/* * Copyright (c) 2009, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. Oracle designates this * particular file as subject to the "Classpath" exception as provided * by Oracle in the LICENSE file that accompanied this code. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. */ package com.sun.xml.internal.dtdparser; import java.util.Enumeration; // This could be replaced by Collections class unless we want // to be able to run on JDK 1.1 /** * This class implements a special purpose hashtable. It works like a * normal java.util.Hashtable except that:
    *

    *

  1. Keys to "get" are strings which are known to be interned, * so that "==" is used instead of "String.equals". (Interning * could be document-relative instead of global.) *

    *

  2. It's not synchronized, since it's to be used only by * one thread at a time. *

    *

  3. The keys () enumerator allocates no memory, with live * updates to the data disallowed. *

    *

  4. It's got fewer bells and whistles: fixed threshold and * load factor, no JDK 1.2 collection support, only keys can be * enumerated, things can't be removed, simpler inheritance; more. *

    *

*

*

The overall result is that it's less expensive to use these in * performance-critical locations, in terms both of CPU and memory, * than java.util.Hashtable instances. In this package * it makes a significant difference when normalizing attributes, * which is done for each start-element construct. * * @version $Revision: 1.2 $ */ final class SimpleHashtable implements Enumeration { // entries ... private Entry table[]; // currently enumerated key private Entry current = null; private int currentBucket = 0; private int count; private int threshold; private static final float loadFactor = 0.75f; /** * Constructs a new, empty hashtable with the specified initial * capacity. * * @param initialCapacity the initial capacity of the hashtable. */ public SimpleHashtable(int initialCapacity) { if (initialCapacity < 0) throw new IllegalArgumentException("Illegal Capacity: " + initialCapacity); if (initialCapacity == 0) initialCapacity = 1; table = new Entry[initialCapacity]; threshold = (int) (initialCapacity * loadFactor); } /** * Constructs a new, empty hashtable with a default capacity. */ public SimpleHashtable() { this(11); } /** */ public void clear() { count = 0; currentBucket = 0; current = null; for (int i = 0; i < table.length; i++) table[i] = null; } /** * Returns the number of keys in this hashtable. * * @return the number of keys in this hashtable. */ public int size() { return count; } /** * Returns an enumeration of the keys in this hashtable. * * @return an enumeration of the keys in this hashtable. * @see Enumeration */ public Enumeration keys() { currentBucket = 0; current = null; return this; } /** * Used to view this as an enumeration; returns true if there * are more keys to be enumerated. */ public boolean hasMoreElements() { if (current != null) return true; while (currentBucket < table.length) { current = table[currentBucket++]; if (current != null) return true; } return false; } /** * Used to view this as an enumeration; returns the next key * in the enumeration. */ public Object nextElement() { Object retval; if (current == null) throw new IllegalStateException(); retval = current.key; current = current.next; return retval; } /** * Returns the value to which the specified key is mapped in this hashtable. */ public Object get(String key) { Entry tab[] = table; int hash = key.hashCode(); int index = (hash & 0x7FFFFFFF) % tab.length; for (Entry e = tab[index]; e != null; e = e.next) { if ((e.hash == hash) && (e.key == key)) return e.value; } return null; } /** * Returns the value to which the specified key is mapped in this * hashtable ... the key isn't necessarily interned, though. */ public Object getNonInterned(String key) { Entry tab[] = table; int hash = key.hashCode(); int index = (hash & 0x7FFFFFFF) % tab.length; for (Entry e = tab[index]; e != null; e = e.next) { if ((e.hash == hash) && e.key.equals(key)) return e.value; } return null; } /** * Increases the capacity of and internally reorganizes this * hashtable, in order to accommodate and access its entries more * efficiently. This method is called automatically when the * number of keys in the hashtable exceeds this hashtable's capacity * and load factor. */ private void rehash() { int oldCapacity = table.length; Entry oldMap[] = table; int newCapacity = oldCapacity * 2 + 1; Entry newMap[] = new Entry[newCapacity]; threshold = (int) (newCapacity * loadFactor); table = newMap; /* System.out.println("rehash old=" + oldCapacity + ", new=" + newCapacity + ", thresh=" + threshold + ", count=" + count); */ for (int i = oldCapacity; i-- > 0;) { for (Entry old = oldMap[i]; old != null;) { Entry e = old; old = old.next; int index = (e.hash & 0x7FFFFFFF) % newCapacity; e.next = newMap[index]; newMap[index] = e; } } } /** * Maps the specified key to the specified * value in this hashtable. Neither the key nor the * value can be null. *

*

The value can be retrieved by calling the get method * with a key that is equal to the original key. */ public Object put(Object key, Object value) { // Make sure the value is not null if (value == null) { throw new NullPointerException(); } // Makes sure the key is not already in the hashtable. Entry tab[] = table; int hash = key.hashCode(); int index = (hash & 0x7FFFFFFF) % tab.length; for (Entry e = tab[index]; e != null; e = e.next) { // if ((e.hash == hash) && e.key.equals(key)) { if ((e.hash == hash) && (e.key == key)) { Object old = e.value; e.value = value; return old; } } if (count >= threshold) { // Rehash the table if the threshold is exceeded rehash(); tab = table; index = (hash & 0x7FFFFFFF) % tab.length; } // Creates the new entry. Entry e = new Entry(hash, key, value, tab[index]); tab[index] = e; count++; return null; } /** * Hashtable collision list. */ private static class Entry { int hash; Object key; Object value; Entry next; protected Entry(int hash, Object key, Object value, Entry next) { this.hash = hash; this.key = key; this.value = value; this.next = next; } } }