1 /*
   2  * Copyright (c) 2001, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/symbolTable.hpp"
  27 #include "code/codeCache.hpp"
  28 #include "gc_implementation/g1/concurrentMark.inline.hpp"
  29 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
  30 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
  31 #include "gc_implementation/g1/g1CollectorPolicy.hpp"
  32 #include "gc_implementation/g1/g1ErgoVerbose.hpp"
  33 #include "gc_implementation/g1/g1Log.hpp"
  34 #include "gc_implementation/g1/g1OopClosures.inline.hpp"
  35 #include "gc_implementation/g1/g1RemSet.hpp"
  36 #include "gc_implementation/g1/heapRegion.inline.hpp"
  37 #include "gc_implementation/g1/heapRegionManager.inline.hpp"
  38 #include "gc_implementation/g1/heapRegionRemSet.hpp"
  39 #include "gc_implementation/g1/heapRegionSet.inline.hpp"
  40 #include "gc_implementation/shared/vmGCOperations.hpp"
  41 #include "gc_implementation/shared/gcTimer.hpp"
  42 #include "gc_implementation/shared/gcTrace.hpp"
  43 #include "gc_implementation/shared/gcTraceTime.hpp"
  44 #include "memory/allocation.hpp"
  45 #include "memory/genOopClosures.inline.hpp"
  46 #include "memory/referencePolicy.hpp"
  47 #include "memory/resourceArea.hpp"
  48 #include "oops/oop.inline.hpp"
  49 #include "runtime/handles.inline.hpp"
  50 #include "runtime/java.hpp"
  51 #include "runtime/atomic.inline.hpp"
  52 #include "runtime/prefetch.inline.hpp"
  53 #include "services/memTracker.hpp"
  54 
  55 // Concurrent marking bit map wrapper
  56 
  57 CMBitMapRO::CMBitMapRO(int shifter) :
  58   _bm(),
  59   _shifter(shifter) {
  60   _bmStartWord = 0;
  61   _bmWordSize = 0;
  62 }
  63 
  64 HeapWord* CMBitMapRO::getNextMarkedWordAddress(const HeapWord* addr,
  65                                                const HeapWord* limit) const {
  66   // First we must round addr *up* to a possible object boundary.
  67   addr = (HeapWord*)align_size_up((intptr_t)addr,
  68                                   HeapWordSize << _shifter);
  69   size_t addrOffset = heapWordToOffset(addr);
  70   if (limit == NULL) {
  71     limit = _bmStartWord + _bmWordSize;
  72   }
  73   size_t limitOffset = heapWordToOffset(limit);
  74   size_t nextOffset = _bm.get_next_one_offset(addrOffset, limitOffset);
  75   HeapWord* nextAddr = offsetToHeapWord(nextOffset);
  76   assert(nextAddr >= addr, "get_next_one postcondition");
  77   assert(nextAddr == limit || isMarked(nextAddr),
  78          "get_next_one postcondition");
  79   return nextAddr;
  80 }
  81 
  82 HeapWord* CMBitMapRO::getNextUnmarkedWordAddress(const HeapWord* addr,
  83                                                  const HeapWord* limit) const {
  84   size_t addrOffset = heapWordToOffset(addr);
  85   if (limit == NULL) {
  86     limit = _bmStartWord + _bmWordSize;
  87   }
  88   size_t limitOffset = heapWordToOffset(limit);
  89   size_t nextOffset = _bm.get_next_zero_offset(addrOffset, limitOffset);
  90   HeapWord* nextAddr = offsetToHeapWord(nextOffset);
  91   assert(nextAddr >= addr, "get_next_one postcondition");
  92   assert(nextAddr == limit || !isMarked(nextAddr),
  93          "get_next_one postcondition");
  94   return nextAddr;
  95 }
  96 
  97 int CMBitMapRO::heapWordDiffToOffsetDiff(size_t diff) const {
  98   assert((diff & ((1 << _shifter) - 1)) == 0, "argument check");
  99   return (int) (diff >> _shifter);
 100 }
 101 
 102 #ifndef PRODUCT
 103 bool CMBitMapRO::covers(MemRegion heap_rs) const {
 104   // assert(_bm.map() == _virtual_space.low(), "map inconsistency");
 105   assert(((size_t)_bm.size() * ((size_t)1 << _shifter)) == _bmWordSize,
 106          "size inconsistency");
 107   return _bmStartWord == (HeapWord*)(heap_rs.start()) &&
 108          _bmWordSize  == heap_rs.word_size();
 109 }
 110 #endif
 111 
 112 void CMBitMapRO::print_on_error(outputStream* st, const char* prefix) const {
 113   _bm.print_on_error(st, prefix);
 114 }
 115 
 116 size_t CMBitMap::compute_size(size_t heap_size) {
 117   return heap_size / mark_distance();
 118 }
 119 
 120 size_t CMBitMap::mark_distance() {
 121   return MinObjAlignmentInBytes * BitsPerByte;
 122 }
 123 
 124 void CMBitMap::initialize(MemRegion heap, G1RegionToSpaceMapper* storage) {
 125   _bmStartWord = heap.start();
 126   _bmWordSize = heap.word_size();
 127 
 128   _bm.set_map((BitMap::bm_word_t*) storage->reserved().start());
 129   _bm.set_size(_bmWordSize >> _shifter);
 130 
 131   storage->set_mapping_changed_listener(&_listener);
 132 }
 133 
 134 void CMBitMapMappingChangedListener::on_commit(uint start_region, size_t num_regions, bool zero_filled) {
 135   if (zero_filled) {
 136     return;
 137   }
 138   // We need to clear the bitmap on commit, removing any existing information.
 139   MemRegion mr(G1CollectedHeap::heap()->bottom_addr_for_region(start_region), num_regions * HeapRegion::GrainWords);
 140   _bm->clearRange(mr);
 141 }
 142 
 143 // Closure used for clearing the given mark bitmap.
 144 class ClearBitmapHRClosure : public HeapRegionClosure {
 145  private:
 146   ConcurrentMark* _cm;
 147   CMBitMap* _bitmap;
 148   bool _may_yield;      // The closure may yield during iteration. If yielded, abort the iteration.
 149  public:
 150   ClearBitmapHRClosure(ConcurrentMark* cm, CMBitMap* bitmap, bool may_yield) : HeapRegionClosure(), _cm(cm), _bitmap(bitmap), _may_yield(may_yield) {
 151     assert(!may_yield || cm != NULL, "CM must be non-NULL if this closure is expected to yield.");
 152   }
 153 
 154   virtual bool doHeapRegion(HeapRegion* r) {
 155     size_t const chunk_size_in_words = M / HeapWordSize;
 156 
 157     HeapWord* cur = r->bottom();
 158     HeapWord* const end = r->end();
 159 
 160     while (cur < end) {
 161       MemRegion mr(cur, MIN2(cur + chunk_size_in_words, end));
 162       _bitmap->clearRange(mr);
 163 
 164       cur += chunk_size_in_words;
 165 
 166       // Abort iteration if after yielding the marking has been aborted.
 167       if (_may_yield && _cm->do_yield_check() && _cm->has_aborted()) {
 168         return true;
 169       }
 170       // Repeat the asserts from before the start of the closure. We will do them
 171       // as asserts here to minimize their overhead on the product. However, we
 172       // will have them as guarantees at the beginning / end of the bitmap
 173       // clearing to get some checking in the product.
 174       assert(!_may_yield || _cm->cmThread()->during_cycle(), "invariant");
 175       assert(!_may_yield || !G1CollectedHeap::heap()->mark_in_progress(), "invariant");
 176     }
 177 
 178     return false;
 179   }
 180 };
 181 
 182 void CMBitMap::clearAll() {
 183   ClearBitmapHRClosure cl(NULL, this, false /* may_yield */);
 184   G1CollectedHeap::heap()->heap_region_iterate(&cl);
 185   guarantee(cl.complete(), "Must have completed iteration.");
 186   return;
 187 }
 188 
 189 void CMBitMap::markRange(MemRegion mr) {
 190   mr.intersection(MemRegion(_bmStartWord, _bmWordSize));
 191   assert(!mr.is_empty(), "unexpected empty region");
 192   assert((offsetToHeapWord(heapWordToOffset(mr.end())) ==
 193           ((HeapWord *) mr.end())),
 194          "markRange memory region end is not card aligned");
 195   // convert address range into offset range
 196   _bm.at_put_range(heapWordToOffset(mr.start()),
 197                    heapWordToOffset(mr.end()), true);
 198 }
 199 
 200 void CMBitMap::clearRange(MemRegion mr) {
 201   mr.intersection(MemRegion(_bmStartWord, _bmWordSize));
 202   assert(!mr.is_empty(), "unexpected empty region");
 203   // convert address range into offset range
 204   _bm.at_put_range(heapWordToOffset(mr.start()),
 205                    heapWordToOffset(mr.end()), false);
 206 }
 207 
 208 MemRegion CMBitMap::getAndClearMarkedRegion(HeapWord* addr,
 209                                             HeapWord* end_addr) {
 210   HeapWord* start = getNextMarkedWordAddress(addr);
 211   start = MIN2(start, end_addr);
 212   HeapWord* end   = getNextUnmarkedWordAddress(start);
 213   end = MIN2(end, end_addr);
 214   assert(start <= end, "Consistency check");
 215   MemRegion mr(start, end);
 216   if (!mr.is_empty()) {
 217     clearRange(mr);
 218   }
 219   return mr;
 220 }
 221 
 222 CMMarkStack::CMMarkStack(ConcurrentMark* cm) :
 223   _base(NULL), _cm(cm)
 224 #ifdef ASSERT
 225   , _drain_in_progress(false)
 226   , _drain_in_progress_yields(false)
 227 #endif
 228 {}
 229 
 230 bool CMMarkStack::allocate(size_t capacity) {
 231   // allocate a stack of the requisite depth
 232   ReservedSpace rs(ReservedSpace::allocation_align_size_up(capacity * sizeof(oop)));
 233   if (!rs.is_reserved()) {
 234     warning("ConcurrentMark MarkStack allocation failure");
 235     return false;
 236   }
 237   MemTracker::record_virtual_memory_type((address)rs.base(), mtGC);
 238   if (!_virtual_space.initialize(rs, rs.size())) {
 239     warning("ConcurrentMark MarkStack backing store failure");
 240     // Release the virtual memory reserved for the marking stack
 241     rs.release();
 242     return false;
 243   }
 244   assert(_virtual_space.committed_size() == rs.size(),
 245          "Didn't reserve backing store for all of ConcurrentMark stack?");
 246   _base = (oop*) _virtual_space.low();
 247   setEmpty();
 248   _capacity = (jint) capacity;
 249   _saved_index = -1;
 250   _should_expand = false;
 251   NOT_PRODUCT(_max_depth = 0);
 252   return true;
 253 }
 254 
 255 void CMMarkStack::expand() {
 256   // Called, during remark, if we've overflown the marking stack during marking.
 257   assert(isEmpty(), "stack should been emptied while handling overflow");
 258   assert(_capacity <= (jint) MarkStackSizeMax, "stack bigger than permitted");
 259   // Clear expansion flag
 260   _should_expand = false;
 261   if (_capacity == (jint) MarkStackSizeMax) {
 262     if (PrintGCDetails && Verbose) {
 263       gclog_or_tty->print_cr(" (benign) Can't expand marking stack capacity, at max size limit");
 264     }
 265     return;
 266   }
 267   // Double capacity if possible
 268   jint new_capacity = MIN2(_capacity*2, (jint) MarkStackSizeMax);
 269   // Do not give up existing stack until we have managed to
 270   // get the double capacity that we desired.
 271   ReservedSpace rs(ReservedSpace::allocation_align_size_up(new_capacity *
 272                                                            sizeof(oop)));
 273   if (rs.is_reserved()) {
 274     // Release the backing store associated with old stack
 275     _virtual_space.release();
 276     // Reinitialize virtual space for new stack
 277     if (!_virtual_space.initialize(rs, rs.size())) {
 278       fatal("Not enough swap for expanded marking stack capacity");
 279     }
 280     _base = (oop*)(_virtual_space.low());
 281     _index = 0;
 282     _capacity = new_capacity;
 283   } else {
 284     if (PrintGCDetails && Verbose) {
 285       // Failed to double capacity, continue;
 286       gclog_or_tty->print(" (benign) Failed to expand marking stack capacity from "
 287                           SIZE_FORMAT"K to " SIZE_FORMAT"K",
 288                           _capacity / K, new_capacity / K);
 289     }
 290   }
 291 }
 292 
 293 void CMMarkStack::set_should_expand() {
 294   // If we're resetting the marking state because of an
 295   // marking stack overflow, record that we should, if
 296   // possible, expand the stack.
 297   _should_expand = _cm->has_overflown();
 298 }
 299 
 300 CMMarkStack::~CMMarkStack() {
 301   if (_base != NULL) {
 302     _base = NULL;
 303     _virtual_space.release();
 304   }
 305 }
 306 
 307 void CMMarkStack::par_push(oop ptr) {
 308   while (true) {
 309     if (isFull()) {
 310       _overflow = true;
 311       return;
 312     }
 313     // Otherwise...
 314     jint index = _index;
 315     jint next_index = index+1;
 316     jint res = Atomic::cmpxchg(next_index, &_index, index);
 317     if (res == index) {
 318       _base[index] = ptr;
 319       // Note that we don't maintain this atomically.  We could, but it
 320       // doesn't seem necessary.
 321       NOT_PRODUCT(_max_depth = MAX2(_max_depth, next_index));
 322       return;
 323     }
 324     // Otherwise, we need to try again.
 325   }
 326 }
 327 
 328 void CMMarkStack::par_adjoin_arr(oop* ptr_arr, int n) {
 329   while (true) {
 330     if (isFull()) {
 331       _overflow = true;
 332       return;
 333     }
 334     // Otherwise...
 335     jint index = _index;
 336     jint next_index = index + n;
 337     if (next_index > _capacity) {
 338       _overflow = true;
 339       return;
 340     }
 341     jint res = Atomic::cmpxchg(next_index, &_index, index);
 342     if (res == index) {
 343       for (int i = 0; i < n; i++) {
 344         int  ind = index + i;
 345         assert(ind < _capacity, "By overflow test above.");
 346         _base[ind] = ptr_arr[i];
 347       }
 348       NOT_PRODUCT(_max_depth = MAX2(_max_depth, next_index));
 349       return;
 350     }
 351     // Otherwise, we need to try again.
 352   }
 353 }
 354 
 355 void CMMarkStack::par_push_arr(oop* ptr_arr, int n) {
 356   MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
 357   jint start = _index;
 358   jint next_index = start + n;
 359   if (next_index > _capacity) {
 360     _overflow = true;
 361     return;
 362   }
 363   // Otherwise.
 364   _index = next_index;
 365   for (int i = 0; i < n; i++) {
 366     int ind = start + i;
 367     assert(ind < _capacity, "By overflow test above.");
 368     _base[ind] = ptr_arr[i];
 369   }
 370   NOT_PRODUCT(_max_depth = MAX2(_max_depth, next_index));
 371 }
 372 
 373 bool CMMarkStack::par_pop_arr(oop* ptr_arr, int max, int* n) {
 374   MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
 375   jint index = _index;
 376   if (index == 0) {
 377     *n = 0;
 378     return false;
 379   } else {
 380     int k = MIN2(max, index);
 381     jint  new_ind = index - k;
 382     for (int j = 0; j < k; j++) {
 383       ptr_arr[j] = _base[new_ind + j];
 384     }
 385     _index = new_ind;
 386     *n = k;
 387     return true;
 388   }
 389 }
 390 
 391 template<class OopClosureClass>
 392 bool CMMarkStack::drain(OopClosureClass* cl, CMBitMap* bm, bool yield_after) {
 393   assert(!_drain_in_progress || !_drain_in_progress_yields || yield_after
 394          || SafepointSynchronize::is_at_safepoint(),
 395          "Drain recursion must be yield-safe.");
 396   bool res = true;
 397   debug_only(_drain_in_progress = true);
 398   debug_only(_drain_in_progress_yields = yield_after);
 399   while (!isEmpty()) {
 400     oop newOop = pop();
 401     assert(G1CollectedHeap::heap()->is_in_reserved(newOop), "Bad pop");
 402     assert(newOop->is_oop(), "Expected an oop");
 403     assert(bm == NULL || bm->isMarked((HeapWord*)newOop),
 404            "only grey objects on this stack");
 405     newOop->oop_iterate(cl);
 406     if (yield_after && _cm->do_yield_check()) {
 407       res = false;
 408       break;
 409     }
 410   }
 411   debug_only(_drain_in_progress = false);
 412   return res;
 413 }
 414 
 415 void CMMarkStack::note_start_of_gc() {
 416   assert(_saved_index == -1,
 417          "note_start_of_gc()/end_of_gc() bracketed incorrectly");
 418   _saved_index = _index;
 419 }
 420 
 421 void CMMarkStack::note_end_of_gc() {
 422   // This is intentionally a guarantee, instead of an assert. If we
 423   // accidentally add something to the mark stack during GC, it
 424   // will be a correctness issue so it's better if we crash. we'll
 425   // only check this once per GC anyway, so it won't be a performance
 426   // issue in any way.
 427   guarantee(_saved_index == _index,
 428             err_msg("saved index: %d index: %d", _saved_index, _index));
 429   _saved_index = -1;
 430 }
 431 
 432 void CMMarkStack::oops_do(OopClosure* f) {
 433   assert(_saved_index == _index,
 434          err_msg("saved index: %d index: %d", _saved_index, _index));
 435   for (int i = 0; i < _index; i += 1) {
 436     f->do_oop(&_base[i]);
 437   }
 438 }
 439 
 440 CMRootRegions::CMRootRegions() :
 441   _young_list(NULL), _cm(NULL), _scan_in_progress(false),
 442   _should_abort(false),  _next_survivor(NULL) { }
 443 
 444 void CMRootRegions::init(G1CollectedHeap* g1h, ConcurrentMark* cm) {
 445   _young_list = g1h->young_list();
 446   _cm = cm;
 447 }
 448 
 449 void CMRootRegions::prepare_for_scan() {
 450   assert(!scan_in_progress(), "pre-condition");
 451 
 452   // Currently, only survivors can be root regions.
 453   assert(_next_survivor == NULL, "pre-condition");
 454   _next_survivor = _young_list->first_survivor_region();
 455   _scan_in_progress = (_next_survivor != NULL);
 456   _should_abort = false;
 457 }
 458 
 459 HeapRegion* CMRootRegions::claim_next() {
 460   if (_should_abort) {
 461     // If someone has set the should_abort flag, we return NULL to
 462     // force the caller to bail out of their loop.
 463     return NULL;
 464   }
 465 
 466   // Currently, only survivors can be root regions.
 467   HeapRegion* res = _next_survivor;
 468   if (res != NULL) {
 469     MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
 470     // Read it again in case it changed while we were waiting for the lock.
 471     res = _next_survivor;
 472     if (res != NULL) {
 473       if (res == _young_list->last_survivor_region()) {
 474         // We just claimed the last survivor so store NULL to indicate
 475         // that we're done.
 476         _next_survivor = NULL;
 477       } else {
 478         _next_survivor = res->get_next_young_region();
 479       }
 480     } else {
 481       // Someone else claimed the last survivor while we were trying
 482       // to take the lock so nothing else to do.
 483     }
 484   }
 485   assert(res == NULL || res->is_survivor(), "post-condition");
 486 
 487   return res;
 488 }
 489 
 490 void CMRootRegions::scan_finished() {
 491   assert(scan_in_progress(), "pre-condition");
 492 
 493   // Currently, only survivors can be root regions.
 494   if (!_should_abort) {
 495     assert(_next_survivor == NULL, "we should have claimed all survivors");
 496   }
 497   _next_survivor = NULL;
 498 
 499   {
 500     MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
 501     _scan_in_progress = false;
 502     RootRegionScan_lock->notify_all();
 503   }
 504 }
 505 
 506 bool CMRootRegions::wait_until_scan_finished() {
 507   if (!scan_in_progress()) return false;
 508 
 509   {
 510     MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
 511     while (scan_in_progress()) {
 512       RootRegionScan_lock->wait(Mutex::_no_safepoint_check_flag);
 513     }
 514   }
 515   return true;
 516 }
 517 
 518 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
 519 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
 520 #endif // _MSC_VER
 521 
 522 uint ConcurrentMark::scale_parallel_threads(uint n_par_threads) {
 523   return MAX2((n_par_threads + 2) / 4, 1U);
 524 }
 525 
 526 ConcurrentMark::ConcurrentMark(G1CollectedHeap* g1h, G1RegionToSpaceMapper* prev_bitmap_storage, G1RegionToSpaceMapper* next_bitmap_storage) :
 527   _g1h(g1h),
 528   _markBitMap1(),
 529   _markBitMap2(),
 530   _parallel_marking_threads(0),
 531   _max_parallel_marking_threads(0),
 532   _sleep_factor(0.0),
 533   _marking_task_overhead(1.0),
 534   _cleanup_sleep_factor(0.0),
 535   _cleanup_task_overhead(1.0),
 536   _cleanup_list("Cleanup List"),
 537   _region_bm((BitMap::idx_t)(g1h->max_regions()), false /* in_resource_area*/),
 538   _card_bm((g1h->reserved_region().byte_size() + CardTableModRefBS::card_size - 1) >>
 539             CardTableModRefBS::card_shift,
 540             false /* in_resource_area*/),
 541 
 542   _prevMarkBitMap(&_markBitMap1),
 543   _nextMarkBitMap(&_markBitMap2),
 544 
 545   _markStack(this),
 546   // _finger set in set_non_marking_state
 547 
 548   _max_worker_id(MAX2((uint)ParallelGCThreads, 1U)),
 549   // _active_tasks set in set_non_marking_state
 550   // _tasks set inside the constructor
 551   _task_queues(new CMTaskQueueSet((int) _max_worker_id)),
 552   _terminator(ParallelTaskTerminator((int) _max_worker_id, _task_queues)),
 553 
 554   _has_overflown(false),
 555   _concurrent(false),
 556   _has_aborted(false),
 557   _aborted_gc_id(GCId::undefined()),
 558   _restart_for_overflow(false),
 559   _concurrent_marking_in_progress(false),
 560 
 561   // _verbose_level set below
 562 
 563   _init_times(),
 564   _remark_times(), _remark_mark_times(), _remark_weak_ref_times(),
 565   _cleanup_times(),
 566   _total_counting_time(0.0),
 567   _total_rs_scrub_time(0.0),
 568 
 569   _parallel_workers(NULL),
 570 
 571   _count_card_bitmaps(NULL),
 572   _count_marked_bytes(NULL),
 573   _completed_initialization(false) {
 574   CMVerboseLevel verbose_level = (CMVerboseLevel) G1MarkingVerboseLevel;
 575   if (verbose_level < no_verbose) {
 576     verbose_level = no_verbose;
 577   }
 578   if (verbose_level > high_verbose) {
 579     verbose_level = high_verbose;
 580   }
 581   _verbose_level = verbose_level;
 582 
 583   if (verbose_low()) {
 584     gclog_or_tty->print_cr("[global] init, heap start = "PTR_FORMAT", "
 585                            "heap end = " PTR_FORMAT, p2i(_heap_start), p2i(_heap_end));
 586   }
 587 
 588   _markBitMap1.initialize(g1h->reserved_region(), prev_bitmap_storage);
 589   _markBitMap2.initialize(g1h->reserved_region(), next_bitmap_storage);
 590 
 591   // Create & start a ConcurrentMark thread.
 592   _cmThread = new ConcurrentMarkThread(this);
 593   assert(cmThread() != NULL, "CM Thread should have been created");
 594   assert(cmThread()->cm() != NULL, "CM Thread should refer to this cm");
 595   if (_cmThread->osthread() == NULL) {
 596       vm_shutdown_during_initialization("Could not create ConcurrentMarkThread");
 597   }
 598 
 599   assert(CGC_lock != NULL, "Where's the CGC_lock?");
 600   assert(_markBitMap1.covers(g1h->reserved_region()), "_markBitMap1 inconsistency");
 601   assert(_markBitMap2.covers(g1h->reserved_region()), "_markBitMap2 inconsistency");
 602 
 603   SATBMarkQueueSet& satb_qs = JavaThread::satb_mark_queue_set();
 604   satb_qs.set_buffer_size(G1SATBBufferSize);
 605 
 606   _root_regions.init(_g1h, this);
 607 
 608   if (ConcGCThreads > ParallelGCThreads) {
 609     warning("Can't have more ConcGCThreads (" UINTX_FORMAT ") "
 610             "than ParallelGCThreads (" UINTX_FORMAT ").",
 611             ConcGCThreads, ParallelGCThreads);
 612     return;
 613   }
 614   if (ParallelGCThreads == 0) {
 615     // if we are not running with any parallel GC threads we will not
 616     // spawn any marking threads either
 617     _parallel_marking_threads =       0;
 618     _max_parallel_marking_threads =   0;
 619     _sleep_factor             =     0.0;
 620     _marking_task_overhead    =     1.0;
 621   } else {
 622     if (!FLAG_IS_DEFAULT(ConcGCThreads) && ConcGCThreads > 0) {
 623       // Note: ConcGCThreads has precedence over G1MarkingOverheadPercent
 624       // if both are set
 625       _sleep_factor             = 0.0;
 626       _marking_task_overhead    = 1.0;
 627     } else if (G1MarkingOverheadPercent > 0) {
 628       // We will calculate the number of parallel marking threads based
 629       // on a target overhead with respect to the soft real-time goal
 630       double marking_overhead = (double) G1MarkingOverheadPercent / 100.0;
 631       double overall_cm_overhead =
 632         (double) MaxGCPauseMillis * marking_overhead /
 633         (double) GCPauseIntervalMillis;
 634       double cpu_ratio = 1.0 / (double) os::processor_count();
 635       double marking_thread_num = ceil(overall_cm_overhead / cpu_ratio);
 636       double marking_task_overhead =
 637         overall_cm_overhead / marking_thread_num *
 638                                                 (double) os::processor_count();
 639       double sleep_factor =
 640                          (1.0 - marking_task_overhead) / marking_task_overhead;
 641 
 642       FLAG_SET_ERGO(uintx, ConcGCThreads, (uint) marking_thread_num);
 643       _sleep_factor             = sleep_factor;
 644       _marking_task_overhead    = marking_task_overhead;
 645     } else {
 646       // Calculate the number of parallel marking threads by scaling
 647       // the number of parallel GC threads.
 648       uint marking_thread_num = scale_parallel_threads((uint) ParallelGCThreads);
 649       FLAG_SET_ERGO(uintx, ConcGCThreads, marking_thread_num);
 650       _sleep_factor             = 0.0;
 651       _marking_task_overhead    = 1.0;
 652     }
 653 
 654     assert(ConcGCThreads > 0, "Should have been set");
 655     _parallel_marking_threads = (uint) ConcGCThreads;
 656     _max_parallel_marking_threads = _parallel_marking_threads;
 657 
 658     if (parallel_marking_threads() > 1) {
 659       _cleanup_task_overhead = 1.0;
 660     } else {
 661       _cleanup_task_overhead = marking_task_overhead();
 662     }
 663     _cleanup_sleep_factor =
 664                      (1.0 - cleanup_task_overhead()) / cleanup_task_overhead();
 665 
 666 #if 0
 667     gclog_or_tty->print_cr("Marking Threads          %d", parallel_marking_threads());
 668     gclog_or_tty->print_cr("CM Marking Task Overhead %1.4lf", marking_task_overhead());
 669     gclog_or_tty->print_cr("CM Sleep Factor          %1.4lf", sleep_factor());
 670     gclog_or_tty->print_cr("CL Marking Task Overhead %1.4lf", cleanup_task_overhead());
 671     gclog_or_tty->print_cr("CL Sleep Factor          %1.4lf", cleanup_sleep_factor());
 672 #endif
 673 
 674     guarantee(parallel_marking_threads() > 0, "peace of mind");
 675     _parallel_workers = new FlexibleWorkGang("G1 Parallel Marking Threads",
 676          _max_parallel_marking_threads, false, true);
 677     if (_parallel_workers == NULL) {
 678       vm_exit_during_initialization("Failed necessary allocation.");
 679     } else {
 680       _parallel_workers->initialize_workers();
 681     }
 682   }
 683 
 684   if (FLAG_IS_DEFAULT(MarkStackSize)) {
 685     uintx mark_stack_size =
 686       MIN2(MarkStackSizeMax,
 687           MAX2(MarkStackSize, (uintx) (parallel_marking_threads() * TASKQUEUE_SIZE)));
 688     // Verify that the calculated value for MarkStackSize is in range.
 689     // It would be nice to use the private utility routine from Arguments.
 690     if (!(mark_stack_size >= 1 && mark_stack_size <= MarkStackSizeMax)) {
 691       warning("Invalid value calculated for MarkStackSize (" UINTX_FORMAT "): "
 692               "must be between " UINTX_FORMAT " and " UINTX_FORMAT,
 693               mark_stack_size, (uintx) 1, MarkStackSizeMax);
 694       return;
 695     }
 696     FLAG_SET_ERGO(uintx, MarkStackSize, mark_stack_size);
 697   } else {
 698     // Verify MarkStackSize is in range.
 699     if (FLAG_IS_CMDLINE(MarkStackSize)) {
 700       if (FLAG_IS_DEFAULT(MarkStackSizeMax)) {
 701         if (!(MarkStackSize >= 1 && MarkStackSize <= MarkStackSizeMax)) {
 702           warning("Invalid value specified for MarkStackSize (" UINTX_FORMAT "): "
 703                   "must be between " UINTX_FORMAT " and " UINTX_FORMAT,
 704                   MarkStackSize, (uintx) 1, MarkStackSizeMax);
 705           return;
 706         }
 707       } else if (FLAG_IS_CMDLINE(MarkStackSizeMax)) {
 708         if (!(MarkStackSize >= 1 && MarkStackSize <= MarkStackSizeMax)) {
 709           warning("Invalid value specified for MarkStackSize (" UINTX_FORMAT ")"
 710                   " or for MarkStackSizeMax (" UINTX_FORMAT ")",
 711                   MarkStackSize, MarkStackSizeMax);
 712           return;
 713         }
 714       }
 715     }
 716   }
 717 
 718   if (!_markStack.allocate(MarkStackSize)) {
 719     warning("Failed to allocate CM marking stack");
 720     return;
 721   }
 722 
 723   _tasks = NEW_C_HEAP_ARRAY(CMTask*, _max_worker_id, mtGC);
 724   _accum_task_vtime = NEW_C_HEAP_ARRAY(double, _max_worker_id, mtGC);
 725 
 726   _count_card_bitmaps = NEW_C_HEAP_ARRAY(BitMap,  _max_worker_id, mtGC);
 727   _count_marked_bytes = NEW_C_HEAP_ARRAY(size_t*, _max_worker_id, mtGC);
 728 
 729   BitMap::idx_t card_bm_size = _card_bm.size();
 730 
 731   // so that the assertion in MarkingTaskQueue::task_queue doesn't fail
 732   _active_tasks = _max_worker_id;
 733 
 734   size_t max_regions = (size_t) _g1h->max_regions();
 735   for (uint i = 0; i < _max_worker_id; ++i) {
 736     CMTaskQueue* task_queue = new CMTaskQueue();
 737     task_queue->initialize();
 738     _task_queues->register_queue(i, task_queue);
 739 
 740     _count_card_bitmaps[i] = BitMap(card_bm_size, false);
 741     _count_marked_bytes[i] = NEW_C_HEAP_ARRAY(size_t, max_regions, mtGC);
 742 
 743     _tasks[i] = new CMTask(i, this,
 744                            _count_marked_bytes[i],
 745                            &_count_card_bitmaps[i],
 746                            task_queue, _task_queues);
 747 
 748     _accum_task_vtime[i] = 0.0;
 749   }
 750 
 751   // Calculate the card number for the bottom of the heap. Used
 752   // in biasing indexes into the accounting card bitmaps.
 753   _heap_bottom_card_num =
 754     intptr_t(uintptr_t(_g1h->reserved_region().start()) >>
 755                                 CardTableModRefBS::card_shift);
 756 
 757   // Clear all the liveness counting data
 758   clear_all_count_data();
 759 
 760   // so that the call below can read a sensible value
 761   _heap_start = g1h->reserved_region().start();
 762   set_non_marking_state();
 763   _completed_initialization = true;
 764 }
 765 
 766 void ConcurrentMark::reset() {
 767   // Starting values for these two. This should be called in a STW
 768   // phase.
 769   MemRegion reserved = _g1h->g1_reserved();
 770   _heap_start = reserved.start();
 771   _heap_end   = reserved.end();
 772 
 773   // Separated the asserts so that we know which one fires.
 774   assert(_heap_start != NULL, "heap bounds should look ok");
 775   assert(_heap_end != NULL, "heap bounds should look ok");
 776   assert(_heap_start < _heap_end, "heap bounds should look ok");
 777 
 778   // Reset all the marking data structures and any necessary flags
 779   reset_marking_state();
 780 
 781   if (verbose_low()) {
 782     gclog_or_tty->print_cr("[global] resetting");
 783   }
 784 
 785   // We do reset all of them, since different phases will use
 786   // different number of active threads. So, it's easiest to have all
 787   // of them ready.
 788   for (uint i = 0; i < _max_worker_id; ++i) {
 789     _tasks[i]->reset(_nextMarkBitMap);
 790   }
 791 
 792   // we need this to make sure that the flag is on during the evac
 793   // pause with initial mark piggy-backed
 794   set_concurrent_marking_in_progress();
 795 }
 796 
 797 
 798 void ConcurrentMark::reset_marking_state(bool clear_overflow) {
 799   _markStack.set_should_expand();
 800   _markStack.setEmpty();        // Also clears the _markStack overflow flag
 801   if (clear_overflow) {
 802     clear_has_overflown();
 803   } else {
 804     assert(has_overflown(), "pre-condition");
 805   }
 806   _finger = _heap_start;
 807 
 808   for (uint i = 0; i < _max_worker_id; ++i) {
 809     CMTaskQueue* queue = _task_queues->queue(i);
 810     queue->set_empty();
 811   }
 812 }
 813 
 814 void ConcurrentMark::set_concurrency(uint active_tasks) {
 815   assert(active_tasks <= _max_worker_id, "we should not have more");
 816 
 817   _active_tasks = active_tasks;
 818   // Need to update the three data structures below according to the
 819   // number of active threads for this phase.
 820   _terminator   = ParallelTaskTerminator((int) active_tasks, _task_queues);
 821   _first_overflow_barrier_sync.set_n_workers((int) active_tasks);
 822   _second_overflow_barrier_sync.set_n_workers((int) active_tasks);
 823 }
 824 
 825 void ConcurrentMark::set_concurrency_and_phase(uint active_tasks, bool concurrent) {
 826   set_concurrency(active_tasks);
 827 
 828   _concurrent = concurrent;
 829   // We propagate this to all tasks, not just the active ones.
 830   for (uint i = 0; i < _max_worker_id; ++i)
 831     _tasks[i]->set_concurrent(concurrent);
 832 
 833   if (concurrent) {
 834     set_concurrent_marking_in_progress();
 835   } else {
 836     // We currently assume that the concurrent flag has been set to
 837     // false before we start remark. At this point we should also be
 838     // in a STW phase.
 839     assert(!concurrent_marking_in_progress(), "invariant");
 840     assert(out_of_regions(),
 841            err_msg("only way to get here: _finger: "PTR_FORMAT", _heap_end: "PTR_FORMAT,
 842                    p2i(_finger), p2i(_heap_end)));
 843   }
 844 }
 845 
 846 void ConcurrentMark::set_non_marking_state() {
 847   // We set the global marking state to some default values when we're
 848   // not doing marking.
 849   reset_marking_state();
 850   _active_tasks = 0;
 851   clear_concurrent_marking_in_progress();
 852 }
 853 
 854 ConcurrentMark::~ConcurrentMark() {
 855   // The ConcurrentMark instance is never freed.
 856   ShouldNotReachHere();
 857 }
 858 
 859 void ConcurrentMark::clearNextBitmap() {
 860   G1CollectedHeap* g1h = G1CollectedHeap::heap();
 861 
 862   // Make sure that the concurrent mark thread looks to still be in
 863   // the current cycle.
 864   guarantee(cmThread()->during_cycle(), "invariant");
 865 
 866   // We are finishing up the current cycle by clearing the next
 867   // marking bitmap and getting it ready for the next cycle. During
 868   // this time no other cycle can start. So, let's make sure that this
 869   // is the case.
 870   guarantee(!g1h->mark_in_progress(), "invariant");
 871 
 872   ClearBitmapHRClosure cl(this, _nextMarkBitMap, true /* may_yield */);
 873   g1h->heap_region_iterate(&cl);
 874 
 875   // Clear the liveness counting data. If the marking has been aborted, the abort()
 876   // call already did that.
 877   if (cl.complete()) {
 878     clear_all_count_data();
 879   }
 880 
 881   // Repeat the asserts from above.
 882   guarantee(cmThread()->during_cycle(), "invariant");
 883   guarantee(!g1h->mark_in_progress(), "invariant");
 884 }
 885 
 886 class CheckBitmapClearHRClosure : public HeapRegionClosure {
 887   CMBitMap* _bitmap;
 888   bool _error;
 889  public:
 890   CheckBitmapClearHRClosure(CMBitMap* bitmap) : _bitmap(bitmap) {
 891   }
 892 
 893   virtual bool doHeapRegion(HeapRegion* r) {
 894     // This closure can be called concurrently to the mutator, so we must make sure
 895     // that the result of the getNextMarkedWordAddress() call is compared to the
 896     // value passed to it as limit to detect any found bits.
 897     // We can use the region's orig_end() for the limit and the comparison value
 898     // as it always contains the "real" end of the region that never changes and
 899     // has no side effects.
 900     // Due to the latter, there can also be no problem with the compiler generating
 901     // reloads of the orig_end() call.
 902     HeapWord* end = r->orig_end();
 903     return _bitmap->getNextMarkedWordAddress(r->bottom(), end) != end;
 904   }
 905 };
 906 
 907 bool ConcurrentMark::nextMarkBitmapIsClear() {
 908   CheckBitmapClearHRClosure cl(_nextMarkBitMap);
 909   _g1h->heap_region_iterate(&cl);
 910   return cl.complete();
 911 }
 912 
 913 class NoteStartOfMarkHRClosure: public HeapRegionClosure {
 914 public:
 915   bool doHeapRegion(HeapRegion* r) {
 916     if (!r->is_continues_humongous()) {
 917       r->note_start_of_marking();
 918     }
 919     return false;
 920   }
 921 };
 922 
 923 void ConcurrentMark::checkpointRootsInitialPre() {
 924   G1CollectedHeap*   g1h = G1CollectedHeap::heap();
 925   G1CollectorPolicy* g1p = g1h->g1_policy();
 926 
 927   _has_aborted = false;
 928 
 929 #ifndef PRODUCT
 930   if (G1PrintReachableAtInitialMark) {
 931     print_reachable("at-cycle-start",
 932                     VerifyOption_G1UsePrevMarking, true /* all */);
 933   }
 934 #endif
 935 
 936   // Initialize marking structures. This has to be done in a STW phase.
 937   reset();
 938 
 939   // For each region note start of marking.
 940   NoteStartOfMarkHRClosure startcl;
 941   g1h->heap_region_iterate(&startcl);
 942 }
 943 
 944 
 945 void ConcurrentMark::checkpointRootsInitialPost() {
 946   G1CollectedHeap*   g1h = G1CollectedHeap::heap();
 947 
 948   // If we force an overflow during remark, the remark operation will
 949   // actually abort and we'll restart concurrent marking. If we always
 950   // force an overflow during remark we'll never actually complete the
 951   // marking phase. So, we initialize this here, at the start of the
 952   // cycle, so that at the remaining overflow number will decrease at
 953   // every remark and we'll eventually not need to cause one.
 954   force_overflow_stw()->init();
 955 
 956   // Start Concurrent Marking weak-reference discovery.
 957   ReferenceProcessor* rp = g1h->ref_processor_cm();
 958   // enable ("weak") refs discovery
 959   rp->enable_discovery(true /*verify_disabled*/, true /*verify_no_refs*/);
 960   rp->setup_policy(false); // snapshot the soft ref policy to be used in this cycle
 961 
 962   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
 963   // This is the start of  the marking cycle, we're expected all
 964   // threads to have SATB queues with active set to false.
 965   satb_mq_set.set_active_all_threads(true, /* new active value */
 966                                      false /* expected_active */);
 967 
 968   _root_regions.prepare_for_scan();
 969 
 970   // update_g1_committed() will be called at the end of an evac pause
 971   // when marking is on. So, it's also called at the end of the
 972   // initial-mark pause to update the heap end, if the heap expands
 973   // during it. No need to call it here.
 974 }
 975 
 976 /*
 977  * Notice that in the next two methods, we actually leave the STS
 978  * during the barrier sync and join it immediately afterwards. If we
 979  * do not do this, the following deadlock can occur: one thread could
 980  * be in the barrier sync code, waiting for the other thread to also
 981  * sync up, whereas another one could be trying to yield, while also
 982  * waiting for the other threads to sync up too.
 983  *
 984  * Note, however, that this code is also used during remark and in
 985  * this case we should not attempt to leave / enter the STS, otherwise
 986  * we'll either hit an assert (debug / fastdebug) or deadlock
 987  * (product). So we should only leave / enter the STS if we are
 988  * operating concurrently.
 989  *
 990  * Because the thread that does the sync barrier has left the STS, it
 991  * is possible to be suspended for a Full GC or an evacuation pause
 992  * could occur. This is actually safe, since the entering the sync
 993  * barrier is one of the last things do_marking_step() does, and it
 994  * doesn't manipulate any data structures afterwards.
 995  */
 996 
 997 void ConcurrentMark::enter_first_sync_barrier(uint worker_id) {
 998   if (verbose_low()) {
 999     gclog_or_tty->print_cr("[%u] entering first barrier", worker_id);
1000   }
1001 
1002   if (concurrent()) {
1003     SuspendibleThreadSet::leave();
1004   }
1005 
1006   bool barrier_aborted = !_first_overflow_barrier_sync.enter();
1007 
1008   if (concurrent()) {
1009     SuspendibleThreadSet::join();
1010   }
1011   // at this point everyone should have synced up and not be doing any
1012   // more work
1013 
1014   if (verbose_low()) {
1015     if (barrier_aborted) {
1016       gclog_or_tty->print_cr("[%u] aborted first barrier", worker_id);
1017     } else {
1018       gclog_or_tty->print_cr("[%u] leaving first barrier", worker_id);
1019     }
1020   }
1021 
1022   if (barrier_aborted) {
1023     // If the barrier aborted we ignore the overflow condition and
1024     // just abort the whole marking phase as quickly as possible.
1025     return;
1026   }
1027 
1028   // If we're executing the concurrent phase of marking, reset the marking
1029   // state; otherwise the marking state is reset after reference processing,
1030   // during the remark pause.
1031   // If we reset here as a result of an overflow during the remark we will
1032   // see assertion failures from any subsequent set_concurrency_and_phase()
1033   // calls.
1034   if (concurrent()) {
1035     // let the task associated with with worker 0 do this
1036     if (worker_id == 0) {
1037       // task 0 is responsible for clearing the global data structures
1038       // We should be here because of an overflow. During STW we should
1039       // not clear the overflow flag since we rely on it being true when
1040       // we exit this method to abort the pause and restart concurrent
1041       // marking.
1042       reset_marking_state(true /* clear_overflow */);
1043       force_overflow()->update();
1044 
1045       if (G1Log::fine()) {
1046         gclog_or_tty->gclog_stamp(concurrent_gc_id());
1047         gclog_or_tty->print_cr("[GC concurrent-mark-reset-for-overflow]");
1048       }
1049     }
1050   }
1051 
1052   // after this, each task should reset its own data structures then
1053   // then go into the second barrier
1054 }
1055 
1056 void ConcurrentMark::enter_second_sync_barrier(uint worker_id) {
1057   if (verbose_low()) {
1058     gclog_or_tty->print_cr("[%u] entering second barrier", worker_id);
1059   }
1060 
1061   if (concurrent()) {
1062     SuspendibleThreadSet::leave();
1063   }
1064 
1065   bool barrier_aborted = !_second_overflow_barrier_sync.enter();
1066 
1067   if (concurrent()) {
1068     SuspendibleThreadSet::join();
1069   }
1070   // at this point everything should be re-initialized and ready to go
1071 
1072   if (verbose_low()) {
1073     if (barrier_aborted) {
1074       gclog_or_tty->print_cr("[%u] aborted second barrier", worker_id);
1075     } else {
1076       gclog_or_tty->print_cr("[%u] leaving second barrier", worker_id);
1077     }
1078   }
1079 }
1080 
1081 #ifndef PRODUCT
1082 void ForceOverflowSettings::init() {
1083   _num_remaining = G1ConcMarkForceOverflow;
1084   _force = false;
1085   update();
1086 }
1087 
1088 void ForceOverflowSettings::update() {
1089   if (_num_remaining > 0) {
1090     _num_remaining -= 1;
1091     _force = true;
1092   } else {
1093     _force = false;
1094   }
1095 }
1096 
1097 bool ForceOverflowSettings::should_force() {
1098   if (_force) {
1099     _force = false;
1100     return true;
1101   } else {
1102     return false;
1103   }
1104 }
1105 #endif // !PRODUCT
1106 
1107 class CMConcurrentMarkingTask: public AbstractGangTask {
1108 private:
1109   ConcurrentMark*       _cm;
1110   ConcurrentMarkThread* _cmt;
1111 
1112 public:
1113   void work(uint worker_id) {
1114     assert(Thread::current()->is_ConcurrentGC_thread(),
1115            "this should only be done by a conc GC thread");
1116     ResourceMark rm;
1117 
1118     double start_vtime = os::elapsedVTime();
1119 
1120     SuspendibleThreadSet::join();
1121 
1122     assert(worker_id < _cm->active_tasks(), "invariant");
1123     CMTask* the_task = _cm->task(worker_id);
1124     the_task->record_start_time();
1125     if (!_cm->has_aborted()) {
1126       do {
1127         double start_vtime_sec = os::elapsedVTime();
1128         double mark_step_duration_ms = G1ConcMarkStepDurationMillis;
1129 
1130         the_task->do_marking_step(mark_step_duration_ms,
1131                                   true  /* do_termination */,
1132                                   false /* is_serial*/);
1133 
1134         double end_vtime_sec = os::elapsedVTime();
1135         double elapsed_vtime_sec = end_vtime_sec - start_vtime_sec;
1136         _cm->clear_has_overflown();
1137 
1138         _cm->do_yield_check(worker_id);
1139 
1140         jlong sleep_time_ms;
1141         if (!_cm->has_aborted() && the_task->has_aborted()) {
1142           sleep_time_ms =
1143             (jlong) (elapsed_vtime_sec * _cm->sleep_factor() * 1000.0);
1144           SuspendibleThreadSet::leave();
1145           os::sleep(Thread::current(), sleep_time_ms, false);
1146           SuspendibleThreadSet::join();
1147         }
1148       } while (!_cm->has_aborted() && the_task->has_aborted());
1149     }
1150     the_task->record_end_time();
1151     guarantee(!the_task->has_aborted() || _cm->has_aborted(), "invariant");
1152 
1153     SuspendibleThreadSet::leave();
1154 
1155     double end_vtime = os::elapsedVTime();
1156     _cm->update_accum_task_vtime(worker_id, end_vtime - start_vtime);
1157   }
1158 
1159   CMConcurrentMarkingTask(ConcurrentMark* cm,
1160                           ConcurrentMarkThread* cmt) :
1161       AbstractGangTask("Concurrent Mark"), _cm(cm), _cmt(cmt) { }
1162 
1163   ~CMConcurrentMarkingTask() { }
1164 };
1165 
1166 // Calculates the number of active workers for a concurrent
1167 // phase.
1168 uint ConcurrentMark::calc_parallel_marking_threads() {
1169   if (G1CollectedHeap::use_parallel_gc_threads()) {
1170     uint n_conc_workers = 0;
1171     if (!UseDynamicNumberOfGCThreads ||
1172         (!FLAG_IS_DEFAULT(ConcGCThreads) &&
1173          !ForceDynamicNumberOfGCThreads)) {
1174       n_conc_workers = max_parallel_marking_threads();
1175     } else {
1176       n_conc_workers =
1177         AdaptiveSizePolicy::calc_default_active_workers(
1178                                      max_parallel_marking_threads(),
1179                                      1, /* Minimum workers */
1180                                      parallel_marking_threads(),
1181                                      Threads::number_of_non_daemon_threads());
1182       // Don't scale down "n_conc_workers" by scale_parallel_threads() because
1183       // that scaling has already gone into "_max_parallel_marking_threads".
1184     }
1185     assert(n_conc_workers > 0, "Always need at least 1");
1186     return n_conc_workers;
1187   }
1188   // If we are not running with any parallel GC threads we will not
1189   // have spawned any marking threads either. Hence the number of
1190   // concurrent workers should be 0.
1191   return 0;
1192 }
1193 
1194 void ConcurrentMark::scanRootRegion(HeapRegion* hr, uint worker_id) {
1195   // Currently, only survivors can be root regions.
1196   assert(hr->next_top_at_mark_start() == hr->bottom(), "invariant");
1197   G1RootRegionScanClosure cl(_g1h, this, worker_id);
1198 
1199   const uintx interval = PrefetchScanIntervalInBytes;
1200   HeapWord* curr = hr->bottom();
1201   const HeapWord* end = hr->top();
1202   while (curr < end) {
1203     Prefetch::read(curr, interval);
1204     oop obj = oop(curr);
1205     int size = obj->oop_iterate(&cl);
1206     assert(size == obj->size(), "sanity");
1207     curr += size;
1208   }
1209 }
1210 
1211 class CMRootRegionScanTask : public AbstractGangTask {
1212 private:
1213   ConcurrentMark* _cm;
1214 
1215 public:
1216   CMRootRegionScanTask(ConcurrentMark* cm) :
1217     AbstractGangTask("Root Region Scan"), _cm(cm) { }
1218 
1219   void work(uint worker_id) {
1220     assert(Thread::current()->is_ConcurrentGC_thread(),
1221            "this should only be done by a conc GC thread");
1222 
1223     CMRootRegions* root_regions = _cm->root_regions();
1224     HeapRegion* hr = root_regions->claim_next();
1225     while (hr != NULL) {
1226       _cm->scanRootRegion(hr, worker_id);
1227       hr = root_regions->claim_next();
1228     }
1229   }
1230 };
1231 
1232 void ConcurrentMark::scanRootRegions() {
1233   // Start of concurrent marking.
1234   ClassLoaderDataGraph::clear_claimed_marks();
1235 
1236   // scan_in_progress() will have been set to true only if there was
1237   // at least one root region to scan. So, if it's false, we
1238   // should not attempt to do any further work.
1239   if (root_regions()->scan_in_progress()) {
1240     _parallel_marking_threads = calc_parallel_marking_threads();
1241     assert(parallel_marking_threads() <= max_parallel_marking_threads(),
1242            "Maximum number of marking threads exceeded");
1243     uint active_workers = MAX2(1U, parallel_marking_threads());
1244 
1245     CMRootRegionScanTask task(this);
1246     if (use_parallel_marking_threads()) {
1247       _parallel_workers->set_active_workers((int) active_workers);
1248       _parallel_workers->run_task(&task);
1249     } else {
1250       task.work(0);
1251     }
1252 
1253     // It's possible that has_aborted() is true here without actually
1254     // aborting the survivor scan earlier. This is OK as it's
1255     // mainly used for sanity checking.
1256     root_regions()->scan_finished();
1257   }
1258 }
1259 
1260 void ConcurrentMark::markFromRoots() {
1261   // we might be tempted to assert that:
1262   // assert(asynch == !SafepointSynchronize::is_at_safepoint(),
1263   //        "inconsistent argument?");
1264   // However that wouldn't be right, because it's possible that
1265   // a safepoint is indeed in progress as a younger generation
1266   // stop-the-world GC happens even as we mark in this generation.
1267 
1268   _restart_for_overflow = false;
1269   force_overflow_conc()->init();
1270 
1271   // _g1h has _n_par_threads
1272   _parallel_marking_threads = calc_parallel_marking_threads();
1273   assert(parallel_marking_threads() <= max_parallel_marking_threads(),
1274     "Maximum number of marking threads exceeded");
1275 
1276   uint active_workers = MAX2(1U, parallel_marking_threads());
1277 
1278   // Parallel task terminator is set in "set_concurrency_and_phase()"
1279   set_concurrency_and_phase(active_workers, true /* concurrent */);
1280 
1281   CMConcurrentMarkingTask markingTask(this, cmThread());
1282   if (use_parallel_marking_threads()) {
1283     _parallel_workers->set_active_workers((int)active_workers);
1284     // Don't set _n_par_threads because it affects MT in process_roots()
1285     // and the decisions on that MT processing is made elsewhere.
1286     assert(_parallel_workers->active_workers() > 0, "Should have been set");
1287     _parallel_workers->run_task(&markingTask);
1288   } else {
1289     markingTask.work(0);
1290   }
1291   print_stats();
1292 }
1293 
1294 // Helper class to get rid of some boilerplate code.
1295 class G1CMTraceTime : public GCTraceTime {
1296   static bool doit_and_prepend(bool doit) {
1297     if (doit) {
1298       gclog_or_tty->put(' ');
1299     }
1300     return doit;
1301   }
1302 
1303  public:
1304   G1CMTraceTime(const char* title, bool doit)
1305     : GCTraceTime(title, doit_and_prepend(doit), false, G1CollectedHeap::heap()->gc_timer_cm(),
1306         G1CollectedHeap::heap()->concurrent_mark()->concurrent_gc_id()) {
1307   }
1308 };
1309 
1310 void ConcurrentMark::checkpointRootsFinal(bool clear_all_soft_refs) {
1311   // world is stopped at this checkpoint
1312   assert(SafepointSynchronize::is_at_safepoint(),
1313          "world should be stopped");
1314 
1315   G1CollectedHeap* g1h = G1CollectedHeap::heap();
1316 
1317   // If a full collection has happened, we shouldn't do this.
1318   if (has_aborted()) {
1319     g1h->set_marking_complete(); // So bitmap clearing isn't confused
1320     return;
1321   }
1322 
1323   SvcGCMarker sgcm(SvcGCMarker::OTHER);
1324 
1325   if (VerifyDuringGC) {
1326     HandleMark hm;  // handle scope
1327     Universe::heap()->prepare_for_verify();
1328     Universe::verify(VerifyOption_G1UsePrevMarking,
1329                      " VerifyDuringGC:(before)");
1330   }
1331   g1h->check_bitmaps("Remark Start");
1332 
1333   G1CollectorPolicy* g1p = g1h->g1_policy();
1334   g1p->record_concurrent_mark_remark_start();
1335 
1336   double start = os::elapsedTime();
1337 
1338   checkpointRootsFinalWork();
1339 
1340   double mark_work_end = os::elapsedTime();
1341 
1342   weakRefsWork(clear_all_soft_refs);
1343 
1344   if (has_overflown()) {
1345     // Oops.  We overflowed.  Restart concurrent marking.
1346     _restart_for_overflow = true;
1347     if (G1TraceMarkStackOverflow) {
1348       gclog_or_tty->print_cr("\nRemark led to restart for overflow.");
1349     }
1350 
1351     // Verify the heap w.r.t. the previous marking bitmap.
1352     if (VerifyDuringGC) {
1353       HandleMark hm;  // handle scope
1354       Universe::heap()->prepare_for_verify();
1355       Universe::verify(VerifyOption_G1UsePrevMarking,
1356                        " VerifyDuringGC:(overflow)");
1357     }
1358 
1359     // Clear the marking state because we will be restarting
1360     // marking due to overflowing the global mark stack.
1361     reset_marking_state();
1362   } else {
1363     {
1364       G1CMTraceTime trace("GC aggregate-data", G1Log::finer());
1365 
1366       // Aggregate the per-task counting data that we have accumulated
1367       // while marking.
1368       aggregate_count_data();
1369     }
1370 
1371     SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
1372     // We're done with marking.
1373     // This is the end of  the marking cycle, we're expected all
1374     // threads to have SATB queues with active set to true.
1375     satb_mq_set.set_active_all_threads(false, /* new active value */
1376                                        true /* expected_active */);
1377 
1378     if (VerifyDuringGC) {
1379       HandleMark hm;  // handle scope
1380       Universe::heap()->prepare_for_verify();
1381       Universe::verify(VerifyOption_G1UseNextMarking,
1382                        " VerifyDuringGC:(after)");
1383     }
1384     g1h->check_bitmaps("Remark End");
1385     assert(!restart_for_overflow(), "sanity");
1386     // Completely reset the marking state since marking completed
1387     set_non_marking_state();
1388   }
1389 
1390   // Expand the marking stack, if we have to and if we can.
1391   if (_markStack.should_expand()) {
1392     _markStack.expand();
1393   }
1394 
1395   // Statistics
1396   double now = os::elapsedTime();
1397   _remark_mark_times.add((mark_work_end - start) * 1000.0);
1398   _remark_weak_ref_times.add((now - mark_work_end) * 1000.0);
1399   _remark_times.add((now - start) * 1000.0);
1400 
1401   g1p->record_concurrent_mark_remark_end();
1402 
1403   G1CMIsAliveClosure is_alive(g1h);
1404   g1h->gc_tracer_cm()->report_object_count_after_gc(&is_alive);
1405 }
1406 
1407 // Base class of the closures that finalize and verify the
1408 // liveness counting data.
1409 class CMCountDataClosureBase: public HeapRegionClosure {
1410 protected:
1411   G1CollectedHeap* _g1h;
1412   ConcurrentMark* _cm;
1413   CardTableModRefBS* _ct_bs;
1414 
1415   BitMap* _region_bm;
1416   BitMap* _card_bm;
1417 
1418   // Takes a region that's not empty (i.e., it has at least one
1419   // live object in it and sets its corresponding bit on the region
1420   // bitmap to 1. If the region is "starts humongous" it will also set
1421   // to 1 the bits on the region bitmap that correspond to its
1422   // associated "continues humongous" regions.
1423   void set_bit_for_region(HeapRegion* hr) {
1424     assert(!hr->is_continues_humongous(), "should have filtered those out");
1425 
1426     BitMap::idx_t index = (BitMap::idx_t) hr->hrm_index();
1427     if (!hr->is_starts_humongous()) {
1428       // Normal (non-humongous) case: just set the bit.
1429       _region_bm->par_at_put(index, true);
1430     } else {
1431       // Starts humongous case: calculate how many regions are part of
1432       // this humongous region and then set the bit range.
1433       BitMap::idx_t end_index = (BitMap::idx_t) hr->last_hc_index();
1434       _region_bm->par_at_put_range(index, end_index, true);
1435     }
1436   }
1437 
1438 public:
1439   CMCountDataClosureBase(G1CollectedHeap* g1h,
1440                          BitMap* region_bm, BitMap* card_bm):
1441     _g1h(g1h), _cm(g1h->concurrent_mark()),
1442     _ct_bs((CardTableModRefBS*) (g1h->barrier_set())),
1443     _region_bm(region_bm), _card_bm(card_bm) { }
1444 };
1445 
1446 // Closure that calculates the # live objects per region. Used
1447 // for verification purposes during the cleanup pause.
1448 class CalcLiveObjectsClosure: public CMCountDataClosureBase {
1449   CMBitMapRO* _bm;
1450   size_t _region_marked_bytes;
1451 
1452 public:
1453   CalcLiveObjectsClosure(CMBitMapRO *bm, G1CollectedHeap* g1h,
1454                          BitMap* region_bm, BitMap* card_bm) :
1455     CMCountDataClosureBase(g1h, region_bm, card_bm),
1456     _bm(bm), _region_marked_bytes(0) { }
1457 
1458   bool doHeapRegion(HeapRegion* hr) {
1459 
1460     if (hr->is_continues_humongous()) {
1461       // We will ignore these here and process them when their
1462       // associated "starts humongous" region is processed (see
1463       // set_bit_for_heap_region()). Note that we cannot rely on their
1464       // associated "starts humongous" region to have their bit set to
1465       // 1 since, due to the region chunking in the parallel region
1466       // iteration, a "continues humongous" region might be visited
1467       // before its associated "starts humongous".
1468       return false;
1469     }
1470 
1471     HeapWord* ntams = hr->next_top_at_mark_start();
1472     HeapWord* start = hr->bottom();
1473 
1474     assert(start <= hr->end() && start <= ntams && ntams <= hr->end(),
1475            err_msg("Preconditions not met - "
1476                    "start: "PTR_FORMAT", ntams: "PTR_FORMAT", end: "PTR_FORMAT,
1477                    p2i(start), p2i(ntams), p2i(hr->end())));
1478 
1479     // Find the first marked object at or after "start".
1480     start = _bm->getNextMarkedWordAddress(start, ntams);
1481 
1482     size_t marked_bytes = 0;
1483 
1484     while (start < ntams) {
1485       oop obj = oop(start);
1486       int obj_sz = obj->size();
1487       HeapWord* obj_end = start + obj_sz;
1488 
1489       BitMap::idx_t start_idx = _cm->card_bitmap_index_for(start);
1490       BitMap::idx_t end_idx = _cm->card_bitmap_index_for(obj_end);
1491 
1492       // Note: if we're looking at the last region in heap - obj_end
1493       // could be actually just beyond the end of the heap; end_idx
1494       // will then correspond to a (non-existent) card that is also
1495       // just beyond the heap.
1496       if (_g1h->is_in_g1_reserved(obj_end) && !_ct_bs->is_card_aligned(obj_end)) {
1497         // end of object is not card aligned - increment to cover
1498         // all the cards spanned by the object
1499         end_idx += 1;
1500       }
1501 
1502       // Set the bits in the card BM for the cards spanned by this object.
1503       _cm->set_card_bitmap_range(_card_bm, start_idx, end_idx, true /* is_par */);
1504 
1505       // Add the size of this object to the number of marked bytes.
1506       marked_bytes += (size_t)obj_sz * HeapWordSize;
1507 
1508       // Find the next marked object after this one.
1509       start = _bm->getNextMarkedWordAddress(obj_end, ntams);
1510     }
1511 
1512     // Mark the allocated-since-marking portion...
1513     HeapWord* top = hr->top();
1514     if (ntams < top) {
1515       BitMap::idx_t start_idx = _cm->card_bitmap_index_for(ntams);
1516       BitMap::idx_t end_idx = _cm->card_bitmap_index_for(top);
1517 
1518       // Note: if we're looking at the last region in heap - top
1519       // could be actually just beyond the end of the heap; end_idx
1520       // will then correspond to a (non-existent) card that is also
1521       // just beyond the heap.
1522       if (_g1h->is_in_g1_reserved(top) && !_ct_bs->is_card_aligned(top)) {
1523         // end of object is not card aligned - increment to cover
1524         // all the cards spanned by the object
1525         end_idx += 1;
1526       }
1527       _cm->set_card_bitmap_range(_card_bm, start_idx, end_idx, true /* is_par */);
1528 
1529       // This definitely means the region has live objects.
1530       set_bit_for_region(hr);
1531     }
1532 
1533     // Update the live region bitmap.
1534     if (marked_bytes > 0) {
1535       set_bit_for_region(hr);
1536     }
1537 
1538     // Set the marked bytes for the current region so that
1539     // it can be queried by a calling verification routine
1540     _region_marked_bytes = marked_bytes;
1541 
1542     return false;
1543   }
1544 
1545   size_t region_marked_bytes() const { return _region_marked_bytes; }
1546 };
1547 
1548 // Heap region closure used for verifying the counting data
1549 // that was accumulated concurrently and aggregated during
1550 // the remark pause. This closure is applied to the heap
1551 // regions during the STW cleanup pause.
1552 
1553 class VerifyLiveObjectDataHRClosure: public HeapRegionClosure {
1554   G1CollectedHeap* _g1h;
1555   ConcurrentMark* _cm;
1556   CalcLiveObjectsClosure _calc_cl;
1557   BitMap* _region_bm;   // Region BM to be verified
1558   BitMap* _card_bm;     // Card BM to be verified
1559   bool _verbose;        // verbose output?
1560 
1561   BitMap* _exp_region_bm; // Expected Region BM values
1562   BitMap* _exp_card_bm;   // Expected card BM values
1563 
1564   int _failures;
1565 
1566 public:
1567   VerifyLiveObjectDataHRClosure(G1CollectedHeap* g1h,
1568                                 BitMap* region_bm,
1569                                 BitMap* card_bm,
1570                                 BitMap* exp_region_bm,
1571                                 BitMap* exp_card_bm,
1572                                 bool verbose) :
1573     _g1h(g1h), _cm(g1h->concurrent_mark()),
1574     _calc_cl(_cm->nextMarkBitMap(), g1h, exp_region_bm, exp_card_bm),
1575     _region_bm(region_bm), _card_bm(card_bm), _verbose(verbose),
1576     _exp_region_bm(exp_region_bm), _exp_card_bm(exp_card_bm),
1577     _failures(0) { }
1578 
1579   int failures() const { return _failures; }
1580 
1581   bool doHeapRegion(HeapRegion* hr) {
1582     if (hr->is_continues_humongous()) {
1583       // We will ignore these here and process them when their
1584       // associated "starts humongous" region is processed (see
1585       // set_bit_for_heap_region()). Note that we cannot rely on their
1586       // associated "starts humongous" region to have their bit set to
1587       // 1 since, due to the region chunking in the parallel region
1588       // iteration, a "continues humongous" region might be visited
1589       // before its associated "starts humongous".
1590       return false;
1591     }
1592 
1593     int failures = 0;
1594 
1595     // Call the CalcLiveObjectsClosure to walk the marking bitmap for
1596     // this region and set the corresponding bits in the expected region
1597     // and card bitmaps.
1598     bool res = _calc_cl.doHeapRegion(hr);
1599     assert(res == false, "should be continuing");
1600 
1601     MutexLockerEx x((_verbose ? ParGCRareEvent_lock : NULL),
1602                     Mutex::_no_safepoint_check_flag);
1603 
1604     // Verify the marked bytes for this region.
1605     size_t exp_marked_bytes = _calc_cl.region_marked_bytes();
1606     size_t act_marked_bytes = hr->next_marked_bytes();
1607 
1608     // We're not OK if expected marked bytes > actual marked bytes. It means
1609     // we have missed accounting some objects during the actual marking.
1610     if (exp_marked_bytes > act_marked_bytes) {
1611       if (_verbose) {
1612         gclog_or_tty->print_cr("Region %u: marked bytes mismatch: "
1613                                "expected: " SIZE_FORMAT ", actual: " SIZE_FORMAT,
1614                                hr->hrm_index(), exp_marked_bytes, act_marked_bytes);
1615       }
1616       failures += 1;
1617     }
1618 
1619     // Verify the bit, for this region, in the actual and expected
1620     // (which was just calculated) region bit maps.
1621     // We're not OK if the bit in the calculated expected region
1622     // bitmap is set and the bit in the actual region bitmap is not.
1623     BitMap::idx_t index = (BitMap::idx_t) hr->hrm_index();
1624 
1625     bool expected = _exp_region_bm->at(index);
1626     bool actual = _region_bm->at(index);
1627     if (expected && !actual) {
1628       if (_verbose) {
1629         gclog_or_tty->print_cr("Region %u: region bitmap mismatch: "
1630                                "expected: %s, actual: %s",
1631                                hr->hrm_index(),
1632                                BOOL_TO_STR(expected), BOOL_TO_STR(actual));
1633       }
1634       failures += 1;
1635     }
1636 
1637     // Verify that the card bit maps for the cards spanned by the current
1638     // region match. We have an error if we have a set bit in the expected
1639     // bit map and the corresponding bit in the actual bitmap is not set.
1640 
1641     BitMap::idx_t start_idx = _cm->card_bitmap_index_for(hr->bottom());
1642     BitMap::idx_t end_idx = _cm->card_bitmap_index_for(hr->top());
1643 
1644     for (BitMap::idx_t i = start_idx; i < end_idx; i+=1) {
1645       expected = _exp_card_bm->at(i);
1646       actual = _card_bm->at(i);
1647 
1648       if (expected && !actual) {
1649         if (_verbose) {
1650           gclog_or_tty->print_cr("Region %u: card bitmap mismatch at " SIZE_FORMAT ": "
1651                                  "expected: %s, actual: %s",
1652                                  hr->hrm_index(), i,
1653                                  BOOL_TO_STR(expected), BOOL_TO_STR(actual));
1654         }
1655         failures += 1;
1656       }
1657     }
1658 
1659     if (failures > 0 && _verbose)  {
1660       gclog_or_tty->print_cr("Region " HR_FORMAT ", ntams: " PTR_FORMAT ", "
1661                              "marked_bytes: calc/actual " SIZE_FORMAT "/" SIZE_FORMAT,
1662                              HR_FORMAT_PARAMS(hr), p2i(hr->next_top_at_mark_start()),
1663                              _calc_cl.region_marked_bytes(), hr->next_marked_bytes());
1664     }
1665 
1666     _failures += failures;
1667 
1668     // We could stop iteration over the heap when we
1669     // find the first violating region by returning true.
1670     return false;
1671   }
1672 };
1673 
1674 class G1ParVerifyFinalCountTask: public AbstractGangTask {
1675 protected:
1676   G1CollectedHeap* _g1h;
1677   ConcurrentMark* _cm;
1678   BitMap* _actual_region_bm;
1679   BitMap* _actual_card_bm;
1680 
1681   uint    _n_workers;
1682 
1683   BitMap* _expected_region_bm;
1684   BitMap* _expected_card_bm;
1685 
1686   int  _failures;
1687   bool _verbose;
1688 
1689   HeapRegionClaimer _hrclaimer;
1690 
1691 public:
1692   G1ParVerifyFinalCountTask(G1CollectedHeap* g1h,
1693                             BitMap* region_bm, BitMap* card_bm,
1694                             BitMap* expected_region_bm, BitMap* expected_card_bm)
1695     : AbstractGangTask("G1 verify final counting"),
1696       _g1h(g1h), _cm(_g1h->concurrent_mark()),
1697       _actual_region_bm(region_bm), _actual_card_bm(card_bm),
1698       _expected_region_bm(expected_region_bm), _expected_card_bm(expected_card_bm),
1699       _failures(0), _verbose(false),
1700       _n_workers(_g1h->workers()->active_workers()), _hrclaimer(_n_workers) {
1701     assert(VerifyDuringGC, "don't call this otherwise");
1702     assert(_expected_card_bm->size() == _actual_card_bm->size(), "sanity");
1703     assert(_expected_region_bm->size() == _actual_region_bm->size(), "sanity");
1704 
1705     _verbose = _cm->verbose_medium();
1706   }
1707 
1708   void work(uint worker_id) {
1709     assert(worker_id < _n_workers, "invariant");
1710 
1711     VerifyLiveObjectDataHRClosure verify_cl(_g1h,
1712                                             _actual_region_bm, _actual_card_bm,
1713                                             _expected_region_bm,
1714                                             _expected_card_bm,
1715                                             _verbose);
1716 
1717     if (G1CollectedHeap::use_parallel_gc_threads()) {
1718       _g1h->heap_region_par_iterate(&verify_cl, worker_id, &_hrclaimer);
1719     } else {
1720       _g1h->heap_region_iterate(&verify_cl);
1721     }
1722 
1723     Atomic::add(verify_cl.failures(), &_failures);
1724   }
1725 
1726   int failures() const { return _failures; }
1727 };
1728 
1729 // Closure that finalizes the liveness counting data.
1730 // Used during the cleanup pause.
1731 // Sets the bits corresponding to the interval [NTAMS, top]
1732 // (which contains the implicitly live objects) in the
1733 // card liveness bitmap. Also sets the bit for each region,
1734 // containing live data, in the region liveness bitmap.
1735 
1736 class FinalCountDataUpdateClosure: public CMCountDataClosureBase {
1737  public:
1738   FinalCountDataUpdateClosure(G1CollectedHeap* g1h,
1739                               BitMap* region_bm,
1740                               BitMap* card_bm) :
1741     CMCountDataClosureBase(g1h, region_bm, card_bm) { }
1742 
1743   bool doHeapRegion(HeapRegion* hr) {
1744 
1745     if (hr->is_continues_humongous()) {
1746       // We will ignore these here and process them when their
1747       // associated "starts humongous" region is processed (see
1748       // set_bit_for_heap_region()). Note that we cannot rely on their
1749       // associated "starts humongous" region to have their bit set to
1750       // 1 since, due to the region chunking in the parallel region
1751       // iteration, a "continues humongous" region might be visited
1752       // before its associated "starts humongous".
1753       return false;
1754     }
1755 
1756     HeapWord* ntams = hr->next_top_at_mark_start();
1757     HeapWord* top   = hr->top();
1758 
1759     assert(hr->bottom() <= ntams && ntams <= hr->end(), "Preconditions.");
1760 
1761     // Mark the allocated-since-marking portion...
1762     if (ntams < top) {
1763       // This definitely means the region has live objects.
1764       set_bit_for_region(hr);
1765 
1766       // Now set the bits in the card bitmap for [ntams, top)
1767       BitMap::idx_t start_idx = _cm->card_bitmap_index_for(ntams);
1768       BitMap::idx_t end_idx = _cm->card_bitmap_index_for(top);
1769 
1770       // Note: if we're looking at the last region in heap - top
1771       // could be actually just beyond the end of the heap; end_idx
1772       // will then correspond to a (non-existent) card that is also
1773       // just beyond the heap.
1774       if (_g1h->is_in_g1_reserved(top) && !_ct_bs->is_card_aligned(top)) {
1775         // end of object is not card aligned - increment to cover
1776         // all the cards spanned by the object
1777         end_idx += 1;
1778       }
1779 
1780       assert(end_idx <= _card_bm->size(),
1781              err_msg("oob: end_idx=  "SIZE_FORMAT", bitmap size= "SIZE_FORMAT,
1782                      end_idx, _card_bm->size()));
1783       assert(start_idx < _card_bm->size(),
1784              err_msg("oob: start_idx=  "SIZE_FORMAT", bitmap size= "SIZE_FORMAT,
1785                      start_idx, _card_bm->size()));
1786 
1787       _cm->set_card_bitmap_range(_card_bm, start_idx, end_idx, true /* is_par */);
1788     }
1789 
1790     // Set the bit for the region if it contains live data
1791     if (hr->next_marked_bytes() > 0) {
1792       set_bit_for_region(hr);
1793     }
1794 
1795     return false;
1796   }
1797 };
1798 
1799 class G1ParFinalCountTask: public AbstractGangTask {
1800 protected:
1801   G1CollectedHeap* _g1h;
1802   ConcurrentMark* _cm;
1803   BitMap* _actual_region_bm;
1804   BitMap* _actual_card_bm;
1805 
1806   uint    _n_workers;
1807   HeapRegionClaimer _hrclaimer;
1808 
1809 public:
1810   G1ParFinalCountTask(G1CollectedHeap* g1h, BitMap* region_bm, BitMap* card_bm)
1811     : AbstractGangTask("G1 final counting"),
1812       _g1h(g1h), _cm(_g1h->concurrent_mark()),
1813       _actual_region_bm(region_bm), _actual_card_bm(card_bm),
1814       _n_workers(_g1h->workers()->active_workers()), _hrclaimer(_n_workers) {
1815   }
1816 
1817   void work(uint worker_id) {
1818     assert(worker_id < _n_workers, "invariant");
1819 
1820     FinalCountDataUpdateClosure final_update_cl(_g1h,
1821                                                 _actual_region_bm,
1822                                                 _actual_card_bm);
1823 
1824     if (G1CollectedHeap::use_parallel_gc_threads()) {
1825       _g1h->heap_region_par_iterate(&final_update_cl, worker_id, &_hrclaimer);
1826     } else {
1827       _g1h->heap_region_iterate(&final_update_cl);
1828     }
1829   }
1830 };
1831 
1832 class G1ParNoteEndTask;
1833 
1834 class G1NoteEndOfConcMarkClosure : public HeapRegionClosure {
1835   G1CollectedHeap* _g1;
1836   size_t _max_live_bytes;
1837   uint _regions_claimed;
1838   size_t _freed_bytes;
1839   FreeRegionList* _local_cleanup_list;
1840   HeapRegionSetCount _old_regions_removed;
1841   HeapRegionSetCount _humongous_regions_removed;
1842   HRRSCleanupTask* _hrrs_cleanup_task;
1843   double _claimed_region_time;
1844   double _max_region_time;
1845 
1846 public:
1847   G1NoteEndOfConcMarkClosure(G1CollectedHeap* g1,
1848                              FreeRegionList* local_cleanup_list,
1849                              HRRSCleanupTask* hrrs_cleanup_task) :
1850     _g1(g1),
1851     _max_live_bytes(0), _regions_claimed(0),
1852     _freed_bytes(0),
1853     _claimed_region_time(0.0), _max_region_time(0.0),
1854     _local_cleanup_list(local_cleanup_list),
1855     _old_regions_removed(),
1856     _humongous_regions_removed(),
1857     _hrrs_cleanup_task(hrrs_cleanup_task) { }
1858 
1859   size_t freed_bytes() { return _freed_bytes; }
1860   const HeapRegionSetCount& old_regions_removed() { return _old_regions_removed; }
1861   const HeapRegionSetCount& humongous_regions_removed() { return _humongous_regions_removed; }
1862 
1863   bool doHeapRegion(HeapRegion *hr) {
1864     if (hr->is_continues_humongous()) {
1865       return false;
1866     }
1867     // We use a claim value of zero here because all regions
1868     // were claimed with value 1 in the FinalCount task.
1869     _g1->reset_gc_time_stamps(hr);
1870     double start = os::elapsedTime();
1871     _regions_claimed++;
1872     hr->note_end_of_marking();
1873     _max_live_bytes += hr->max_live_bytes();
1874 
1875     if (hr->used() > 0 && hr->max_live_bytes() == 0 && !hr->is_young()) {
1876       _freed_bytes += hr->used();
1877       hr->set_containing_set(NULL);
1878       if (hr->is_humongous()) {
1879         assert(hr->is_starts_humongous(), "we should only see starts humongous");
1880         _humongous_regions_removed.increment(1u, hr->capacity());
1881         _g1->free_humongous_region(hr, _local_cleanup_list, true);
1882       } else {
1883         _old_regions_removed.increment(1u, hr->capacity());
1884         _g1->free_region(hr, _local_cleanup_list, true);
1885       }
1886     } else {
1887       hr->rem_set()->do_cleanup_work(_hrrs_cleanup_task);
1888     }
1889 
1890     double region_time = (os::elapsedTime() - start);
1891     _claimed_region_time += region_time;
1892     if (region_time > _max_region_time) {
1893       _max_region_time = region_time;
1894     }
1895     return false;
1896   }
1897 
1898   size_t max_live_bytes() { return _max_live_bytes; }
1899   uint regions_claimed() { return _regions_claimed; }
1900   double claimed_region_time_sec() { return _claimed_region_time; }
1901   double max_region_time_sec() { return _max_region_time; }
1902 };
1903 
1904 class G1ParNoteEndTask: public AbstractGangTask {
1905   friend class G1NoteEndOfConcMarkClosure;
1906 
1907 protected:
1908   G1CollectedHeap* _g1h;
1909   size_t _max_live_bytes;
1910   size_t _freed_bytes;
1911   FreeRegionList* _cleanup_list;
1912   HeapRegionClaimer _hrclaimer;
1913 
1914 public:
1915   G1ParNoteEndTask(G1CollectedHeap* g1h, FreeRegionList* cleanup_list, uint n_workers) :
1916       AbstractGangTask("G1 note end"), _g1h(g1h), _max_live_bytes(0), _freed_bytes(0), _cleanup_list(cleanup_list), _hrclaimer(n_workers) {
1917   }
1918 
1919   void work(uint worker_id) {
1920     double start = os::elapsedTime();
1921     FreeRegionList local_cleanup_list("Local Cleanup List");
1922     HRRSCleanupTask hrrs_cleanup_task;
1923     G1NoteEndOfConcMarkClosure g1_note_end(_g1h, &local_cleanup_list,
1924                                            &hrrs_cleanup_task);
1925     if (G1CollectedHeap::use_parallel_gc_threads()) {
1926       _g1h->heap_region_par_iterate(&g1_note_end, worker_id, &_hrclaimer);
1927     } else {
1928       _g1h->heap_region_iterate(&g1_note_end);
1929     }
1930     assert(g1_note_end.complete(), "Shouldn't have yielded!");
1931 
1932     // Now update the lists
1933     _g1h->remove_from_old_sets(g1_note_end.old_regions_removed(), g1_note_end.humongous_regions_removed());
1934     {
1935       MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
1936       _g1h->decrement_summary_bytes(g1_note_end.freed_bytes());
1937       _max_live_bytes += g1_note_end.max_live_bytes();
1938       _freed_bytes += g1_note_end.freed_bytes();
1939 
1940       // If we iterate over the global cleanup list at the end of
1941       // cleanup to do this printing we will not guarantee to only
1942       // generate output for the newly-reclaimed regions (the list
1943       // might not be empty at the beginning of cleanup; we might
1944       // still be working on its previous contents). So we do the
1945       // printing here, before we append the new regions to the global
1946       // cleanup list.
1947 
1948       G1HRPrinter* hr_printer = _g1h->hr_printer();
1949       if (hr_printer->is_active()) {
1950         FreeRegionListIterator iter(&local_cleanup_list);
1951         while (iter.more_available()) {
1952           HeapRegion* hr = iter.get_next();
1953           hr_printer->cleanup(hr);
1954         }
1955       }
1956 
1957       _cleanup_list->add_ordered(&local_cleanup_list);
1958       assert(local_cleanup_list.is_empty(), "post-condition");
1959 
1960       HeapRegionRemSet::finish_cleanup_task(&hrrs_cleanup_task);
1961     }
1962   }
1963   size_t max_live_bytes() { return _max_live_bytes; }
1964   size_t freed_bytes() { return _freed_bytes; }
1965 };
1966 
1967 class G1ParScrubRemSetTask: public AbstractGangTask {
1968 protected:
1969   G1RemSet* _g1rs;
1970   BitMap* _region_bm;
1971   BitMap* _card_bm;
1972   HeapRegionClaimer _hrclaimer;
1973 
1974 public:
1975   G1ParScrubRemSetTask(G1CollectedHeap* g1h, BitMap* region_bm, BitMap* card_bm, uint n_workers) :
1976       AbstractGangTask("G1 ScrubRS"), _g1rs(g1h->g1_rem_set()), _region_bm(region_bm), _card_bm(card_bm), _hrclaimer(n_workers) {
1977   }
1978 
1979   void work(uint worker_id) {
1980     if (G1CollectedHeap::use_parallel_gc_threads()) {
1981       _g1rs->scrub_par(_region_bm, _card_bm, worker_id, &_hrclaimer);
1982     } else {
1983       _g1rs->scrub(_region_bm, _card_bm);
1984     }
1985   }
1986 
1987 };
1988 
1989 void ConcurrentMark::cleanup() {
1990   // world is stopped at this checkpoint
1991   assert(SafepointSynchronize::is_at_safepoint(),
1992          "world should be stopped");
1993   G1CollectedHeap* g1h = G1CollectedHeap::heap();
1994 
1995   // If a full collection has happened, we shouldn't do this.
1996   if (has_aborted()) {
1997     g1h->set_marking_complete(); // So bitmap clearing isn't confused
1998     return;
1999   }
2000 
2001   g1h->verify_region_sets_optional();
2002 
2003   if (VerifyDuringGC) {
2004     HandleMark hm;  // handle scope
2005     Universe::heap()->prepare_for_verify();
2006     Universe::verify(VerifyOption_G1UsePrevMarking,
2007                      " VerifyDuringGC:(before)");
2008   }
2009   g1h->check_bitmaps("Cleanup Start");
2010 
2011   G1CollectorPolicy* g1p = G1CollectedHeap::heap()->g1_policy();
2012   g1p->record_concurrent_mark_cleanup_start();
2013 
2014   double start = os::elapsedTime();
2015 
2016   HeapRegionRemSet::reset_for_cleanup_tasks();
2017 
2018   uint n_workers;
2019 
2020   // Do counting once more with the world stopped for good measure.
2021   G1ParFinalCountTask g1_par_count_task(g1h, &_region_bm, &_card_bm);
2022 
2023   if (G1CollectedHeap::use_parallel_gc_threads()) {
2024     g1h->set_par_threads();
2025     n_workers = g1h->n_par_threads();
2026     assert(g1h->n_par_threads() == n_workers,
2027            "Should not have been reset");
2028     g1h->workers()->run_task(&g1_par_count_task);
2029     // Done with the parallel phase so reset to 0.
2030     g1h->set_par_threads(0);
2031   } else {
2032     n_workers = 1;
2033     g1_par_count_task.work(0);
2034   }
2035 
2036   if (VerifyDuringGC) {
2037     // Verify that the counting data accumulated during marking matches
2038     // that calculated by walking the marking bitmap.
2039 
2040     // Bitmaps to hold expected values
2041     BitMap expected_region_bm(_region_bm.size(), true);
2042     BitMap expected_card_bm(_card_bm.size(), true);
2043 
2044     G1ParVerifyFinalCountTask g1_par_verify_task(g1h,
2045                                                  &_region_bm,
2046                                                  &_card_bm,
2047                                                  &expected_region_bm,
2048                                                  &expected_card_bm);
2049 
2050     if (G1CollectedHeap::use_parallel_gc_threads()) {
2051       g1h->set_par_threads((int)n_workers);
2052       g1h->workers()->run_task(&g1_par_verify_task);
2053       // Done with the parallel phase so reset to 0.
2054       g1h->set_par_threads(0);
2055     } else {
2056       g1_par_verify_task.work(0);
2057     }
2058 
2059     guarantee(g1_par_verify_task.failures() == 0, "Unexpected accounting failures");
2060   }
2061 
2062   size_t start_used_bytes = g1h->used();
2063   g1h->set_marking_complete();
2064 
2065   double count_end = os::elapsedTime();
2066   double this_final_counting_time = (count_end - start);
2067   _total_counting_time += this_final_counting_time;
2068 
2069   if (G1PrintRegionLivenessInfo) {
2070     G1PrintRegionLivenessInfoClosure cl(gclog_or_tty, "Post-Marking");
2071     _g1h->heap_region_iterate(&cl);
2072   }
2073 
2074   // Install newly created mark bitMap as "prev".
2075   swapMarkBitMaps();
2076 
2077   g1h->reset_gc_time_stamp();
2078 
2079   // Note end of marking in all heap regions.
2080   G1ParNoteEndTask g1_par_note_end_task(g1h, &_cleanup_list, n_workers);
2081   if (G1CollectedHeap::use_parallel_gc_threads()) {
2082     g1h->set_par_threads((int)n_workers);
2083     g1h->workers()->run_task(&g1_par_note_end_task);
2084     g1h->set_par_threads(0);
2085   } else {
2086     g1_par_note_end_task.work(0);
2087   }
2088   g1h->check_gc_time_stamps();
2089 
2090   if (!cleanup_list_is_empty()) {
2091     // The cleanup list is not empty, so we'll have to process it
2092     // concurrently. Notify anyone else that might be wanting free
2093     // regions that there will be more free regions coming soon.
2094     g1h->set_free_regions_coming();
2095   }
2096 
2097   // call below, since it affects the metric by which we sort the heap
2098   // regions.
2099   if (G1ScrubRemSets) {
2100     double rs_scrub_start = os::elapsedTime();
2101     G1ParScrubRemSetTask g1_par_scrub_rs_task(g1h, &_region_bm, &_card_bm, n_workers);
2102     if (G1CollectedHeap::use_parallel_gc_threads()) {
2103       g1h->set_par_threads((int)n_workers);
2104       g1h->workers()->run_task(&g1_par_scrub_rs_task);
2105       g1h->set_par_threads(0);
2106     } else {
2107       g1_par_scrub_rs_task.work(0);
2108     }
2109 
2110     double rs_scrub_end = os::elapsedTime();
2111     double this_rs_scrub_time = (rs_scrub_end - rs_scrub_start);
2112     _total_rs_scrub_time += this_rs_scrub_time;
2113   }
2114 
2115   // this will also free any regions totally full of garbage objects,
2116   // and sort the regions.
2117   g1h->g1_policy()->record_concurrent_mark_cleanup_end((int)n_workers);
2118 
2119   // Statistics.
2120   double end = os::elapsedTime();
2121   _cleanup_times.add((end - start) * 1000.0);
2122 
2123   if (G1Log::fine()) {
2124     g1h->print_size_transition(gclog_or_tty,
2125                                start_used_bytes,
2126                                g1h->used(),
2127                                g1h->capacity());
2128   }
2129 
2130   // Clean up will have freed any regions completely full of garbage.
2131   // Update the soft reference policy with the new heap occupancy.
2132   Universe::update_heap_info_at_gc();
2133 
2134   if (VerifyDuringGC) {
2135     HandleMark hm;  // handle scope
2136     Universe::heap()->prepare_for_verify();
2137     Universe::verify(VerifyOption_G1UsePrevMarking,
2138                      " VerifyDuringGC:(after)");
2139   }
2140 
2141   g1h->check_bitmaps("Cleanup End");
2142 
2143   g1h->verify_region_sets_optional();
2144 
2145   // We need to make this be a "collection" so any collection pause that
2146   // races with it goes around and waits for completeCleanup to finish.
2147   g1h->increment_total_collections();
2148 
2149   // Clean out dead classes and update Metaspace sizes.
2150   if (ClassUnloadingWithConcurrentMark) {
2151     ClassLoaderDataGraph::purge();
2152   }
2153   MetaspaceGC::compute_new_size();
2154 
2155   // We reclaimed old regions so we should calculate the sizes to make
2156   // sure we update the old gen/space data.
2157   g1h->g1mm()->update_sizes();
2158 
2159   g1h->trace_heap_after_concurrent_cycle();
2160 }
2161 
2162 void ConcurrentMark::completeCleanup() {
2163   if (has_aborted()) return;
2164 
2165   G1CollectedHeap* g1h = G1CollectedHeap::heap();
2166 
2167   _cleanup_list.verify_optional();
2168   FreeRegionList tmp_free_list("Tmp Free List");
2169 
2170   if (G1ConcRegionFreeingVerbose) {
2171     gclog_or_tty->print_cr("G1ConcRegionFreeing [complete cleanup] : "
2172                            "cleanup list has %u entries",
2173                            _cleanup_list.length());
2174   }
2175 
2176   // No one else should be accessing the _cleanup_list at this point,
2177   // so it is not necessary to take any locks
2178   while (!_cleanup_list.is_empty()) {
2179     HeapRegion* hr = _cleanup_list.remove_region(true /* from_head */);
2180     assert(hr != NULL, "Got NULL from a non-empty list");
2181     hr->par_clear();
2182     tmp_free_list.add_ordered(hr);
2183 
2184     // Instead of adding one region at a time to the secondary_free_list,
2185     // we accumulate them in the local list and move them a few at a
2186     // time. This also cuts down on the number of notify_all() calls
2187     // we do during this process. We'll also append the local list when
2188     // _cleanup_list is empty (which means we just removed the last
2189     // region from the _cleanup_list).
2190     if ((tmp_free_list.length() % G1SecondaryFreeListAppendLength == 0) ||
2191         _cleanup_list.is_empty()) {
2192       if (G1ConcRegionFreeingVerbose) {
2193         gclog_or_tty->print_cr("G1ConcRegionFreeing [complete cleanup] : "
2194                                "appending %u entries to the secondary_free_list, "
2195                                "cleanup list still has %u entries",
2196                                tmp_free_list.length(),
2197                                _cleanup_list.length());
2198       }
2199 
2200       {
2201         MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
2202         g1h->secondary_free_list_add(&tmp_free_list);
2203         SecondaryFreeList_lock->notify_all();
2204       }
2205 
2206       if (G1StressConcRegionFreeing) {
2207         for (uintx i = 0; i < G1StressConcRegionFreeingDelayMillis; ++i) {
2208           os::sleep(Thread::current(), (jlong) 1, false);
2209         }
2210       }
2211     }
2212   }
2213   assert(tmp_free_list.is_empty(), "post-condition");
2214 }
2215 
2216 // Supporting Object and Oop closures for reference discovery
2217 // and processing in during marking
2218 
2219 bool G1CMIsAliveClosure::do_object_b(oop obj) {
2220   HeapWord* addr = (HeapWord*)obj;
2221   return addr != NULL &&
2222          (!_g1->is_in_g1_reserved(addr) || !_g1->is_obj_ill(obj));
2223 }
2224 
2225 // 'Keep Alive' oop closure used by both serial parallel reference processing.
2226 // Uses the CMTask associated with a worker thread (for serial reference
2227 // processing the CMTask for worker 0 is used) to preserve (mark) and
2228 // trace referent objects.
2229 //
2230 // Using the CMTask and embedded local queues avoids having the worker
2231 // threads operating on the global mark stack. This reduces the risk
2232 // of overflowing the stack - which we would rather avoid at this late
2233 // state. Also using the tasks' local queues removes the potential
2234 // of the workers interfering with each other that could occur if
2235 // operating on the global stack.
2236 
2237 class G1CMKeepAliveAndDrainClosure: public OopClosure {
2238   ConcurrentMark* _cm;
2239   CMTask*         _task;
2240   int             _ref_counter_limit;
2241   int             _ref_counter;
2242   bool            _is_serial;
2243  public:
2244   G1CMKeepAliveAndDrainClosure(ConcurrentMark* cm, CMTask* task, bool is_serial) :
2245     _cm(cm), _task(task), _is_serial(is_serial),
2246     _ref_counter_limit(G1RefProcDrainInterval) {
2247     assert(_ref_counter_limit > 0, "sanity");
2248     assert(!_is_serial || _task->worker_id() == 0, "only task 0 for serial code");
2249     _ref_counter = _ref_counter_limit;
2250   }
2251 
2252   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
2253   virtual void do_oop(      oop* p) { do_oop_work(p); }
2254 
2255   template <class T> void do_oop_work(T* p) {
2256     if (!_cm->has_overflown()) {
2257       oop obj = oopDesc::load_decode_heap_oop(p);
2258       if (_cm->verbose_high()) {
2259         gclog_or_tty->print_cr("\t[%u] we're looking at location "
2260                                "*"PTR_FORMAT" = "PTR_FORMAT,
2261                                _task->worker_id(), p2i(p), p2i((void*) obj));
2262       }
2263 
2264       _task->deal_with_reference(obj);
2265       _ref_counter--;
2266 
2267       if (_ref_counter == 0) {
2268         // We have dealt with _ref_counter_limit references, pushing them
2269         // and objects reachable from them on to the local stack (and
2270         // possibly the global stack). Call CMTask::do_marking_step() to
2271         // process these entries.
2272         //
2273         // We call CMTask::do_marking_step() in a loop, which we'll exit if
2274         // there's nothing more to do (i.e. we're done with the entries that
2275         // were pushed as a result of the CMTask::deal_with_reference() calls
2276         // above) or we overflow.
2277         //
2278         // Note: CMTask::do_marking_step() can set the CMTask::has_aborted()
2279         // flag while there may still be some work to do. (See the comment at
2280         // the beginning of CMTask::do_marking_step() for those conditions -
2281         // one of which is reaching the specified time target.) It is only
2282         // when CMTask::do_marking_step() returns without setting the
2283         // has_aborted() flag that the marking step has completed.
2284         do {
2285           double mark_step_duration_ms = G1ConcMarkStepDurationMillis;
2286           _task->do_marking_step(mark_step_duration_ms,
2287                                  false      /* do_termination */,
2288                                  _is_serial);
2289         } while (_task->has_aborted() && !_cm->has_overflown());
2290         _ref_counter = _ref_counter_limit;
2291       }
2292     } else {
2293       if (_cm->verbose_high()) {
2294          gclog_or_tty->print_cr("\t[%u] CM Overflow", _task->worker_id());
2295       }
2296     }
2297   }
2298 };
2299 
2300 // 'Drain' oop closure used by both serial and parallel reference processing.
2301 // Uses the CMTask associated with a given worker thread (for serial
2302 // reference processing the CMtask for worker 0 is used). Calls the
2303 // do_marking_step routine, with an unbelievably large timeout value,
2304 // to drain the marking data structures of the remaining entries
2305 // added by the 'keep alive' oop closure above.
2306 
2307 class G1CMDrainMarkingStackClosure: public VoidClosure {
2308   ConcurrentMark* _cm;
2309   CMTask*         _task;
2310   bool            _is_serial;
2311  public:
2312   G1CMDrainMarkingStackClosure(ConcurrentMark* cm, CMTask* task, bool is_serial) :
2313     _cm(cm), _task(task), _is_serial(is_serial) {
2314     assert(!_is_serial || _task->worker_id() == 0, "only task 0 for serial code");
2315   }
2316 
2317   void do_void() {
2318     do {
2319       if (_cm->verbose_high()) {
2320         gclog_or_tty->print_cr("\t[%u] Drain: Calling do_marking_step - serial: %s",
2321                                _task->worker_id(), BOOL_TO_STR(_is_serial));
2322       }
2323 
2324       // We call CMTask::do_marking_step() to completely drain the local
2325       // and global marking stacks of entries pushed by the 'keep alive'
2326       // oop closure (an instance of G1CMKeepAliveAndDrainClosure above).
2327       //
2328       // CMTask::do_marking_step() is called in a loop, which we'll exit
2329       // if there's nothing more to do (i.e. we've completely drained the
2330       // entries that were pushed as a a result of applying the 'keep alive'
2331       // closure to the entries on the discovered ref lists) or we overflow
2332       // the global marking stack.
2333       //
2334       // Note: CMTask::do_marking_step() can set the CMTask::has_aborted()
2335       // flag while there may still be some work to do. (See the comment at
2336       // the beginning of CMTask::do_marking_step() for those conditions -
2337       // one of which is reaching the specified time target.) It is only
2338       // when CMTask::do_marking_step() returns without setting the
2339       // has_aborted() flag that the marking step has completed.
2340 
2341       _task->do_marking_step(1000000000.0 /* something very large */,
2342                              true         /* do_termination */,
2343                              _is_serial);
2344     } while (_task->has_aborted() && !_cm->has_overflown());
2345   }
2346 };
2347 
2348 // Implementation of AbstractRefProcTaskExecutor for parallel
2349 // reference processing at the end of G1 concurrent marking
2350 
2351 class G1CMRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
2352 private:
2353   G1CollectedHeap* _g1h;
2354   ConcurrentMark*  _cm;
2355   WorkGang*        _workers;
2356   int              _active_workers;
2357 
2358 public:
2359   G1CMRefProcTaskExecutor(G1CollectedHeap* g1h,
2360                         ConcurrentMark* cm,
2361                         WorkGang* workers,
2362                         int n_workers) :
2363     _g1h(g1h), _cm(cm),
2364     _workers(workers), _active_workers(n_workers) { }
2365 
2366   // Executes the given task using concurrent marking worker threads.
2367   virtual void execute(ProcessTask& task);
2368   virtual void execute(EnqueueTask& task);
2369 };
2370 
2371 class G1CMRefProcTaskProxy: public AbstractGangTask {
2372   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
2373   ProcessTask&     _proc_task;
2374   G1CollectedHeap* _g1h;
2375   ConcurrentMark*  _cm;
2376 
2377 public:
2378   G1CMRefProcTaskProxy(ProcessTask& proc_task,
2379                      G1CollectedHeap* g1h,
2380                      ConcurrentMark* cm) :
2381     AbstractGangTask("Process reference objects in parallel"),
2382     _proc_task(proc_task), _g1h(g1h), _cm(cm) {
2383     ReferenceProcessor* rp = _g1h->ref_processor_cm();
2384     assert(rp->processing_is_mt(), "shouldn't be here otherwise");
2385   }
2386 
2387   virtual void work(uint worker_id) {
2388     ResourceMark rm;
2389     HandleMark hm;
2390     CMTask* task = _cm->task(worker_id);
2391     G1CMIsAliveClosure g1_is_alive(_g1h);
2392     G1CMKeepAliveAndDrainClosure g1_par_keep_alive(_cm, task, false /* is_serial */);
2393     G1CMDrainMarkingStackClosure g1_par_drain(_cm, task, false /* is_serial */);
2394 
2395     _proc_task.work(worker_id, g1_is_alive, g1_par_keep_alive, g1_par_drain);
2396   }
2397 };
2398 
2399 void G1CMRefProcTaskExecutor::execute(ProcessTask& proc_task) {
2400   assert(_workers != NULL, "Need parallel worker threads.");
2401   assert(_g1h->ref_processor_cm()->processing_is_mt(), "processing is not MT");
2402 
2403   G1CMRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _cm);
2404 
2405   // We need to reset the concurrency level before each
2406   // proxy task execution, so that the termination protocol
2407   // and overflow handling in CMTask::do_marking_step() knows
2408   // how many workers to wait for.
2409   _cm->set_concurrency(_active_workers);
2410   _g1h->set_par_threads(_active_workers);
2411   _workers->run_task(&proc_task_proxy);
2412   _g1h->set_par_threads(0);
2413 }
2414 
2415 class G1CMRefEnqueueTaskProxy: public AbstractGangTask {
2416   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
2417   EnqueueTask& _enq_task;
2418 
2419 public:
2420   G1CMRefEnqueueTaskProxy(EnqueueTask& enq_task) :
2421     AbstractGangTask("Enqueue reference objects in parallel"),
2422     _enq_task(enq_task) { }
2423 
2424   virtual void work(uint worker_id) {
2425     _enq_task.work(worker_id);
2426   }
2427 };
2428 
2429 void G1CMRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
2430   assert(_workers != NULL, "Need parallel worker threads.");
2431   assert(_g1h->ref_processor_cm()->processing_is_mt(), "processing is not MT");
2432 
2433   G1CMRefEnqueueTaskProxy enq_task_proxy(enq_task);
2434 
2435   // Not strictly necessary but...
2436   //
2437   // We need to reset the concurrency level before each
2438   // proxy task execution, so that the termination protocol
2439   // and overflow handling in CMTask::do_marking_step() knows
2440   // how many workers to wait for.
2441   _cm->set_concurrency(_active_workers);
2442   _g1h->set_par_threads(_active_workers);
2443   _workers->run_task(&enq_task_proxy);
2444   _g1h->set_par_threads(0);
2445 }
2446 
2447 void ConcurrentMark::weakRefsWorkParallelPart(BoolObjectClosure* is_alive, bool purged_classes) {
2448   G1CollectedHeap::heap()->parallel_cleaning(is_alive, true, true, purged_classes);
2449 }
2450 
2451 void ConcurrentMark::weakRefsWork(bool clear_all_soft_refs) {
2452   if (has_overflown()) {
2453     // Skip processing the discovered references if we have
2454     // overflown the global marking stack. Reference objects
2455     // only get discovered once so it is OK to not
2456     // de-populate the discovered reference lists. We could have,
2457     // but the only benefit would be that, when marking restarts,
2458     // less reference objects are discovered.
2459     return;
2460   }
2461 
2462   ResourceMark rm;
2463   HandleMark   hm;
2464 
2465   G1CollectedHeap* g1h = G1CollectedHeap::heap();
2466 
2467   // Is alive closure.
2468   G1CMIsAliveClosure g1_is_alive(g1h);
2469 
2470   // Inner scope to exclude the cleaning of the string and symbol
2471   // tables from the displayed time.
2472   {
2473     G1CMTraceTime t("GC ref-proc", G1Log::finer());
2474 
2475     ReferenceProcessor* rp = g1h->ref_processor_cm();
2476 
2477     // See the comment in G1CollectedHeap::ref_processing_init()
2478     // about how reference processing currently works in G1.
2479 
2480     // Set the soft reference policy
2481     rp->setup_policy(clear_all_soft_refs);
2482     assert(_markStack.isEmpty(), "mark stack should be empty");
2483 
2484     // Instances of the 'Keep Alive' and 'Complete GC' closures used
2485     // in serial reference processing. Note these closures are also
2486     // used for serially processing (by the the current thread) the
2487     // JNI references during parallel reference processing.
2488     //
2489     // These closures do not need to synchronize with the worker
2490     // threads involved in parallel reference processing as these
2491     // instances are executed serially by the current thread (e.g.
2492     // reference processing is not multi-threaded and is thus
2493     // performed by the current thread instead of a gang worker).
2494     //
2495     // The gang tasks involved in parallel reference processing create
2496     // their own instances of these closures, which do their own
2497     // synchronization among themselves.
2498     G1CMKeepAliveAndDrainClosure g1_keep_alive(this, task(0), true /* is_serial */);
2499     G1CMDrainMarkingStackClosure g1_drain_mark_stack(this, task(0), true /* is_serial */);
2500 
2501     // We need at least one active thread. If reference processing
2502     // is not multi-threaded we use the current (VMThread) thread,
2503     // otherwise we use the work gang from the G1CollectedHeap and
2504     // we utilize all the worker threads we can.
2505     bool processing_is_mt = rp->processing_is_mt() && g1h->workers() != NULL;
2506     uint active_workers = (processing_is_mt ? g1h->workers()->active_workers() : 1U);
2507     active_workers = MAX2(MIN2(active_workers, _max_worker_id), 1U);
2508 
2509     // Parallel processing task executor.
2510     G1CMRefProcTaskExecutor par_task_executor(g1h, this,
2511                                               g1h->workers(), active_workers);
2512     AbstractRefProcTaskExecutor* executor = (processing_is_mt ? &par_task_executor : NULL);
2513 
2514     // Set the concurrency level. The phase was already set prior to
2515     // executing the remark task.
2516     set_concurrency(active_workers);
2517 
2518     // Set the degree of MT processing here.  If the discovery was done MT,
2519     // the number of threads involved during discovery could differ from
2520     // the number of active workers.  This is OK as long as the discovered
2521     // Reference lists are balanced (see balance_all_queues() and balance_queues()).
2522     rp->set_active_mt_degree(active_workers);
2523 
2524     // Process the weak references.
2525     const ReferenceProcessorStats& stats =
2526         rp->process_discovered_references(&g1_is_alive,
2527                                           &g1_keep_alive,
2528                                           &g1_drain_mark_stack,
2529                                           executor,
2530                                           g1h->gc_timer_cm(),
2531                                           concurrent_gc_id());
2532     g1h->gc_tracer_cm()->report_gc_reference_stats(stats);
2533 
2534     // The do_oop work routines of the keep_alive and drain_marking_stack
2535     // oop closures will set the has_overflown flag if we overflow the
2536     // global marking stack.
2537 
2538     assert(_markStack.overflow() || _markStack.isEmpty(),
2539             "mark stack should be empty (unless it overflowed)");
2540 
2541     if (_markStack.overflow()) {
2542       // This should have been done already when we tried to push an
2543       // entry on to the global mark stack. But let's do it again.
2544       set_has_overflown();
2545     }
2546 
2547     assert(rp->num_q() == active_workers, "why not");
2548 
2549     rp->enqueue_discovered_references(executor);
2550 
2551     rp->verify_no_references_recorded();
2552     assert(!rp->discovery_enabled(), "Post condition");
2553   }
2554 
2555   if (has_overflown()) {
2556     // We can not trust g1_is_alive if the marking stack overflowed
2557     return;
2558   }
2559 
2560   assert(_markStack.isEmpty(), "Marking should have completed");
2561 
2562   // Unload Klasses, String, Symbols, Code Cache, etc.
2563   {
2564     G1CMTraceTime trace("Unloading", G1Log::finer());
2565 
2566     if (ClassUnloadingWithConcurrentMark) {
2567       bool purged_classes;
2568 
2569       {
2570         G1CMTraceTime trace("System Dictionary Unloading", G1Log::finest());
2571         purged_classes = SystemDictionary::do_unloading(&g1_is_alive);
2572       }
2573 
2574       {
2575         G1CMTraceTime trace("Parallel Unloading", G1Log::finest());
2576         weakRefsWorkParallelPart(&g1_is_alive, purged_classes);
2577       }
2578     }
2579 
2580     if (G1StringDedup::is_enabled()) {
2581       G1CMTraceTime trace("String Deduplication Unlink", G1Log::finest());
2582       G1StringDedup::unlink(&g1_is_alive);
2583     }
2584   }
2585 }
2586 
2587 void ConcurrentMark::swapMarkBitMaps() {
2588   CMBitMapRO* temp = _prevMarkBitMap;
2589   _prevMarkBitMap  = (CMBitMapRO*)_nextMarkBitMap;
2590   _nextMarkBitMap  = (CMBitMap*)  temp;
2591 }
2592 
2593 class CMObjectClosure;
2594 
2595 // Closure for iterating over objects, currently only used for
2596 // processing SATB buffers.
2597 class CMObjectClosure : public ObjectClosure {
2598 private:
2599   CMTask* _task;
2600 
2601 public:
2602   void do_object(oop obj) {
2603     _task->deal_with_reference(obj);
2604   }
2605 
2606   CMObjectClosure(CMTask* task) : _task(task) { }
2607 };
2608 
2609 class G1RemarkThreadsClosure : public ThreadClosure {
2610   CMObjectClosure _cm_obj;
2611   G1CMOopClosure _cm_cl;
2612   MarkingCodeBlobClosure _code_cl;
2613   int _thread_parity;
2614   bool _is_par;
2615 
2616  public:
2617   G1RemarkThreadsClosure(G1CollectedHeap* g1h, CMTask* task, bool is_par) :
2618     _cm_obj(task), _cm_cl(g1h, g1h->concurrent_mark(), task), _code_cl(&_cm_cl, !CodeBlobToOopClosure::FixRelocations),
2619     _thread_parity(SharedHeap::heap()->strong_roots_parity()), _is_par(is_par) {}
2620 
2621   void do_thread(Thread* thread) {
2622     if (thread->is_Java_thread()) {
2623       if (thread->claim_oops_do(_is_par, _thread_parity)) {
2624         JavaThread* jt = (JavaThread*)thread;
2625 
2626         // In theory it should not be neccessary to explicitly walk the nmethods to find roots for concurrent marking
2627         // however the liveness of oops reachable from nmethods have very complex lifecycles:
2628         // * Alive if on the stack of an executing method
2629         // * Weakly reachable otherwise
2630         // Some objects reachable from nmethods, such as the class loader (or klass_holder) of the receiver should be
2631         // live by the SATB invariant but other oops recorded in nmethods may behave differently.
2632         jt->nmethods_do(&_code_cl);
2633 
2634         jt->satb_mark_queue().apply_closure_and_empty(&_cm_obj);
2635       }
2636     } else if (thread->is_VM_thread()) {
2637       if (thread->claim_oops_do(_is_par, _thread_parity)) {
2638         JavaThread::satb_mark_queue_set().shared_satb_queue()->apply_closure_and_empty(&_cm_obj);
2639       }
2640     }
2641   }
2642 };
2643 
2644 class CMRemarkTask: public AbstractGangTask {
2645 private:
2646   ConcurrentMark* _cm;
2647   bool            _is_serial;
2648 public:
2649   void work(uint worker_id) {
2650     // Since all available tasks are actually started, we should
2651     // only proceed if we're supposed to be active.
2652     if (worker_id < _cm->active_tasks()) {
2653       CMTask* task = _cm->task(worker_id);
2654       task->record_start_time();
2655       {
2656         ResourceMark rm;
2657         HandleMark hm;
2658 
2659         G1RemarkThreadsClosure threads_f(G1CollectedHeap::heap(), task, !_is_serial);
2660         Threads::threads_do(&threads_f);
2661       }
2662 
2663       do {
2664         task->do_marking_step(1000000000.0 /* something very large */,
2665                               true         /* do_termination       */,
2666                               _is_serial);
2667       } while (task->has_aborted() && !_cm->has_overflown());
2668       // If we overflow, then we do not want to restart. We instead
2669       // want to abort remark and do concurrent marking again.
2670       task->record_end_time();
2671     }
2672   }
2673 
2674   CMRemarkTask(ConcurrentMark* cm, int active_workers, bool is_serial) :
2675     AbstractGangTask("Par Remark"), _cm(cm), _is_serial(is_serial) {
2676     _cm->terminator()->reset_for_reuse(active_workers);
2677   }
2678 };
2679 
2680 void ConcurrentMark::checkpointRootsFinalWork() {
2681   ResourceMark rm;
2682   HandleMark   hm;
2683   G1CollectedHeap* g1h = G1CollectedHeap::heap();
2684 
2685   G1CMTraceTime trace("Finalize Marking", G1Log::finer());
2686 
2687   g1h->ensure_parsability(false);
2688 
2689   if (G1CollectedHeap::use_parallel_gc_threads()) {
2690     G1CollectedHeap::StrongRootsScope srs(g1h);
2691     // this is remark, so we'll use up all active threads
2692     uint active_workers = g1h->workers()->active_workers();
2693     if (active_workers == 0) {
2694       assert(active_workers > 0, "Should have been set earlier");
2695       active_workers = (uint) ParallelGCThreads;
2696       g1h->workers()->set_active_workers(active_workers);
2697     }
2698     set_concurrency_and_phase(active_workers, false /* concurrent */);
2699     // Leave _parallel_marking_threads at it's
2700     // value originally calculated in the ConcurrentMark
2701     // constructor and pass values of the active workers
2702     // through the gang in the task.
2703 
2704     CMRemarkTask remarkTask(this, active_workers, false /* is_serial */);
2705     // We will start all available threads, even if we decide that the
2706     // active_workers will be fewer. The extra ones will just bail out
2707     // immediately.
2708     g1h->set_par_threads(active_workers);
2709     g1h->workers()->run_task(&remarkTask);
2710     g1h->set_par_threads(0);
2711   } else {
2712     G1CollectedHeap::StrongRootsScope srs(g1h);
2713     uint active_workers = 1;
2714     set_concurrency_and_phase(active_workers, false /* concurrent */);
2715 
2716     // Note - if there's no work gang then the VMThread will be
2717     // the thread to execute the remark - serially. We have
2718     // to pass true for the is_serial parameter so that
2719     // CMTask::do_marking_step() doesn't enter the sync
2720     // barriers in the event of an overflow. Doing so will
2721     // cause an assert that the current thread is not a
2722     // concurrent GC thread.
2723     CMRemarkTask remarkTask(this, active_workers, true /* is_serial*/);
2724     remarkTask.work(0);
2725   }
2726   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
2727   guarantee(has_overflown() ||
2728             satb_mq_set.completed_buffers_num() == 0,
2729             err_msg("Invariant: has_overflown = %s, num buffers = %d",
2730                     BOOL_TO_STR(has_overflown()),
2731                     satb_mq_set.completed_buffers_num()));
2732 
2733   print_stats();
2734 }
2735 
2736 #ifndef PRODUCT
2737 
2738 class PrintReachableOopClosure: public OopClosure {
2739 private:
2740   G1CollectedHeap* _g1h;
2741   outputStream*    _out;
2742   VerifyOption     _vo;
2743   bool             _all;
2744 
2745 public:
2746   PrintReachableOopClosure(outputStream* out,
2747                            VerifyOption  vo,
2748                            bool          all) :
2749     _g1h(G1CollectedHeap::heap()),
2750     _out(out), _vo(vo), _all(all) { }
2751 
2752   void do_oop(narrowOop* p) { do_oop_work(p); }
2753   void do_oop(      oop* p) { do_oop_work(p); }
2754 
2755   template <class T> void do_oop_work(T* p) {
2756     oop         obj = oopDesc::load_decode_heap_oop(p);
2757     const char* str = NULL;
2758     const char* str2 = "";
2759 
2760     if (obj == NULL) {
2761       str = "";
2762     } else if (!_g1h->is_in_g1_reserved(obj)) {
2763       str = " O";
2764     } else {
2765       HeapRegion* hr  = _g1h->heap_region_containing(obj);
2766       bool over_tams = _g1h->allocated_since_marking(obj, hr, _vo);
2767       bool marked = _g1h->is_marked(obj, _vo);
2768 
2769       if (over_tams) {
2770         str = " >";
2771         if (marked) {
2772           str2 = " AND MARKED";
2773         }
2774       } else if (marked) {
2775         str = " M";
2776       } else {
2777         str = " NOT";
2778       }
2779     }
2780 
2781     _out->print_cr("  "PTR_FORMAT": "PTR_FORMAT"%s%s",
2782                    p2i(p), p2i((void*) obj), str, str2);
2783   }
2784 };
2785 
2786 class PrintReachableObjectClosure : public ObjectClosure {
2787 private:
2788   G1CollectedHeap* _g1h;
2789   outputStream*    _out;
2790   VerifyOption     _vo;
2791   bool             _all;
2792   HeapRegion*      _hr;
2793 
2794 public:
2795   PrintReachableObjectClosure(outputStream* out,
2796                               VerifyOption  vo,
2797                               bool          all,
2798                               HeapRegion*   hr) :
2799     _g1h(G1CollectedHeap::heap()),
2800     _out(out), _vo(vo), _all(all), _hr(hr) { }
2801 
2802   void do_object(oop o) {
2803     bool over_tams = _g1h->allocated_since_marking(o, _hr, _vo);
2804     bool marked = _g1h->is_marked(o, _vo);
2805     bool print_it = _all || over_tams || marked;
2806 
2807     if (print_it) {
2808       _out->print_cr(" "PTR_FORMAT"%s",
2809                      p2i((void *)o), (over_tams) ? " >" : (marked) ? " M" : "");
2810       PrintReachableOopClosure oopCl(_out, _vo, _all);
2811       o->oop_iterate_no_header(&oopCl);
2812     }
2813   }
2814 };
2815 
2816 class PrintReachableRegionClosure : public HeapRegionClosure {
2817 private:
2818   G1CollectedHeap* _g1h;
2819   outputStream*    _out;
2820   VerifyOption     _vo;
2821   bool             _all;
2822 
2823 public:
2824   bool doHeapRegion(HeapRegion* hr) {
2825     HeapWord* b = hr->bottom();
2826     HeapWord* e = hr->end();
2827     HeapWord* t = hr->top();
2828     HeapWord* p = _g1h->top_at_mark_start(hr, _vo);
2829     _out->print_cr("** ["PTR_FORMAT", "PTR_FORMAT"] top: "PTR_FORMAT" "
2830                    "TAMS: " PTR_FORMAT, p2i(b), p2i(e), p2i(t), p2i(p));
2831     _out->cr();
2832 
2833     HeapWord* from = b;
2834     HeapWord* to   = t;
2835 
2836     if (to > from) {
2837       _out->print_cr("Objects in [" PTR_FORMAT ", " PTR_FORMAT "]", p2i(from), p2i(to));
2838       _out->cr();
2839       PrintReachableObjectClosure ocl(_out, _vo, _all, hr);
2840       hr->object_iterate_mem_careful(MemRegion(from, to), &ocl);
2841       _out->cr();
2842     }
2843 
2844     return false;
2845   }
2846 
2847   PrintReachableRegionClosure(outputStream* out,
2848                               VerifyOption  vo,
2849                               bool          all) :
2850     _g1h(G1CollectedHeap::heap()), _out(out), _vo(vo), _all(all) { }
2851 };
2852 
2853 void ConcurrentMark::print_reachable(const char* str,
2854                                      VerifyOption vo,
2855                                      bool all) {
2856   gclog_or_tty->cr();
2857   gclog_or_tty->print_cr("== Doing heap dump... ");
2858 
2859   if (G1PrintReachableBaseFile == NULL) {
2860     gclog_or_tty->print_cr("  #### error: no base file defined");
2861     return;
2862   }
2863 
2864   if (strlen(G1PrintReachableBaseFile) + 1 + strlen(str) >
2865       (JVM_MAXPATHLEN - 1)) {
2866     gclog_or_tty->print_cr("  #### error: file name too long");
2867     return;
2868   }
2869 
2870   char file_name[JVM_MAXPATHLEN];
2871   sprintf(file_name, "%s.%s", G1PrintReachableBaseFile, str);
2872   gclog_or_tty->print_cr("  dumping to file %s", file_name);
2873 
2874   fileStream fout(file_name);
2875   if (!fout.is_open()) {
2876     gclog_or_tty->print_cr("  #### error: could not open file");
2877     return;
2878   }
2879 
2880   outputStream* out = &fout;
2881   out->print_cr("-- USING %s", _g1h->top_at_mark_start_str(vo));
2882   out->cr();
2883 
2884   out->print_cr("--- ITERATING OVER REGIONS");
2885   out->cr();
2886   PrintReachableRegionClosure rcl(out, vo, all);
2887   _g1h->heap_region_iterate(&rcl);
2888   out->cr();
2889 
2890   gclog_or_tty->print_cr("  done");
2891   gclog_or_tty->flush();
2892 }
2893 
2894 #endif // PRODUCT
2895 
2896 void ConcurrentMark::clearRangePrevBitmap(MemRegion mr) {
2897   // Note we are overriding the read-only view of the prev map here, via
2898   // the cast.
2899   ((CMBitMap*)_prevMarkBitMap)->clearRange(mr);
2900 }
2901 
2902 void ConcurrentMark::clearRangeNextBitmap(MemRegion mr) {
2903   _nextMarkBitMap->clearRange(mr);
2904 }
2905 
2906 HeapRegion*
2907 ConcurrentMark::claim_region(uint worker_id) {
2908   // "checkpoint" the finger
2909   HeapWord* finger = _finger;
2910 
2911   // _heap_end will not change underneath our feet; it only changes at
2912   // yield points.
2913   while (finger < _heap_end) {
2914     assert(_g1h->is_in_g1_reserved(finger), "invariant");
2915 
2916     // Note on how this code handles humongous regions. In the
2917     // normal case the finger will reach the start of a "starts
2918     // humongous" (SH) region. Its end will either be the end of the
2919     // last "continues humongous" (CH) region in the sequence, or the
2920     // standard end of the SH region (if the SH is the only region in
2921     // the sequence). That way claim_region() will skip over the CH
2922     // regions. However, there is a subtle race between a CM thread
2923     // executing this method and a mutator thread doing a humongous
2924     // object allocation. The two are not mutually exclusive as the CM
2925     // thread does not need to hold the Heap_lock when it gets
2926     // here. So there is a chance that claim_region() will come across
2927     // a free region that's in the progress of becoming a SH or a CH
2928     // region. In the former case, it will either
2929     //   a) Miss the update to the region's end, in which case it will
2930     //      visit every subsequent CH region, will find their bitmaps
2931     //      empty, and do nothing, or
2932     //   b) Will observe the update of the region's end (in which case
2933     //      it will skip the subsequent CH regions).
2934     // If it comes across a region that suddenly becomes CH, the
2935     // scenario will be similar to b). So, the race between
2936     // claim_region() and a humongous object allocation might force us
2937     // to do a bit of unnecessary work (due to some unnecessary bitmap
2938     // iterations) but it should not introduce and correctness issues.
2939     HeapRegion* curr_region = _g1h->heap_region_containing_raw(finger);
2940 
2941     // Above heap_region_containing_raw may return NULL as we always scan claim
2942     // until the end of the heap. In this case, just jump to the next region.
2943     HeapWord* end = curr_region != NULL ? curr_region->end() : finger + HeapRegion::GrainWords;
2944 
2945     // Is the gap between reading the finger and doing the CAS too long?
2946     HeapWord* res = (HeapWord*) Atomic::cmpxchg_ptr(end, &_finger, finger);
2947     if (res == finger && curr_region != NULL) {
2948       // we succeeded
2949       HeapWord*   bottom        = curr_region->bottom();
2950       HeapWord*   limit         = curr_region->next_top_at_mark_start();
2951 
2952       if (verbose_low()) {
2953         gclog_or_tty->print_cr("[%u] curr_region = "PTR_FORMAT" "
2954                                "["PTR_FORMAT", "PTR_FORMAT"), "
2955                                "limit = "PTR_FORMAT,
2956                                worker_id, p2i(curr_region), p2i(bottom), p2i(end), p2i(limit));
2957       }
2958 
2959       // notice that _finger == end cannot be guaranteed here since,
2960       // someone else might have moved the finger even further
2961       assert(_finger >= end, "the finger should have moved forward");
2962 
2963       if (verbose_low()) {
2964         gclog_or_tty->print_cr("[%u] we were successful with region = "
2965                                PTR_FORMAT, worker_id, p2i(curr_region));
2966       }
2967 
2968       if (limit > bottom) {
2969         if (verbose_low()) {
2970           gclog_or_tty->print_cr("[%u] region "PTR_FORMAT" is not empty, "
2971                                  "returning it ", worker_id, p2i(curr_region));
2972         }
2973         return curr_region;
2974       } else {
2975         assert(limit == bottom,
2976                "the region limit should be at bottom");
2977         if (verbose_low()) {
2978           gclog_or_tty->print_cr("[%u] region "PTR_FORMAT" is empty, "
2979                                  "returning NULL", worker_id, p2i(curr_region));
2980         }
2981         // we return NULL and the caller should try calling
2982         // claim_region() again.
2983         return NULL;
2984       }
2985     } else {
2986       assert(_finger > finger, "the finger should have moved forward");
2987       if (verbose_low()) {
2988         if (curr_region == NULL) {
2989           gclog_or_tty->print_cr("[%u] found uncommitted region, moving finger, "
2990                                  "global finger = "PTR_FORMAT", "
2991                                  "our finger = "PTR_FORMAT,
2992                                  worker_id, p2i(_finger), p2i(finger));
2993         } else {
2994           gclog_or_tty->print_cr("[%u] somebody else moved the finger, "
2995                                  "global finger = "PTR_FORMAT", "
2996                                  "our finger = "PTR_FORMAT,
2997                                  worker_id, p2i(_finger), p2i(finger));
2998         }
2999       }
3000 
3001       // read it again
3002       finger = _finger;
3003     }
3004   }
3005 
3006   return NULL;
3007 }
3008 
3009 #ifndef PRODUCT
3010 enum VerifyNoCSetOopsPhase {
3011   VerifyNoCSetOopsStack,
3012   VerifyNoCSetOopsQueues,
3013   VerifyNoCSetOopsSATBCompleted,
3014   VerifyNoCSetOopsSATBThread
3015 };
3016 
3017 class VerifyNoCSetOopsClosure : public OopClosure, public ObjectClosure  {
3018 private:
3019   G1CollectedHeap* _g1h;
3020   VerifyNoCSetOopsPhase _phase;
3021   int _info;
3022 
3023   const char* phase_str() {
3024     switch (_phase) {
3025     case VerifyNoCSetOopsStack:         return "Stack";
3026     case VerifyNoCSetOopsQueues:        return "Queue";
3027     case VerifyNoCSetOopsSATBCompleted: return "Completed SATB Buffers";
3028     case VerifyNoCSetOopsSATBThread:    return "Thread SATB Buffers";
3029     default:                            ShouldNotReachHere();
3030     }
3031     return NULL;
3032   }
3033 
3034   void do_object_work(oop obj) {
3035     guarantee(!_g1h->obj_in_cs(obj),
3036               err_msg("obj: "PTR_FORMAT" in CSet, phase: %s, info: %d",
3037                       p2i((void*) obj), phase_str(), _info));
3038   }
3039 
3040 public:
3041   VerifyNoCSetOopsClosure() : _g1h(G1CollectedHeap::heap()) { }
3042 
3043   void set_phase(VerifyNoCSetOopsPhase phase, int info = -1) {
3044     _phase = phase;
3045     _info = info;
3046   }
3047 
3048   virtual void do_oop(oop* p) {
3049     oop obj = oopDesc::load_decode_heap_oop(p);
3050     do_object_work(obj);
3051   }
3052 
3053   virtual void do_oop(narrowOop* p) {
3054     // We should not come across narrow oops while scanning marking
3055     // stacks and SATB buffers.
3056     ShouldNotReachHere();
3057   }
3058 
3059   virtual void do_object(oop obj) {
3060     do_object_work(obj);
3061   }
3062 };
3063 
3064 void ConcurrentMark::verify_no_cset_oops(bool verify_stacks,
3065                                          bool verify_enqueued_buffers,
3066                                          bool verify_thread_buffers,
3067                                          bool verify_fingers) {
3068   assert(SafepointSynchronize::is_at_safepoint(), "should be at a safepoint");
3069   if (!G1CollectedHeap::heap()->mark_in_progress()) {
3070     return;
3071   }
3072 
3073   VerifyNoCSetOopsClosure cl;
3074 
3075   if (verify_stacks) {
3076     // Verify entries on the global mark stack
3077     cl.set_phase(VerifyNoCSetOopsStack);
3078     _markStack.oops_do(&cl);
3079 
3080     // Verify entries on the task queues
3081     for (uint i = 0; i < _max_worker_id; i += 1) {
3082       cl.set_phase(VerifyNoCSetOopsQueues, i);
3083       CMTaskQueue* queue = _task_queues->queue(i);
3084       queue->oops_do(&cl);
3085     }
3086   }
3087 
3088   SATBMarkQueueSet& satb_qs = JavaThread::satb_mark_queue_set();
3089 
3090   // Verify entries on the enqueued SATB buffers
3091   if (verify_enqueued_buffers) {
3092     cl.set_phase(VerifyNoCSetOopsSATBCompleted);
3093     satb_qs.iterate_completed_buffers_read_only(&cl);
3094   }
3095 
3096   // Verify entries on the per-thread SATB buffers
3097   if (verify_thread_buffers) {
3098     cl.set_phase(VerifyNoCSetOopsSATBThread);
3099     satb_qs.iterate_thread_buffers_read_only(&cl);
3100   }
3101 
3102   if (verify_fingers) {
3103     // Verify the global finger
3104     HeapWord* global_finger = finger();
3105     if (global_finger != NULL && global_finger < _heap_end) {
3106       // The global finger always points to a heap region boundary. We
3107       // use heap_region_containing_raw() to get the containing region
3108       // given that the global finger could be pointing to a free region
3109       // which subsequently becomes continues humongous. If that
3110       // happens, heap_region_containing() will return the bottom of the
3111       // corresponding starts humongous region and the check below will
3112       // not hold any more.
3113       // Since we always iterate over all regions, we might get a NULL HeapRegion
3114       // here.
3115       HeapRegion* global_hr = _g1h->heap_region_containing_raw(global_finger);
3116       guarantee(global_hr == NULL || global_finger == global_hr->bottom(),
3117                 err_msg("global finger: "PTR_FORMAT" region: "HR_FORMAT,
3118                         p2i(global_finger), HR_FORMAT_PARAMS(global_hr)));
3119     }
3120 
3121     // Verify the task fingers
3122     assert(parallel_marking_threads() <= _max_worker_id, "sanity");
3123     for (int i = 0; i < (int) parallel_marking_threads(); i += 1) {
3124       CMTask* task = _tasks[i];
3125       HeapWord* task_finger = task->finger();
3126       if (task_finger != NULL && task_finger < _heap_end) {
3127         // See above note on the global finger verification.
3128         HeapRegion* task_hr = _g1h->heap_region_containing_raw(task_finger);
3129         guarantee(task_hr == NULL || task_finger == task_hr->bottom() ||
3130                   !task_hr->in_collection_set(),
3131                   err_msg("task finger: "PTR_FORMAT" region: "HR_FORMAT,
3132                           p2i(task_finger), HR_FORMAT_PARAMS(task_hr)));
3133       }
3134     }
3135   }
3136 }
3137 #endif // PRODUCT
3138 
3139 // Aggregate the counting data that was constructed concurrently
3140 // with marking.
3141 class AggregateCountDataHRClosure: public HeapRegionClosure {
3142   G1CollectedHeap* _g1h;
3143   ConcurrentMark* _cm;
3144   CardTableModRefBS* _ct_bs;
3145   BitMap* _cm_card_bm;
3146   uint _max_worker_id;
3147 
3148  public:
3149   AggregateCountDataHRClosure(G1CollectedHeap* g1h,
3150                               BitMap* cm_card_bm,
3151                               uint max_worker_id) :
3152     _g1h(g1h), _cm(g1h->concurrent_mark()),
3153     _ct_bs((CardTableModRefBS*) (g1h->barrier_set())),
3154     _cm_card_bm(cm_card_bm), _max_worker_id(max_worker_id) { }
3155 
3156   bool doHeapRegion(HeapRegion* hr) {
3157     if (hr->is_continues_humongous()) {
3158       // We will ignore these here and process them when their
3159       // associated "starts humongous" region is processed.
3160       // Note that we cannot rely on their associated
3161       // "starts humongous" region to have their bit set to 1
3162       // since, due to the region chunking in the parallel region
3163       // iteration, a "continues humongous" region might be visited
3164       // before its associated "starts humongous".
3165       return false;
3166     }
3167 
3168     HeapWord* start = hr->bottom();
3169     HeapWord* limit = hr->next_top_at_mark_start();
3170     HeapWord* end = hr->end();
3171 
3172     assert(start <= limit && limit <= hr->top() && hr->top() <= hr->end(),
3173            err_msg("Preconditions not met - "
3174                    "start: "PTR_FORMAT", limit: "PTR_FORMAT", "
3175                    "top: "PTR_FORMAT", end: "PTR_FORMAT,
3176                    p2i(start), p2i(limit), p2i(hr->top()), p2i(hr->end())));
3177 
3178     assert(hr->next_marked_bytes() == 0, "Precondition");
3179 
3180     if (start == limit) {
3181       // NTAMS of this region has not been set so nothing to do.
3182       return false;
3183     }
3184 
3185     // 'start' should be in the heap.
3186     assert(_g1h->is_in_g1_reserved(start) && _ct_bs->is_card_aligned(start), "sanity");
3187     // 'end' *may* be just beyond the end of the heap (if hr is the last region)
3188     assert(!_g1h->is_in_g1_reserved(end) || _ct_bs->is_card_aligned(end), "sanity");
3189 
3190     BitMap::idx_t start_idx = _cm->card_bitmap_index_for(start);
3191     BitMap::idx_t limit_idx = _cm->card_bitmap_index_for(limit);
3192     BitMap::idx_t end_idx = _cm->card_bitmap_index_for(end);
3193 
3194     // If ntams is not card aligned then we bump card bitmap index
3195     // for limit so that we get the all the cards spanned by
3196     // the object ending at ntams.
3197     // Note: if this is the last region in the heap then ntams
3198     // could be actually just beyond the end of the the heap;
3199     // limit_idx will then  correspond to a (non-existent) card
3200     // that is also outside the heap.
3201     if (_g1h->is_in_g1_reserved(limit) && !_ct_bs->is_card_aligned(limit)) {
3202       limit_idx += 1;
3203     }
3204 
3205     assert(limit_idx <= end_idx, "or else use atomics");
3206 
3207     // Aggregate the "stripe" in the count data associated with hr.
3208     uint hrm_index = hr->hrm_index();
3209     size_t marked_bytes = 0;
3210 
3211     for (uint i = 0; i < _max_worker_id; i += 1) {
3212       size_t* marked_bytes_array = _cm->count_marked_bytes_array_for(i);
3213       BitMap* task_card_bm = _cm->count_card_bitmap_for(i);
3214 
3215       // Fetch the marked_bytes in this region for task i and
3216       // add it to the running total for this region.
3217       marked_bytes += marked_bytes_array[hrm_index];
3218 
3219       // Now union the bitmaps[0,max_worker_id)[start_idx..limit_idx)
3220       // into the global card bitmap.
3221       BitMap::idx_t scan_idx = task_card_bm->get_next_one_offset(start_idx, limit_idx);
3222 
3223       while (scan_idx < limit_idx) {
3224         assert(task_card_bm->at(scan_idx) == true, "should be");
3225         _cm_card_bm->set_bit(scan_idx);
3226         assert(_cm_card_bm->at(scan_idx) == true, "should be");
3227 
3228         // BitMap::get_next_one_offset() can handle the case when
3229         // its left_offset parameter is greater than its right_offset
3230         // parameter. It does, however, have an early exit if
3231         // left_offset == right_offset. So let's limit the value
3232         // passed in for left offset here.
3233         BitMap::idx_t next_idx = MIN2(scan_idx + 1, limit_idx);
3234         scan_idx = task_card_bm->get_next_one_offset(next_idx, limit_idx);
3235       }
3236     }
3237 
3238     // Update the marked bytes for this region.
3239     hr->add_to_marked_bytes(marked_bytes);
3240 
3241     // Next heap region
3242     return false;
3243   }
3244 };
3245 
3246 class G1AggregateCountDataTask: public AbstractGangTask {
3247 protected:
3248   G1CollectedHeap* _g1h;
3249   ConcurrentMark* _cm;
3250   BitMap* _cm_card_bm;
3251   uint _max_worker_id;
3252   int _active_workers;
3253   HeapRegionClaimer _hrclaimer;
3254 
3255 public:
3256   G1AggregateCountDataTask(G1CollectedHeap* g1h,
3257                            ConcurrentMark* cm,
3258                            BitMap* cm_card_bm,
3259                            uint max_worker_id,
3260                            int n_workers) :
3261       AbstractGangTask("Count Aggregation"),
3262       _g1h(g1h), _cm(cm), _cm_card_bm(cm_card_bm),
3263       _max_worker_id(max_worker_id),
3264       _active_workers(n_workers),
3265       _hrclaimer(_active_workers) {
3266   }
3267 
3268   void work(uint worker_id) {
3269     AggregateCountDataHRClosure cl(_g1h, _cm_card_bm, _max_worker_id);
3270 
3271     if (G1CollectedHeap::use_parallel_gc_threads()) {
3272       _g1h->heap_region_par_iterate(&cl, worker_id, &_hrclaimer);
3273     } else {
3274       _g1h->heap_region_iterate(&cl);
3275     }
3276   }
3277 };
3278 
3279 
3280 void ConcurrentMark::aggregate_count_data() {
3281   int n_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
3282                         _g1h->workers()->active_workers() :
3283                         1);
3284 
3285   G1AggregateCountDataTask g1_par_agg_task(_g1h, this, &_card_bm,
3286                                            _max_worker_id, n_workers);
3287 
3288   if (G1CollectedHeap::use_parallel_gc_threads()) {
3289     _g1h->set_par_threads(n_workers);
3290     _g1h->workers()->run_task(&g1_par_agg_task);
3291     _g1h->set_par_threads(0);
3292   } else {
3293     g1_par_agg_task.work(0);
3294   }
3295   _g1h->allocation_context_stats().update_at_remark();
3296 }
3297 
3298 // Clear the per-worker arrays used to store the per-region counting data
3299 void ConcurrentMark::clear_all_count_data() {
3300   // Clear the global card bitmap - it will be filled during
3301   // liveness count aggregation (during remark) and the
3302   // final counting task.
3303   _card_bm.clear();
3304 
3305   // Clear the global region bitmap - it will be filled as part
3306   // of the final counting task.
3307   _region_bm.clear();
3308 
3309   uint max_regions = _g1h->max_regions();
3310   assert(_max_worker_id > 0, "uninitialized");
3311 
3312   for (uint i = 0; i < _max_worker_id; i += 1) {
3313     BitMap* task_card_bm = count_card_bitmap_for(i);
3314     size_t* marked_bytes_array = count_marked_bytes_array_for(i);
3315 
3316     assert(task_card_bm->size() == _card_bm.size(), "size mismatch");
3317     assert(marked_bytes_array != NULL, "uninitialized");
3318 
3319     memset(marked_bytes_array, 0, (size_t) max_regions * sizeof(size_t));
3320     task_card_bm->clear();
3321   }
3322 }
3323 
3324 void ConcurrentMark::print_stats() {
3325   if (verbose_stats()) {
3326     gclog_or_tty->print_cr("---------------------------------------------------------------------");
3327     for (size_t i = 0; i < _active_tasks; ++i) {
3328       _tasks[i]->print_stats();
3329       gclog_or_tty->print_cr("---------------------------------------------------------------------");
3330     }
3331   }
3332 }
3333 
3334 // abandon current marking iteration due to a Full GC
3335 void ConcurrentMark::abort() {
3336   // Clear all marks in the next bitmap for the next marking cycle. This will allow us to skip the next
3337   // concurrent bitmap clearing.
3338   _nextMarkBitMap->clearAll();
3339 
3340   // Note we cannot clear the previous marking bitmap here
3341   // since VerifyDuringGC verifies the objects marked during
3342   // a full GC against the previous bitmap.
3343 
3344   // Clear the liveness counting data
3345   clear_all_count_data();
3346   // Empty mark stack
3347   reset_marking_state();
3348   for (uint i = 0; i < _max_worker_id; ++i) {
3349     _tasks[i]->clear_region_fields();
3350   }
3351   _first_overflow_barrier_sync.abort();
3352   _second_overflow_barrier_sync.abort();
3353   const GCId& gc_id = _g1h->gc_tracer_cm()->gc_id();
3354   if (!gc_id.is_undefined()) {
3355     // We can do multiple full GCs before ConcurrentMarkThread::run() gets a chance
3356     // to detect that it was aborted. Only keep track of the first GC id that we aborted.
3357     _aborted_gc_id = gc_id;
3358    }
3359   _has_aborted = true;
3360 
3361   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
3362   satb_mq_set.abandon_partial_marking();
3363   // This can be called either during or outside marking, we'll read
3364   // the expected_active value from the SATB queue set.
3365   satb_mq_set.set_active_all_threads(
3366                                  false, /* new active value */
3367                                  satb_mq_set.is_active() /* expected_active */);
3368 
3369   _g1h->trace_heap_after_concurrent_cycle();
3370   _g1h->register_concurrent_cycle_end();
3371 }
3372 
3373 const GCId& ConcurrentMark::concurrent_gc_id() {
3374   if (has_aborted()) {
3375     return _aborted_gc_id;
3376   }
3377   return _g1h->gc_tracer_cm()->gc_id();
3378 }
3379 
3380 static void print_ms_time_info(const char* prefix, const char* name,
3381                                NumberSeq& ns) {
3382   gclog_or_tty->print_cr("%s%5d %12s: total time = %8.2f s (avg = %8.2f ms).",
3383                          prefix, ns.num(), name, ns.sum()/1000.0, ns.avg());
3384   if (ns.num() > 0) {
3385     gclog_or_tty->print_cr("%s         [std. dev = %8.2f ms, max = %8.2f ms]",
3386                            prefix, ns.sd(), ns.maximum());
3387   }
3388 }
3389 
3390 void ConcurrentMark::print_summary_info() {
3391   gclog_or_tty->print_cr(" Concurrent marking:");
3392   print_ms_time_info("  ", "init marks", _init_times);
3393   print_ms_time_info("  ", "remarks", _remark_times);
3394   {
3395     print_ms_time_info("     ", "final marks", _remark_mark_times);
3396     print_ms_time_info("     ", "weak refs", _remark_weak_ref_times);
3397 
3398   }
3399   print_ms_time_info("  ", "cleanups", _cleanup_times);
3400   gclog_or_tty->print_cr("    Final counting total time = %8.2f s (avg = %8.2f ms).",
3401                          _total_counting_time,
3402                          (_cleanup_times.num() > 0 ? _total_counting_time * 1000.0 /
3403                           (double)_cleanup_times.num()
3404                          : 0.0));
3405   if (G1ScrubRemSets) {
3406     gclog_or_tty->print_cr("    RS scrub total time = %8.2f s (avg = %8.2f ms).",
3407                            _total_rs_scrub_time,
3408                            (_cleanup_times.num() > 0 ? _total_rs_scrub_time * 1000.0 /
3409                             (double)_cleanup_times.num()
3410                            : 0.0));
3411   }
3412   gclog_or_tty->print_cr("  Total stop_world time = %8.2f s.",
3413                          (_init_times.sum() + _remark_times.sum() +
3414                           _cleanup_times.sum())/1000.0);
3415   gclog_or_tty->print_cr("  Total concurrent time = %8.2f s "
3416                 "(%8.2f s marking).",
3417                 cmThread()->vtime_accum(),
3418                 cmThread()->vtime_mark_accum());
3419 }
3420 
3421 void ConcurrentMark::print_worker_threads_on(outputStream* st) const {
3422   if (use_parallel_marking_threads()) {
3423     _parallel_workers->print_worker_threads_on(st);
3424   }
3425 }
3426 
3427 void ConcurrentMark::print_on_error(outputStream* st) const {
3428   st->print_cr("Marking Bits (Prev, Next): (CMBitMap*) " PTR_FORMAT ", (CMBitMap*) " PTR_FORMAT,
3429       p2i(_prevMarkBitMap), p2i(_nextMarkBitMap));
3430   _prevMarkBitMap->print_on_error(st, " Prev Bits: ");
3431   _nextMarkBitMap->print_on_error(st, " Next Bits: ");
3432 }
3433 
3434 // We take a break if someone is trying to stop the world.
3435 bool ConcurrentMark::do_yield_check(uint worker_id) {
3436   if (SuspendibleThreadSet::should_yield()) {
3437     if (worker_id == 0) {
3438       _g1h->g1_policy()->record_concurrent_pause();
3439     }
3440     SuspendibleThreadSet::yield();
3441     return true;
3442   } else {
3443     return false;
3444   }
3445 }
3446 
3447 #ifndef PRODUCT
3448 // for debugging purposes
3449 void ConcurrentMark::print_finger() {
3450   gclog_or_tty->print_cr("heap ["PTR_FORMAT", "PTR_FORMAT"), global finger = "PTR_FORMAT,
3451                          p2i(_heap_start), p2i(_heap_end), p2i(_finger));
3452   for (uint i = 0; i < _max_worker_id; ++i) {
3453     gclog_or_tty->print("   %u: " PTR_FORMAT, i, p2i(_tasks[i]->finger()));
3454   }
3455   gclog_or_tty->cr();
3456 }
3457 #endif
3458 
3459 void CMTask::scan_object(oop obj) {
3460   assert(_nextMarkBitMap->isMarked((HeapWord*) obj), "invariant");
3461 
3462   if (_cm->verbose_high()) {
3463     gclog_or_tty->print_cr("[%u] we're scanning object "PTR_FORMAT,
3464                            _worker_id, p2i((void*) obj));
3465   }
3466 
3467   size_t obj_size = obj->size();
3468   _words_scanned += obj_size;
3469 
3470   obj->oop_iterate(_cm_oop_closure);
3471   statsOnly( ++_objs_scanned );
3472   check_limits();
3473 }
3474 
3475 // Closure for iteration over bitmaps
3476 class CMBitMapClosure : public BitMapClosure {
3477 private:
3478   // the bitmap that is being iterated over
3479   CMBitMap*                   _nextMarkBitMap;
3480   ConcurrentMark*             _cm;
3481   CMTask*                     _task;
3482 
3483 public:
3484   CMBitMapClosure(CMTask *task, ConcurrentMark* cm, CMBitMap* nextMarkBitMap) :
3485     _task(task), _cm(cm), _nextMarkBitMap(nextMarkBitMap) { }
3486 
3487   bool do_bit(size_t offset) {
3488     HeapWord* addr = _nextMarkBitMap->offsetToHeapWord(offset);
3489     assert(_nextMarkBitMap->isMarked(addr), "invariant");
3490     assert( addr < _cm->finger(), "invariant");
3491 
3492     statsOnly( _task->increase_objs_found_on_bitmap() );
3493     assert(addr >= _task->finger(), "invariant");
3494 
3495     // We move that task's local finger along.
3496     _task->move_finger_to(addr);
3497 
3498     _task->scan_object(oop(addr));
3499     // we only partially drain the local queue and global stack
3500     _task->drain_local_queue(true);
3501     _task->drain_global_stack(true);
3502 
3503     // if the has_aborted flag has been raised, we need to bail out of
3504     // the iteration
3505     return !_task->has_aborted();
3506   }
3507 };
3508 
3509 G1CMOopClosure::G1CMOopClosure(G1CollectedHeap* g1h,
3510                                ConcurrentMark* cm,
3511                                CMTask* task)
3512   : _g1h(g1h), _cm(cm), _task(task) {
3513   assert(_ref_processor == NULL, "should be initialized to NULL");
3514 
3515   if (G1UseConcMarkReferenceProcessing) {
3516     _ref_processor = g1h->ref_processor_cm();
3517     assert(_ref_processor != NULL, "should not be NULL");
3518   }
3519 }
3520 
3521 void CMTask::setup_for_region(HeapRegion* hr) {
3522   assert(hr != NULL,
3523         "claim_region() should have filtered out NULL regions");
3524   assert(!hr->is_continues_humongous(),
3525         "claim_region() should have filtered out continues humongous regions");
3526 
3527   if (_cm->verbose_low()) {
3528     gclog_or_tty->print_cr("[%u] setting up for region "PTR_FORMAT,
3529                            _worker_id, p2i(hr));
3530   }
3531 
3532   _curr_region  = hr;
3533   _finger       = hr->bottom();
3534   update_region_limit();
3535 }
3536 
3537 void CMTask::update_region_limit() {
3538   HeapRegion* hr            = _curr_region;
3539   HeapWord* bottom          = hr->bottom();
3540   HeapWord* limit           = hr->next_top_at_mark_start();
3541 
3542   if (limit == bottom) {
3543     if (_cm->verbose_low()) {
3544       gclog_or_tty->print_cr("[%u] found an empty region "
3545                              "["PTR_FORMAT", "PTR_FORMAT")",
3546                              _worker_id, p2i(bottom), p2i(limit));
3547     }
3548     // The region was collected underneath our feet.
3549     // We set the finger to bottom to ensure that the bitmap
3550     // iteration that will follow this will not do anything.
3551     // (this is not a condition that holds when we set the region up,
3552     // as the region is not supposed to be empty in the first place)
3553     _finger = bottom;
3554   } else if (limit >= _region_limit) {
3555     assert(limit >= _finger, "peace of mind");
3556   } else {
3557     assert(limit < _region_limit, "only way to get here");
3558     // This can happen under some pretty unusual circumstances.  An
3559     // evacuation pause empties the region underneath our feet (NTAMS
3560     // at bottom). We then do some allocation in the region (NTAMS
3561     // stays at bottom), followed by the region being used as a GC
3562     // alloc region (NTAMS will move to top() and the objects
3563     // originally below it will be grayed). All objects now marked in
3564     // the region are explicitly grayed, if below the global finger,
3565     // and we do not need in fact to scan anything else. So, we simply
3566     // set _finger to be limit to ensure that the bitmap iteration
3567     // doesn't do anything.
3568     _finger = limit;
3569   }
3570 
3571   _region_limit = limit;
3572 }
3573 
3574 void CMTask::giveup_current_region() {
3575   assert(_curr_region != NULL, "invariant");
3576   if (_cm->verbose_low()) {
3577     gclog_or_tty->print_cr("[%u] giving up region "PTR_FORMAT,
3578                            _worker_id, p2i(_curr_region));
3579   }
3580   clear_region_fields();
3581 }
3582 
3583 void CMTask::clear_region_fields() {
3584   // Values for these three fields that indicate that we're not
3585   // holding on to a region.
3586   _curr_region   = NULL;
3587   _finger        = NULL;
3588   _region_limit  = NULL;
3589 }
3590 
3591 void CMTask::set_cm_oop_closure(G1CMOopClosure* cm_oop_closure) {
3592   if (cm_oop_closure == NULL) {
3593     assert(_cm_oop_closure != NULL, "invariant");
3594   } else {
3595     assert(_cm_oop_closure == NULL, "invariant");
3596   }
3597   _cm_oop_closure = cm_oop_closure;
3598 }
3599 
3600 void CMTask::reset(CMBitMap* nextMarkBitMap) {
3601   guarantee(nextMarkBitMap != NULL, "invariant");
3602 
3603   if (_cm->verbose_low()) {
3604     gclog_or_tty->print_cr("[%u] resetting", _worker_id);
3605   }
3606 
3607   _nextMarkBitMap                = nextMarkBitMap;
3608   clear_region_fields();
3609 
3610   _calls                         = 0;
3611   _elapsed_time_ms               = 0.0;
3612   _termination_time_ms           = 0.0;
3613   _termination_start_time_ms     = 0.0;
3614 
3615 #if _MARKING_STATS_
3616   _local_pushes                  = 0;
3617   _local_pops                    = 0;
3618   _local_max_size                = 0;
3619   _objs_scanned                  = 0;
3620   _global_pushes                 = 0;
3621   _global_pops                   = 0;
3622   _global_max_size               = 0;
3623   _global_transfers_to           = 0;
3624   _global_transfers_from         = 0;
3625   _regions_claimed               = 0;
3626   _objs_found_on_bitmap          = 0;
3627   _satb_buffers_processed        = 0;
3628   _steal_attempts                = 0;
3629   _steals                        = 0;
3630   _aborted                       = 0;
3631   _aborted_overflow              = 0;
3632   _aborted_cm_aborted            = 0;
3633   _aborted_yield                 = 0;
3634   _aborted_timed_out             = 0;
3635   _aborted_satb                  = 0;
3636   _aborted_termination           = 0;
3637 #endif // _MARKING_STATS_
3638 }
3639 
3640 bool CMTask::should_exit_termination() {
3641   regular_clock_call();
3642   // This is called when we are in the termination protocol. We should
3643   // quit if, for some reason, this task wants to abort or the global
3644   // stack is not empty (this means that we can get work from it).
3645   return !_cm->mark_stack_empty() || has_aborted();
3646 }
3647 
3648 void CMTask::reached_limit() {
3649   assert(_words_scanned >= _words_scanned_limit ||
3650          _refs_reached >= _refs_reached_limit ,
3651          "shouldn't have been called otherwise");
3652   regular_clock_call();
3653 }
3654 
3655 void CMTask::regular_clock_call() {
3656   if (has_aborted()) return;
3657 
3658   // First, we need to recalculate the words scanned and refs reached
3659   // limits for the next clock call.
3660   recalculate_limits();
3661 
3662   // During the regular clock call we do the following
3663 
3664   // (1) If an overflow has been flagged, then we abort.
3665   if (_cm->has_overflown()) {
3666     set_has_aborted();
3667     return;
3668   }
3669 
3670   // If we are not concurrent (i.e. we're doing remark) we don't need
3671   // to check anything else. The other steps are only needed during
3672   // the concurrent marking phase.
3673   if (!concurrent()) return;
3674 
3675   // (2) If marking has been aborted for Full GC, then we also abort.
3676   if (_cm->has_aborted()) {
3677     set_has_aborted();
3678     statsOnly( ++_aborted_cm_aborted );
3679     return;
3680   }
3681 
3682   double curr_time_ms = os::elapsedVTime() * 1000.0;
3683 
3684   // (3) If marking stats are enabled, then we update the step history.
3685 #if _MARKING_STATS_
3686   if (_words_scanned >= _words_scanned_limit) {
3687     ++_clock_due_to_scanning;
3688   }
3689   if (_refs_reached >= _refs_reached_limit) {
3690     ++_clock_due_to_marking;
3691   }
3692 
3693   double last_interval_ms = curr_time_ms - _interval_start_time_ms;
3694   _interval_start_time_ms = curr_time_ms;
3695   _all_clock_intervals_ms.add(last_interval_ms);
3696 
3697   if (_cm->verbose_medium()) {
3698       gclog_or_tty->print_cr("[%u] regular clock, interval = %1.2lfms, "
3699                         "scanned = "SIZE_FORMAT"%s, refs reached = "SIZE_FORMAT"%s",
3700                         _worker_id, last_interval_ms,
3701                         _words_scanned,
3702                         (_words_scanned >= _words_scanned_limit) ? " (*)" : "",
3703                         _refs_reached,
3704                         (_refs_reached >= _refs_reached_limit) ? " (*)" : "");
3705   }
3706 #endif // _MARKING_STATS_
3707 
3708   // (4) We check whether we should yield. If we have to, then we abort.
3709   if (SuspendibleThreadSet::should_yield()) {
3710     // We should yield. To do this we abort the task. The caller is
3711     // responsible for yielding.
3712     set_has_aborted();
3713     statsOnly( ++_aborted_yield );
3714     return;
3715   }
3716 
3717   // (5) We check whether we've reached our time quota. If we have,
3718   // then we abort.
3719   double elapsed_time_ms = curr_time_ms - _start_time_ms;
3720   if (elapsed_time_ms > _time_target_ms) {
3721     set_has_aborted();
3722     _has_timed_out = true;
3723     statsOnly( ++_aborted_timed_out );
3724     return;
3725   }
3726 
3727   // (6) Finally, we check whether there are enough completed STAB
3728   // buffers available for processing. If there are, we abort.
3729   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
3730   if (!_draining_satb_buffers && satb_mq_set.process_completed_buffers()) {
3731     if (_cm->verbose_low()) {
3732       gclog_or_tty->print_cr("[%u] aborting to deal with pending SATB buffers",
3733                              _worker_id);
3734     }
3735     // we do need to process SATB buffers, we'll abort and restart
3736     // the marking task to do so
3737     set_has_aborted();
3738     statsOnly( ++_aborted_satb );
3739     return;
3740   }
3741 }
3742 
3743 void CMTask::recalculate_limits() {
3744   _real_words_scanned_limit = _words_scanned + words_scanned_period;
3745   _words_scanned_limit      = _real_words_scanned_limit;
3746 
3747   _real_refs_reached_limit  = _refs_reached  + refs_reached_period;
3748   _refs_reached_limit       = _real_refs_reached_limit;
3749 }
3750 
3751 void CMTask::decrease_limits() {
3752   // This is called when we believe that we're going to do an infrequent
3753   // operation which will increase the per byte scanned cost (i.e. move
3754   // entries to/from the global stack). It basically tries to decrease the
3755   // scanning limit so that the clock is called earlier.
3756 
3757   if (_cm->verbose_medium()) {
3758     gclog_or_tty->print_cr("[%u] decreasing limits", _worker_id);
3759   }
3760 
3761   _words_scanned_limit = _real_words_scanned_limit -
3762     3 * words_scanned_period / 4;
3763   _refs_reached_limit  = _real_refs_reached_limit -
3764     3 * refs_reached_period / 4;
3765 }
3766 
3767 void CMTask::move_entries_to_global_stack() {
3768   // local array where we'll store the entries that will be popped
3769   // from the local queue
3770   oop buffer[global_stack_transfer_size];
3771 
3772   int n = 0;
3773   oop obj;
3774   while (n < global_stack_transfer_size && _task_queue->pop_local(obj)) {
3775     buffer[n] = obj;
3776     ++n;
3777   }
3778 
3779   if (n > 0) {
3780     // we popped at least one entry from the local queue
3781 
3782     statsOnly( ++_global_transfers_to; _local_pops += n );
3783 
3784     if (!_cm->mark_stack_push(buffer, n)) {
3785       if (_cm->verbose_low()) {
3786         gclog_or_tty->print_cr("[%u] aborting due to global stack overflow",
3787                                _worker_id);
3788       }
3789       set_has_aborted();
3790     } else {
3791       // the transfer was successful
3792 
3793       if (_cm->verbose_medium()) {
3794         gclog_or_tty->print_cr("[%u] pushed %d entries to the global stack",
3795                                _worker_id, n);
3796       }
3797       statsOnly( int tmp_size = _cm->mark_stack_size();
3798                  if (tmp_size > _global_max_size) {
3799                    _global_max_size = tmp_size;
3800                  }
3801                  _global_pushes += n );
3802     }
3803   }
3804 
3805   // this operation was quite expensive, so decrease the limits
3806   decrease_limits();
3807 }
3808 
3809 void CMTask::get_entries_from_global_stack() {
3810   // local array where we'll store the entries that will be popped
3811   // from the global stack.
3812   oop buffer[global_stack_transfer_size];
3813   int n;
3814   _cm->mark_stack_pop(buffer, global_stack_transfer_size, &n);
3815   assert(n <= global_stack_transfer_size,
3816          "we should not pop more than the given limit");
3817   if (n > 0) {
3818     // yes, we did actually pop at least one entry
3819 
3820     statsOnly( ++_global_transfers_from; _global_pops += n );
3821     if (_cm->verbose_medium()) {
3822       gclog_or_tty->print_cr("[%u] popped %d entries from the global stack",
3823                              _worker_id, n);
3824     }
3825     for (int i = 0; i < n; ++i) {
3826       bool success = _task_queue->push(buffer[i]);
3827       // We only call this when the local queue is empty or under a
3828       // given target limit. So, we do not expect this push to fail.
3829       assert(success, "invariant");
3830     }
3831 
3832     statsOnly( int tmp_size = _task_queue->size();
3833                if (tmp_size > _local_max_size) {
3834                  _local_max_size = tmp_size;
3835                }
3836                _local_pushes += n );
3837   }
3838 
3839   // this operation was quite expensive, so decrease the limits
3840   decrease_limits();
3841 }
3842 
3843 void CMTask::drain_local_queue(bool partially) {
3844   if (has_aborted()) return;
3845 
3846   // Decide what the target size is, depending whether we're going to
3847   // drain it partially (so that other tasks can steal if they run out
3848   // of things to do) or totally (at the very end).
3849   size_t target_size;
3850   if (partially) {
3851     target_size = MIN2((size_t)_task_queue->max_elems()/3, GCDrainStackTargetSize);
3852   } else {
3853     target_size = 0;
3854   }
3855 
3856   if (_task_queue->size() > target_size) {
3857     if (_cm->verbose_high()) {
3858       gclog_or_tty->print_cr("[%u] draining local queue, target size = " SIZE_FORMAT,
3859                              _worker_id, target_size);
3860     }
3861 
3862     oop obj;
3863     bool ret = _task_queue->pop_local(obj);
3864     while (ret) {
3865       statsOnly( ++_local_pops );
3866 
3867       if (_cm->verbose_high()) {
3868         gclog_or_tty->print_cr("[%u] popped "PTR_FORMAT, _worker_id,
3869                                p2i((void*) obj));
3870       }
3871 
3872       assert(_g1h->is_in_g1_reserved((HeapWord*) obj), "invariant" );
3873       assert(!_g1h->is_on_master_free_list(
3874                   _g1h->heap_region_containing((HeapWord*) obj)), "invariant");
3875 
3876       scan_object(obj);
3877 
3878       if (_task_queue->size() <= target_size || has_aborted()) {
3879         ret = false;
3880       } else {
3881         ret = _task_queue->pop_local(obj);
3882       }
3883     }
3884 
3885     if (_cm->verbose_high()) {
3886       gclog_or_tty->print_cr("[%u] drained local queue, size = %u",
3887                              _worker_id, _task_queue->size());
3888     }
3889   }
3890 }
3891 
3892 void CMTask::drain_global_stack(bool partially) {
3893   if (has_aborted()) return;
3894 
3895   // We have a policy to drain the local queue before we attempt to
3896   // drain the global stack.
3897   assert(partially || _task_queue->size() == 0, "invariant");
3898 
3899   // Decide what the target size is, depending whether we're going to
3900   // drain it partially (so that other tasks can steal if they run out
3901   // of things to do) or totally (at the very end).  Notice that,
3902   // because we move entries from the global stack in chunks or
3903   // because another task might be doing the same, we might in fact
3904   // drop below the target. But, this is not a problem.
3905   size_t target_size;
3906   if (partially) {
3907     target_size = _cm->partial_mark_stack_size_target();
3908   } else {
3909     target_size = 0;
3910   }
3911 
3912   if (_cm->mark_stack_size() > target_size) {
3913     if (_cm->verbose_low()) {
3914       gclog_or_tty->print_cr("[%u] draining global_stack, target size " SIZE_FORMAT,
3915                              _worker_id, target_size);
3916     }
3917 
3918     while (!has_aborted() && _cm->mark_stack_size() > target_size) {
3919       get_entries_from_global_stack();
3920       drain_local_queue(partially);
3921     }
3922 
3923     if (_cm->verbose_low()) {
3924       gclog_or_tty->print_cr("[%u] drained global stack, size = " SIZE_FORMAT,
3925                              _worker_id, _cm->mark_stack_size());
3926     }
3927   }
3928 }
3929 
3930 // SATB Queue has several assumptions on whether to call the par or
3931 // non-par versions of the methods. this is why some of the code is
3932 // replicated. We should really get rid of the single-threaded version
3933 // of the code to simplify things.
3934 void CMTask::drain_satb_buffers() {
3935   if (has_aborted()) return;
3936 
3937   // We set this so that the regular clock knows that we're in the
3938   // middle of draining buffers and doesn't set the abort flag when it
3939   // notices that SATB buffers are available for draining. It'd be
3940   // very counter productive if it did that. :-)
3941   _draining_satb_buffers = true;
3942 
3943   CMObjectClosure oc(this);
3944   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
3945   if (G1CollectedHeap::use_parallel_gc_threads()) {
3946     satb_mq_set.set_par_closure(_worker_id, &oc);
3947   } else {
3948     satb_mq_set.set_closure(&oc);
3949   }
3950 
3951   // This keeps claiming and applying the closure to completed buffers
3952   // until we run out of buffers or we need to abort.
3953   if (G1CollectedHeap::use_parallel_gc_threads()) {
3954     while (!has_aborted() &&
3955            satb_mq_set.par_apply_closure_to_completed_buffer(_worker_id)) {
3956       if (_cm->verbose_medium()) {
3957         gclog_or_tty->print_cr("[%u] processed an SATB buffer", _worker_id);
3958       }
3959       statsOnly( ++_satb_buffers_processed );
3960       regular_clock_call();
3961     }
3962   } else {
3963     while (!has_aborted() &&
3964            satb_mq_set.apply_closure_to_completed_buffer()) {
3965       if (_cm->verbose_medium()) {
3966         gclog_or_tty->print_cr("[%u] processed an SATB buffer", _worker_id);
3967       }
3968       statsOnly( ++_satb_buffers_processed );
3969       regular_clock_call();
3970     }
3971   }
3972 
3973   _draining_satb_buffers = false;
3974 
3975   assert(has_aborted() ||
3976          concurrent() ||
3977          satb_mq_set.completed_buffers_num() == 0, "invariant");
3978 
3979   if (G1CollectedHeap::use_parallel_gc_threads()) {
3980     satb_mq_set.set_par_closure(_worker_id, NULL);
3981   } else {
3982     satb_mq_set.set_closure(NULL);
3983   }
3984 
3985   // again, this was a potentially expensive operation, decrease the
3986   // limits to get the regular clock call early
3987   decrease_limits();
3988 }
3989 
3990 void CMTask::print_stats() {
3991   gclog_or_tty->print_cr("Marking Stats, task = %u, calls = %d",
3992                          _worker_id, _calls);
3993   gclog_or_tty->print_cr("  Elapsed time = %1.2lfms, Termination time = %1.2lfms",
3994                          _elapsed_time_ms, _termination_time_ms);
3995   gclog_or_tty->print_cr("  Step Times (cum): num = %d, avg = %1.2lfms, sd = %1.2lfms",
3996                          _step_times_ms.num(), _step_times_ms.avg(),
3997                          _step_times_ms.sd());
3998   gclog_or_tty->print_cr("                    max = %1.2lfms, total = %1.2lfms",
3999                          _step_times_ms.maximum(), _step_times_ms.sum());
4000 
4001 #if _MARKING_STATS_
4002   gclog_or_tty->print_cr("  Clock Intervals (cum): num = %d, avg = %1.2lfms, sd = %1.2lfms",
4003                          _all_clock_intervals_ms.num(), _all_clock_intervals_ms.avg(),
4004                          _all_clock_intervals_ms.sd());
4005   gclog_or_tty->print_cr("                         max = %1.2lfms, total = %1.2lfms",
4006                          _all_clock_intervals_ms.maximum(),
4007                          _all_clock_intervals_ms.sum());
4008   gclog_or_tty->print_cr("  Clock Causes (cum): scanning = %d, marking = %d",
4009                          _clock_due_to_scanning, _clock_due_to_marking);
4010   gclog_or_tty->print_cr("  Objects: scanned = %d, found on the bitmap = %d",
4011                          _objs_scanned, _objs_found_on_bitmap);
4012   gclog_or_tty->print_cr("  Local Queue:  pushes = %d, pops = %d, max size = %d",
4013                          _local_pushes, _local_pops, _local_max_size);
4014   gclog_or_tty->print_cr("  Global Stack: pushes = %d, pops = %d, max size = %d",
4015                          _global_pushes, _global_pops, _global_max_size);
4016   gclog_or_tty->print_cr("                transfers to = %d, transfers from = %d",
4017                          _global_transfers_to,_global_transfers_from);
4018   gclog_or_tty->print_cr("  Regions: claimed = %d", _regions_claimed);
4019   gclog_or_tty->print_cr("  SATB buffers: processed = %d", _satb_buffers_processed);
4020   gclog_or_tty->print_cr("  Steals: attempts = %d, successes = %d",
4021                          _steal_attempts, _steals);
4022   gclog_or_tty->print_cr("  Aborted: %d, due to", _aborted);
4023   gclog_or_tty->print_cr("    overflow: %d, global abort: %d, yield: %d",
4024                          _aborted_overflow, _aborted_cm_aborted, _aborted_yield);
4025   gclog_or_tty->print_cr("    time out: %d, SATB: %d, termination: %d",
4026                          _aborted_timed_out, _aborted_satb, _aborted_termination);
4027 #endif // _MARKING_STATS_
4028 }
4029 
4030 /*****************************************************************************
4031 
4032     The do_marking_step(time_target_ms, ...) method is the building
4033     block of the parallel marking framework. It can be called in parallel
4034     with other invocations of do_marking_step() on different tasks
4035     (but only one per task, obviously) and concurrently with the
4036     mutator threads, or during remark, hence it eliminates the need
4037     for two versions of the code. When called during remark, it will
4038     pick up from where the task left off during the concurrent marking
4039     phase. Interestingly, tasks are also claimable during evacuation
4040     pauses too, since do_marking_step() ensures that it aborts before
4041     it needs to yield.
4042 
4043     The data structures that it uses to do marking work are the
4044     following:
4045 
4046       (1) Marking Bitmap. If there are gray objects that appear only
4047       on the bitmap (this happens either when dealing with an overflow
4048       or when the initial marking phase has simply marked the roots
4049       and didn't push them on the stack), then tasks claim heap
4050       regions whose bitmap they then scan to find gray objects. A
4051       global finger indicates where the end of the last claimed region
4052       is. A local finger indicates how far into the region a task has
4053       scanned. The two fingers are used to determine how to gray an
4054       object (i.e. whether simply marking it is OK, as it will be
4055       visited by a task in the future, or whether it needs to be also
4056       pushed on a stack).
4057 
4058       (2) Local Queue. The local queue of the task which is accessed
4059       reasonably efficiently by the task. Other tasks can steal from
4060       it when they run out of work. Throughout the marking phase, a
4061       task attempts to keep its local queue short but not totally
4062       empty, so that entries are available for stealing by other
4063       tasks. Only when there is no more work, a task will totally
4064       drain its local queue.
4065 
4066       (3) Global Mark Stack. This handles local queue overflow. During
4067       marking only sets of entries are moved between it and the local
4068       queues, as access to it requires a mutex and more fine-grain
4069       interaction with it which might cause contention. If it
4070       overflows, then the marking phase should restart and iterate
4071       over the bitmap to identify gray objects. Throughout the marking
4072       phase, tasks attempt to keep the global mark stack at a small
4073       length but not totally empty, so that entries are available for
4074       popping by other tasks. Only when there is no more work, tasks
4075       will totally drain the global mark stack.
4076 
4077       (4) SATB Buffer Queue. This is where completed SATB buffers are
4078       made available. Buffers are regularly removed from this queue
4079       and scanned for roots, so that the queue doesn't get too
4080       long. During remark, all completed buffers are processed, as
4081       well as the filled in parts of any uncompleted buffers.
4082 
4083     The do_marking_step() method tries to abort when the time target
4084     has been reached. There are a few other cases when the
4085     do_marking_step() method also aborts:
4086 
4087       (1) When the marking phase has been aborted (after a Full GC).
4088 
4089       (2) When a global overflow (on the global stack) has been
4090       triggered. Before the task aborts, it will actually sync up with
4091       the other tasks to ensure that all the marking data structures
4092       (local queues, stacks, fingers etc.)  are re-initialized so that
4093       when do_marking_step() completes, the marking phase can
4094       immediately restart.
4095 
4096       (3) When enough completed SATB buffers are available. The
4097       do_marking_step() method only tries to drain SATB buffers right
4098       at the beginning. So, if enough buffers are available, the
4099       marking step aborts and the SATB buffers are processed at
4100       the beginning of the next invocation.
4101 
4102       (4) To yield. when we have to yield then we abort and yield
4103       right at the end of do_marking_step(). This saves us from a lot
4104       of hassle as, by yielding we might allow a Full GC. If this
4105       happens then objects will be compacted underneath our feet, the
4106       heap might shrink, etc. We save checking for this by just
4107       aborting and doing the yield right at the end.
4108 
4109     From the above it follows that the do_marking_step() method should
4110     be called in a loop (or, otherwise, regularly) until it completes.
4111 
4112     If a marking step completes without its has_aborted() flag being
4113     true, it means it has completed the current marking phase (and
4114     also all other marking tasks have done so and have all synced up).
4115 
4116     A method called regular_clock_call() is invoked "regularly" (in
4117     sub ms intervals) throughout marking. It is this clock method that
4118     checks all the abort conditions which were mentioned above and
4119     decides when the task should abort. A work-based scheme is used to
4120     trigger this clock method: when the number of object words the
4121     marking phase has scanned or the number of references the marking
4122     phase has visited reach a given limit. Additional invocations to
4123     the method clock have been planted in a few other strategic places
4124     too. The initial reason for the clock method was to avoid calling
4125     vtime too regularly, as it is quite expensive. So, once it was in
4126     place, it was natural to piggy-back all the other conditions on it
4127     too and not constantly check them throughout the code.
4128 
4129     If do_termination is true then do_marking_step will enter its
4130     termination protocol.
4131 
4132     The value of is_serial must be true when do_marking_step is being
4133     called serially (i.e. by the VMThread) and do_marking_step should
4134     skip any synchronization in the termination and overflow code.
4135     Examples include the serial remark code and the serial reference
4136     processing closures.
4137 
4138     The value of is_serial must be false when do_marking_step is
4139     being called by any of the worker threads in a work gang.
4140     Examples include the concurrent marking code (CMMarkingTask),
4141     the MT remark code, and the MT reference processing closures.
4142 
4143  *****************************************************************************/
4144 
4145 void CMTask::do_marking_step(double time_target_ms,
4146                              bool do_termination,
4147                              bool is_serial) {
4148   assert(time_target_ms >= 1.0, "minimum granularity is 1ms");
4149   assert(concurrent() == _cm->concurrent(), "they should be the same");
4150 
4151   G1CollectorPolicy* g1_policy = _g1h->g1_policy();
4152   assert(_task_queues != NULL, "invariant");
4153   assert(_task_queue != NULL, "invariant");
4154   assert(_task_queues->queue(_worker_id) == _task_queue, "invariant");
4155 
4156   assert(!_claimed,
4157          "only one thread should claim this task at any one time");
4158 
4159   // OK, this doesn't safeguard again all possible scenarios, as it is
4160   // possible for two threads to set the _claimed flag at the same
4161   // time. But it is only for debugging purposes anyway and it will
4162   // catch most problems.
4163   _claimed = true;
4164 
4165   _start_time_ms = os::elapsedVTime() * 1000.0;
4166   statsOnly( _interval_start_time_ms = _start_time_ms );
4167 
4168   // If do_stealing is true then do_marking_step will attempt to
4169   // steal work from the other CMTasks. It only makes sense to
4170   // enable stealing when the termination protocol is enabled
4171   // and do_marking_step() is not being called serially.
4172   bool do_stealing = do_termination && !is_serial;
4173 
4174   double diff_prediction_ms =
4175     g1_policy->get_new_prediction(&_marking_step_diffs_ms);
4176   _time_target_ms = time_target_ms - diff_prediction_ms;
4177 
4178   // set up the variables that are used in the work-based scheme to
4179   // call the regular clock method
4180   _words_scanned = 0;
4181   _refs_reached  = 0;
4182   recalculate_limits();
4183 
4184   // clear all flags
4185   clear_has_aborted();
4186   _has_timed_out = false;
4187   _draining_satb_buffers = false;
4188 
4189   ++_calls;
4190 
4191   if (_cm->verbose_low()) {
4192     gclog_or_tty->print_cr("[%u] >>>>>>>>>> START, call = %d, "
4193                            "target = %1.2lfms >>>>>>>>>>",
4194                            _worker_id, _calls, _time_target_ms);
4195   }
4196 
4197   // Set up the bitmap and oop closures. Anything that uses them is
4198   // eventually called from this method, so it is OK to allocate these
4199   // statically.
4200   CMBitMapClosure bitmap_closure(this, _cm, _nextMarkBitMap);
4201   G1CMOopClosure  cm_oop_closure(_g1h, _cm, this);
4202   set_cm_oop_closure(&cm_oop_closure);
4203 
4204   if (_cm->has_overflown()) {
4205     // This can happen if the mark stack overflows during a GC pause
4206     // and this task, after a yield point, restarts. We have to abort
4207     // as we need to get into the overflow protocol which happens
4208     // right at the end of this task.
4209     set_has_aborted();
4210   }
4211 
4212   // First drain any available SATB buffers. After this, we will not
4213   // look at SATB buffers before the next invocation of this method.
4214   // If enough completed SATB buffers are queued up, the regular clock
4215   // will abort this task so that it restarts.
4216   drain_satb_buffers();
4217   // ...then partially drain the local queue and the global stack
4218   drain_local_queue(true);
4219   drain_global_stack(true);
4220 
4221   do {
4222     if (!has_aborted() && _curr_region != NULL) {
4223       // This means that we're already holding on to a region.
4224       assert(_finger != NULL, "if region is not NULL, then the finger "
4225              "should not be NULL either");
4226 
4227       // We might have restarted this task after an evacuation pause
4228       // which might have evacuated the region we're holding on to
4229       // underneath our feet. Let's read its limit again to make sure
4230       // that we do not iterate over a region of the heap that
4231       // contains garbage (update_region_limit() will also move
4232       // _finger to the start of the region if it is found empty).
4233       update_region_limit();
4234       // We will start from _finger not from the start of the region,
4235       // as we might be restarting this task after aborting half-way
4236       // through scanning this region. In this case, _finger points to
4237       // the address where we last found a marked object. If this is a
4238       // fresh region, _finger points to start().
4239       MemRegion mr = MemRegion(_finger, _region_limit);
4240 
4241       if (_cm->verbose_low()) {
4242         gclog_or_tty->print_cr("[%u] we're scanning part "
4243                                "["PTR_FORMAT", "PTR_FORMAT") "
4244                                "of region "HR_FORMAT,
4245                                _worker_id, p2i(_finger), p2i(_region_limit),
4246                                HR_FORMAT_PARAMS(_curr_region));
4247       }
4248 
4249       assert(!_curr_region->is_humongous() || mr.start() == _curr_region->bottom(),
4250              "humongous regions should go around loop once only");
4251 
4252       // Some special cases:
4253       // If the memory region is empty, we can just give up the region.
4254       // If the current region is humongous then we only need to check
4255       // the bitmap for the bit associated with the start of the object,
4256       // scan the object if it's live, and give up the region.
4257       // Otherwise, let's iterate over the bitmap of the part of the region
4258       // that is left.
4259       // If the iteration is successful, give up the region.
4260       if (mr.is_empty()) {
4261         giveup_current_region();
4262         regular_clock_call();
4263       } else if (_curr_region->is_humongous() && mr.start() == _curr_region->bottom()) {
4264         if (_nextMarkBitMap->isMarked(mr.start())) {
4265           // The object is marked - apply the closure
4266           BitMap::idx_t offset = _nextMarkBitMap->heapWordToOffset(mr.start());
4267           bitmap_closure.do_bit(offset);
4268         }
4269         // Even if this task aborted while scanning the humongous object
4270         // we can (and should) give up the current region.
4271         giveup_current_region();
4272         regular_clock_call();
4273       } else if (_nextMarkBitMap->iterate(&bitmap_closure, mr)) {
4274         giveup_current_region();
4275         regular_clock_call();
4276       } else {
4277         assert(has_aborted(), "currently the only way to do so");
4278         // The only way to abort the bitmap iteration is to return
4279         // false from the do_bit() method. However, inside the
4280         // do_bit() method we move the _finger to point to the
4281         // object currently being looked at. So, if we bail out, we
4282         // have definitely set _finger to something non-null.
4283         assert(_finger != NULL, "invariant");
4284 
4285         // Region iteration was actually aborted. So now _finger
4286         // points to the address of the object we last scanned. If we
4287         // leave it there, when we restart this task, we will rescan
4288         // the object. It is easy to avoid this. We move the finger by
4289         // enough to point to the next possible object header (the
4290         // bitmap knows by how much we need to move it as it knows its
4291         // granularity).
4292         assert(_finger < _region_limit, "invariant");
4293         HeapWord* new_finger = _nextMarkBitMap->nextObject(_finger);
4294         // Check if bitmap iteration was aborted while scanning the last object
4295         if (new_finger >= _region_limit) {
4296           giveup_current_region();
4297         } else {
4298           move_finger_to(new_finger);
4299         }
4300       }
4301     }
4302     // At this point we have either completed iterating over the
4303     // region we were holding on to, or we have aborted.
4304 
4305     // We then partially drain the local queue and the global stack.
4306     // (Do we really need this?)
4307     drain_local_queue(true);
4308     drain_global_stack(true);
4309 
4310     // Read the note on the claim_region() method on why it might
4311     // return NULL with potentially more regions available for
4312     // claiming and why we have to check out_of_regions() to determine
4313     // whether we're done or not.
4314     while (!has_aborted() && _curr_region == NULL && !_cm->out_of_regions()) {
4315       // We are going to try to claim a new region. We should have
4316       // given up on the previous one.
4317       // Separated the asserts so that we know which one fires.
4318       assert(_curr_region  == NULL, "invariant");
4319       assert(_finger       == NULL, "invariant");
4320       assert(_region_limit == NULL, "invariant");
4321       if (_cm->verbose_low()) {
4322         gclog_or_tty->print_cr("[%u] trying to claim a new region", _worker_id);
4323       }
4324       HeapRegion* claimed_region = _cm->claim_region(_worker_id);
4325       if (claimed_region != NULL) {
4326         // Yes, we managed to claim one
4327         statsOnly( ++_regions_claimed );
4328 
4329         if (_cm->verbose_low()) {
4330           gclog_or_tty->print_cr("[%u] we successfully claimed "
4331                                  "region "PTR_FORMAT,
4332                                  _worker_id, p2i(claimed_region));
4333         }
4334 
4335         setup_for_region(claimed_region);
4336         assert(_curr_region == claimed_region, "invariant");
4337       }
4338       // It is important to call the regular clock here. It might take
4339       // a while to claim a region if, for example, we hit a large
4340       // block of empty regions. So we need to call the regular clock
4341       // method once round the loop to make sure it's called
4342       // frequently enough.
4343       regular_clock_call();
4344     }
4345 
4346     if (!has_aborted() && _curr_region == NULL) {
4347       assert(_cm->out_of_regions(),
4348              "at this point we should be out of regions");
4349     }
4350   } while ( _curr_region != NULL && !has_aborted());
4351 
4352   if (!has_aborted()) {
4353     // We cannot check whether the global stack is empty, since other
4354     // tasks might be pushing objects to it concurrently.
4355     assert(_cm->out_of_regions(),
4356            "at this point we should be out of regions");
4357 
4358     if (_cm->verbose_low()) {
4359       gclog_or_tty->print_cr("[%u] all regions claimed", _worker_id);
4360     }
4361 
4362     // Try to reduce the number of available SATB buffers so that
4363     // remark has less work to do.
4364     drain_satb_buffers();
4365   }
4366 
4367   // Since we've done everything else, we can now totally drain the
4368   // local queue and global stack.
4369   drain_local_queue(false);
4370   drain_global_stack(false);
4371 
4372   // Attempt at work stealing from other task's queues.
4373   if (do_stealing && !has_aborted()) {
4374     // We have not aborted. This means that we have finished all that
4375     // we could. Let's try to do some stealing...
4376 
4377     // We cannot check whether the global stack is empty, since other
4378     // tasks might be pushing objects to it concurrently.
4379     assert(_cm->out_of_regions() && _task_queue->size() == 0,
4380            "only way to reach here");
4381 
4382     if (_cm->verbose_low()) {
4383       gclog_or_tty->print_cr("[%u] starting to steal", _worker_id);
4384     }
4385 
4386     while (!has_aborted()) {
4387       oop obj;
4388       statsOnly( ++_steal_attempts );
4389 
4390       if (_cm->try_stealing(_worker_id, &_hash_seed, obj)) {
4391         if (_cm->verbose_medium()) {
4392           gclog_or_tty->print_cr("[%u] stolen "PTR_FORMAT" successfully",
4393                                  _worker_id, p2i((void*) obj));
4394         }
4395 
4396         statsOnly( ++_steals );
4397 
4398         assert(_nextMarkBitMap->isMarked((HeapWord*) obj),
4399                "any stolen object should be marked");
4400         scan_object(obj);
4401 
4402         // And since we're towards the end, let's totally drain the
4403         // local queue and global stack.
4404         drain_local_queue(false);
4405         drain_global_stack(false);
4406       } else {
4407         break;
4408       }
4409     }
4410   }
4411 
4412   // If we are about to wrap up and go into termination, check if we
4413   // should raise the overflow flag.
4414   if (do_termination && !has_aborted()) {
4415     if (_cm->force_overflow()->should_force()) {
4416       _cm->set_has_overflown();
4417       regular_clock_call();
4418     }
4419   }
4420 
4421   // We still haven't aborted. Now, let's try to get into the
4422   // termination protocol.
4423   if (do_termination && !has_aborted()) {
4424     // We cannot check whether the global stack is empty, since other
4425     // tasks might be concurrently pushing objects on it.
4426     // Separated the asserts so that we know which one fires.
4427     assert(_cm->out_of_regions(), "only way to reach here");
4428     assert(_task_queue->size() == 0, "only way to reach here");
4429 
4430     if (_cm->verbose_low()) {
4431       gclog_or_tty->print_cr("[%u] starting termination protocol", _worker_id);
4432     }
4433 
4434     _termination_start_time_ms = os::elapsedVTime() * 1000.0;
4435 
4436     // The CMTask class also extends the TerminatorTerminator class,
4437     // hence its should_exit_termination() method will also decide
4438     // whether to exit the termination protocol or not.
4439     bool finished = (is_serial ||
4440                      _cm->terminator()->offer_termination(this));
4441     double termination_end_time_ms = os::elapsedVTime() * 1000.0;
4442     _termination_time_ms +=
4443       termination_end_time_ms - _termination_start_time_ms;
4444 
4445     if (finished) {
4446       // We're all done.
4447 
4448       if (_worker_id == 0) {
4449         // let's allow task 0 to do this
4450         if (concurrent()) {
4451           assert(_cm->concurrent_marking_in_progress(), "invariant");
4452           // we need to set this to false before the next
4453           // safepoint. This way we ensure that the marking phase
4454           // doesn't observe any more heap expansions.
4455           _cm->clear_concurrent_marking_in_progress();
4456         }
4457       }
4458 
4459       // We can now guarantee that the global stack is empty, since
4460       // all other tasks have finished. We separated the guarantees so
4461       // that, if a condition is false, we can immediately find out
4462       // which one.
4463       guarantee(_cm->out_of_regions(), "only way to reach here");
4464       guarantee(_cm->mark_stack_empty(), "only way to reach here");
4465       guarantee(_task_queue->size() == 0, "only way to reach here");
4466       guarantee(!_cm->has_overflown(), "only way to reach here");
4467       guarantee(!_cm->mark_stack_overflow(), "only way to reach here");
4468 
4469       if (_cm->verbose_low()) {
4470         gclog_or_tty->print_cr("[%u] all tasks terminated", _worker_id);
4471       }
4472     } else {
4473       // Apparently there's more work to do. Let's abort this task. It
4474       // will restart it and we can hopefully find more things to do.
4475 
4476       if (_cm->verbose_low()) {
4477         gclog_or_tty->print_cr("[%u] apparently there is more work to do",
4478                                _worker_id);
4479       }
4480 
4481       set_has_aborted();
4482       statsOnly( ++_aborted_termination );
4483     }
4484   }
4485 
4486   // Mainly for debugging purposes to make sure that a pointer to the
4487   // closure which was statically allocated in this frame doesn't
4488   // escape it by accident.
4489   set_cm_oop_closure(NULL);
4490   double end_time_ms = os::elapsedVTime() * 1000.0;
4491   double elapsed_time_ms = end_time_ms - _start_time_ms;
4492   // Update the step history.
4493   _step_times_ms.add(elapsed_time_ms);
4494 
4495   if (has_aborted()) {
4496     // The task was aborted for some reason.
4497 
4498     statsOnly( ++_aborted );
4499 
4500     if (_has_timed_out) {
4501       double diff_ms = elapsed_time_ms - _time_target_ms;
4502       // Keep statistics of how well we did with respect to hitting
4503       // our target only if we actually timed out (if we aborted for
4504       // other reasons, then the results might get skewed).
4505       _marking_step_diffs_ms.add(diff_ms);
4506     }
4507 
4508     if (_cm->has_overflown()) {
4509       // This is the interesting one. We aborted because a global
4510       // overflow was raised. This means we have to restart the
4511       // marking phase and start iterating over regions. However, in
4512       // order to do this we have to make sure that all tasks stop
4513       // what they are doing and re-initialize in a safe manner. We
4514       // will achieve this with the use of two barrier sync points.
4515 
4516       if (_cm->verbose_low()) {
4517         gclog_or_tty->print_cr("[%u] detected overflow", _worker_id);
4518       }
4519 
4520       if (!is_serial) {
4521         // We only need to enter the sync barrier if being called
4522         // from a parallel context
4523         _cm->enter_first_sync_barrier(_worker_id);
4524 
4525         // When we exit this sync barrier we know that all tasks have
4526         // stopped doing marking work. So, it's now safe to
4527         // re-initialize our data structures. At the end of this method,
4528         // task 0 will clear the global data structures.
4529       }
4530 
4531       statsOnly( ++_aborted_overflow );
4532 
4533       // We clear the local state of this task...
4534       clear_region_fields();
4535 
4536       if (!is_serial) {
4537         // ...and enter the second barrier.
4538         _cm->enter_second_sync_barrier(_worker_id);
4539       }
4540       // At this point, if we're during the concurrent phase of
4541       // marking, everything has been re-initialized and we're
4542       // ready to restart.
4543     }
4544 
4545     if (_cm->verbose_low()) {
4546       gclog_or_tty->print_cr("[%u] <<<<<<<<<< ABORTING, target = %1.2lfms, "
4547                              "elapsed = %1.2lfms <<<<<<<<<<",
4548                              _worker_id, _time_target_ms, elapsed_time_ms);
4549       if (_cm->has_aborted()) {
4550         gclog_or_tty->print_cr("[%u] ========== MARKING ABORTED ==========",
4551                                _worker_id);
4552       }
4553     }
4554   } else {
4555     if (_cm->verbose_low()) {
4556       gclog_or_tty->print_cr("[%u] <<<<<<<<<< FINISHED, target = %1.2lfms, "
4557                              "elapsed = %1.2lfms <<<<<<<<<<",
4558                              _worker_id, _time_target_ms, elapsed_time_ms);
4559     }
4560   }
4561 
4562   _claimed = false;
4563 }
4564 
4565 CMTask::CMTask(uint worker_id,
4566                ConcurrentMark* cm,
4567                size_t* marked_bytes,
4568                BitMap* card_bm,
4569                CMTaskQueue* task_queue,
4570                CMTaskQueueSet* task_queues)
4571   : _g1h(G1CollectedHeap::heap()),
4572     _worker_id(worker_id), _cm(cm),
4573     _claimed(false),
4574     _nextMarkBitMap(NULL), _hash_seed(17),
4575     _task_queue(task_queue),
4576     _task_queues(task_queues),
4577     _cm_oop_closure(NULL),
4578     _marked_bytes_array(marked_bytes),
4579     _card_bm(card_bm) {
4580   guarantee(task_queue != NULL, "invariant");
4581   guarantee(task_queues != NULL, "invariant");
4582 
4583   statsOnly( _clock_due_to_scanning = 0;
4584              _clock_due_to_marking  = 0 );
4585 
4586   _marking_step_diffs_ms.add(0.5);
4587 }
4588 
4589 // These are formatting macros that are used below to ensure
4590 // consistent formatting. The *_H_* versions are used to format the
4591 // header for a particular value and they should be kept consistent
4592 // with the corresponding macro. Also note that most of the macros add
4593 // the necessary white space (as a prefix) which makes them a bit
4594 // easier to compose.
4595 
4596 // All the output lines are prefixed with this string to be able to
4597 // identify them easily in a large log file.
4598 #define G1PPRL_LINE_PREFIX            "###"
4599 
4600 #define G1PPRL_ADDR_BASE_FORMAT    " "PTR_FORMAT"-"PTR_FORMAT
4601 #ifdef _LP64
4602 #define G1PPRL_ADDR_BASE_H_FORMAT  " %37s"
4603 #else // _LP64
4604 #define G1PPRL_ADDR_BASE_H_FORMAT  " %21s"
4605 #endif // _LP64
4606 
4607 // For per-region info
4608 #define G1PPRL_TYPE_FORMAT            "   %-4s"
4609 #define G1PPRL_TYPE_H_FORMAT          "   %4s"
4610 #define G1PPRL_BYTE_FORMAT            "  "SIZE_FORMAT_W(9)
4611 #define G1PPRL_BYTE_H_FORMAT          "  %9s"
4612 #define G1PPRL_DOUBLE_FORMAT          "  %14.1f"
4613 #define G1PPRL_DOUBLE_H_FORMAT        "  %14s"
4614 
4615 // For summary info
4616 #define G1PPRL_SUM_ADDR_FORMAT(tag)    "  "tag":"G1PPRL_ADDR_BASE_FORMAT
4617 #define G1PPRL_SUM_BYTE_FORMAT(tag)    "  "tag": "SIZE_FORMAT
4618 #define G1PPRL_SUM_MB_FORMAT(tag)      "  "tag": %1.2f MB"
4619 #define G1PPRL_SUM_MB_PERC_FORMAT(tag) G1PPRL_SUM_MB_FORMAT(tag)" / %1.2f %%"
4620 
4621 G1PrintRegionLivenessInfoClosure::
4622 G1PrintRegionLivenessInfoClosure(outputStream* out, const char* phase_name)
4623   : _out(out),
4624     _total_used_bytes(0), _total_capacity_bytes(0),
4625     _total_prev_live_bytes(0), _total_next_live_bytes(0),
4626     _hum_used_bytes(0), _hum_capacity_bytes(0),
4627     _hum_prev_live_bytes(0), _hum_next_live_bytes(0),
4628     _total_remset_bytes(0), _total_strong_code_roots_bytes(0) {
4629   G1CollectedHeap* g1h = G1CollectedHeap::heap();
4630   MemRegion g1_reserved = g1h->g1_reserved();
4631   double now = os::elapsedTime();
4632 
4633   // Print the header of the output.
4634   _out->cr();
4635   _out->print_cr(G1PPRL_LINE_PREFIX" PHASE %s @ %1.3f", phase_name, now);
4636   _out->print_cr(G1PPRL_LINE_PREFIX" HEAP"
4637                  G1PPRL_SUM_ADDR_FORMAT("reserved")
4638                  G1PPRL_SUM_BYTE_FORMAT("region-size"),
4639                  p2i(g1_reserved.start()), p2i(g1_reserved.end()),
4640                  HeapRegion::GrainBytes);
4641   _out->print_cr(G1PPRL_LINE_PREFIX);
4642   _out->print_cr(G1PPRL_LINE_PREFIX
4643                 G1PPRL_TYPE_H_FORMAT
4644                 G1PPRL_ADDR_BASE_H_FORMAT
4645                 G1PPRL_BYTE_H_FORMAT
4646                 G1PPRL_BYTE_H_FORMAT
4647                 G1PPRL_BYTE_H_FORMAT
4648                 G1PPRL_DOUBLE_H_FORMAT
4649                 G1PPRL_BYTE_H_FORMAT
4650                 G1PPRL_BYTE_H_FORMAT,
4651                 "type", "address-range",
4652                 "used", "prev-live", "next-live", "gc-eff",
4653                 "remset", "code-roots");
4654   _out->print_cr(G1PPRL_LINE_PREFIX
4655                 G1PPRL_TYPE_H_FORMAT
4656                 G1PPRL_ADDR_BASE_H_FORMAT
4657                 G1PPRL_BYTE_H_FORMAT
4658                 G1PPRL_BYTE_H_FORMAT
4659                 G1PPRL_BYTE_H_FORMAT
4660                 G1PPRL_DOUBLE_H_FORMAT
4661                 G1PPRL_BYTE_H_FORMAT
4662                 G1PPRL_BYTE_H_FORMAT,
4663                 "", "",
4664                 "(bytes)", "(bytes)", "(bytes)", "(bytes/ms)",
4665                 "(bytes)", "(bytes)");
4666 }
4667 
4668 // It takes as a parameter a reference to one of the _hum_* fields, it
4669 // deduces the corresponding value for a region in a humongous region
4670 // series (either the region size, or what's left if the _hum_* field
4671 // is < the region size), and updates the _hum_* field accordingly.
4672 size_t G1PrintRegionLivenessInfoClosure::get_hum_bytes(size_t* hum_bytes) {
4673   size_t bytes = 0;
4674   // The > 0 check is to deal with the prev and next live bytes which
4675   // could be 0.
4676   if (*hum_bytes > 0) {
4677     bytes = MIN2(HeapRegion::GrainBytes, *hum_bytes);
4678     *hum_bytes -= bytes;
4679   }
4680   return bytes;
4681 }
4682 
4683 // It deduces the values for a region in a humongous region series
4684 // from the _hum_* fields and updates those accordingly. It assumes
4685 // that that _hum_* fields have already been set up from the "starts
4686 // humongous" region and we visit the regions in address order.
4687 void G1PrintRegionLivenessInfoClosure::get_hum_bytes(size_t* used_bytes,
4688                                                      size_t* capacity_bytes,
4689                                                      size_t* prev_live_bytes,
4690                                                      size_t* next_live_bytes) {
4691   assert(_hum_used_bytes > 0 && _hum_capacity_bytes > 0, "pre-condition");
4692   *used_bytes      = get_hum_bytes(&_hum_used_bytes);
4693   *capacity_bytes  = get_hum_bytes(&_hum_capacity_bytes);
4694   *prev_live_bytes = get_hum_bytes(&_hum_prev_live_bytes);
4695   *next_live_bytes = get_hum_bytes(&_hum_next_live_bytes);
4696 }
4697 
4698 bool G1PrintRegionLivenessInfoClosure::doHeapRegion(HeapRegion* r) {
4699   const char* type       = r->get_type_str();
4700   HeapWord* bottom       = r->bottom();
4701   HeapWord* end          = r->end();
4702   size_t capacity_bytes  = r->capacity();
4703   size_t used_bytes      = r->used();
4704   size_t prev_live_bytes = r->live_bytes();
4705   size_t next_live_bytes = r->next_live_bytes();
4706   double gc_eff          = r->gc_efficiency();
4707   size_t remset_bytes    = r->rem_set()->mem_size();
4708   size_t strong_code_roots_bytes = r->rem_set()->strong_code_roots_mem_size();
4709 
4710   if (r->is_starts_humongous()) {
4711     assert(_hum_used_bytes == 0 && _hum_capacity_bytes == 0 &&
4712            _hum_prev_live_bytes == 0 && _hum_next_live_bytes == 0,
4713            "they should have been zeroed after the last time we used them");
4714     // Set up the _hum_* fields.
4715     _hum_capacity_bytes  = capacity_bytes;
4716     _hum_used_bytes      = used_bytes;
4717     _hum_prev_live_bytes = prev_live_bytes;
4718     _hum_next_live_bytes = next_live_bytes;
4719     get_hum_bytes(&used_bytes, &capacity_bytes,
4720                   &prev_live_bytes, &next_live_bytes);
4721     end = bottom + HeapRegion::GrainWords;
4722   } else if (r->is_continues_humongous()) {
4723     get_hum_bytes(&used_bytes, &capacity_bytes,
4724                   &prev_live_bytes, &next_live_bytes);
4725     assert(end == bottom + HeapRegion::GrainWords, "invariant");
4726   }
4727 
4728   _total_used_bytes      += used_bytes;
4729   _total_capacity_bytes  += capacity_bytes;
4730   _total_prev_live_bytes += prev_live_bytes;
4731   _total_next_live_bytes += next_live_bytes;
4732   _total_remset_bytes    += remset_bytes;
4733   _total_strong_code_roots_bytes += strong_code_roots_bytes;
4734 
4735   // Print a line for this particular region.
4736   _out->print_cr(G1PPRL_LINE_PREFIX
4737                  G1PPRL_TYPE_FORMAT
4738                  G1PPRL_ADDR_BASE_FORMAT
4739                  G1PPRL_BYTE_FORMAT
4740                  G1PPRL_BYTE_FORMAT
4741                  G1PPRL_BYTE_FORMAT
4742                  G1PPRL_DOUBLE_FORMAT
4743                  G1PPRL_BYTE_FORMAT
4744                  G1PPRL_BYTE_FORMAT,
4745                  type, p2i(bottom), p2i(end),
4746                  used_bytes, prev_live_bytes, next_live_bytes, gc_eff,
4747                  remset_bytes, strong_code_roots_bytes);
4748 
4749   return false;
4750 }
4751 
4752 G1PrintRegionLivenessInfoClosure::~G1PrintRegionLivenessInfoClosure() {
4753   // add static memory usages to remembered set sizes
4754   _total_remset_bytes += HeapRegionRemSet::fl_mem_size() + HeapRegionRemSet::static_mem_size();
4755   // Print the footer of the output.
4756   _out->print_cr(G1PPRL_LINE_PREFIX);
4757   _out->print_cr(G1PPRL_LINE_PREFIX
4758                  " SUMMARY"
4759                  G1PPRL_SUM_MB_FORMAT("capacity")
4760                  G1PPRL_SUM_MB_PERC_FORMAT("used")
4761                  G1PPRL_SUM_MB_PERC_FORMAT("prev-live")
4762                  G1PPRL_SUM_MB_PERC_FORMAT("next-live")
4763                  G1PPRL_SUM_MB_FORMAT("remset")
4764                  G1PPRL_SUM_MB_FORMAT("code-roots"),
4765                  bytes_to_mb(_total_capacity_bytes),
4766                  bytes_to_mb(_total_used_bytes),
4767                  perc(_total_used_bytes, _total_capacity_bytes),
4768                  bytes_to_mb(_total_prev_live_bytes),
4769                  perc(_total_prev_live_bytes, _total_capacity_bytes),
4770                  bytes_to_mb(_total_next_live_bytes),
4771                  perc(_total_next_live_bytes, _total_capacity_bytes),
4772                  bytes_to_mb(_total_remset_bytes),
4773                  bytes_to_mb(_total_strong_code_roots_bytes));
4774   _out->cr();
4775 }