformEvent::park (jlong Millis) {
4787     guarantee (_ParkHandle != NULL , "Invariant") ;
4788     guarantee (Millis > 0          , "Invariant") ;
4789     int v ;
4790 
4791     // CONSIDER: defer assigning a CreateEvent() handle to the Event until
4792     // the initial park() operation.
4793 
4794     for (;;) {
4795         v = _Event ;
4796         if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
4797     }
4798     guarantee ((v == 0) || (v == 1), "invariant") ;
4799     if (v != 0) return OS_OK ;
4800 
4801     // Do this the hard way by blocking ...
4802     // TODO: consider a brief spin here, gated on the success of recent
4803     // spin attempts by this thread.
4804     //
4805     // We decompose long timeouts into series of shorter timed waits.
4806     // Evidently large timo values passed in WaitForSingleObject() are problematic on some
4807     // versions of Windows.  See EventWait() for details.  This may be superstition.  Or not.
4808     // We trust the WAIT_TIMEOUT indication and don't track the elapsed wait time
4809     // with os::javaTimeNanos().  Furthermore, we assume that spurious returns from
4810     // ::WaitForSingleObject() caused by latent ::setEvent() operations will tend
4811     // to happen early in the wait interval.  Specifically, after a spurious wakeup (rv ==
4812     // WAIT_OBJECT_0 but _Event is still < 0) we don't bother to recompute Millis to compensate
4813     // for the already waited time.  This policy does not admit any new outcomes.
4814     // In the future, however, we might want to track the accumulated wait time and
4815     // adjust Millis accordingly if we encounter a spurious wakeup.
4816 
4817     const int MAXTIMEOUT = 0x10000000 ;
4818     DWORD rv = WAIT_TIMEOUT ;
4819     while (_Event < 0 && Millis > 0) {
4820        DWORD prd = Millis ;     // set prd = MAX (Millis, MAXTIMEOUT)
4821        if (Millis > MAXTIMEOUT) {
4822           prd = MAXTIMEOUT ;
4823        }
4824        rv = ::WaitForSingleObject (_ParkHandle, prd) ;
4825        assert (rv == WAIT_OBJECT_0 || rv == WAIT_TIMEOUT, "WaitForSingleObject failed") ;
4826        if (rv == WAIT_TIMEOUT) {
4827            Millis -= prd ;
4828        }
4829     }
4830     v = _Event ;
4831     _Event = 0 ;
4832     // see comment at end of os::PlatformEvent::park() below:
4833     OrderAccess::fence() ;
4834     // If we encounter a nearly simultanous timeout expiry and unpark()
4835     // we return OS_OK indicating we awoke via unpark().
4836     // Implementor's license -- returning OS_TIMEOUT would be equally valid, however.
4837     return (v >= 0) ? OS_OK : OS_TIMEOUT ;
4838 }
4839 
4840 void os::PlatformEvent::park () {
4841     guarantee (_ParkHandle != NULL, "Invariant") ;
4842     // Invariant: Only the thread associated with the Event/PlatformEvent
4843     // may call park().
4844     int v ;
4845     for (;;) {
4846         v = _Event ;
4847         if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
4848     }
4849     guarantee ((v == 0) || (v == 1), "invariant") ;
4850     if (v != 0) return ;
4851 
4852     // Do this the hard way by blocking ...
4853     // TODO: consider a brief spin here, gated on the success of recent
4854     // spin attempts by this thread.
4855     while (_Event < 0) {
4856        DWORD rv = ::WaitForSingleObject (_ParkHandle, INFINITE) ;
4857        assert (rv == WAIT_OBJECT_0, "WaitForSingleObject failed") ;
4858     }
4859 
4860     // Usually we'll find _Event == 0 at this point, but as
4861     // an optional optimization we clear it, just in case can
4862     // multiple unpark() operations drove _Event up to 1.
4863     _Event = 0 ;
4864     OrderAccess::fence() ;
4865     guarantee (_Event >= 0, "invariant") ;
4866 }
4867 
4868 void os::PlatformEvent::unpark() {
4869   guarantee (_ParkHandle != NULL, "Invariant") ;
4870 
4871   // Transitions for _Event:
4872   //    0 :=> 1
4873   //    1 :=> 1
4874   //   -1 :=> either 0 or 1; must signal target thread
4875   //          That is, we can safely transition _Event from -1 to either
4876   //          0 or 1. Forcing 1 is slightly more efficient for back-to-back
4877   //          unpark() calls.
4878   // See also: "Semaphores in Plan 9" by Mullender & Cox
4879   //
4880   // Note: Forcing a transition from "-1" to "1" on an unpark() means
4881   // that it will take two back-to-back park() calls for the owning
4882   // thread to block. This has the benefit of forcing a spurious return
4883   // from the first park() call after an unpark() call which will help
4884   // shake out uses of park() and unpark() without condition variables.
4885 
4886   if (Atomic::xchg(1, &_Event) >= 0) return;
4887 
4888   ::SetEvent(_ParkHandle);
4889 }
4890 
4891 
4892 // JSR166
4893 // -------------------------------------------------------
4894 
4895 /*
4896  * The Windows implementation of Park is very straightforward: Basic
4897  * operations on Win32 Events turn out to have the right semantics to
4898  * use them directly. We opportunistically resuse the event inherited
4899  * from Monitor.
4900  */
4901 
4902 
4903 void Parker::park(bool isAbsolute, jlong time) {
4904   guarantee (_ParkEvent != NULL, "invariant") ;
4905   // First, demultiplex/decode time arguments
4906   if (time < 0) { // don't wait
4907     return;
4908   }
4909   else if (time == 0 && !isAbsolute) {
4910     time = INFINITE;
4911   }
4912   else if  (isAbsolute) {
4913     time -= os::javaTimeMillis(); // convert to relative time
4914     if (time <= 0) // already elapsed
4915       return;
4916   }
4917   else { // relative
4918     time /= 1000000; // Must coarsen from nanos to millis
4919     if (time == 0)   // Wait for the minimal time unit if zero
4920       time = 1;
4921   }
4922 
4923   JavaThread* thread = (JavaThread*)(Thread::current());
4924   assert(thread->is_Java_thread(), "Must be JavaThread");
4925   JavaThread *jt = (JavaThread *)thread;
4926 
4927   // Don't wait if interrupted or already triggered
4928   if (Thread::is_interrupted(thread, false) ||
4929     WaitForSingleObject(_ParkEvent, 0) == WAIT_OBJECT_0) {
4930     ResetEvent(_ParkEvent);
4931     return;
4932   }
4933   else {
4934     ThreadBlockInVM tbivm(jt);
4935     OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
4936     jt->set_suspend_equivalent();
4937 
4938     WaitForSingleObject(_ParkEvent,  time);
4939     ResetEvent(_ParkEvent);
4940 
4941     // If externally suspended while waiting, re-suspend
4942     if (jt->handle_special_suspend_equivalent_condition()) {
4943       jt->java_suspend_self();
4944     }
4945   }
4946 }
4947 
4948 void Parker::unpark() {
4949   guarantee (_ParkEvent != NULL, "invariant") ;
4950   SetEvent(_ParkEvent);
4951 }
4952 
4953 // Run the specified command in a separate process. Return its exit value,
4954 // or -1 on failure (e.g. can't create a new process).
4955 int os::fork_and_exec(char* cmd) {
4956   STARTUPINFO si;
4957   PROCESS_INFORMATION pi;
4958 
4959   memset(&si, 0, sizeof(si));
4960   si.cb = sizeof(si);
4961   memset(&pi, 0, sizeof(pi));
4962   BOOL rslt = CreateProcess(NULL,   // executable name - use command line
4963                             cmd,    // command line
4964                             NULL,   // process security attribute
4965                             NULL,   // thread security attribute
4966                             TRUE,   // inherits system handles
4967                             0,      // no creation flags
4968                             NULL,   // use parent's environment block
4969                             NULL,   // use parent's starting directory
4970                             &si,    // (in) startup information
4971                             &pi);   // (out) process information
4972 
4973   if (rslt) {
4974     // Wait until child process exits.
4975     WaitForSingleObject(pi.hProcess, INFINITE);
4976 
4977     DWORD exit_code;
4978     GetExitCodeProcess(pi.hProcess, &exit_code);
4979 
4980     // Close process and thread handles.
4981     CloseHandle(pi.hProcess);
4982     CloseHandle(pi.hThread);
4983 
4984     return (int)exit_code;
4985   } else {
4986     return -1;
4987   }
4988 }
4989 
4990 //--------------------------------------------------------------------------------------------------
4991 // Non-product code
4992 
4993 static int mallocDebugIntervalCounter = 0;
4994 static int mallocDebugCounter = 0;
4995 bool os::check_heap(bool force) {
4996   if (++mallocDebugCounter < MallocVerifyStart && !force) return true;
4997   if (++mallocDebugIntervalCounter >= MallocVerifyInterval || force) {
4998     // Note: HeapValidate executes two hardware breakpoints when it finds something
4999     // wrong; at these points, eax contains the address of the offending block (I think).
5000     // To get to the exlicit error message(s) below, just continue twice.
5001     HANDLE heap = GetProcessHeap();
5002     { HeapLock(heap);
5003       PROCESS_HEAP_ENTRY phe;
5004       phe.lpData = NULL;
5005       while (HeapWalk(heap, &phe) != 0) {
5006         if ((phe.wFlags & PROCESS_HEAP_ENTRY_BUSY) &&
5007             !HeapValidate(heap, 0, phe.lpData)) {
5008           tty->print_cr("C heap has been corrupted (time: %d allocations)", mallocDebugCounter);
5009           tty->print_cr("corrupted block near address %#x, length %d", phe.lpData, phe.cbData);
5010           fatal("corrupted C heap");
5011         }
5012       }
5013       DWORD err = GetLastError();
5014       if (err != ERROR_NO_MORE_ITEMS && err != ERROR_CALL_NOT_IMPLEMENTED) {
5015         fatal(err_msg("heap walk aborted with error %d", err));
5016       }
5017       HeapUnlock(heap);
5018     }
5019     mallocDebugIntervalCounter = 0;
5020   }
5021   return true;
5022 }
5023 
5024 
5025 bool os::find(address addr, outputStream* st) {
5026   // Nothing yet
5027   return false;
5028 }
5029 
5030 LONG WINAPI os::win32::serialize_fault_filter(struct _EXCEPTION_POINTERS* e) {
5031   DWORD exception_code = e->ExceptionRecord->ExceptionCode;
5032 
5033   if ( exception_code == EXCEPTION_ACCESS_VIOLATION ) {
5034     JavaThread* thread = (JavaThread*)ThreadLocalStorage::get_thread_slow();
5035     PEXCEPTION_RECORD exceptionRecord = e->ExceptionRecord;
5036     address addr = (address) exceptionRecord->ExceptionInformation[1];
5037 
5038     if (os::is_memory_serialize_page(thread, addr))
5039       return EXCEPTION_CONTINUE_EXECUTION;
5040   }
5041 
5042   return EXCEPTION_CONTINUE_SEARCH;
5043 }
5044 
5045 // We don't build a headless jre for Windows
5046 bool os::is_headless_jre() { return false; }
5047 
5048 static jint initSock() {
5049   WSADATA wsadata;
5050 
5051   if (!os::WinSock2Dll::WinSock2Available()) {
5052     jio_fprintf(stderr, "Could not load Winsock (error: %d)\n",
5053       ::GetLastError());
5054     return JNI_ERR;
5055   }
5056 
5057   if (os::WinSock2Dll::WSAStartup(MAKEWORD(2,2), &wsadata) != 0) {
5058     jio_fprintf(stderr, "Could not initialize Winsock (error: %d)\n",
5059       ::GetLastError());
5060     return JNI_ERR;
5061   }
5062   return JNI_OK;
5063 }
5064 
5065 struct hostent* os::get_host_by_name(char* name) {
5066   return (struct hostent*)os::WinSock2Dll::gethostbyname(name);
5067 }
5068 
5069 int os::socket_close(int fd) {
5070   return ::closesocket(fd);
5071 }
5072 
5073 int os::socket_available(int fd, jint *pbytes) {
5074   int ret = ::ioctlsocket(fd, FIONREAD, (u_long*)pbytes);
5075   return (ret < 0) ? 0 : 1;
5076 }
5077 
5078 int os::socket(int domain, int type, int protocol) {
5079   return ::socket(domain, type, protocol);
5080 }
5081 
5082 int os::listen(int fd, int count) {
5083   return ::listen(fd, count);
5084 }
5085 
5086 int os::connect(int fd, struct sockaddr* him, socklen_t len) {
5087   return ::connect(fd, him, len);
5088 }
5089 
5090 int os::accept(int fd, struct sockaddr* him, socklen_t* len) {
5091   return ::accept(fd, him, len);
5092 }
5093 
5094 int os::sendto(int fd, char* buf, size_t len, uint flags,
5095                struct sockaddr* to, socklen_t tolen) {
5096 
5097   return ::sendto(fd, buf, (int)len, flags, to, tolen);
5098 }
5099 
5100 int os::recvfrom(int fd, char *buf, size_t nBytes, uint flags,
5101                  sockaddr* from, socklen_t* fromlen) {
5102 
5103   return ::recvfrom(fd, buf, (int)nBytes, flags, from, fromlen);
5104 }
5105 
5106 int os::recv(int fd, char* buf, size_t nBytes, uint flags) {
5107   return ::recv(fd, buf, (int)nBytes, flags);
5108 }
5109 
5110 int os::send(int fd, char* buf, size_t nBytes, uint flags) {
5111   return ::send(fd, buf, (int)nBytes, flags);
5112 }
5113 
5114 int os::raw_send(int fd, char* buf, size_t nBytes, uint flags) {
5115   return ::send(fd, buf, (int)nBytes, flags);
5116 }
5117 
5118 int os::timeout(int fd, long timeout) {
5119   fd_set tbl;
5120   struct timeval t;
5121 
5122   t.tv_sec  = timeout / 1000;
5123   t.tv_usec = (timeout % 1000) * 1000;
5124 
5125   tbl.fd_count    = 1;
5126   tbl.fd_array[0] = fd;
5127 
5128   return ::select(1, &tbl, 0, 0, &t);
5129 }
5130 
5131 int os::get_host_name(char* name, int namelen) {
5132   return ::gethostname(name, namelen);
5133 }
5134 
5135 int os::socket_shutdown(int fd, int howto) {
5136   return ::shutdown(fd, howto);
5137 }
5138 
5139 int os::bind(int fd, struct sockaddr* him, socklen_t len) {
5140   return ::bind(fd, him, len);
5141 }
5142 
5143 int os::get_sock_name(int fd, struct sockaddr* him, socklen_t* len) {
5144   return ::getsockname(fd, him, len);
5145 }
5146 
5147 int os::get_sock_opt(int fd, int level, int optname,
5148                      char* optval, socklen_t* optlen) {
5149   return ::getsockopt(fd, level, optname, optval, optlen);
5150 }
5151 
5152 int os::set_sock_opt(int fd, int level, int optname,
5153                      const char* optval, socklen_t optlen) {
5154   return ::setsockopt(fd, level, optname, optval, optlen);
5155 }
5156 
5157 // WINDOWS CONTEXT Flags for THREAD_SAMPLING
5158 #if defined(IA32)
5159 #  define sampling_context_flags (CONTEXT_FULL | CONTEXT_FLOATING_POINT | CONTEXT_EXTENDED_REGISTERS)
5160 #elif defined (AMD64)
5161 #  define sampling_context_flags (CONTEXT_FULL | CONTEXT_FLOATING_POINT)
5162 #endif
5163 
5164 // returns true if thread could be suspended,
5165 // false otherwise
5166 static bool do_suspend(HANDLE* h) {
5167   if (h != NULL) {
5168     if (SuspendThread(*h) != ~0) {
5169       return true;
5170     }
5171   }
5172   return false;
5173 }
5174 
5175 // resume the thread
5176 // calling resume on an active thread is a no-op
5177 static void do_resume(HANDLE* h) {
5178   if (h != NULL) {
5179     ResumeThread(*h);
5180   }
5181 }
5182 
5183 // retrieve a suspend/resume context capable handle
5184 // from the tid. Caller validates handle return value.
5185 void get_thread_handle_for_extended_context(HANDLE* h, OSThread::thread_id_t tid) {
5186   if (h != NULL) {
5187     *h = OpenThread(THREAD_SUSPEND_RESUME | THREAD_GET_CONTEXT | THREAD_QUERY_INFORMATION, FALSE, tid);
5188   }
5189 }
5190 
5191 //
5192 // Thread sampling implementation
5193 //
5194 void os::SuspendedThreadTask::internal_do_task() {
5195   CONTEXT    ctxt;
5196   HANDLE     h = NULL;
5197 
5198   // get context capable handle for thread
5199   get_thread_handle_for_extended_context(&h, _thread->osthread()->thread_id());
5200 
5201   // sanity
5202   if (h == NULL || h == INVALID_HANDLE_VALUE) {
5203     return;
5204   }
5205 
5206   // suspend the thread
5207   if (do_suspend(&h)) {
5208     ctxt.ContextFlags = sampling_context_flags;
5209     // get thread context
5210     GetThreadContext(h, &ctxt);
5211     SuspendedThreadTaskContext context(_thread, &ctxt);
5212     // pass context to Thread Sampling impl
5213     do_task(context);
5214     // resume thread
5215     do_resume(&h);
5216   }
5217 
5218   // close handle
5219   CloseHandle(h);
5220 }
5221 
5222 
5223 // Kernel32 API
5224 typedef SIZE_T (WINAPI* GetLargePageMinimum_Fn)(void);
5225 typedef LPVOID (WINAPI *VirtualAllocExNuma_Fn) (HANDLE, LPVOID, SIZE_T, DWORD, DWORD, DWORD);
5226 typedef BOOL (WINAPI *GetNumaHighestNodeNumber_Fn) (PULONG);
5227 typedef BOOL (WINAPI *GetNumaNodeProcessorMask_Fn) (UCHAR, PULONGLONG);
5228 typedef USHORT (WINAPI* RtlCaptureStackBackTrace_Fn)(ULONG, ULONG, PVOID*, PULONG);
5229 
5230 GetLargePageMinimum_Fn      os::Kernel32Dll::_GetLargePageMinimum = NULL;
5231 VirtualAllocExNuma_Fn       os::Kernel32Dll::_VirtualAllocExNuma = NULL;
5232 GetNumaHighestNodeNumber_Fn os::Kernel32Dll::_GetNumaHighestNodeNumber = NULL;
5233 GetNumaNodeProcessorMask_Fn os::Kernel32Dll::_GetNumaNodeProcessorMask = NULL;
5234 RtlCaptureStackBackTrace_Fn os::Kernel32Dll::_RtlCaptureStackBackTrace = NULL;
5235 
5236 
5237 BOOL                        os::Kernel32Dll::initialized = FALSE;
5238 SIZE_T os::Kernel32Dll::GetLargePageMinimum() {
5239   assert(initialized && _GetLargePageMinimum != NULL,
5240     "GetLargePageMinimumAvailable() not yet called");
5241   return _GetLargePageMinimum();
5242 }
5243 
5244 BOOL os::Kernel32Dll::GetLargePageMinimumAvailable() {
5245   if (!initialized) {
5246     initialize();
5247   }
5248   return _GetLargePageMinimum != NULL;
5249 }
5250 
5251 BOOL os::Kernel32Dll::NumaCallsAvailable() {
5252   if (!initialized) {
5253     initialize();
5254   }
5255   return _VirtualAllocExNuma != NULL;
5256 }
5257 
5258 LPVOID os::Kernel32Dll::VirtualAllocExNuma(HANDLE hProc, LPVOID addr, SIZE_T bytes, DWORD flags, DWORD prot, DWORD node) {
5259   assert(initialized && _VirtualAllocExNuma != NULL,
5260     "NUMACallsAvailable() not yet called");
5261 
5262   return _VirtualAllocExNuma(hProc, addr, bytes, flags, prot, node);
5263 }
5264 
5265 BOOL os::Kernel32Dll::GetNumaHighestNodeNumber(PULONG ptr_highest_node_number) {
5266   assert(initialized && _GetNumaHighestNodeNumber != NULL,
5267     "NUMACallsAvailable() not yet called");
5268 
5269   return _GetNumaHighestNodeNumber(ptr_highest_node_number);
5270 }
5271 
5272 BOOL os::Kernel32Dll::GetNumaNodeProcessorMask(UCHAR node, PULONGLONG proc_mask) {
5273   assert(initialized && _GetNumaNodeProcessorMask != NULL,
5274     "NUMACallsAvailable() not yet called");
5275 
5276   return _GetNumaNodeProcessorMask(node, proc_mask);
5277 }
5278 
5279 USHORT os::Kernel32Dll::RtlCaptureStackBackTrace(ULONG FrameToSkip,
5280   ULONG FrameToCapture, PVOID* BackTrace, PULONG BackTraceHash) {
5281     if (!initialized) {
5282       initialize();
5283     }
5284 
5285     if (_RtlCaptureStackBackTrace != NULL) {
5286       return _RtlCaptureStackBackTrace(FrameToSkip, FrameToCapture,
5287         BackTrace, BackTraceHash);
5288     } else {
5289       return 0;
5290     }
5291 }
5292 
5293 void os::Kernel32Dll::initializeCommon() {
5294   if (!initialized) {
5295     HMODULE handle = ::GetModuleHandle("Kernel32.dll");
5296     assert(handle != NULL, "Just check");
5297     _GetLargePageMinimum = (GetLargePageMinimum_Fn)::GetProcAddress(handle, "GetLargePageMinimum");
5298     _VirtualAllocExNuma = (VirtualAllocExNuma_Fn)::GetProcAddress(handle, "VirtualAllocExNuma");
5299     _GetNumaHighestNodeNumber = (GetNumaHighestNodeNumber_Fn)::GetProcAddress(handle, "GetNumaHighestNodeNumber");
5300     _GetNumaNodeProcessorMask = (GetNumaNodeProcessorMask_Fn)::GetProcAddress(handle, "GetNumaNodeProcessorMask");
5301     _RtlCaptureStackBackTrace = (RtlCaptureStackBackTrace_Fn)::GetProcAddress(handle, "RtlCaptureStackBackTrace");
5302     initialized = TRUE;
5303   }
5304 }
5305 
5306 
5307 
5308 #ifndef JDK6_OR_EARLIER
5309 
5310 void os::Kernel32Dll::initialize() {
5311   initializeCommon();
5312 }
5313 
5314 
5315 // Kernel32 API
5316 inline BOOL os::Kernel32Dll::SwitchToThread() {
5317   return ::SwitchToThread();
5318 }
5319 
5320 inline BOOL os::Kernel32Dll::SwitchToThreadAvailable() {
5321   return true;
5322 }
5323 
5324   // Help tools
5325 inline BOOL os::Kernel32Dll::HelpToolsAvailable() {
5326   return true;
5327 }
5328 
5329 inline HANDLE os::Kernel32Dll::CreateToolhelp32Snapshot(DWORD dwFlags,DWORD th32ProcessId) {
5330   return ::CreateToolhelp32Snapshot(dwFlags, th32ProcessId);
5331 }
5332 
5333 inline BOOL os::Kernel32Dll::Module32First(HANDLE hSnapshot,LPMODULEENTRY32 lpme) {
5334   return ::Module32First(hSnapshot, lpme);
5335 }
5336 
5337 inline BOOL os::Kernel32Dll::Module32Next(HANDLE hSnapshot,LPMODULEENTRY32 lpme) {
5338   return ::Module32Next(hSnapshot, lpme);
5339 }
5340 
5341 
5342 inline BOOL os::Kernel32Dll::GetNativeSystemInfoAvailable() {
5343   return true;
5344 }
5345 
5346 inline void os::Kernel32Dll::GetNativeSystemInfo(LPSYSTEM_INFO lpSystemInfo) {
5347   ::GetNativeSystemInfo(lpSystemInfo);
5348 }
5349 
5350 // PSAPI API
5351 inline BOOL os::PSApiDll::EnumProcessModules(HANDLE hProcess, HMODULE *lpModule, DWORD cb, LPDWORD lpcbNeeded) {
5352   return ::EnumProcessModules(hProcess, lpModule, cb, lpcbNeeded);
5353 }
5354 
5355 inline DWORD os::PSApiDll::GetModuleFileNameEx(HANDLE hProcess, HMODULE hModule, LPTSTR lpFilename, DWORD nSize) {
5356   return ::GetModuleFileNameEx(hProcess, hModule, lpFilename, nSize);
5357 }
5358 
5359 inline BOOL os::PSApiDll::GetModuleInformation(HANDLE hProcess, HMODULE hModule, LPMODULEINFO lpmodinfo, DWORD cb) {
5360   return ::GetModuleInformation(hProcess, hModule, lpmodinfo, cb);
5361 }
5362 
5363 inline BOOL os::PSApiDll::PSApiAvailable() {
5364   return true;
5365 }
5366 
5367 
5368 // WinSock2 API
5369 inline BOOL os::WinSock2Dll::WSAStartup(WORD wVersionRequested, LPWSADATA lpWSAData) {
5370   return ::WSAStartup(wVersionRequested, lpWSAData);
5371 }
5372 
5373 inline struct hostent* os::WinSock2Dll::gethostbyname(const char *name) {
5374   return ::gethostbyname(name);
5375 }
5376 
5377 inline BOOL os::WinSock2Dll::WinSock2Available() {
5378   return true;
5379 }
5380 
5381 // Advapi API
5382 inline BOOL os::Advapi32Dll::AdjustTokenPrivileges(HANDLE TokenHandle,
5383    BOOL DisableAllPrivileges, PTOKEN_PRIVILEGES NewState, DWORD BufferLength,
5384    PTOKEN_PRIVILEGES PreviousState, PDWORD ReturnLength) {
5385      return ::AdjustTokenPrivileges(TokenHandle, DisableAllPrivileges, NewState,
5386        BufferLength, PreviousState, ReturnLength);
5387 }
5388 
5389 inline BOOL os::Advapi32Dll::OpenProcessToken(HANDLE ProcessHandle, DWORD DesiredAccess,
5390   PHANDLE TokenHandle) {
5391     return ::OpenProcessToken(ProcessHandle, DesiredAccess, TokenHandle);
5392 }
5393 
5394 inline BOOL os::Advapi32Dll::LookupPrivilegeValue(LPCTSTR lpSystemName, LPCTSTR lpName, PLUID lpLuid) {
5395   return ::LookupPrivilegeValue(lpSystemName, lpName, lpLuid);
5396 }
5397 
5398 inline BOOL os::Advapi32Dll::AdvapiAvailable() {
5399   return true;
5400 }
5401 
5402 void* os::get_default_process_handle() {
5403   return (void*)GetModuleHandle(NULL);
5404 }
5405 
5406 // Builds a platform dependent Agent_OnLoad_<lib_name> function name
5407 // which is used to find statically linked in agents.
5408 // Additionally for windows, takes into account __stdcall names.
5409 // Parameters:
5410 //            sym_name: Symbol in library we are looking for
5411 //            lib_name: Name of library to look in, NULL for shared libs.
5412 //            is_absolute_path == true if lib_name is absolute path to agent
5413 //                                     such as "C:/a/b/L.dll"
5414 //            == false if only the base name of the library is passed in
5415 //               such as "L"
5416 char* os::build_agent_function_name(const char *sym_name, const char *lib_name,
5417                                     bool is_absolute_path) {
5418   char *agent_entry_name;
5419   size_t len;
5420   size_t name_len;
5421   size_t prefix_len = strlen(JNI_LIB_PREFIX);
5422   size_t suffix_len = strlen(JNI_LIB_SUFFIX);
5423   const char *start;
5424 
5425   if (lib_name != NULL) {
5426     len = name_len = strlen(lib_name);
5427     if (is_absolute_path) {
5428       // Need to strip path, prefix and suffix
5429       if ((start = strrchr(lib_name, *os::file_separator())) != NULL) {
5430         lib_name = ++start;
5431       } else {
5432         // Need to check for drive prefix
5433         if ((start = strchr(lib_name, ':')) != NULL) {
5434           lib_name = ++start;
5435         }
5436       }
5437       if (len <= (prefix_len + suffix_len)) {
5438         return NULL;
5439       }
5440       lib_name += prefix_len;
5441       name_len = strlen(lib_name) - suffix_len;
5442     }
5443   }
5444   len = (lib_name != NULL ? name_len : 0) + strlen(sym_name) + 2;
5445   agent_entry_name = NEW_C_HEAP_ARRAY_RETURN_NULL(char, len, mtThread);
5446   if (agent_entry_name == NULL) {
5447     return NULL;
5448   }
5449   if (lib_name != NULL) {
5450     const char *p = strrchr(sym_name, '@');
5451     if (p != NULL && p != sym_name) {
5452       // sym_name == _Agent_OnLoad@XX
5453       strncpy(agent_entry_name, sym_name, (p - sym_name));
5454       agent_entry_name[(p-sym_name)] = '\0';
5455       // agent_entry_name == _Agent_OnLoad
5456       strcat(agent_entry_name, "_");
5457       strncat(agent_entry_name, lib_name, name_len);
5458       strcat(agent_entry_name, p);
5459       // agent_entry_name == _Agent_OnLoad_lib_name@XX
5460     } else {
5461       strcpy(agent_entry_name, sym_name);
5462       strcat(agent_entry_name, "_");
5463       strncat(agent_entry_name, lib_name, name_len);
5464     }
5465   } else {
5466     strcpy(agent_entry_name, sym_name);
5467   }
5468   return agent_entry_name;
5469 }
5470 
5471 #else
5472 // Kernel32 API
5473 typedef BOOL (WINAPI* SwitchToThread_Fn)(void);
5474 typedef HANDLE (WINAPI* CreateToolhelp32Snapshot_Fn)(DWORD,DWORD);
5475 typedef BOOL (WINAPI* Module32First_Fn)(HANDLE,LPMODULEENTRY32);
5476 typedef BOOL (WINAPI* Module32Next_Fn)(HANDLE,LPMODULEENTRY32);
5477 typedef void (WINAPI* GetNativeSystemInfo_Fn)(LPSYSTEM_INFO);
5478 
5479 SwitchToThread_Fn           os::Kernel32Dll::_SwitchToThread = NULL;
5480 CreateToolhelp32Snapshot_Fn os::Kernel32Dll::_CreateToolhelp32Snapshot = NULL;
5481 Module32First_Fn            os::Kernel32Dll::_Module32First = NULL;
5482 Module32Next_Fn             os::Kernel32Dll::_Module32Next = NULL;
5483 GetNativeSystemInfo_Fn      os::Kernel32Dll::_GetNativeSystemInfo = NULL;
5484 
5485 void os::Kernel32Dll::initialize() {
5486   if (!initialized) {
5487     HMODULE handle = ::GetModuleHandle("Kernel32.dll");
5488     assert(handle != NULL, "Just check");
5489 
5490     _SwitchToThread = (SwitchToThread_Fn)::GetProcAddress(handle, "SwitchToThread");
5491     _CreateToolhelp32Snapshot = (CreateToolhelp32Snapshot_Fn)
5492       ::GetProcAddress(handle, "CreateToolhelp32Snapshot");
5493     _Module32First = (Module32First_Fn)::GetProcAddress(handle, "Module32First");
5494     _Module32Next = (Module32Next_Fn)::GetProcAddress(handle, "Module32Next");
5495     _GetNativeSystemInfo = (GetNativeSystemInfo_Fn)::GetProcAddress(handle, "GetNativeSystemInfo");
5496     initializeCommon();  // resolve the functions that always need resolving
5497 
5498     initialized = TRUE;
5499   }
5500 }
5501 
5502 BOOL os::Kernel32Dll::SwitchToThread() {
5503   assert(initialized && _SwitchToThread != NULL,
5504     "SwitchToThreadAvailable() not yet called");
5505   return _SwitchToThread();
5506 }
5507 
5508 
5509 BOOL os::Kernel32Dll::SwitchToThreadAvailable() {
5510   if (!initialized) {
5511     initialize();
5512   }
5513   return _SwitchToThread != NULL;
5514 }
5515 
5516 // Help tools
5517 BOOL os::Kernel32Dll::HelpToolsAvailable() {
5518   if (!initialized) {
5519     initialize();
5520   }
5521   return _CreateToolhelp32Snapshot != NULL &&
5522          _Module32First != NULL &&
5523          _Module32Next != NULL;
5524 }
5525 
5526 HANDLE os::Kernel32Dll::CreateToolhelp32Snapshot(DWORD dwFlags,DWORD th32ProcessId) {
5527   assert(initialized && _CreateToolhelp32Snapshot != NULL,
5528     "HelpToolsAvailable() not yet called");
5529 
5530   return _CreateToolhelp32Snapshot(dwFlags, th32ProcessId);
5531 }
5532 
5533 BOOL os::Kernel32Dll::Module32First(HANDLE hSnapshot,LPMODULEENTRY32 lpme) {
5534   assert(initialized && _Module32First != NULL,
5535     "HelpToolsAvailable() not yet called");
5536 
5537   return _Module32First(hSnapshot, lpme);
5538 }
5539 
5540 inline BOOL os::Kernel32Dll::Module32Next(HANDLE hSnapshot,LPMODULEENTRY32 lpme) {
5541   assert(initialized && _Module32Next != NULL,
5542     "HelpToolsAvailable() not yet called");
5543 
5544   return _Module32Next(hSnapshot, lpme);
5545 }
5546 
5547 
5548 BOOL os::Kernel32Dll::GetNativeSystemInfoAvailable() {
5549   if (!initialized) {
5550     initialize();
5551   }
5552   return _GetNativeSystemInfo != NULL;
5553 }
5554 
5555 void os::Kernel32Dll::GetNativeSystemInfo(LPSYSTEM_INFO lpSystemInfo) {
5556   assert(initialized && _GetNativeSystemInfo != NULL,
5557     "GetNativeSystemInfoAvailable() not yet called");
5558 
5559   _GetNativeSystemInfo(lpSystemInfo);
5560 }
5561 
5562 // PSAPI API
5563 
5564 
5565 typedef BOOL (WINAPI *EnumProcessModules_Fn)(HANDLE, HMODULE *, DWORD, LPDWORD);
5566 typedef BOOL (WINAPI *GetModuleFileNameEx_Fn)(HANDLE, HMODULE, LPTSTR, DWORD);;
5567 typedef BOOL (WINAPI *GetModuleInformation_Fn)(HANDLE, HMODULE, LPMODULEINFO, DWORD);
5568 
5569 EnumProcessModules_Fn   os::PSApiDll::_EnumProcessModules = NULL;
5570 GetModuleFileNameEx_Fn  os::PSApiDll::_GetModuleFileNameEx = NULL;
5571 GetModuleInformation_Fn os::PSApiDll::_GetModuleInformation = NULL;
5572 BOOL                    os::PSApiDll::initialized = FALSE;
5573 
5574 void os::PSApiDll::initialize() {
5575   if (!initialized) {
5576     HMODULE handle = os::win32::load_Windows_dll("PSAPI.DLL", NULL, 0);
5577     if (handle != NULL) {
5578       _EnumProcessModules = (EnumProcessModules_Fn)::GetProcAddress(handle,
5579         "EnumProcessModules");
5580       _GetModuleFileNameEx = (GetModuleFileNameEx_Fn)::GetProcAddress(handle,
5581         "GetModuleFileNameExA");
5582       _GetModuleInformation = (GetModuleInformation_Fn)::GetProcAddress(handle,
5583         "GetModuleInformation");
5584     }
5585     initialized = TRUE;
5586   }
5587 }
5588 
5589 
5590 
5591 BOOL os::PSApiDll::EnumProcessModules(HANDLE hProcess, HMODULE *lpModule, DWORD cb, LPDWORD lpcbNeeded) {
5592   assert(initialized && _EnumProcessModules != NULL,
5593     "PSApiAvailable() not yet called");
5594   return _EnumProcessModules(hProcess, lpModule, cb, lpcbNeeded);
5595 }
5596 
5597 DWORD os::PSApiDll::GetModuleFileNameEx(HANDLE hProcess, HMODULE hModule, LPTSTR lpFilename, DWORD nSize) {
5598   assert(initialized && _GetModuleFileNameEx != NULL,
5599     "PSApiAvailable() not yet called");
5600   return _GetModuleFileNameEx(hProcess, hModule, lpFilename, nSize);
5601 }
5602 
5603 BOOL os::PSApiDll::GetModuleInformation(HANDLE hProcess, HMODULE hModule, LPMODULEINFO lpmodinfo, DWORD cb) {
5604   assert(initialized && _GetModuleInformation != NULL,
5605     "PSApiAvailable() not yet called");
5606   return _GetModuleInformation(hProcess, hModule, lpmodinfo, cb);
5607 }
5608 
5609 BOOL os::PSApiDll::PSApiAvailable() {
5610   if (!initialized) {
5611     initialize();
5612   }
5613   return _EnumProcessModules != NULL &&
5614     _GetModuleFileNameEx != NULL &&
5615     _GetModuleInformation != NULL;
5616 }
5617 
5618 
5619 // WinSock2 API
5620 typedef int (PASCAL FAR* WSAStartup_Fn)(WORD, LPWSADATA);
5621 typedef struct hostent *(PASCAL FAR *gethostbyname_Fn)(...);
5622 
5623 WSAStartup_Fn    os::WinSock2Dll::_WSAStartup = NULL;
5624 gethostbyname_Fn os::WinSock2Dll::_gethostbyname = NULL;
5625 BOOL             os::WinSock2Dll::initialized = FALSE;
5626 
5627 void os::WinSock2Dll::initialize() {
5628   if (!initialized) {
5629     HMODULE handle = os::win32::load_Windows_dll("ws2_32.dll", NULL, 0);
5630     if (handle != NULL) {
5631       _WSAStartup = (WSAStartup_Fn)::GetProcAddress(handle, "WSAStartup");
5632       _gethostbyname = (gethostbyname_Fn)::GetProcAddress(handle, "gethostbyname");
5633     }
5634     initialized = TRUE;
5635   }
5636 }
5637 
5638 
5639 BOOL os::WinSock2Dll::WSAStartup(WORD wVersionRequested, LPWSADATA lpWSAData) {
5640   assert(initialized && _WSAStartup != NULL,
5641     "WinSock2Available() not yet called");
5642   return _WSAStartup(wVersionRequested, lpWSAData);
5643 }
5644 
5645 struct hostent* os::WinSock2Dll::gethostbyname(const char *name) {
5646   assert(initialized && _gethostbyname != NULL,
5647     "WinSock2Available() not yet called");
5648   return _gethostbyname(name);
5649 }
5650 
5651 BOOL os::WinSock2Dll::WinSock2Available() {
5652   if (!initialized) {
5653     initialize();
5654   }
5655   return _WSAStartup != NULL &&
5656     _gethostbyname != NULL;
5657 }
5658 
5659 typedef BOOL (WINAPI *AdjustTokenPrivileges_Fn)(HANDLE, BOOL, PTOKEN_PRIVILEGES, DWORD, PTOKEN_PRIVILEGES, PDWORD);
5660 typedef BOOL (WINAPI *OpenProcessToken_Fn)(HANDLE, DWORD, PHANDLE);
5661 typedef BOOL (WINAPI *LookupPrivilegeValue_Fn)(LPCTSTR, LPCTSTR, PLUID);
5662 
5663 AdjustTokenPrivileges_Fn os::Advapi32Dll::_AdjustTokenPrivileges = NULL;
5664 OpenProcessToken_Fn      os::Advapi32Dll::_OpenProcessToken = NULL;
5665 LookupPrivilegeValue_Fn  os::Advapi32Dll::_LookupPrivilegeValue = NULL;
5666 BOOL                     os::Advapi32Dll::initialized = FALSE;
5667 
5668 void os::Advapi32Dll::initialize() {
5669   if (!initialized) {
5670     HMODULE handle = os::win32::load_Windows_dll("advapi32.dll", NULL, 0);
5671     if (handle != NULL) {
5672       _AdjustTokenPrivileges = (AdjustTokenPrivileges_Fn)::GetProcAddress(handle,
5673         "AdjustTokenPrivileges");
5674       _OpenProcessToken = (OpenProcessToken_Fn)::GetProcAddress(handle,
5675         "OpenProcessToken");
5676       _LookupPrivilegeValue = (LookupPrivilegeValue_Fn)::GetProcAddress(handle,
5677         "LookupPrivilegeValueA");
5678     }
5679     initialized = TRUE;
5680   }
5681 }
5682 
5683 BOOL os::Advapi32Dll::AdjustTokenPrivileges(HANDLE TokenHandle,
5684    BOOL DisableAllPrivileges, PTOKEN_PRIVILEGES NewState, DWORD BufferLength,
5685    PTOKEN_PRIVILEGES PreviousState, PDWORD ReturnLength) {
5686    assert(initialized && _AdjustTokenPrivileges != NULL,
5687      "AdvapiAvailable() not yet called");
5688    return _AdjustTokenPrivileges(TokenHandle, DisableAllPrivileges, NewState,
5689        BufferLength, PreviousState, ReturnLength);
5690 }
5691 
5692 BOOL os::Advapi32Dll::OpenProcessToken(HANDLE ProcessHandle, DWORD DesiredAccess,
5693   PHANDLE TokenHandle) {
5694    assert(initialized && _OpenProcessToken != NULL,
5695      "AdvapiAvailable() not yet called");
5696     return _OpenProcessToken(ProcessHandle, DesiredAccess, TokenHandle);
5697 }
5698 
5699 BOOL os::Advapi32Dll::LookupPrivilegeValue(LPCTSTR lpSystemName, LPCTSTR lpName, PLUID lpLuid) {
5700    assert(initialized && _LookupPrivilegeValue != NULL,
5701      "AdvapiAvailable() not yet called");
5702   return _LookupPrivilegeValue(lpSystemName, lpName, lpLuid);
5703 }
5704 
5705 BOOL os::Advapi32Dll::AdvapiAvailable() {
5706   if (!initialized) {
5707     initialize();
5708   }
5709   return _AdjustTokenPrivileges != NULL &&
5710     _OpenProcessToken != NULL &&
5711     _LookupPrivilegeValue != NULL;
5712 }
5713 
5714 #endif
5715 
5716 #ifndef PRODUCT
5717 
5718 // test the code path in reserve_memory_special() that tries to allocate memory in a single
5719 // contiguous memory block at a particular address.
5720 // The test first tries to find a good approximate address to allocate at by using the same
5721 // method to allocate some memory at any address. The test then tries to allocate memory in
5722 // the vicinity (not directly after it to avoid possible by-chance use of that location)
5723 // This is of course only some dodgy assumption, there is no guarantee that the vicinity of
5724 // the previously allocated memory is available for allocation. The only actual failure
5725 // that is reported is when the test tries to allocate at a particular location but gets a
5726 // different valid one. A NULL return value at this point is not considered an error but may
5727 // be legitimate.
5728 // If -XX:+VerboseInternalVMTests is enabled, print some explanatory messages.
5729 void TestReserveMemorySpecial_test() {
5730   if (!UseLargePages) {
5731     if (VerboseInternalVMTests) {
5732       gclog_or_tty->print("Skipping test because large pages are disabled");
5733     }
5734     return;
5735   }
5736   // save current value of globals
5737   bool old_use_large_pages_individual_allocation = UseLargePagesIndividualAllocation;
5738   bool old_use_numa_interleaving = UseNUMAInterleaving;
5739 
5740   // set globals to make sure we hit the correct code path
5741   UseLargePagesIndividualAllocation = UseNUMAInterleaving = false;
5742 
5743   // do an allocation at an address selected by the OS to get a good one.
5744   const size_t large_allocation_size = os::large_page_size() * 4;
5745   char* result = os::reserve_memory_special(large_allocation_size, os::large_page_size(), NULL, false);
5746   if (result == NULL) {
5747     if (VerboseInternalVMTests) {
5748       gclog_or_tty->print("Failed to allocate control block with size "SIZE_FORMAT". Skipping remainder of test.",
5749         large_allocation_size);
5750     }
5751   } else {
5752     os::release_memory_special(result, large_allocation_size);
5753 
5754     // allocate another page within the recently allocated memory area which seems to be a good location. At least
5755     // we managed to get it once.
5756     const size_t expected_allocation_size = os::large_page_size();
5757     char* expected_location = result + os::large_page_size();
5758     char* actual_location = os::reserve_memory_special(expected_allocation_size, os::large_page_size(), expected_location, false);
5759     if (actual_location == NULL) {
5760       if (VerboseInternalVMTests) {
5761         gclog_or_tty->print("Failed to allocate any memory at "PTR_FORMAT" size "SIZE_FORMAT". Skipping remainder of test.",
5762           expected_location, large_allocation_size);
5763       }
5764     } else {
5765       // release memory
5766       os::release_memory_special(actual_location, expected_allocation_size);
5767       // only now check, after releasing any memory to avoid any leaks.
5768       assert(actual_location == expected_location,
5769         err_msg("Failed to allocate memory at requested location "PTR_FORMAT" of size "SIZE_FORMAT", is "PTR_FORMAT" instead",
5770           expected_location, expected_allocation_size, actual_location));
5771     }
5772   }
5773 
5774   // restore globals
5775   UseLargePagesIndividualAllocation = old_use_large_pages_individual_allocation;
5776   UseNUMAInterleaving = old_use_numa_interleaving;
5777 }
5778 #endif // PRODUCT
5779