1 /*
   2  * Copyright (c) 2001, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/classLoaderData.hpp"
  27 #include "classfile/stringTable.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "code/codeCache.hpp"
  30 #include "gc_implementation/shared/adaptiveSizePolicy.hpp"
  31 #include "gc_implementation/concurrentMarkSweep/cmsCollectorPolicy.hpp"
  32 #include "gc_implementation/concurrentMarkSweep/cmsOopClosures.inline.hpp"
  33 #include "gc_implementation/concurrentMarkSweep/compactibleFreeListSpace.hpp"
  34 #include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepGeneration.inline.hpp"
  35 #include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepThread.hpp"
  36 #include "gc_implementation/concurrentMarkSweep/vmCMSOperations.hpp"
  37 #include "gc_implementation/parNew/parNewGeneration.hpp"
  38 #include "gc_implementation/shared/collectorCounters.hpp"
  39 #include "gc_implementation/shared/gcTimer.hpp"
  40 #include "gc_implementation/shared/gcTrace.hpp"
  41 #include "gc_implementation/shared/gcTraceTime.hpp"
  42 #include "gc_implementation/shared/isGCActiveMark.hpp"
  43 #include "gc_interface/collectedHeap.inline.hpp"
  44 #include "memory/allocation.hpp"
  45 #include "memory/cardTableRS.hpp"
  46 #include "memory/collectorPolicy.hpp"
  47 #include "memory/gcLocker.inline.hpp"
  48 #include "memory/genCollectedHeap.hpp"
  49 #include "memory/genMarkSweep.hpp"
  50 #include "memory/genOopClosures.inline.hpp"
  51 #include "memory/iterator.inline.hpp"
  52 #include "memory/padded.hpp"
  53 #include "memory/referencePolicy.hpp"
  54 #include "memory/resourceArea.hpp"
  55 #include "memory/tenuredGeneration.hpp"
  56 #include "oops/oop.inline.hpp"
  57 #include "prims/jvmtiExport.hpp"
  58 #include "runtime/atomic.inline.hpp"
  59 #include "runtime/globals_extension.hpp"
  60 #include "runtime/handles.inline.hpp"
  61 #include "runtime/java.hpp"
  62 #include "runtime/orderAccess.inline.hpp"
  63 #include "runtime/vmThread.hpp"
  64 #include "services/memoryService.hpp"
  65 #include "services/runtimeService.hpp"
  66 
  67 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
  68 
  69 // statics
  70 CMSCollector* ConcurrentMarkSweepGeneration::_collector = NULL;
  71 bool CMSCollector::_full_gc_requested = false;
  72 GCCause::Cause CMSCollector::_full_gc_cause = GCCause::_no_gc;
  73 
  74 //////////////////////////////////////////////////////////////////
  75 // In support of CMS/VM thread synchronization
  76 //////////////////////////////////////////////////////////////////
  77 // We split use of the CGC_lock into 2 "levels".
  78 // The low-level locking is of the usual CGC_lock monitor. We introduce
  79 // a higher level "token" (hereafter "CMS token") built on top of the
  80 // low level monitor (hereafter "CGC lock").
  81 // The token-passing protocol gives priority to the VM thread. The
  82 // CMS-lock doesn't provide any fairness guarantees, but clients
  83 // should ensure that it is only held for very short, bounded
  84 // durations.
  85 //
  86 // When either of the CMS thread or the VM thread is involved in
  87 // collection operations during which it does not want the other
  88 // thread to interfere, it obtains the CMS token.
  89 //
  90 // If either thread tries to get the token while the other has
  91 // it, that thread waits. However, if the VM thread and CMS thread
  92 // both want the token, then the VM thread gets priority while the
  93 // CMS thread waits. This ensures, for instance, that the "concurrent"
  94 // phases of the CMS thread's work do not block out the VM thread
  95 // for long periods of time as the CMS thread continues to hog
  96 // the token. (See bug 4616232).
  97 //
  98 // The baton-passing functions are, however, controlled by the
  99 // flags _foregroundGCShouldWait and _foregroundGCIsActive,
 100 // and here the low-level CMS lock, not the high level token,
 101 // ensures mutual exclusion.
 102 //
 103 // Two important conditions that we have to satisfy:
 104 // 1. if a thread does a low-level wait on the CMS lock, then it
 105 //    relinquishes the CMS token if it were holding that token
 106 //    when it acquired the low-level CMS lock.
 107 // 2. any low-level notifications on the low-level lock
 108 //    should only be sent when a thread has relinquished the token.
 109 //
 110 // In the absence of either property, we'd have potential deadlock.
 111 //
 112 // We protect each of the CMS (concurrent and sequential) phases
 113 // with the CMS _token_, not the CMS _lock_.
 114 //
 115 // The only code protected by CMS lock is the token acquisition code
 116 // itself, see ConcurrentMarkSweepThread::[de]synchronize(), and the
 117 // baton-passing code.
 118 //
 119 // Unfortunately, i couldn't come up with a good abstraction to factor and
 120 // hide the naked CGC_lock manipulation in the baton-passing code
 121 // further below. That's something we should try to do. Also, the proof
 122 // of correctness of this 2-level locking scheme is far from obvious,
 123 // and potentially quite slippery. We have an uneasy suspicion, for instance,
 124 // that there may be a theoretical possibility of delay/starvation in the
 125 // low-level lock/wait/notify scheme used for the baton-passing because of
 126 // potential interference with the priority scheme embodied in the
 127 // CMS-token-passing protocol. See related comments at a CGC_lock->wait()
 128 // invocation further below and marked with "XXX 20011219YSR".
 129 // Indeed, as we note elsewhere, this may become yet more slippery
 130 // in the presence of multiple CMS and/or multiple VM threads. XXX
 131 
 132 class CMSTokenSync: public StackObj {
 133  private:
 134   bool _is_cms_thread;
 135  public:
 136   CMSTokenSync(bool is_cms_thread):
 137     _is_cms_thread(is_cms_thread) {
 138     assert(is_cms_thread == Thread::current()->is_ConcurrentGC_thread(),
 139            "Incorrect argument to constructor");
 140     ConcurrentMarkSweepThread::synchronize(_is_cms_thread);
 141   }
 142 
 143   ~CMSTokenSync() {
 144     assert(_is_cms_thread ?
 145              ConcurrentMarkSweepThread::cms_thread_has_cms_token() :
 146              ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
 147           "Incorrect state");
 148     ConcurrentMarkSweepThread::desynchronize(_is_cms_thread);
 149   }
 150 };
 151 
 152 // Convenience class that does a CMSTokenSync, and then acquires
 153 // upto three locks.
 154 class CMSTokenSyncWithLocks: public CMSTokenSync {
 155  private:
 156   // Note: locks are acquired in textual declaration order
 157   // and released in the opposite order
 158   MutexLockerEx _locker1, _locker2, _locker3;
 159  public:
 160   CMSTokenSyncWithLocks(bool is_cms_thread, Mutex* mutex1,
 161                         Mutex* mutex2 = NULL, Mutex* mutex3 = NULL):
 162     CMSTokenSync(is_cms_thread),
 163     _locker1(mutex1, Mutex::_no_safepoint_check_flag),
 164     _locker2(mutex2, Mutex::_no_safepoint_check_flag),
 165     _locker3(mutex3, Mutex::_no_safepoint_check_flag)
 166   { }
 167 };
 168 
 169 
 170 // Wrapper class to temporarily disable icms during a foreground cms collection.
 171 class ICMSDisabler: public StackObj {
 172  public:
 173   // The ctor disables icms and wakes up the thread so it notices the change;
 174   // the dtor re-enables icms.  Note that the CMSCollector methods will check
 175   // CMSIncrementalMode.
 176   ICMSDisabler()  { CMSCollector::disable_icms(); CMSCollector::start_icms(); }
 177   ~ICMSDisabler() { CMSCollector::enable_icms(); }
 178 };
 179 
 180 //////////////////////////////////////////////////////////////////
 181 //  Concurrent Mark-Sweep Generation /////////////////////////////
 182 //////////////////////////////////////////////////////////////////
 183 
 184 NOT_PRODUCT(CompactibleFreeListSpace* debug_cms_space;)
 185 
 186 // This struct contains per-thread things necessary to support parallel
 187 // young-gen collection.
 188 class CMSParGCThreadState: public CHeapObj<mtGC> {
 189  public:
 190   CFLS_LAB lab;
 191   PromotionInfo promo;
 192 
 193   // Constructor.
 194   CMSParGCThreadState(CompactibleFreeListSpace* cfls) : lab(cfls) {
 195     promo.setSpace(cfls);
 196   }
 197 };
 198 
 199 ConcurrentMarkSweepGeneration::ConcurrentMarkSweepGeneration(
 200      ReservedSpace rs, size_t initial_byte_size, int level,
 201      CardTableRS* ct, bool use_adaptive_freelists,
 202      FreeBlockDictionary<FreeChunk>::DictionaryChoice dictionaryChoice) :
 203   CardGeneration(rs, initial_byte_size, level, ct),
 204   _dilatation_factor(((double)MinChunkSize)/((double)(CollectedHeap::min_fill_size()))),
 205   _debug_collection_type(Concurrent_collection_type),
 206   _did_compact(false)
 207 {
 208   HeapWord* bottom = (HeapWord*) _virtual_space.low();
 209   HeapWord* end    = (HeapWord*) _virtual_space.high();
 210 
 211   _direct_allocated_words = 0;
 212   NOT_PRODUCT(
 213     _numObjectsPromoted = 0;
 214     _numWordsPromoted = 0;
 215     _numObjectsAllocated = 0;
 216     _numWordsAllocated = 0;
 217   )
 218 
 219   _cmsSpace = new CompactibleFreeListSpace(_bts, MemRegion(bottom, end),
 220                                            use_adaptive_freelists,
 221                                            dictionaryChoice);
 222   NOT_PRODUCT(debug_cms_space = _cmsSpace;)
 223   if (_cmsSpace == NULL) {
 224     vm_exit_during_initialization(
 225       "CompactibleFreeListSpace allocation failure");
 226   }
 227   _cmsSpace->_gen = this;
 228 
 229   _gc_stats = new CMSGCStats();
 230 
 231   // Verify the assumption that FreeChunk::_prev and OopDesc::_klass
 232   // offsets match. The ability to tell free chunks from objects
 233   // depends on this property.
 234   debug_only(
 235     FreeChunk* junk = NULL;
 236     assert(UseCompressedClassPointers ||
 237            junk->prev_addr() == (void*)(oop(junk)->klass_addr()),
 238            "Offset of FreeChunk::_prev within FreeChunk must match"
 239            "  that of OopDesc::_klass within OopDesc");
 240   )
 241   if (CollectedHeap::use_parallel_gc_threads()) {
 242     typedef CMSParGCThreadState* CMSParGCThreadStatePtr;
 243     _par_gc_thread_states =
 244       NEW_C_HEAP_ARRAY(CMSParGCThreadStatePtr, ParallelGCThreads, mtGC);
 245     if (_par_gc_thread_states == NULL) {
 246       vm_exit_during_initialization("Could not allocate par gc structs");
 247     }
 248     for (uint i = 0; i < ParallelGCThreads; i++) {
 249       _par_gc_thread_states[i] = new CMSParGCThreadState(cmsSpace());
 250       if (_par_gc_thread_states[i] == NULL) {
 251         vm_exit_during_initialization("Could not allocate par gc structs");
 252       }
 253     }
 254   } else {
 255     _par_gc_thread_states = NULL;
 256   }
 257   _incremental_collection_failed = false;
 258   // The "dilatation_factor" is the expansion that can occur on
 259   // account of the fact that the minimum object size in the CMS
 260   // generation may be larger than that in, say, a contiguous young
 261   //  generation.
 262   // Ideally, in the calculation below, we'd compute the dilatation
 263   // factor as: MinChunkSize/(promoting_gen's min object size)
 264   // Since we do not have such a general query interface for the
 265   // promoting generation, we'll instead just use the minimum
 266   // object size (which today is a header's worth of space);
 267   // note that all arithmetic is in units of HeapWords.
 268   assert(MinChunkSize >= CollectedHeap::min_fill_size(), "just checking");
 269   assert(_dilatation_factor >= 1.0, "from previous assert");
 270 }
 271 
 272 
 273 // The field "_initiating_occupancy" represents the occupancy percentage
 274 // at which we trigger a new collection cycle.  Unless explicitly specified
 275 // via CMSInitiatingOccupancyFraction (argument "io" below), it
 276 // is calculated by:
 277 //
 278 //   Let "f" be MinHeapFreeRatio in
 279 //
 280 //    _initiating_occupancy = 100-f +
 281 //                           f * (CMSTriggerRatio/100)
 282 //   where CMSTriggerRatio is the argument "tr" below.
 283 //
 284 // That is, if we assume the heap is at its desired maximum occupancy at the
 285 // end of a collection, we let CMSTriggerRatio of the (purported) free
 286 // space be allocated before initiating a new collection cycle.
 287 //
 288 void ConcurrentMarkSweepGeneration::init_initiating_occupancy(intx io, uintx tr) {
 289   assert(io <= 100 && tr <= 100, "Check the arguments");
 290   if (io >= 0) {
 291     _initiating_occupancy = (double)io / 100.0;
 292   } else {
 293     _initiating_occupancy = ((100 - MinHeapFreeRatio) +
 294                              (double)(tr * MinHeapFreeRatio) / 100.0)
 295                             / 100.0;
 296   }
 297 }
 298 
 299 void ConcurrentMarkSweepGeneration::ref_processor_init() {
 300   assert(collector() != NULL, "no collector");
 301   collector()->ref_processor_init();
 302 }
 303 
 304 void CMSCollector::ref_processor_init() {
 305   if (_ref_processor == NULL) {
 306     // Allocate and initialize a reference processor
 307     _ref_processor =
 308       new ReferenceProcessor(_span,                               // span
 309                              (ParallelGCThreads > 1) && ParallelRefProcEnabled, // mt processing
 310                              (int) ParallelGCThreads,             // mt processing degree
 311                              _cmsGen->refs_discovery_is_mt(),     // mt discovery
 312                              (int) MAX2(ConcGCThreads, ParallelGCThreads), // mt discovery degree
 313                              _cmsGen->refs_discovery_is_atomic(), // discovery is not atomic
 314                              &_is_alive_closure);                 // closure for liveness info
 315     // Initialize the _ref_processor field of CMSGen
 316     _cmsGen->set_ref_processor(_ref_processor);
 317 
 318   }
 319 }
 320 
 321 AdaptiveSizePolicy* CMSCollector::size_policy() {
 322   GenCollectedHeap* gch = GenCollectedHeap::heap();
 323   assert(gch->kind() == CollectedHeap::GenCollectedHeap,
 324     "Wrong type of heap");
 325   return gch->gen_policy()->size_policy();
 326 }
 327 
 328 void ConcurrentMarkSweepGeneration::initialize_performance_counters() {
 329 
 330   const char* gen_name = "old";
 331   GenCollectorPolicy* gcp = (GenCollectorPolicy*) GenCollectedHeap::heap()->collector_policy();
 332 
 333   // Generation Counters - generation 1, 1 subspace
 334   _gen_counters = new GenerationCounters(gen_name, 1, 1,
 335       gcp->min_old_size(), gcp->max_old_size(), &_virtual_space);
 336 
 337   _space_counters = new GSpaceCounters(gen_name, 0,
 338                                        _virtual_space.reserved_size(),
 339                                        this, _gen_counters);
 340 }
 341 
 342 CMSStats::CMSStats(ConcurrentMarkSweepGeneration* cms_gen, unsigned int alpha):
 343   _cms_gen(cms_gen)
 344 {
 345   assert(alpha <= 100, "bad value");
 346   _saved_alpha = alpha;
 347 
 348   // Initialize the alphas to the bootstrap value of 100.
 349   _gc0_alpha = _cms_alpha = 100;
 350 
 351   _cms_begin_time.update();
 352   _cms_end_time.update();
 353 
 354   _gc0_duration = 0.0;
 355   _gc0_period = 0.0;
 356   _gc0_promoted = 0;
 357 
 358   _cms_duration = 0.0;
 359   _cms_period = 0.0;
 360   _cms_allocated = 0;
 361 
 362   _cms_used_at_gc0_begin = 0;
 363   _cms_used_at_gc0_end = 0;
 364   _allow_duty_cycle_reduction = false;
 365   _valid_bits = 0;
 366   _icms_duty_cycle = CMSIncrementalDutyCycle;
 367 }
 368 
 369 double CMSStats::cms_free_adjustment_factor(size_t free) const {
 370   // TBD: CR 6909490
 371   return 1.0;
 372 }
 373 
 374 void CMSStats::adjust_cms_free_adjustment_factor(bool fail, size_t free) {
 375 }
 376 
 377 // If promotion failure handling is on use
 378 // the padded average size of the promotion for each
 379 // young generation collection.
 380 double CMSStats::time_until_cms_gen_full() const {
 381   size_t cms_free = _cms_gen->cmsSpace()->free();
 382   GenCollectedHeap* gch = GenCollectedHeap::heap();
 383   size_t expected_promotion = MIN2(gch->get_gen(0)->capacity(),
 384                                    (size_t) _cms_gen->gc_stats()->avg_promoted()->padded_average());
 385   if (cms_free > expected_promotion) {
 386     // Start a cms collection if there isn't enough space to promote
 387     // for the next minor collection.  Use the padded average as
 388     // a safety factor.
 389     cms_free -= expected_promotion;
 390 
 391     // Adjust by the safety factor.
 392     double cms_free_dbl = (double)cms_free;
 393     double cms_adjustment = (100.0 - CMSIncrementalSafetyFactor)/100.0;
 394     // Apply a further correction factor which tries to adjust
 395     // for recent occurance of concurrent mode failures.
 396     cms_adjustment = cms_adjustment * cms_free_adjustment_factor(cms_free);
 397     cms_free_dbl = cms_free_dbl * cms_adjustment;
 398 
 399     if (PrintGCDetails && Verbose) {
 400       gclog_or_tty->print_cr("CMSStats::time_until_cms_gen_full: cms_free "
 401         SIZE_FORMAT " expected_promotion " SIZE_FORMAT,
 402         cms_free, expected_promotion);
 403       gclog_or_tty->print_cr("  cms_free_dbl %f cms_consumption_rate %f",
 404         cms_free_dbl, cms_consumption_rate() + 1.0);
 405     }
 406     // Add 1 in case the consumption rate goes to zero.
 407     return cms_free_dbl / (cms_consumption_rate() + 1.0);
 408   }
 409   return 0.0;
 410 }
 411 
 412 // Compare the duration of the cms collection to the
 413 // time remaining before the cms generation is empty.
 414 // Note that the time from the start of the cms collection
 415 // to the start of the cms sweep (less than the total
 416 // duration of the cms collection) can be used.  This
 417 // has been tried and some applications experienced
 418 // promotion failures early in execution.  This was
 419 // possibly because the averages were not accurate
 420 // enough at the beginning.
 421 double CMSStats::time_until_cms_start() const {
 422   // We add "gc0_period" to the "work" calculation
 423   // below because this query is done (mostly) at the
 424   // end of a scavenge, so we need to conservatively
 425   // account for that much possible delay
 426   // in the query so as to avoid concurrent mode failures
 427   // due to starting the collection just a wee bit too
 428   // late.
 429   double work = cms_duration() + gc0_period();
 430   double deadline = time_until_cms_gen_full();
 431   // If a concurrent mode failure occurred recently, we want to be
 432   // more conservative and halve our expected time_until_cms_gen_full()
 433   if (work > deadline) {
 434     if (Verbose && PrintGCDetails) {
 435       gclog_or_tty->print(
 436         " CMSCollector: collect because of anticipated promotion "
 437         "before full %3.7f + %3.7f > %3.7f ", cms_duration(),
 438         gc0_period(), time_until_cms_gen_full());
 439     }
 440     return 0.0;
 441   }
 442   return work - deadline;
 443 }
 444 
 445 // Return a duty cycle based on old_duty_cycle and new_duty_cycle, limiting the
 446 // amount of change to prevent wild oscillation.
 447 unsigned int CMSStats::icms_damped_duty_cycle(unsigned int old_duty_cycle,
 448                                               unsigned int new_duty_cycle) {
 449   assert(old_duty_cycle <= 100, "bad input value");
 450   assert(new_duty_cycle <= 100, "bad input value");
 451 
 452   // Note:  use subtraction with caution since it may underflow (values are
 453   // unsigned).  Addition is safe since we're in the range 0-100.
 454   unsigned int damped_duty_cycle = new_duty_cycle;
 455   if (new_duty_cycle < old_duty_cycle) {
 456     const unsigned int largest_delta = MAX2(old_duty_cycle / 4, 5U);
 457     if (new_duty_cycle + largest_delta < old_duty_cycle) {
 458       damped_duty_cycle = old_duty_cycle - largest_delta;
 459     }
 460   } else if (new_duty_cycle > old_duty_cycle) {
 461     const unsigned int largest_delta = MAX2(old_duty_cycle / 4, 15U);
 462     if (new_duty_cycle > old_duty_cycle + largest_delta) {
 463       damped_duty_cycle = MIN2(old_duty_cycle + largest_delta, 100U);
 464     }
 465   }
 466   assert(damped_duty_cycle <= 100, "invalid duty cycle computed");
 467 
 468   if (CMSTraceIncrementalPacing) {
 469     gclog_or_tty->print(" [icms_damped_duty_cycle(%d,%d) = %d] ",
 470                            old_duty_cycle, new_duty_cycle, damped_duty_cycle);
 471   }
 472   return damped_duty_cycle;
 473 }
 474 
 475 unsigned int CMSStats::icms_update_duty_cycle_impl() {
 476   assert(CMSIncrementalPacing && valid(),
 477          "should be handled in icms_update_duty_cycle()");
 478 
 479   double cms_time_so_far = cms_timer().seconds();
 480   double scaled_duration = cms_duration_per_mb() * _cms_used_at_gc0_end / M;
 481   double scaled_duration_remaining = fabsd(scaled_duration - cms_time_so_far);
 482 
 483   // Avoid division by 0.
 484   double time_until_full = MAX2(time_until_cms_gen_full(), 0.01);
 485   double duty_cycle_dbl = 100.0 * scaled_duration_remaining / time_until_full;
 486 
 487   unsigned int new_duty_cycle = MIN2((unsigned int)duty_cycle_dbl, 100U);
 488   if (new_duty_cycle > _icms_duty_cycle) {
 489     // Avoid very small duty cycles (1 or 2); 0 is allowed.
 490     if (new_duty_cycle > 2) {
 491       _icms_duty_cycle = icms_damped_duty_cycle(_icms_duty_cycle,
 492                                                 new_duty_cycle);
 493     }
 494   } else if (_allow_duty_cycle_reduction) {
 495     // The duty cycle is reduced only once per cms cycle (see record_cms_end()).
 496     new_duty_cycle = icms_damped_duty_cycle(_icms_duty_cycle, new_duty_cycle);
 497     // Respect the minimum duty cycle.
 498     unsigned int min_duty_cycle = (unsigned int)CMSIncrementalDutyCycleMin;
 499     _icms_duty_cycle = MAX2(new_duty_cycle, min_duty_cycle);
 500   }
 501 
 502   if (PrintGCDetails || CMSTraceIncrementalPacing) {
 503     gclog_or_tty->print(" icms_dc=%d ", _icms_duty_cycle);
 504   }
 505 
 506   _allow_duty_cycle_reduction = false;
 507   return _icms_duty_cycle;
 508 }
 509 
 510 #ifndef PRODUCT
 511 void CMSStats::print_on(outputStream *st) const {
 512   st->print(" gc0_alpha=%d,cms_alpha=%d", _gc0_alpha, _cms_alpha);
 513   st->print(",gc0_dur=%g,gc0_per=%g,gc0_promo=" SIZE_FORMAT,
 514                gc0_duration(), gc0_period(), gc0_promoted());
 515   st->print(",cms_dur=%g,cms_dur_per_mb=%g,cms_per=%g,cms_alloc=" SIZE_FORMAT,
 516             cms_duration(), cms_duration_per_mb(),
 517             cms_period(), cms_allocated());
 518   st->print(",cms_since_beg=%g,cms_since_end=%g",
 519             cms_time_since_begin(), cms_time_since_end());
 520   st->print(",cms_used_beg=" SIZE_FORMAT ",cms_used_end=" SIZE_FORMAT,
 521             _cms_used_at_gc0_begin, _cms_used_at_gc0_end);
 522   if (CMSIncrementalMode) {
 523     st->print(",dc=%d", icms_duty_cycle());
 524   }
 525 
 526   if (valid()) {
 527     st->print(",promo_rate=%g,cms_alloc_rate=%g",
 528               promotion_rate(), cms_allocation_rate());
 529     st->print(",cms_consumption_rate=%g,time_until_full=%g",
 530               cms_consumption_rate(), time_until_cms_gen_full());
 531   }
 532   st->print(" ");
 533 }
 534 #endif // #ifndef PRODUCT
 535 
 536 CMSCollector::CollectorState CMSCollector::_collectorState =
 537                              CMSCollector::Idling;
 538 bool CMSCollector::_foregroundGCIsActive = false;
 539 bool CMSCollector::_foregroundGCShouldWait = false;
 540 
 541 CMSCollector::CMSCollector(ConcurrentMarkSweepGeneration* cmsGen,
 542                            CardTableRS*                   ct,
 543                            ConcurrentMarkSweepPolicy*     cp):
 544   _cmsGen(cmsGen),
 545   _ct(ct),
 546   _ref_processor(NULL),    // will be set later
 547   _conc_workers(NULL),     // may be set later
 548   _abort_preclean(false),
 549   _start_sampling(false),
 550   _between_prologue_and_epilogue(false),
 551   _markBitMap(0, Mutex::leaf + 1, "CMS_markBitMap_lock"),
 552   _modUnionTable((CardTableModRefBS::card_shift - LogHeapWordSize),
 553                  -1 /* lock-free */, "No_lock" /* dummy */),
 554   _modUnionClosure(&_modUnionTable),
 555   _modUnionClosurePar(&_modUnionTable),
 556   // Adjust my span to cover old (cms) gen
 557   _span(cmsGen->reserved()),
 558   // Construct the is_alive_closure with _span & markBitMap
 559   _is_alive_closure(_span, &_markBitMap),
 560   _restart_addr(NULL),
 561   _overflow_list(NULL),
 562   _stats(cmsGen),
 563   _eden_chunk_lock(new Mutex(Mutex::leaf + 1, "CMS_eden_chunk_lock", true)),
 564   _eden_chunk_array(NULL),     // may be set in ctor body
 565   _eden_chunk_capacity(0),     // -- ditto --
 566   _eden_chunk_index(0),        // -- ditto --
 567   _survivor_plab_array(NULL),  // -- ditto --
 568   _survivor_chunk_array(NULL), // -- ditto --
 569   _survivor_chunk_capacity(0), // -- ditto --
 570   _survivor_chunk_index(0),    // -- ditto --
 571   _ser_pmc_preclean_ovflw(0),
 572   _ser_kac_preclean_ovflw(0),
 573   _ser_pmc_remark_ovflw(0),
 574   _par_pmc_remark_ovflw(0),
 575   _ser_kac_ovflw(0),
 576   _par_kac_ovflw(0),
 577 #ifndef PRODUCT
 578   _num_par_pushes(0),
 579 #endif
 580   _collection_count_start(0),
 581   _verifying(false),
 582   _icms_start_limit(NULL),
 583   _icms_stop_limit(NULL),
 584   _verification_mark_bm(0, Mutex::leaf + 1, "CMS_verification_mark_bm_lock"),
 585   _completed_initialization(false),
 586   _collector_policy(cp),
 587   _should_unload_classes(CMSClassUnloadingEnabled),
 588   _concurrent_cycles_since_last_unload(0),
 589   _roots_scanning_options(SharedHeap::SO_None),
 590   _inter_sweep_estimate(CMS_SweepWeight, CMS_SweepPadding),
 591   _intra_sweep_estimate(CMS_SweepWeight, CMS_SweepPadding),
 592   _gc_tracer_cm(new (ResourceObj::C_HEAP, mtGC) CMSTracer()),
 593   _gc_timer_cm(new (ResourceObj::C_HEAP, mtGC) ConcurrentGCTimer()),
 594   _cms_start_registered(false)
 595 {
 596   if (ExplicitGCInvokesConcurrentAndUnloadsClasses) {
 597     ExplicitGCInvokesConcurrent = true;
 598   }
 599   // Now expand the span and allocate the collection support structures
 600   // (MUT, marking bit map etc.) to cover both generations subject to
 601   // collection.
 602 
 603   // For use by dirty card to oop closures.
 604   _cmsGen->cmsSpace()->set_collector(this);
 605 
 606   // Allocate MUT and marking bit map
 607   {
 608     MutexLockerEx x(_markBitMap.lock(), Mutex::_no_safepoint_check_flag);
 609     if (!_markBitMap.allocate(_span)) {
 610       warning("Failed to allocate CMS Bit Map");
 611       return;
 612     }
 613     assert(_markBitMap.covers(_span), "_markBitMap inconsistency?");
 614   }
 615   {
 616     _modUnionTable.allocate(_span);
 617     assert(_modUnionTable.covers(_span), "_modUnionTable inconsistency?");
 618   }
 619 
 620   if (!_markStack.allocate(MarkStackSize)) {
 621     warning("Failed to allocate CMS Marking Stack");
 622     return;
 623   }
 624 
 625   // Support for multi-threaded concurrent phases
 626   if (CMSConcurrentMTEnabled) {
 627     if (FLAG_IS_DEFAULT(ConcGCThreads)) {
 628       // just for now
 629       FLAG_SET_DEFAULT(ConcGCThreads, (ParallelGCThreads + 3)/4);
 630     }
 631     if (ConcGCThreads > 1) {
 632       _conc_workers = new YieldingFlexibleWorkGang("Parallel CMS Threads",
 633                                  ConcGCThreads, true);
 634       if (_conc_workers == NULL) {
 635         warning("GC/CMS: _conc_workers allocation failure: "
 636               "forcing -CMSConcurrentMTEnabled");
 637         CMSConcurrentMTEnabled = false;
 638       } else {
 639         _conc_workers->initialize_workers();
 640       }
 641     } else {
 642       CMSConcurrentMTEnabled = false;
 643     }
 644   }
 645   if (!CMSConcurrentMTEnabled) {
 646     ConcGCThreads = 0;
 647   } else {
 648     // Turn off CMSCleanOnEnter optimization temporarily for
 649     // the MT case where it's not fixed yet; see 6178663.
 650     CMSCleanOnEnter = false;
 651   }
 652   assert((_conc_workers != NULL) == (ConcGCThreads > 1),
 653          "Inconsistency");
 654 
 655   // Parallel task queues; these are shared for the
 656   // concurrent and stop-world phases of CMS, but
 657   // are not shared with parallel scavenge (ParNew).
 658   {
 659     uint i;
 660     uint num_queues = (uint) MAX2(ParallelGCThreads, ConcGCThreads);
 661 
 662     if ((CMSParallelRemarkEnabled || CMSConcurrentMTEnabled
 663          || ParallelRefProcEnabled)
 664         && num_queues > 0) {
 665       _task_queues = new OopTaskQueueSet(num_queues);
 666       if (_task_queues == NULL) {
 667         warning("task_queues allocation failure.");
 668         return;
 669       }
 670       _hash_seed = NEW_C_HEAP_ARRAY(int, num_queues, mtGC);
 671       if (_hash_seed == NULL) {
 672         warning("_hash_seed array allocation failure");
 673         return;
 674       }
 675 
 676       typedef Padded<OopTaskQueue> PaddedOopTaskQueue;
 677       for (i = 0; i < num_queues; i++) {
 678         PaddedOopTaskQueue *q = new PaddedOopTaskQueue();
 679         if (q == NULL) {
 680           warning("work_queue allocation failure.");
 681           return;
 682         }
 683         _task_queues->register_queue(i, q);
 684       }
 685       for (i = 0; i < num_queues; i++) {
 686         _task_queues->queue(i)->initialize();
 687         _hash_seed[i] = 17;  // copied from ParNew
 688       }
 689     }
 690   }
 691 
 692   _cmsGen ->init_initiating_occupancy(CMSInitiatingOccupancyFraction, CMSTriggerRatio);
 693 
 694   // Clip CMSBootstrapOccupancy between 0 and 100.
 695   _bootstrap_occupancy = ((double)CMSBootstrapOccupancy)/(double)100;
 696 
 697   _full_gcs_since_conc_gc = 0;
 698 
 699   // Now tell CMS generations the identity of their collector
 700   ConcurrentMarkSweepGeneration::set_collector(this);
 701 
 702   // Create & start a CMS thread for this CMS collector
 703   _cmsThread = ConcurrentMarkSweepThread::start(this);
 704   assert(cmsThread() != NULL, "CMS Thread should have been created");
 705   assert(cmsThread()->collector() == this,
 706          "CMS Thread should refer to this gen");
 707   assert(CGC_lock != NULL, "Where's the CGC_lock?");
 708 
 709   // Support for parallelizing young gen rescan
 710   GenCollectedHeap* gch = GenCollectedHeap::heap();
 711   _young_gen = gch->prev_gen(_cmsGen);
 712   if (gch->supports_inline_contig_alloc()) {
 713     _top_addr = gch->top_addr();
 714     _end_addr = gch->end_addr();
 715     assert(_young_gen != NULL, "no _young_gen");
 716     _eden_chunk_index = 0;
 717     _eden_chunk_capacity = (_young_gen->max_capacity()+CMSSamplingGrain)/CMSSamplingGrain;
 718     _eden_chunk_array = NEW_C_HEAP_ARRAY(HeapWord*, _eden_chunk_capacity, mtGC);
 719     if (_eden_chunk_array == NULL) {
 720       _eden_chunk_capacity = 0;
 721       warning("GC/CMS: _eden_chunk_array allocation failure");
 722     }
 723   }
 724   assert(_eden_chunk_array != NULL || _eden_chunk_capacity == 0, "Error");
 725 
 726   // Support for parallelizing survivor space rescan
 727   if ((CMSParallelRemarkEnabled && CMSParallelSurvivorRemarkEnabled) || CMSParallelInitialMarkEnabled) {
 728     const size_t max_plab_samples =
 729       ((DefNewGeneration*)_young_gen)->max_survivor_size()/MinTLABSize;
 730 
 731     _survivor_plab_array  = NEW_C_HEAP_ARRAY(ChunkArray, ParallelGCThreads, mtGC);
 732     _survivor_chunk_array = NEW_C_HEAP_ARRAY(HeapWord*, 2*max_plab_samples, mtGC);
 733     _cursor               = NEW_C_HEAP_ARRAY(size_t, ParallelGCThreads, mtGC);
 734     if (_survivor_plab_array == NULL || _survivor_chunk_array == NULL
 735         || _cursor == NULL) {
 736       warning("Failed to allocate survivor plab/chunk array");
 737       if (_survivor_plab_array  != NULL) {
 738         FREE_C_HEAP_ARRAY(ChunkArray, _survivor_plab_array, mtGC);
 739         _survivor_plab_array = NULL;
 740       }
 741       if (_survivor_chunk_array != NULL) {
 742         FREE_C_HEAP_ARRAY(HeapWord*, _survivor_chunk_array, mtGC);
 743         _survivor_chunk_array = NULL;
 744       }
 745       if (_cursor != NULL) {
 746         FREE_C_HEAP_ARRAY(size_t, _cursor, mtGC);
 747         _cursor = NULL;
 748       }
 749     } else {
 750       _survivor_chunk_capacity = 2*max_plab_samples;
 751       for (uint i = 0; i < ParallelGCThreads; i++) {
 752         HeapWord** vec = NEW_C_HEAP_ARRAY(HeapWord*, max_plab_samples, mtGC);
 753         if (vec == NULL) {
 754           warning("Failed to allocate survivor plab array");
 755           for (int j = i; j > 0; j--) {
 756             FREE_C_HEAP_ARRAY(HeapWord*, _survivor_plab_array[j-1].array(), mtGC);
 757           }
 758           FREE_C_HEAP_ARRAY(ChunkArray, _survivor_plab_array, mtGC);
 759           FREE_C_HEAP_ARRAY(HeapWord*, _survivor_chunk_array, mtGC);
 760           _survivor_plab_array = NULL;
 761           _survivor_chunk_array = NULL;
 762           _survivor_chunk_capacity = 0;
 763           break;
 764         } else {
 765           ChunkArray* cur =
 766             ::new (&_survivor_plab_array[i]) ChunkArray(vec,
 767                                                         max_plab_samples);
 768           assert(cur->end() == 0, "Should be 0");
 769           assert(cur->array() == vec, "Should be vec");
 770           assert(cur->capacity() == max_plab_samples, "Error");
 771         }
 772       }
 773     }
 774   }
 775   assert(   (   _survivor_plab_array  != NULL
 776              && _survivor_chunk_array != NULL)
 777          || (   _survivor_chunk_capacity == 0
 778              && _survivor_chunk_index == 0),
 779          "Error");
 780 
 781   NOT_PRODUCT(_overflow_counter = CMSMarkStackOverflowInterval;)
 782   _gc_counters = new CollectorCounters("CMS", 1);
 783   _completed_initialization = true;
 784   _inter_sweep_timer.start();  // start of time
 785 }
 786 
 787 const char* ConcurrentMarkSweepGeneration::name() const {
 788   return "concurrent mark-sweep generation";
 789 }
 790 void ConcurrentMarkSweepGeneration::update_counters() {
 791   if (UsePerfData) {
 792     _space_counters->update_all();
 793     _gen_counters->update_all();
 794   }
 795 }
 796 
 797 // this is an optimized version of update_counters(). it takes the
 798 // used value as a parameter rather than computing it.
 799 //
 800 void ConcurrentMarkSweepGeneration::update_counters(size_t used) {
 801   if (UsePerfData) {
 802     _space_counters->update_used(used);
 803     _space_counters->update_capacity();
 804     _gen_counters->update_all();
 805   }
 806 }
 807 
 808 void ConcurrentMarkSweepGeneration::print() const {
 809   Generation::print();
 810   cmsSpace()->print();
 811 }
 812 
 813 #ifndef PRODUCT
 814 void ConcurrentMarkSweepGeneration::print_statistics() {
 815   cmsSpace()->printFLCensus(0);
 816 }
 817 #endif
 818 
 819 void ConcurrentMarkSweepGeneration::printOccupancy(const char *s) {
 820   GenCollectedHeap* gch = GenCollectedHeap::heap();
 821   if (PrintGCDetails) {
 822     if (Verbose) {
 823       gclog_or_tty->print("[%d %s-%s: "SIZE_FORMAT"("SIZE_FORMAT")]",
 824         level(), short_name(), s, used(), capacity());
 825     } else {
 826       gclog_or_tty->print("[%d %s-%s: "SIZE_FORMAT"K("SIZE_FORMAT"K)]",
 827         level(), short_name(), s, used() / K, capacity() / K);
 828     }
 829   }
 830   if (Verbose) {
 831     gclog_or_tty->print(" "SIZE_FORMAT"("SIZE_FORMAT")",
 832               gch->used(), gch->capacity());
 833   } else {
 834     gclog_or_tty->print(" "SIZE_FORMAT"K("SIZE_FORMAT"K)",
 835               gch->used() / K, gch->capacity() / K);
 836   }
 837 }
 838 
 839 size_t
 840 ConcurrentMarkSweepGeneration::contiguous_available() const {
 841   // dld proposes an improvement in precision here. If the committed
 842   // part of the space ends in a free block we should add that to
 843   // uncommitted size in the calculation below. Will make this
 844   // change later, staying with the approximation below for the
 845   // time being. -- ysr.
 846   return MAX2(_virtual_space.uncommitted_size(), unsafe_max_alloc_nogc());
 847 }
 848 
 849 size_t
 850 ConcurrentMarkSweepGeneration::unsafe_max_alloc_nogc() const {
 851   return _cmsSpace->max_alloc_in_words() * HeapWordSize;
 852 }
 853 
 854 size_t ConcurrentMarkSweepGeneration::max_available() const {
 855   return free() + _virtual_space.uncommitted_size();
 856 }
 857 
 858 bool ConcurrentMarkSweepGeneration::promotion_attempt_is_safe(size_t max_promotion_in_bytes) const {
 859   size_t available = max_available();
 860   size_t av_promo  = (size_t)gc_stats()->avg_promoted()->padded_average();
 861   bool   res = (available >= av_promo) || (available >= max_promotion_in_bytes);
 862   if (Verbose && PrintGCDetails) {
 863     gclog_or_tty->print_cr(
 864       "CMS: promo attempt is%s safe: available("SIZE_FORMAT") %s av_promo("SIZE_FORMAT"),"
 865       "max_promo("SIZE_FORMAT")",
 866       res? "":" not", available, res? ">=":"<",
 867       av_promo, max_promotion_in_bytes);
 868   }
 869   return res;
 870 }
 871 
 872 // At a promotion failure dump information on block layout in heap
 873 // (cms old generation).
 874 void ConcurrentMarkSweepGeneration::promotion_failure_occurred() {
 875   if (CMSDumpAtPromotionFailure) {
 876     cmsSpace()->dump_at_safepoint_with_locks(collector(), gclog_or_tty);
 877   }
 878 }
 879 
 880 CompactibleSpace*
 881 ConcurrentMarkSweepGeneration::first_compaction_space() const {
 882   return _cmsSpace;
 883 }
 884 
 885 void ConcurrentMarkSweepGeneration::reset_after_compaction() {
 886   // Clear the promotion information.  These pointers can be adjusted
 887   // along with all the other pointers into the heap but
 888   // compaction is expected to be a rare event with
 889   // a heap using cms so don't do it without seeing the need.
 890   for (uint i = 0; i < ParallelGCThreads; i++) {
 891     _par_gc_thread_states[i]->promo.reset();
 892   }
 893 }
 894 
 895 void ConcurrentMarkSweepGeneration::space_iterate(SpaceClosure* blk, bool usedOnly) {
 896   blk->do_space(_cmsSpace);
 897 }
 898 
 899 void ConcurrentMarkSweepGeneration::compute_new_size() {
 900   assert_locked_or_safepoint(Heap_lock);
 901 
 902   // If incremental collection failed, we just want to expand
 903   // to the limit.
 904   if (incremental_collection_failed()) {
 905     clear_incremental_collection_failed();
 906     grow_to_reserved();
 907     return;
 908   }
 909 
 910   // The heap has been compacted but not reset yet.
 911   // Any metric such as free() or used() will be incorrect.
 912 
 913   CardGeneration::compute_new_size();
 914 
 915   // Reset again after a possible resizing
 916   if (did_compact()) {
 917     cmsSpace()->reset_after_compaction();
 918   }
 919 }
 920 
 921 void ConcurrentMarkSweepGeneration::compute_new_size_free_list() {
 922   assert_locked_or_safepoint(Heap_lock);
 923 
 924   // If incremental collection failed, we just want to expand
 925   // to the limit.
 926   if (incremental_collection_failed()) {
 927     clear_incremental_collection_failed();
 928     grow_to_reserved();
 929     return;
 930   }
 931 
 932   double free_percentage = ((double) free()) / capacity();
 933   double desired_free_percentage = (double) MinHeapFreeRatio / 100;
 934   double maximum_free_percentage = (double) MaxHeapFreeRatio / 100;
 935 
 936   // compute expansion delta needed for reaching desired free percentage
 937   if (free_percentage < desired_free_percentage) {
 938     size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage));
 939     assert(desired_capacity >= capacity(), "invalid expansion size");
 940     size_t expand_bytes = MAX2(desired_capacity - capacity(), MinHeapDeltaBytes);
 941     if (PrintGCDetails && Verbose) {
 942       size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage));
 943       gclog_or_tty->print_cr("\nFrom compute_new_size: ");
 944       gclog_or_tty->print_cr("  Free fraction %f", free_percentage);
 945       gclog_or_tty->print_cr("  Desired free fraction %f",
 946         desired_free_percentage);
 947       gclog_or_tty->print_cr("  Maximum free fraction %f",
 948         maximum_free_percentage);
 949       gclog_or_tty->print_cr("  Capacity "SIZE_FORMAT, capacity()/1000);
 950       gclog_or_tty->print_cr("  Desired capacity "SIZE_FORMAT,
 951         desired_capacity/1000);
 952       int prev_level = level() - 1;
 953       if (prev_level >= 0) {
 954         size_t prev_size = 0;
 955         GenCollectedHeap* gch = GenCollectedHeap::heap();
 956         Generation* prev_gen = gch->_gens[prev_level];
 957         prev_size = prev_gen->capacity();
 958           gclog_or_tty->print_cr("  Younger gen size "SIZE_FORMAT,
 959                                  prev_size/1000);
 960       }
 961       gclog_or_tty->print_cr("  unsafe_max_alloc_nogc "SIZE_FORMAT,
 962         unsafe_max_alloc_nogc()/1000);
 963       gclog_or_tty->print_cr("  contiguous available "SIZE_FORMAT,
 964         contiguous_available()/1000);
 965       gclog_or_tty->print_cr("  Expand by "SIZE_FORMAT" (bytes)",
 966         expand_bytes);
 967     }
 968     // safe if expansion fails
 969     expand(expand_bytes, 0, CMSExpansionCause::_satisfy_free_ratio);
 970     if (PrintGCDetails && Verbose) {
 971       gclog_or_tty->print_cr("  Expanded free fraction %f",
 972         ((double) free()) / capacity());
 973     }
 974   } else {
 975     size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage));
 976     assert(desired_capacity <= capacity(), "invalid expansion size");
 977     size_t shrink_bytes = capacity() - desired_capacity;
 978     // Don't shrink unless the delta is greater than the minimum shrink we want
 979     if (shrink_bytes >= MinHeapDeltaBytes) {
 980       shrink_free_list_by(shrink_bytes);
 981     }
 982   }
 983 }
 984 
 985 Mutex* ConcurrentMarkSweepGeneration::freelistLock() const {
 986   return cmsSpace()->freelistLock();
 987 }
 988 
 989 HeapWord* ConcurrentMarkSweepGeneration::allocate(size_t size,
 990                                                   bool   tlab) {
 991   CMSSynchronousYieldRequest yr;
 992   MutexLockerEx x(freelistLock(),
 993                   Mutex::_no_safepoint_check_flag);
 994   return have_lock_and_allocate(size, tlab);
 995 }
 996 
 997 HeapWord* ConcurrentMarkSweepGeneration::have_lock_and_allocate(size_t size,
 998                                                   bool   tlab /* ignored */) {
 999   assert_lock_strong(freelistLock());
1000   size_t adjustedSize = CompactibleFreeListSpace::adjustObjectSize(size);
1001   HeapWord* res = cmsSpace()->allocate(adjustedSize);
1002   // Allocate the object live (grey) if the background collector has
1003   // started marking. This is necessary because the marker may
1004   // have passed this address and consequently this object will
1005   // not otherwise be greyed and would be incorrectly swept up.
1006   // Note that if this object contains references, the writing
1007   // of those references will dirty the card containing this object
1008   // allowing the object to be blackened (and its references scanned)
1009   // either during a preclean phase or at the final checkpoint.
1010   if (res != NULL) {
1011     // We may block here with an uninitialized object with
1012     // its mark-bit or P-bits not yet set. Such objects need
1013     // to be safely navigable by block_start().
1014     assert(oop(res)->klass_or_null() == NULL, "Object should be uninitialized here.");
1015     assert(!((FreeChunk*)res)->is_free(), "Error, block will look free but show wrong size");
1016     collector()->direct_allocated(res, adjustedSize);
1017     _direct_allocated_words += adjustedSize;
1018     // allocation counters
1019     NOT_PRODUCT(
1020       _numObjectsAllocated++;
1021       _numWordsAllocated += (int)adjustedSize;
1022     )
1023   }
1024   return res;
1025 }
1026 
1027 // In the case of direct allocation by mutators in a generation that
1028 // is being concurrently collected, the object must be allocated
1029 // live (grey) if the background collector has started marking.
1030 // This is necessary because the marker may
1031 // have passed this address and consequently this object will
1032 // not otherwise be greyed and would be incorrectly swept up.
1033 // Note that if this object contains references, the writing
1034 // of those references will dirty the card containing this object
1035 // allowing the object to be blackened (and its references scanned)
1036 // either during a preclean phase or at the final checkpoint.
1037 void CMSCollector::direct_allocated(HeapWord* start, size_t size) {
1038   assert(_markBitMap.covers(start, size), "Out of bounds");
1039   if (_collectorState >= Marking) {
1040     MutexLockerEx y(_markBitMap.lock(),
1041                     Mutex::_no_safepoint_check_flag);
1042     // [see comments preceding SweepClosure::do_blk() below for details]
1043     //
1044     // Can the P-bits be deleted now?  JJJ
1045     //
1046     // 1. need to mark the object as live so it isn't collected
1047     // 2. need to mark the 2nd bit to indicate the object may be uninitialized
1048     // 3. need to mark the end of the object so marking, precleaning or sweeping
1049     //    can skip over uninitialized or unparsable objects. An allocated
1050     //    object is considered uninitialized for our purposes as long as
1051     //    its klass word is NULL.  All old gen objects are parsable
1052     //    as soon as they are initialized.)
1053     _markBitMap.mark(start);          // object is live
1054     _markBitMap.mark(start + 1);      // object is potentially uninitialized?
1055     _markBitMap.mark(start + size - 1);
1056                                       // mark end of object
1057   }
1058   // check that oop looks uninitialized
1059   assert(oop(start)->klass_or_null() == NULL, "_klass should be NULL");
1060 }
1061 
1062 void CMSCollector::promoted(bool par, HeapWord* start,
1063                             bool is_obj_array, size_t obj_size) {
1064   assert(_markBitMap.covers(start), "Out of bounds");
1065   // See comment in direct_allocated() about when objects should
1066   // be allocated live.
1067   if (_collectorState >= Marking) {
1068     // we already hold the marking bit map lock, taken in
1069     // the prologue
1070     if (par) {
1071       _markBitMap.par_mark(start);
1072     } else {
1073       _markBitMap.mark(start);
1074     }
1075     // We don't need to mark the object as uninitialized (as
1076     // in direct_allocated above) because this is being done with the
1077     // world stopped and the object will be initialized by the
1078     // time the marking, precleaning or sweeping get to look at it.
1079     // But see the code for copying objects into the CMS generation,
1080     // where we need to ensure that concurrent readers of the
1081     // block offset table are able to safely navigate a block that
1082     // is in flux from being free to being allocated (and in
1083     // transition while being copied into) and subsequently
1084     // becoming a bona-fide object when the copy/promotion is complete.
1085     assert(SafepointSynchronize::is_at_safepoint(),
1086            "expect promotion only at safepoints");
1087 
1088     if (_collectorState < Sweeping) {
1089       // Mark the appropriate cards in the modUnionTable, so that
1090       // this object gets scanned before the sweep. If this is
1091       // not done, CMS generation references in the object might
1092       // not get marked.
1093       // For the case of arrays, which are otherwise precisely
1094       // marked, we need to dirty the entire array, not just its head.
1095       if (is_obj_array) {
1096         // The [par_]mark_range() method expects mr.end() below to
1097         // be aligned to the granularity of a bit's representation
1098         // in the heap. In the case of the MUT below, that's a
1099         // card size.
1100         MemRegion mr(start,
1101                      (HeapWord*)round_to((intptr_t)(start + obj_size),
1102                         CardTableModRefBS::card_size /* bytes */));
1103         if (par) {
1104           _modUnionTable.par_mark_range(mr);
1105         } else {
1106           _modUnionTable.mark_range(mr);
1107         }
1108       } else {  // not an obj array; we can just mark the head
1109         if (par) {
1110           _modUnionTable.par_mark(start);
1111         } else {
1112           _modUnionTable.mark(start);
1113         }
1114       }
1115     }
1116   }
1117 }
1118 
1119 static inline size_t percent_of_space(Space* space, HeapWord* addr)
1120 {
1121   size_t delta = pointer_delta(addr, space->bottom());
1122   return (size_t)(delta * 100.0 / (space->capacity() / HeapWordSize));
1123 }
1124 
1125 void CMSCollector::icms_update_allocation_limits()
1126 {
1127   Generation* young = GenCollectedHeap::heap()->get_gen(0);
1128   EdenSpace* eden = young->as_DefNewGeneration()->eden();
1129 
1130   const unsigned int duty_cycle = stats().icms_update_duty_cycle();
1131   if (CMSTraceIncrementalPacing) {
1132     stats().print();
1133   }
1134 
1135   assert(duty_cycle <= 100, "invalid duty cycle");
1136   if (duty_cycle != 0) {
1137     // The duty_cycle is a percentage between 0 and 100; convert to words and
1138     // then compute the offset from the endpoints of the space.
1139     size_t free_words = eden->free() / HeapWordSize;
1140     double free_words_dbl = (double)free_words;
1141     size_t duty_cycle_words = (size_t)(free_words_dbl * duty_cycle / 100.0);
1142     size_t offset_words = (free_words - duty_cycle_words) / 2;
1143 
1144     _icms_start_limit = eden->top() + offset_words;
1145     _icms_stop_limit = eden->end() - offset_words;
1146 
1147     // The limits may be adjusted (shifted to the right) by
1148     // CMSIncrementalOffset, to allow the application more mutator time after a
1149     // young gen gc (when all mutators were stopped) and before CMS starts and
1150     // takes away one or more cpus.
1151     if (CMSIncrementalOffset != 0) {
1152       double adjustment_dbl = free_words_dbl * CMSIncrementalOffset / 100.0;
1153       size_t adjustment = (size_t)adjustment_dbl;
1154       HeapWord* tmp_stop = _icms_stop_limit + adjustment;
1155       if (tmp_stop > _icms_stop_limit && tmp_stop < eden->end()) {
1156         _icms_start_limit += adjustment;
1157         _icms_stop_limit = tmp_stop;
1158       }
1159     }
1160   }
1161   if (duty_cycle == 0 || (_icms_start_limit == _icms_stop_limit)) {
1162     _icms_start_limit = _icms_stop_limit = eden->end();
1163   }
1164 
1165   // Install the new start limit.
1166   eden->set_soft_end(_icms_start_limit);
1167 
1168   if (CMSTraceIncrementalMode) {
1169     gclog_or_tty->print(" icms alloc limits:  "
1170                            PTR_FORMAT "," PTR_FORMAT
1171                            " (" SIZE_FORMAT "%%," SIZE_FORMAT "%%) ",
1172                            p2i(_icms_start_limit), p2i(_icms_stop_limit),
1173                            percent_of_space(eden, _icms_start_limit),
1174                            percent_of_space(eden, _icms_stop_limit));
1175     if (Verbose) {
1176       gclog_or_tty->print("eden:  ");
1177       eden->print_on(gclog_or_tty);
1178     }
1179   }
1180 }
1181 
1182 // Any changes here should try to maintain the invariant
1183 // that if this method is called with _icms_start_limit
1184 // and _icms_stop_limit both NULL, then it should return NULL
1185 // and not notify the icms thread.
1186 HeapWord*
1187 CMSCollector::allocation_limit_reached(Space* space, HeapWord* top,
1188                                        size_t word_size)
1189 {
1190   // A start_limit equal to end() means the duty cycle is 0, so treat that as a
1191   // nop.
1192   if (CMSIncrementalMode && _icms_start_limit != space->end()) {
1193     if (top <= _icms_start_limit) {
1194       if (CMSTraceIncrementalMode) {
1195         space->print_on(gclog_or_tty);
1196         gclog_or_tty->stamp();
1197         gclog_or_tty->print_cr(" start limit top=" PTR_FORMAT
1198                                ", new limit=" PTR_FORMAT
1199                                " (" SIZE_FORMAT "%%)",
1200                                p2i(top), p2i(_icms_stop_limit),
1201                                percent_of_space(space, _icms_stop_limit));
1202       }
1203       ConcurrentMarkSweepThread::start_icms();
1204       assert(top < _icms_stop_limit, "Tautology");
1205       if (word_size < pointer_delta(_icms_stop_limit, top)) {
1206         return _icms_stop_limit;
1207       }
1208 
1209       // The allocation will cross both the _start and _stop limits, so do the
1210       // stop notification also and return end().
1211       if (CMSTraceIncrementalMode) {
1212         space->print_on(gclog_or_tty);
1213         gclog_or_tty->stamp();
1214         gclog_or_tty->print_cr(" +stop limit top=" PTR_FORMAT
1215                                ", new limit=" PTR_FORMAT
1216                                " (" SIZE_FORMAT "%%)",
1217                                p2i(top), p2i(space->end()),
1218                                percent_of_space(space, space->end()));
1219       }
1220       ConcurrentMarkSweepThread::stop_icms();
1221       return space->end();
1222     }
1223 
1224     if (top <= _icms_stop_limit) {
1225       if (CMSTraceIncrementalMode) {
1226         space->print_on(gclog_or_tty);
1227         gclog_or_tty->stamp();
1228         gclog_or_tty->print_cr(" stop limit top=" PTR_FORMAT
1229                                ", new limit=" PTR_FORMAT
1230                                " (" SIZE_FORMAT "%%)",
1231                                top, space->end(),
1232                                percent_of_space(space, space->end()));
1233       }
1234       ConcurrentMarkSweepThread::stop_icms();
1235       return space->end();
1236     }
1237 
1238     if (CMSTraceIncrementalMode) {
1239       space->print_on(gclog_or_tty);
1240       gclog_or_tty->stamp();
1241       gclog_or_tty->print_cr(" end limit top=" PTR_FORMAT
1242                              ", new limit=" PTR_FORMAT,
1243                              top, NULL);
1244     }
1245   }
1246 
1247   return NULL;
1248 }
1249 
1250 oop ConcurrentMarkSweepGeneration::promote(oop obj, size_t obj_size) {
1251   assert(obj_size == (size_t)obj->size(), "bad obj_size passed in");
1252   // allocate, copy and if necessary update promoinfo --
1253   // delegate to underlying space.
1254   assert_lock_strong(freelistLock());
1255 
1256 #ifndef PRODUCT
1257   if (Universe::heap()->promotion_should_fail()) {
1258     return NULL;
1259   }
1260 #endif  // #ifndef PRODUCT
1261 
1262   oop res = _cmsSpace->promote(obj, obj_size);
1263   if (res == NULL) {
1264     // expand and retry
1265     size_t s = _cmsSpace->expansionSpaceRequired(obj_size);  // HeapWords
1266     expand(s*HeapWordSize, MinHeapDeltaBytes,
1267       CMSExpansionCause::_satisfy_promotion);
1268     // Since there's currently no next generation, we don't try to promote
1269     // into a more senior generation.
1270     assert(next_gen() == NULL, "assumption, based upon which no attempt "
1271                                "is made to pass on a possibly failing "
1272                                "promotion to next generation");
1273     res = _cmsSpace->promote(obj, obj_size);
1274   }
1275   if (res != NULL) {
1276     // See comment in allocate() about when objects should
1277     // be allocated live.
1278     assert(obj->is_oop(), "Will dereference klass pointer below");
1279     collector()->promoted(false,           // Not parallel
1280                           (HeapWord*)res, obj->is_objArray(), obj_size);
1281     // promotion counters
1282     NOT_PRODUCT(
1283       _numObjectsPromoted++;
1284       _numWordsPromoted +=
1285         (int)(CompactibleFreeListSpace::adjustObjectSize(obj->size()));
1286     )
1287   }
1288   return res;
1289 }
1290 
1291 
1292 HeapWord*
1293 ConcurrentMarkSweepGeneration::allocation_limit_reached(Space* space,
1294                                              HeapWord* top,
1295                                              size_t word_sz)
1296 {
1297   return collector()->allocation_limit_reached(space, top, word_sz);
1298 }
1299 
1300 // IMPORTANT: Notes on object size recognition in CMS.
1301 // ---------------------------------------------------
1302 // A block of storage in the CMS generation is always in
1303 // one of three states. A free block (FREE), an allocated
1304 // object (OBJECT) whose size() method reports the correct size,
1305 // and an intermediate state (TRANSIENT) in which its size cannot
1306 // be accurately determined.
1307 // STATE IDENTIFICATION:   (32 bit and 64 bit w/o COOPS)
1308 // -----------------------------------------------------
1309 // FREE:      klass_word & 1 == 1; mark_word holds block size
1310 //
1311 // OBJECT:    klass_word installed; klass_word != 0 && klass_word & 1 == 0;
1312 //            obj->size() computes correct size
1313 //
1314 // TRANSIENT: klass_word == 0; size is indeterminate until we become an OBJECT
1315 //
1316 // STATE IDENTIFICATION: (64 bit+COOPS)
1317 // ------------------------------------
1318 // FREE:      mark_word & CMS_FREE_BIT == 1; mark_word & ~CMS_FREE_BIT gives block_size
1319 //
1320 // OBJECT:    klass_word installed; klass_word != 0;
1321 //            obj->size() computes correct size
1322 //
1323 // TRANSIENT: klass_word == 0; size is indeterminate until we become an OBJECT
1324 //
1325 //
1326 // STATE TRANSITION DIAGRAM
1327 //
1328 //        mut / parnew                     mut  /  parnew
1329 // FREE --------------------> TRANSIENT ---------------------> OBJECT --|
1330 //  ^                                                                   |
1331 //  |------------------------ DEAD <------------------------------------|
1332 //         sweep                            mut
1333 //
1334 // While a block is in TRANSIENT state its size cannot be determined
1335 // so readers will either need to come back later or stall until
1336 // the size can be determined. Note that for the case of direct
1337 // allocation, P-bits, when available, may be used to determine the
1338 // size of an object that may not yet have been initialized.
1339 
1340 // Things to support parallel young-gen collection.
1341 oop
1342 ConcurrentMarkSweepGeneration::par_promote(int thread_num,
1343                                            oop old, markOop m,
1344                                            size_t word_sz) {
1345 #ifndef PRODUCT
1346   if (Universe::heap()->promotion_should_fail()) {
1347     return NULL;
1348   }
1349 #endif  // #ifndef PRODUCT
1350 
1351   CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
1352   PromotionInfo* promoInfo = &ps->promo;
1353   // if we are tracking promotions, then first ensure space for
1354   // promotion (including spooling space for saving header if necessary).
1355   // then allocate and copy, then track promoted info if needed.
1356   // When tracking (see PromotionInfo::track()), the mark word may
1357   // be displaced and in this case restoration of the mark word
1358   // occurs in the (oop_since_save_marks_)iterate phase.
1359   if (promoInfo->tracking() && !promoInfo->ensure_spooling_space()) {
1360     // Out of space for allocating spooling buffers;
1361     // try expanding and allocating spooling buffers.
1362     if (!expand_and_ensure_spooling_space(promoInfo)) {
1363       return NULL;
1364     }
1365   }
1366   assert(promoInfo->has_spooling_space(), "Control point invariant");
1367   const size_t alloc_sz = CompactibleFreeListSpace::adjustObjectSize(word_sz);
1368   HeapWord* obj_ptr = ps->lab.alloc(alloc_sz);
1369   if (obj_ptr == NULL) {
1370      obj_ptr = expand_and_par_lab_allocate(ps, alloc_sz);
1371      if (obj_ptr == NULL) {
1372        return NULL;
1373      }
1374   }
1375   oop obj = oop(obj_ptr);
1376   OrderAccess::storestore();
1377   assert(obj->klass_or_null() == NULL, "Object should be uninitialized here.");
1378   assert(!((FreeChunk*)obj_ptr)->is_free(), "Error, block will look free but show wrong size");
1379   // IMPORTANT: See note on object initialization for CMS above.
1380   // Otherwise, copy the object.  Here we must be careful to insert the
1381   // klass pointer last, since this marks the block as an allocated object.
1382   // Except with compressed oops it's the mark word.
1383   HeapWord* old_ptr = (HeapWord*)old;
1384   // Restore the mark word copied above.
1385   obj->set_mark(m);
1386   assert(obj->klass_or_null() == NULL, "Object should be uninitialized here.");
1387   assert(!((FreeChunk*)obj_ptr)->is_free(), "Error, block will look free but show wrong size");
1388   OrderAccess::storestore();
1389 
1390   if (UseCompressedClassPointers) {
1391     // Copy gap missed by (aligned) header size calculation below
1392     obj->set_klass_gap(old->klass_gap());
1393   }
1394   if (word_sz > (size_t)oopDesc::header_size()) {
1395     Copy::aligned_disjoint_words(old_ptr + oopDesc::header_size(),
1396                                  obj_ptr + oopDesc::header_size(),
1397                                  word_sz - oopDesc::header_size());
1398   }
1399 
1400   // Now we can track the promoted object, if necessary.  We take care
1401   // to delay the transition from uninitialized to full object
1402   // (i.e., insertion of klass pointer) until after, so that it
1403   // atomically becomes a promoted object.
1404   if (promoInfo->tracking()) {
1405     promoInfo->track((PromotedObject*)obj, old->klass());
1406   }
1407   assert(obj->klass_or_null() == NULL, "Object should be uninitialized here.");
1408   assert(!((FreeChunk*)obj_ptr)->is_free(), "Error, block will look free but show wrong size");
1409   assert(old->is_oop(), "Will use and dereference old klass ptr below");
1410 
1411   // Finally, install the klass pointer (this should be volatile).
1412   OrderAccess::storestore();
1413   obj->set_klass(old->klass());
1414   // We should now be able to calculate the right size for this object
1415   assert(obj->is_oop() && obj->size() == (int)word_sz, "Error, incorrect size computed for promoted object");
1416 
1417   collector()->promoted(true,          // parallel
1418                         obj_ptr, old->is_objArray(), word_sz);
1419 
1420   NOT_PRODUCT(
1421     Atomic::inc_ptr(&_numObjectsPromoted);
1422     Atomic::add_ptr(alloc_sz, &_numWordsPromoted);
1423   )
1424 
1425   return obj;
1426 }
1427 
1428 void
1429 ConcurrentMarkSweepGeneration::
1430 par_promote_alloc_undo(int thread_num,
1431                        HeapWord* obj, size_t word_sz) {
1432   // CMS does not support promotion undo.
1433   ShouldNotReachHere();
1434 }
1435 
1436 void
1437 ConcurrentMarkSweepGeneration::
1438 par_promote_alloc_done(int thread_num) {
1439   CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
1440   ps->lab.retire(thread_num);
1441 }
1442 
1443 void
1444 ConcurrentMarkSweepGeneration::
1445 par_oop_since_save_marks_iterate_done(int thread_num) {
1446   CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
1447   ParScanWithoutBarrierClosure* dummy_cl = NULL;
1448   ps->promo.promoted_oops_iterate_nv(dummy_cl);
1449 }
1450 
1451 bool ConcurrentMarkSweepGeneration::should_collect(bool   full,
1452                                                    size_t size,
1453                                                    bool   tlab)
1454 {
1455   // We allow a STW collection only if a full
1456   // collection was requested.
1457   return full || should_allocate(size, tlab); // FIX ME !!!
1458   // This and promotion failure handling are connected at the
1459   // hip and should be fixed by untying them.
1460 }
1461 
1462 bool CMSCollector::shouldConcurrentCollect() {
1463   if (_full_gc_requested) {
1464     if (Verbose && PrintGCDetails) {
1465       gclog_or_tty->print_cr("CMSCollector: collect because of explicit "
1466                              " gc request (or gc_locker)");
1467     }
1468     return true;
1469   }
1470 
1471   // For debugging purposes, change the type of collection.
1472   // If the rotation is not on the concurrent collection
1473   // type, don't start a concurrent collection.
1474   NOT_PRODUCT(
1475     if (RotateCMSCollectionTypes &&
1476         (_cmsGen->debug_collection_type() !=
1477           ConcurrentMarkSweepGeneration::Concurrent_collection_type)) {
1478       assert(_cmsGen->debug_collection_type() !=
1479         ConcurrentMarkSweepGeneration::Unknown_collection_type,
1480         "Bad cms collection type");
1481       return false;
1482     }
1483   )
1484 
1485   FreelistLocker x(this);
1486   // ------------------------------------------------------------------
1487   // Print out lots of information which affects the initiation of
1488   // a collection.
1489   if (PrintCMSInitiationStatistics && stats().valid()) {
1490     gclog_or_tty->print("CMSCollector shouldConcurrentCollect: ");
1491     gclog_or_tty->stamp();
1492     gclog_or_tty->cr();
1493     stats().print_on(gclog_or_tty);
1494     gclog_or_tty->print_cr("time_until_cms_gen_full %3.7f",
1495       stats().time_until_cms_gen_full());
1496     gclog_or_tty->print_cr("free="SIZE_FORMAT, _cmsGen->free());
1497     gclog_or_tty->print_cr("contiguous_available="SIZE_FORMAT,
1498                            _cmsGen->contiguous_available());
1499     gclog_or_tty->print_cr("promotion_rate=%g", stats().promotion_rate());
1500     gclog_or_tty->print_cr("cms_allocation_rate=%g", stats().cms_allocation_rate());
1501     gclog_or_tty->print_cr("occupancy=%3.7f", _cmsGen->occupancy());
1502     gclog_or_tty->print_cr("initiatingOccupancy=%3.7f", _cmsGen->initiating_occupancy());
1503     gclog_or_tty->print_cr("cms_time_since_begin=%3.7f", stats().cms_time_since_begin());
1504     gclog_or_tty->print_cr("cms_time_since_end=%3.7f", stats().cms_time_since_end());
1505     gclog_or_tty->print_cr("metadata initialized %d",
1506       MetaspaceGC::should_concurrent_collect());
1507   }
1508   // ------------------------------------------------------------------
1509 
1510   // If the estimated time to complete a cms collection (cms_duration())
1511   // is less than the estimated time remaining until the cms generation
1512   // is full, start a collection.
1513   if (!UseCMSInitiatingOccupancyOnly) {
1514     if (stats().valid()) {
1515       if (stats().time_until_cms_start() == 0.0) {
1516         return true;
1517       }
1518     } else {
1519       // We want to conservatively collect somewhat early in order
1520       // to try and "bootstrap" our CMS/promotion statistics;
1521       // this branch will not fire after the first successful CMS
1522       // collection because the stats should then be valid.
1523       if (_cmsGen->occupancy() >= _bootstrap_occupancy) {
1524         if (Verbose && PrintGCDetails) {
1525           gclog_or_tty->print_cr(
1526             " CMSCollector: collect for bootstrapping statistics:"
1527             " occupancy = %f, boot occupancy = %f", _cmsGen->occupancy(),
1528             _bootstrap_occupancy);
1529         }
1530         return true;
1531       }
1532     }
1533   }
1534 
1535   // Otherwise, we start a collection cycle if
1536   // old gen want a collection cycle started. Each may use
1537   // an appropriate criterion for making this decision.
1538   // XXX We need to make sure that the gen expansion
1539   // criterion dovetails well with this. XXX NEED TO FIX THIS
1540   if (_cmsGen->should_concurrent_collect()) {
1541     if (Verbose && PrintGCDetails) {
1542       gclog_or_tty->print_cr("CMS old gen initiated");
1543     }
1544     return true;
1545   }
1546 
1547   // We start a collection if we believe an incremental collection may fail;
1548   // this is not likely to be productive in practice because it's probably too
1549   // late anyway.
1550   GenCollectedHeap* gch = GenCollectedHeap::heap();
1551   assert(gch->collector_policy()->is_generation_policy(),
1552          "You may want to check the correctness of the following");
1553   if (gch->incremental_collection_will_fail(true /* consult_young */)) {
1554     if (Verbose && PrintGCDetails) {
1555       gclog_or_tty->print("CMSCollector: collect because incremental collection will fail ");
1556     }
1557     return true;
1558   }
1559 
1560   if (MetaspaceGC::should_concurrent_collect()) {
1561     if (Verbose && PrintGCDetails) {
1562       gclog_or_tty->print("CMSCollector: collect for metadata allocation ");
1563     }
1564     return true;
1565   }
1566 
1567   // CMSTriggerInterval starts a CMS cycle if enough time has passed.
1568   if (CMSTriggerInterval >= 0) {
1569     if (CMSTriggerInterval == 0) {
1570       // Trigger always
1571       return true;
1572     }
1573 
1574     // Check the CMS time since begin (we do not check the stats validity
1575     // as we want to be able to trigger the first CMS cycle as well)
1576     if (stats().cms_time_since_begin() >= (CMSTriggerInterval / ((double) MILLIUNITS))) {
1577       if (Verbose && PrintGCDetails) {
1578         if (stats().valid()) {
1579           gclog_or_tty->print_cr("CMSCollector: collect because of trigger interval (time since last begin %3.7f secs)",
1580                                  stats().cms_time_since_begin());
1581         } else {
1582           gclog_or_tty->print_cr("CMSCollector: collect because of trigger interval (first collection)");
1583         }
1584       }
1585       return true;
1586     }
1587   }
1588 
1589   return false;
1590 }
1591 
1592 void CMSCollector::set_did_compact(bool v) { _cmsGen->set_did_compact(v); }
1593 
1594 // Clear _expansion_cause fields of constituent generations
1595 void CMSCollector::clear_expansion_cause() {
1596   _cmsGen->clear_expansion_cause();
1597 }
1598 
1599 // We should be conservative in starting a collection cycle.  To
1600 // start too eagerly runs the risk of collecting too often in the
1601 // extreme.  To collect too rarely falls back on full collections,
1602 // which works, even if not optimum in terms of concurrent work.
1603 // As a work around for too eagerly collecting, use the flag
1604 // UseCMSInitiatingOccupancyOnly.  This also has the advantage of
1605 // giving the user an easily understandable way of controlling the
1606 // collections.
1607 // We want to start a new collection cycle if any of the following
1608 // conditions hold:
1609 // . our current occupancy exceeds the configured initiating occupancy
1610 //   for this generation, or
1611 // . we recently needed to expand this space and have not, since that
1612 //   expansion, done a collection of this generation, or
1613 // . the underlying space believes that it may be a good idea to initiate
1614 //   a concurrent collection (this may be based on criteria such as the
1615 //   following: the space uses linear allocation and linear allocation is
1616 //   going to fail, or there is believed to be excessive fragmentation in
1617 //   the generation, etc... or ...
1618 // [.(currently done by CMSCollector::shouldConcurrentCollect() only for
1619 //   the case of the old generation; see CR 6543076):
1620 //   we may be approaching a point at which allocation requests may fail because
1621 //   we will be out of sufficient free space given allocation rate estimates.]
1622 bool ConcurrentMarkSweepGeneration::should_concurrent_collect() const {
1623 
1624   assert_lock_strong(freelistLock());
1625   if (occupancy() > initiating_occupancy()) {
1626     if (PrintGCDetails && Verbose) {
1627       gclog_or_tty->print(" %s: collect because of occupancy %f / %f  ",
1628         short_name(), occupancy(), initiating_occupancy());
1629     }
1630     return true;
1631   }
1632   if (UseCMSInitiatingOccupancyOnly) {
1633     return false;
1634   }
1635   if (expansion_cause() == CMSExpansionCause::_satisfy_allocation) {
1636     if (PrintGCDetails && Verbose) {
1637       gclog_or_tty->print(" %s: collect because expanded for allocation ",
1638         short_name());
1639     }
1640     return true;
1641   }
1642   if (_cmsSpace->should_concurrent_collect()) {
1643     if (PrintGCDetails && Verbose) {
1644       gclog_or_tty->print(" %s: collect because cmsSpace says so ",
1645         short_name());
1646     }
1647     return true;
1648   }
1649   return false;
1650 }
1651 
1652 void ConcurrentMarkSweepGeneration::collect(bool   full,
1653                                             bool   clear_all_soft_refs,
1654                                             size_t size,
1655                                             bool   tlab)
1656 {
1657   collector()->collect(full, clear_all_soft_refs, size, tlab);
1658 }
1659 
1660 void CMSCollector::collect(bool   full,
1661                            bool   clear_all_soft_refs,
1662                            size_t size,
1663                            bool   tlab)
1664 {
1665   if (!UseCMSCollectionPassing && _collectorState > Idling) {
1666     // For debugging purposes skip the collection if the state
1667     // is not currently idle
1668     if (TraceCMSState) {
1669       gclog_or_tty->print_cr("Thread " INTPTR_FORMAT " skipped full:%d CMS state %d",
1670         Thread::current(), full, _collectorState);
1671     }
1672     return;
1673   }
1674 
1675   // The following "if" branch is present for defensive reasons.
1676   // In the current uses of this interface, it can be replaced with:
1677   // assert(!GC_locker.is_active(), "Can't be called otherwise");
1678   // But I am not placing that assert here to allow future
1679   // generality in invoking this interface.
1680   if (GC_locker::is_active()) {
1681     // A consistency test for GC_locker
1682     assert(GC_locker::needs_gc(), "Should have been set already");
1683     // Skip this foreground collection, instead
1684     // expanding the heap if necessary.
1685     // Need the free list locks for the call to free() in compute_new_size()
1686     compute_new_size();
1687     return;
1688   }
1689   acquire_control_and_collect(full, clear_all_soft_refs);
1690   _full_gcs_since_conc_gc++;
1691 }
1692 
1693 void CMSCollector::request_full_gc(unsigned int full_gc_count, GCCause::Cause cause) {
1694   GenCollectedHeap* gch = GenCollectedHeap::heap();
1695   unsigned int gc_count = gch->total_full_collections();
1696   if (gc_count == full_gc_count) {
1697     MutexLockerEx y(CGC_lock, Mutex::_no_safepoint_check_flag);
1698     _full_gc_requested = true;
1699     _full_gc_cause = cause;
1700     CGC_lock->notify();   // nudge CMS thread
1701   } else {
1702     assert(gc_count > full_gc_count, "Error: causal loop");
1703   }
1704 }
1705 
1706 bool CMSCollector::is_external_interruption() {
1707   GCCause::Cause cause = GenCollectedHeap::heap()->gc_cause();
1708   return GCCause::is_user_requested_gc(cause) ||
1709          GCCause::is_serviceability_requested_gc(cause);
1710 }
1711 
1712 void CMSCollector::report_concurrent_mode_interruption() {
1713   if (is_external_interruption()) {
1714     if (PrintGCDetails) {
1715       gclog_or_tty->print(" (concurrent mode interrupted)");
1716     }
1717   } else {
1718     if (PrintGCDetails) {
1719       gclog_or_tty->print(" (concurrent mode failure)");
1720     }
1721     _gc_tracer_cm->report_concurrent_mode_failure();
1722   }
1723 }
1724 
1725 
1726 // The foreground and background collectors need to coordinate in order
1727 // to make sure that they do not mutually interfere with CMS collections.
1728 // When a background collection is active,
1729 // the foreground collector may need to take over (preempt) and
1730 // synchronously complete an ongoing collection. Depending on the
1731 // frequency of the background collections and the heap usage
1732 // of the application, this preemption can be seldom or frequent.
1733 // There are only certain
1734 // points in the background collection that the "collection-baton"
1735 // can be passed to the foreground collector.
1736 //
1737 // The foreground collector will wait for the baton before
1738 // starting any part of the collection.  The foreground collector
1739 // will only wait at one location.
1740 //
1741 // The background collector will yield the baton before starting a new
1742 // phase of the collection (e.g., before initial marking, marking from roots,
1743 // precleaning, final re-mark, sweep etc.)  This is normally done at the head
1744 // of the loop which switches the phases. The background collector does some
1745 // of the phases (initial mark, final re-mark) with the world stopped.
1746 // Because of locking involved in stopping the world,
1747 // the foreground collector should not block waiting for the background
1748 // collector when it is doing a stop-the-world phase.  The background
1749 // collector will yield the baton at an additional point just before
1750 // it enters a stop-the-world phase.  Once the world is stopped, the
1751 // background collector checks the phase of the collection.  If the
1752 // phase has not changed, it proceeds with the collection.  If the
1753 // phase has changed, it skips that phase of the collection.  See
1754 // the comments on the use of the Heap_lock in collect_in_background().
1755 //
1756 // Variable used in baton passing.
1757 //   _foregroundGCIsActive - Set to true by the foreground collector when
1758 //      it wants the baton.  The foreground clears it when it has finished
1759 //      the collection.
1760 //   _foregroundGCShouldWait - Set to true by the background collector
1761 //        when it is running.  The foreground collector waits while
1762 //      _foregroundGCShouldWait is true.
1763 //  CGC_lock - monitor used to protect access to the above variables
1764 //      and to notify the foreground and background collectors.
1765 //  _collectorState - current state of the CMS collection.
1766 //
1767 // The foreground collector
1768 //   acquires the CGC_lock
1769 //   sets _foregroundGCIsActive
1770 //   waits on the CGC_lock for _foregroundGCShouldWait to be false
1771 //     various locks acquired in preparation for the collection
1772 //     are released so as not to block the background collector
1773 //     that is in the midst of a collection
1774 //   proceeds with the collection
1775 //   clears _foregroundGCIsActive
1776 //   returns
1777 //
1778 // The background collector in a loop iterating on the phases of the
1779 //      collection
1780 //   acquires the CGC_lock
1781 //   sets _foregroundGCShouldWait
1782 //   if _foregroundGCIsActive is set
1783 //     clears _foregroundGCShouldWait, notifies _CGC_lock
1784 //     waits on _CGC_lock for _foregroundGCIsActive to become false
1785 //     and exits the loop.
1786 //   otherwise
1787 //     proceed with that phase of the collection
1788 //     if the phase is a stop-the-world phase,
1789 //       yield the baton once more just before enqueueing
1790 //       the stop-world CMS operation (executed by the VM thread).
1791 //   returns after all phases of the collection are done
1792 //
1793 
1794 void CMSCollector::acquire_control_and_collect(bool full,
1795         bool clear_all_soft_refs) {
1796   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
1797   assert(!Thread::current()->is_ConcurrentGC_thread(),
1798          "shouldn't try to acquire control from self!");
1799 
1800   // Start the protocol for acquiring control of the
1801   // collection from the background collector (aka CMS thread).
1802   assert(ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
1803          "VM thread should have CMS token");
1804   // Remember the possibly interrupted state of an ongoing
1805   // concurrent collection
1806   CollectorState first_state = _collectorState;
1807 
1808   // Signal to a possibly ongoing concurrent collection that
1809   // we want to do a foreground collection.
1810   _foregroundGCIsActive = true;
1811 
1812   // Disable incremental mode during a foreground collection.
1813   ICMSDisabler icms_disabler;
1814 
1815   // release locks and wait for a notify from the background collector
1816   // releasing the locks in only necessary for phases which
1817   // do yields to improve the granularity of the collection.
1818   assert_lock_strong(bitMapLock());
1819   // We need to lock the Free list lock for the space that we are
1820   // currently collecting.
1821   assert(haveFreelistLocks(), "Must be holding free list locks");
1822   bitMapLock()->unlock();
1823   releaseFreelistLocks();
1824   {
1825     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
1826     if (_foregroundGCShouldWait) {
1827       // We are going to be waiting for action for the CMS thread;
1828       // it had better not be gone (for instance at shutdown)!
1829       assert(ConcurrentMarkSweepThread::cmst() != NULL,
1830              "CMS thread must be running");
1831       // Wait here until the background collector gives us the go-ahead
1832       ConcurrentMarkSweepThread::clear_CMS_flag(
1833         ConcurrentMarkSweepThread::CMS_vm_has_token);  // release token
1834       // Get a possibly blocked CMS thread going:
1835       //   Note that we set _foregroundGCIsActive true above,
1836       //   without protection of the CGC_lock.
1837       CGC_lock->notify();
1838       assert(!ConcurrentMarkSweepThread::vm_thread_wants_cms_token(),
1839              "Possible deadlock");
1840       while (_foregroundGCShouldWait) {
1841         // wait for notification
1842         CGC_lock->wait(Mutex::_no_safepoint_check_flag);
1843         // Possibility of delay/starvation here, since CMS token does
1844         // not know to give priority to VM thread? Actually, i think
1845         // there wouldn't be any delay/starvation, but the proof of
1846         // that "fact" (?) appears non-trivial. XXX 20011219YSR
1847       }
1848       ConcurrentMarkSweepThread::set_CMS_flag(
1849         ConcurrentMarkSweepThread::CMS_vm_has_token);
1850     }
1851   }
1852   // The CMS_token is already held.  Get back the other locks.
1853   assert(ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
1854          "VM thread should have CMS token");
1855   getFreelistLocks();
1856   bitMapLock()->lock_without_safepoint_check();
1857   if (TraceCMSState) {
1858     gclog_or_tty->print_cr("CMS foreground collector has asked for control "
1859       INTPTR_FORMAT " with first state %d", Thread::current(), first_state);
1860     gclog_or_tty->print_cr("    gets control with state %d", _collectorState);
1861   }
1862 
1863   // Check if we need to do a compaction, or if not, whether
1864   // we need to start the mark-sweep from scratch.
1865   bool should_compact    = false;
1866   bool should_start_over = false;
1867   decide_foreground_collection_type(clear_all_soft_refs,
1868     &should_compact, &should_start_over);
1869 
1870 NOT_PRODUCT(
1871   if (RotateCMSCollectionTypes) {
1872     if (_cmsGen->debug_collection_type() ==
1873         ConcurrentMarkSweepGeneration::MSC_foreground_collection_type) {
1874       should_compact = true;
1875     } else if (_cmsGen->debug_collection_type() ==
1876                ConcurrentMarkSweepGeneration::MS_foreground_collection_type) {
1877       should_compact = false;
1878     }
1879   }
1880 )
1881 
1882   if (first_state > Idling) {
1883     report_concurrent_mode_interruption();
1884   }
1885 
1886   set_did_compact(should_compact);
1887   if (should_compact) {
1888     // If the collection is being acquired from the background
1889     // collector, there may be references on the discovered
1890     // references lists that have NULL referents (being those
1891     // that were concurrently cleared by a mutator) or
1892     // that are no longer active (having been enqueued concurrently
1893     // by the mutator).
1894     // Scrub the list of those references because Mark-Sweep-Compact
1895     // code assumes referents are not NULL and that all discovered
1896     // Reference objects are active.
1897     ref_processor()->clean_up_discovered_references();
1898 
1899     if (first_state > Idling) {
1900       save_heap_summary();
1901     }
1902 
1903     do_compaction_work(clear_all_soft_refs);
1904 
1905     // Has the GC time limit been exceeded?
1906     DefNewGeneration* young_gen = _young_gen->as_DefNewGeneration();
1907     size_t max_eden_size = young_gen->max_capacity() -
1908                            young_gen->to()->capacity() -
1909                            young_gen->from()->capacity();
1910     GenCollectedHeap* gch = GenCollectedHeap::heap();
1911     GCCause::Cause gc_cause = gch->gc_cause();
1912     size_policy()->check_gc_overhead_limit(_young_gen->used(),
1913                                            young_gen->eden()->used(),
1914                                            _cmsGen->max_capacity(),
1915                                            max_eden_size,
1916                                            full,
1917                                            gc_cause,
1918                                            gch->collector_policy());
1919   } else {
1920     do_mark_sweep_work(clear_all_soft_refs, first_state,
1921       should_start_over);
1922   }
1923   // Reset the expansion cause, now that we just completed
1924   // a collection cycle.
1925   clear_expansion_cause();
1926   _foregroundGCIsActive = false;
1927   return;
1928 }
1929 
1930 // Resize the tenured generation
1931 // after obtaining the free list locks for the
1932 // two generations.
1933 void CMSCollector::compute_new_size() {
1934   assert_locked_or_safepoint(Heap_lock);
1935   FreelistLocker z(this);
1936   MetaspaceGC::compute_new_size();
1937   _cmsGen->compute_new_size_free_list();
1938 }
1939 
1940 // A work method used by foreground collection to determine
1941 // what type of collection (compacting or not, continuing or fresh)
1942 // it should do.
1943 // NOTE: the intent is to make UseCMSCompactAtFullCollection
1944 // and CMSCompactWhenClearAllSoftRefs the default in the future
1945 // and do away with the flags after a suitable period.
1946 void CMSCollector::decide_foreground_collection_type(
1947   bool clear_all_soft_refs, bool* should_compact,
1948   bool* should_start_over) {
1949   // Normally, we'll compact only if the UseCMSCompactAtFullCollection
1950   // flag is set, and we have either requested a System.gc() or
1951   // the number of full gc's since the last concurrent cycle
1952   // has exceeded the threshold set by CMSFullGCsBeforeCompaction,
1953   // or if an incremental collection has failed
1954   GenCollectedHeap* gch = GenCollectedHeap::heap();
1955   assert(gch->collector_policy()->is_generation_policy(),
1956          "You may want to check the correctness of the following");
1957   // Inform cms gen if this was due to partial collection failing.
1958   // The CMS gen may use this fact to determine its expansion policy.
1959   if (gch->incremental_collection_will_fail(false /* don't consult_young */)) {
1960     assert(!_cmsGen->incremental_collection_failed(),
1961            "Should have been noticed, reacted to and cleared");
1962     _cmsGen->set_incremental_collection_failed();
1963   }
1964   *should_compact =
1965     UseCMSCompactAtFullCollection &&
1966     ((_full_gcs_since_conc_gc >= CMSFullGCsBeforeCompaction) ||
1967      GCCause::is_user_requested_gc(gch->gc_cause()) ||
1968      gch->incremental_collection_will_fail(true /* consult_young */));
1969   *should_start_over = false;
1970   if (clear_all_soft_refs && !*should_compact) {
1971     // We are about to do a last ditch collection attempt
1972     // so it would normally make sense to do a compaction
1973     // to reclaim as much space as possible.
1974     if (CMSCompactWhenClearAllSoftRefs) {
1975       // Default: The rationale is that in this case either
1976       // we are past the final marking phase, in which case
1977       // we'd have to start over, or so little has been done
1978       // that there's little point in saving that work. Compaction
1979       // appears to be the sensible choice in either case.
1980       *should_compact = true;
1981     } else {
1982       // We have been asked to clear all soft refs, but not to
1983       // compact. Make sure that we aren't past the final checkpoint
1984       // phase, for that is where we process soft refs. If we are already
1985       // past that phase, we'll need to redo the refs discovery phase and
1986       // if necessary clear soft refs that weren't previously
1987       // cleared. We do so by remembering the phase in which
1988       // we came in, and if we are past the refs processing
1989       // phase, we'll choose to just redo the mark-sweep
1990       // collection from scratch.
1991       if (_collectorState > FinalMarking) {
1992         // We are past the refs processing phase;
1993         // start over and do a fresh synchronous CMS cycle
1994         _collectorState = Resetting; // skip to reset to start new cycle
1995         reset(false /* == !asynch */);
1996         *should_start_over = true;
1997       } // else we can continue a possibly ongoing current cycle
1998     }
1999   }
2000 }
2001 
2002 // A work method used by the foreground collector to do
2003 // a mark-sweep-compact.
2004 void CMSCollector::do_compaction_work(bool clear_all_soft_refs) {
2005   GenCollectedHeap* gch = GenCollectedHeap::heap();
2006 
2007   STWGCTimer* gc_timer = GenMarkSweep::gc_timer();
2008   gc_timer->register_gc_start();
2009 
2010   SerialOldTracer* gc_tracer = GenMarkSweep::gc_tracer();
2011   gc_tracer->report_gc_start(gch->gc_cause(), gc_timer->gc_start());
2012 
2013   GCTraceTime t("CMS:MSC ", PrintGCDetails && Verbose, true, NULL, gc_tracer->gc_id());
2014   if (PrintGC && Verbose && !(GCCause::is_user_requested_gc(gch->gc_cause()))) {
2015     gclog_or_tty->print_cr("Compact ConcurrentMarkSweepGeneration after %d "
2016       "collections passed to foreground collector", _full_gcs_since_conc_gc);
2017   }
2018 
2019   // Temporarily widen the span of the weak reference processing to
2020   // the entire heap.
2021   MemRegion new_span(GenCollectedHeap::heap()->reserved_region());
2022   ReferenceProcessorSpanMutator rp_mut_span(ref_processor(), new_span);
2023   // Temporarily, clear the "is_alive_non_header" field of the
2024   // reference processor.
2025   ReferenceProcessorIsAliveMutator rp_mut_closure(ref_processor(), NULL);
2026   // Temporarily make reference _processing_ single threaded (non-MT).
2027   ReferenceProcessorMTProcMutator rp_mut_mt_processing(ref_processor(), false);
2028   // Temporarily make refs discovery atomic
2029   ReferenceProcessorAtomicMutator rp_mut_atomic(ref_processor(), true);
2030   // Temporarily make reference _discovery_ single threaded (non-MT)
2031   ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(ref_processor(), false);
2032 
2033   ref_processor()->set_enqueuing_is_done(false);
2034   ref_processor()->enable_discovery(false /*verify_disabled*/, false /*check_no_refs*/);
2035   ref_processor()->setup_policy(clear_all_soft_refs);
2036   // If an asynchronous collection finishes, the _modUnionTable is
2037   // all clear.  If we are assuming the collection from an asynchronous
2038   // collection, clear the _modUnionTable.
2039   assert(_collectorState != Idling || _modUnionTable.isAllClear(),
2040     "_modUnionTable should be clear if the baton was not passed");
2041   _modUnionTable.clear_all();
2042   assert(_collectorState != Idling || _ct->klass_rem_set()->mod_union_is_clear(),
2043     "mod union for klasses should be clear if the baton was passed");
2044   _ct->klass_rem_set()->clear_mod_union();
2045 
2046   // We must adjust the allocation statistics being maintained
2047   // in the free list space. We do so by reading and clearing
2048   // the sweep timer and updating the block flux rate estimates below.
2049   assert(!_intra_sweep_timer.is_active(), "_intra_sweep_timer should be inactive");
2050   if (_inter_sweep_timer.is_active()) {
2051     _inter_sweep_timer.stop();
2052     // Note that we do not use this sample to update the _inter_sweep_estimate.
2053     _cmsGen->cmsSpace()->beginSweepFLCensus((float)(_inter_sweep_timer.seconds()),
2054                                             _inter_sweep_estimate.padded_average(),
2055                                             _intra_sweep_estimate.padded_average());
2056   }
2057 
2058   GenMarkSweep::invoke_at_safepoint(_cmsGen->level(),
2059     ref_processor(), clear_all_soft_refs);
2060   #ifdef ASSERT
2061     CompactibleFreeListSpace* cms_space = _cmsGen->cmsSpace();
2062     size_t free_size = cms_space->free();
2063     assert(free_size ==
2064            pointer_delta(cms_space->end(), cms_space->compaction_top())
2065            * HeapWordSize,
2066       "All the free space should be compacted into one chunk at top");
2067     assert(cms_space->dictionary()->total_chunk_size(
2068                                       debug_only(cms_space->freelistLock())) == 0 ||
2069            cms_space->totalSizeInIndexedFreeLists() == 0,
2070       "All the free space should be in a single chunk");
2071     size_t num = cms_space->totalCount();
2072     assert((free_size == 0 && num == 0) ||
2073            (free_size > 0  && (num == 1 || num == 2)),
2074          "There should be at most 2 free chunks after compaction");
2075   #endif // ASSERT
2076   _collectorState = Resetting;
2077   assert(_restart_addr == NULL,
2078          "Should have been NULL'd before baton was passed");
2079   reset(false /* == !asynch */);
2080   _cmsGen->reset_after_compaction();
2081   _concurrent_cycles_since_last_unload = 0;
2082 
2083   // Clear any data recorded in the PLAB chunk arrays.
2084   if (_survivor_plab_array != NULL) {
2085     reset_survivor_plab_arrays();
2086   }
2087 
2088   // Adjust the per-size allocation stats for the next epoch.
2089   _cmsGen->cmsSpace()->endSweepFLCensus(sweep_count() /* fake */);
2090   // Restart the "inter sweep timer" for the next epoch.
2091   _inter_sweep_timer.reset();
2092   _inter_sweep_timer.start();
2093 
2094   gc_timer->register_gc_end();
2095 
2096   gc_tracer->report_gc_end(gc_timer->gc_end(), gc_timer->time_partitions());
2097 
2098   // For a mark-sweep-compact, compute_new_size() will be called
2099   // in the heap's do_collection() method.
2100 }
2101 
2102 // A work method used by the foreground collector to do
2103 // a mark-sweep, after taking over from a possibly on-going
2104 // concurrent mark-sweep collection.
2105 void CMSCollector::do_mark_sweep_work(bool clear_all_soft_refs,
2106   CollectorState first_state, bool should_start_over) {
2107   if (PrintGC && Verbose) {
2108     gclog_or_tty->print_cr("Pass concurrent collection to foreground "
2109       "collector with count %d",
2110       _full_gcs_since_conc_gc);
2111   }
2112   switch (_collectorState) {
2113     case Idling:
2114       if (first_state == Idling || should_start_over) {
2115         // The background GC was not active, or should
2116         // restarted from scratch;  start the cycle.
2117         _collectorState = InitialMarking;
2118       }
2119       // If first_state was not Idling, then a background GC
2120       // was in progress and has now finished.  No need to do it
2121       // again.  Leave the state as Idling.
2122       break;
2123     case Precleaning:
2124       // In the foreground case don't do the precleaning since
2125       // it is not done concurrently and there is extra work
2126       // required.
2127       _collectorState = FinalMarking;
2128   }
2129   collect_in_foreground(clear_all_soft_refs, GenCollectedHeap::heap()->gc_cause());
2130 
2131   // For a mark-sweep, compute_new_size() will be called
2132   // in the heap's do_collection() method.
2133 }
2134 
2135 
2136 void CMSCollector::print_eden_and_survivor_chunk_arrays() {
2137   DefNewGeneration* dng = _young_gen->as_DefNewGeneration();
2138   EdenSpace* eden_space = dng->eden();
2139   ContiguousSpace* from_space = dng->from();
2140   ContiguousSpace* to_space   = dng->to();
2141   // Eden
2142   if (_eden_chunk_array != NULL) {
2143     gclog_or_tty->print_cr("eden " PTR_FORMAT "-" PTR_FORMAT "-" PTR_FORMAT "(" SIZE_FORMAT ")",
2144                            eden_space->bottom(), eden_space->top(),
2145                            eden_space->end(), eden_space->capacity());
2146     gclog_or_tty->print_cr("_eden_chunk_index=" SIZE_FORMAT ", "
2147                            "_eden_chunk_capacity=" SIZE_FORMAT,
2148                            _eden_chunk_index, _eden_chunk_capacity);
2149     for (size_t i = 0; i < _eden_chunk_index; i++) {
2150       gclog_or_tty->print_cr("_eden_chunk_array[" SIZE_FORMAT "]=" PTR_FORMAT,
2151                              i, _eden_chunk_array[i]);
2152     }
2153   }
2154   // Survivor
2155   if (_survivor_chunk_array != NULL) {
2156     gclog_or_tty->print_cr("survivor " PTR_FORMAT "-" PTR_FORMAT "-" PTR_FORMAT "(" SIZE_FORMAT ")",
2157                            from_space->bottom(), from_space->top(),
2158                            from_space->end(), from_space->capacity());
2159     gclog_or_tty->print_cr("_survivor_chunk_index=" SIZE_FORMAT ", "
2160                            "_survivor_chunk_capacity=" SIZE_FORMAT,
2161                            _survivor_chunk_index, _survivor_chunk_capacity);
2162     for (size_t i = 0; i < _survivor_chunk_index; i++) {
2163       gclog_or_tty->print_cr("_survivor_chunk_array[" SIZE_FORMAT "]=" PTR_FORMAT,
2164                              i, _survivor_chunk_array[i]);
2165     }
2166   }
2167 }
2168 
2169 void CMSCollector::getFreelistLocks() const {
2170   // Get locks for all free lists in all generations that this
2171   // collector is responsible for
2172   _cmsGen->freelistLock()->lock_without_safepoint_check();
2173 }
2174 
2175 void CMSCollector::releaseFreelistLocks() const {
2176   // Release locks for all free lists in all generations that this
2177   // collector is responsible for
2178   _cmsGen->freelistLock()->unlock();
2179 }
2180 
2181 bool CMSCollector::haveFreelistLocks() const {
2182   // Check locks for all free lists in all generations that this
2183   // collector is responsible for
2184   assert_lock_strong(_cmsGen->freelistLock());
2185   PRODUCT_ONLY(ShouldNotReachHere());
2186   return true;
2187 }
2188 
2189 // A utility class that is used by the CMS collector to
2190 // temporarily "release" the foreground collector from its
2191 // usual obligation to wait for the background collector to
2192 // complete an ongoing phase before proceeding.
2193 class ReleaseForegroundGC: public StackObj {
2194  private:
2195   CMSCollector* _c;
2196  public:
2197   ReleaseForegroundGC(CMSCollector* c) : _c(c) {
2198     assert(_c->_foregroundGCShouldWait, "Else should not need to call");
2199     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
2200     // allow a potentially blocked foreground collector to proceed
2201     _c->_foregroundGCShouldWait = false;
2202     if (_c->_foregroundGCIsActive) {
2203       CGC_lock->notify();
2204     }
2205     assert(!ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
2206            "Possible deadlock");
2207   }
2208 
2209   ~ReleaseForegroundGC() {
2210     assert(!_c->_foregroundGCShouldWait, "Usage protocol violation?");
2211     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
2212     _c->_foregroundGCShouldWait = true;
2213   }
2214 };
2215 
2216 // There are separate collect_in_background and collect_in_foreground because of
2217 // the different locking requirements of the background collector and the
2218 // foreground collector.  There was originally an attempt to share
2219 // one "collect" method between the background collector and the foreground
2220 // collector but the if-then-else required made it cleaner to have
2221 // separate methods.
2222 void CMSCollector::collect_in_background(bool clear_all_soft_refs, GCCause::Cause cause) {
2223   assert(Thread::current()->is_ConcurrentGC_thread(),
2224     "A CMS asynchronous collection is only allowed on a CMS thread.");
2225 
2226   GenCollectedHeap* gch = GenCollectedHeap::heap();
2227   {
2228     bool safepoint_check = Mutex::_no_safepoint_check_flag;
2229     MutexLockerEx hl(Heap_lock, safepoint_check);
2230     FreelistLocker fll(this);
2231     MutexLockerEx x(CGC_lock, safepoint_check);
2232     if (_foregroundGCIsActive || !UseAsyncConcMarkSweepGC) {
2233       // The foreground collector is active or we're
2234       // not using asynchronous collections.  Skip this
2235       // background collection.
2236       assert(!_foregroundGCShouldWait, "Should be clear");
2237       return;
2238     } else {
2239       assert(_collectorState == Idling, "Should be idling before start.");
2240       _collectorState = InitialMarking;
2241       register_gc_start(cause);
2242       // Reset the expansion cause, now that we are about to begin
2243       // a new cycle.
2244       clear_expansion_cause();
2245 
2246       // Clear the MetaspaceGC flag since a concurrent collection
2247       // is starting but also clear it after the collection.
2248       MetaspaceGC::set_should_concurrent_collect(false);
2249     }
2250     // Decide if we want to enable class unloading as part of the
2251     // ensuing concurrent GC cycle.
2252     update_should_unload_classes();
2253     _full_gc_requested = false;           // acks all outstanding full gc requests
2254     _full_gc_cause = GCCause::_no_gc;
2255     // Signal that we are about to start a collection
2256     gch->increment_total_full_collections();  // ... starting a collection cycle
2257     _collection_count_start = gch->total_full_collections();
2258   }
2259 
2260   // Used for PrintGC
2261   size_t prev_used;
2262   if (PrintGC && Verbose) {
2263     prev_used = _cmsGen->used(); // XXXPERM
2264   }
2265 
2266   // The change of the collection state is normally done at this level;
2267   // the exceptions are phases that are executed while the world is
2268   // stopped.  For those phases the change of state is done while the
2269   // world is stopped.  For baton passing purposes this allows the
2270   // background collector to finish the phase and change state atomically.
2271   // The foreground collector cannot wait on a phase that is done
2272   // while the world is stopped because the foreground collector already
2273   // has the world stopped and would deadlock.
2274   while (_collectorState != Idling) {
2275     if (TraceCMSState) {
2276       gclog_or_tty->print_cr("Thread " INTPTR_FORMAT " in CMS state %d",
2277         Thread::current(), _collectorState);
2278     }
2279     // The foreground collector
2280     //   holds the Heap_lock throughout its collection.
2281     //   holds the CMS token (but not the lock)
2282     //     except while it is waiting for the background collector to yield.
2283     //
2284     // The foreground collector should be blocked (not for long)
2285     //   if the background collector is about to start a phase
2286     //   executed with world stopped.  If the background
2287     //   collector has already started such a phase, the
2288     //   foreground collector is blocked waiting for the
2289     //   Heap_lock.  The stop-world phases (InitialMarking and FinalMarking)
2290     //   are executed in the VM thread.
2291     //
2292     // The locking order is
2293     //   PendingListLock (PLL)  -- if applicable (FinalMarking)
2294     //   Heap_lock  (both this & PLL locked in VM_CMS_Operation::prologue())
2295     //   CMS token  (claimed in
2296     //                stop_world_and_do() -->
2297     //                  safepoint_synchronize() -->
2298     //                    CMSThread::synchronize())
2299 
2300     {
2301       // Check if the FG collector wants us to yield.
2302       CMSTokenSync x(true); // is cms thread
2303       if (waitForForegroundGC()) {
2304         // We yielded to a foreground GC, nothing more to be
2305         // done this round.
2306         assert(_foregroundGCShouldWait == false, "We set it to false in "
2307                "waitForForegroundGC()");
2308         if (TraceCMSState) {
2309           gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT
2310             " exiting collection CMS state %d",
2311             Thread::current(), _collectorState);
2312         }
2313         return;
2314       } else {
2315         // The background collector can run but check to see if the
2316         // foreground collector has done a collection while the
2317         // background collector was waiting to get the CGC_lock
2318         // above.  If yes, break so that _foregroundGCShouldWait
2319         // is cleared before returning.
2320         if (_collectorState == Idling) {
2321           break;
2322         }
2323       }
2324     }
2325 
2326     assert(_foregroundGCShouldWait, "Foreground collector, if active, "
2327       "should be waiting");
2328 
2329     switch (_collectorState) {
2330       case InitialMarking:
2331         {
2332           ReleaseForegroundGC x(this);
2333           stats().record_cms_begin();
2334           VM_CMS_Initial_Mark initial_mark_op(this);
2335           VMThread::execute(&initial_mark_op);
2336         }
2337         // The collector state may be any legal state at this point
2338         // since the background collector may have yielded to the
2339         // foreground collector.
2340         break;
2341       case Marking:
2342         // initial marking in checkpointRootsInitialWork has been completed
2343         if (markFromRoots(true)) { // we were successful
2344           assert(_collectorState == Precleaning, "Collector state should "
2345             "have changed");
2346         } else {
2347           assert(_foregroundGCIsActive, "Internal state inconsistency");
2348         }
2349         break;
2350       case Precleaning:
2351         // marking from roots in markFromRoots has been completed
2352         preclean();
2353         assert(_collectorState == AbortablePreclean ||
2354                _collectorState == FinalMarking,
2355                "Collector state should have changed");
2356         break;
2357       case AbortablePreclean:
2358         abortable_preclean();
2359         assert(_collectorState == FinalMarking, "Collector state should "
2360           "have changed");
2361         break;
2362       case FinalMarking:
2363         {
2364           ReleaseForegroundGC x(this);
2365 
2366           VM_CMS_Final_Remark final_remark_op(this);
2367           VMThread::execute(&final_remark_op);
2368         }
2369         assert(_foregroundGCShouldWait, "block post-condition");
2370         break;
2371       case Sweeping:
2372         // final marking in checkpointRootsFinal has been completed
2373         sweep(true);
2374         assert(_collectorState == Resizing, "Collector state change "
2375           "to Resizing must be done under the free_list_lock");
2376         _full_gcs_since_conc_gc = 0;
2377 
2378       case Resizing: {
2379         // Sweeping has been completed...
2380         // At this point the background collection has completed.
2381         // Don't move the call to compute_new_size() down
2382         // into code that might be executed if the background
2383         // collection was preempted.
2384         {
2385           ReleaseForegroundGC x(this);   // unblock FG collection
2386           MutexLockerEx       y(Heap_lock, Mutex::_no_safepoint_check_flag);
2387           CMSTokenSync        z(true);   // not strictly needed.
2388           if (_collectorState == Resizing) {
2389             compute_new_size();
2390             save_heap_summary();
2391             _collectorState = Resetting;
2392           } else {
2393             assert(_collectorState == Idling, "The state should only change"
2394                    " because the foreground collector has finished the collection");
2395           }
2396         }
2397         break;
2398       }
2399       case Resetting:
2400         // CMS heap resizing has been completed
2401         reset(true);
2402         assert(_collectorState == Idling, "Collector state should "
2403           "have changed");
2404 
2405         MetaspaceGC::set_should_concurrent_collect(false);
2406 
2407         stats().record_cms_end();
2408         // Don't move the concurrent_phases_end() and compute_new_size()
2409         // calls to here because a preempted background collection
2410         // has it's state set to "Resetting".
2411         break;
2412       case Idling:
2413       default:
2414         ShouldNotReachHere();
2415         break;
2416     }
2417     if (TraceCMSState) {
2418       gclog_or_tty->print_cr("  Thread " INTPTR_FORMAT " done - next CMS state %d",
2419         Thread::current(), _collectorState);
2420     }
2421     assert(_foregroundGCShouldWait, "block post-condition");
2422   }
2423 
2424   // Should this be in gc_epilogue?
2425   collector_policy()->counters()->update_counters();
2426 
2427   {
2428     // Clear _foregroundGCShouldWait and, in the event that the
2429     // foreground collector is waiting, notify it, before
2430     // returning.
2431     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
2432     _foregroundGCShouldWait = false;
2433     if (_foregroundGCIsActive) {
2434       CGC_lock->notify();
2435     }
2436     assert(!ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
2437            "Possible deadlock");
2438   }
2439   if (TraceCMSState) {
2440     gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT
2441       " exiting collection CMS state %d",
2442       Thread::current(), _collectorState);
2443   }
2444   if (PrintGC && Verbose) {
2445     _cmsGen->print_heap_change(prev_used);
2446   }
2447 }
2448 
2449 void CMSCollector::register_foreground_gc_start(GCCause::Cause cause) {
2450   if (!_cms_start_registered) {
2451     register_gc_start(cause);
2452   }
2453 }
2454 
2455 void CMSCollector::register_gc_start(GCCause::Cause cause) {
2456   _cms_start_registered = true;
2457   _gc_timer_cm->register_gc_start();
2458   _gc_tracer_cm->report_gc_start(cause, _gc_timer_cm->gc_start());
2459 }
2460 
2461 void CMSCollector::register_gc_end() {
2462   if (_cms_start_registered) {
2463     report_heap_summary(GCWhen::AfterGC);
2464 
2465     _gc_timer_cm->register_gc_end();
2466     _gc_tracer_cm->report_gc_end(_gc_timer_cm->gc_end(), _gc_timer_cm->time_partitions());
2467     _cms_start_registered = false;
2468   }
2469 }
2470 
2471 void CMSCollector::save_heap_summary() {
2472   GenCollectedHeap* gch = GenCollectedHeap::heap();
2473   _last_heap_summary = gch->create_heap_summary();
2474   _last_metaspace_summary = gch->create_metaspace_summary();
2475 }
2476 
2477 void CMSCollector::report_heap_summary(GCWhen::Type when) {
2478   _gc_tracer_cm->report_gc_heap_summary(when, _last_heap_summary);
2479   _gc_tracer_cm->report_metaspace_summary(when, _last_metaspace_summary);
2480 }
2481 
2482 void CMSCollector::collect_in_foreground(bool clear_all_soft_refs, GCCause::Cause cause) {
2483   assert(_foregroundGCIsActive && !_foregroundGCShouldWait,
2484          "Foreground collector should be waiting, not executing");
2485   assert(Thread::current()->is_VM_thread(), "A foreground collection"
2486     "may only be done by the VM Thread with the world stopped");
2487   assert(ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
2488          "VM thread should have CMS token");
2489 
2490   // The gc id is created in register_foreground_gc_start if this collection is synchronous
2491   const GCId gc_id = _collectorState == InitialMarking ? GCId::peek() : _gc_tracer_cm->gc_id();
2492   NOT_PRODUCT(GCTraceTime t("CMS:MS (foreground) ", PrintGCDetails && Verbose,
2493     true, NULL, gc_id);)
2494   COMPILER2_PRESENT(DerivedPointerTableDeactivate dpt_deact);
2495 
2496   HandleMark hm;  // Discard invalid handles created during verification
2497 
2498   if (VerifyBeforeGC &&
2499       GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
2500     Universe::verify();
2501   }
2502 
2503   // Snapshot the soft reference policy to be used in this collection cycle.
2504   ref_processor()->setup_policy(clear_all_soft_refs);
2505 
2506   // Decide if class unloading should be done
2507   update_should_unload_classes();
2508 
2509   bool init_mark_was_synchronous = false; // until proven otherwise
2510   while (_collectorState != Idling) {
2511     if (TraceCMSState) {
2512       gclog_or_tty->print_cr("Thread " INTPTR_FORMAT " in CMS state %d",
2513         Thread::current(), _collectorState);
2514     }
2515     switch (_collectorState) {
2516       case InitialMarking:
2517         register_foreground_gc_start(cause);
2518         init_mark_was_synchronous = true;  // fact to be exploited in re-mark
2519         checkpointRootsInitial(false);
2520         assert(_collectorState == Marking, "Collector state should have changed"
2521           " within checkpointRootsInitial()");
2522         break;
2523       case Marking:
2524         // initial marking in checkpointRootsInitialWork has been completed
2525         if (VerifyDuringGC &&
2526             GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
2527           Universe::verify("Verify before initial mark: ");
2528         }
2529         {
2530           bool res = markFromRoots(false);
2531           assert(res && _collectorState == FinalMarking, "Collector state should "
2532             "have changed");
2533           break;
2534         }
2535       case FinalMarking:
2536         if (VerifyDuringGC &&
2537             GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
2538           Universe::verify("Verify before re-mark: ");
2539         }
2540         checkpointRootsFinal(false, clear_all_soft_refs,
2541                              init_mark_was_synchronous);
2542         assert(_collectorState == Sweeping, "Collector state should not "
2543           "have changed within checkpointRootsFinal()");
2544         break;
2545       case Sweeping:
2546         // final marking in checkpointRootsFinal has been completed
2547         if (VerifyDuringGC &&
2548             GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
2549           Universe::verify("Verify before sweep: ");
2550         }
2551         sweep(false);
2552         assert(_collectorState == Resizing, "Incorrect state");
2553         break;
2554       case Resizing: {
2555         // Sweeping has been completed; the actual resize in this case
2556         // is done separately; nothing to be done in this state.
2557         _collectorState = Resetting;
2558         break;
2559       }
2560       case Resetting:
2561         // The heap has been resized.
2562         if (VerifyDuringGC &&
2563             GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
2564           Universe::verify("Verify before reset: ");
2565         }
2566         save_heap_summary();
2567         reset(false);
2568         assert(_collectorState == Idling, "Collector state should "
2569           "have changed");
2570         break;
2571       case Precleaning:
2572       case AbortablePreclean:
2573         // Elide the preclean phase
2574         _collectorState = FinalMarking;
2575         break;
2576       default:
2577         ShouldNotReachHere();
2578     }
2579     if (TraceCMSState) {
2580       gclog_or_tty->print_cr("  Thread " INTPTR_FORMAT " done - next CMS state %d",
2581         Thread::current(), _collectorState);
2582     }
2583   }
2584 
2585   if (VerifyAfterGC &&
2586       GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
2587     Universe::verify();
2588   }
2589   if (TraceCMSState) {
2590     gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT
2591       " exiting collection CMS state %d",
2592       Thread::current(), _collectorState);
2593   }
2594 }
2595 
2596 bool CMSCollector::waitForForegroundGC() {
2597   bool res = false;
2598   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
2599          "CMS thread should have CMS token");
2600   // Block the foreground collector until the
2601   // background collectors decides whether to
2602   // yield.
2603   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
2604   _foregroundGCShouldWait = true;
2605   if (_foregroundGCIsActive) {
2606     // The background collector yields to the
2607     // foreground collector and returns a value
2608     // indicating that it has yielded.  The foreground
2609     // collector can proceed.
2610     res = true;
2611     _foregroundGCShouldWait = false;
2612     ConcurrentMarkSweepThread::clear_CMS_flag(
2613       ConcurrentMarkSweepThread::CMS_cms_has_token);
2614     ConcurrentMarkSweepThread::set_CMS_flag(
2615       ConcurrentMarkSweepThread::CMS_cms_wants_token);
2616     // Get a possibly blocked foreground thread going
2617     CGC_lock->notify();
2618     if (TraceCMSState) {
2619       gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT " waiting at CMS state %d",
2620         Thread::current(), _collectorState);
2621     }
2622     while (_foregroundGCIsActive) {
2623       CGC_lock->wait(Mutex::_no_safepoint_check_flag);
2624     }
2625     ConcurrentMarkSweepThread::set_CMS_flag(
2626       ConcurrentMarkSweepThread::CMS_cms_has_token);
2627     ConcurrentMarkSweepThread::clear_CMS_flag(
2628       ConcurrentMarkSweepThread::CMS_cms_wants_token);
2629   }
2630   if (TraceCMSState) {
2631     gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT " continuing at CMS state %d",
2632       Thread::current(), _collectorState);
2633   }
2634   return res;
2635 }
2636 
2637 // Because of the need to lock the free lists and other structures in
2638 // the collector, common to all the generations that the collector is
2639 // collecting, we need the gc_prologues of individual CMS generations
2640 // delegate to their collector. It may have been simpler had the
2641 // current infrastructure allowed one to call a prologue on a
2642 // collector. In the absence of that we have the generation's
2643 // prologue delegate to the collector, which delegates back
2644 // some "local" work to a worker method in the individual generations
2645 // that it's responsible for collecting, while itself doing any
2646 // work common to all generations it's responsible for. A similar
2647 // comment applies to the  gc_epilogue()'s.
2648 // The role of the variable _between_prologue_and_epilogue is to
2649 // enforce the invocation protocol.
2650 void CMSCollector::gc_prologue(bool full) {
2651   // Call gc_prologue_work() for the CMSGen
2652   // we are responsible for.
2653 
2654   // The following locking discipline assumes that we are only called
2655   // when the world is stopped.
2656   assert(SafepointSynchronize::is_at_safepoint(), "world is stopped assumption");
2657 
2658   // The CMSCollector prologue must call the gc_prologues for the
2659   // "generations" that it's responsible
2660   // for.
2661 
2662   assert(   Thread::current()->is_VM_thread()
2663          || (   CMSScavengeBeforeRemark
2664              && Thread::current()->is_ConcurrentGC_thread()),
2665          "Incorrect thread type for prologue execution");
2666 
2667   if (_between_prologue_and_epilogue) {
2668     // We have already been invoked; this is a gc_prologue delegation
2669     // from yet another CMS generation that we are responsible for, just
2670     // ignore it since all relevant work has already been done.
2671     return;
2672   }
2673 
2674   // set a bit saying prologue has been called; cleared in epilogue
2675   _between_prologue_and_epilogue = true;
2676   // Claim locks for common data structures, then call gc_prologue_work()
2677   // for each CMSGen.
2678 
2679   getFreelistLocks();   // gets free list locks on constituent spaces
2680   bitMapLock()->lock_without_safepoint_check();
2681 
2682   // Should call gc_prologue_work() for all cms gens we are responsible for
2683   bool duringMarking =    _collectorState >= Marking
2684                          && _collectorState < Sweeping;
2685 
2686   // The young collections clear the modified oops state, which tells if
2687   // there are any modified oops in the class. The remark phase also needs
2688   // that information. Tell the young collection to save the union of all
2689   // modified klasses.
2690   if (duringMarking) {
2691     _ct->klass_rem_set()->set_accumulate_modified_oops(true);
2692   }
2693 
2694   bool registerClosure = duringMarking;
2695 
2696   ModUnionClosure* muc = CollectedHeap::use_parallel_gc_threads() ?
2697                                                &_modUnionClosurePar
2698                                                : &_modUnionClosure;
2699   _cmsGen->gc_prologue_work(full, registerClosure, muc);
2700 
2701   if (!full) {
2702     stats().record_gc0_begin();
2703   }
2704 }
2705 
2706 void ConcurrentMarkSweepGeneration::gc_prologue(bool full) {
2707 
2708   _capacity_at_prologue = capacity();
2709   _used_at_prologue = used();
2710 
2711   // Delegate to CMScollector which knows how to coordinate between
2712   // this and any other CMS generations that it is responsible for
2713   // collecting.
2714   collector()->gc_prologue(full);
2715 }
2716 
2717 // This is a "private" interface for use by this generation's CMSCollector.
2718 // Not to be called directly by any other entity (for instance,
2719 // GenCollectedHeap, which calls the "public" gc_prologue method above).
2720 void ConcurrentMarkSweepGeneration::gc_prologue_work(bool full,
2721   bool registerClosure, ModUnionClosure* modUnionClosure) {
2722   assert(!incremental_collection_failed(), "Shouldn't be set yet");
2723   assert(cmsSpace()->preconsumptionDirtyCardClosure() == NULL,
2724     "Should be NULL");
2725   if (registerClosure) {
2726     cmsSpace()->setPreconsumptionDirtyCardClosure(modUnionClosure);
2727   }
2728   cmsSpace()->gc_prologue();
2729   // Clear stat counters
2730   NOT_PRODUCT(
2731     assert(_numObjectsPromoted == 0, "check");
2732     assert(_numWordsPromoted   == 0, "check");
2733     if (Verbose && PrintGC) {
2734       gclog_or_tty->print("Allocated "SIZE_FORMAT" objects, "
2735                           SIZE_FORMAT" bytes concurrently",
2736       _numObjectsAllocated, _numWordsAllocated*sizeof(HeapWord));
2737     }
2738     _numObjectsAllocated = 0;
2739     _numWordsAllocated   = 0;
2740   )
2741 }
2742 
2743 void CMSCollector::gc_epilogue(bool full) {
2744   // The following locking discipline assumes that we are only called
2745   // when the world is stopped.
2746   assert(SafepointSynchronize::is_at_safepoint(),
2747          "world is stopped assumption");
2748 
2749   // Currently the CMS epilogue (see CompactibleFreeListSpace) merely checks
2750   // if linear allocation blocks need to be appropriately marked to allow the
2751   // the blocks to be parsable. We also check here whether we need to nudge the
2752   // CMS collector thread to start a new cycle (if it's not already active).
2753   assert(   Thread::current()->is_VM_thread()
2754          || (   CMSScavengeBeforeRemark
2755              && Thread::current()->is_ConcurrentGC_thread()),
2756          "Incorrect thread type for epilogue execution");
2757 
2758   if (!_between_prologue_and_epilogue) {
2759     // We have already been invoked; this is a gc_epilogue delegation
2760     // from yet another CMS generation that we are responsible for, just
2761     // ignore it since all relevant work has already been done.
2762     return;
2763   }
2764   assert(haveFreelistLocks(), "must have freelist locks");
2765   assert_lock_strong(bitMapLock());
2766 
2767   _ct->klass_rem_set()->set_accumulate_modified_oops(false);
2768 
2769   _cmsGen->gc_epilogue_work(full);
2770 
2771   if (_collectorState == AbortablePreclean || _collectorState == Precleaning) {
2772     // in case sampling was not already enabled, enable it
2773     _start_sampling = true;
2774   }
2775   // reset _eden_chunk_array so sampling starts afresh
2776   _eden_chunk_index = 0;
2777 
2778   size_t cms_used   = _cmsGen->cmsSpace()->used();
2779 
2780   // update performance counters - this uses a special version of
2781   // update_counters() that allows the utilization to be passed as a
2782   // parameter, avoiding multiple calls to used().
2783   //
2784   _cmsGen->update_counters(cms_used);
2785 
2786   if (CMSIncrementalMode) {
2787     icms_update_allocation_limits();
2788   }
2789 
2790   bitMapLock()->unlock();
2791   releaseFreelistLocks();
2792 
2793   if (!CleanChunkPoolAsync) {
2794     Chunk::clean_chunk_pool();
2795   }
2796 
2797   set_did_compact(false);
2798   _between_prologue_and_epilogue = false;  // ready for next cycle
2799 }
2800 
2801 void ConcurrentMarkSweepGeneration::gc_epilogue(bool full) {
2802   collector()->gc_epilogue(full);
2803 
2804   // Also reset promotion tracking in par gc thread states.
2805   for (uint i = 0; i < ParallelGCThreads; i++) {
2806     _par_gc_thread_states[i]->promo.stopTrackingPromotions(i);
2807   }
2808 }
2809 
2810 void ConcurrentMarkSweepGeneration::gc_epilogue_work(bool full) {
2811   assert(!incremental_collection_failed(), "Should have been cleared");
2812   cmsSpace()->setPreconsumptionDirtyCardClosure(NULL);
2813   cmsSpace()->gc_epilogue();
2814     // Print stat counters
2815   NOT_PRODUCT(
2816     assert(_numObjectsAllocated == 0, "check");
2817     assert(_numWordsAllocated == 0, "check");
2818     if (Verbose && PrintGC) {
2819       gclog_or_tty->print("Promoted "SIZE_FORMAT" objects, "
2820                           SIZE_FORMAT" bytes",
2821                  _numObjectsPromoted, _numWordsPromoted*sizeof(HeapWord));
2822     }
2823     _numObjectsPromoted = 0;
2824     _numWordsPromoted   = 0;
2825   )
2826 
2827   if (PrintGC && Verbose) {
2828     // Call down the chain in contiguous_available needs the freelistLock
2829     // so print this out before releasing the freeListLock.
2830     gclog_or_tty->print(" Contiguous available "SIZE_FORMAT" bytes ",
2831                         contiguous_available());
2832   }
2833 }
2834 
2835 #ifndef PRODUCT
2836 bool CMSCollector::have_cms_token() {
2837   Thread* thr = Thread::current();
2838   if (thr->is_VM_thread()) {
2839     return ConcurrentMarkSweepThread::vm_thread_has_cms_token();
2840   } else if (thr->is_ConcurrentGC_thread()) {
2841     return ConcurrentMarkSweepThread::cms_thread_has_cms_token();
2842   } else if (thr->is_GC_task_thread()) {
2843     return ConcurrentMarkSweepThread::vm_thread_has_cms_token() &&
2844            ParGCRareEvent_lock->owned_by_self();
2845   }
2846   return false;
2847 }
2848 #endif
2849 
2850 // Check reachability of the given heap address in CMS generation,
2851 // treating all other generations as roots.
2852 bool CMSCollector::is_cms_reachable(HeapWord* addr) {
2853   // We could "guarantee" below, rather than assert, but I'll
2854   // leave these as "asserts" so that an adventurous debugger
2855   // could try this in the product build provided some subset of
2856   // the conditions were met, provided they were interested in the
2857   // results and knew that the computation below wouldn't interfere
2858   // with other concurrent computations mutating the structures
2859   // being read or written.
2860   assert(SafepointSynchronize::is_at_safepoint(),
2861          "Else mutations in object graph will make answer suspect");
2862   assert(have_cms_token(), "Should hold cms token");
2863   assert(haveFreelistLocks(), "must hold free list locks");
2864   assert_lock_strong(bitMapLock());
2865 
2866   // Clear the marking bit map array before starting, but, just
2867   // for kicks, first report if the given address is already marked
2868   gclog_or_tty->print_cr("Start: Address " PTR_FORMAT " is%s marked", addr,
2869                 _markBitMap.isMarked(addr) ? "" : " not");
2870 
2871   if (verify_after_remark()) {
2872     MutexLockerEx x(verification_mark_bm()->lock(), Mutex::_no_safepoint_check_flag);
2873     bool result = verification_mark_bm()->isMarked(addr);
2874     gclog_or_tty->print_cr("TransitiveMark: Address " PTR_FORMAT " %s marked", addr,
2875                            result ? "IS" : "is NOT");
2876     return result;
2877   } else {
2878     gclog_or_tty->print_cr("Could not compute result");
2879     return false;
2880   }
2881 }
2882 
2883 
2884 void
2885 CMSCollector::print_on_error(outputStream* st) {
2886   CMSCollector* collector = ConcurrentMarkSweepGeneration::_collector;
2887   if (collector != NULL) {
2888     CMSBitMap* bitmap = &collector->_markBitMap;
2889     st->print_cr("Marking Bits: (CMSBitMap*) " PTR_FORMAT, bitmap);
2890     bitmap->print_on_error(st, " Bits: ");
2891 
2892     st->cr();
2893 
2894     CMSBitMap* mut_bitmap = &collector->_modUnionTable;
2895     st->print_cr("Mod Union Table: (CMSBitMap*) " PTR_FORMAT, mut_bitmap);
2896     mut_bitmap->print_on_error(st, " Bits: ");
2897   }
2898 }
2899 
2900 ////////////////////////////////////////////////////////
2901 // CMS Verification Support
2902 ////////////////////////////////////////////////////////
2903 // Following the remark phase, the following invariant
2904 // should hold -- each object in the CMS heap which is
2905 // marked in markBitMap() should be marked in the verification_mark_bm().
2906 
2907 class VerifyMarkedClosure: public BitMapClosure {
2908   CMSBitMap* _marks;
2909   bool       _failed;
2910 
2911  public:
2912   VerifyMarkedClosure(CMSBitMap* bm): _marks(bm), _failed(false) {}
2913 
2914   bool do_bit(size_t offset) {
2915     HeapWord* addr = _marks->offsetToHeapWord(offset);
2916     if (!_marks->isMarked(addr)) {
2917       oop(addr)->print_on(gclog_or_tty);
2918       gclog_or_tty->print_cr(" ("INTPTR_FORMAT" should have been marked)", addr);
2919       _failed = true;
2920     }
2921     return true;
2922   }
2923 
2924   bool failed() { return _failed; }
2925 };
2926 
2927 bool CMSCollector::verify_after_remark(bool silent) {
2928   if (!silent) gclog_or_tty->print(" [Verifying CMS Marking... ");
2929   MutexLockerEx ml(verification_mark_bm()->lock(), Mutex::_no_safepoint_check_flag);
2930   static bool init = false;
2931 
2932   assert(SafepointSynchronize::is_at_safepoint(),
2933          "Else mutations in object graph will make answer suspect");
2934   assert(have_cms_token(),
2935          "Else there may be mutual interference in use of "
2936          " verification data structures");
2937   assert(_collectorState > Marking && _collectorState <= Sweeping,
2938          "Else marking info checked here may be obsolete");
2939   assert(haveFreelistLocks(), "must hold free list locks");
2940   assert_lock_strong(bitMapLock());
2941 
2942 
2943   // Allocate marking bit map if not already allocated
2944   if (!init) { // first time
2945     if (!verification_mark_bm()->allocate(_span)) {
2946       return false;
2947     }
2948     init = true;
2949   }
2950 
2951   assert(verification_mark_stack()->isEmpty(), "Should be empty");
2952 
2953   // Turn off refs discovery -- so we will be tracing through refs.
2954   // This is as intended, because by this time
2955   // GC must already have cleared any refs that need to be cleared,
2956   // and traced those that need to be marked; moreover,
2957   // the marking done here is not going to interfere in any
2958   // way with the marking information used by GC.
2959   NoRefDiscovery no_discovery(ref_processor());
2960 
2961   COMPILER2_PRESENT(DerivedPointerTableDeactivate dpt_deact;)
2962 
2963   // Clear any marks from a previous round
2964   verification_mark_bm()->clear_all();
2965   assert(verification_mark_stack()->isEmpty(), "markStack should be empty");
2966   verify_work_stacks_empty();
2967 
2968   GenCollectedHeap* gch = GenCollectedHeap::heap();
2969   gch->ensure_parsability(false);  // fill TLABs, but no need to retire them
2970   // Update the saved marks which may affect the root scans.
2971   gch->save_marks();
2972 
2973   if (CMSRemarkVerifyVariant == 1) {
2974     // In this first variant of verification, we complete
2975     // all marking, then check if the new marks-vector is
2976     // a subset of the CMS marks-vector.
2977     verify_after_remark_work_1();
2978   } else if (CMSRemarkVerifyVariant == 2) {
2979     // In this second variant of verification, we flag an error
2980     // (i.e. an object reachable in the new marks-vector not reachable
2981     // in the CMS marks-vector) immediately, also indicating the
2982     // identify of an object (A) that references the unmarked object (B) --
2983     // presumably, a mutation to A failed to be picked up by preclean/remark?
2984     verify_after_remark_work_2();
2985   } else {
2986     warning("Unrecognized value %d for CMSRemarkVerifyVariant",
2987             CMSRemarkVerifyVariant);
2988   }
2989   if (!silent) gclog_or_tty->print(" done] ");
2990   return true;
2991 }
2992 
2993 void CMSCollector::verify_after_remark_work_1() {
2994   ResourceMark rm;
2995   HandleMark  hm;
2996   GenCollectedHeap* gch = GenCollectedHeap::heap();
2997 
2998   // Get a clear set of claim bits for the roots processing to work with.
2999   ClassLoaderDataGraph::clear_claimed_marks();
3000 
3001   // Mark from roots one level into CMS
3002   MarkRefsIntoClosure notOlder(_span, verification_mark_bm());
3003   gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
3004 
3005   gch->gen_process_roots(_cmsGen->level(),
3006                          true,   // younger gens are roots
3007                          true,   // activate StrongRootsScope
3008                          SharedHeap::ScanningOption(roots_scanning_options()),
3009                          should_unload_classes(),
3010                          &notOlder,
3011                          NULL,
3012                          NULL);  // SSS: Provide correct closure
3013 
3014   // Now mark from the roots
3015   MarkFromRootsClosure markFromRootsClosure(this, _span,
3016     verification_mark_bm(), verification_mark_stack(),
3017     false /* don't yield */, true /* verifying */);
3018   assert(_restart_addr == NULL, "Expected pre-condition");
3019   verification_mark_bm()->iterate(&markFromRootsClosure);
3020   while (_restart_addr != NULL) {
3021     // Deal with stack overflow: by restarting at the indicated
3022     // address.
3023     HeapWord* ra = _restart_addr;
3024     markFromRootsClosure.reset(ra);
3025     _restart_addr = NULL;
3026     verification_mark_bm()->iterate(&markFromRootsClosure, ra, _span.end());
3027   }
3028   assert(verification_mark_stack()->isEmpty(), "Should have been drained");
3029   verify_work_stacks_empty();
3030 
3031   // Marking completed -- now verify that each bit marked in
3032   // verification_mark_bm() is also marked in markBitMap(); flag all
3033   // errors by printing corresponding objects.
3034   VerifyMarkedClosure vcl(markBitMap());
3035   verification_mark_bm()->iterate(&vcl);
3036   if (vcl.failed()) {
3037     gclog_or_tty->print("Verification failed");
3038     Universe::heap()->print_on(gclog_or_tty);
3039     fatal("CMS: failed marking verification after remark");
3040   }
3041 }
3042 
3043 class VerifyKlassOopsKlassClosure : public KlassClosure {
3044   class VerifyKlassOopsClosure : public OopClosure {
3045     CMSBitMap* _bitmap;
3046    public:
3047     VerifyKlassOopsClosure(CMSBitMap* bitmap) : _bitmap(bitmap) { }
3048     void do_oop(oop* p)       { guarantee(*p == NULL || _bitmap->isMarked((HeapWord*) *p), "Should be marked"); }
3049     void do_oop(narrowOop* p) { ShouldNotReachHere(); }
3050   } _oop_closure;
3051  public:
3052   VerifyKlassOopsKlassClosure(CMSBitMap* bitmap) : _oop_closure(bitmap) {}
3053   void do_klass(Klass* k) {
3054     k->oops_do(&_oop_closure);
3055   }
3056 };
3057 
3058 void CMSCollector::verify_after_remark_work_2() {
3059   ResourceMark rm;
3060   HandleMark  hm;
3061   GenCollectedHeap* gch = GenCollectedHeap::heap();
3062 
3063   // Get a clear set of claim bits for the roots processing to work with.
3064   ClassLoaderDataGraph::clear_claimed_marks();
3065 
3066   // Mark from roots one level into CMS
3067   MarkRefsIntoVerifyClosure notOlder(_span, verification_mark_bm(),
3068                                      markBitMap());
3069   CLDToOopClosure cld_closure(&notOlder, true);
3070 
3071   gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
3072 
3073   gch->gen_process_roots(_cmsGen->level(),
3074                          true,   // younger gens are roots
3075                          true,   // activate StrongRootsScope
3076                          SharedHeap::ScanningOption(roots_scanning_options()),
3077                          should_unload_classes(),
3078                          &notOlder,
3079                          NULL,
3080                          &cld_closure);
3081 
3082   // Now mark from the roots
3083   MarkFromRootsVerifyClosure markFromRootsClosure(this, _span,
3084     verification_mark_bm(), markBitMap(), verification_mark_stack());
3085   assert(_restart_addr == NULL, "Expected pre-condition");
3086   verification_mark_bm()->iterate(&markFromRootsClosure);
3087   while (_restart_addr != NULL) {
3088     // Deal with stack overflow: by restarting at the indicated
3089     // address.
3090     HeapWord* ra = _restart_addr;
3091     markFromRootsClosure.reset(ra);
3092     _restart_addr = NULL;
3093     verification_mark_bm()->iterate(&markFromRootsClosure, ra, _span.end());
3094   }
3095   assert(verification_mark_stack()->isEmpty(), "Should have been drained");
3096   verify_work_stacks_empty();
3097 
3098   VerifyKlassOopsKlassClosure verify_klass_oops(verification_mark_bm());
3099   ClassLoaderDataGraph::classes_do(&verify_klass_oops);
3100 
3101   // Marking completed -- now verify that each bit marked in
3102   // verification_mark_bm() is also marked in markBitMap(); flag all
3103   // errors by printing corresponding objects.
3104   VerifyMarkedClosure vcl(markBitMap());
3105   verification_mark_bm()->iterate(&vcl);
3106   assert(!vcl.failed(), "Else verification above should not have succeeded");
3107 }
3108 
3109 void ConcurrentMarkSweepGeneration::save_marks() {
3110   // delegate to CMS space
3111   cmsSpace()->save_marks();
3112   for (uint i = 0; i < ParallelGCThreads; i++) {
3113     _par_gc_thread_states[i]->promo.startTrackingPromotions();
3114   }
3115 }
3116 
3117 bool ConcurrentMarkSweepGeneration::no_allocs_since_save_marks() {
3118   return cmsSpace()->no_allocs_since_save_marks();
3119 }
3120 
3121 #define CMS_SINCE_SAVE_MARKS_DEFN(OopClosureType, nv_suffix)    \
3122                                                                 \
3123 void ConcurrentMarkSweepGeneration::                            \
3124 oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl) {   \
3125   cl->set_generation(this);                                     \
3126   cmsSpace()->oop_since_save_marks_iterate##nv_suffix(cl);      \
3127   cl->reset_generation();                                       \
3128   save_marks();                                                 \
3129 }
3130 
3131 ALL_SINCE_SAVE_MARKS_CLOSURES(CMS_SINCE_SAVE_MARKS_DEFN)
3132 
3133 void
3134 ConcurrentMarkSweepGeneration::younger_refs_iterate(OopsInGenClosure* cl) {
3135   cl->set_generation(this);
3136   younger_refs_in_space_iterate(_cmsSpace, cl);
3137   cl->reset_generation();
3138 }
3139 
3140 void
3141 ConcurrentMarkSweepGeneration::oop_iterate(ExtendedOopClosure* cl) {
3142   if (freelistLock()->owned_by_self()) {
3143     Generation::oop_iterate(cl);
3144   } else {
3145     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
3146     Generation::oop_iterate(cl);
3147   }
3148 }
3149 
3150 void
3151 ConcurrentMarkSweepGeneration::object_iterate(ObjectClosure* cl) {
3152   if (freelistLock()->owned_by_self()) {
3153     Generation::object_iterate(cl);
3154   } else {
3155     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
3156     Generation::object_iterate(cl);
3157   }
3158 }
3159 
3160 void
3161 ConcurrentMarkSweepGeneration::safe_object_iterate(ObjectClosure* cl) {
3162   if (freelistLock()->owned_by_self()) {
3163     Generation::safe_object_iterate(cl);
3164   } else {
3165     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
3166     Generation::safe_object_iterate(cl);
3167   }
3168 }
3169 
3170 void
3171 ConcurrentMarkSweepGeneration::post_compact() {
3172 }
3173 
3174 void
3175 ConcurrentMarkSweepGeneration::prepare_for_verify() {
3176   // Fix the linear allocation blocks to look like free blocks.
3177 
3178   // Locks are normally acquired/released in gc_prologue/gc_epilogue, but those
3179   // are not called when the heap is verified during universe initialization and
3180   // at vm shutdown.
3181   if (freelistLock()->owned_by_self()) {
3182     cmsSpace()->prepare_for_verify();
3183   } else {
3184     MutexLockerEx fll(freelistLock(), Mutex::_no_safepoint_check_flag);
3185     cmsSpace()->prepare_for_verify();
3186   }
3187 }
3188 
3189 void
3190 ConcurrentMarkSweepGeneration::verify() {
3191   // Locks are normally acquired/released in gc_prologue/gc_epilogue, but those
3192   // are not called when the heap is verified during universe initialization and
3193   // at vm shutdown.
3194   if (freelistLock()->owned_by_self()) {
3195     cmsSpace()->verify();
3196   } else {
3197     MutexLockerEx fll(freelistLock(), Mutex::_no_safepoint_check_flag);
3198     cmsSpace()->verify();
3199   }
3200 }
3201 
3202 void CMSCollector::verify() {
3203   _cmsGen->verify();
3204 }
3205 
3206 #ifndef PRODUCT
3207 bool CMSCollector::overflow_list_is_empty() const {
3208   assert(_num_par_pushes >= 0, "Inconsistency");
3209   if (_overflow_list == NULL) {
3210     assert(_num_par_pushes == 0, "Inconsistency");
3211   }
3212   return _overflow_list == NULL;
3213 }
3214 
3215 // The methods verify_work_stacks_empty() and verify_overflow_empty()
3216 // merely consolidate assertion checks that appear to occur together frequently.
3217 void CMSCollector::verify_work_stacks_empty() const {
3218   assert(_markStack.isEmpty(), "Marking stack should be empty");
3219   assert(overflow_list_is_empty(), "Overflow list should be empty");
3220 }
3221 
3222 void CMSCollector::verify_overflow_empty() const {
3223   assert(overflow_list_is_empty(), "Overflow list should be empty");
3224   assert(no_preserved_marks(), "No preserved marks");
3225 }
3226 #endif // PRODUCT
3227 
3228 // Decide if we want to enable class unloading as part of the
3229 // ensuing concurrent GC cycle. We will collect and
3230 // unload classes if it's the case that:
3231 // (1) an explicit gc request has been made and the flag
3232 //     ExplicitGCInvokesConcurrentAndUnloadsClasses is set, OR
3233 // (2) (a) class unloading is enabled at the command line, and
3234 //     (b) old gen is getting really full
3235 // NOTE: Provided there is no change in the state of the heap between
3236 // calls to this method, it should have idempotent results. Moreover,
3237 // its results should be monotonically increasing (i.e. going from 0 to 1,
3238 // but not 1 to 0) between successive calls between which the heap was
3239 // not collected. For the implementation below, it must thus rely on
3240 // the property that concurrent_cycles_since_last_unload()
3241 // will not decrease unless a collection cycle happened and that
3242 // _cmsGen->is_too_full() are
3243 // themselves also monotonic in that sense. See check_monotonicity()
3244 // below.
3245 void CMSCollector::update_should_unload_classes() {
3246   _should_unload_classes = false;
3247   // Condition 1 above
3248   if (_full_gc_requested && ExplicitGCInvokesConcurrentAndUnloadsClasses) {
3249     _should_unload_classes = true;
3250   } else if (CMSClassUnloadingEnabled) { // Condition 2.a above
3251     // Disjuncts 2.b.(i,ii,iii) above
3252     _should_unload_classes = (concurrent_cycles_since_last_unload() >=
3253                               CMSClassUnloadingMaxInterval)
3254                            || _cmsGen->is_too_full();
3255   }
3256 }
3257 
3258 bool ConcurrentMarkSweepGeneration::is_too_full() const {
3259   bool res = should_concurrent_collect();
3260   res = res && (occupancy() > (double)CMSIsTooFullPercentage/100.0);
3261   return res;
3262 }
3263 
3264 void CMSCollector::setup_cms_unloading_and_verification_state() {
3265   const  bool should_verify =   VerifyBeforeGC || VerifyAfterGC || VerifyDuringGC
3266                              || VerifyBeforeExit;
3267   const  int  rso           =   SharedHeap::SO_AllCodeCache;
3268 
3269   // We set the proper root for this CMS cycle here.
3270   if (should_unload_classes()) {   // Should unload classes this cycle
3271     remove_root_scanning_option(rso);  // Shrink the root set appropriately
3272     set_verifying(should_verify);    // Set verification state for this cycle
3273     return;                            // Nothing else needs to be done at this time
3274   }
3275 
3276   // Not unloading classes this cycle
3277   assert(!should_unload_classes(), "Inconsistency!");
3278 
3279   if ((!verifying() || unloaded_classes_last_cycle()) && should_verify) {
3280     // Include symbols, strings and code cache elements to prevent their resurrection.
3281     add_root_scanning_option(rso);
3282     set_verifying(true);
3283   } else if (verifying() && !should_verify) {
3284     // We were verifying, but some verification flags got disabled.
3285     set_verifying(false);
3286     // Exclude symbols, strings and code cache elements from root scanning to
3287     // reduce IM and RM pauses.
3288     remove_root_scanning_option(rso);
3289   }
3290 }
3291 
3292 
3293 #ifndef PRODUCT
3294 HeapWord* CMSCollector::block_start(const void* p) const {
3295   const HeapWord* addr = (HeapWord*)p;
3296   if (_span.contains(p)) {
3297     if (_cmsGen->cmsSpace()->is_in_reserved(addr)) {
3298       return _cmsGen->cmsSpace()->block_start(p);
3299     }
3300   }
3301   return NULL;
3302 }
3303 #endif
3304 
3305 HeapWord*
3306 ConcurrentMarkSweepGeneration::expand_and_allocate(size_t word_size,
3307                                                    bool   tlab,
3308                                                    bool   parallel) {
3309   CMSSynchronousYieldRequest yr;
3310   assert(!tlab, "Can't deal with TLAB allocation");
3311   MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
3312   expand(word_size*HeapWordSize, MinHeapDeltaBytes,
3313     CMSExpansionCause::_satisfy_allocation);
3314   if (GCExpandToAllocateDelayMillis > 0) {
3315     os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
3316   }
3317   return have_lock_and_allocate(word_size, tlab);
3318 }
3319 
3320 // YSR: All of this generation expansion/shrinking stuff is an exact copy of
3321 // OneContigSpaceCardGeneration, which makes me wonder if we should move this
3322 // to CardGeneration and share it...
3323 bool ConcurrentMarkSweepGeneration::expand(size_t bytes, size_t expand_bytes) {
3324   return CardGeneration::expand(bytes, expand_bytes);
3325 }
3326 
3327 void ConcurrentMarkSweepGeneration::expand(size_t bytes, size_t expand_bytes,
3328   CMSExpansionCause::Cause cause)
3329 {
3330 
3331   bool success = expand(bytes, expand_bytes);
3332 
3333   // remember why we expanded; this information is used
3334   // by shouldConcurrentCollect() when making decisions on whether to start
3335   // a new CMS cycle.
3336   if (success) {
3337     set_expansion_cause(cause);
3338     if (PrintGCDetails && Verbose) {
3339       gclog_or_tty->print_cr("Expanded CMS gen for %s",
3340         CMSExpansionCause::to_string(cause));
3341     }
3342   }
3343 }
3344 
3345 HeapWord* ConcurrentMarkSweepGeneration::expand_and_par_lab_allocate(CMSParGCThreadState* ps, size_t word_sz) {
3346   HeapWord* res = NULL;
3347   MutexLocker x(ParGCRareEvent_lock);
3348   while (true) {
3349     // Expansion by some other thread might make alloc OK now:
3350     res = ps->lab.alloc(word_sz);
3351     if (res != NULL) return res;
3352     // If there's not enough expansion space available, give up.
3353     if (_virtual_space.uncommitted_size() < (word_sz * HeapWordSize)) {
3354       return NULL;
3355     }
3356     // Otherwise, we try expansion.
3357     expand(word_sz*HeapWordSize, MinHeapDeltaBytes,
3358       CMSExpansionCause::_allocate_par_lab);
3359     // Now go around the loop and try alloc again;
3360     // A competing par_promote might beat us to the expansion space,
3361     // so we may go around the loop again if promotion fails again.
3362     if (GCExpandToAllocateDelayMillis > 0) {
3363       os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
3364     }
3365   }
3366 }
3367 
3368 
3369 bool ConcurrentMarkSweepGeneration::expand_and_ensure_spooling_space(
3370   PromotionInfo* promo) {
3371   MutexLocker x(ParGCRareEvent_lock);
3372   size_t refill_size_bytes = promo->refillSize() * HeapWordSize;
3373   while (true) {
3374     // Expansion by some other thread might make alloc OK now:
3375     if (promo->ensure_spooling_space()) {
3376       assert(promo->has_spooling_space(),
3377              "Post-condition of successful ensure_spooling_space()");
3378       return true;
3379     }
3380     // If there's not enough expansion space available, give up.
3381     if (_virtual_space.uncommitted_size() < refill_size_bytes) {
3382       return false;
3383     }
3384     // Otherwise, we try expansion.
3385     expand(refill_size_bytes, MinHeapDeltaBytes,
3386       CMSExpansionCause::_allocate_par_spooling_space);
3387     // Now go around the loop and try alloc again;
3388     // A competing allocation might beat us to the expansion space,
3389     // so we may go around the loop again if allocation fails again.
3390     if (GCExpandToAllocateDelayMillis > 0) {
3391       os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
3392     }
3393   }
3394 }
3395 
3396 
3397 void ConcurrentMarkSweepGeneration::shrink_by(size_t bytes) {
3398   assert_locked_or_safepoint(ExpandHeap_lock);
3399   // Shrink committed space
3400   _virtual_space.shrink_by(bytes);
3401   // Shrink space; this also shrinks the space's BOT
3402   _cmsSpace->set_end((HeapWord*) _virtual_space.high());
3403   size_t new_word_size = heap_word_size(_cmsSpace->capacity());
3404   // Shrink the shared block offset array
3405   _bts->resize(new_word_size);
3406   MemRegion mr(_cmsSpace->bottom(), new_word_size);
3407   // Shrink the card table
3408   Universe::heap()->barrier_set()->resize_covered_region(mr);
3409 
3410   if (Verbose && PrintGC) {
3411     size_t new_mem_size = _virtual_space.committed_size();
3412     size_t old_mem_size = new_mem_size + bytes;
3413     gclog_or_tty->print_cr("Shrinking %s from " SIZE_FORMAT "K to " SIZE_FORMAT "K",
3414                   name(), old_mem_size/K, new_mem_size/K);
3415   }
3416 }
3417 
3418 void ConcurrentMarkSweepGeneration::shrink(size_t bytes) {
3419   assert_locked_or_safepoint(Heap_lock);
3420   size_t size = ReservedSpace::page_align_size_down(bytes);
3421   // Only shrink if a compaction was done so that all the free space
3422   // in the generation is in a contiguous block at the end.
3423   if (size > 0 && did_compact()) {
3424     shrink_by(size);
3425   }
3426 }
3427 
3428 bool ConcurrentMarkSweepGeneration::grow_by(size_t bytes) {
3429   assert_locked_or_safepoint(Heap_lock);
3430   bool result = _virtual_space.expand_by(bytes);
3431   if (result) {
3432     size_t new_word_size =
3433       heap_word_size(_virtual_space.committed_size());
3434     MemRegion mr(_cmsSpace->bottom(), new_word_size);
3435     _bts->resize(new_word_size);  // resize the block offset shared array
3436     Universe::heap()->barrier_set()->resize_covered_region(mr);
3437     // Hmmmm... why doesn't CFLS::set_end verify locking?
3438     // This is quite ugly; FIX ME XXX
3439     _cmsSpace->assert_locked(freelistLock());
3440     _cmsSpace->set_end((HeapWord*)_virtual_space.high());
3441 
3442     // update the space and generation capacity counters
3443     if (UsePerfData) {
3444       _space_counters->update_capacity();
3445       _gen_counters->update_all();
3446     }
3447 
3448     if (Verbose && PrintGC) {
3449       size_t new_mem_size = _virtual_space.committed_size();
3450       size_t old_mem_size = new_mem_size - bytes;
3451       gclog_or_tty->print_cr("Expanding %s from " SIZE_FORMAT "K by " SIZE_FORMAT "K to " SIZE_FORMAT "K",
3452                     name(), old_mem_size/K, bytes/K, new_mem_size/K);
3453     }
3454   }
3455   return result;
3456 }
3457 
3458 bool ConcurrentMarkSweepGeneration::grow_to_reserved() {
3459   assert_locked_or_safepoint(Heap_lock);
3460   bool success = true;
3461   const size_t remaining_bytes = _virtual_space.uncommitted_size();
3462   if (remaining_bytes > 0) {
3463     success = grow_by(remaining_bytes);
3464     DEBUG_ONLY(if (!success) warning("grow to reserved failed");)
3465   }
3466   return success;
3467 }
3468 
3469 void ConcurrentMarkSweepGeneration::shrink_free_list_by(size_t bytes) {
3470   assert_locked_or_safepoint(Heap_lock);
3471   assert_lock_strong(freelistLock());
3472   if (PrintGCDetails && Verbose) {
3473     warning("Shrinking of CMS not yet implemented");
3474   }
3475   return;
3476 }
3477 
3478 
3479 // Simple ctor/dtor wrapper for accounting & timer chores around concurrent
3480 // phases.
3481 class CMSPhaseAccounting: public StackObj {
3482  public:
3483   CMSPhaseAccounting(CMSCollector *collector,
3484                      const char *phase,
3485                      const GCId gc_id,
3486                      bool print_cr = true);
3487   ~CMSPhaseAccounting();
3488 
3489  private:
3490   CMSCollector *_collector;
3491   const char *_phase;
3492   elapsedTimer _wallclock;
3493   bool _print_cr;
3494   const GCId _gc_id;
3495 
3496  public:
3497   // Not MT-safe; so do not pass around these StackObj's
3498   // where they may be accessed by other threads.
3499   jlong wallclock_millis() {
3500     assert(_wallclock.is_active(), "Wall clock should not stop");
3501     _wallclock.stop();  // to record time
3502     jlong ret = _wallclock.milliseconds();
3503     _wallclock.start(); // restart
3504     return ret;
3505   }
3506 };
3507 
3508 CMSPhaseAccounting::CMSPhaseAccounting(CMSCollector *collector,
3509                                        const char *phase,
3510                                        const GCId gc_id,
3511                                        bool print_cr) :
3512   _collector(collector), _phase(phase), _print_cr(print_cr), _gc_id(gc_id) {
3513 
3514   if (PrintCMSStatistics != 0) {
3515     _collector->resetYields();
3516   }
3517   if (PrintGCDetails) {
3518     gclog_or_tty->gclog_stamp(_gc_id);
3519     gclog_or_tty->print_cr("[%s-concurrent-%s-start]",
3520       _collector->cmsGen()->short_name(), _phase);
3521   }
3522   _collector->resetTimer();
3523   _wallclock.start();
3524   _collector->startTimer();
3525 }
3526 
3527 CMSPhaseAccounting::~CMSPhaseAccounting() {
3528   assert(_wallclock.is_active(), "Wall clock should not have stopped");
3529   _collector->stopTimer();
3530   _wallclock.stop();
3531   if (PrintGCDetails) {
3532     gclog_or_tty->gclog_stamp(_gc_id);
3533     gclog_or_tty->print("[%s-concurrent-%s: %3.3f/%3.3f secs]",
3534                  _collector->cmsGen()->short_name(),
3535                  _phase, _collector->timerValue(), _wallclock.seconds());
3536     if (_print_cr) {
3537       gclog_or_tty->cr();
3538     }
3539     if (PrintCMSStatistics != 0) {
3540       gclog_or_tty->print_cr(" (CMS-concurrent-%s yielded %d times)", _phase,
3541                     _collector->yields());
3542     }
3543   }
3544 }
3545 
3546 // CMS work
3547 
3548 // The common parts of CMSParInitialMarkTask and CMSParRemarkTask.
3549 class CMSParMarkTask : public AbstractGangTask {
3550  protected:
3551   CMSCollector*     _collector;
3552   int               _n_workers;
3553   CMSParMarkTask(const char* name, CMSCollector* collector, int n_workers) :
3554       AbstractGangTask(name),
3555       _collector(collector),
3556       _n_workers(n_workers) {}
3557   // Work method in support of parallel rescan ... of young gen spaces
3558   void do_young_space_rescan(uint worker_id, OopsInGenClosure* cl,
3559                              ContiguousSpace* space,
3560                              HeapWord** chunk_array, size_t chunk_top);
3561   void work_on_young_gen_roots(uint worker_id, OopsInGenClosure* cl);
3562 };
3563 
3564 // Parallel initial mark task
3565 class CMSParInitialMarkTask: public CMSParMarkTask {
3566  public:
3567   CMSParInitialMarkTask(CMSCollector* collector, int n_workers) :
3568       CMSParMarkTask("Scan roots and young gen for initial mark in parallel",
3569                      collector, n_workers) {}
3570   void work(uint worker_id);
3571 };
3572 
3573 // Checkpoint the roots into this generation from outside
3574 // this generation. [Note this initial checkpoint need only
3575 // be approximate -- we'll do a catch up phase subsequently.]
3576 void CMSCollector::checkpointRootsInitial(bool asynch) {
3577   assert(_collectorState == InitialMarking, "Wrong collector state");
3578   check_correct_thread_executing();
3579   TraceCMSMemoryManagerStats tms(_collectorState,GenCollectedHeap::heap()->gc_cause());
3580 
3581   save_heap_summary();
3582   report_heap_summary(GCWhen::BeforeGC);
3583 
3584   ReferenceProcessor* rp = ref_processor();
3585   SpecializationStats::clear();
3586   assert(_restart_addr == NULL, "Control point invariant");
3587   if (asynch) {
3588     // acquire locks for subsequent manipulations
3589     MutexLockerEx x(bitMapLock(),
3590                     Mutex::_no_safepoint_check_flag);
3591     checkpointRootsInitialWork(asynch);
3592     // enable ("weak") refs discovery
3593     rp->enable_discovery(true /*verify_disabled*/, true /*check_no_refs*/);
3594     _collectorState = Marking;
3595   } else {
3596     // (Weak) Refs discovery: this is controlled from genCollectedHeap::do_collection
3597     // which recognizes if we are a CMS generation, and doesn't try to turn on
3598     // discovery; verify that they aren't meddling.
3599     assert(!rp->discovery_is_atomic(),
3600            "incorrect setting of discovery predicate");
3601     assert(!rp->discovery_enabled(), "genCollectedHeap shouldn't control "
3602            "ref discovery for this generation kind");
3603     // already have locks
3604     checkpointRootsInitialWork(asynch);
3605     // now enable ("weak") refs discovery
3606     rp->enable_discovery(true /*verify_disabled*/, false /*verify_no_refs*/);
3607     _collectorState = Marking;
3608   }
3609   SpecializationStats::print();
3610 }
3611 
3612 void CMSCollector::checkpointRootsInitialWork(bool asynch) {
3613   assert(SafepointSynchronize::is_at_safepoint(), "world should be stopped");
3614   assert(_collectorState == InitialMarking, "just checking");
3615 
3616   // If there has not been a GC[n-1] since last GC[n] cycle completed,
3617   // precede our marking with a collection of all
3618   // younger generations to keep floating garbage to a minimum.
3619   // XXX: we won't do this for now -- it's an optimization to be done later.
3620 
3621   // already have locks
3622   assert_lock_strong(bitMapLock());
3623   assert(_markBitMap.isAllClear(), "was reset at end of previous cycle");
3624 
3625   // Setup the verification and class unloading state for this
3626   // CMS collection cycle.
3627   setup_cms_unloading_and_verification_state();
3628 
3629   NOT_PRODUCT(GCTraceTime t("\ncheckpointRootsInitialWork",
3630     PrintGCDetails && Verbose, true, _gc_timer_cm, _gc_tracer_cm->gc_id());)
3631 
3632   // Reset all the PLAB chunk arrays if necessary.
3633   if (_survivor_plab_array != NULL && !CMSPLABRecordAlways) {
3634     reset_survivor_plab_arrays();
3635   }
3636 
3637   ResourceMark rm;
3638   HandleMark  hm;
3639 
3640   MarkRefsIntoClosure notOlder(_span, &_markBitMap);
3641   GenCollectedHeap* gch = GenCollectedHeap::heap();
3642 
3643   verify_work_stacks_empty();
3644   verify_overflow_empty();
3645 
3646   gch->ensure_parsability(false);  // fill TLABs, but no need to retire them
3647   // Update the saved marks which may affect the root scans.
3648   gch->save_marks();
3649 
3650   // weak reference processing has not started yet.
3651   ref_processor()->set_enqueuing_is_done(false);
3652 
3653   // Need to remember all newly created CLDs,
3654   // so that we can guarantee that the remark finds them.
3655   ClassLoaderDataGraph::remember_new_clds(true);
3656 
3657   // Whenever a CLD is found, it will be claimed before proceeding to mark
3658   // the klasses. The claimed marks need to be cleared before marking starts.
3659   ClassLoaderDataGraph::clear_claimed_marks();
3660 
3661   if (CMSPrintEdenSurvivorChunks) {
3662     print_eden_and_survivor_chunk_arrays();
3663   }
3664 
3665   {
3666     COMPILER2_PRESENT(DerivedPointerTableDeactivate dpt_deact;)
3667     if (CMSParallelInitialMarkEnabled && CollectedHeap::use_parallel_gc_threads()) {
3668       // The parallel version.
3669       FlexibleWorkGang* workers = gch->workers();
3670       assert(workers != NULL, "Need parallel worker threads.");
3671       int n_workers = workers->active_workers();
3672       CMSParInitialMarkTask tsk(this, n_workers);
3673       gch->set_par_threads(n_workers);
3674       initialize_sequential_subtasks_for_young_gen_rescan(n_workers);
3675       if (n_workers > 1) {
3676         GenCollectedHeap::StrongRootsScope srs(gch);
3677         workers->run_task(&tsk);
3678       } else {
3679         GenCollectedHeap::StrongRootsScope srs(gch);
3680         tsk.work(0);
3681       }
3682       gch->set_par_threads(0);
3683     } else {
3684       // The serial version.
3685       CLDToOopClosure cld_closure(&notOlder, true);
3686       gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
3687       gch->gen_process_roots(_cmsGen->level(),
3688                              true,   // younger gens are roots
3689                              true,   // activate StrongRootsScope
3690                              SharedHeap::ScanningOption(roots_scanning_options()),
3691                              should_unload_classes(),
3692                              &notOlder,
3693                              NULL,
3694                              &cld_closure);
3695     }
3696   }
3697 
3698   // Clear mod-union table; it will be dirtied in the prologue of
3699   // CMS generation per each younger generation collection.
3700 
3701   assert(_modUnionTable.isAllClear(),
3702        "Was cleared in most recent final checkpoint phase"
3703        " or no bits are set in the gc_prologue before the start of the next "
3704        "subsequent marking phase.");
3705 
3706   assert(_ct->klass_rem_set()->mod_union_is_clear(), "Must be");
3707 
3708   // Save the end of the used_region of the constituent generations
3709   // to be used to limit the extent of sweep in each generation.
3710   save_sweep_limits();
3711   verify_overflow_empty();
3712 }
3713 
3714 bool CMSCollector::markFromRoots(bool asynch) {
3715   // we might be tempted to assert that:
3716   // assert(asynch == !SafepointSynchronize::is_at_safepoint(),
3717   //        "inconsistent argument?");
3718   // However that wouldn't be right, because it's possible that
3719   // a safepoint is indeed in progress as a younger generation
3720   // stop-the-world GC happens even as we mark in this generation.
3721   assert(_collectorState == Marking, "inconsistent state?");
3722   check_correct_thread_executing();
3723   verify_overflow_empty();
3724 
3725   bool res;
3726   if (asynch) {
3727     // Weak ref discovery note: We may be discovering weak
3728     // refs in this generation concurrent (but interleaved) with
3729     // weak ref discovery by a younger generation collector.
3730 
3731     CMSTokenSyncWithLocks ts(true, bitMapLock());
3732     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
3733     CMSPhaseAccounting pa(this, "mark", _gc_tracer_cm->gc_id(), !PrintGCDetails);
3734     res = markFromRootsWork(asynch);
3735     if (res) {
3736       _collectorState = Precleaning;
3737     } else { // We failed and a foreground collection wants to take over
3738       assert(_foregroundGCIsActive, "internal state inconsistency");
3739       assert(_restart_addr == NULL,  "foreground will restart from scratch");
3740       if (PrintGCDetails) {
3741         gclog_or_tty->print_cr("bailing out to foreground collection");
3742       }
3743     }
3744   } else {
3745     assert(SafepointSynchronize::is_at_safepoint(),
3746            "inconsistent with asynch == false");
3747     // already have locks
3748     res = markFromRootsWork(asynch);
3749     _collectorState = FinalMarking;
3750   }
3751   verify_overflow_empty();
3752   return res;
3753 }
3754 
3755 bool CMSCollector::markFromRootsWork(bool asynch) {
3756   // iterate over marked bits in bit map, doing a full scan and mark
3757   // from these roots using the following algorithm:
3758   // . if oop is to the right of the current scan pointer,
3759   //   mark corresponding bit (we'll process it later)
3760   // . else (oop is to left of current scan pointer)
3761   //   push oop on marking stack
3762   // . drain the marking stack
3763 
3764   // Note that when we do a marking step we need to hold the
3765   // bit map lock -- recall that direct allocation (by mutators)
3766   // and promotion (by younger generation collectors) is also
3767   // marking the bit map. [the so-called allocate live policy.]
3768   // Because the implementation of bit map marking is not
3769   // robust wrt simultaneous marking of bits in the same word,
3770   // we need to make sure that there is no such interference
3771   // between concurrent such updates.
3772 
3773   // already have locks
3774   assert_lock_strong(bitMapLock());
3775 
3776   verify_work_stacks_empty();
3777   verify_overflow_empty();
3778   bool result = false;
3779   if (CMSConcurrentMTEnabled && ConcGCThreads > 0) {
3780     result = do_marking_mt(asynch);
3781   } else {
3782     result = do_marking_st(asynch);
3783   }
3784   return result;
3785 }
3786 
3787 // Forward decl
3788 class CMSConcMarkingTask;
3789 
3790 class CMSConcMarkingTerminator: public ParallelTaskTerminator {
3791   CMSCollector*       _collector;
3792   CMSConcMarkingTask* _task;
3793  public:
3794   virtual void yield();
3795 
3796   // "n_threads" is the number of threads to be terminated.
3797   // "queue_set" is a set of work queues of other threads.
3798   // "collector" is the CMS collector associated with this task terminator.
3799   // "yield" indicates whether we need the gang as a whole to yield.
3800   CMSConcMarkingTerminator(int n_threads, TaskQueueSetSuper* queue_set, CMSCollector* collector) :
3801     ParallelTaskTerminator(n_threads, queue_set),
3802     _collector(collector) { }
3803 
3804   void set_task(CMSConcMarkingTask* task) {
3805     _task = task;
3806   }
3807 };
3808 
3809 class CMSConcMarkingTerminatorTerminator: public TerminatorTerminator {
3810   CMSConcMarkingTask* _task;
3811  public:
3812   bool should_exit_termination();
3813   void set_task(CMSConcMarkingTask* task) {
3814     _task = task;
3815   }
3816 };
3817 
3818 // MT Concurrent Marking Task
3819 class CMSConcMarkingTask: public YieldingFlexibleGangTask {
3820   CMSCollector* _collector;
3821   int           _n_workers;                  // requested/desired # workers
3822   bool          _asynch;
3823   bool          _result;
3824   CompactibleFreeListSpace*  _cms_space;
3825   char          _pad_front[64];   // padding to ...
3826   HeapWord*     _global_finger;   // ... avoid sharing cache line
3827   char          _pad_back[64];
3828   HeapWord*     _restart_addr;
3829 
3830   //  Exposed here for yielding support
3831   Mutex* const _bit_map_lock;
3832 
3833   // The per thread work queues, available here for stealing
3834   OopTaskQueueSet*  _task_queues;
3835 
3836   // Termination (and yielding) support
3837   CMSConcMarkingTerminator _term;
3838   CMSConcMarkingTerminatorTerminator _term_term;
3839 
3840  public:
3841   CMSConcMarkingTask(CMSCollector* collector,
3842                  CompactibleFreeListSpace* cms_space,
3843                  bool asynch,
3844                  YieldingFlexibleWorkGang* workers,
3845                  OopTaskQueueSet* task_queues):
3846     YieldingFlexibleGangTask("Concurrent marking done multi-threaded"),
3847     _collector(collector),
3848     _cms_space(cms_space),
3849     _asynch(asynch), _n_workers(0), _result(true),
3850     _task_queues(task_queues),
3851     _term(_n_workers, task_queues, _collector),
3852     _bit_map_lock(collector->bitMapLock())
3853   {
3854     _requested_size = _n_workers;
3855     _term.set_task(this);
3856     _term_term.set_task(this);
3857     _restart_addr = _global_finger = _cms_space->bottom();
3858   }
3859 
3860 
3861   OopTaskQueueSet* task_queues()  { return _task_queues; }
3862 
3863   OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
3864 
3865   HeapWord** global_finger_addr() { return &_global_finger; }
3866 
3867   CMSConcMarkingTerminator* terminator() { return &_term; }
3868 
3869   virtual void set_for_termination(int active_workers) {
3870     terminator()->reset_for_reuse(active_workers);
3871   }
3872 
3873   void work(uint worker_id);
3874   bool should_yield() {
3875     return    ConcurrentMarkSweepThread::should_yield()
3876            && !_collector->foregroundGCIsActive()
3877            && _asynch;
3878   }
3879 
3880   virtual void coordinator_yield();  // stuff done by coordinator
3881   bool result() { return _result; }
3882 
3883   void reset(HeapWord* ra) {
3884     assert(_global_finger >= _cms_space->end(),  "Postcondition of ::work(i)");
3885     _restart_addr = _global_finger = ra;
3886     _term.reset_for_reuse();
3887   }
3888 
3889   static bool get_work_from_overflow_stack(CMSMarkStack* ovflw_stk,
3890                                            OopTaskQueue* work_q);
3891 
3892  private:
3893   void do_scan_and_mark(int i, CompactibleFreeListSpace* sp);
3894   void do_work_steal(int i);
3895   void bump_global_finger(HeapWord* f);
3896 };
3897 
3898 bool CMSConcMarkingTerminatorTerminator::should_exit_termination() {
3899   assert(_task != NULL, "Error");
3900   return _task->yielding();
3901   // Note that we do not need the disjunct || _task->should_yield() above
3902   // because we want terminating threads to yield only if the task
3903   // is already in the midst of yielding, which happens only after at least one
3904   // thread has yielded.
3905 }
3906 
3907 void CMSConcMarkingTerminator::yield() {
3908   if (_task->should_yield()) {
3909     _task->yield();
3910   } else {
3911     ParallelTaskTerminator::yield();
3912   }
3913 }
3914 
3915 ////////////////////////////////////////////////////////////////
3916 // Concurrent Marking Algorithm Sketch
3917 ////////////////////////////////////////////////////////////////
3918 // Until all tasks exhausted (both spaces):
3919 // -- claim next available chunk
3920 // -- bump global finger via CAS
3921 // -- find first object that starts in this chunk
3922 //    and start scanning bitmap from that position
3923 // -- scan marked objects for oops
3924 // -- CAS-mark target, and if successful:
3925 //    . if target oop is above global finger (volatile read)
3926 //      nothing to do
3927 //    . if target oop is in chunk and above local finger
3928 //        then nothing to do
3929 //    . else push on work-queue
3930 // -- Deal with possible overflow issues:
3931 //    . local work-queue overflow causes stuff to be pushed on
3932 //      global (common) overflow queue
3933 //    . always first empty local work queue
3934 //    . then get a batch of oops from global work queue if any
3935 //    . then do work stealing
3936 // -- When all tasks claimed (both spaces)
3937 //    and local work queue empty,
3938 //    then in a loop do:
3939 //    . check global overflow stack; steal a batch of oops and trace
3940 //    . try to steal from other threads oif GOS is empty
3941 //    . if neither is available, offer termination
3942 // -- Terminate and return result
3943 //
3944 void CMSConcMarkingTask::work(uint worker_id) {
3945   elapsedTimer _timer;
3946   ResourceMark rm;
3947   HandleMark hm;
3948 
3949   DEBUG_ONLY(_collector->verify_overflow_empty();)
3950 
3951   // Before we begin work, our work queue should be empty
3952   assert(work_queue(worker_id)->size() == 0, "Expected to be empty");
3953   // Scan the bitmap covering _cms_space, tracing through grey objects.
3954   _timer.start();
3955   do_scan_and_mark(worker_id, _cms_space);
3956   _timer.stop();
3957   if (PrintCMSStatistics != 0) {
3958     gclog_or_tty->print_cr("Finished cms space scanning in %dth thread: %3.3f sec",
3959       worker_id, _timer.seconds());
3960       // XXX: need xxx/xxx type of notation, two timers
3961   }
3962 
3963   // ... do work stealing
3964   _timer.reset();
3965   _timer.start();
3966   do_work_steal(worker_id);
3967   _timer.stop();
3968   if (PrintCMSStatistics != 0) {
3969     gclog_or_tty->print_cr("Finished work stealing in %dth thread: %3.3f sec",
3970       worker_id, _timer.seconds());
3971       // XXX: need xxx/xxx type of notation, two timers
3972   }
3973   assert(_collector->_markStack.isEmpty(), "Should have been emptied");
3974   assert(work_queue(worker_id)->size() == 0, "Should have been emptied");
3975   // Note that under the current task protocol, the
3976   // following assertion is true even of the spaces
3977   // expanded since the completion of the concurrent
3978   // marking. XXX This will likely change under a strict
3979   // ABORT semantics.
3980   // After perm removal the comparison was changed to
3981   // greater than or equal to from strictly greater than.
3982   // Before perm removal the highest address sweep would
3983   // have been at the end of perm gen but now is at the
3984   // end of the tenured gen.
3985   assert(_global_finger >=  _cms_space->end(),
3986          "All tasks have been completed");
3987   DEBUG_ONLY(_collector->verify_overflow_empty();)
3988 }
3989 
3990 void CMSConcMarkingTask::bump_global_finger(HeapWord* f) {
3991   HeapWord* read = _global_finger;
3992   HeapWord* cur  = read;
3993   while (f > read) {
3994     cur = read;
3995     read = (HeapWord*) Atomic::cmpxchg_ptr(f, &_global_finger, cur);
3996     if (cur == read) {
3997       // our cas succeeded
3998       assert(_global_finger >= f, "protocol consistency");
3999       break;
4000     }
4001   }
4002 }
4003 
4004 // This is really inefficient, and should be redone by
4005 // using (not yet available) block-read and -write interfaces to the
4006 // stack and the work_queue. XXX FIX ME !!!
4007 bool CMSConcMarkingTask::get_work_from_overflow_stack(CMSMarkStack* ovflw_stk,
4008                                                       OopTaskQueue* work_q) {
4009   // Fast lock-free check
4010   if (ovflw_stk->length() == 0) {
4011     return false;
4012   }
4013   assert(work_q->size() == 0, "Shouldn't steal");
4014   MutexLockerEx ml(ovflw_stk->par_lock(),
4015                    Mutex::_no_safepoint_check_flag);
4016   // Grab up to 1/4 the size of the work queue
4017   size_t num = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
4018                     (size_t)ParGCDesiredObjsFromOverflowList);
4019   num = MIN2(num, ovflw_stk->length());
4020   for (int i = (int) num; i > 0; i--) {
4021     oop cur = ovflw_stk->pop();
4022     assert(cur != NULL, "Counted wrong?");
4023     work_q->push(cur);
4024   }
4025   return num > 0;
4026 }
4027 
4028 void CMSConcMarkingTask::do_scan_and_mark(int i, CompactibleFreeListSpace* sp) {
4029   SequentialSubTasksDone* pst = sp->conc_par_seq_tasks();
4030   int n_tasks = pst->n_tasks();
4031   // We allow that there may be no tasks to do here because
4032   // we are restarting after a stack overflow.
4033   assert(pst->valid() || n_tasks == 0, "Uninitialized use?");
4034   uint nth_task = 0;
4035 
4036   HeapWord* aligned_start = sp->bottom();
4037   if (sp->used_region().contains(_restart_addr)) {
4038     // Align down to a card boundary for the start of 0th task
4039     // for this space.
4040     aligned_start =
4041       (HeapWord*)align_size_down((uintptr_t)_restart_addr,
4042                                  CardTableModRefBS::card_size);
4043   }
4044 
4045   size_t chunk_size = sp->marking_task_size();
4046   while (!pst->is_task_claimed(/* reference */ nth_task)) {
4047     // Having claimed the nth task in this space,
4048     // compute the chunk that it corresponds to:
4049     MemRegion span = MemRegion(aligned_start + nth_task*chunk_size,
4050                                aligned_start + (nth_task+1)*chunk_size);
4051     // Try and bump the global finger via a CAS;
4052     // note that we need to do the global finger bump
4053     // _before_ taking the intersection below, because
4054     // the task corresponding to that region will be
4055     // deemed done even if the used_region() expands
4056     // because of allocation -- as it almost certainly will
4057     // during start-up while the threads yield in the
4058     // closure below.
4059     HeapWord* finger = span.end();
4060     bump_global_finger(finger);   // atomically
4061     // There are null tasks here corresponding to chunks
4062     // beyond the "top" address of the space.
4063     span = span.intersection(sp->used_region());
4064     if (!span.is_empty()) {  // Non-null task
4065       HeapWord* prev_obj;
4066       assert(!span.contains(_restart_addr) || nth_task == 0,
4067              "Inconsistency");
4068       if (nth_task == 0) {
4069         // For the 0th task, we'll not need to compute a block_start.
4070         if (span.contains(_restart_addr)) {
4071           // In the case of a restart because of stack overflow,
4072           // we might additionally skip a chunk prefix.
4073           prev_obj = _restart_addr;
4074         } else {
4075           prev_obj = span.start();
4076         }
4077       } else {
4078         // We want to skip the first object because
4079         // the protocol is to scan any object in its entirety
4080         // that _starts_ in this span; a fortiori, any
4081         // object starting in an earlier span is scanned
4082         // as part of an earlier claimed task.
4083         // Below we use the "careful" version of block_start
4084         // so we do not try to navigate uninitialized objects.
4085         prev_obj = sp->block_start_careful(span.start());
4086         // Below we use a variant of block_size that uses the
4087         // Printezis bits to avoid waiting for allocated
4088         // objects to become initialized/parsable.
4089         while (prev_obj < span.start()) {
4090           size_t sz = sp->block_size_no_stall(prev_obj, _collector);
4091           if (sz > 0) {
4092             prev_obj += sz;
4093           } else {
4094             // In this case we may end up doing a bit of redundant
4095             // scanning, but that appears unavoidable, short of
4096             // locking the free list locks; see bug 6324141.
4097             break;
4098           }
4099         }
4100       }
4101       if (prev_obj < span.end()) {
4102         MemRegion my_span = MemRegion(prev_obj, span.end());
4103         // Do the marking work within a non-empty span --
4104         // the last argument to the constructor indicates whether the
4105         // iteration should be incremental with periodic yields.
4106         Par_MarkFromRootsClosure cl(this, _collector, my_span,
4107                                     &_collector->_markBitMap,
4108                                     work_queue(i),
4109                                     &_collector->_markStack,
4110                                     _asynch);
4111         _collector->_markBitMap.iterate(&cl, my_span.start(), my_span.end());
4112       } // else nothing to do for this task
4113     }   // else nothing to do for this task
4114   }
4115   // We'd be tempted to assert here that since there are no
4116   // more tasks left to claim in this space, the global_finger
4117   // must exceed space->top() and a fortiori space->end(). However,
4118   // that would not quite be correct because the bumping of
4119   // global_finger occurs strictly after the claiming of a task,
4120   // so by the time we reach here the global finger may not yet
4121   // have been bumped up by the thread that claimed the last
4122   // task.
4123   pst->all_tasks_completed();
4124 }
4125 
4126 class Par_ConcMarkingClosure: public MetadataAwareOopClosure {
4127  private:
4128   CMSCollector* _collector;
4129   CMSConcMarkingTask* _task;
4130   MemRegion     _span;
4131   CMSBitMap*    _bit_map;
4132   CMSMarkStack* _overflow_stack;
4133   OopTaskQueue* _work_queue;
4134  protected:
4135   DO_OOP_WORK_DEFN
4136  public:
4137   Par_ConcMarkingClosure(CMSCollector* collector, CMSConcMarkingTask* task, OopTaskQueue* work_queue,
4138                          CMSBitMap* bit_map, CMSMarkStack* overflow_stack):
4139     MetadataAwareOopClosure(collector->ref_processor()),
4140     _collector(collector),
4141     _task(task),
4142     _span(collector->_span),
4143     _work_queue(work_queue),
4144     _bit_map(bit_map),
4145     _overflow_stack(overflow_stack)
4146   { }
4147   virtual void do_oop(oop* p);
4148   virtual void do_oop(narrowOop* p);
4149 
4150   void trim_queue(size_t max);
4151   void handle_stack_overflow(HeapWord* lost);
4152   void do_yield_check() {
4153     if (_task->should_yield()) {
4154       _task->yield();
4155     }
4156   }
4157 };
4158 
4159 // Grey object scanning during work stealing phase --
4160 // the salient assumption here is that any references
4161 // that are in these stolen objects being scanned must
4162 // already have been initialized (else they would not have
4163 // been published), so we do not need to check for
4164 // uninitialized objects before pushing here.
4165 void Par_ConcMarkingClosure::do_oop(oop obj) {
4166   assert(obj->is_oop_or_null(true), err_msg("Expected an oop or NULL at " PTR_FORMAT, p2i(obj)));
4167   HeapWord* addr = (HeapWord*)obj;
4168   // Check if oop points into the CMS generation
4169   // and is not marked
4170   if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
4171     // a white object ...
4172     // If we manage to "claim" the object, by being the
4173     // first thread to mark it, then we push it on our
4174     // marking stack
4175     if (_bit_map->par_mark(addr)) {     // ... now grey
4176       // push on work queue (grey set)
4177       bool simulate_overflow = false;
4178       NOT_PRODUCT(
4179         if (CMSMarkStackOverflowALot &&
4180             _collector->simulate_overflow()) {
4181           // simulate a stack overflow
4182           simulate_overflow = true;
4183         }
4184       )
4185       if (simulate_overflow ||
4186           !(_work_queue->push(obj) || _overflow_stack->par_push(obj))) {
4187         // stack overflow
4188         if (PrintCMSStatistics != 0) {
4189           gclog_or_tty->print_cr("CMS marking stack overflow (benign) at "
4190                                  SIZE_FORMAT, _overflow_stack->capacity());
4191         }
4192         // We cannot assert that the overflow stack is full because
4193         // it may have been emptied since.
4194         assert(simulate_overflow ||
4195                _work_queue->size() == _work_queue->max_elems(),
4196               "Else push should have succeeded");
4197         handle_stack_overflow(addr);
4198       }
4199     } // Else, some other thread got there first
4200     do_yield_check();
4201   }
4202 }
4203 
4204 void Par_ConcMarkingClosure::do_oop(oop* p)       { Par_ConcMarkingClosure::do_oop_work(p); }
4205 void Par_ConcMarkingClosure::do_oop(narrowOop* p) { Par_ConcMarkingClosure::do_oop_work(p); }
4206 
4207 void Par_ConcMarkingClosure::trim_queue(size_t max) {
4208   while (_work_queue->size() > max) {
4209     oop new_oop;
4210     if (_work_queue->pop_local(new_oop)) {
4211       assert(new_oop->is_oop(), "Should be an oop");
4212       assert(_bit_map->isMarked((HeapWord*)new_oop), "Grey object");
4213       assert(_span.contains((HeapWord*)new_oop), "Not in span");
4214       new_oop->oop_iterate(this);  // do_oop() above
4215       do_yield_check();
4216     }
4217   }
4218 }
4219 
4220 // Upon stack overflow, we discard (part of) the stack,
4221 // remembering the least address amongst those discarded
4222 // in CMSCollector's _restart_address.
4223 void Par_ConcMarkingClosure::handle_stack_overflow(HeapWord* lost) {
4224   // We need to do this under a mutex to prevent other
4225   // workers from interfering with the work done below.
4226   MutexLockerEx ml(_overflow_stack->par_lock(),
4227                    Mutex::_no_safepoint_check_flag);
4228   // Remember the least grey address discarded
4229   HeapWord* ra = (HeapWord*)_overflow_stack->least_value(lost);
4230   _collector->lower_restart_addr(ra);
4231   _overflow_stack->reset();  // discard stack contents
4232   _overflow_stack->expand(); // expand the stack if possible
4233 }
4234 
4235 
4236 void CMSConcMarkingTask::do_work_steal(int i) {
4237   OopTaskQueue* work_q = work_queue(i);
4238   oop obj_to_scan;
4239   CMSBitMap* bm = &(_collector->_markBitMap);
4240   CMSMarkStack* ovflw = &(_collector->_markStack);
4241   int* seed = _collector->hash_seed(i);
4242   Par_ConcMarkingClosure cl(_collector, this, work_q, bm, ovflw);
4243   while (true) {
4244     cl.trim_queue(0);
4245     assert(work_q->size() == 0, "Should have been emptied above");
4246     if (get_work_from_overflow_stack(ovflw, work_q)) {
4247       // Can't assert below because the work obtained from the
4248       // overflow stack may already have been stolen from us.
4249       // assert(work_q->size() > 0, "Work from overflow stack");
4250       continue;
4251     } else if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) {
4252       assert(obj_to_scan->is_oop(), "Should be an oop");
4253       assert(bm->isMarked((HeapWord*)obj_to_scan), "Grey object");
4254       obj_to_scan->oop_iterate(&cl);
4255     } else if (terminator()->offer_termination(&_term_term)) {
4256       assert(work_q->size() == 0, "Impossible!");
4257       break;
4258     } else if (yielding() || should_yield()) {
4259       yield();
4260     }
4261   }
4262 }
4263 
4264 // This is run by the CMS (coordinator) thread.
4265 void CMSConcMarkingTask::coordinator_yield() {
4266   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
4267          "CMS thread should hold CMS token");
4268   // First give up the locks, then yield, then re-lock
4269   // We should probably use a constructor/destructor idiom to
4270   // do this unlock/lock or modify the MutexUnlocker class to
4271   // serve our purpose. XXX
4272   assert_lock_strong(_bit_map_lock);
4273   _bit_map_lock->unlock();
4274   ConcurrentMarkSweepThread::desynchronize(true);
4275   ConcurrentMarkSweepThread::acknowledge_yield_request();
4276   _collector->stopTimer();
4277   if (PrintCMSStatistics != 0) {
4278     _collector->incrementYields();
4279   }
4280   _collector->icms_wait();
4281 
4282   // It is possible for whichever thread initiated the yield request
4283   // not to get a chance to wake up and take the bitmap lock between
4284   // this thread releasing it and reacquiring it. So, while the
4285   // should_yield() flag is on, let's sleep for a bit to give the
4286   // other thread a chance to wake up. The limit imposed on the number
4287   // of iterations is defensive, to avoid any unforseen circumstances
4288   // putting us into an infinite loop. Since it's always been this
4289   // (coordinator_yield()) method that was observed to cause the
4290   // problem, we are using a parameter (CMSCoordinatorYieldSleepCount)
4291   // which is by default non-zero. For the other seven methods that
4292   // also perform the yield operation, as are using a different
4293   // parameter (CMSYieldSleepCount) which is by default zero. This way we
4294   // can enable the sleeping for those methods too, if necessary.
4295   // See 6442774.
4296   //
4297   // We really need to reconsider the synchronization between the GC
4298   // thread and the yield-requesting threads in the future and we
4299   // should really use wait/notify, which is the recommended
4300   // way of doing this type of interaction. Additionally, we should
4301   // consolidate the eight methods that do the yield operation and they
4302   // are almost identical into one for better maintainability and
4303   // readability. See 6445193.
4304   //
4305   // Tony 2006.06.29
4306   for (unsigned i = 0; i < CMSCoordinatorYieldSleepCount &&
4307                    ConcurrentMarkSweepThread::should_yield() &&
4308                    !CMSCollector::foregroundGCIsActive(); ++i) {
4309     os::sleep(Thread::current(), 1, false);
4310     ConcurrentMarkSweepThread::acknowledge_yield_request();
4311   }
4312 
4313   ConcurrentMarkSweepThread::synchronize(true);
4314   _bit_map_lock->lock_without_safepoint_check();
4315   _collector->startTimer();
4316 }
4317 
4318 bool CMSCollector::do_marking_mt(bool asynch) {
4319   assert(ConcGCThreads > 0 && conc_workers() != NULL, "precondition");
4320   int num_workers = AdaptiveSizePolicy::calc_active_conc_workers(
4321                                        conc_workers()->total_workers(),
4322                                        conc_workers()->active_workers(),
4323                                        Threads::number_of_non_daemon_threads());
4324   conc_workers()->set_active_workers(num_workers);
4325 
4326   CompactibleFreeListSpace* cms_space  = _cmsGen->cmsSpace();
4327 
4328   CMSConcMarkingTask tsk(this,
4329                          cms_space,
4330                          asynch,
4331                          conc_workers(),
4332                          task_queues());
4333 
4334   // Since the actual number of workers we get may be different
4335   // from the number we requested above, do we need to do anything different
4336   // below? In particular, may be we need to subclass the SequantialSubTasksDone
4337   // class?? XXX
4338   cms_space ->initialize_sequential_subtasks_for_marking(num_workers);
4339 
4340   // Refs discovery is already non-atomic.
4341   assert(!ref_processor()->discovery_is_atomic(), "Should be non-atomic");
4342   assert(ref_processor()->discovery_is_mt(), "Discovery should be MT");
4343   conc_workers()->start_task(&tsk);
4344   while (tsk.yielded()) {
4345     tsk.coordinator_yield();
4346     conc_workers()->continue_task(&tsk);
4347   }
4348   // If the task was aborted, _restart_addr will be non-NULL
4349   assert(tsk.completed() || _restart_addr != NULL, "Inconsistency");
4350   while (_restart_addr != NULL) {
4351     // XXX For now we do not make use of ABORTED state and have not
4352     // yet implemented the right abort semantics (even in the original
4353     // single-threaded CMS case). That needs some more investigation
4354     // and is deferred for now; see CR# TBF. 07252005YSR. XXX
4355     assert(!CMSAbortSemantics || tsk.aborted(), "Inconsistency");
4356     // If _restart_addr is non-NULL, a marking stack overflow
4357     // occurred; we need to do a fresh marking iteration from the
4358     // indicated restart address.
4359     if (_foregroundGCIsActive && asynch) {
4360       // We may be running into repeated stack overflows, having
4361       // reached the limit of the stack size, while making very
4362       // slow forward progress. It may be best to bail out and
4363       // let the foreground collector do its job.
4364       // Clear _restart_addr, so that foreground GC
4365       // works from scratch. This avoids the headache of
4366       // a "rescan" which would otherwise be needed because
4367       // of the dirty mod union table & card table.
4368       _restart_addr = NULL;
4369       return false;
4370     }
4371     // Adjust the task to restart from _restart_addr
4372     tsk.reset(_restart_addr);
4373     cms_space ->initialize_sequential_subtasks_for_marking(num_workers,
4374                   _restart_addr);
4375     _restart_addr = NULL;
4376     // Get the workers going again
4377     conc_workers()->start_task(&tsk);
4378     while (tsk.yielded()) {
4379       tsk.coordinator_yield();
4380       conc_workers()->continue_task(&tsk);
4381     }
4382   }
4383   assert(tsk.completed(), "Inconsistency");
4384   assert(tsk.result() == true, "Inconsistency");
4385   return true;
4386 }
4387 
4388 bool CMSCollector::do_marking_st(bool asynch) {
4389   ResourceMark rm;
4390   HandleMark   hm;
4391 
4392   // Temporarily make refs discovery single threaded (non-MT)
4393   ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(ref_processor(), false);
4394   MarkFromRootsClosure markFromRootsClosure(this, _span, &_markBitMap,
4395     &_markStack, CMSYield && asynch);
4396   // the last argument to iterate indicates whether the iteration
4397   // should be incremental with periodic yields.
4398   _markBitMap.iterate(&markFromRootsClosure);
4399   // If _restart_addr is non-NULL, a marking stack overflow
4400   // occurred; we need to do a fresh iteration from the
4401   // indicated restart address.
4402   while (_restart_addr != NULL) {
4403     if (_foregroundGCIsActive && asynch) {
4404       // We may be running into repeated stack overflows, having
4405       // reached the limit of the stack size, while making very
4406       // slow forward progress. It may be best to bail out and
4407       // let the foreground collector do its job.
4408       // Clear _restart_addr, so that foreground GC
4409       // works from scratch. This avoids the headache of
4410       // a "rescan" which would otherwise be needed because
4411       // of the dirty mod union table & card table.
4412       _restart_addr = NULL;
4413       return false;  // indicating failure to complete marking
4414     }
4415     // Deal with stack overflow:
4416     // we restart marking from _restart_addr
4417     HeapWord* ra = _restart_addr;
4418     markFromRootsClosure.reset(ra);
4419     _restart_addr = NULL;
4420     _markBitMap.iterate(&markFromRootsClosure, ra, _span.end());
4421   }
4422   return true;
4423 }
4424 
4425 void CMSCollector::preclean() {
4426   check_correct_thread_executing();
4427   assert(Thread::current()->is_ConcurrentGC_thread(), "Wrong thread");
4428   verify_work_stacks_empty();
4429   verify_overflow_empty();
4430   _abort_preclean = false;
4431   if (CMSPrecleaningEnabled) {
4432     if (!CMSEdenChunksRecordAlways) {
4433       _eden_chunk_index = 0;
4434     }
4435     size_t used = get_eden_used();
4436     size_t capacity = get_eden_capacity();
4437     // Don't start sampling unless we will get sufficiently
4438     // many samples.
4439     if (used < (capacity/(CMSScheduleRemarkSamplingRatio * 100)
4440                 * CMSScheduleRemarkEdenPenetration)) {
4441       _start_sampling = true;
4442     } else {
4443       _start_sampling = false;
4444     }
4445     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
4446     CMSPhaseAccounting pa(this, "preclean", _gc_tracer_cm->gc_id(), !PrintGCDetails);
4447     preclean_work(CMSPrecleanRefLists1, CMSPrecleanSurvivors1);
4448   }
4449   CMSTokenSync x(true); // is cms thread
4450   if (CMSPrecleaningEnabled) {
4451     sample_eden();
4452     _collectorState = AbortablePreclean;
4453   } else {
4454     _collectorState = FinalMarking;
4455   }
4456   verify_work_stacks_empty();
4457   verify_overflow_empty();
4458 }
4459 
4460 // Try and schedule the remark such that young gen
4461 // occupancy is CMSScheduleRemarkEdenPenetration %.
4462 void CMSCollector::abortable_preclean() {
4463   check_correct_thread_executing();
4464   assert(CMSPrecleaningEnabled,  "Inconsistent control state");
4465   assert(_collectorState == AbortablePreclean, "Inconsistent control state");
4466 
4467   // If Eden's current occupancy is below this threshold,
4468   // immediately schedule the remark; else preclean
4469   // past the next scavenge in an effort to
4470   // schedule the pause as described above. By choosing
4471   // CMSScheduleRemarkEdenSizeThreshold >= max eden size
4472   // we will never do an actual abortable preclean cycle.
4473   if (get_eden_used() > CMSScheduleRemarkEdenSizeThreshold) {
4474     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
4475     CMSPhaseAccounting pa(this, "abortable-preclean", _gc_tracer_cm->gc_id(), !PrintGCDetails);
4476     // We need more smarts in the abortable preclean
4477     // loop below to deal with cases where allocation
4478     // in young gen is very very slow, and our precleaning
4479     // is running a losing race against a horde of
4480     // mutators intent on flooding us with CMS updates
4481     // (dirty cards).
4482     // One, admittedly dumb, strategy is to give up
4483     // after a certain number of abortable precleaning loops
4484     // or after a certain maximum time. We want to make
4485     // this smarter in the next iteration.
4486     // XXX FIX ME!!! YSR
4487     size_t loops = 0, workdone = 0, cumworkdone = 0, waited = 0;
4488     while (!(should_abort_preclean() ||
4489              ConcurrentMarkSweepThread::should_terminate())) {
4490       workdone = preclean_work(CMSPrecleanRefLists2, CMSPrecleanSurvivors2);
4491       cumworkdone += workdone;
4492       loops++;
4493       // Voluntarily terminate abortable preclean phase if we have
4494       // been at it for too long.
4495       if ((CMSMaxAbortablePrecleanLoops != 0) &&
4496           loops >= CMSMaxAbortablePrecleanLoops) {
4497         if (PrintGCDetails) {
4498           gclog_or_tty->print(" CMS: abort preclean due to loops ");
4499         }
4500         break;
4501       }
4502       if (pa.wallclock_millis() > CMSMaxAbortablePrecleanTime) {
4503         if (PrintGCDetails) {
4504           gclog_or_tty->print(" CMS: abort preclean due to time ");
4505         }
4506         break;
4507       }
4508       // If we are doing little work each iteration, we should
4509       // take a short break.
4510       if (workdone < CMSAbortablePrecleanMinWorkPerIteration) {
4511         // Sleep for some time, waiting for work to accumulate
4512         stopTimer();
4513         cmsThread()->wait_on_cms_lock(CMSAbortablePrecleanWaitMillis);
4514         startTimer();
4515         waited++;
4516       }
4517     }
4518     if (PrintCMSStatistics > 0) {
4519       gclog_or_tty->print(" [" SIZE_FORMAT " iterations, " SIZE_FORMAT " waits, " SIZE_FORMAT " cards)] ",
4520                           loops, waited, cumworkdone);
4521     }
4522   }
4523   CMSTokenSync x(true); // is cms thread
4524   if (_collectorState != Idling) {
4525     assert(_collectorState == AbortablePreclean,
4526            "Spontaneous state transition?");
4527     _collectorState = FinalMarking;
4528   } // Else, a foreground collection completed this CMS cycle.
4529   return;
4530 }
4531 
4532 // Respond to an Eden sampling opportunity
4533 void CMSCollector::sample_eden() {
4534   // Make sure a young gc cannot sneak in between our
4535   // reading and recording of a sample.
4536   assert(Thread::current()->is_ConcurrentGC_thread(),
4537          "Only the cms thread may collect Eden samples");
4538   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
4539          "Should collect samples while holding CMS token");
4540   if (!_start_sampling) {
4541     return;
4542   }
4543   // When CMSEdenChunksRecordAlways is true, the eden chunk array
4544   // is populated by the young generation.
4545   if (_eden_chunk_array != NULL && !CMSEdenChunksRecordAlways) {
4546     if (_eden_chunk_index < _eden_chunk_capacity) {
4547       _eden_chunk_array[_eden_chunk_index] = *_top_addr;   // take sample
4548       assert(_eden_chunk_array[_eden_chunk_index] <= *_end_addr,
4549              "Unexpected state of Eden");
4550       // We'd like to check that what we just sampled is an oop-start address;
4551       // however, we cannot do that here since the object may not yet have been
4552       // initialized. So we'll instead do the check when we _use_ this sample
4553       // later.
4554       if (_eden_chunk_index == 0 ||
4555           (pointer_delta(_eden_chunk_array[_eden_chunk_index],
4556                          _eden_chunk_array[_eden_chunk_index-1])
4557            >= CMSSamplingGrain)) {
4558         _eden_chunk_index++;  // commit sample
4559       }
4560     }
4561   }
4562   if ((_collectorState == AbortablePreclean) && !_abort_preclean) {
4563     size_t used = get_eden_used();
4564     size_t capacity = get_eden_capacity();
4565     assert(used <= capacity, "Unexpected state of Eden");
4566     if (used >  (capacity/100 * CMSScheduleRemarkEdenPenetration)) {
4567       _abort_preclean = true;
4568     }
4569   }
4570 }
4571 
4572 
4573 size_t CMSCollector::preclean_work(bool clean_refs, bool clean_survivor) {
4574   assert(_collectorState == Precleaning ||
4575          _collectorState == AbortablePreclean, "incorrect state");
4576   ResourceMark rm;
4577   HandleMark   hm;
4578 
4579   // Precleaning is currently not MT but the reference processor
4580   // may be set for MT.  Disable it temporarily here.
4581   ReferenceProcessor* rp = ref_processor();
4582   ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(rp, false);
4583 
4584   // Do one pass of scrubbing the discovered reference lists
4585   // to remove any reference objects with strongly-reachable
4586   // referents.
4587   if (clean_refs) {
4588     CMSPrecleanRefsYieldClosure yield_cl(this);
4589     assert(rp->span().equals(_span), "Spans should be equal");
4590     CMSKeepAliveClosure keep_alive(this, _span, &_markBitMap,
4591                                    &_markStack, true /* preclean */);
4592     CMSDrainMarkingStackClosure complete_trace(this,
4593                                    _span, &_markBitMap, &_markStack,
4594                                    &keep_alive, true /* preclean */);
4595 
4596     // We don't want this step to interfere with a young
4597     // collection because we don't want to take CPU
4598     // or memory bandwidth away from the young GC threads
4599     // (which may be as many as there are CPUs).
4600     // Note that we don't need to protect ourselves from
4601     // interference with mutators because they can't
4602     // manipulate the discovered reference lists nor affect
4603     // the computed reachability of the referents, the
4604     // only properties manipulated by the precleaning
4605     // of these reference lists.
4606     stopTimer();
4607     CMSTokenSyncWithLocks x(true /* is cms thread */,
4608                             bitMapLock());
4609     startTimer();
4610     sample_eden();
4611 
4612     // The following will yield to allow foreground
4613     // collection to proceed promptly. XXX YSR:
4614     // The code in this method may need further
4615     // tweaking for better performance and some restructuring
4616     // for cleaner interfaces.
4617     GCTimer *gc_timer = NULL; // Currently not tracing concurrent phases
4618     rp->preclean_discovered_references(
4619           rp->is_alive_non_header(), &keep_alive, &complete_trace, &yield_cl,
4620           gc_timer, _gc_tracer_cm->gc_id());
4621   }
4622 
4623   if (clean_survivor) {  // preclean the active survivor space(s)
4624     assert(_young_gen->kind() == Generation::DefNew ||
4625            _young_gen->kind() == Generation::ParNew,
4626          "incorrect type for cast");
4627     DefNewGeneration* dng = (DefNewGeneration*)_young_gen;
4628     PushAndMarkClosure pam_cl(this, _span, ref_processor(),
4629                              &_markBitMap, &_modUnionTable,
4630                              &_markStack, true /* precleaning phase */);
4631     stopTimer();
4632     CMSTokenSyncWithLocks ts(true /* is cms thread */,
4633                              bitMapLock());
4634     startTimer();
4635     unsigned int before_count =
4636       GenCollectedHeap::heap()->total_collections();
4637     SurvivorSpacePrecleanClosure
4638       sss_cl(this, _span, &_markBitMap, &_markStack,
4639              &pam_cl, before_count, CMSYield);
4640     dng->from()->object_iterate_careful(&sss_cl);
4641     dng->to()->object_iterate_careful(&sss_cl);
4642   }
4643   MarkRefsIntoAndScanClosure
4644     mrias_cl(_span, ref_processor(), &_markBitMap, &_modUnionTable,
4645              &_markStack, this, CMSYield,
4646              true /* precleaning phase */);
4647   // CAUTION: The following closure has persistent state that may need to
4648   // be reset upon a decrease in the sequence of addresses it
4649   // processes.
4650   ScanMarkedObjectsAgainCarefullyClosure
4651     smoac_cl(this, _span,
4652       &_markBitMap, &_markStack, &mrias_cl, CMSYield);
4653 
4654   // Preclean dirty cards in ModUnionTable and CardTable using
4655   // appropriate convergence criterion;
4656   // repeat CMSPrecleanIter times unless we find that
4657   // we are losing.
4658   assert(CMSPrecleanIter < 10, "CMSPrecleanIter is too large");
4659   assert(CMSPrecleanNumerator < CMSPrecleanDenominator,
4660          "Bad convergence multiplier");
4661   assert(CMSPrecleanThreshold >= 100,
4662          "Unreasonably low CMSPrecleanThreshold");
4663 
4664   size_t numIter, cumNumCards, lastNumCards, curNumCards;
4665   for (numIter = 0, cumNumCards = lastNumCards = curNumCards = 0;
4666        numIter < CMSPrecleanIter;
4667        numIter++, lastNumCards = curNumCards, cumNumCards += curNumCards) {
4668     curNumCards  = preclean_mod_union_table(_cmsGen, &smoac_cl);
4669     if (Verbose && PrintGCDetails) {
4670       gclog_or_tty->print(" (modUnionTable: " SIZE_FORMAT " cards)", curNumCards);
4671     }
4672     // Either there are very few dirty cards, so re-mark
4673     // pause will be small anyway, or our pre-cleaning isn't
4674     // that much faster than the rate at which cards are being
4675     // dirtied, so we might as well stop and re-mark since
4676     // precleaning won't improve our re-mark time by much.
4677     if (curNumCards <= CMSPrecleanThreshold ||
4678         (numIter > 0 &&
4679          (curNumCards * CMSPrecleanDenominator >
4680          lastNumCards * CMSPrecleanNumerator))) {
4681       numIter++;
4682       cumNumCards += curNumCards;
4683       break;
4684     }
4685   }
4686 
4687   preclean_klasses(&mrias_cl, _cmsGen->freelistLock());
4688 
4689   curNumCards = preclean_card_table(_cmsGen, &smoac_cl);
4690   cumNumCards += curNumCards;
4691   if (PrintGCDetails && PrintCMSStatistics != 0) {
4692     gclog_or_tty->print_cr(" (cardTable: " SIZE_FORMAT " cards, re-scanned " SIZE_FORMAT " cards, " SIZE_FORMAT " iterations)",
4693                   curNumCards, cumNumCards, numIter);
4694   }
4695   return cumNumCards;   // as a measure of useful work done
4696 }
4697 
4698 // PRECLEANING NOTES:
4699 // Precleaning involves:
4700 // . reading the bits of the modUnionTable and clearing the set bits.
4701 // . For the cards corresponding to the set bits, we scan the
4702 //   objects on those cards. This means we need the free_list_lock
4703 //   so that we can safely iterate over the CMS space when scanning
4704 //   for oops.
4705 // . When we scan the objects, we'll be both reading and setting
4706 //   marks in the marking bit map, so we'll need the marking bit map.
4707 // . For protecting _collector_state transitions, we take the CGC_lock.
4708 //   Note that any races in the reading of of card table entries by the
4709 //   CMS thread on the one hand and the clearing of those entries by the
4710 //   VM thread or the setting of those entries by the mutator threads on the
4711 //   other are quite benign. However, for efficiency it makes sense to keep
4712 //   the VM thread from racing with the CMS thread while the latter is
4713 //   dirty card info to the modUnionTable. We therefore also use the
4714 //   CGC_lock to protect the reading of the card table and the mod union
4715 //   table by the CM thread.
4716 // . We run concurrently with mutator updates, so scanning
4717 //   needs to be done carefully  -- we should not try to scan
4718 //   potentially uninitialized objects.
4719 //
4720 // Locking strategy: While holding the CGC_lock, we scan over and
4721 // reset a maximal dirty range of the mod union / card tables, then lock
4722 // the free_list_lock and bitmap lock to do a full marking, then
4723 // release these locks; and repeat the cycle. This allows for a
4724 // certain amount of fairness in the sharing of these locks between
4725 // the CMS collector on the one hand, and the VM thread and the
4726 // mutators on the other.
4727 
4728 // NOTE: preclean_mod_union_table() and preclean_card_table()
4729 // further below are largely identical; if you need to modify
4730 // one of these methods, please check the other method too.
4731 
4732 size_t CMSCollector::preclean_mod_union_table(
4733   ConcurrentMarkSweepGeneration* gen,
4734   ScanMarkedObjectsAgainCarefullyClosure* cl) {
4735   verify_work_stacks_empty();
4736   verify_overflow_empty();
4737 
4738   // strategy: starting with the first card, accumulate contiguous
4739   // ranges of dirty cards; clear these cards, then scan the region
4740   // covered by these cards.
4741 
4742   // Since all of the MUT is committed ahead, we can just use
4743   // that, in case the generations expand while we are precleaning.
4744   // It might also be fine to just use the committed part of the
4745   // generation, but we might potentially miss cards when the
4746   // generation is rapidly expanding while we are in the midst
4747   // of precleaning.
4748   HeapWord* startAddr = gen->reserved().start();
4749   HeapWord* endAddr   = gen->reserved().end();
4750 
4751   cl->setFreelistLock(gen->freelistLock());   // needed for yielding
4752 
4753   size_t numDirtyCards, cumNumDirtyCards;
4754   HeapWord *nextAddr, *lastAddr;
4755   for (cumNumDirtyCards = numDirtyCards = 0,
4756        nextAddr = lastAddr = startAddr;
4757        nextAddr < endAddr;
4758        nextAddr = lastAddr, cumNumDirtyCards += numDirtyCards) {
4759 
4760     ResourceMark rm;
4761     HandleMark   hm;
4762 
4763     MemRegion dirtyRegion;
4764     {
4765       stopTimer();
4766       // Potential yield point
4767       CMSTokenSync ts(true);
4768       startTimer();
4769       sample_eden();
4770       // Get dirty region starting at nextOffset (inclusive),
4771       // simultaneously clearing it.
4772       dirtyRegion =
4773         _modUnionTable.getAndClearMarkedRegion(nextAddr, endAddr);
4774       assert(dirtyRegion.start() >= nextAddr,
4775              "returned region inconsistent?");
4776     }
4777     // Remember where the next search should begin.
4778     // The returned region (if non-empty) is a right open interval,
4779     // so lastOffset is obtained from the right end of that
4780     // interval.
4781     lastAddr = dirtyRegion.end();
4782     // Should do something more transparent and less hacky XXX
4783     numDirtyCards =
4784       _modUnionTable.heapWordDiffToOffsetDiff(dirtyRegion.word_size());
4785 
4786     // We'll scan the cards in the dirty region (with periodic
4787     // yields for foreground GC as needed).
4788     if (!dirtyRegion.is_empty()) {
4789       assert(numDirtyCards > 0, "consistency check");
4790       HeapWord* stop_point = NULL;
4791       stopTimer();
4792       // Potential yield point
4793       CMSTokenSyncWithLocks ts(true, gen->freelistLock(),
4794                                bitMapLock());
4795       startTimer();
4796       {
4797         verify_work_stacks_empty();
4798         verify_overflow_empty();
4799         sample_eden();
4800         stop_point =
4801           gen->cmsSpace()->object_iterate_careful_m(dirtyRegion, cl);
4802       }
4803       if (stop_point != NULL) {
4804         // The careful iteration stopped early either because it found an
4805         // uninitialized object, or because we were in the midst of an
4806         // "abortable preclean", which should now be aborted. Redirty
4807         // the bits corresponding to the partially-scanned or unscanned
4808         // cards. We'll either restart at the next block boundary or
4809         // abort the preclean.
4810         assert((_collectorState == AbortablePreclean && should_abort_preclean()),
4811                "Should only be AbortablePreclean.");
4812         _modUnionTable.mark_range(MemRegion(stop_point, dirtyRegion.end()));
4813         if (should_abort_preclean()) {
4814           break; // out of preclean loop
4815         } else {
4816           // Compute the next address at which preclean should pick up;
4817           // might need bitMapLock in order to read P-bits.
4818           lastAddr = next_card_start_after_block(stop_point);
4819         }
4820       }
4821     } else {
4822       assert(lastAddr == endAddr, "consistency check");
4823       assert(numDirtyCards == 0, "consistency check");
4824       break;
4825     }
4826   }
4827   verify_work_stacks_empty();
4828   verify_overflow_empty();
4829   return cumNumDirtyCards;
4830 }
4831 
4832 // NOTE: preclean_mod_union_table() above and preclean_card_table()
4833 // below are largely identical; if you need to modify
4834 // one of these methods, please check the other method too.
4835 
4836 size_t CMSCollector::preclean_card_table(ConcurrentMarkSweepGeneration* gen,
4837   ScanMarkedObjectsAgainCarefullyClosure* cl) {
4838   // strategy: it's similar to precleamModUnionTable above, in that
4839   // we accumulate contiguous ranges of dirty cards, mark these cards
4840   // precleaned, then scan the region covered by these cards.
4841   HeapWord* endAddr   = (HeapWord*)(gen->_virtual_space.high());
4842   HeapWord* startAddr = (HeapWord*)(gen->_virtual_space.low());
4843 
4844   cl->setFreelistLock(gen->freelistLock());   // needed for yielding
4845 
4846   size_t numDirtyCards, cumNumDirtyCards;
4847   HeapWord *lastAddr, *nextAddr;
4848 
4849   for (cumNumDirtyCards = numDirtyCards = 0,
4850        nextAddr = lastAddr = startAddr;
4851        nextAddr < endAddr;
4852        nextAddr = lastAddr, cumNumDirtyCards += numDirtyCards) {
4853 
4854     ResourceMark rm;
4855     HandleMark   hm;
4856 
4857     MemRegion dirtyRegion;
4858     {
4859       // See comments in "Precleaning notes" above on why we
4860       // do this locking. XXX Could the locking overheads be
4861       // too high when dirty cards are sparse? [I don't think so.]
4862       stopTimer();
4863       CMSTokenSync x(true); // is cms thread
4864       startTimer();
4865       sample_eden();
4866       // Get and clear dirty region from card table
4867       dirtyRegion = _ct->ct_bs()->dirty_card_range_after_reset(
4868                                     MemRegion(nextAddr, endAddr),
4869                                     true,
4870                                     CardTableModRefBS::precleaned_card_val());
4871 
4872       assert(dirtyRegion.start() >= nextAddr,
4873              "returned region inconsistent?");
4874     }
4875     lastAddr = dirtyRegion.end();
4876     numDirtyCards =
4877       dirtyRegion.word_size()/CardTableModRefBS::card_size_in_words;
4878 
4879     if (!dirtyRegion.is_empty()) {
4880       stopTimer();
4881       CMSTokenSyncWithLocks ts(true, gen->freelistLock(), bitMapLock());
4882       startTimer();
4883       sample_eden();
4884       verify_work_stacks_empty();
4885       verify_overflow_empty();
4886       HeapWord* stop_point =
4887         gen->cmsSpace()->object_iterate_careful_m(dirtyRegion, cl);
4888       if (stop_point != NULL) {
4889         assert((_collectorState == AbortablePreclean && should_abort_preclean()),
4890                "Should only be AbortablePreclean.");
4891         _ct->ct_bs()->invalidate(MemRegion(stop_point, dirtyRegion.end()));
4892         if (should_abort_preclean()) {
4893           break; // out of preclean loop
4894         } else {
4895           // Compute the next address at which preclean should pick up.
4896           lastAddr = next_card_start_after_block(stop_point);
4897         }
4898       }
4899     } else {
4900       break;
4901     }
4902   }
4903   verify_work_stacks_empty();
4904   verify_overflow_empty();
4905   return cumNumDirtyCards;
4906 }
4907 
4908 class PrecleanKlassClosure : public KlassClosure {
4909   KlassToOopClosure _cm_klass_closure;
4910  public:
4911   PrecleanKlassClosure(OopClosure* oop_closure) : _cm_klass_closure(oop_closure) {}
4912   void do_klass(Klass* k) {
4913     if (k->has_accumulated_modified_oops()) {
4914       k->clear_accumulated_modified_oops();
4915 
4916       _cm_klass_closure.do_klass(k);
4917     }
4918   }
4919 };
4920 
4921 // The freelist lock is needed to prevent asserts, is it really needed?
4922 void CMSCollector::preclean_klasses(MarkRefsIntoAndScanClosure* cl, Mutex* freelistLock) {
4923 
4924   cl->set_freelistLock(freelistLock);
4925 
4926   CMSTokenSyncWithLocks ts(true, freelistLock, bitMapLock());
4927 
4928   // SSS: Add equivalent to ScanMarkedObjectsAgainCarefullyClosure::do_yield_check and should_abort_preclean?
4929   // SSS: We should probably check if precleaning should be aborted, at suitable intervals?
4930   PrecleanKlassClosure preclean_klass_closure(cl);
4931   ClassLoaderDataGraph::classes_do(&preclean_klass_closure);
4932 
4933   verify_work_stacks_empty();
4934   verify_overflow_empty();
4935 }
4936 
4937 void CMSCollector::checkpointRootsFinal(bool asynch,
4938   bool clear_all_soft_refs, bool init_mark_was_synchronous) {
4939   assert(_collectorState == FinalMarking, "incorrect state transition?");
4940   check_correct_thread_executing();
4941   // world is stopped at this checkpoint
4942   assert(SafepointSynchronize::is_at_safepoint(),
4943          "world should be stopped");
4944   TraceCMSMemoryManagerStats tms(_collectorState,GenCollectedHeap::heap()->gc_cause());
4945 
4946   verify_work_stacks_empty();
4947   verify_overflow_empty();
4948 
4949   SpecializationStats::clear();
4950   if (PrintGCDetails) {
4951     gclog_or_tty->print("[YG occupancy: "SIZE_FORMAT" K ("SIZE_FORMAT" K)]",
4952                         _young_gen->used() / K,
4953                         _young_gen->capacity() / K);
4954   }
4955   if (asynch) {
4956     if (CMSScavengeBeforeRemark) {
4957       GenCollectedHeap* gch = GenCollectedHeap::heap();
4958       // Temporarily set flag to false, GCH->do_collection will
4959       // expect it to be false and set to true
4960       FlagSetting fl(gch->_is_gc_active, false);
4961       NOT_PRODUCT(GCTraceTime t("Scavenge-Before-Remark",
4962         PrintGCDetails && Verbose, true, _gc_timer_cm, _gc_tracer_cm->gc_id());)
4963       int level = _cmsGen->level() - 1;
4964       if (level >= 0) {
4965         gch->do_collection(true,        // full (i.e. force, see below)
4966                            false,       // !clear_all_soft_refs
4967                            0,           // size
4968                            false,       // is_tlab
4969                            level        // max_level
4970                           );
4971       }
4972     }
4973     FreelistLocker x(this);
4974     MutexLockerEx y(bitMapLock(),
4975                     Mutex::_no_safepoint_check_flag);
4976     assert(!init_mark_was_synchronous, "but that's impossible!");
4977     checkpointRootsFinalWork(asynch, clear_all_soft_refs, false);
4978   } else {
4979     // already have all the locks
4980     checkpointRootsFinalWork(asynch, clear_all_soft_refs,
4981                              init_mark_was_synchronous);
4982   }
4983   verify_work_stacks_empty();
4984   verify_overflow_empty();
4985   SpecializationStats::print();
4986 }
4987 
4988 void CMSCollector::checkpointRootsFinalWork(bool asynch,
4989   bool clear_all_soft_refs, bool init_mark_was_synchronous) {
4990 
4991   NOT_PRODUCT(GCTraceTime tr("checkpointRootsFinalWork", PrintGCDetails, false, _gc_timer_cm, _gc_tracer_cm->gc_id());)
4992 
4993   assert(haveFreelistLocks(), "must have free list locks");
4994   assert_lock_strong(bitMapLock());
4995 
4996   ResourceMark rm;
4997   HandleMark   hm;
4998 
4999   GenCollectedHeap* gch = GenCollectedHeap::heap();
5000 
5001   if (should_unload_classes()) {
5002     CodeCache::gc_prologue();
5003   }
5004   assert(haveFreelistLocks(), "must have free list locks");
5005   assert_lock_strong(bitMapLock());
5006 
5007   if (!init_mark_was_synchronous) {
5008     // We might assume that we need not fill TLAB's when
5009     // CMSScavengeBeforeRemark is set, because we may have just done
5010     // a scavenge which would have filled all TLAB's -- and besides
5011     // Eden would be empty. This however may not always be the case --
5012     // for instance although we asked for a scavenge, it may not have
5013     // happened because of a JNI critical section. We probably need
5014     // a policy for deciding whether we can in that case wait until
5015     // the critical section releases and then do the remark following
5016     // the scavenge, and skip it here. In the absence of that policy,
5017     // or of an indication of whether the scavenge did indeed occur,
5018     // we cannot rely on TLAB's having been filled and must do
5019     // so here just in case a scavenge did not happen.
5020     gch->ensure_parsability(false);  // fill TLAB's, but no need to retire them
5021     // Update the saved marks which may affect the root scans.
5022     gch->save_marks();
5023 
5024     if (CMSPrintEdenSurvivorChunks) {
5025       print_eden_and_survivor_chunk_arrays();
5026     }
5027 
5028     {
5029       COMPILER2_PRESENT(DerivedPointerTableDeactivate dpt_deact;)
5030 
5031       // Note on the role of the mod union table:
5032       // Since the marker in "markFromRoots" marks concurrently with
5033       // mutators, it is possible for some reachable objects not to have been
5034       // scanned. For instance, an only reference to an object A was
5035       // placed in object B after the marker scanned B. Unless B is rescanned,
5036       // A would be collected. Such updates to references in marked objects
5037       // are detected via the mod union table which is the set of all cards
5038       // dirtied since the first checkpoint in this GC cycle and prior to
5039       // the most recent young generation GC, minus those cleaned up by the
5040       // concurrent precleaning.
5041       if (CMSParallelRemarkEnabled && CollectedHeap::use_parallel_gc_threads()) {
5042         GCTraceTime t("Rescan (parallel) ", PrintGCDetails, false, _gc_timer_cm, _gc_tracer_cm->gc_id());
5043         do_remark_parallel();
5044       } else {
5045         GCTraceTime t("Rescan (non-parallel) ", PrintGCDetails, false,
5046                     _gc_timer_cm, _gc_tracer_cm->gc_id());
5047         do_remark_non_parallel();
5048       }
5049     }
5050   } else {
5051     assert(!asynch, "Can't have init_mark_was_synchronous in asynch mode");
5052     // The initial mark was stop-world, so there's no rescanning to
5053     // do; go straight on to the next step below.
5054   }
5055   verify_work_stacks_empty();
5056   verify_overflow_empty();
5057 
5058   {
5059     NOT_PRODUCT(GCTraceTime ts("refProcessingWork", PrintGCDetails, false, _gc_timer_cm, _gc_tracer_cm->gc_id());)
5060     refProcessingWork(asynch, clear_all_soft_refs);
5061   }
5062   verify_work_stacks_empty();
5063   verify_overflow_empty();
5064 
5065   if (should_unload_classes()) {
5066     CodeCache::gc_epilogue();
5067   }
5068   JvmtiExport::gc_epilogue();
5069 
5070   // If we encountered any (marking stack / work queue) overflow
5071   // events during the current CMS cycle, take appropriate
5072   // remedial measures, where possible, so as to try and avoid
5073   // recurrence of that condition.
5074   assert(_markStack.isEmpty(), "No grey objects");
5075   size_t ser_ovflw = _ser_pmc_remark_ovflw + _ser_pmc_preclean_ovflw +
5076                      _ser_kac_ovflw        + _ser_kac_preclean_ovflw;
5077   if (ser_ovflw > 0) {
5078     if (PrintCMSStatistics != 0) {
5079       gclog_or_tty->print_cr("Marking stack overflow (benign) "
5080         "(pmc_pc="SIZE_FORMAT", pmc_rm="SIZE_FORMAT", kac="SIZE_FORMAT
5081         ", kac_preclean="SIZE_FORMAT")",
5082         _ser_pmc_preclean_ovflw, _ser_pmc_remark_ovflw,
5083         _ser_kac_ovflw, _ser_kac_preclean_ovflw);
5084     }
5085     _markStack.expand();
5086     _ser_pmc_remark_ovflw = 0;
5087     _ser_pmc_preclean_ovflw = 0;
5088     _ser_kac_preclean_ovflw = 0;
5089     _ser_kac_ovflw = 0;
5090   }
5091   if (_par_pmc_remark_ovflw > 0 || _par_kac_ovflw > 0) {
5092     if (PrintCMSStatistics != 0) {
5093       gclog_or_tty->print_cr("Work queue overflow (benign) "
5094         "(pmc_rm="SIZE_FORMAT", kac="SIZE_FORMAT")",
5095         _par_pmc_remark_ovflw, _par_kac_ovflw);
5096     }
5097     _par_pmc_remark_ovflw = 0;
5098     _par_kac_ovflw = 0;
5099   }
5100   if (PrintCMSStatistics != 0) {
5101      if (_markStack._hit_limit > 0) {
5102        gclog_or_tty->print_cr(" (benign) Hit max stack size limit ("SIZE_FORMAT")",
5103                               _markStack._hit_limit);
5104      }
5105      if (_markStack._failed_double > 0) {
5106        gclog_or_tty->print_cr(" (benign) Failed stack doubling ("SIZE_FORMAT"),"
5107                               " current capacity "SIZE_FORMAT,
5108                               _markStack._failed_double,
5109                               _markStack.capacity());
5110      }
5111   }
5112   _markStack._hit_limit = 0;
5113   _markStack._failed_double = 0;
5114 
5115   if ((VerifyAfterGC || VerifyDuringGC) &&
5116       GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
5117     verify_after_remark();
5118   }
5119 
5120   _gc_tracer_cm->report_object_count_after_gc(&_is_alive_closure);
5121 
5122   // Change under the freelistLocks.
5123   _collectorState = Sweeping;
5124   // Call isAllClear() under bitMapLock
5125   assert(_modUnionTable.isAllClear(),
5126       "Should be clear by end of the final marking");
5127   assert(_ct->klass_rem_set()->mod_union_is_clear(),
5128       "Should be clear by end of the final marking");
5129 }
5130 
5131 void CMSParInitialMarkTask::work(uint worker_id) {
5132   elapsedTimer _timer;
5133   ResourceMark rm;
5134   HandleMark   hm;
5135 
5136   // ---------- scan from roots --------------
5137   _timer.start();
5138   GenCollectedHeap* gch = GenCollectedHeap::heap();
5139   Par_MarkRefsIntoClosure par_mri_cl(_collector->_span, &(_collector->_markBitMap));
5140 
5141   // ---------- young gen roots --------------
5142   {
5143     work_on_young_gen_roots(worker_id, &par_mri_cl);
5144     _timer.stop();
5145     if (PrintCMSStatistics != 0) {
5146       gclog_or_tty->print_cr(
5147         "Finished young gen initial mark scan work in %dth thread: %3.3f sec",
5148         worker_id, _timer.seconds());
5149     }
5150   }
5151 
5152   // ---------- remaining roots --------------
5153   _timer.reset();
5154   _timer.start();
5155 
5156   CLDToOopClosure cld_closure(&par_mri_cl, true);
5157 
5158   gch->gen_process_roots(_collector->_cmsGen->level(),
5159                          false,     // yg was scanned above
5160                          false,     // this is parallel code
5161                          SharedHeap::ScanningOption(_collector->CMSCollector::roots_scanning_options()),
5162                          _collector->should_unload_classes(),
5163                          &par_mri_cl,
5164                          NULL,
5165                          &cld_closure);
5166   assert(_collector->should_unload_classes()
5167          || (_collector->CMSCollector::roots_scanning_options() & SharedHeap::SO_AllCodeCache),
5168          "if we didn't scan the code cache, we have to be ready to drop nmethods with expired weak oops");
5169   _timer.stop();
5170   if (PrintCMSStatistics != 0) {
5171     gclog_or_tty->print_cr(
5172       "Finished remaining root initial mark scan work in %dth thread: %3.3f sec",
5173       worker_id, _timer.seconds());
5174   }
5175 }
5176 
5177 // Parallel remark task
5178 class CMSParRemarkTask: public CMSParMarkTask {
5179   CompactibleFreeListSpace* _cms_space;
5180 
5181   // The per-thread work queues, available here for stealing.
5182   OopTaskQueueSet*       _task_queues;
5183   ParallelTaskTerminator _term;
5184 
5185  public:
5186   // A value of 0 passed to n_workers will cause the number of
5187   // workers to be taken from the active workers in the work gang.
5188   CMSParRemarkTask(CMSCollector* collector,
5189                    CompactibleFreeListSpace* cms_space,
5190                    int n_workers, FlexibleWorkGang* workers,
5191                    OopTaskQueueSet* task_queues):
5192     CMSParMarkTask("Rescan roots and grey objects in parallel",
5193                    collector, n_workers),
5194     _cms_space(cms_space),
5195     _task_queues(task_queues),
5196     _term(n_workers, task_queues) { }
5197 
5198   OopTaskQueueSet* task_queues() { return _task_queues; }
5199 
5200   OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
5201 
5202   ParallelTaskTerminator* terminator() { return &_term; }
5203   int n_workers() { return _n_workers; }
5204 
5205   void work(uint worker_id);
5206 
5207  private:
5208   // ... of  dirty cards in old space
5209   void do_dirty_card_rescan_tasks(CompactibleFreeListSpace* sp, int i,
5210                                   Par_MarkRefsIntoAndScanClosure* cl);
5211 
5212   // ... work stealing for the above
5213   void do_work_steal(int i, Par_MarkRefsIntoAndScanClosure* cl, int* seed);
5214 };
5215 
5216 class RemarkKlassClosure : public KlassClosure {
5217   KlassToOopClosure _cm_klass_closure;
5218  public:
5219   RemarkKlassClosure(OopClosure* oop_closure) : _cm_klass_closure(oop_closure) {}
5220   void do_klass(Klass* k) {
5221     // Check if we have modified any oops in the Klass during the concurrent marking.
5222     if (k->has_accumulated_modified_oops()) {
5223       k->clear_accumulated_modified_oops();
5224 
5225       // We could have transfered the current modified marks to the accumulated marks,
5226       // like we do with the Card Table to Mod Union Table. But it's not really necessary.
5227     } else if (k->has_modified_oops()) {
5228       // Don't clear anything, this info is needed by the next young collection.
5229     } else {
5230       // No modified oops in the Klass.
5231       return;
5232     }
5233 
5234     // The klass has modified fields, need to scan the klass.
5235     _cm_klass_closure.do_klass(k);
5236   }
5237 };
5238 
5239 void CMSParMarkTask::work_on_young_gen_roots(uint worker_id, OopsInGenClosure* cl) {
5240   DefNewGeneration* dng = _collector->_young_gen->as_DefNewGeneration();
5241   EdenSpace* eden_space = dng->eden();
5242   ContiguousSpace* from_space = dng->from();
5243   ContiguousSpace* to_space   = dng->to();
5244 
5245   HeapWord** eca = _collector->_eden_chunk_array;
5246   size_t     ect = _collector->_eden_chunk_index;
5247   HeapWord** sca = _collector->_survivor_chunk_array;
5248   size_t     sct = _collector->_survivor_chunk_index;
5249 
5250   assert(ect <= _collector->_eden_chunk_capacity, "out of bounds");
5251   assert(sct <= _collector->_survivor_chunk_capacity, "out of bounds");
5252 
5253   do_young_space_rescan(worker_id, cl, to_space, NULL, 0);
5254   do_young_space_rescan(worker_id, cl, from_space, sca, sct);
5255   do_young_space_rescan(worker_id, cl, eden_space, eca, ect);
5256 }
5257 
5258 // work_queue(i) is passed to the closure
5259 // Par_MarkRefsIntoAndScanClosure.  The "i" parameter
5260 // also is passed to do_dirty_card_rescan_tasks() and to
5261 // do_work_steal() to select the i-th task_queue.
5262 
5263 void CMSParRemarkTask::work(uint worker_id) {
5264   elapsedTimer _timer;
5265   ResourceMark rm;
5266   HandleMark   hm;
5267 
5268   // ---------- rescan from roots --------------
5269   _timer.start();
5270   GenCollectedHeap* gch = GenCollectedHeap::heap();
5271   Par_MarkRefsIntoAndScanClosure par_mrias_cl(_collector,
5272     _collector->_span, _collector->ref_processor(),
5273     &(_collector->_markBitMap),
5274     work_queue(worker_id));
5275 
5276   // Rescan young gen roots first since these are likely
5277   // coarsely partitioned and may, on that account, constitute
5278   // the critical path; thus, it's best to start off that
5279   // work first.
5280   // ---------- young gen roots --------------
5281   {
5282     work_on_young_gen_roots(worker_id, &par_mrias_cl);
5283     _timer.stop();
5284     if (PrintCMSStatistics != 0) {
5285       gclog_or_tty->print_cr(
5286         "Finished young gen rescan work in %dth thread: %3.3f sec",
5287         worker_id, _timer.seconds());
5288     }
5289   }
5290 
5291   // ---------- remaining roots --------------
5292   _timer.reset();
5293   _timer.start();
5294   gch->gen_process_roots(_collector->_cmsGen->level(),
5295                          false,     // yg was scanned above
5296                          false,     // this is parallel code
5297                          SharedHeap::ScanningOption(_collector->CMSCollector::roots_scanning_options()),
5298                          _collector->should_unload_classes(),
5299                          &par_mrias_cl,
5300                          NULL,
5301                          NULL);     // The dirty klasses will be handled below
5302 
5303   assert(_collector->should_unload_classes()
5304          || (_collector->CMSCollector::roots_scanning_options() & SharedHeap::SO_AllCodeCache),
5305          "if we didn't scan the code cache, we have to be ready to drop nmethods with expired weak oops");
5306   _timer.stop();
5307   if (PrintCMSStatistics != 0) {
5308     gclog_or_tty->print_cr(
5309       "Finished remaining root rescan work in %dth thread: %3.3f sec",
5310       worker_id, _timer.seconds());
5311   }
5312 
5313   // ---------- unhandled CLD scanning ----------
5314   if (worker_id == 0) { // Single threaded at the moment.
5315     _timer.reset();
5316     _timer.start();
5317 
5318     // Scan all new class loader data objects and new dependencies that were
5319     // introduced during concurrent marking.
5320     ResourceMark rm;
5321     GrowableArray<ClassLoaderData*>* array = ClassLoaderDataGraph::new_clds();
5322     for (int i = 0; i < array->length(); i++) {
5323       par_mrias_cl.do_class_loader_data(array->at(i));
5324     }
5325 
5326     // We don't need to keep track of new CLDs anymore.
5327     ClassLoaderDataGraph::remember_new_clds(false);
5328 
5329     _timer.stop();
5330     if (PrintCMSStatistics != 0) {
5331       gclog_or_tty->print_cr(
5332           "Finished unhandled CLD scanning work in %dth thread: %3.3f sec",
5333           worker_id, _timer.seconds());
5334     }
5335   }
5336 
5337   // ---------- dirty klass scanning ----------
5338   if (worker_id == 0) { // Single threaded at the moment.
5339     _timer.reset();
5340     _timer.start();
5341 
5342     // Scan all classes that was dirtied during the concurrent marking phase.
5343     RemarkKlassClosure remark_klass_closure(&par_mrias_cl);
5344     ClassLoaderDataGraph::classes_do(&remark_klass_closure);
5345 
5346     _timer.stop();
5347     if (PrintCMSStatistics != 0) {
5348       gclog_or_tty->print_cr(
5349           "Finished dirty klass scanning work in %dth thread: %3.3f sec",
5350           worker_id, _timer.seconds());
5351     }
5352   }
5353 
5354   // We might have added oops to ClassLoaderData::_handles during the
5355   // concurrent marking phase. These oops point to newly allocated objects
5356   // that are guaranteed to be kept alive. Either by the direct allocation
5357   // code, or when the young collector processes the roots. Hence,
5358   // we don't have to revisit the _handles block during the remark phase.
5359 
5360   // ---------- rescan dirty cards ------------
5361   _timer.reset();
5362   _timer.start();
5363 
5364   // Do the rescan tasks for each of the two spaces
5365   // (cms_space) in turn.
5366   // "worker_id" is passed to select the task_queue for "worker_id"
5367   do_dirty_card_rescan_tasks(_cms_space, worker_id, &par_mrias_cl);
5368   _timer.stop();
5369   if (PrintCMSStatistics != 0) {
5370     gclog_or_tty->print_cr(
5371       "Finished dirty card rescan work in %dth thread: %3.3f sec",
5372       worker_id, _timer.seconds());
5373   }
5374 
5375   // ---------- steal work from other threads ...
5376   // ---------- ... and drain overflow list.
5377   _timer.reset();
5378   _timer.start();
5379   do_work_steal(worker_id, &par_mrias_cl, _collector->hash_seed(worker_id));
5380   _timer.stop();
5381   if (PrintCMSStatistics != 0) {
5382     gclog_or_tty->print_cr(
5383       "Finished work stealing in %dth thread: %3.3f sec",
5384       worker_id, _timer.seconds());
5385   }
5386 }
5387 
5388 // Note that parameter "i" is not used.
5389 void
5390 CMSParMarkTask::do_young_space_rescan(uint worker_id,
5391   OopsInGenClosure* cl, ContiguousSpace* space,
5392   HeapWord** chunk_array, size_t chunk_top) {
5393   // Until all tasks completed:
5394   // . claim an unclaimed task
5395   // . compute region boundaries corresponding to task claimed
5396   //   using chunk_array
5397   // . par_oop_iterate(cl) over that region
5398 
5399   ResourceMark rm;
5400   HandleMark   hm;
5401 
5402   SequentialSubTasksDone* pst = space->par_seq_tasks();
5403 
5404   uint nth_task = 0;
5405   uint n_tasks  = pst->n_tasks();
5406 
5407   if (n_tasks > 0) {
5408     assert(pst->valid(), "Uninitialized use?");
5409     HeapWord *start, *end;
5410     while (!pst->is_task_claimed(/* reference */ nth_task)) {
5411       // We claimed task # nth_task; compute its boundaries.
5412       if (chunk_top == 0) {  // no samples were taken
5413         assert(nth_task == 0 && n_tasks == 1, "Can have only 1 EdenSpace task");
5414         start = space->bottom();
5415         end   = space->top();
5416       } else if (nth_task == 0) {
5417         start = space->bottom();
5418         end   = chunk_array[nth_task];
5419       } else if (nth_task < (uint)chunk_top) {
5420         assert(nth_task >= 1, "Control point invariant");
5421         start = chunk_array[nth_task - 1];
5422         end   = chunk_array[nth_task];
5423       } else {
5424         assert(nth_task == (uint)chunk_top, "Control point invariant");
5425         start = chunk_array[chunk_top - 1];
5426         end   = space->top();
5427       }
5428       MemRegion mr(start, end);
5429       // Verify that mr is in space
5430       assert(mr.is_empty() || space->used_region().contains(mr),
5431              "Should be in space");
5432       // Verify that "start" is an object boundary
5433       assert(mr.is_empty() || oop(mr.start())->is_oop(),
5434              "Should be an oop");
5435       space->par_oop_iterate(mr, cl);
5436     }
5437     pst->all_tasks_completed();
5438   }
5439 }
5440 
5441 void
5442 CMSParRemarkTask::do_dirty_card_rescan_tasks(
5443   CompactibleFreeListSpace* sp, int i,
5444   Par_MarkRefsIntoAndScanClosure* cl) {
5445   // Until all tasks completed:
5446   // . claim an unclaimed task
5447   // . compute region boundaries corresponding to task claimed
5448   // . transfer dirty bits ct->mut for that region
5449   // . apply rescanclosure to dirty mut bits for that region
5450 
5451   ResourceMark rm;
5452   HandleMark   hm;
5453 
5454   OopTaskQueue* work_q = work_queue(i);
5455   ModUnionClosure modUnionClosure(&(_collector->_modUnionTable));
5456   // CAUTION! CAUTION! CAUTION! CAUTION! CAUTION! CAUTION! CAUTION!
5457   // CAUTION: This closure has state that persists across calls to
5458   // the work method dirty_range_iterate_clear() in that it has
5459   // embedded in it a (subtype of) UpwardsObjectClosure. The
5460   // use of that state in the embedded UpwardsObjectClosure instance
5461   // assumes that the cards are always iterated (even if in parallel
5462   // by several threads) in monotonically increasing order per each
5463   // thread. This is true of the implementation below which picks
5464   // card ranges (chunks) in monotonically increasing order globally
5465   // and, a-fortiori, in monotonically increasing order per thread
5466   // (the latter order being a subsequence of the former).
5467   // If the work code below is ever reorganized into a more chaotic
5468   // work-partitioning form than the current "sequential tasks"
5469   // paradigm, the use of that persistent state will have to be
5470   // revisited and modified appropriately. See also related
5471   // bug 4756801 work on which should examine this code to make
5472   // sure that the changes there do not run counter to the
5473   // assumptions made here and necessary for correctness and
5474   // efficiency. Note also that this code might yield inefficient
5475   // behavior in the case of very large objects that span one or
5476   // more work chunks. Such objects would potentially be scanned
5477   // several times redundantly. Work on 4756801 should try and
5478   // address that performance anomaly if at all possible. XXX
5479   MemRegion  full_span  = _collector->_span;
5480   CMSBitMap* bm    = &(_collector->_markBitMap);     // shared
5481   MarkFromDirtyCardsClosure
5482     greyRescanClosure(_collector, full_span, // entire span of interest
5483                       sp, bm, work_q, cl);
5484 
5485   SequentialSubTasksDone* pst = sp->conc_par_seq_tasks();
5486   assert(pst->valid(), "Uninitialized use?");
5487   uint nth_task = 0;
5488   const int alignment = CardTableModRefBS::card_size * BitsPerWord;
5489   MemRegion span = sp->used_region();
5490   HeapWord* start_addr = span.start();
5491   HeapWord* end_addr = (HeapWord*)round_to((intptr_t)span.end(),
5492                                            alignment);
5493   const size_t chunk_size = sp->rescan_task_size(); // in HeapWord units
5494   assert((HeapWord*)round_to((intptr_t)start_addr, alignment) ==
5495          start_addr, "Check alignment");
5496   assert((size_t)round_to((intptr_t)chunk_size, alignment) ==
5497          chunk_size, "Check alignment");
5498 
5499   while (!pst->is_task_claimed(/* reference */ nth_task)) {
5500     // Having claimed the nth_task, compute corresponding mem-region,
5501     // which is a-fortiori aligned correctly (i.e. at a MUT boundary).
5502     // The alignment restriction ensures that we do not need any
5503     // synchronization with other gang-workers while setting or
5504     // clearing bits in thus chunk of the MUT.
5505     MemRegion this_span = MemRegion(start_addr + nth_task*chunk_size,
5506                                     start_addr + (nth_task+1)*chunk_size);
5507     // The last chunk's end might be way beyond end of the
5508     // used region. In that case pull back appropriately.
5509     if (this_span.end() > end_addr) {
5510       this_span.set_end(end_addr);
5511       assert(!this_span.is_empty(), "Program logic (calculation of n_tasks)");
5512     }
5513     // Iterate over the dirty cards covering this chunk, marking them
5514     // precleaned, and setting the corresponding bits in the mod union
5515     // table. Since we have been careful to partition at Card and MUT-word
5516     // boundaries no synchronization is needed between parallel threads.
5517     _collector->_ct->ct_bs()->dirty_card_iterate(this_span,
5518                                                  &modUnionClosure);
5519 
5520     // Having transferred these marks into the modUnionTable,
5521     // rescan the marked objects on the dirty cards in the modUnionTable.
5522     // Even if this is at a synchronous collection, the initial marking
5523     // may have been done during an asynchronous collection so there
5524     // may be dirty bits in the mod-union table.
5525     _collector->_modUnionTable.dirty_range_iterate_clear(
5526                   this_span, &greyRescanClosure);
5527     _collector->_modUnionTable.verifyNoOneBitsInRange(
5528                                  this_span.start(),
5529                                  this_span.end());
5530   }
5531   pst->all_tasks_completed();  // declare that i am done
5532 }
5533 
5534 // . see if we can share work_queues with ParNew? XXX
5535 void
5536 CMSParRemarkTask::do_work_steal(int i, Par_MarkRefsIntoAndScanClosure* cl,
5537                                 int* seed) {
5538   OopTaskQueue* work_q = work_queue(i);
5539   NOT_PRODUCT(int num_steals = 0;)
5540   oop obj_to_scan;
5541   CMSBitMap* bm = &(_collector->_markBitMap);
5542 
5543   while (true) {
5544     // Completely finish any left over work from (an) earlier round(s)
5545     cl->trim_queue(0);
5546     size_t num_from_overflow_list = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
5547                                          (size_t)ParGCDesiredObjsFromOverflowList);
5548     // Now check if there's any work in the overflow list
5549     // Passing ParallelGCThreads as the third parameter, no_of_gc_threads,
5550     // only affects the number of attempts made to get work from the
5551     // overflow list and does not affect the number of workers.  Just
5552     // pass ParallelGCThreads so this behavior is unchanged.
5553     if (_collector->par_take_from_overflow_list(num_from_overflow_list,
5554                                                 work_q,
5555                                                 ParallelGCThreads)) {
5556       // found something in global overflow list;
5557       // not yet ready to go stealing work from others.
5558       // We'd like to assert(work_q->size() != 0, ...)
5559       // because we just took work from the overflow list,
5560       // but of course we can't since all of that could have
5561       // been already stolen from us.
5562       // "He giveth and He taketh away."
5563       continue;
5564     }
5565     // Verify that we have no work before we resort to stealing
5566     assert(work_q->size() == 0, "Have work, shouldn't steal");
5567     // Try to steal from other queues that have work
5568     if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) {
5569       NOT_PRODUCT(num_steals++;)
5570       assert(obj_to_scan->is_oop(), "Oops, not an oop!");
5571       assert(bm->isMarked((HeapWord*)obj_to_scan), "Stole an unmarked oop?");
5572       // Do scanning work
5573       obj_to_scan->oop_iterate(cl);
5574       // Loop around, finish this work, and try to steal some more
5575     } else if (terminator()->offer_termination()) {
5576         break;  // nirvana from the infinite cycle
5577     }
5578   }
5579   NOT_PRODUCT(
5580     if (PrintCMSStatistics != 0) {
5581       gclog_or_tty->print("\n\t(%d: stole %d oops)", i, num_steals);
5582     }
5583   )
5584   assert(work_q->size() == 0 && _collector->overflow_list_is_empty(),
5585          "Else our work is not yet done");
5586 }
5587 
5588 // Record object boundaries in _eden_chunk_array by sampling the eden
5589 // top in the slow-path eden object allocation code path and record
5590 // the boundaries, if CMSEdenChunksRecordAlways is true. If
5591 // CMSEdenChunksRecordAlways is false, we use the other asynchronous
5592 // sampling in sample_eden() that activates during the part of the
5593 // preclean phase.
5594 void CMSCollector::sample_eden_chunk() {
5595   if (CMSEdenChunksRecordAlways && _eden_chunk_array != NULL) {
5596     if (_eden_chunk_lock->try_lock()) {
5597       // Record a sample. This is the critical section. The contents
5598       // of the _eden_chunk_array have to be non-decreasing in the
5599       // address order.
5600       _eden_chunk_array[_eden_chunk_index] = *_top_addr;
5601       assert(_eden_chunk_array[_eden_chunk_index] <= *_end_addr,
5602              "Unexpected state of Eden");
5603       if (_eden_chunk_index == 0 ||
5604           ((_eden_chunk_array[_eden_chunk_index] > _eden_chunk_array[_eden_chunk_index-1]) &&
5605            (pointer_delta(_eden_chunk_array[_eden_chunk_index],
5606                           _eden_chunk_array[_eden_chunk_index-1]) >= CMSSamplingGrain))) {
5607         _eden_chunk_index++;  // commit sample
5608       }
5609       _eden_chunk_lock->unlock();
5610     }
5611   }
5612 }
5613 
5614 // Return a thread-local PLAB recording array, as appropriate.
5615 void* CMSCollector::get_data_recorder(int thr_num) {
5616   if (_survivor_plab_array != NULL &&
5617       (CMSPLABRecordAlways ||
5618        (_collectorState > Marking && _collectorState < FinalMarking))) {
5619     assert(thr_num < (int)ParallelGCThreads, "thr_num is out of bounds");
5620     ChunkArray* ca = &_survivor_plab_array[thr_num];
5621     ca->reset();   // clear it so that fresh data is recorded
5622     return (void*) ca;
5623   } else {
5624     return NULL;
5625   }
5626 }
5627 
5628 // Reset all the thread-local PLAB recording arrays
5629 void CMSCollector::reset_survivor_plab_arrays() {
5630   for (uint i = 0; i < ParallelGCThreads; i++) {
5631     _survivor_plab_array[i].reset();
5632   }
5633 }
5634 
5635 // Merge the per-thread plab arrays into the global survivor chunk
5636 // array which will provide the partitioning of the survivor space
5637 // for CMS initial scan and rescan.
5638 void CMSCollector::merge_survivor_plab_arrays(ContiguousSpace* surv,
5639                                               int no_of_gc_threads) {
5640   assert(_survivor_plab_array  != NULL, "Error");
5641   assert(_survivor_chunk_array != NULL, "Error");
5642   assert(_collectorState == FinalMarking ||
5643          (CMSParallelInitialMarkEnabled && _collectorState == InitialMarking), "Error");
5644   for (int j = 0; j < no_of_gc_threads; j++) {
5645     _cursor[j] = 0;
5646   }
5647   HeapWord* top = surv->top();
5648   size_t i;
5649   for (i = 0; i < _survivor_chunk_capacity; i++) {  // all sca entries
5650     HeapWord* min_val = top;          // Higher than any PLAB address
5651     uint      min_tid = 0;            // position of min_val this round
5652     for (int j = 0; j < no_of_gc_threads; j++) {
5653       ChunkArray* cur_sca = &_survivor_plab_array[j];
5654       if (_cursor[j] == cur_sca->end()) {
5655         continue;
5656       }
5657       assert(_cursor[j] < cur_sca->end(), "ctl pt invariant");
5658       HeapWord* cur_val = cur_sca->nth(_cursor[j]);
5659       assert(surv->used_region().contains(cur_val), "Out of bounds value");
5660       if (cur_val < min_val) {
5661         min_tid = j;
5662         min_val = cur_val;
5663       } else {
5664         assert(cur_val < top, "All recorded addresses should be less");
5665       }
5666     }
5667     // At this point min_val and min_tid are respectively
5668     // the least address in _survivor_plab_array[j]->nth(_cursor[j])
5669     // and the thread (j) that witnesses that address.
5670     // We record this address in the _survivor_chunk_array[i]
5671     // and increment _cursor[min_tid] prior to the next round i.
5672     if (min_val == top) {
5673       break;
5674     }
5675     _survivor_chunk_array[i] = min_val;
5676     _cursor[min_tid]++;
5677   }
5678   // We are all done; record the size of the _survivor_chunk_array
5679   _survivor_chunk_index = i; // exclusive: [0, i)
5680   if (PrintCMSStatistics > 0) {
5681     gclog_or_tty->print(" (Survivor:" SIZE_FORMAT "chunks) ", i);
5682   }
5683   // Verify that we used up all the recorded entries
5684   #ifdef ASSERT
5685     size_t total = 0;
5686     for (int j = 0; j < no_of_gc_threads; j++) {
5687       assert(_cursor[j] == _survivor_plab_array[j].end(), "Ctl pt invariant");
5688       total += _cursor[j];
5689     }
5690     assert(total == _survivor_chunk_index, "Ctl Pt Invariant");
5691     // Check that the merged array is in sorted order
5692     if (total > 0) {
5693       for (size_t i = 0; i < total - 1; i++) {
5694         if (PrintCMSStatistics > 0) {
5695           gclog_or_tty->print(" (chunk" SIZE_FORMAT ":" INTPTR_FORMAT ") ",
5696                               i, _survivor_chunk_array[i]);
5697         }
5698         assert(_survivor_chunk_array[i] < _survivor_chunk_array[i+1],
5699                "Not sorted");
5700       }
5701     }
5702   #endif // ASSERT
5703 }
5704 
5705 // Set up the space's par_seq_tasks structure for work claiming
5706 // for parallel initial scan and rescan of young gen.
5707 // See ParRescanTask where this is currently used.
5708 void
5709 CMSCollector::
5710 initialize_sequential_subtasks_for_young_gen_rescan(int n_threads) {
5711   assert(n_threads > 0, "Unexpected n_threads argument");
5712   DefNewGeneration* dng = (DefNewGeneration*)_young_gen;
5713 
5714   // Eden space
5715   if (!dng->eden()->is_empty()) {
5716     SequentialSubTasksDone* pst = dng->eden()->par_seq_tasks();
5717     assert(!pst->valid(), "Clobbering existing data?");
5718     // Each valid entry in [0, _eden_chunk_index) represents a task.
5719     size_t n_tasks = _eden_chunk_index + 1;
5720     assert(n_tasks == 1 || _eden_chunk_array != NULL, "Error");
5721     // Sets the condition for completion of the subtask (how many threads
5722     // need to finish in order to be done).
5723     pst->set_n_threads(n_threads);
5724     pst->set_n_tasks((int)n_tasks);
5725   }
5726 
5727   // Merge the survivor plab arrays into _survivor_chunk_array
5728   if (_survivor_plab_array != NULL) {
5729     merge_survivor_plab_arrays(dng->from(), n_threads);
5730   } else {
5731     assert(_survivor_chunk_index == 0, "Error");
5732   }
5733 
5734   // To space
5735   {
5736     SequentialSubTasksDone* pst = dng->to()->par_seq_tasks();
5737     assert(!pst->valid(), "Clobbering existing data?");
5738     // Sets the condition for completion of the subtask (how many threads
5739     // need to finish in order to be done).
5740     pst->set_n_threads(n_threads);
5741     pst->set_n_tasks(1);
5742     assert(pst->valid(), "Error");
5743   }
5744 
5745   // From space
5746   {
5747     SequentialSubTasksDone* pst = dng->from()->par_seq_tasks();
5748     assert(!pst->valid(), "Clobbering existing data?");
5749     size_t n_tasks = _survivor_chunk_index + 1;
5750     assert(n_tasks == 1 || _survivor_chunk_array != NULL, "Error");
5751     // Sets the condition for completion of the subtask (how many threads
5752     // need to finish in order to be done).
5753     pst->set_n_threads(n_threads);
5754     pst->set_n_tasks((int)n_tasks);
5755     assert(pst->valid(), "Error");
5756   }
5757 }
5758 
5759 // Parallel version of remark
5760 void CMSCollector::do_remark_parallel() {
5761   GenCollectedHeap* gch = GenCollectedHeap::heap();
5762   FlexibleWorkGang* workers = gch->workers();
5763   assert(workers != NULL, "Need parallel worker threads.");
5764   // Choose to use the number of GC workers most recently set
5765   // into "active_workers".  If active_workers is not set, set it
5766   // to ParallelGCThreads.
5767   int n_workers = workers->active_workers();
5768   if (n_workers == 0) {
5769     assert(n_workers > 0, "Should have been set during scavenge");
5770     n_workers = ParallelGCThreads;
5771     workers->set_active_workers(n_workers);
5772   }
5773   CompactibleFreeListSpace* cms_space  = _cmsGen->cmsSpace();
5774 
5775   CMSParRemarkTask tsk(this,
5776     cms_space,
5777     n_workers, workers, task_queues());
5778 
5779   // Set up for parallel process_roots work.
5780   gch->set_par_threads(n_workers);
5781   // We won't be iterating over the cards in the card table updating
5782   // the younger_gen cards, so we shouldn't call the following else
5783   // the verification code as well as subsequent younger_refs_iterate
5784   // code would get confused. XXX
5785   // gch->rem_set()->prepare_for_younger_refs_iterate(true); // parallel
5786 
5787   // The young gen rescan work will not be done as part of
5788   // process_roots (which currently doesn't know how to
5789   // parallelize such a scan), but rather will be broken up into
5790   // a set of parallel tasks (via the sampling that the [abortable]
5791   // preclean phase did of EdenSpace, plus the [two] tasks of
5792   // scanning the [two] survivor spaces. Further fine-grain
5793   // parallelization of the scanning of the survivor spaces
5794   // themselves, and of precleaning of the younger gen itself
5795   // is deferred to the future.
5796   initialize_sequential_subtasks_for_young_gen_rescan(n_workers);
5797 
5798   // The dirty card rescan work is broken up into a "sequence"
5799   // of parallel tasks (per constituent space) that are dynamically
5800   // claimed by the parallel threads.
5801   cms_space->initialize_sequential_subtasks_for_rescan(n_workers);
5802 
5803   // It turns out that even when we're using 1 thread, doing the work in a
5804   // separate thread causes wide variance in run times.  We can't help this
5805   // in the multi-threaded case, but we special-case n=1 here to get
5806   // repeatable measurements of the 1-thread overhead of the parallel code.
5807   if (n_workers > 1) {
5808     // Make refs discovery MT-safe, if it isn't already: it may not
5809     // necessarily be so, since it's possible that we are doing
5810     // ST marking.
5811     ReferenceProcessorMTDiscoveryMutator mt(ref_processor(), true);
5812     GenCollectedHeap::StrongRootsScope srs(gch);
5813     workers->run_task(&tsk);
5814   } else {
5815     ReferenceProcessorMTDiscoveryMutator mt(ref_processor(), false);
5816     GenCollectedHeap::StrongRootsScope srs(gch);
5817     tsk.work(0);
5818   }
5819 
5820   gch->set_par_threads(0);  // 0 ==> non-parallel.
5821   // restore, single-threaded for now, any preserved marks
5822   // as a result of work_q overflow
5823   restore_preserved_marks_if_any();
5824 }
5825 
5826 // Non-parallel version of remark
5827 void CMSCollector::do_remark_non_parallel() {
5828   ResourceMark rm;
5829   HandleMark   hm;
5830   GenCollectedHeap* gch = GenCollectedHeap::heap();
5831   ReferenceProcessorMTDiscoveryMutator mt(ref_processor(), false);
5832 
5833   MarkRefsIntoAndScanClosure
5834     mrias_cl(_span, ref_processor(), &_markBitMap, NULL /* not precleaning */,
5835              &_markStack, this,
5836              false /* should_yield */, false /* not precleaning */);
5837   MarkFromDirtyCardsClosure
5838     markFromDirtyCardsClosure(this, _span,
5839                               NULL,  // space is set further below
5840                               &_markBitMap, &_markStack, &mrias_cl);
5841   {
5842     GCTraceTime t("grey object rescan", PrintGCDetails, false, _gc_timer_cm, _gc_tracer_cm->gc_id());
5843     // Iterate over the dirty cards, setting the corresponding bits in the
5844     // mod union table.
5845     {
5846       ModUnionClosure modUnionClosure(&_modUnionTable);
5847       _ct->ct_bs()->dirty_card_iterate(
5848                       _cmsGen->used_region(),
5849                       &modUnionClosure);
5850     }
5851     // Having transferred these marks into the modUnionTable, we just need
5852     // to rescan the marked objects on the dirty cards in the modUnionTable.
5853     // The initial marking may have been done during an asynchronous
5854     // collection so there may be dirty bits in the mod-union table.
5855     const int alignment =
5856       CardTableModRefBS::card_size * BitsPerWord;
5857     {
5858       // ... First handle dirty cards in CMS gen
5859       markFromDirtyCardsClosure.set_space(_cmsGen->cmsSpace());
5860       MemRegion ur = _cmsGen->used_region();
5861       HeapWord* lb = ur.start();
5862       HeapWord* ub = (HeapWord*)round_to((intptr_t)ur.end(), alignment);
5863       MemRegion cms_span(lb, ub);
5864       _modUnionTable.dirty_range_iterate_clear(cms_span,
5865                                                &markFromDirtyCardsClosure);
5866       verify_work_stacks_empty();
5867       if (PrintCMSStatistics != 0) {
5868         gclog_or_tty->print(" (re-scanned "SIZE_FORMAT" dirty cards in cms gen) ",
5869           markFromDirtyCardsClosure.num_dirty_cards());
5870       }
5871     }
5872   }
5873   if (VerifyDuringGC &&
5874       GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
5875     HandleMark hm;  // Discard invalid handles created during verification
5876     Universe::verify();
5877   }
5878   {
5879     GCTraceTime t("root rescan", PrintGCDetails, false, _gc_timer_cm, _gc_tracer_cm->gc_id());
5880 
5881     verify_work_stacks_empty();
5882 
5883     gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
5884     GenCollectedHeap::StrongRootsScope srs(gch);
5885 
5886     gch->gen_process_roots(_cmsGen->level(),
5887                            true,  // younger gens as roots
5888                            false, // use the local StrongRootsScope
5889                            SharedHeap::ScanningOption(roots_scanning_options()),
5890                            should_unload_classes(),
5891                            &mrias_cl,
5892                            NULL,
5893                            NULL); // The dirty klasses will be handled below
5894 
5895     assert(should_unload_classes()
5896            || (roots_scanning_options() & SharedHeap::SO_AllCodeCache),
5897            "if we didn't scan the code cache, we have to be ready to drop nmethods with expired weak oops");
5898   }
5899 
5900   {
5901     GCTraceTime t("visit unhandled CLDs", PrintGCDetails, false, _gc_timer_cm, _gc_tracer_cm->gc_id());
5902 
5903     verify_work_stacks_empty();
5904 
5905     // Scan all class loader data objects that might have been introduced
5906     // during concurrent marking.
5907     ResourceMark rm;
5908     GrowableArray<ClassLoaderData*>* array = ClassLoaderDataGraph::new_clds();
5909     for (int i = 0; i < array->length(); i++) {
5910       mrias_cl.do_class_loader_data(array->at(i));
5911     }
5912 
5913     // We don't need to keep track of new CLDs anymore.
5914     ClassLoaderDataGraph::remember_new_clds(false);
5915 
5916     verify_work_stacks_empty();
5917   }
5918 
5919   {
5920     GCTraceTime t("dirty klass scan", PrintGCDetails, false, _gc_timer_cm, _gc_tracer_cm->gc_id());
5921 
5922     verify_work_stacks_empty();
5923 
5924     RemarkKlassClosure remark_klass_closure(&mrias_cl);
5925     ClassLoaderDataGraph::classes_do(&remark_klass_closure);
5926 
5927     verify_work_stacks_empty();
5928   }
5929 
5930   // We might have added oops to ClassLoaderData::_handles during the
5931   // concurrent marking phase. These oops point to newly allocated objects
5932   // that are guaranteed to be kept alive. Either by the direct allocation
5933   // code, or when the young collector processes the roots. Hence,
5934   // we don't have to revisit the _handles block during the remark phase.
5935 
5936   verify_work_stacks_empty();
5937   // Restore evacuated mark words, if any, used for overflow list links
5938   if (!CMSOverflowEarlyRestoration) {
5939     restore_preserved_marks_if_any();
5940   }
5941   verify_overflow_empty();
5942 }
5943 
5944 ////////////////////////////////////////////////////////
5945 // Parallel Reference Processing Task Proxy Class
5946 ////////////////////////////////////////////////////////
5947 class CMSRefProcTaskProxy: public AbstractGangTaskWOopQueues {
5948   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
5949   CMSCollector*          _collector;
5950   CMSBitMap*             _mark_bit_map;
5951   const MemRegion        _span;
5952   ProcessTask&           _task;
5953 
5954 public:
5955   CMSRefProcTaskProxy(ProcessTask&     task,
5956                       CMSCollector*    collector,
5957                       const MemRegion& span,
5958                       CMSBitMap*       mark_bit_map,
5959                       AbstractWorkGang* workers,
5960                       OopTaskQueueSet* task_queues):
5961     // XXX Should superclass AGTWOQ also know about AWG since it knows
5962     // about the task_queues used by the AWG? Then it could initialize
5963     // the terminator() object. See 6984287. The set_for_termination()
5964     // below is a temporary band-aid for the regression in 6984287.
5965     AbstractGangTaskWOopQueues("Process referents by policy in parallel",
5966       task_queues),
5967     _task(task),
5968     _collector(collector), _span(span), _mark_bit_map(mark_bit_map)
5969   {
5970     assert(_collector->_span.equals(_span) && !_span.is_empty(),
5971            "Inconsistency in _span");
5972     set_for_termination(workers->active_workers());
5973   }
5974 
5975   OopTaskQueueSet* task_queues() { return queues(); }
5976 
5977   OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
5978 
5979   void do_work_steal(int i,
5980                      CMSParDrainMarkingStackClosure* drain,
5981                      CMSParKeepAliveClosure* keep_alive,
5982                      int* seed);
5983 
5984   virtual void work(uint worker_id);
5985 };
5986 
5987 void CMSRefProcTaskProxy::work(uint worker_id) {
5988   ResourceMark rm;
5989   HandleMark hm;
5990   assert(_collector->_span.equals(_span), "Inconsistency in _span");
5991   CMSParKeepAliveClosure par_keep_alive(_collector, _span,
5992                                         _mark_bit_map,
5993                                         work_queue(worker_id));
5994   CMSParDrainMarkingStackClosure par_drain_stack(_collector, _span,
5995                                                  _mark_bit_map,
5996                                                  work_queue(worker_id));
5997   CMSIsAliveClosure is_alive_closure(_span, _mark_bit_map);
5998   _task.work(worker_id, is_alive_closure, par_keep_alive, par_drain_stack);
5999   if (_task.marks_oops_alive()) {
6000     do_work_steal(worker_id, &par_drain_stack, &par_keep_alive,
6001                   _collector->hash_seed(worker_id));
6002   }
6003   assert(work_queue(worker_id)->size() == 0, "work_queue should be empty");
6004   assert(_collector->_overflow_list == NULL, "non-empty _overflow_list");
6005 }
6006 
6007 class CMSRefEnqueueTaskProxy: public AbstractGangTask {
6008   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
6009   EnqueueTask& _task;
6010 
6011 public:
6012   CMSRefEnqueueTaskProxy(EnqueueTask& task)
6013     : AbstractGangTask("Enqueue reference objects in parallel"),
6014       _task(task)
6015   { }
6016 
6017   virtual void work(uint worker_id)
6018   {
6019     _task.work(worker_id);
6020   }
6021 };
6022 
6023 CMSParKeepAliveClosure::CMSParKeepAliveClosure(CMSCollector* collector,
6024   MemRegion span, CMSBitMap* bit_map, OopTaskQueue* work_queue):
6025    _span(span),
6026    _bit_map(bit_map),
6027    _work_queue(work_queue),
6028    _mark_and_push(collector, span, bit_map, work_queue),
6029    _low_water_mark(MIN2((uint)(work_queue->max_elems()/4),
6030                         (uint)(CMSWorkQueueDrainThreshold * ParallelGCThreads)))
6031 { }
6032 
6033 // . see if we can share work_queues with ParNew? XXX
6034 void CMSRefProcTaskProxy::do_work_steal(int i,
6035   CMSParDrainMarkingStackClosure* drain,
6036   CMSParKeepAliveClosure* keep_alive,
6037   int* seed) {
6038   OopTaskQueue* work_q = work_queue(i);
6039   NOT_PRODUCT(int num_steals = 0;)
6040   oop obj_to_scan;
6041 
6042   while (true) {
6043     // Completely finish any left over work from (an) earlier round(s)
6044     drain->trim_queue(0);
6045     size_t num_from_overflow_list = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
6046                                          (size_t)ParGCDesiredObjsFromOverflowList);
6047     // Now check if there's any work in the overflow list
6048     // Passing ParallelGCThreads as the third parameter, no_of_gc_threads,
6049     // only affects the number of attempts made to get work from the
6050     // overflow list and does not affect the number of workers.  Just
6051     // pass ParallelGCThreads so this behavior is unchanged.
6052     if (_collector->par_take_from_overflow_list(num_from_overflow_list,
6053                                                 work_q,
6054                                                 ParallelGCThreads)) {
6055       // Found something in global overflow list;
6056       // not yet ready to go stealing work from others.
6057       // We'd like to assert(work_q->size() != 0, ...)
6058       // because we just took work from the overflow list,
6059       // but of course we can't, since all of that might have
6060       // been already stolen from us.
6061       continue;
6062     }
6063     // Verify that we have no work before we resort to stealing
6064     assert(work_q->size() == 0, "Have work, shouldn't steal");
6065     // Try to steal from other queues that have work
6066     if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) {
6067       NOT_PRODUCT(num_steals++;)
6068       assert(obj_to_scan->is_oop(), "Oops, not an oop!");
6069       assert(_mark_bit_map->isMarked((HeapWord*)obj_to_scan), "Stole an unmarked oop?");
6070       // Do scanning work
6071       obj_to_scan->oop_iterate(keep_alive);
6072       // Loop around, finish this work, and try to steal some more
6073     } else if (terminator()->offer_termination()) {
6074       break;  // nirvana from the infinite cycle
6075     }
6076   }
6077   NOT_PRODUCT(
6078     if (PrintCMSStatistics != 0) {
6079       gclog_or_tty->print("\n\t(%d: stole %d oops)", i, num_steals);
6080     }
6081   )
6082 }
6083 
6084 void CMSRefProcTaskExecutor::execute(ProcessTask& task)
6085 {
6086   GenCollectedHeap* gch = GenCollectedHeap::heap();
6087   FlexibleWorkGang* workers = gch->workers();
6088   assert(workers != NULL, "Need parallel worker threads.");
6089   CMSRefProcTaskProxy rp_task(task, &_collector,
6090                               _collector.ref_processor()->span(),
6091                               _collector.markBitMap(),
6092                               workers, _collector.task_queues());
6093   workers->run_task(&rp_task);
6094 }
6095 
6096 void CMSRefProcTaskExecutor::execute(EnqueueTask& task)
6097 {
6098 
6099   GenCollectedHeap* gch = GenCollectedHeap::heap();
6100   FlexibleWorkGang* workers = gch->workers();
6101   assert(workers != NULL, "Need parallel worker threads.");
6102   CMSRefEnqueueTaskProxy enq_task(task);
6103   workers->run_task(&enq_task);
6104 }
6105 
6106 void CMSCollector::refProcessingWork(bool asynch, bool clear_all_soft_refs) {
6107 
6108   ResourceMark rm;
6109   HandleMark   hm;
6110 
6111   ReferenceProcessor* rp = ref_processor();
6112   assert(rp->span().equals(_span), "Spans should be equal");
6113   assert(!rp->enqueuing_is_done(), "Enqueuing should not be complete");
6114   // Process weak references.
6115   rp->setup_policy(clear_all_soft_refs);
6116   verify_work_stacks_empty();
6117 
6118   CMSKeepAliveClosure cmsKeepAliveClosure(this, _span, &_markBitMap,
6119                                           &_markStack, false /* !preclean */);
6120   CMSDrainMarkingStackClosure cmsDrainMarkingStackClosure(this,
6121                                 _span, &_markBitMap, &_markStack,
6122                                 &cmsKeepAliveClosure, false /* !preclean */);
6123   {
6124     GCTraceTime t("weak refs processing", PrintGCDetails, false, _gc_timer_cm, _gc_tracer_cm->gc_id());
6125 
6126     ReferenceProcessorStats stats;
6127     if (rp->processing_is_mt()) {
6128       // Set the degree of MT here.  If the discovery is done MT, there
6129       // may have been a different number of threads doing the discovery
6130       // and a different number of discovered lists may have Ref objects.
6131       // That is OK as long as the Reference lists are balanced (see
6132       // balance_all_queues() and balance_queues()).
6133       GenCollectedHeap* gch = GenCollectedHeap::heap();
6134       int active_workers = ParallelGCThreads;
6135       FlexibleWorkGang* workers = gch->workers();
6136       if (workers != NULL) {
6137         active_workers = workers->active_workers();
6138         // The expectation is that active_workers will have already
6139         // been set to a reasonable value.  If it has not been set,
6140         // investigate.
6141         assert(active_workers > 0, "Should have been set during scavenge");
6142       }
6143       rp->set_active_mt_degree(active_workers);
6144       CMSRefProcTaskExecutor task_executor(*this);
6145       stats = rp->process_discovered_references(&_is_alive_closure,
6146                                         &cmsKeepAliveClosure,
6147                                         &cmsDrainMarkingStackClosure,
6148                                         &task_executor,
6149                                         _gc_timer_cm,
6150                                         _gc_tracer_cm->gc_id());
6151     } else {
6152       stats = rp->process_discovered_references(&_is_alive_closure,
6153                                         &cmsKeepAliveClosure,
6154                                         &cmsDrainMarkingStackClosure,
6155                                         NULL,
6156                                         _gc_timer_cm,
6157                                         _gc_tracer_cm->gc_id());
6158     }
6159     _gc_tracer_cm->report_gc_reference_stats(stats);
6160 
6161   }
6162 
6163   // This is the point where the entire marking should have completed.
6164   verify_work_stacks_empty();
6165 
6166   if (should_unload_classes()) {
6167     {
6168       GCTraceTime t("class unloading", PrintGCDetails, false, _gc_timer_cm, _gc_tracer_cm->gc_id());
6169 
6170       // Unload classes and purge the SystemDictionary.
6171       bool purged_class = SystemDictionary::do_unloading(&_is_alive_closure);
6172 
6173       // Unload nmethods.
6174       CodeCache::do_unloading(&_is_alive_closure, purged_class);
6175 
6176       // Prune dead klasses from subklass/sibling/implementor lists.
6177       Klass::clean_weak_klass_links(&_is_alive_closure);
6178     }
6179 
6180     {
6181       GCTraceTime t("scrub symbol table", PrintGCDetails, false, _gc_timer_cm, _gc_tracer_cm->gc_id());
6182       // Clean up unreferenced symbols in symbol table.
6183       SymbolTable::unlink();
6184     }
6185 
6186     {
6187       GCTraceTime t("scrub string table", PrintGCDetails, false, _gc_timer_cm, _gc_tracer_cm->gc_id());
6188       // Delete entries for dead interned strings.
6189       StringTable::unlink(&_is_alive_closure);
6190     }
6191   }
6192 
6193 
6194   // Restore any preserved marks as a result of mark stack or
6195   // work queue overflow
6196   restore_preserved_marks_if_any();  // done single-threaded for now
6197 
6198   rp->set_enqueuing_is_done(true);
6199   if (rp->processing_is_mt()) {
6200     rp->balance_all_queues();
6201     CMSRefProcTaskExecutor task_executor(*this);
6202     rp->enqueue_discovered_references(&task_executor);
6203   } else {
6204     rp->enqueue_discovered_references(NULL);
6205   }
6206   rp->verify_no_references_recorded();
6207   assert(!rp->discovery_enabled(), "should have been disabled");
6208 }
6209 
6210 #ifndef PRODUCT
6211 void CMSCollector::check_correct_thread_executing() {
6212   Thread* t = Thread::current();
6213   // Only the VM thread or the CMS thread should be here.
6214   assert(t->is_ConcurrentGC_thread() || t->is_VM_thread(),
6215          "Unexpected thread type");
6216   // If this is the vm thread, the foreground process
6217   // should not be waiting.  Note that _foregroundGCIsActive is
6218   // true while the foreground collector is waiting.
6219   if (_foregroundGCShouldWait) {
6220     // We cannot be the VM thread
6221     assert(t->is_ConcurrentGC_thread(),
6222            "Should be CMS thread");
6223   } else {
6224     // We can be the CMS thread only if we are in a stop-world
6225     // phase of CMS collection.
6226     if (t->is_ConcurrentGC_thread()) {
6227       assert(_collectorState == InitialMarking ||
6228              _collectorState == FinalMarking,
6229              "Should be a stop-world phase");
6230       // The CMS thread should be holding the CMS_token.
6231       assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6232              "Potential interference with concurrently "
6233              "executing VM thread");
6234     }
6235   }
6236 }
6237 #endif
6238 
6239 void CMSCollector::sweep(bool asynch) {
6240   assert(_collectorState == Sweeping, "just checking");
6241   check_correct_thread_executing();
6242   verify_work_stacks_empty();
6243   verify_overflow_empty();
6244   increment_sweep_count();
6245   TraceCMSMemoryManagerStats tms(_collectorState,GenCollectedHeap::heap()->gc_cause());
6246 
6247   _inter_sweep_timer.stop();
6248   _inter_sweep_estimate.sample(_inter_sweep_timer.seconds());
6249 
6250   assert(!_intra_sweep_timer.is_active(), "Should not be active");
6251   _intra_sweep_timer.reset();
6252   _intra_sweep_timer.start();
6253   if (asynch) {
6254     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
6255     CMSPhaseAccounting pa(this, "sweep", _gc_tracer_cm->gc_id(), !PrintGCDetails);
6256     // First sweep the old gen
6257     {
6258       CMSTokenSyncWithLocks ts(true, _cmsGen->freelistLock(),
6259                                bitMapLock());
6260       sweepWork(_cmsGen, asynch);
6261     }
6262 
6263     // Update Universe::_heap_*_at_gc figures.
6264     // We need all the free list locks to make the abstract state
6265     // transition from Sweeping to Resetting. See detailed note
6266     // further below.
6267     {
6268       CMSTokenSyncWithLocks ts(true, _cmsGen->freelistLock());
6269       // Update heap occupancy information which is used as
6270       // input to soft ref clearing policy at the next gc.
6271       Universe::update_heap_info_at_gc();
6272       _collectorState = Resizing;
6273     }
6274   } else {
6275     // already have needed locks
6276     sweepWork(_cmsGen,  asynch);
6277     // Update heap occupancy information which is used as
6278     // input to soft ref clearing policy at the next gc.
6279     Universe::update_heap_info_at_gc();
6280     _collectorState = Resizing;
6281   }
6282   verify_work_stacks_empty();
6283   verify_overflow_empty();
6284 
6285   if (should_unload_classes()) {
6286     // Delay purge to the beginning of the next safepoint.  Metaspace::contains
6287     // requires that the virtual spaces are stable and not deleted.
6288     ClassLoaderDataGraph::set_should_purge(true);
6289   }
6290 
6291   _intra_sweep_timer.stop();
6292   _intra_sweep_estimate.sample(_intra_sweep_timer.seconds());
6293 
6294   _inter_sweep_timer.reset();
6295   _inter_sweep_timer.start();
6296 
6297   // We need to use a monotonically non-decreasing time in ms
6298   // or we will see time-warp warnings and os::javaTimeMillis()
6299   // does not guarantee monotonicity.
6300   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
6301   update_time_of_last_gc(now);
6302 
6303   // NOTE on abstract state transitions:
6304   // Mutators allocate-live and/or mark the mod-union table dirty
6305   // based on the state of the collection.  The former is done in
6306   // the interval [Marking, Sweeping] and the latter in the interval
6307   // [Marking, Sweeping).  Thus the transitions into the Marking state
6308   // and out of the Sweeping state must be synchronously visible
6309   // globally to the mutators.
6310   // The transition into the Marking state happens with the world
6311   // stopped so the mutators will globally see it.  Sweeping is
6312   // done asynchronously by the background collector so the transition
6313   // from the Sweeping state to the Resizing state must be done
6314   // under the freelistLock (as is the check for whether to
6315   // allocate-live and whether to dirty the mod-union table).
6316   assert(_collectorState == Resizing, "Change of collector state to"
6317     " Resizing must be done under the freelistLocks (plural)");
6318 
6319   // Now that sweeping has been completed, we clear
6320   // the incremental_collection_failed flag,
6321   // thus inviting a younger gen collection to promote into
6322   // this generation. If such a promotion may still fail,
6323   // the flag will be set again when a young collection is
6324   // attempted.
6325   GenCollectedHeap* gch = GenCollectedHeap::heap();
6326   gch->clear_incremental_collection_failed();  // Worth retrying as fresh space may have been freed up
6327   gch->update_full_collections_completed(_collection_count_start);
6328 }
6329 
6330 // FIX ME!!! Looks like this belongs in CFLSpace, with
6331 // CMSGen merely delegating to it.
6332 void ConcurrentMarkSweepGeneration::setNearLargestChunk() {
6333   double nearLargestPercent = FLSLargestBlockCoalesceProximity;
6334   HeapWord*  minAddr        = _cmsSpace->bottom();
6335   HeapWord*  largestAddr    =
6336     (HeapWord*) _cmsSpace->dictionary()->find_largest_dict();
6337   if (largestAddr == NULL) {
6338     // The dictionary appears to be empty.  In this case
6339     // try to coalesce at the end of the heap.
6340     largestAddr = _cmsSpace->end();
6341   }
6342   size_t largestOffset     = pointer_delta(largestAddr, minAddr);
6343   size_t nearLargestOffset =
6344     (size_t)((double)largestOffset * nearLargestPercent) - MinChunkSize;
6345   if (PrintFLSStatistics != 0) {
6346     gclog_or_tty->print_cr(
6347       "CMS: Large Block: " PTR_FORMAT ";"
6348       " Proximity: " PTR_FORMAT " -> " PTR_FORMAT,
6349       largestAddr,
6350       _cmsSpace->nearLargestChunk(), minAddr + nearLargestOffset);
6351   }
6352   _cmsSpace->set_nearLargestChunk(minAddr + nearLargestOffset);
6353 }
6354 
6355 bool ConcurrentMarkSweepGeneration::isNearLargestChunk(HeapWord* addr) {
6356   return addr >= _cmsSpace->nearLargestChunk();
6357 }
6358 
6359 FreeChunk* ConcurrentMarkSweepGeneration::find_chunk_at_end() {
6360   return _cmsSpace->find_chunk_at_end();
6361 }
6362 
6363 void ConcurrentMarkSweepGeneration::update_gc_stats(int current_level,
6364                                                     bool full) {
6365   // The next lower level has been collected.  Gather any statistics
6366   // that are of interest at this point.
6367   if (!full && (current_level + 1) == level()) {
6368     // Gather statistics on the young generation collection.
6369     collector()->stats().record_gc0_end(used());
6370   }
6371 }
6372 
6373 void ConcurrentMarkSweepGeneration::rotate_debug_collection_type() {
6374   if (PrintGCDetails && Verbose) {
6375     gclog_or_tty->print("Rotate from %d ", _debug_collection_type);
6376   }
6377   _debug_collection_type = (CollectionTypes) (_debug_collection_type + 1);
6378   _debug_collection_type =
6379     (CollectionTypes) (_debug_collection_type % Unknown_collection_type);
6380   if (PrintGCDetails && Verbose) {
6381     gclog_or_tty->print_cr("to %d ", _debug_collection_type);
6382   }
6383 }
6384 
6385 void CMSCollector::sweepWork(ConcurrentMarkSweepGeneration* gen,
6386   bool asynch) {
6387   // We iterate over the space(s) underlying this generation,
6388   // checking the mark bit map to see if the bits corresponding
6389   // to specific blocks are marked or not. Blocks that are
6390   // marked are live and are not swept up. All remaining blocks
6391   // are swept up, with coalescing on-the-fly as we sweep up
6392   // contiguous free and/or garbage blocks:
6393   // We need to ensure that the sweeper synchronizes with allocators
6394   // and stop-the-world collectors. In particular, the following
6395   // locks are used:
6396   // . CMS token: if this is held, a stop the world collection cannot occur
6397   // . freelistLock: if this is held no allocation can occur from this
6398   //                 generation by another thread
6399   // . bitMapLock: if this is held, no other thread can access or update
6400   //
6401 
6402   // Note that we need to hold the freelistLock if we use
6403   // block iterate below; else the iterator might go awry if
6404   // a mutator (or promotion) causes block contents to change
6405   // (for instance if the allocator divvies up a block).
6406   // If we hold the free list lock, for all practical purposes
6407   // young generation GC's can't occur (they'll usually need to
6408   // promote), so we might as well prevent all young generation
6409   // GC's while we do a sweeping step. For the same reason, we might
6410   // as well take the bit map lock for the entire duration
6411 
6412   // check that we hold the requisite locks
6413   assert(have_cms_token(), "Should hold cms token");
6414   assert(   (asynch && ConcurrentMarkSweepThread::cms_thread_has_cms_token())
6415          || (!asynch && ConcurrentMarkSweepThread::vm_thread_has_cms_token()),
6416         "Should possess CMS token to sweep");
6417   assert_lock_strong(gen->freelistLock());
6418   assert_lock_strong(bitMapLock());
6419 
6420   assert(!_inter_sweep_timer.is_active(), "Was switched off in an outer context");
6421   assert(_intra_sweep_timer.is_active(),  "Was switched on  in an outer context");
6422   gen->cmsSpace()->beginSweepFLCensus((float)(_inter_sweep_timer.seconds()),
6423                                       _inter_sweep_estimate.padded_average(),
6424                                       _intra_sweep_estimate.padded_average());
6425   gen->setNearLargestChunk();
6426 
6427   {
6428     SweepClosure sweepClosure(this, gen, &_markBitMap,
6429                             CMSYield && asynch);
6430     gen->cmsSpace()->blk_iterate_careful(&sweepClosure);
6431     // We need to free-up/coalesce garbage/blocks from a
6432     // co-terminal free run. This is done in the SweepClosure
6433     // destructor; so, do not remove this scope, else the
6434     // end-of-sweep-census below will be off by a little bit.
6435   }
6436   gen->cmsSpace()->sweep_completed();
6437   gen->cmsSpace()->endSweepFLCensus(sweep_count());
6438   if (should_unload_classes()) {                // unloaded classes this cycle,
6439     _concurrent_cycles_since_last_unload = 0;   // ... reset count
6440   } else {                                      // did not unload classes,
6441     _concurrent_cycles_since_last_unload++;     // ... increment count
6442   }
6443 }
6444 
6445 // Reset CMS data structures (for now just the marking bit map)
6446 // preparatory for the next cycle.
6447 void CMSCollector::reset(bool asynch) {
6448   if (asynch) {
6449     CMSTokenSyncWithLocks ts(true, bitMapLock());
6450 
6451     // If the state is not "Resetting", the foreground  thread
6452     // has done a collection and the resetting.
6453     if (_collectorState != Resetting) {
6454       assert(_collectorState == Idling, "The state should only change"
6455         " because the foreground collector has finished the collection");
6456       return;
6457     }
6458 
6459     // Clear the mark bitmap (no grey objects to start with)
6460     // for the next cycle.
6461     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
6462     CMSPhaseAccounting cmspa(this, "reset", _gc_tracer_cm->gc_id(), !PrintGCDetails);
6463 
6464     HeapWord* curAddr = _markBitMap.startWord();
6465     while (curAddr < _markBitMap.endWord()) {
6466       size_t remaining  = pointer_delta(_markBitMap.endWord(), curAddr);
6467       MemRegion chunk(curAddr, MIN2(CMSBitMapYieldQuantum, remaining));
6468       _markBitMap.clear_large_range(chunk);
6469       if (ConcurrentMarkSweepThread::should_yield() &&
6470           !foregroundGCIsActive() &&
6471           CMSYield) {
6472         assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6473                "CMS thread should hold CMS token");
6474         assert_lock_strong(bitMapLock());
6475         bitMapLock()->unlock();
6476         ConcurrentMarkSweepThread::desynchronize(true);
6477         ConcurrentMarkSweepThread::acknowledge_yield_request();
6478         stopTimer();
6479         if (PrintCMSStatistics != 0) {
6480           incrementYields();
6481         }
6482         icms_wait();
6483 
6484         // See the comment in coordinator_yield()
6485         for (unsigned i = 0; i < CMSYieldSleepCount &&
6486                          ConcurrentMarkSweepThread::should_yield() &&
6487                          !CMSCollector::foregroundGCIsActive(); ++i) {
6488           os::sleep(Thread::current(), 1, false);
6489           ConcurrentMarkSweepThread::acknowledge_yield_request();
6490         }
6491 
6492         ConcurrentMarkSweepThread::synchronize(true);
6493         bitMapLock()->lock_without_safepoint_check();
6494         startTimer();
6495       }
6496       curAddr = chunk.end();
6497     }
6498     // A successful mostly concurrent collection has been done.
6499     // Because only the full (i.e., concurrent mode failure) collections
6500     // are being measured for gc overhead limits, clean the "near" flag
6501     // and count.
6502     size_policy()->reset_gc_overhead_limit_count();
6503     _collectorState = Idling;
6504   } else {
6505     // already have the lock
6506     assert(_collectorState == Resetting, "just checking");
6507     assert_lock_strong(bitMapLock());
6508     _markBitMap.clear_all();
6509     _collectorState = Idling;
6510   }
6511 
6512   // Stop incremental mode after a cycle completes, so that any future cycles
6513   // are triggered by allocation.
6514   stop_icms();
6515 
6516   NOT_PRODUCT(
6517     if (RotateCMSCollectionTypes) {
6518       _cmsGen->rotate_debug_collection_type();
6519     }
6520   )
6521 
6522   register_gc_end();
6523 }
6524 
6525 void CMSCollector::do_CMS_operation(CMS_op_type op, GCCause::Cause gc_cause) {
6526   gclog_or_tty->date_stamp(PrintGC && PrintGCDateStamps);
6527   TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
6528   GCTraceTime t(GCCauseString("GC", gc_cause), PrintGC, !PrintGCDetails, NULL, _gc_tracer_cm->gc_id());
6529   TraceCollectorStats tcs(counters());
6530 
6531   switch (op) {
6532     case CMS_op_checkpointRootsInitial: {
6533       SvcGCMarker sgcm(SvcGCMarker::OTHER);
6534       checkpointRootsInitial(true);       // asynch
6535       if (PrintGC) {
6536         _cmsGen->printOccupancy("initial-mark");
6537       }
6538       break;
6539     }
6540     case CMS_op_checkpointRootsFinal: {
6541       SvcGCMarker sgcm(SvcGCMarker::OTHER);
6542       checkpointRootsFinal(true,    // asynch
6543                            false,   // !clear_all_soft_refs
6544                            false);  // !init_mark_was_synchronous
6545       if (PrintGC) {
6546         _cmsGen->printOccupancy("remark");
6547       }
6548       break;
6549     }
6550     default:
6551       fatal("No such CMS_op");
6552   }
6553 }
6554 
6555 #ifndef PRODUCT
6556 size_t const CMSCollector::skip_header_HeapWords() {
6557   return FreeChunk::header_size();
6558 }
6559 
6560 // Try and collect here conditions that should hold when
6561 // CMS thread is exiting. The idea is that the foreground GC
6562 // thread should not be blocked if it wants to terminate
6563 // the CMS thread and yet continue to run the VM for a while
6564 // after that.
6565 void CMSCollector::verify_ok_to_terminate() const {
6566   assert(Thread::current()->is_ConcurrentGC_thread(),
6567          "should be called by CMS thread");
6568   assert(!_foregroundGCShouldWait, "should be false");
6569   // We could check here that all the various low-level locks
6570   // are not held by the CMS thread, but that is overkill; see
6571   // also CMSThread::verify_ok_to_terminate() where the CGC_lock
6572   // is checked.
6573 }
6574 #endif
6575 
6576 size_t CMSCollector::block_size_using_printezis_bits(HeapWord* addr) const {
6577    assert(_markBitMap.isMarked(addr) && _markBitMap.isMarked(addr + 1),
6578           "missing Printezis mark?");
6579   HeapWord* nextOneAddr = _markBitMap.getNextMarkedWordAddress(addr + 2);
6580   size_t size = pointer_delta(nextOneAddr + 1, addr);
6581   assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
6582          "alignment problem");
6583   assert(size >= 3, "Necessary for Printezis marks to work");
6584   return size;
6585 }
6586 
6587 // A variant of the above (block_size_using_printezis_bits()) except
6588 // that we return 0 if the P-bits are not yet set.
6589 size_t CMSCollector::block_size_if_printezis_bits(HeapWord* addr) const {
6590   if (_markBitMap.isMarked(addr + 1)) {
6591     assert(_markBitMap.isMarked(addr), "P-bit can be set only for marked objects");
6592     HeapWord* nextOneAddr = _markBitMap.getNextMarkedWordAddress(addr + 2);
6593     size_t size = pointer_delta(nextOneAddr + 1, addr);
6594     assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
6595            "alignment problem");
6596     assert(size >= 3, "Necessary for Printezis marks to work");
6597     return size;
6598   }
6599   return 0;
6600 }
6601 
6602 HeapWord* CMSCollector::next_card_start_after_block(HeapWord* addr) const {
6603   size_t sz = 0;
6604   oop p = (oop)addr;
6605   if (p->klass_or_null() != NULL) {
6606     sz = CompactibleFreeListSpace::adjustObjectSize(p->size());
6607   } else {
6608     sz = block_size_using_printezis_bits(addr);
6609   }
6610   assert(sz > 0, "size must be nonzero");
6611   HeapWord* next_block = addr + sz;
6612   HeapWord* next_card  = (HeapWord*)round_to((uintptr_t)next_block,
6613                                              CardTableModRefBS::card_size);
6614   assert(round_down((uintptr_t)addr,      CardTableModRefBS::card_size) <
6615          round_down((uintptr_t)next_card, CardTableModRefBS::card_size),
6616          "must be different cards");
6617   return next_card;
6618 }
6619 
6620 
6621 // CMS Bit Map Wrapper /////////////////////////////////////////
6622 
6623 // Construct a CMS bit map infrastructure, but don't create the
6624 // bit vector itself. That is done by a separate call CMSBitMap::allocate()
6625 // further below.
6626 CMSBitMap::CMSBitMap(int shifter, int mutex_rank, const char* mutex_name):
6627   _bm(),
6628   _shifter(shifter),
6629   _lock(mutex_rank >= 0 ? new Mutex(mutex_rank, mutex_name, true) : NULL)
6630 {
6631   _bmStartWord = 0;
6632   _bmWordSize  = 0;
6633 }
6634 
6635 bool CMSBitMap::allocate(MemRegion mr) {
6636   _bmStartWord = mr.start();
6637   _bmWordSize  = mr.word_size();
6638   ReservedSpace brs(ReservedSpace::allocation_align_size_up(
6639                      (_bmWordSize >> (_shifter + LogBitsPerByte)) + 1));
6640   if (!brs.is_reserved()) {
6641     warning("CMS bit map allocation failure");
6642     return false;
6643   }
6644   // For now we'll just commit all of the bit map up front.
6645   // Later on we'll try to be more parsimonious with swap.
6646   if (!_virtual_space.initialize(brs, brs.size())) {
6647     warning("CMS bit map backing store failure");
6648     return false;
6649   }
6650   assert(_virtual_space.committed_size() == brs.size(),
6651          "didn't reserve backing store for all of CMS bit map?");
6652   _bm.set_map((BitMap::bm_word_t*)_virtual_space.low());
6653   assert(_virtual_space.committed_size() << (_shifter + LogBitsPerByte) >=
6654          _bmWordSize, "inconsistency in bit map sizing");
6655   _bm.set_size(_bmWordSize >> _shifter);
6656 
6657   // bm.clear(); // can we rely on getting zero'd memory? verify below
6658   assert(isAllClear(),
6659          "Expected zero'd memory from ReservedSpace constructor");
6660   assert(_bm.size() == heapWordDiffToOffsetDiff(sizeInWords()),
6661          "consistency check");
6662   return true;
6663 }
6664 
6665 void CMSBitMap::dirty_range_iterate_clear(MemRegion mr, MemRegionClosure* cl) {
6666   HeapWord *next_addr, *end_addr, *last_addr;
6667   assert_locked();
6668   assert(covers(mr), "out-of-range error");
6669   // XXX assert that start and end are appropriately aligned
6670   for (next_addr = mr.start(), end_addr = mr.end();
6671        next_addr < end_addr; next_addr = last_addr) {
6672     MemRegion dirty_region = getAndClearMarkedRegion(next_addr, end_addr);
6673     last_addr = dirty_region.end();
6674     if (!dirty_region.is_empty()) {
6675       cl->do_MemRegion(dirty_region);
6676     } else {
6677       assert(last_addr == end_addr, "program logic");
6678       return;
6679     }
6680   }
6681 }
6682 
6683 void CMSBitMap::print_on_error(outputStream* st, const char* prefix) const {
6684   _bm.print_on_error(st, prefix);
6685 }
6686 
6687 #ifndef PRODUCT
6688 void CMSBitMap::assert_locked() const {
6689   CMSLockVerifier::assert_locked(lock());
6690 }
6691 
6692 bool CMSBitMap::covers(MemRegion mr) const {
6693   // assert(_bm.map() == _virtual_space.low(), "map inconsistency");
6694   assert((size_t)_bm.size() == (_bmWordSize >> _shifter),
6695          "size inconsistency");
6696   return (mr.start() >= _bmStartWord) &&
6697          (mr.end()   <= endWord());
6698 }
6699 
6700 bool CMSBitMap::covers(HeapWord* start, size_t size) const {
6701     return (start >= _bmStartWord && (start + size) <= endWord());
6702 }
6703 
6704 void CMSBitMap::verifyNoOneBitsInRange(HeapWord* left, HeapWord* right) {
6705   // verify that there are no 1 bits in the interval [left, right)
6706   FalseBitMapClosure falseBitMapClosure;
6707   iterate(&falseBitMapClosure, left, right);
6708 }
6709 
6710 void CMSBitMap::region_invariant(MemRegion mr)
6711 {
6712   assert_locked();
6713   // mr = mr.intersection(MemRegion(_bmStartWord, _bmWordSize));
6714   assert(!mr.is_empty(), "unexpected empty region");
6715   assert(covers(mr), "mr should be covered by bit map");
6716   // convert address range into offset range
6717   size_t start_ofs = heapWordToOffset(mr.start());
6718   // Make sure that end() is appropriately aligned
6719   assert(mr.end() == (HeapWord*)round_to((intptr_t)mr.end(),
6720                         (1 << (_shifter+LogHeapWordSize))),
6721          "Misaligned mr.end()");
6722   size_t end_ofs   = heapWordToOffset(mr.end());
6723   assert(end_ofs > start_ofs, "Should mark at least one bit");
6724 }
6725 
6726 #endif
6727 
6728 bool CMSMarkStack::allocate(size_t size) {
6729   // allocate a stack of the requisite depth
6730   ReservedSpace rs(ReservedSpace::allocation_align_size_up(
6731                    size * sizeof(oop)));
6732   if (!rs.is_reserved()) {
6733     warning("CMSMarkStack allocation failure");
6734     return false;
6735   }
6736   if (!_virtual_space.initialize(rs, rs.size())) {
6737     warning("CMSMarkStack backing store failure");
6738     return false;
6739   }
6740   assert(_virtual_space.committed_size() == rs.size(),
6741          "didn't reserve backing store for all of CMS stack?");
6742   _base = (oop*)(_virtual_space.low());
6743   _index = 0;
6744   _capacity = size;
6745   NOT_PRODUCT(_max_depth = 0);
6746   return true;
6747 }
6748 
6749 // XXX FIX ME !!! In the MT case we come in here holding a
6750 // leaf lock. For printing we need to take a further lock
6751 // which has lower rank. We need to recalibrate the two
6752 // lock-ranks involved in order to be able to print the
6753 // messages below. (Or defer the printing to the caller.
6754 // For now we take the expedient path of just disabling the
6755 // messages for the problematic case.)
6756 void CMSMarkStack::expand() {
6757   assert(_capacity <= MarkStackSizeMax, "stack bigger than permitted");
6758   if (_capacity == MarkStackSizeMax) {
6759     if (_hit_limit++ == 0 && !CMSConcurrentMTEnabled && PrintGCDetails) {
6760       // We print a warning message only once per CMS cycle.
6761       gclog_or_tty->print_cr(" (benign) Hit CMSMarkStack max size limit");
6762     }
6763     return;
6764   }
6765   // Double capacity if possible
6766   size_t new_capacity = MIN2(_capacity*2, MarkStackSizeMax);
6767   // Do not give up existing stack until we have managed to
6768   // get the double capacity that we desired.
6769   ReservedSpace rs(ReservedSpace::allocation_align_size_up(
6770                    new_capacity * sizeof(oop)));
6771   if (rs.is_reserved()) {
6772     // Release the backing store associated with old stack
6773     _virtual_space.release();
6774     // Reinitialize virtual space for new stack
6775     if (!_virtual_space.initialize(rs, rs.size())) {
6776       fatal("Not enough swap for expanded marking stack");
6777     }
6778     _base = (oop*)(_virtual_space.low());
6779     _index = 0;
6780     _capacity = new_capacity;
6781   } else if (_failed_double++ == 0 && !CMSConcurrentMTEnabled && PrintGCDetails) {
6782     // Failed to double capacity, continue;
6783     // we print a detail message only once per CMS cycle.
6784     gclog_or_tty->print(" (benign) Failed to expand marking stack from "SIZE_FORMAT"K to "
6785             SIZE_FORMAT"K",
6786             _capacity / K, new_capacity / K);
6787   }
6788 }
6789 
6790 
6791 // Closures
6792 // XXX: there seems to be a lot of code  duplication here;
6793 // should refactor and consolidate common code.
6794 
6795 // This closure is used to mark refs into the CMS generation in
6796 // the CMS bit map. Called at the first checkpoint. This closure
6797 // assumes that we do not need to re-mark dirty cards; if the CMS
6798 // generation on which this is used is not an oldest
6799 // generation then this will lose younger_gen cards!
6800 
6801 MarkRefsIntoClosure::MarkRefsIntoClosure(
6802   MemRegion span, CMSBitMap* bitMap):
6803     _span(span),
6804     _bitMap(bitMap)
6805 {
6806     assert(_ref_processor == NULL, "deliberately left NULL");
6807     assert(_bitMap->covers(_span), "_bitMap/_span mismatch");
6808 }
6809 
6810 void MarkRefsIntoClosure::do_oop(oop obj) {
6811   // if p points into _span, then mark corresponding bit in _markBitMap
6812   assert(obj->is_oop(), "expected an oop");
6813   HeapWord* addr = (HeapWord*)obj;
6814   if (_span.contains(addr)) {
6815     // this should be made more efficient
6816     _bitMap->mark(addr);
6817   }
6818 }
6819 
6820 void MarkRefsIntoClosure::do_oop(oop* p)       { MarkRefsIntoClosure::do_oop_work(p); }
6821 void MarkRefsIntoClosure::do_oop(narrowOop* p) { MarkRefsIntoClosure::do_oop_work(p); }
6822 
6823 Par_MarkRefsIntoClosure::Par_MarkRefsIntoClosure(
6824   MemRegion span, CMSBitMap* bitMap):
6825     _span(span),
6826     _bitMap(bitMap)
6827 {
6828     assert(_ref_processor == NULL, "deliberately left NULL");
6829     assert(_bitMap->covers(_span), "_bitMap/_span mismatch");
6830 }
6831 
6832 void Par_MarkRefsIntoClosure::do_oop(oop obj) {
6833   // if p points into _span, then mark corresponding bit in _markBitMap
6834   assert(obj->is_oop(), "expected an oop");
6835   HeapWord* addr = (HeapWord*)obj;
6836   if (_span.contains(addr)) {
6837     // this should be made more efficient
6838     _bitMap->par_mark(addr);
6839   }
6840 }
6841 
6842 void Par_MarkRefsIntoClosure::do_oop(oop* p)       { Par_MarkRefsIntoClosure::do_oop_work(p); }
6843 void Par_MarkRefsIntoClosure::do_oop(narrowOop* p) { Par_MarkRefsIntoClosure::do_oop_work(p); }
6844 
6845 // A variant of the above, used for CMS marking verification.
6846 MarkRefsIntoVerifyClosure::MarkRefsIntoVerifyClosure(
6847   MemRegion span, CMSBitMap* verification_bm, CMSBitMap* cms_bm):
6848     _span(span),
6849     _verification_bm(verification_bm),
6850     _cms_bm(cms_bm)
6851 {
6852     assert(_ref_processor == NULL, "deliberately left NULL");
6853     assert(_verification_bm->covers(_span), "_verification_bm/_span mismatch");
6854 }
6855 
6856 void MarkRefsIntoVerifyClosure::do_oop(oop obj) {
6857   // if p points into _span, then mark corresponding bit in _markBitMap
6858   assert(obj->is_oop(), "expected an oop");
6859   HeapWord* addr = (HeapWord*)obj;
6860   if (_span.contains(addr)) {
6861     _verification_bm->mark(addr);
6862     if (!_cms_bm->isMarked(addr)) {
6863       oop(addr)->print();
6864       gclog_or_tty->print_cr(" (" INTPTR_FORMAT " should have been marked)", addr);
6865       fatal("... aborting");
6866     }
6867   }
6868 }
6869 
6870 void MarkRefsIntoVerifyClosure::do_oop(oop* p)       { MarkRefsIntoVerifyClosure::do_oop_work(p); }
6871 void MarkRefsIntoVerifyClosure::do_oop(narrowOop* p) { MarkRefsIntoVerifyClosure::do_oop_work(p); }
6872 
6873 //////////////////////////////////////////////////
6874 // MarkRefsIntoAndScanClosure
6875 //////////////////////////////////////////////////
6876 
6877 MarkRefsIntoAndScanClosure::MarkRefsIntoAndScanClosure(MemRegion span,
6878                                                        ReferenceProcessor* rp,
6879                                                        CMSBitMap* bit_map,
6880                                                        CMSBitMap* mod_union_table,
6881                                                        CMSMarkStack*  mark_stack,
6882                                                        CMSCollector* collector,
6883                                                        bool should_yield,
6884                                                        bool concurrent_precleaning):
6885   _collector(collector),
6886   _span(span),
6887   _bit_map(bit_map),
6888   _mark_stack(mark_stack),
6889   _pushAndMarkClosure(collector, span, rp, bit_map, mod_union_table,
6890                       mark_stack, concurrent_precleaning),
6891   _yield(should_yield),
6892   _concurrent_precleaning(concurrent_precleaning),
6893   _freelistLock(NULL)
6894 {
6895   _ref_processor = rp;
6896   assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL");
6897 }
6898 
6899 // This closure is used to mark refs into the CMS generation at the
6900 // second (final) checkpoint, and to scan and transitively follow
6901 // the unmarked oops. It is also used during the concurrent precleaning
6902 // phase while scanning objects on dirty cards in the CMS generation.
6903 // The marks are made in the marking bit map and the marking stack is
6904 // used for keeping the (newly) grey objects during the scan.
6905 // The parallel version (Par_...) appears further below.
6906 void MarkRefsIntoAndScanClosure::do_oop(oop obj) {
6907   if (obj != NULL) {
6908     assert(obj->is_oop(), "expected an oop");
6909     HeapWord* addr = (HeapWord*)obj;
6910     assert(_mark_stack->isEmpty(), "pre-condition (eager drainage)");
6911     assert(_collector->overflow_list_is_empty(),
6912            "overflow list should be empty");
6913     if (_span.contains(addr) &&
6914         !_bit_map->isMarked(addr)) {
6915       // mark bit map (object is now grey)
6916       _bit_map->mark(addr);
6917       // push on marking stack (stack should be empty), and drain the
6918       // stack by applying this closure to the oops in the oops popped
6919       // from the stack (i.e. blacken the grey objects)
6920       bool res = _mark_stack->push(obj);
6921       assert(res, "Should have space to push on empty stack");
6922       do {
6923         oop new_oop = _mark_stack->pop();
6924         assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop");
6925         assert(_bit_map->isMarked((HeapWord*)new_oop),
6926                "only grey objects on this stack");
6927         // iterate over the oops in this oop, marking and pushing
6928         // the ones in CMS heap (i.e. in _span).
6929         new_oop->oop_iterate(&_pushAndMarkClosure);
6930         // check if it's time to yield
6931         do_yield_check();
6932       } while (!_mark_stack->isEmpty() ||
6933                (!_concurrent_precleaning && take_from_overflow_list()));
6934         // if marking stack is empty, and we are not doing this
6935         // during precleaning, then check the overflow list
6936     }
6937     assert(_mark_stack->isEmpty(), "post-condition (eager drainage)");
6938     assert(_collector->overflow_list_is_empty(),
6939            "overflow list was drained above");
6940     // We could restore evacuated mark words, if any, used for
6941     // overflow list links here because the overflow list is
6942     // provably empty here. That would reduce the maximum
6943     // size requirements for preserved_{oop,mark}_stack.
6944     // But we'll just postpone it until we are all done
6945     // so we can just stream through.
6946     if (!_concurrent_precleaning && CMSOverflowEarlyRestoration) {
6947       _collector->restore_preserved_marks_if_any();
6948       assert(_collector->no_preserved_marks(), "No preserved marks");
6949     }
6950     assert(!CMSOverflowEarlyRestoration || _collector->no_preserved_marks(),
6951            "All preserved marks should have been restored above");
6952   }
6953 }
6954 
6955 void MarkRefsIntoAndScanClosure::do_oop(oop* p)       { MarkRefsIntoAndScanClosure::do_oop_work(p); }
6956 void MarkRefsIntoAndScanClosure::do_oop(narrowOop* p) { MarkRefsIntoAndScanClosure::do_oop_work(p); }
6957 
6958 void MarkRefsIntoAndScanClosure::do_yield_work() {
6959   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6960          "CMS thread should hold CMS token");
6961   assert_lock_strong(_freelistLock);
6962   assert_lock_strong(_bit_map->lock());
6963   // relinquish the free_list_lock and bitMaplock()
6964   _bit_map->lock()->unlock();
6965   _freelistLock->unlock();
6966   ConcurrentMarkSweepThread::desynchronize(true);
6967   ConcurrentMarkSweepThread::acknowledge_yield_request();
6968   _collector->stopTimer();
6969   if (PrintCMSStatistics != 0) {
6970     _collector->incrementYields();
6971   }
6972   _collector->icms_wait();
6973 
6974   // See the comment in coordinator_yield()
6975   for (unsigned i = 0;
6976        i < CMSYieldSleepCount &&
6977        ConcurrentMarkSweepThread::should_yield() &&
6978        !CMSCollector::foregroundGCIsActive();
6979        ++i) {
6980     os::sleep(Thread::current(), 1, false);
6981     ConcurrentMarkSweepThread::acknowledge_yield_request();
6982   }
6983 
6984   ConcurrentMarkSweepThread::synchronize(true);
6985   _freelistLock->lock_without_safepoint_check();
6986   _bit_map->lock()->lock_without_safepoint_check();
6987   _collector->startTimer();
6988 }
6989 
6990 ///////////////////////////////////////////////////////////
6991 // Par_MarkRefsIntoAndScanClosure: a parallel version of
6992 //                                 MarkRefsIntoAndScanClosure
6993 ///////////////////////////////////////////////////////////
6994 Par_MarkRefsIntoAndScanClosure::Par_MarkRefsIntoAndScanClosure(
6995   CMSCollector* collector, MemRegion span, ReferenceProcessor* rp,
6996   CMSBitMap* bit_map, OopTaskQueue* work_queue):
6997   _span(span),
6998   _bit_map(bit_map),
6999   _work_queue(work_queue),
7000   _low_water_mark(MIN2((uint)(work_queue->max_elems()/4),
7001                        (uint)(CMSWorkQueueDrainThreshold * ParallelGCThreads))),
7002   _par_pushAndMarkClosure(collector, span, rp, bit_map, work_queue)
7003 {
7004   _ref_processor = rp;
7005   assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL");
7006 }
7007 
7008 // This closure is used to mark refs into the CMS generation at the
7009 // second (final) checkpoint, and to scan and transitively follow
7010 // the unmarked oops. The marks are made in the marking bit map and
7011 // the work_queue is used for keeping the (newly) grey objects during
7012 // the scan phase whence they are also available for stealing by parallel
7013 // threads. Since the marking bit map is shared, updates are
7014 // synchronized (via CAS).
7015 void Par_MarkRefsIntoAndScanClosure::do_oop(oop obj) {
7016   if (obj != NULL) {
7017     // Ignore mark word because this could be an already marked oop
7018     // that may be chained at the end of the overflow list.
7019     assert(obj->is_oop(true), "expected an oop");
7020     HeapWord* addr = (HeapWord*)obj;
7021     if (_span.contains(addr) &&
7022         !_bit_map->isMarked(addr)) {
7023       // mark bit map (object will become grey):
7024       // It is possible for several threads to be
7025       // trying to "claim" this object concurrently;
7026       // the unique thread that succeeds in marking the
7027       // object first will do the subsequent push on
7028       // to the work queue (or overflow list).
7029       if (_bit_map->par_mark(addr)) {
7030         // push on work_queue (which may not be empty), and trim the
7031         // queue to an appropriate length by applying this closure to
7032         // the oops in the oops popped from the stack (i.e. blacken the
7033         // grey objects)
7034         bool res = _work_queue->push(obj);
7035         assert(res, "Low water mark should be less than capacity?");
7036         trim_queue(_low_water_mark);
7037       } // Else, another thread claimed the object
7038     }
7039   }
7040 }
7041 
7042 void Par_MarkRefsIntoAndScanClosure::do_oop(oop* p)       { Par_MarkRefsIntoAndScanClosure::do_oop_work(p); }
7043 void Par_MarkRefsIntoAndScanClosure::do_oop(narrowOop* p) { Par_MarkRefsIntoAndScanClosure::do_oop_work(p); }
7044 
7045 // This closure is used to rescan the marked objects on the dirty cards
7046 // in the mod union table and the card table proper.
7047 size_t ScanMarkedObjectsAgainCarefullyClosure::do_object_careful_m(
7048   oop p, MemRegion mr) {
7049 
7050   size_t size = 0;
7051   HeapWord* addr = (HeapWord*)p;
7052   DEBUG_ONLY(_collector->verify_work_stacks_empty();)
7053   assert(_span.contains(addr), "we are scanning the CMS generation");
7054   // check if it's time to yield
7055   if (do_yield_check()) {
7056     // We yielded for some foreground stop-world work,
7057     // and we have been asked to abort this ongoing preclean cycle.
7058     return 0;
7059   }
7060   if (_bitMap->isMarked(addr)) {
7061     // it's marked; is it potentially uninitialized?
7062     if (p->klass_or_null() != NULL) {
7063         // an initialized object; ignore mark word in verification below
7064         // since we are running concurrent with mutators
7065         assert(p->is_oop(true), "should be an oop");
7066         if (p->is_objArray()) {
7067           // objArrays are precisely marked; restrict scanning
7068           // to dirty cards only.
7069           size = CompactibleFreeListSpace::adjustObjectSize(
7070                    p->oop_iterate(_scanningClosure, mr));
7071         } else {
7072           // A non-array may have been imprecisely marked; we need
7073           // to scan object in its entirety.
7074           size = CompactibleFreeListSpace::adjustObjectSize(
7075                    p->oop_iterate(_scanningClosure));
7076         }
7077         #ifdef ASSERT
7078           size_t direct_size =
7079             CompactibleFreeListSpace::adjustObjectSize(p->size());
7080           assert(size == direct_size, "Inconsistency in size");
7081           assert(size >= 3, "Necessary for Printezis marks to work");
7082           if (!_bitMap->isMarked(addr+1)) {
7083             _bitMap->verifyNoOneBitsInRange(addr+2, addr+size);
7084           } else {
7085             _bitMap->verifyNoOneBitsInRange(addr+2, addr+size-1);
7086             assert(_bitMap->isMarked(addr+size-1),
7087                    "inconsistent Printezis mark");
7088           }
7089         #endif // ASSERT
7090     } else {
7091       // An uninitialized object.
7092       assert(_bitMap->isMarked(addr+1), "missing Printezis mark?");
7093       HeapWord* nextOneAddr = _bitMap->getNextMarkedWordAddress(addr + 2);
7094       size = pointer_delta(nextOneAddr + 1, addr);
7095       assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
7096              "alignment problem");
7097       // Note that pre-cleaning needn't redirty the card. OopDesc::set_klass()
7098       // will dirty the card when the klass pointer is installed in the
7099       // object (signaling the completion of initialization).
7100     }
7101   } else {
7102     // Either a not yet marked object or an uninitialized object
7103     if (p->klass_or_null() == NULL) {
7104       // An uninitialized object, skip to the next card, since
7105       // we may not be able to read its P-bits yet.
7106       assert(size == 0, "Initial value");
7107     } else {
7108       // An object not (yet) reached by marking: we merely need to
7109       // compute its size so as to go look at the next block.
7110       assert(p->is_oop(true), "should be an oop");
7111       size = CompactibleFreeListSpace::adjustObjectSize(p->size());
7112     }
7113   }
7114   DEBUG_ONLY(_collector->verify_work_stacks_empty();)
7115   return size;
7116 }
7117 
7118 void ScanMarkedObjectsAgainCarefullyClosure::do_yield_work() {
7119   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
7120          "CMS thread should hold CMS token");
7121   assert_lock_strong(_freelistLock);
7122   assert_lock_strong(_bitMap->lock());
7123   // relinquish the free_list_lock and bitMaplock()
7124   _bitMap->lock()->unlock();
7125   _freelistLock->unlock();
7126   ConcurrentMarkSweepThread::desynchronize(true);
7127   ConcurrentMarkSweepThread::acknowledge_yield_request();
7128   _collector->stopTimer();
7129   if (PrintCMSStatistics != 0) {
7130     _collector->incrementYields();
7131   }
7132   _collector->icms_wait();
7133 
7134   // See the comment in coordinator_yield()
7135   for (unsigned i = 0; i < CMSYieldSleepCount &&
7136                    ConcurrentMarkSweepThread::should_yield() &&
7137                    !CMSCollector::foregroundGCIsActive(); ++i) {
7138     os::sleep(Thread::current(), 1, false);
7139     ConcurrentMarkSweepThread::acknowledge_yield_request();
7140   }
7141 
7142   ConcurrentMarkSweepThread::synchronize(true);
7143   _freelistLock->lock_without_safepoint_check();
7144   _bitMap->lock()->lock_without_safepoint_check();
7145   _collector->startTimer();
7146 }
7147 
7148 
7149 //////////////////////////////////////////////////////////////////
7150 // SurvivorSpacePrecleanClosure
7151 //////////////////////////////////////////////////////////////////
7152 // This (single-threaded) closure is used to preclean the oops in
7153 // the survivor spaces.
7154 size_t SurvivorSpacePrecleanClosure::do_object_careful(oop p) {
7155 
7156   HeapWord* addr = (HeapWord*)p;
7157   DEBUG_ONLY(_collector->verify_work_stacks_empty();)
7158   assert(!_span.contains(addr), "we are scanning the survivor spaces");
7159   assert(p->klass_or_null() != NULL, "object should be initialized");
7160   // an initialized object; ignore mark word in verification below
7161   // since we are running concurrent with mutators
7162   assert(p->is_oop(true), "should be an oop");
7163   // Note that we do not yield while we iterate over
7164   // the interior oops of p, pushing the relevant ones
7165   // on our marking stack.
7166   size_t size = p->oop_iterate(_scanning_closure);
7167   do_yield_check();
7168   // Observe that below, we do not abandon the preclean
7169   // phase as soon as we should; rather we empty the
7170   // marking stack before returning. This is to satisfy
7171   // some existing assertions. In general, it may be a
7172   // good idea to abort immediately and complete the marking
7173   // from the grey objects at a later time.
7174   while (!_mark_stack->isEmpty()) {
7175     oop new_oop = _mark_stack->pop();
7176     assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop");
7177     assert(_bit_map->isMarked((HeapWord*)new_oop),
7178            "only grey objects on this stack");
7179     // iterate over the oops in this oop, marking and pushing
7180     // the ones in CMS heap (i.e. in _span).
7181     new_oop->oop_iterate(_scanning_closure);
7182     // check if it's time to yield
7183     do_yield_check();
7184   }
7185   unsigned int after_count =
7186     GenCollectedHeap::heap()->total_collections();
7187   bool abort = (_before_count != after_count) ||
7188                _collector->should_abort_preclean();
7189   return abort ? 0 : size;
7190 }
7191 
7192 void SurvivorSpacePrecleanClosure::do_yield_work() {
7193   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
7194          "CMS thread should hold CMS token");
7195   assert_lock_strong(_bit_map->lock());
7196   // Relinquish the bit map lock
7197   _bit_map->lock()->unlock();
7198   ConcurrentMarkSweepThread::desynchronize(true);
7199   ConcurrentMarkSweepThread::acknowledge_yield_request();
7200   _collector->stopTimer();
7201   if (PrintCMSStatistics != 0) {
7202     _collector->incrementYields();
7203   }
7204   _collector->icms_wait();
7205 
7206   // See the comment in coordinator_yield()
7207   for (unsigned i = 0; i < CMSYieldSleepCount &&
7208                        ConcurrentMarkSweepThread::should_yield() &&
7209                        !CMSCollector::foregroundGCIsActive(); ++i) {
7210     os::sleep(Thread::current(), 1, false);
7211     ConcurrentMarkSweepThread::acknowledge_yield_request();
7212   }
7213 
7214   ConcurrentMarkSweepThread::synchronize(true);
7215   _bit_map->lock()->lock_without_safepoint_check();
7216   _collector->startTimer();
7217 }
7218 
7219 // This closure is used to rescan the marked objects on the dirty cards
7220 // in the mod union table and the card table proper. In the parallel
7221 // case, although the bitMap is shared, we do a single read so the
7222 // isMarked() query is "safe".
7223 bool ScanMarkedObjectsAgainClosure::do_object_bm(oop p, MemRegion mr) {
7224   // Ignore mark word because we are running concurrent with mutators
7225   assert(p->is_oop_or_null(true), err_msg("Expected an oop or NULL at " PTR_FORMAT, p2i(p)));
7226   HeapWord* addr = (HeapWord*)p;
7227   assert(_span.contains(addr), "we are scanning the CMS generation");
7228   bool is_obj_array = false;
7229   #ifdef ASSERT
7230     if (!_parallel) {
7231       assert(_mark_stack->isEmpty(), "pre-condition (eager drainage)");
7232       assert(_collector->overflow_list_is_empty(),
7233              "overflow list should be empty");
7234 
7235     }
7236   #endif // ASSERT
7237   if (_bit_map->isMarked(addr)) {
7238     // Obj arrays are precisely marked, non-arrays are not;
7239     // so we scan objArrays precisely and non-arrays in their
7240     // entirety.
7241     if (p->is_objArray()) {
7242       is_obj_array = true;
7243       if (_parallel) {
7244         p->oop_iterate(_par_scan_closure, mr);
7245       } else {
7246         p->oop_iterate(_scan_closure, mr);
7247       }
7248     } else {
7249       if (_parallel) {
7250         p->oop_iterate(_par_scan_closure);
7251       } else {
7252         p->oop_iterate(_scan_closure);
7253       }
7254     }
7255   }
7256   #ifdef ASSERT
7257     if (!_parallel) {
7258       assert(_mark_stack->isEmpty(), "post-condition (eager drainage)");
7259       assert(_collector->overflow_list_is_empty(),
7260              "overflow list should be empty");
7261 
7262     }
7263   #endif // ASSERT
7264   return is_obj_array;
7265 }
7266 
7267 MarkFromRootsClosure::MarkFromRootsClosure(CMSCollector* collector,
7268                         MemRegion span,
7269                         CMSBitMap* bitMap, CMSMarkStack*  markStack,
7270                         bool should_yield, bool verifying):
7271   _collector(collector),
7272   _span(span),
7273   _bitMap(bitMap),
7274   _mut(&collector->_modUnionTable),
7275   _markStack(markStack),
7276   _yield(should_yield),
7277   _skipBits(0)
7278 {
7279   assert(_markStack->isEmpty(), "stack should be empty");
7280   _finger = _bitMap->startWord();
7281   _threshold = _finger;
7282   assert(_collector->_restart_addr == NULL, "Sanity check");
7283   assert(_span.contains(_finger), "Out of bounds _finger?");
7284   DEBUG_ONLY(_verifying = verifying;)
7285 }
7286 
7287 void MarkFromRootsClosure::reset(HeapWord* addr) {
7288   assert(_markStack->isEmpty(), "would cause duplicates on stack");
7289   assert(_span.contains(addr), "Out of bounds _finger?");
7290   _finger = addr;
7291   _threshold = (HeapWord*)round_to(
7292                  (intptr_t)_finger, CardTableModRefBS::card_size);
7293 }
7294 
7295 // Should revisit to see if this should be restructured for
7296 // greater efficiency.
7297 bool MarkFromRootsClosure::do_bit(size_t offset) {
7298   if (_skipBits > 0) {
7299     _skipBits--;
7300     return true;
7301   }
7302   // convert offset into a HeapWord*
7303   HeapWord* addr = _bitMap->startWord() + offset;
7304   assert(_bitMap->endWord() && addr < _bitMap->endWord(),
7305          "address out of range");
7306   assert(_bitMap->isMarked(addr), "tautology");
7307   if (_bitMap->isMarked(addr+1)) {
7308     // this is an allocated but not yet initialized object
7309     assert(_skipBits == 0, "tautology");
7310     _skipBits = 2;  // skip next two marked bits ("Printezis-marks")
7311     oop p = oop(addr);
7312     if (p->klass_or_null() == NULL) {
7313       DEBUG_ONLY(if (!_verifying) {)
7314         // We re-dirty the cards on which this object lies and increase
7315         // the _threshold so that we'll come back to scan this object
7316         // during the preclean or remark phase. (CMSCleanOnEnter)
7317         if (CMSCleanOnEnter) {
7318           size_t sz = _collector->block_size_using_printezis_bits(addr);
7319           HeapWord* end_card_addr   = (HeapWord*)round_to(
7320                                          (intptr_t)(addr+sz), CardTableModRefBS::card_size);
7321           MemRegion redirty_range = MemRegion(addr, end_card_addr);
7322           assert(!redirty_range.is_empty(), "Arithmetical tautology");
7323           // Bump _threshold to end_card_addr; note that
7324           // _threshold cannot possibly exceed end_card_addr, anyhow.
7325           // This prevents future clearing of the card as the scan proceeds
7326           // to the right.
7327           assert(_threshold <= end_card_addr,
7328                  "Because we are just scanning into this object");
7329           if (_threshold < end_card_addr) {
7330             _threshold = end_card_addr;
7331           }
7332           if (p->klass_or_null() != NULL) {
7333             // Redirty the range of cards...
7334             _mut->mark_range(redirty_range);
7335           } // ...else the setting of klass will dirty the card anyway.
7336         }
7337       DEBUG_ONLY(})
7338       return true;
7339     }
7340   }
7341   scanOopsInOop(addr);
7342   return true;
7343 }
7344 
7345 // We take a break if we've been at this for a while,
7346 // so as to avoid monopolizing the locks involved.
7347 void MarkFromRootsClosure::do_yield_work() {
7348   // First give up the locks, then yield, then re-lock
7349   // We should probably use a constructor/destructor idiom to
7350   // do this unlock/lock or modify the MutexUnlocker class to
7351   // serve our purpose. XXX
7352   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
7353          "CMS thread should hold CMS token");
7354   assert_lock_strong(_bitMap->lock());
7355   _bitMap->lock()->unlock();
7356   ConcurrentMarkSweepThread::desynchronize(true);
7357   ConcurrentMarkSweepThread::acknowledge_yield_request();
7358   _collector->stopTimer();
7359   if (PrintCMSStatistics != 0) {
7360     _collector->incrementYields();
7361   }
7362   _collector->icms_wait();
7363 
7364   // See the comment in coordinator_yield()
7365   for (unsigned i = 0; i < CMSYieldSleepCount &&
7366                        ConcurrentMarkSweepThread::should_yield() &&
7367                        !CMSCollector::foregroundGCIsActive(); ++i) {
7368     os::sleep(Thread::current(), 1, false);
7369     ConcurrentMarkSweepThread::acknowledge_yield_request();
7370   }
7371 
7372   ConcurrentMarkSweepThread::synchronize(true);
7373   _bitMap->lock()->lock_without_safepoint_check();
7374   _collector->startTimer();
7375 }
7376 
7377 void MarkFromRootsClosure::scanOopsInOop(HeapWord* ptr) {
7378   assert(_bitMap->isMarked(ptr), "expected bit to be set");
7379   assert(_markStack->isEmpty(),
7380          "should drain stack to limit stack usage");
7381   // convert ptr to an oop preparatory to scanning
7382   oop obj = oop(ptr);
7383   // Ignore mark word in verification below, since we
7384   // may be running concurrent with mutators.
7385   assert(obj->is_oop(true), "should be an oop");
7386   assert(_finger <= ptr, "_finger runneth ahead");
7387   // advance the finger to right end of this object
7388   _finger = ptr + obj->size();
7389   assert(_finger > ptr, "we just incremented it above");
7390   // On large heaps, it may take us some time to get through
7391   // the marking phase (especially if running iCMS). During
7392   // this time it's possible that a lot of mutations have
7393   // accumulated in the card table and the mod union table --
7394   // these mutation records are redundant until we have
7395   // actually traced into the corresponding card.
7396   // Here, we check whether advancing the finger would make
7397   // us cross into a new card, and if so clear corresponding
7398   // cards in the MUT (preclean them in the card-table in the
7399   // future).
7400 
7401   DEBUG_ONLY(if (!_verifying) {)
7402     // The clean-on-enter optimization is disabled by default,
7403     // until we fix 6178663.
7404     if (CMSCleanOnEnter && (_finger > _threshold)) {
7405       // [_threshold, _finger) represents the interval
7406       // of cards to be cleared  in MUT (or precleaned in card table).
7407       // The set of cards to be cleared is all those that overlap
7408       // with the interval [_threshold, _finger); note that
7409       // _threshold is always kept card-aligned but _finger isn't
7410       // always card-aligned.
7411       HeapWord* old_threshold = _threshold;
7412       assert(old_threshold == (HeapWord*)round_to(
7413               (intptr_t)old_threshold, CardTableModRefBS::card_size),
7414              "_threshold should always be card-aligned");
7415       _threshold = (HeapWord*)round_to(
7416                      (intptr_t)_finger, CardTableModRefBS::card_size);
7417       MemRegion mr(old_threshold, _threshold);
7418       assert(!mr.is_empty(), "Control point invariant");
7419       assert(_span.contains(mr), "Should clear within span");
7420       _mut->clear_range(mr);
7421     }
7422   DEBUG_ONLY(})
7423   // Note: the finger doesn't advance while we drain
7424   // the stack below.
7425   PushOrMarkClosure pushOrMarkClosure(_collector,
7426                                       _span, _bitMap, _markStack,
7427                                       _finger, this);
7428   bool res = _markStack->push(obj);
7429   assert(res, "Empty non-zero size stack should have space for single push");
7430   while (!_markStack->isEmpty()) {
7431     oop new_oop = _markStack->pop();
7432     // Skip verifying header mark word below because we are
7433     // running concurrent with mutators.
7434     assert(new_oop->is_oop(true), "Oops! expected to pop an oop");
7435     // now scan this oop's oops
7436     new_oop->oop_iterate(&pushOrMarkClosure);
7437     do_yield_check();
7438   }
7439   assert(_markStack->isEmpty(), "tautology, emphasizing post-condition");
7440 }
7441 
7442 Par_MarkFromRootsClosure::Par_MarkFromRootsClosure(CMSConcMarkingTask* task,
7443                        CMSCollector* collector, MemRegion span,
7444                        CMSBitMap* bit_map,
7445                        OopTaskQueue* work_queue,
7446                        CMSMarkStack*  overflow_stack,
7447                        bool should_yield):
7448   _collector(collector),
7449   _whole_span(collector->_span),
7450   _span(span),
7451   _bit_map(bit_map),
7452   _mut(&collector->_modUnionTable),
7453   _work_queue(work_queue),
7454   _overflow_stack(overflow_stack),
7455   _yield(should_yield),
7456   _skip_bits(0),
7457   _task(task)
7458 {
7459   assert(_work_queue->size() == 0, "work_queue should be empty");
7460   _finger = span.start();
7461   _threshold = _finger;     // XXX Defer clear-on-enter optimization for now
7462   assert(_span.contains(_finger), "Out of bounds _finger?");
7463 }
7464 
7465 // Should revisit to see if this should be restructured for
7466 // greater efficiency.
7467 bool Par_MarkFromRootsClosure::do_bit(size_t offset) {
7468   if (_skip_bits > 0) {
7469     _skip_bits--;
7470     return true;
7471   }
7472   // convert offset into a HeapWord*
7473   HeapWord* addr = _bit_map->startWord() + offset;
7474   assert(_bit_map->endWord() && addr < _bit_map->endWord(),
7475          "address out of range");
7476   assert(_bit_map->isMarked(addr), "tautology");
7477   if (_bit_map->isMarked(addr+1)) {
7478     // this is an allocated object that might not yet be initialized
7479     assert(_skip_bits == 0, "tautology");
7480     _skip_bits = 2;  // skip next two marked bits ("Printezis-marks")
7481     oop p = oop(addr);
7482     if (p->klass_or_null() == NULL) {
7483       // in the case of Clean-on-Enter optimization, redirty card
7484       // and avoid clearing card by increasing  the threshold.
7485       return true;
7486     }
7487   }
7488   scan_oops_in_oop(addr);
7489   return true;
7490 }
7491 
7492 void Par_MarkFromRootsClosure::scan_oops_in_oop(HeapWord* ptr) {
7493   assert(_bit_map->isMarked(ptr), "expected bit to be set");
7494   // Should we assert that our work queue is empty or
7495   // below some drain limit?
7496   assert(_work_queue->size() == 0,
7497          "should drain stack to limit stack usage");
7498   // convert ptr to an oop preparatory to scanning
7499   oop obj = oop(ptr);
7500   // Ignore mark word in verification below, since we
7501   // may be running concurrent with mutators.
7502   assert(obj->is_oop(true), "should be an oop");
7503   assert(_finger <= ptr, "_finger runneth ahead");
7504   // advance the finger to right end of this object
7505   _finger = ptr + obj->size();
7506   assert(_finger > ptr, "we just incremented it above");
7507   // On large heaps, it may take us some time to get through
7508   // the marking phase (especially if running iCMS). During
7509   // this time it's possible that a lot of mutations have
7510   // accumulated in the card table and the mod union table --
7511   // these mutation records are redundant until we have
7512   // actually traced into the corresponding card.
7513   // Here, we check whether advancing the finger would make
7514   // us cross into a new card, and if so clear corresponding
7515   // cards in the MUT (preclean them in the card-table in the
7516   // future).
7517 
7518   // The clean-on-enter optimization is disabled by default,
7519   // until we fix 6178663.
7520   if (CMSCleanOnEnter && (_finger > _threshold)) {
7521     // [_threshold, _finger) represents the interval
7522     // of cards to be cleared  in MUT (or precleaned in card table).
7523     // The set of cards to be cleared is all those that overlap
7524     // with the interval [_threshold, _finger); note that
7525     // _threshold is always kept card-aligned but _finger isn't
7526     // always card-aligned.
7527     HeapWord* old_threshold = _threshold;
7528     assert(old_threshold == (HeapWord*)round_to(
7529             (intptr_t)old_threshold, CardTableModRefBS::card_size),
7530            "_threshold should always be card-aligned");
7531     _threshold = (HeapWord*)round_to(
7532                    (intptr_t)_finger, CardTableModRefBS::card_size);
7533     MemRegion mr(old_threshold, _threshold);
7534     assert(!mr.is_empty(), "Control point invariant");
7535     assert(_span.contains(mr), "Should clear within span"); // _whole_span ??
7536     _mut->clear_range(mr);
7537   }
7538 
7539   // Note: the local finger doesn't advance while we drain
7540   // the stack below, but the global finger sure can and will.
7541   HeapWord** gfa = _task->global_finger_addr();
7542   Par_PushOrMarkClosure pushOrMarkClosure(_collector,
7543                                       _span, _bit_map,
7544                                       _work_queue,
7545                                       _overflow_stack,
7546                                       _finger,
7547                                       gfa, this);
7548   bool res = _work_queue->push(obj);   // overflow could occur here
7549   assert(res, "Will hold once we use workqueues");
7550   while (true) {
7551     oop new_oop;
7552     if (!_work_queue->pop_local(new_oop)) {
7553       // We emptied our work_queue; check if there's stuff that can
7554       // be gotten from the overflow stack.
7555       if (CMSConcMarkingTask::get_work_from_overflow_stack(
7556             _overflow_stack, _work_queue)) {
7557         do_yield_check();
7558         continue;
7559       } else {  // done
7560         break;
7561       }
7562     }
7563     // Skip verifying header mark word below because we are
7564     // running concurrent with mutators.
7565     assert(new_oop->is_oop(true), "Oops! expected to pop an oop");
7566     // now scan this oop's oops
7567     new_oop->oop_iterate(&pushOrMarkClosure);
7568     do_yield_check();
7569   }
7570   assert(_work_queue->size() == 0, "tautology, emphasizing post-condition");
7571 }
7572 
7573 // Yield in response to a request from VM Thread or
7574 // from mutators.
7575 void Par_MarkFromRootsClosure::do_yield_work() {
7576   assert(_task != NULL, "sanity");
7577   _task->yield();
7578 }
7579 
7580 // A variant of the above used for verifying CMS marking work.
7581 MarkFromRootsVerifyClosure::MarkFromRootsVerifyClosure(CMSCollector* collector,
7582                         MemRegion span,
7583                         CMSBitMap* verification_bm, CMSBitMap* cms_bm,
7584                         CMSMarkStack*  mark_stack):
7585   _collector(collector),
7586   _span(span),
7587   _verification_bm(verification_bm),
7588   _cms_bm(cms_bm),
7589   _mark_stack(mark_stack),
7590   _pam_verify_closure(collector, span, verification_bm, cms_bm,
7591                       mark_stack)
7592 {
7593   assert(_mark_stack->isEmpty(), "stack should be empty");
7594   _finger = _verification_bm->startWord();
7595   assert(_collector->_restart_addr == NULL, "Sanity check");
7596   assert(_span.contains(_finger), "Out of bounds _finger?");
7597 }
7598 
7599 void MarkFromRootsVerifyClosure::reset(HeapWord* addr) {
7600   assert(_mark_stack->isEmpty(), "would cause duplicates on stack");
7601   assert(_span.contains(addr), "Out of bounds _finger?");
7602   _finger = addr;
7603 }
7604 
7605 // Should revisit to see if this should be restructured for
7606 // greater efficiency.
7607 bool MarkFromRootsVerifyClosure::do_bit(size_t offset) {
7608   // convert offset into a HeapWord*
7609   HeapWord* addr = _verification_bm->startWord() + offset;
7610   assert(_verification_bm->endWord() && addr < _verification_bm->endWord(),
7611          "address out of range");
7612   assert(_verification_bm->isMarked(addr), "tautology");
7613   assert(_cms_bm->isMarked(addr), "tautology");
7614 
7615   assert(_mark_stack->isEmpty(),
7616          "should drain stack to limit stack usage");
7617   // convert addr to an oop preparatory to scanning
7618   oop obj = oop(addr);
7619   assert(obj->is_oop(), "should be an oop");
7620   assert(_finger <= addr, "_finger runneth ahead");
7621   // advance the finger to right end of this object
7622   _finger = addr + obj->size();
7623   assert(_finger > addr, "we just incremented it above");
7624   // Note: the finger doesn't advance while we drain
7625   // the stack below.
7626   bool res = _mark_stack->push(obj);
7627   assert(res, "Empty non-zero size stack should have space for single push");
7628   while (!_mark_stack->isEmpty()) {
7629     oop new_oop = _mark_stack->pop();
7630     assert(new_oop->is_oop(), "Oops! expected to pop an oop");
7631     // now scan this oop's oops
7632     new_oop->oop_iterate(&_pam_verify_closure);
7633   }
7634   assert(_mark_stack->isEmpty(), "tautology, emphasizing post-condition");
7635   return true;
7636 }
7637 
7638 PushAndMarkVerifyClosure::PushAndMarkVerifyClosure(
7639   CMSCollector* collector, MemRegion span,
7640   CMSBitMap* verification_bm, CMSBitMap* cms_bm,
7641   CMSMarkStack*  mark_stack):
7642   MetadataAwareOopClosure(collector->ref_processor()),
7643   _collector(collector),
7644   _span(span),
7645   _verification_bm(verification_bm),
7646   _cms_bm(cms_bm),
7647   _mark_stack(mark_stack)
7648 { }
7649 
7650 void PushAndMarkVerifyClosure::do_oop(oop* p)       { PushAndMarkVerifyClosure::do_oop_work(p); }
7651 void PushAndMarkVerifyClosure::do_oop(narrowOop* p) { PushAndMarkVerifyClosure::do_oop_work(p); }
7652 
7653 // Upon stack overflow, we discard (part of) the stack,
7654 // remembering the least address amongst those discarded
7655 // in CMSCollector's _restart_address.
7656 void PushAndMarkVerifyClosure::handle_stack_overflow(HeapWord* lost) {
7657   // Remember the least grey address discarded
7658   HeapWord* ra = (HeapWord*)_mark_stack->least_value(lost);
7659   _collector->lower_restart_addr(ra);
7660   _mark_stack->reset();  // discard stack contents
7661   _mark_stack->expand(); // expand the stack if possible
7662 }
7663 
7664 void PushAndMarkVerifyClosure::do_oop(oop obj) {
7665   assert(obj->is_oop_or_null(), err_msg("Expected an oop or NULL at " PTR_FORMAT, p2i(obj)));
7666   HeapWord* addr = (HeapWord*)obj;
7667   if (_span.contains(addr) && !_verification_bm->isMarked(addr)) {
7668     // Oop lies in _span and isn't yet grey or black
7669     _verification_bm->mark(addr);            // now grey
7670     if (!_cms_bm->isMarked(addr)) {
7671       oop(addr)->print();
7672       gclog_or_tty->print_cr(" (" INTPTR_FORMAT " should have been marked)",
7673                              addr);
7674       fatal("... aborting");
7675     }
7676 
7677     if (!_mark_stack->push(obj)) { // stack overflow
7678       if (PrintCMSStatistics != 0) {
7679         gclog_or_tty->print_cr("CMS marking stack overflow (benign) at "
7680                                SIZE_FORMAT, _mark_stack->capacity());
7681       }
7682       assert(_mark_stack->isFull(), "Else push should have succeeded");
7683       handle_stack_overflow(addr);
7684     }
7685     // anything including and to the right of _finger
7686     // will be scanned as we iterate over the remainder of the
7687     // bit map
7688   }
7689 }
7690 
7691 PushOrMarkClosure::PushOrMarkClosure(CMSCollector* collector,
7692                      MemRegion span,
7693                      CMSBitMap* bitMap, CMSMarkStack*  markStack,
7694                      HeapWord* finger, MarkFromRootsClosure* parent) :
7695   MetadataAwareOopClosure(collector->ref_processor()),
7696   _collector(collector),
7697   _span(span),
7698   _bitMap(bitMap),
7699   _markStack(markStack),
7700   _finger(finger),
7701   _parent(parent)
7702 { }
7703 
7704 Par_PushOrMarkClosure::Par_PushOrMarkClosure(CMSCollector* collector,
7705                      MemRegion span,
7706                      CMSBitMap* bit_map,
7707                      OopTaskQueue* work_queue,
7708                      CMSMarkStack*  overflow_stack,
7709                      HeapWord* finger,
7710                      HeapWord** global_finger_addr,
7711                      Par_MarkFromRootsClosure* parent) :
7712   MetadataAwareOopClosure(collector->ref_processor()),
7713   _collector(collector),
7714   _whole_span(collector->_span),
7715   _span(span),
7716   _bit_map(bit_map),
7717   _work_queue(work_queue),
7718   _overflow_stack(overflow_stack),
7719   _finger(finger),
7720   _global_finger_addr(global_finger_addr),
7721   _parent(parent)
7722 { }
7723 
7724 // Assumes thread-safe access by callers, who are
7725 // responsible for mutual exclusion.
7726 void CMSCollector::lower_restart_addr(HeapWord* low) {
7727   assert(_span.contains(low), "Out of bounds addr");
7728   if (_restart_addr == NULL) {
7729     _restart_addr = low;
7730   } else {
7731     _restart_addr = MIN2(_restart_addr, low);
7732   }
7733 }
7734 
7735 // Upon stack overflow, we discard (part of) the stack,
7736 // remembering the least address amongst those discarded
7737 // in CMSCollector's _restart_address.
7738 void PushOrMarkClosure::handle_stack_overflow(HeapWord* lost) {
7739   // Remember the least grey address discarded
7740   HeapWord* ra = (HeapWord*)_markStack->least_value(lost);
7741   _collector->lower_restart_addr(ra);
7742   _markStack->reset();  // discard stack contents
7743   _markStack->expand(); // expand the stack if possible
7744 }
7745 
7746 // Upon stack overflow, we discard (part of) the stack,
7747 // remembering the least address amongst those discarded
7748 // in CMSCollector's _restart_address.
7749 void Par_PushOrMarkClosure::handle_stack_overflow(HeapWord* lost) {
7750   // We need to do this under a mutex to prevent other
7751   // workers from interfering with the work done below.
7752   MutexLockerEx ml(_overflow_stack->par_lock(),
7753                    Mutex::_no_safepoint_check_flag);
7754   // Remember the least grey address discarded
7755   HeapWord* ra = (HeapWord*)_overflow_stack->least_value(lost);
7756   _collector->lower_restart_addr(ra);
7757   _overflow_stack->reset();  // discard stack contents
7758   _overflow_stack->expand(); // expand the stack if possible
7759 }
7760 
7761 void PushOrMarkClosure::do_oop(oop obj) {
7762   // Ignore mark word because we are running concurrent with mutators.
7763   assert(obj->is_oop_or_null(true), err_msg("Expected an oop or NULL at " PTR_FORMAT, p2i(obj)));
7764   HeapWord* addr = (HeapWord*)obj;
7765   if (_span.contains(addr) && !_bitMap->isMarked(addr)) {
7766     // Oop lies in _span and isn't yet grey or black
7767     _bitMap->mark(addr);            // now grey
7768     if (addr < _finger) {
7769       // the bit map iteration has already either passed, or
7770       // sampled, this bit in the bit map; we'll need to
7771       // use the marking stack to scan this oop's oops.
7772       bool simulate_overflow = false;
7773       NOT_PRODUCT(
7774         if (CMSMarkStackOverflowALot &&
7775             _collector->simulate_overflow()) {
7776           // simulate a stack overflow
7777           simulate_overflow = true;
7778         }
7779       )
7780       if (simulate_overflow || !_markStack->push(obj)) { // stack overflow
7781         if (PrintCMSStatistics != 0) {
7782           gclog_or_tty->print_cr("CMS marking stack overflow (benign) at "
7783                                  SIZE_FORMAT, _markStack->capacity());
7784         }
7785         assert(simulate_overflow || _markStack->isFull(), "Else push should have succeeded");
7786         handle_stack_overflow(addr);
7787       }
7788     }
7789     // anything including and to the right of _finger
7790     // will be scanned as we iterate over the remainder of the
7791     // bit map
7792     do_yield_check();
7793   }
7794 }
7795 
7796 void PushOrMarkClosure::do_oop(oop* p)       { PushOrMarkClosure::do_oop_work(p); }
7797 void PushOrMarkClosure::do_oop(narrowOop* p) { PushOrMarkClosure::do_oop_work(p); }
7798 
7799 void Par_PushOrMarkClosure::do_oop(oop obj) {
7800   // Ignore mark word because we are running concurrent with mutators.
7801   assert(obj->is_oop_or_null(true), err_msg("Expected an oop or NULL at " PTR_FORMAT, p2i(obj)));
7802   HeapWord* addr = (HeapWord*)obj;
7803   if (_whole_span.contains(addr) && !_bit_map->isMarked(addr)) {
7804     // Oop lies in _span and isn't yet grey or black
7805     // We read the global_finger (volatile read) strictly after marking oop
7806     bool res = _bit_map->par_mark(addr);    // now grey
7807     volatile HeapWord** gfa = (volatile HeapWord**)_global_finger_addr;
7808     // Should we push this marked oop on our stack?
7809     // -- if someone else marked it, nothing to do
7810     // -- if target oop is above global finger nothing to do
7811     // -- if target oop is in chunk and above local finger
7812     //      then nothing to do
7813     // -- else push on work queue
7814     if (   !res       // someone else marked it, they will deal with it
7815         || (addr >= *gfa)  // will be scanned in a later task
7816         || (_span.contains(addr) && addr >= _finger)) { // later in this chunk
7817       return;
7818     }
7819     // the bit map iteration has already either passed, or
7820     // sampled, this bit in the bit map; we'll need to
7821     // use the marking stack to scan this oop's oops.
7822     bool simulate_overflow = false;
7823     NOT_PRODUCT(
7824       if (CMSMarkStackOverflowALot &&
7825           _collector->simulate_overflow()) {
7826         // simulate a stack overflow
7827         simulate_overflow = true;
7828       }
7829     )
7830     if (simulate_overflow ||
7831         !(_work_queue->push(obj) || _overflow_stack->par_push(obj))) {
7832       // stack overflow
7833       if (PrintCMSStatistics != 0) {
7834         gclog_or_tty->print_cr("CMS marking stack overflow (benign) at "
7835                                SIZE_FORMAT, _overflow_stack->capacity());
7836       }
7837       // We cannot assert that the overflow stack is full because
7838       // it may have been emptied since.
7839       assert(simulate_overflow ||
7840              _work_queue->size() == _work_queue->max_elems(),
7841             "Else push should have succeeded");
7842       handle_stack_overflow(addr);
7843     }
7844     do_yield_check();
7845   }
7846 }
7847 
7848 void Par_PushOrMarkClosure::do_oop(oop* p)       { Par_PushOrMarkClosure::do_oop_work(p); }
7849 void Par_PushOrMarkClosure::do_oop(narrowOop* p) { Par_PushOrMarkClosure::do_oop_work(p); }
7850 
7851 PushAndMarkClosure::PushAndMarkClosure(CMSCollector* collector,
7852                                        MemRegion span,
7853                                        ReferenceProcessor* rp,
7854                                        CMSBitMap* bit_map,
7855                                        CMSBitMap* mod_union_table,
7856                                        CMSMarkStack*  mark_stack,
7857                                        bool           concurrent_precleaning):
7858   MetadataAwareOopClosure(rp),
7859   _collector(collector),
7860   _span(span),
7861   _bit_map(bit_map),
7862   _mod_union_table(mod_union_table),
7863   _mark_stack(mark_stack),
7864   _concurrent_precleaning(concurrent_precleaning)
7865 {
7866   assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL");
7867 }
7868 
7869 // Grey object rescan during pre-cleaning and second checkpoint phases --
7870 // the non-parallel version (the parallel version appears further below.)
7871 void PushAndMarkClosure::do_oop(oop obj) {
7872   // Ignore mark word verification. If during concurrent precleaning,
7873   // the object monitor may be locked. If during the checkpoint
7874   // phases, the object may already have been reached by a  different
7875   // path and may be at the end of the global overflow list (so
7876   // the mark word may be NULL).
7877   assert(obj->is_oop_or_null(true /* ignore mark word */),
7878          err_msg("Expected an oop or NULL at " PTR_FORMAT, p2i(obj)));
7879   HeapWord* addr = (HeapWord*)obj;
7880   // Check if oop points into the CMS generation
7881   // and is not marked
7882   if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
7883     // a white object ...
7884     _bit_map->mark(addr);         // ... now grey
7885     // push on the marking stack (grey set)
7886     bool simulate_overflow = false;
7887     NOT_PRODUCT(
7888       if (CMSMarkStackOverflowALot &&
7889           _collector->simulate_overflow()) {
7890         // simulate a stack overflow
7891         simulate_overflow = true;
7892       }
7893     )
7894     if (simulate_overflow || !_mark_stack->push(obj)) {
7895       if (_concurrent_precleaning) {
7896          // During precleaning we can just dirty the appropriate card(s)
7897          // in the mod union table, thus ensuring that the object remains
7898          // in the grey set  and continue. In the case of object arrays
7899          // we need to dirty all of the cards that the object spans,
7900          // since the rescan of object arrays will be limited to the
7901          // dirty cards.
7902          // Note that no one can be interfering with us in this action
7903          // of dirtying the mod union table, so no locking or atomics
7904          // are required.
7905          if (obj->is_objArray()) {
7906            size_t sz = obj->size();
7907            HeapWord* end_card_addr = (HeapWord*)round_to(
7908                                         (intptr_t)(addr+sz), CardTableModRefBS::card_size);
7909            MemRegion redirty_range = MemRegion(addr, end_card_addr);
7910            assert(!redirty_range.is_empty(), "Arithmetical tautology");
7911            _mod_union_table->mark_range(redirty_range);
7912          } else {
7913            _mod_union_table->mark(addr);
7914          }
7915          _collector->_ser_pmc_preclean_ovflw++;
7916       } else {
7917          // During the remark phase, we need to remember this oop
7918          // in the overflow list.
7919          _collector->push_on_overflow_list(obj);
7920          _collector->_ser_pmc_remark_ovflw++;
7921       }
7922     }
7923   }
7924 }
7925 
7926 Par_PushAndMarkClosure::Par_PushAndMarkClosure(CMSCollector* collector,
7927                                                MemRegion span,
7928                                                ReferenceProcessor* rp,
7929                                                CMSBitMap* bit_map,
7930                                                OopTaskQueue* work_queue):
7931   MetadataAwareOopClosure(rp),
7932   _collector(collector),
7933   _span(span),
7934   _bit_map(bit_map),
7935   _work_queue(work_queue)
7936 {
7937   assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL");
7938 }
7939 
7940 void PushAndMarkClosure::do_oop(oop* p)       { PushAndMarkClosure::do_oop_work(p); }
7941 void PushAndMarkClosure::do_oop(narrowOop* p) { PushAndMarkClosure::do_oop_work(p); }
7942 
7943 // Grey object rescan during second checkpoint phase --
7944 // the parallel version.
7945 void Par_PushAndMarkClosure::do_oop(oop obj) {
7946   // In the assert below, we ignore the mark word because
7947   // this oop may point to an already visited object that is
7948   // on the overflow stack (in which case the mark word has
7949   // been hijacked for chaining into the overflow stack --
7950   // if this is the last object in the overflow stack then
7951   // its mark word will be NULL). Because this object may
7952   // have been subsequently popped off the global overflow
7953   // stack, and the mark word possibly restored to the prototypical
7954   // value, by the time we get to examined this failing assert in
7955   // the debugger, is_oop_or_null(false) may subsequently start
7956   // to hold.
7957   assert(obj->is_oop_or_null(true),
7958          err_msg("Expected an oop or NULL at " PTR_FORMAT, p2i(obj)));
7959   HeapWord* addr = (HeapWord*)obj;
7960   // Check if oop points into the CMS generation
7961   // and is not marked
7962   if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
7963     // a white object ...
7964     // If we manage to "claim" the object, by being the
7965     // first thread to mark it, then we push it on our
7966     // marking stack
7967     if (_bit_map->par_mark(addr)) {     // ... now grey
7968       // push on work queue (grey set)
7969       bool simulate_overflow = false;
7970       NOT_PRODUCT(
7971         if (CMSMarkStackOverflowALot &&
7972             _collector->par_simulate_overflow()) {
7973           // simulate a stack overflow
7974           simulate_overflow = true;
7975         }
7976       )
7977       if (simulate_overflow || !_work_queue->push(obj)) {
7978         _collector->par_push_on_overflow_list(obj);
7979         _collector->_par_pmc_remark_ovflw++; //  imprecise OK: no need to CAS
7980       }
7981     } // Else, some other thread got there first
7982   }
7983 }
7984 
7985 void Par_PushAndMarkClosure::do_oop(oop* p)       { Par_PushAndMarkClosure::do_oop_work(p); }
7986 void Par_PushAndMarkClosure::do_oop(narrowOop* p) { Par_PushAndMarkClosure::do_oop_work(p); }
7987 
7988 void CMSPrecleanRefsYieldClosure::do_yield_work() {
7989   Mutex* bml = _collector->bitMapLock();
7990   assert_lock_strong(bml);
7991   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
7992          "CMS thread should hold CMS token");
7993 
7994   bml->unlock();
7995   ConcurrentMarkSweepThread::desynchronize(true);
7996 
7997   ConcurrentMarkSweepThread::acknowledge_yield_request();
7998 
7999   _collector->stopTimer();
8000   if (PrintCMSStatistics != 0) {
8001     _collector->incrementYields();
8002   }
8003   _collector->icms_wait();
8004 
8005   // See the comment in coordinator_yield()
8006   for (unsigned i = 0; i < CMSYieldSleepCount &&
8007                        ConcurrentMarkSweepThread::should_yield() &&
8008                        !CMSCollector::foregroundGCIsActive(); ++i) {
8009     os::sleep(Thread::current(), 1, false);
8010     ConcurrentMarkSweepThread::acknowledge_yield_request();
8011   }
8012 
8013   ConcurrentMarkSweepThread::synchronize(true);
8014   bml->lock();
8015 
8016   _collector->startTimer();
8017 }
8018 
8019 bool CMSPrecleanRefsYieldClosure::should_return() {
8020   if (ConcurrentMarkSweepThread::should_yield()) {
8021     do_yield_work();
8022   }
8023   return _collector->foregroundGCIsActive();
8024 }
8025 
8026 void MarkFromDirtyCardsClosure::do_MemRegion(MemRegion mr) {
8027   assert(((size_t)mr.start())%CardTableModRefBS::card_size_in_words == 0,
8028          "mr should be aligned to start at a card boundary");
8029   // We'd like to assert:
8030   // assert(mr.word_size()%CardTableModRefBS::card_size_in_words == 0,
8031   //        "mr should be a range of cards");
8032   // However, that would be too strong in one case -- the last
8033   // partition ends at _unallocated_block which, in general, can be
8034   // an arbitrary boundary, not necessarily card aligned.
8035   if (PrintCMSStatistics != 0) {
8036     _num_dirty_cards +=
8037          mr.word_size()/CardTableModRefBS::card_size_in_words;
8038   }
8039   _space->object_iterate_mem(mr, &_scan_cl);
8040 }
8041 
8042 SweepClosure::SweepClosure(CMSCollector* collector,
8043                            ConcurrentMarkSweepGeneration* g,
8044                            CMSBitMap* bitMap, bool should_yield) :
8045   _collector(collector),
8046   _g(g),
8047   _sp(g->cmsSpace()),
8048   _limit(_sp->sweep_limit()),
8049   _freelistLock(_sp->freelistLock()),
8050   _bitMap(bitMap),
8051   _yield(should_yield),
8052   _inFreeRange(false),           // No free range at beginning of sweep
8053   _freeRangeInFreeLists(false),  // No free range at beginning of sweep
8054   _lastFreeRangeCoalesced(false),
8055   _freeFinger(g->used_region().start())
8056 {
8057   NOT_PRODUCT(
8058     _numObjectsFreed = 0;
8059     _numWordsFreed   = 0;
8060     _numObjectsLive = 0;
8061     _numWordsLive = 0;
8062     _numObjectsAlreadyFree = 0;
8063     _numWordsAlreadyFree = 0;
8064     _last_fc = NULL;
8065 
8066     _sp->initializeIndexedFreeListArrayReturnedBytes();
8067     _sp->dictionary()->initialize_dict_returned_bytes();
8068   )
8069   assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
8070          "sweep _limit out of bounds");
8071   if (CMSTraceSweeper) {
8072     gclog_or_tty->print_cr("\n====================\nStarting new sweep with limit " PTR_FORMAT,
8073                         _limit);
8074   }
8075 }
8076 
8077 void SweepClosure::print_on(outputStream* st) const {
8078   tty->print_cr("_sp = [" PTR_FORMAT "," PTR_FORMAT ")",
8079                 _sp->bottom(), _sp->end());
8080   tty->print_cr("_limit = " PTR_FORMAT, _limit);
8081   tty->print_cr("_freeFinger = " PTR_FORMAT, _freeFinger);
8082   NOT_PRODUCT(tty->print_cr("_last_fc = " PTR_FORMAT, _last_fc);)
8083   tty->print_cr("_inFreeRange = %d, _freeRangeInFreeLists = %d, _lastFreeRangeCoalesced = %d",
8084                 _inFreeRange, _freeRangeInFreeLists, _lastFreeRangeCoalesced);
8085 }
8086 
8087 #ifndef PRODUCT
8088 // Assertion checking only:  no useful work in product mode --
8089 // however, if any of the flags below become product flags,
8090 // you may need to review this code to see if it needs to be
8091 // enabled in product mode.
8092 SweepClosure::~SweepClosure() {
8093   assert_lock_strong(_freelistLock);
8094   assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
8095          "sweep _limit out of bounds");
8096   if (inFreeRange()) {
8097     warning("inFreeRange() should have been reset; dumping state of SweepClosure");
8098     print();
8099     ShouldNotReachHere();
8100   }
8101   if (Verbose && PrintGC) {
8102     gclog_or_tty->print("Collected "SIZE_FORMAT" objects, " SIZE_FORMAT " bytes",
8103                         _numObjectsFreed, _numWordsFreed*sizeof(HeapWord));
8104     gclog_or_tty->print_cr("\nLive "SIZE_FORMAT" objects,  "
8105                            SIZE_FORMAT" bytes  "
8106       "Already free "SIZE_FORMAT" objects, "SIZE_FORMAT" bytes",
8107       _numObjectsLive, _numWordsLive*sizeof(HeapWord),
8108       _numObjectsAlreadyFree, _numWordsAlreadyFree*sizeof(HeapWord));
8109     size_t totalBytes = (_numWordsFreed + _numWordsLive + _numWordsAlreadyFree)
8110                         * sizeof(HeapWord);
8111     gclog_or_tty->print_cr("Total sweep: "SIZE_FORMAT" bytes", totalBytes);
8112 
8113     if (PrintCMSStatistics && CMSVerifyReturnedBytes) {
8114       size_t indexListReturnedBytes = _sp->sumIndexedFreeListArrayReturnedBytes();
8115       size_t dict_returned_bytes = _sp->dictionary()->sum_dict_returned_bytes();
8116       size_t returned_bytes = indexListReturnedBytes + dict_returned_bytes;
8117       gclog_or_tty->print("Returned "SIZE_FORMAT" bytes", returned_bytes);
8118       gclog_or_tty->print("   Indexed List Returned "SIZE_FORMAT" bytes",
8119         indexListReturnedBytes);
8120       gclog_or_tty->print_cr("        Dictionary Returned "SIZE_FORMAT" bytes",
8121         dict_returned_bytes);
8122     }
8123   }
8124   if (CMSTraceSweeper) {
8125     gclog_or_tty->print_cr("end of sweep with _limit = " PTR_FORMAT "\n================",
8126                            _limit);
8127   }
8128 }
8129 #endif  // PRODUCT
8130 
8131 void SweepClosure::initialize_free_range(HeapWord* freeFinger,
8132     bool freeRangeInFreeLists) {
8133   if (CMSTraceSweeper) {
8134     gclog_or_tty->print("---- Start free range at " PTR_FORMAT " with free block (%d)\n",
8135                freeFinger, freeRangeInFreeLists);
8136   }
8137   assert(!inFreeRange(), "Trampling existing free range");
8138   set_inFreeRange(true);
8139   set_lastFreeRangeCoalesced(false);
8140 
8141   set_freeFinger(freeFinger);
8142   set_freeRangeInFreeLists(freeRangeInFreeLists);
8143   if (CMSTestInFreeList) {
8144     if (freeRangeInFreeLists) {
8145       FreeChunk* fc = (FreeChunk*) freeFinger;
8146       assert(fc->is_free(), "A chunk on the free list should be free.");
8147       assert(fc->size() > 0, "Free range should have a size");
8148       assert(_sp->verify_chunk_in_free_list(fc), "Chunk is not in free lists");
8149     }
8150   }
8151 }
8152 
8153 // Note that the sweeper runs concurrently with mutators. Thus,
8154 // it is possible for direct allocation in this generation to happen
8155 // in the middle of the sweep. Note that the sweeper also coalesces
8156 // contiguous free blocks. Thus, unless the sweeper and the allocator
8157 // synchronize appropriately freshly allocated blocks may get swept up.
8158 // This is accomplished by the sweeper locking the free lists while
8159 // it is sweeping. Thus blocks that are determined to be free are
8160 // indeed free. There is however one additional complication:
8161 // blocks that have been allocated since the final checkpoint and
8162 // mark, will not have been marked and so would be treated as
8163 // unreachable and swept up. To prevent this, the allocator marks
8164 // the bit map when allocating during the sweep phase. This leads,
8165 // however, to a further complication -- objects may have been allocated
8166 // but not yet initialized -- in the sense that the header isn't yet
8167 // installed. The sweeper can not then determine the size of the block
8168 // in order to skip over it. To deal with this case, we use a technique
8169 // (due to Printezis) to encode such uninitialized block sizes in the
8170 // bit map. Since the bit map uses a bit per every HeapWord, but the
8171 // CMS generation has a minimum object size of 3 HeapWords, it follows
8172 // that "normal marks" won't be adjacent in the bit map (there will
8173 // always be at least two 0 bits between successive 1 bits). We make use
8174 // of these "unused" bits to represent uninitialized blocks -- the bit
8175 // corresponding to the start of the uninitialized object and the next
8176 // bit are both set. Finally, a 1 bit marks the end of the object that
8177 // started with the two consecutive 1 bits to indicate its potentially
8178 // uninitialized state.
8179 
8180 size_t SweepClosure::do_blk_careful(HeapWord* addr) {
8181   FreeChunk* fc = (FreeChunk*)addr;
8182   size_t res;
8183 
8184   // Check if we are done sweeping. Below we check "addr >= _limit" rather
8185   // than "addr == _limit" because although _limit was a block boundary when
8186   // we started the sweep, it may no longer be one because heap expansion
8187   // may have caused us to coalesce the block ending at the address _limit
8188   // with a newly expanded chunk (this happens when _limit was set to the
8189   // previous _end of the space), so we may have stepped past _limit:
8190   // see the following Zeno-like trail of CRs 6977970, 7008136, 7042740.
8191   if (addr >= _limit) { // we have swept up to or past the limit: finish up
8192     assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
8193            "sweep _limit out of bounds");
8194     assert(addr < _sp->end(), "addr out of bounds");
8195     // Flush any free range we might be holding as a single
8196     // coalesced chunk to the appropriate free list.
8197     if (inFreeRange()) {
8198       assert(freeFinger() >= _sp->bottom() && freeFinger() < _limit,
8199              err_msg("freeFinger() " PTR_FORMAT" is out-of-bounds", freeFinger()));
8200       flush_cur_free_chunk(freeFinger(),
8201                            pointer_delta(addr, freeFinger()));
8202       if (CMSTraceSweeper) {
8203         gclog_or_tty->print("Sweep: last chunk: ");
8204         gclog_or_tty->print("put_free_blk " PTR_FORMAT " ("SIZE_FORMAT") "
8205                    "[coalesced:%d]\n",
8206                    freeFinger(), pointer_delta(addr, freeFinger()),
8207                    lastFreeRangeCoalesced() ? 1 : 0);
8208       }
8209     }
8210 
8211     // help the iterator loop finish
8212     return pointer_delta(_sp->end(), addr);
8213   }
8214 
8215   assert(addr < _limit, "sweep invariant");
8216   // check if we should yield
8217   do_yield_check(addr);
8218   if (fc->is_free()) {
8219     // Chunk that is already free
8220     res = fc->size();
8221     do_already_free_chunk(fc);
8222     debug_only(_sp->verifyFreeLists());
8223     // If we flush the chunk at hand in lookahead_and_flush()
8224     // and it's coalesced with a preceding chunk, then the
8225     // process of "mangling" the payload of the coalesced block
8226     // will cause erasure of the size information from the
8227     // (erstwhile) header of all the coalesced blocks but the
8228     // first, so the first disjunct in the assert will not hold
8229     // in that specific case (in which case the second disjunct
8230     // will hold).
8231     assert(res == fc->size() || ((HeapWord*)fc) + res >= _limit,
8232            "Otherwise the size info doesn't change at this step");
8233     NOT_PRODUCT(
8234       _numObjectsAlreadyFree++;
8235       _numWordsAlreadyFree += res;
8236     )
8237     NOT_PRODUCT(_last_fc = fc;)
8238   } else if (!_bitMap->isMarked(addr)) {
8239     // Chunk is fresh garbage
8240     res = do_garbage_chunk(fc);
8241     debug_only(_sp->verifyFreeLists());
8242     NOT_PRODUCT(
8243       _numObjectsFreed++;
8244       _numWordsFreed += res;
8245     )
8246   } else {
8247     // Chunk that is alive.
8248     res = do_live_chunk(fc);
8249     debug_only(_sp->verifyFreeLists());
8250     NOT_PRODUCT(
8251         _numObjectsLive++;
8252         _numWordsLive += res;
8253     )
8254   }
8255   return res;
8256 }
8257 
8258 // For the smart allocation, record following
8259 //  split deaths - a free chunk is removed from its free list because
8260 //      it is being split into two or more chunks.
8261 //  split birth - a free chunk is being added to its free list because
8262 //      a larger free chunk has been split and resulted in this free chunk.
8263 //  coal death - a free chunk is being removed from its free list because
8264 //      it is being coalesced into a large free chunk.
8265 //  coal birth - a free chunk is being added to its free list because
8266 //      it was created when two or more free chunks where coalesced into
8267 //      this free chunk.
8268 //
8269 // These statistics are used to determine the desired number of free
8270 // chunks of a given size.  The desired number is chosen to be relative
8271 // to the end of a CMS sweep.  The desired number at the end of a sweep
8272 // is the
8273 //      count-at-end-of-previous-sweep (an amount that was enough)
8274 //              - count-at-beginning-of-current-sweep  (the excess)
8275 //              + split-births  (gains in this size during interval)
8276 //              - split-deaths  (demands on this size during interval)
8277 // where the interval is from the end of one sweep to the end of the
8278 // next.
8279 //
8280 // When sweeping the sweeper maintains an accumulated chunk which is
8281 // the chunk that is made up of chunks that have been coalesced.  That
8282 // will be termed the left-hand chunk.  A new chunk of garbage that
8283 // is being considered for coalescing will be referred to as the
8284 // right-hand chunk.
8285 //
8286 // When making a decision on whether to coalesce a right-hand chunk with
8287 // the current left-hand chunk, the current count vs. the desired count
8288 // of the left-hand chunk is considered.  Also if the right-hand chunk
8289 // is near the large chunk at the end of the heap (see
8290 // ConcurrentMarkSweepGeneration::isNearLargestChunk()), then the
8291 // left-hand chunk is coalesced.
8292 //
8293 // When making a decision about whether to split a chunk, the desired count
8294 // vs. the current count of the candidate to be split is also considered.
8295 // If the candidate is underpopulated (currently fewer chunks than desired)
8296 // a chunk of an overpopulated (currently more chunks than desired) size may
8297 // be chosen.  The "hint" associated with a free list, if non-null, points
8298 // to a free list which may be overpopulated.
8299 //
8300 
8301 void SweepClosure::do_already_free_chunk(FreeChunk* fc) {
8302   const size_t size = fc->size();
8303   // Chunks that cannot be coalesced are not in the
8304   // free lists.
8305   if (CMSTestInFreeList && !fc->cantCoalesce()) {
8306     assert(_sp->verify_chunk_in_free_list(fc),
8307       "free chunk should be in free lists");
8308   }
8309   // a chunk that is already free, should not have been
8310   // marked in the bit map
8311   HeapWord* const addr = (HeapWord*) fc;
8312   assert(!_bitMap->isMarked(addr), "free chunk should be unmarked");
8313   // Verify that the bit map has no bits marked between
8314   // addr and purported end of this block.
8315   _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size);
8316 
8317   // Some chunks cannot be coalesced under any circumstances.
8318   // See the definition of cantCoalesce().
8319   if (!fc->cantCoalesce()) {
8320     // This chunk can potentially be coalesced.
8321     if (_sp->adaptive_freelists()) {
8322       // All the work is done in
8323       do_post_free_or_garbage_chunk(fc, size);
8324     } else {  // Not adaptive free lists
8325       // this is a free chunk that can potentially be coalesced by the sweeper;
8326       if (!inFreeRange()) {
8327         // if the next chunk is a free block that can't be coalesced
8328         // it doesn't make sense to remove this chunk from the free lists
8329         FreeChunk* nextChunk = (FreeChunk*)(addr + size);
8330         assert((HeapWord*)nextChunk <= _sp->end(), "Chunk size out of bounds?");
8331         if ((HeapWord*)nextChunk < _sp->end() &&     // There is another free chunk to the right ...
8332             nextChunk->is_free()               &&     // ... which is free...
8333             nextChunk->cantCoalesce()) {             // ... but can't be coalesced
8334           // nothing to do
8335         } else {
8336           // Potentially the start of a new free range:
8337           // Don't eagerly remove it from the free lists.
8338           // No need to remove it if it will just be put
8339           // back again.  (Also from a pragmatic point of view
8340           // if it is a free block in a region that is beyond
8341           // any allocated blocks, an assertion will fail)
8342           // Remember the start of a free run.
8343           initialize_free_range(addr, true);
8344           // end - can coalesce with next chunk
8345         }
8346       } else {
8347         // the midst of a free range, we are coalescing
8348         print_free_block_coalesced(fc);
8349         if (CMSTraceSweeper) {
8350           gclog_or_tty->print("  -- pick up free block " PTR_FORMAT " (" SIZE_FORMAT ")\n", fc, size);
8351         }
8352         // remove it from the free lists
8353         _sp->removeFreeChunkFromFreeLists(fc);
8354         set_lastFreeRangeCoalesced(true);
8355         // If the chunk is being coalesced and the current free range is
8356         // in the free lists, remove the current free range so that it
8357         // will be returned to the free lists in its entirety - all
8358         // the coalesced pieces included.
8359         if (freeRangeInFreeLists()) {
8360           FreeChunk* ffc = (FreeChunk*) freeFinger();
8361           assert(ffc->size() == pointer_delta(addr, freeFinger()),
8362             "Size of free range is inconsistent with chunk size.");
8363           if (CMSTestInFreeList) {
8364             assert(_sp->verify_chunk_in_free_list(ffc),
8365               "free range is not in free lists");
8366           }
8367           _sp->removeFreeChunkFromFreeLists(ffc);
8368           set_freeRangeInFreeLists(false);
8369         }
8370       }
8371     }
8372     // Note that if the chunk is not coalescable (the else arm
8373     // below), we unconditionally flush, without needing to do
8374     // a "lookahead," as we do below.
8375     if (inFreeRange()) lookahead_and_flush(fc, size);
8376   } else {
8377     // Code path common to both original and adaptive free lists.
8378 
8379     // cant coalesce with previous block; this should be treated
8380     // as the end of a free run if any
8381     if (inFreeRange()) {
8382       // we kicked some butt; time to pick up the garbage
8383       assert(freeFinger() < addr, "freeFinger points too high");
8384       flush_cur_free_chunk(freeFinger(), pointer_delta(addr, freeFinger()));
8385     }
8386     // else, nothing to do, just continue
8387   }
8388 }
8389 
8390 size_t SweepClosure::do_garbage_chunk(FreeChunk* fc) {
8391   // This is a chunk of garbage.  It is not in any free list.
8392   // Add it to a free list or let it possibly be coalesced into
8393   // a larger chunk.
8394   HeapWord* const addr = (HeapWord*) fc;
8395   const size_t size = CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size());
8396 
8397   if (_sp->adaptive_freelists()) {
8398     // Verify that the bit map has no bits marked between
8399     // addr and purported end of just dead object.
8400     _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size);
8401 
8402     do_post_free_or_garbage_chunk(fc, size);
8403   } else {
8404     if (!inFreeRange()) {
8405       // start of a new free range
8406       assert(size > 0, "A free range should have a size");
8407       initialize_free_range(addr, false);
8408     } else {
8409       // this will be swept up when we hit the end of the
8410       // free range
8411       if (CMSTraceSweeper) {
8412         gclog_or_tty->print("  -- pick up garbage " PTR_FORMAT " (" SIZE_FORMAT ")\n", fc, size);
8413       }
8414       // If the chunk is being coalesced and the current free range is
8415       // in the free lists, remove the current free range so that it
8416       // will be returned to the free lists in its entirety - all
8417       // the coalesced pieces included.
8418       if (freeRangeInFreeLists()) {
8419         FreeChunk* ffc = (FreeChunk*)freeFinger();
8420         assert(ffc->size() == pointer_delta(addr, freeFinger()),
8421           "Size of free range is inconsistent with chunk size.");
8422         if (CMSTestInFreeList) {
8423           assert(_sp->verify_chunk_in_free_list(ffc),
8424             "free range is not in free lists");
8425         }
8426         _sp->removeFreeChunkFromFreeLists(ffc);
8427         set_freeRangeInFreeLists(false);
8428       }
8429       set_lastFreeRangeCoalesced(true);
8430     }
8431     // this will be swept up when we hit the end of the free range
8432 
8433     // Verify that the bit map has no bits marked between
8434     // addr and purported end of just dead object.
8435     _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size);
8436   }
8437   assert(_limit >= addr + size,
8438          "A freshly garbage chunk can't possibly straddle over _limit");
8439   if (inFreeRange()) lookahead_and_flush(fc, size);
8440   return size;
8441 }
8442 
8443 size_t SweepClosure::do_live_chunk(FreeChunk* fc) {
8444   HeapWord* addr = (HeapWord*) fc;
8445   // The sweeper has just found a live object. Return any accumulated
8446   // left hand chunk to the free lists.
8447   if (inFreeRange()) {
8448     assert(freeFinger() < addr, "freeFinger points too high");
8449     flush_cur_free_chunk(freeFinger(), pointer_delta(addr, freeFinger()));
8450   }
8451 
8452   // This object is live: we'd normally expect this to be
8453   // an oop, and like to assert the following:
8454   // assert(oop(addr)->is_oop(), "live block should be an oop");
8455   // However, as we commented above, this may be an object whose
8456   // header hasn't yet been initialized.
8457   size_t size;
8458   assert(_bitMap->isMarked(addr), "Tautology for this control point");
8459   if (_bitMap->isMarked(addr + 1)) {
8460     // Determine the size from the bit map, rather than trying to
8461     // compute it from the object header.
8462     HeapWord* nextOneAddr = _bitMap->getNextMarkedWordAddress(addr + 2);
8463     size = pointer_delta(nextOneAddr + 1, addr);
8464     assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
8465            "alignment problem");
8466 
8467 #ifdef ASSERT
8468       if (oop(addr)->klass_or_null() != NULL) {
8469         // Ignore mark word because we are running concurrent with mutators
8470         assert(oop(addr)->is_oop(true), "live block should be an oop");
8471         assert(size ==
8472                CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size()),
8473                "P-mark and computed size do not agree");
8474       }
8475 #endif
8476 
8477   } else {
8478     // This should be an initialized object that's alive.
8479     assert(oop(addr)->klass_or_null() != NULL,
8480            "Should be an initialized object");
8481     // Ignore mark word because we are running concurrent with mutators
8482     assert(oop(addr)->is_oop(true), "live block should be an oop");
8483     // Verify that the bit map has no bits marked between
8484     // addr and purported end of this block.
8485     size = CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size());
8486     assert(size >= 3, "Necessary for Printezis marks to work");
8487     assert(!_bitMap->isMarked(addr+1), "Tautology for this control point");
8488     DEBUG_ONLY(_bitMap->verifyNoOneBitsInRange(addr+2, addr+size);)
8489   }
8490   return size;
8491 }
8492 
8493 void SweepClosure::do_post_free_or_garbage_chunk(FreeChunk* fc,
8494                                                  size_t chunkSize) {
8495   // do_post_free_or_garbage_chunk() should only be called in the case
8496   // of the adaptive free list allocator.
8497   const bool fcInFreeLists = fc->is_free();
8498   assert(_sp->adaptive_freelists(), "Should only be used in this case.");
8499   assert((HeapWord*)fc <= _limit, "sweep invariant");
8500   if (CMSTestInFreeList && fcInFreeLists) {
8501     assert(_sp->verify_chunk_in_free_list(fc), "free chunk is not in free lists");
8502   }
8503 
8504   if (CMSTraceSweeper) {
8505     gclog_or_tty->print_cr("  -- pick up another chunk at " PTR_FORMAT " (" SIZE_FORMAT ")", fc, chunkSize);
8506   }
8507 
8508   HeapWord* const fc_addr = (HeapWord*) fc;
8509 
8510   bool coalesce;
8511   const size_t left  = pointer_delta(fc_addr, freeFinger());
8512   const size_t right = chunkSize;
8513   switch (FLSCoalescePolicy) {
8514     // numeric value forms a coalition aggressiveness metric
8515     case 0:  { // never coalesce
8516       coalesce = false;
8517       break;
8518     }
8519     case 1: { // coalesce if left & right chunks on overpopulated lists
8520       coalesce = _sp->coalOverPopulated(left) &&
8521                  _sp->coalOverPopulated(right);
8522       break;
8523     }
8524     case 2: { // coalesce if left chunk on overpopulated list (default)
8525       coalesce = _sp->coalOverPopulated(left);
8526       break;
8527     }
8528     case 3: { // coalesce if left OR right chunk on overpopulated list
8529       coalesce = _sp->coalOverPopulated(left) ||
8530                  _sp->coalOverPopulated(right);
8531       break;
8532     }
8533     case 4: { // always coalesce
8534       coalesce = true;
8535       break;
8536     }
8537     default:
8538      ShouldNotReachHere();
8539   }
8540 
8541   // Should the current free range be coalesced?
8542   // If the chunk is in a free range and either we decided to coalesce above
8543   // or the chunk is near the large block at the end of the heap
8544   // (isNearLargestChunk() returns true), then coalesce this chunk.
8545   const bool doCoalesce = inFreeRange()
8546                           && (coalesce || _g->isNearLargestChunk(fc_addr));
8547   if (doCoalesce) {
8548     // Coalesce the current free range on the left with the new
8549     // chunk on the right.  If either is on a free list,
8550     // it must be removed from the list and stashed in the closure.
8551     if (freeRangeInFreeLists()) {
8552       FreeChunk* const ffc = (FreeChunk*)freeFinger();
8553       assert(ffc->size() == pointer_delta(fc_addr, freeFinger()),
8554         "Size of free range is inconsistent with chunk size.");
8555       if (CMSTestInFreeList) {
8556         assert(_sp->verify_chunk_in_free_list(ffc),
8557           "Chunk is not in free lists");
8558       }
8559       _sp->coalDeath(ffc->size());
8560       _sp->removeFreeChunkFromFreeLists(ffc);
8561       set_freeRangeInFreeLists(false);
8562     }
8563     if (fcInFreeLists) {
8564       _sp->coalDeath(chunkSize);
8565       assert(fc->size() == chunkSize,
8566         "The chunk has the wrong size or is not in the free lists");
8567       _sp->removeFreeChunkFromFreeLists(fc);
8568     }
8569     set_lastFreeRangeCoalesced(true);
8570     print_free_block_coalesced(fc);
8571   } else {  // not in a free range and/or should not coalesce
8572     // Return the current free range and start a new one.
8573     if (inFreeRange()) {
8574       // In a free range but cannot coalesce with the right hand chunk.
8575       // Put the current free range into the free lists.
8576       flush_cur_free_chunk(freeFinger(),
8577                            pointer_delta(fc_addr, freeFinger()));
8578     }
8579     // Set up for new free range.  Pass along whether the right hand
8580     // chunk is in the free lists.
8581     initialize_free_range((HeapWord*)fc, fcInFreeLists);
8582   }
8583 }
8584 
8585 // Lookahead flush:
8586 // If we are tracking a free range, and this is the last chunk that
8587 // we'll look at because its end crosses past _limit, we'll preemptively
8588 // flush it along with any free range we may be holding on to. Note that
8589 // this can be the case only for an already free or freshly garbage
8590 // chunk. If this block is an object, it can never straddle
8591 // over _limit. The "straddling" occurs when _limit is set at
8592 // the previous end of the space when this cycle started, and
8593 // a subsequent heap expansion caused the previously co-terminal
8594 // free block to be coalesced with the newly expanded portion,
8595 // thus rendering _limit a non-block-boundary making it dangerous
8596 // for the sweeper to step over and examine.
8597 void SweepClosure::lookahead_and_flush(FreeChunk* fc, size_t chunk_size) {
8598   assert(inFreeRange(), "Should only be called if currently in a free range.");
8599   HeapWord* const eob = ((HeapWord*)fc) + chunk_size;
8600   assert(_sp->used_region().contains(eob - 1),
8601          err_msg("eob = " PTR_FORMAT " eob-1 = " PTR_FORMAT " _limit = " PTR_FORMAT
8602                  " out of bounds wrt _sp = [" PTR_FORMAT "," PTR_FORMAT ")"
8603                  " when examining fc = " PTR_FORMAT "(" SIZE_FORMAT ")",
8604                  eob, eob-1, _limit, _sp->bottom(), _sp->end(), fc, chunk_size));
8605   if (eob >= _limit) {
8606     assert(eob == _limit || fc->is_free(), "Only a free chunk should allow us to cross over the limit");
8607     if (CMSTraceSweeper) {
8608       gclog_or_tty->print_cr("_limit " PTR_FORMAT " reached or crossed by block "
8609                              "[" PTR_FORMAT "," PTR_FORMAT ") in space "
8610                              "[" PTR_FORMAT "," PTR_FORMAT ")",
8611                              _limit, fc, eob, _sp->bottom(), _sp->end());
8612     }
8613     // Return the storage we are tracking back into the free lists.
8614     if (CMSTraceSweeper) {
8615       gclog_or_tty->print_cr("Flushing ... ");
8616     }
8617     assert(freeFinger() < eob, "Error");
8618     flush_cur_free_chunk( freeFinger(), pointer_delta(eob, freeFinger()));
8619   }
8620 }
8621 
8622 void SweepClosure::flush_cur_free_chunk(HeapWord* chunk, size_t size) {
8623   assert(inFreeRange(), "Should only be called if currently in a free range.");
8624   assert(size > 0,
8625     "A zero sized chunk cannot be added to the free lists.");
8626   if (!freeRangeInFreeLists()) {
8627     if (CMSTestInFreeList) {
8628       FreeChunk* fc = (FreeChunk*) chunk;
8629       fc->set_size(size);
8630       assert(!_sp->verify_chunk_in_free_list(fc),
8631         "chunk should not be in free lists yet");
8632     }
8633     if (CMSTraceSweeper) {
8634       gclog_or_tty->print_cr(" -- add free block " PTR_FORMAT " (" SIZE_FORMAT ") to free lists",
8635                     chunk, size);
8636     }
8637     // A new free range is going to be starting.  The current
8638     // free range has not been added to the free lists yet or
8639     // was removed so add it back.
8640     // If the current free range was coalesced, then the death
8641     // of the free range was recorded.  Record a birth now.
8642     if (lastFreeRangeCoalesced()) {
8643       _sp->coalBirth(size);
8644     }
8645     _sp->addChunkAndRepairOffsetTable(chunk, size,
8646             lastFreeRangeCoalesced());
8647   } else if (CMSTraceSweeper) {
8648     gclog_or_tty->print_cr("Already in free list: nothing to flush");
8649   }
8650   set_inFreeRange(false);
8651   set_freeRangeInFreeLists(false);
8652 }
8653 
8654 // We take a break if we've been at this for a while,
8655 // so as to avoid monopolizing the locks involved.
8656 void SweepClosure::do_yield_work(HeapWord* addr) {
8657   // Return current free chunk being used for coalescing (if any)
8658   // to the appropriate freelist.  After yielding, the next
8659   // free block encountered will start a coalescing range of
8660   // free blocks.  If the next free block is adjacent to the
8661   // chunk just flushed, they will need to wait for the next
8662   // sweep to be coalesced.
8663   if (inFreeRange()) {
8664     flush_cur_free_chunk(freeFinger(), pointer_delta(addr, freeFinger()));
8665   }
8666 
8667   // First give up the locks, then yield, then re-lock.
8668   // We should probably use a constructor/destructor idiom to
8669   // do this unlock/lock or modify the MutexUnlocker class to
8670   // serve our purpose. XXX
8671   assert_lock_strong(_bitMap->lock());
8672   assert_lock_strong(_freelistLock);
8673   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
8674          "CMS thread should hold CMS token");
8675   _bitMap->lock()->unlock();
8676   _freelistLock->unlock();
8677   ConcurrentMarkSweepThread::desynchronize(true);
8678   ConcurrentMarkSweepThread::acknowledge_yield_request();
8679   _collector->stopTimer();
8680   if (PrintCMSStatistics != 0) {
8681     _collector->incrementYields();
8682   }
8683   _collector->icms_wait();
8684 
8685   // See the comment in coordinator_yield()
8686   for (unsigned i = 0; i < CMSYieldSleepCount &&
8687                        ConcurrentMarkSweepThread::should_yield() &&
8688                        !CMSCollector::foregroundGCIsActive(); ++i) {
8689     os::sleep(Thread::current(), 1, false);
8690     ConcurrentMarkSweepThread::acknowledge_yield_request();
8691   }
8692 
8693   ConcurrentMarkSweepThread::synchronize(true);
8694   _freelistLock->lock();
8695   _bitMap->lock()->lock_without_safepoint_check();
8696   _collector->startTimer();
8697 }
8698 
8699 #ifndef PRODUCT
8700 // This is actually very useful in a product build if it can
8701 // be called from the debugger.  Compile it into the product
8702 // as needed.
8703 bool debug_verify_chunk_in_free_list(FreeChunk* fc) {
8704   return debug_cms_space->verify_chunk_in_free_list(fc);
8705 }
8706 #endif
8707 
8708 void SweepClosure::print_free_block_coalesced(FreeChunk* fc) const {
8709   if (CMSTraceSweeper) {
8710     gclog_or_tty->print_cr("Sweep:coal_free_blk " PTR_FORMAT " (" SIZE_FORMAT ")",
8711                            fc, fc->size());
8712   }
8713 }
8714 
8715 // CMSIsAliveClosure
8716 bool CMSIsAliveClosure::do_object_b(oop obj) {
8717   HeapWord* addr = (HeapWord*)obj;
8718   return addr != NULL &&
8719          (!_span.contains(addr) || _bit_map->isMarked(addr));
8720 }
8721 
8722 
8723 CMSKeepAliveClosure::CMSKeepAliveClosure( CMSCollector* collector,
8724                       MemRegion span,
8725                       CMSBitMap* bit_map, CMSMarkStack* mark_stack,
8726                       bool cpc):
8727   _collector(collector),
8728   _span(span),
8729   _bit_map(bit_map),
8730   _mark_stack(mark_stack),
8731   _concurrent_precleaning(cpc) {
8732   assert(!_span.is_empty(), "Empty span could spell trouble");
8733 }
8734 
8735 
8736 // CMSKeepAliveClosure: the serial version
8737 void CMSKeepAliveClosure::do_oop(oop obj) {
8738   HeapWord* addr = (HeapWord*)obj;
8739   if (_span.contains(addr) &&
8740       !_bit_map->isMarked(addr)) {
8741     _bit_map->mark(addr);
8742     bool simulate_overflow = false;
8743     NOT_PRODUCT(
8744       if (CMSMarkStackOverflowALot &&
8745           _collector->simulate_overflow()) {
8746         // simulate a stack overflow
8747         simulate_overflow = true;
8748       }
8749     )
8750     if (simulate_overflow || !_mark_stack->push(obj)) {
8751       if (_concurrent_precleaning) {
8752         // We dirty the overflown object and let the remark
8753         // phase deal with it.
8754         assert(_collector->overflow_list_is_empty(), "Error");
8755         // In the case of object arrays, we need to dirty all of
8756         // the cards that the object spans. No locking or atomics
8757         // are needed since no one else can be mutating the mod union
8758         // table.
8759         if (obj->is_objArray()) {
8760           size_t sz = obj->size();
8761           HeapWord* end_card_addr =
8762             (HeapWord*)round_to((intptr_t)(addr+sz), CardTableModRefBS::card_size);
8763           MemRegion redirty_range = MemRegion(addr, end_card_addr);
8764           assert(!redirty_range.is_empty(), "Arithmetical tautology");
8765           _collector->_modUnionTable.mark_range(redirty_range);
8766         } else {
8767           _collector->_modUnionTable.mark(addr);
8768         }
8769         _collector->_ser_kac_preclean_ovflw++;
8770       } else {
8771         _collector->push_on_overflow_list(obj);
8772         _collector->_ser_kac_ovflw++;
8773       }
8774     }
8775   }
8776 }
8777 
8778 void CMSKeepAliveClosure::do_oop(oop* p)       { CMSKeepAliveClosure::do_oop_work(p); }
8779 void CMSKeepAliveClosure::do_oop(narrowOop* p) { CMSKeepAliveClosure::do_oop_work(p); }
8780 
8781 // CMSParKeepAliveClosure: a parallel version of the above.
8782 // The work queues are private to each closure (thread),
8783 // but (may be) available for stealing by other threads.
8784 void CMSParKeepAliveClosure::do_oop(oop obj) {
8785   HeapWord* addr = (HeapWord*)obj;
8786   if (_span.contains(addr) &&
8787       !_bit_map->isMarked(addr)) {
8788     // In general, during recursive tracing, several threads
8789     // may be concurrently getting here; the first one to
8790     // "tag" it, claims it.
8791     if (_bit_map->par_mark(addr)) {
8792       bool res = _work_queue->push(obj);
8793       assert(res, "Low water mark should be much less than capacity");
8794       // Do a recursive trim in the hope that this will keep
8795       // stack usage lower, but leave some oops for potential stealers
8796       trim_queue(_low_water_mark);
8797     } // Else, another thread got there first
8798   }
8799 }
8800 
8801 void CMSParKeepAliveClosure::do_oop(oop* p)       { CMSParKeepAliveClosure::do_oop_work(p); }
8802 void CMSParKeepAliveClosure::do_oop(narrowOop* p) { CMSParKeepAliveClosure::do_oop_work(p); }
8803 
8804 void CMSParKeepAliveClosure::trim_queue(uint max) {
8805   while (_work_queue->size() > max) {
8806     oop new_oop;
8807     if (_work_queue->pop_local(new_oop)) {
8808       assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop");
8809       assert(_bit_map->isMarked((HeapWord*)new_oop),
8810              "no white objects on this stack!");
8811       assert(_span.contains((HeapWord*)new_oop), "Out of bounds oop");
8812       // iterate over the oops in this oop, marking and pushing
8813       // the ones in CMS heap (i.e. in _span).
8814       new_oop->oop_iterate(&_mark_and_push);
8815     }
8816   }
8817 }
8818 
8819 CMSInnerParMarkAndPushClosure::CMSInnerParMarkAndPushClosure(
8820                                 CMSCollector* collector,
8821                                 MemRegion span, CMSBitMap* bit_map,
8822                                 OopTaskQueue* work_queue):
8823   _collector(collector),
8824   _span(span),
8825   _bit_map(bit_map),
8826   _work_queue(work_queue) { }
8827 
8828 void CMSInnerParMarkAndPushClosure::do_oop(oop obj) {
8829   HeapWord* addr = (HeapWord*)obj;
8830   if (_span.contains(addr) &&
8831       !_bit_map->isMarked(addr)) {
8832     if (_bit_map->par_mark(addr)) {
8833       bool simulate_overflow = false;
8834       NOT_PRODUCT(
8835         if (CMSMarkStackOverflowALot &&
8836             _collector->par_simulate_overflow()) {
8837           // simulate a stack overflow
8838           simulate_overflow = true;
8839         }
8840       )
8841       if (simulate_overflow || !_work_queue->push(obj)) {
8842         _collector->par_push_on_overflow_list(obj);
8843         _collector->_par_kac_ovflw++;
8844       }
8845     } // Else another thread got there already
8846   }
8847 }
8848 
8849 void CMSInnerParMarkAndPushClosure::do_oop(oop* p)       { CMSInnerParMarkAndPushClosure::do_oop_work(p); }
8850 void CMSInnerParMarkAndPushClosure::do_oop(narrowOop* p) { CMSInnerParMarkAndPushClosure::do_oop_work(p); }
8851 
8852 //////////////////////////////////////////////////////////////////
8853 //  CMSExpansionCause                /////////////////////////////
8854 //////////////////////////////////////////////////////////////////
8855 const char* CMSExpansionCause::to_string(CMSExpansionCause::Cause cause) {
8856   switch (cause) {
8857     case _no_expansion:
8858       return "No expansion";
8859     case _satisfy_free_ratio:
8860       return "Free ratio";
8861     case _satisfy_promotion:
8862       return "Satisfy promotion";
8863     case _satisfy_allocation:
8864       return "allocation";
8865     case _allocate_par_lab:
8866       return "Par LAB";
8867     case _allocate_par_spooling_space:
8868       return "Par Spooling Space";
8869     case _adaptive_size_policy:
8870       return "Ergonomics";
8871     default:
8872       return "unknown";
8873   }
8874 }
8875 
8876 void CMSDrainMarkingStackClosure::do_void() {
8877   // the max number to take from overflow list at a time
8878   const size_t num = _mark_stack->capacity()/4;
8879   assert(!_concurrent_precleaning || _collector->overflow_list_is_empty(),
8880          "Overflow list should be NULL during concurrent phases");
8881   while (!_mark_stack->isEmpty() ||
8882          // if stack is empty, check the overflow list
8883          _collector->take_from_overflow_list(num, _mark_stack)) {
8884     oop obj = _mark_stack->pop();
8885     HeapWord* addr = (HeapWord*)obj;
8886     assert(_span.contains(addr), "Should be within span");
8887     assert(_bit_map->isMarked(addr), "Should be marked");
8888     assert(obj->is_oop(), "Should be an oop");
8889     obj->oop_iterate(_keep_alive);
8890   }
8891 }
8892 
8893 void CMSParDrainMarkingStackClosure::do_void() {
8894   // drain queue
8895   trim_queue(0);
8896 }
8897 
8898 // Trim our work_queue so its length is below max at return
8899 void CMSParDrainMarkingStackClosure::trim_queue(uint max) {
8900   while (_work_queue->size() > max) {
8901     oop new_oop;
8902     if (_work_queue->pop_local(new_oop)) {
8903       assert(new_oop->is_oop(), "Expected an oop");
8904       assert(_bit_map->isMarked((HeapWord*)new_oop),
8905              "no white objects on this stack!");
8906       assert(_span.contains((HeapWord*)new_oop), "Out of bounds oop");
8907       // iterate over the oops in this oop, marking and pushing
8908       // the ones in CMS heap (i.e. in _span).
8909       new_oop->oop_iterate(&_mark_and_push);
8910     }
8911   }
8912 }
8913 
8914 ////////////////////////////////////////////////////////////////////
8915 // Support for Marking Stack Overflow list handling and related code
8916 ////////////////////////////////////////////////////////////////////
8917 // Much of the following code is similar in shape and spirit to the
8918 // code used in ParNewGC. We should try and share that code
8919 // as much as possible in the future.
8920 
8921 #ifndef PRODUCT
8922 // Debugging support for CMSStackOverflowALot
8923 
8924 // It's OK to call this multi-threaded;  the worst thing
8925 // that can happen is that we'll get a bunch of closely
8926 // spaced simulated overflows, but that's OK, in fact
8927 // probably good as it would exercise the overflow code
8928 // under contention.
8929 bool CMSCollector::simulate_overflow() {
8930   if (_overflow_counter-- <= 0) { // just being defensive
8931     _overflow_counter = CMSMarkStackOverflowInterval;
8932     return true;
8933   } else {
8934     return false;
8935   }
8936 }
8937 
8938 bool CMSCollector::par_simulate_overflow() {
8939   return simulate_overflow();
8940 }
8941 #endif
8942 
8943 // Single-threaded
8944 bool CMSCollector::take_from_overflow_list(size_t num, CMSMarkStack* stack) {
8945   assert(stack->isEmpty(), "Expected precondition");
8946   assert(stack->capacity() > num, "Shouldn't bite more than can chew");
8947   size_t i = num;
8948   oop  cur = _overflow_list;
8949   const markOop proto = markOopDesc::prototype();
8950   NOT_PRODUCT(ssize_t n = 0;)
8951   for (oop next; i > 0 && cur != NULL; cur = next, i--) {
8952     next = oop(cur->mark());
8953     cur->set_mark(proto);   // until proven otherwise
8954     assert(cur->is_oop(), "Should be an oop");
8955     bool res = stack->push(cur);
8956     assert(res, "Bit off more than can chew?");
8957     NOT_PRODUCT(n++;)
8958   }
8959   _overflow_list = cur;
8960 #ifndef PRODUCT
8961   assert(_num_par_pushes >= n, "Too many pops?");
8962   _num_par_pushes -=n;
8963 #endif
8964   return !stack->isEmpty();
8965 }
8966 
8967 #define BUSY  (cast_to_oop<intptr_t>(0x1aff1aff))
8968 // (MT-safe) Get a prefix of at most "num" from the list.
8969 // The overflow list is chained through the mark word of
8970 // each object in the list. We fetch the entire list,
8971 // break off a prefix of the right size and return the
8972 // remainder. If other threads try to take objects from
8973 // the overflow list at that time, they will wait for
8974 // some time to see if data becomes available. If (and
8975 // only if) another thread places one or more object(s)
8976 // on the global list before we have returned the suffix
8977 // to the global list, we will walk down our local list
8978 // to find its end and append the global list to
8979 // our suffix before returning it. This suffix walk can
8980 // prove to be expensive (quadratic in the amount of traffic)
8981 // when there are many objects in the overflow list and
8982 // there is much producer-consumer contention on the list.
8983 // *NOTE*: The overflow list manipulation code here and
8984 // in ParNewGeneration:: are very similar in shape,
8985 // except that in the ParNew case we use the old (from/eden)
8986 // copy of the object to thread the list via its klass word.
8987 // Because of the common code, if you make any changes in
8988 // the code below, please check the ParNew version to see if
8989 // similar changes might be needed.
8990 // CR 6797058 has been filed to consolidate the common code.
8991 bool CMSCollector::par_take_from_overflow_list(size_t num,
8992                                                OopTaskQueue* work_q,
8993                                                int no_of_gc_threads) {
8994   assert(work_q->size() == 0, "First empty local work queue");
8995   assert(num < work_q->max_elems(), "Can't bite more than we can chew");
8996   if (_overflow_list == NULL) {
8997     return false;
8998   }
8999   // Grab the entire list; we'll put back a suffix
9000   oop prefix = cast_to_oop(Atomic::xchg_ptr(BUSY, &_overflow_list));
9001   Thread* tid = Thread::current();
9002   // Before "no_of_gc_threads" was introduced CMSOverflowSpinCount was
9003   // set to ParallelGCThreads.
9004   size_t CMSOverflowSpinCount = (size_t) no_of_gc_threads; // was ParallelGCThreads;
9005   size_t sleep_time_millis = MAX2((size_t)1, num/100);
9006   // If the list is busy, we spin for a short while,
9007   // sleeping between attempts to get the list.
9008   for (size_t spin = 0; prefix == BUSY && spin < CMSOverflowSpinCount; spin++) {
9009     os::sleep(tid, sleep_time_millis, false);
9010     if (_overflow_list == NULL) {
9011       // Nothing left to take
9012       return false;
9013     } else if (_overflow_list != BUSY) {
9014       // Try and grab the prefix
9015       prefix = cast_to_oop(Atomic::xchg_ptr(BUSY, &_overflow_list));
9016     }
9017   }
9018   // If the list was found to be empty, or we spun long
9019   // enough, we give up and return empty-handed. If we leave
9020   // the list in the BUSY state below, it must be the case that
9021   // some other thread holds the overflow list and will set it
9022   // to a non-BUSY state in the future.
9023   if (prefix == NULL || prefix == BUSY) {
9024      // Nothing to take or waited long enough
9025      if (prefix == NULL) {
9026        // Write back the NULL in case we overwrote it with BUSY above
9027        // and it is still the same value.
9028        (void) Atomic::cmpxchg_ptr(NULL, &_overflow_list, BUSY);
9029      }
9030      return false;
9031   }
9032   assert(prefix != NULL && prefix != BUSY, "Error");
9033   size_t i = num;
9034   oop cur = prefix;
9035   // Walk down the first "num" objects, unless we reach the end.
9036   for (; i > 1 && cur->mark() != NULL; cur = oop(cur->mark()), i--);
9037   if (cur->mark() == NULL) {
9038     // We have "num" or fewer elements in the list, so there
9039     // is nothing to return to the global list.
9040     // Write back the NULL in lieu of the BUSY we wrote
9041     // above, if it is still the same value.
9042     if (_overflow_list == BUSY) {
9043       (void) Atomic::cmpxchg_ptr(NULL, &_overflow_list, BUSY);
9044     }
9045   } else {
9046     // Chop off the suffix and return it to the global list.
9047     assert(cur->mark() != BUSY, "Error");
9048     oop suffix_head = cur->mark(); // suffix will be put back on global list
9049     cur->set_mark(NULL);           // break off suffix
9050     // It's possible that the list is still in the empty(busy) state
9051     // we left it in a short while ago; in that case we may be
9052     // able to place back the suffix without incurring the cost
9053     // of a walk down the list.
9054     oop observed_overflow_list = _overflow_list;
9055     oop cur_overflow_list = observed_overflow_list;
9056     bool attached = false;
9057     while (observed_overflow_list == BUSY || observed_overflow_list == NULL) {
9058       observed_overflow_list =
9059         (oop) Atomic::cmpxchg_ptr(suffix_head, &_overflow_list, cur_overflow_list);
9060       if (cur_overflow_list == observed_overflow_list) {
9061         attached = true;
9062         break;
9063       } else cur_overflow_list = observed_overflow_list;
9064     }
9065     if (!attached) {
9066       // Too bad, someone else sneaked in (at least) an element; we'll need
9067       // to do a splice. Find tail of suffix so we can prepend suffix to global
9068       // list.
9069       for (cur = suffix_head; cur->mark() != NULL; cur = (oop)(cur->mark()));
9070       oop suffix_tail = cur;
9071       assert(suffix_tail != NULL && suffix_tail->mark() == NULL,
9072              "Tautology");
9073       observed_overflow_list = _overflow_list;
9074       do {
9075         cur_overflow_list = observed_overflow_list;
9076         if (cur_overflow_list != BUSY) {
9077           // Do the splice ...
9078           suffix_tail->set_mark(markOop(cur_overflow_list));
9079         } else { // cur_overflow_list == BUSY
9080           suffix_tail->set_mark(NULL);
9081         }
9082         // ... and try to place spliced list back on overflow_list ...
9083         observed_overflow_list =
9084           (oop) Atomic::cmpxchg_ptr(suffix_head, &_overflow_list, cur_overflow_list);
9085       } while (cur_overflow_list != observed_overflow_list);
9086       // ... until we have succeeded in doing so.
9087     }
9088   }
9089 
9090   // Push the prefix elements on work_q
9091   assert(prefix != NULL, "control point invariant");
9092   const markOop proto = markOopDesc::prototype();
9093   oop next;
9094   NOT_PRODUCT(ssize_t n = 0;)
9095   for (cur = prefix; cur != NULL; cur = next) {
9096     next = oop(cur->mark());
9097     cur->set_mark(proto);   // until proven otherwise
9098     assert(cur->is_oop(), "Should be an oop");
9099     bool res = work_q->push(cur);
9100     assert(res, "Bit off more than we can chew?");
9101     NOT_PRODUCT(n++;)
9102   }
9103 #ifndef PRODUCT
9104   assert(_num_par_pushes >= n, "Too many pops?");
9105   Atomic::add_ptr(-(intptr_t)n, &_num_par_pushes);
9106 #endif
9107   return true;
9108 }
9109 
9110 // Single-threaded
9111 void CMSCollector::push_on_overflow_list(oop p) {
9112   NOT_PRODUCT(_num_par_pushes++;)
9113   assert(p->is_oop(), "Not an oop");
9114   preserve_mark_if_necessary(p);
9115   p->set_mark((markOop)_overflow_list);
9116   _overflow_list = p;
9117 }
9118 
9119 // Multi-threaded; use CAS to prepend to overflow list
9120 void CMSCollector::par_push_on_overflow_list(oop p) {
9121   NOT_PRODUCT(Atomic::inc_ptr(&_num_par_pushes);)
9122   assert(p->is_oop(), "Not an oop");
9123   par_preserve_mark_if_necessary(p);
9124   oop observed_overflow_list = _overflow_list;
9125   oop cur_overflow_list;
9126   do {
9127     cur_overflow_list = observed_overflow_list;
9128     if (cur_overflow_list != BUSY) {
9129       p->set_mark(markOop(cur_overflow_list));
9130     } else {
9131       p->set_mark(NULL);
9132     }
9133     observed_overflow_list =
9134       (oop) Atomic::cmpxchg_ptr(p, &_overflow_list, cur_overflow_list);
9135   } while (cur_overflow_list != observed_overflow_list);
9136 }
9137 #undef BUSY
9138 
9139 // Single threaded
9140 // General Note on GrowableArray: pushes may silently fail
9141 // because we are (temporarily) out of C-heap for expanding
9142 // the stack. The problem is quite ubiquitous and affects
9143 // a lot of code in the JVM. The prudent thing for GrowableArray
9144 // to do (for now) is to exit with an error. However, that may
9145 // be too draconian in some cases because the caller may be
9146 // able to recover without much harm. For such cases, we
9147 // should probably introduce a "soft_push" method which returns
9148 // an indication of success or failure with the assumption that
9149 // the caller may be able to recover from a failure; code in
9150 // the VM can then be changed, incrementally, to deal with such
9151 // failures where possible, thus, incrementally hardening the VM
9152 // in such low resource situations.
9153 void CMSCollector::preserve_mark_work(oop p, markOop m) {
9154   _preserved_oop_stack.push(p);
9155   _preserved_mark_stack.push(m);
9156   assert(m == p->mark(), "Mark word changed");
9157   assert(_preserved_oop_stack.size() == _preserved_mark_stack.size(),
9158          "bijection");
9159 }
9160 
9161 // Single threaded
9162 void CMSCollector::preserve_mark_if_necessary(oop p) {
9163   markOop m = p->mark();
9164   if (m->must_be_preserved(p)) {
9165     preserve_mark_work(p, m);
9166   }
9167 }
9168 
9169 void CMSCollector::par_preserve_mark_if_necessary(oop p) {
9170   markOop m = p->mark();
9171   if (m->must_be_preserved(p)) {
9172     MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
9173     // Even though we read the mark word without holding
9174     // the lock, we are assured that it will not change
9175     // because we "own" this oop, so no other thread can
9176     // be trying to push it on the overflow list; see
9177     // the assertion in preserve_mark_work() that checks
9178     // that m == p->mark().
9179     preserve_mark_work(p, m);
9180   }
9181 }
9182 
9183 // We should be able to do this multi-threaded,
9184 // a chunk of stack being a task (this is
9185 // correct because each oop only ever appears
9186 // once in the overflow list. However, it's
9187 // not very easy to completely overlap this with
9188 // other operations, so will generally not be done
9189 // until all work's been completed. Because we
9190 // expect the preserved oop stack (set) to be small,
9191 // it's probably fine to do this single-threaded.
9192 // We can explore cleverer concurrent/overlapped/parallel
9193 // processing of preserved marks if we feel the
9194 // need for this in the future. Stack overflow should
9195 // be so rare in practice and, when it happens, its
9196 // effect on performance so great that this will
9197 // likely just be in the noise anyway.
9198 void CMSCollector::restore_preserved_marks_if_any() {
9199   assert(SafepointSynchronize::is_at_safepoint(),
9200          "world should be stopped");
9201   assert(Thread::current()->is_ConcurrentGC_thread() ||
9202          Thread::current()->is_VM_thread(),
9203          "should be single-threaded");
9204   assert(_preserved_oop_stack.size() == _preserved_mark_stack.size(),
9205          "bijection");
9206 
9207   while (!_preserved_oop_stack.is_empty()) {
9208     oop p = _preserved_oop_stack.pop();
9209     assert(p->is_oop(), "Should be an oop");
9210     assert(_span.contains(p), "oop should be in _span");
9211     assert(p->mark() == markOopDesc::prototype(),
9212            "Set when taken from overflow list");
9213     markOop m = _preserved_mark_stack.pop();
9214     p->set_mark(m);
9215   }
9216   assert(_preserved_mark_stack.is_empty() && _preserved_oop_stack.is_empty(),
9217          "stacks were cleared above");
9218 }
9219 
9220 #ifndef PRODUCT
9221 bool CMSCollector::no_preserved_marks() const {
9222   return _preserved_mark_stack.is_empty() && _preserved_oop_stack.is_empty();
9223 }
9224 #endif
9225 
9226 // Transfer some number of overflown objects to usual marking
9227 // stack. Return true if some objects were transferred.
9228 bool MarkRefsIntoAndScanClosure::take_from_overflow_list() {
9229   size_t num = MIN2((size_t)(_mark_stack->capacity() - _mark_stack->length())/4,
9230                     (size_t)ParGCDesiredObjsFromOverflowList);
9231 
9232   bool res = _collector->take_from_overflow_list(num, _mark_stack);
9233   assert(_collector->overflow_list_is_empty() || res,
9234          "If list is not empty, we should have taken something");
9235   assert(!res || !_mark_stack->isEmpty(),
9236          "If we took something, it should now be on our stack");
9237   return res;
9238 }
9239 
9240 size_t MarkDeadObjectsClosure::do_blk(HeapWord* addr) {
9241   size_t res = _sp->block_size_no_stall(addr, _collector);
9242   if (_sp->block_is_obj(addr)) {
9243     if (_live_bit_map->isMarked(addr)) {
9244       // It can't have been dead in a previous cycle
9245       guarantee(!_dead_bit_map->isMarked(addr), "No resurrection!");
9246     } else {
9247       _dead_bit_map->mark(addr);      // mark the dead object
9248     }
9249   }
9250   // Could be 0, if the block size could not be computed without stalling.
9251   return res;
9252 }
9253 
9254 TraceCMSMemoryManagerStats::TraceCMSMemoryManagerStats(CMSCollector::CollectorState phase, GCCause::Cause cause): TraceMemoryManagerStats() {
9255 
9256   switch (phase) {
9257     case CMSCollector::InitialMarking:
9258       initialize(true  /* fullGC */ ,
9259                  cause /* cause of the GC */,
9260                  true  /* recordGCBeginTime */,
9261                  true  /* recordPreGCUsage */,
9262                  false /* recordPeakUsage */,
9263                  false /* recordPostGCusage */,
9264                  true  /* recordAccumulatedGCTime */,
9265                  false /* recordGCEndTime */,
9266                  false /* countCollection */  );
9267       break;
9268 
9269     case CMSCollector::FinalMarking:
9270       initialize(true  /* fullGC */ ,
9271                  cause /* cause of the GC */,
9272                  false /* recordGCBeginTime */,
9273                  false /* recordPreGCUsage */,
9274                  false /* recordPeakUsage */,
9275                  false /* recordPostGCusage */,
9276                  true  /* recordAccumulatedGCTime */,
9277                  false /* recordGCEndTime */,
9278                  false /* countCollection */  );
9279       break;
9280 
9281     case CMSCollector::Sweeping:
9282       initialize(true  /* fullGC */ ,
9283                  cause /* cause of the GC */,
9284                  false /* recordGCBeginTime */,
9285                  false /* recordPreGCUsage */,
9286                  true  /* recordPeakUsage */,
9287                  true  /* recordPostGCusage */,
9288                  false /* recordAccumulatedGCTime */,
9289                  true  /* recordGCEndTime */,
9290                  true  /* countCollection */  );
9291       break;
9292 
9293     default:
9294       ShouldNotReachHere();
9295   }
9296 }