1 /*
   2  * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/classLoader.hpp"
  27 #include "classfile/javaClasses.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "classfile/vmSymbols.hpp"
  30 #include "code/codeCache.hpp"
  31 #include "code/codeCacheExtensions.hpp"
  32 #include "code/scopeDesc.hpp"
  33 #include "compiler/compileBroker.hpp"
  34 #include "gc/shared/gcLocker.inline.hpp"
  35 #include "gc/shared/workgroup.hpp"
  36 #include "interpreter/interpreter.hpp"
  37 #include "interpreter/linkResolver.hpp"
  38 #include "interpreter/oopMapCache.hpp"
  39 #include "jvmtifiles/jvmtiEnv.hpp"
  40 #include "logging/logConfiguration.hpp"
  41 #include "memory/metaspaceShared.hpp"
  42 #include "memory/oopFactory.hpp"
  43 #include "memory/universe.inline.hpp"
  44 #include "oops/instanceKlass.hpp"
  45 #include "oops/objArrayOop.hpp"
  46 #include "oops/oop.inline.hpp"
  47 #include "oops/symbol.hpp"
  48 #include "oops/verifyOopClosure.hpp"
  49 #include "prims/jvm_misc.hpp"
  50 #include "prims/jvmtiExport.hpp"
  51 #include "prims/jvmtiThreadState.hpp"
  52 #include "prims/privilegedStack.hpp"
  53 #include "runtime/arguments.hpp"
  54 #include "runtime/atomic.inline.hpp"
  55 #include "runtime/biasedLocking.hpp"
  56 #include "runtime/commandLineFlagConstraintList.hpp"
  57 #include "runtime/commandLineFlagRangeList.hpp"
  58 #include "runtime/deoptimization.hpp"
  59 #include "runtime/fprofiler.hpp"
  60 #include "runtime/frame.inline.hpp"
  61 #include "runtime/globals.hpp"
  62 #include "runtime/init.hpp"
  63 #include "runtime/interfaceSupport.hpp"
  64 #include "runtime/java.hpp"
  65 #include "runtime/javaCalls.hpp"
  66 #include "runtime/jniPeriodicChecker.hpp"
  67 #include "runtime/memprofiler.hpp"
  68 #include "runtime/mutexLocker.hpp"
  69 #include "runtime/objectMonitor.hpp"
  70 #include "runtime/orderAccess.inline.hpp"
  71 #include "runtime/osThread.hpp"
  72 #include "runtime/safepoint.hpp"
  73 #include "runtime/sharedRuntime.hpp"
  74 #include "runtime/statSampler.hpp"
  75 #include "runtime/stubRoutines.hpp"
  76 #include "runtime/sweeper.hpp"
  77 #include "runtime/task.hpp"
  78 #include "runtime/thread.inline.hpp"
  79 #include "runtime/threadCritical.hpp"
  80 #include "runtime/threadLocalStorage.hpp"
  81 #include "runtime/vframe.hpp"
  82 #include "runtime/vframeArray.hpp"
  83 #include "runtime/vframe_hp.hpp"
  84 #include "runtime/vmThread.hpp"
  85 #include "runtime/vm_operations.hpp"
  86 #include "runtime/vm_version.hpp"
  87 #include "services/attachListener.hpp"
  88 #include "services/management.hpp"
  89 #include "services/memTracker.hpp"
  90 #include "services/threadService.hpp"
  91 #include "trace/traceMacros.hpp"
  92 #include "trace/tracing.hpp"
  93 #include "utilities/defaultStream.hpp"
  94 #include "utilities/dtrace.hpp"
  95 #include "utilities/events.hpp"
  96 #include "utilities/macros.hpp"
  97 #include "utilities/preserveException.hpp"
  98 #if INCLUDE_ALL_GCS
  99 #include "gc/cms/concurrentMarkSweepThread.hpp"
 100 #include "gc/g1/concurrentMarkThread.inline.hpp"
 101 #include "gc/parallel/pcTasks.hpp"
 102 #endif // INCLUDE_ALL_GCS
 103 #ifdef COMPILER1
 104 #include "c1/c1_Compiler.hpp"
 105 #endif
 106 #ifdef COMPILER2
 107 #include "opto/c2compiler.hpp"
 108 #include "opto/idealGraphPrinter.hpp"
 109 #endif
 110 #if INCLUDE_RTM_OPT
 111 #include "runtime/rtmLocking.hpp"
 112 #endif
 113 
 114 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
 115 
 116 #ifdef DTRACE_ENABLED
 117 
 118 // Only bother with this argument setup if dtrace is available
 119 
 120   #define HOTSPOT_THREAD_PROBE_start HOTSPOT_THREAD_START
 121   #define HOTSPOT_THREAD_PROBE_stop HOTSPOT_THREAD_STOP
 122 
 123   #define DTRACE_THREAD_PROBE(probe, javathread)                           \
 124     {                                                                      \
 125       ResourceMark rm(this);                                               \
 126       int len = 0;                                                         \
 127       const char* name = (javathread)->get_thread_name();                  \
 128       len = strlen(name);                                                  \
 129       HOTSPOT_THREAD_PROBE_##probe(/* probe = start, stop */               \
 130         (char *) name, len,                                                \
 131         java_lang_Thread::thread_id((javathread)->threadObj()),            \
 132         (uintptr_t) (javathread)->osthread()->thread_id(),                 \
 133         java_lang_Thread::is_daemon((javathread)->threadObj()));           \
 134     }
 135 
 136 #else //  ndef DTRACE_ENABLED
 137 
 138   #define DTRACE_THREAD_PROBE(probe, javathread)
 139 
 140 #endif // ndef DTRACE_ENABLED
 141 
 142 
 143 // Class hierarchy
 144 // - Thread
 145 //   - VMThread
 146 //   - WatcherThread
 147 //   - ConcurrentMarkSweepThread
 148 //   - JavaThread
 149 //     - CompilerThread
 150 
 151 // ======= Thread ========
 152 // Support for forcing alignment of thread objects for biased locking
 153 void* Thread::allocate(size_t size, bool throw_excpt, MEMFLAGS flags) {
 154   if (UseBiasedLocking) {
 155     const int alignment = markOopDesc::biased_lock_alignment;
 156     size_t aligned_size = size + (alignment - sizeof(intptr_t));
 157     void* real_malloc_addr = throw_excpt? AllocateHeap(aligned_size, flags, CURRENT_PC)
 158                                           : AllocateHeap(aligned_size, flags, CURRENT_PC,
 159                                                          AllocFailStrategy::RETURN_NULL);
 160     void* aligned_addr     = (void*) align_size_up((intptr_t) real_malloc_addr, alignment);
 161     assert(((uintptr_t) aligned_addr + (uintptr_t) size) <=
 162            ((uintptr_t) real_malloc_addr + (uintptr_t) aligned_size),
 163            "JavaThread alignment code overflowed allocated storage");
 164     if (TraceBiasedLocking) {
 165       if (aligned_addr != real_malloc_addr) {
 166         tty->print_cr("Aligned thread " INTPTR_FORMAT " to " INTPTR_FORMAT,
 167                       real_malloc_addr, aligned_addr);
 168       }
 169     }
 170     ((Thread*) aligned_addr)->_real_malloc_address = real_malloc_addr;
 171     return aligned_addr;
 172   } else {
 173     return throw_excpt? AllocateHeap(size, flags, CURRENT_PC)
 174                        : AllocateHeap(size, flags, CURRENT_PC, AllocFailStrategy::RETURN_NULL);
 175   }
 176 }
 177 
 178 void Thread::operator delete(void* p) {
 179   if (UseBiasedLocking) {
 180     void* real_malloc_addr = ((Thread*) p)->_real_malloc_address;
 181     FreeHeap(real_malloc_addr);
 182   } else {
 183     FreeHeap(p);
 184   }
 185 }
 186 
 187 
 188 // Base class for all threads: VMThread, WatcherThread, ConcurrentMarkSweepThread,
 189 // JavaThread
 190 
 191 
 192 Thread::Thread() {
 193   // stack and get_thread
 194   set_stack_base(NULL);
 195   set_stack_size(0);
 196   set_self_raw_id(0);
 197   set_lgrp_id(-1);
 198   DEBUG_ONLY(clear_suspendible_thread();)
 199 
 200   // allocated data structures
 201   set_osthread(NULL);
 202   set_resource_area(new (mtThread)ResourceArea());
 203   DEBUG_ONLY(_current_resource_mark = NULL;)
 204   set_handle_area(new (mtThread) HandleArea(NULL));
 205   set_metadata_handles(new (ResourceObj::C_HEAP, mtClass) GrowableArray<Metadata*>(30, true));
 206   set_active_handles(NULL);
 207   set_free_handle_block(NULL);
 208   set_last_handle_mark(NULL);
 209 
 210   // This initial value ==> never claimed.
 211   _oops_do_parity = 0;
 212 
 213   // the handle mark links itself to last_handle_mark
 214   new HandleMark(this);
 215 
 216   // plain initialization
 217   debug_only(_owned_locks = NULL;)
 218   debug_only(_allow_allocation_count = 0;)
 219   NOT_PRODUCT(_allow_safepoint_count = 0;)
 220   NOT_PRODUCT(_skip_gcalot = false;)
 221   _jvmti_env_iteration_count = 0;
 222   set_allocated_bytes(0);
 223   _vm_operation_started_count = 0;
 224   _vm_operation_completed_count = 0;
 225   _current_pending_monitor = NULL;
 226   _current_pending_monitor_is_from_java = true;
 227   _current_waiting_monitor = NULL;
 228   _num_nested_signal = 0;
 229   omFreeList = NULL;
 230   omFreeCount = 0;
 231   omFreeProvision = 32;
 232   omInUseList = NULL;
 233   omInUseCount = 0;
 234 
 235 #ifdef ASSERT
 236   _visited_for_critical_count = false;
 237 #endif
 238 
 239   _SR_lock = new Monitor(Mutex::suspend_resume, "SR_lock", true,
 240                          Monitor::_safepoint_check_sometimes);
 241   _suspend_flags = 0;
 242 
 243   // thread-specific hashCode stream generator state - Marsaglia shift-xor form
 244   _hashStateX = os::random();
 245   _hashStateY = 842502087;
 246   _hashStateZ = 0x8767;    // (int)(3579807591LL & 0xffff) ;
 247   _hashStateW = 273326509;
 248 
 249   _OnTrap   = 0;
 250   _schedctl = NULL;
 251   _Stalled  = 0;
 252   _TypeTag  = 0x2BAD;
 253 
 254   // Many of the following fields are effectively final - immutable
 255   // Note that nascent threads can't use the Native Monitor-Mutex
 256   // construct until the _MutexEvent is initialized ...
 257   // CONSIDER: instead of using a fixed set of purpose-dedicated ParkEvents
 258   // we might instead use a stack of ParkEvents that we could provision on-demand.
 259   // The stack would act as a cache to avoid calls to ParkEvent::Allocate()
 260   // and ::Release()
 261   _ParkEvent   = ParkEvent::Allocate(this);
 262   _SleepEvent  = ParkEvent::Allocate(this);
 263   _MutexEvent  = ParkEvent::Allocate(this);
 264   _MuxEvent    = ParkEvent::Allocate(this);
 265 
 266 #ifdef CHECK_UNHANDLED_OOPS
 267   if (CheckUnhandledOops) {
 268     _unhandled_oops = new UnhandledOops(this);
 269   }
 270 #endif // CHECK_UNHANDLED_OOPS
 271 #ifdef ASSERT
 272   if (UseBiasedLocking) {
 273     assert((((uintptr_t) this) & (markOopDesc::biased_lock_alignment - 1)) == 0, "forced alignment of thread object failed");
 274     assert(this == _real_malloc_address ||
 275            this == (void*) align_size_up((intptr_t) _real_malloc_address, markOopDesc::biased_lock_alignment),
 276            "bug in forced alignment of thread objects");
 277   }
 278 #endif // ASSERT
 279 }
 280 
 281 // Non-inlined version to be used where thread.inline.hpp shouldn't be included.
 282 Thread* Thread::current_noinline() {
 283   return Thread::current();
 284 }
 285 
 286 void Thread::initialize_thread_local_storage() {
 287   // Note: Make sure this method only calls
 288   // non-blocking operations. Otherwise, it might not work
 289   // with the thread-startup/safepoint interaction.
 290 
 291   // During Java thread startup, safepoint code should allow this
 292   // method to complete because it may need to allocate memory to
 293   // store information for the new thread.
 294 
 295   // initialize structure dependent on thread local storage
 296   ThreadLocalStorage::set_thread(this);
 297 }
 298 
 299 void Thread::record_stack_base_and_size() {
 300   set_stack_base(os::current_stack_base());
 301   set_stack_size(os::current_stack_size());
 302   if (is_Java_thread()) {
 303     ((JavaThread*) this)->set_stack_overflow_limit();
 304   }
 305   // CR 7190089: on Solaris, primordial thread's stack is adjusted
 306   // in initialize_thread(). Without the adjustment, stack size is
 307   // incorrect if stack is set to unlimited (ulimit -s unlimited).
 308   // So far, only Solaris has real implementation of initialize_thread().
 309   //
 310   // set up any platform-specific state.
 311   os::initialize_thread(this);
 312 
 313 #if INCLUDE_NMT
 314   // record thread's native stack, stack grows downward
 315   address stack_low_addr = stack_base() - stack_size();
 316   MemTracker::record_thread_stack(stack_low_addr, stack_size());
 317 #endif // INCLUDE_NMT
 318 }
 319 
 320 
 321 Thread::~Thread() {
 322   // Reclaim the objectmonitors from the omFreeList of the moribund thread.
 323   ObjectSynchronizer::omFlush(this);
 324 
 325   EVENT_THREAD_DESTRUCT(this);
 326 
 327   // stack_base can be NULL if the thread is never started or exited before
 328   // record_stack_base_and_size called. Although, we would like to ensure
 329   // that all started threads do call record_stack_base_and_size(), there is
 330   // not proper way to enforce that.
 331 #if INCLUDE_NMT
 332   if (_stack_base != NULL) {
 333     address low_stack_addr = stack_base() - stack_size();
 334     MemTracker::release_thread_stack(low_stack_addr, stack_size());
 335 #ifdef ASSERT
 336     set_stack_base(NULL);
 337 #endif
 338   }
 339 #endif // INCLUDE_NMT
 340 
 341   // deallocate data structures
 342   delete resource_area();
 343   // since the handle marks are using the handle area, we have to deallocated the root
 344   // handle mark before deallocating the thread's handle area,
 345   assert(last_handle_mark() != NULL, "check we have an element");
 346   delete last_handle_mark();
 347   assert(last_handle_mark() == NULL, "check we have reached the end");
 348 
 349   // It's possible we can encounter a null _ParkEvent, etc., in stillborn threads.
 350   // We NULL out the fields for good hygiene.
 351   ParkEvent::Release(_ParkEvent); _ParkEvent   = NULL;
 352   ParkEvent::Release(_SleepEvent); _SleepEvent  = NULL;
 353   ParkEvent::Release(_MutexEvent); _MutexEvent  = NULL;
 354   ParkEvent::Release(_MuxEvent); _MuxEvent    = NULL;
 355 
 356   delete handle_area();
 357   delete metadata_handles();
 358 
 359   // osthread() can be NULL, if creation of thread failed.
 360   if (osthread() != NULL) os::free_thread(osthread());
 361 
 362   delete _SR_lock;
 363 
 364   // clear thread local storage if the Thread is deleting itself
 365   if (this == Thread::current()) {
 366     ThreadLocalStorage::set_thread(NULL);
 367   } else {
 368     // In the case where we're not the current thread, invalidate all the
 369     // caches in case some code tries to get the current thread or the
 370     // thread that was destroyed, and gets stale information.
 371     ThreadLocalStorage::invalidate_all();
 372   }
 373   CHECK_UNHANDLED_OOPS_ONLY(if (CheckUnhandledOops) delete unhandled_oops();)
 374 }
 375 
 376 // NOTE: dummy function for assertion purpose.
 377 void Thread::run() {
 378   ShouldNotReachHere();
 379 }
 380 
 381 #ifdef ASSERT
 382 // Private method to check for dangling thread pointer
 383 void check_for_dangling_thread_pointer(Thread *thread) {
 384   assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
 385          "possibility of dangling Thread pointer");
 386 }
 387 #endif
 388 
 389 ThreadPriority Thread::get_priority(const Thread* const thread) {
 390   ThreadPriority priority;
 391   // Can return an error!
 392   (void)os::get_priority(thread, priority);
 393   assert(MinPriority <= priority && priority <= MaxPriority, "non-Java priority found");
 394   return priority;
 395 }
 396 
 397 void Thread::set_priority(Thread* thread, ThreadPriority priority) {
 398   debug_only(check_for_dangling_thread_pointer(thread);)
 399   // Can return an error!
 400   (void)os::set_priority(thread, priority);
 401 }
 402 
 403 
 404 void Thread::start(Thread* thread) {
 405   // Start is different from resume in that its safety is guaranteed by context or
 406   // being called from a Java method synchronized on the Thread object.
 407   if (!DisableStartThread) {
 408     if (thread->is_Java_thread()) {
 409       // Initialize the thread state to RUNNABLE before starting this thread.
 410       // Can not set it after the thread started because we do not know the
 411       // exact thread state at that time. It could be in MONITOR_WAIT or
 412       // in SLEEPING or some other state.
 413       java_lang_Thread::set_thread_status(((JavaThread*)thread)->threadObj(),
 414                                           java_lang_Thread::RUNNABLE);
 415     }
 416     os::start_thread(thread);
 417   }
 418 }
 419 
 420 // Enqueue a VM_Operation to do the job for us - sometime later
 421 void Thread::send_async_exception(oop java_thread, oop java_throwable) {
 422   VM_ThreadStop* vm_stop = new VM_ThreadStop(java_thread, java_throwable);
 423   VMThread::execute(vm_stop);
 424 }
 425 
 426 
 427 // Check if an external suspend request has completed (or has been
 428 // cancelled). Returns true if the thread is externally suspended and
 429 // false otherwise.
 430 //
 431 // The bits parameter returns information about the code path through
 432 // the routine. Useful for debugging:
 433 //
 434 // set in is_ext_suspend_completed():
 435 // 0x00000001 - routine was entered
 436 // 0x00000010 - routine return false at end
 437 // 0x00000100 - thread exited (return false)
 438 // 0x00000200 - suspend request cancelled (return false)
 439 // 0x00000400 - thread suspended (return true)
 440 // 0x00001000 - thread is in a suspend equivalent state (return true)
 441 // 0x00002000 - thread is native and walkable (return true)
 442 // 0x00004000 - thread is native_trans and walkable (needed retry)
 443 //
 444 // set in wait_for_ext_suspend_completion():
 445 // 0x00010000 - routine was entered
 446 // 0x00020000 - suspend request cancelled before loop (return false)
 447 // 0x00040000 - thread suspended before loop (return true)
 448 // 0x00080000 - suspend request cancelled in loop (return false)
 449 // 0x00100000 - thread suspended in loop (return true)
 450 // 0x00200000 - suspend not completed during retry loop (return false)
 451 
 452 // Helper class for tracing suspend wait debug bits.
 453 //
 454 // 0x00000100 indicates that the target thread exited before it could
 455 // self-suspend which is not a wait failure. 0x00000200, 0x00020000 and
 456 // 0x00080000 each indicate a cancelled suspend request so they don't
 457 // count as wait failures either.
 458 #define DEBUG_FALSE_BITS (0x00000010 | 0x00200000)
 459 
 460 class TraceSuspendDebugBits : public StackObj {
 461  private:
 462   JavaThread * jt;
 463   bool         is_wait;
 464   bool         called_by_wait;  // meaningful when !is_wait
 465   uint32_t *   bits;
 466 
 467  public:
 468   TraceSuspendDebugBits(JavaThread *_jt, bool _is_wait, bool _called_by_wait,
 469                         uint32_t *_bits) {
 470     jt             = _jt;
 471     is_wait        = _is_wait;
 472     called_by_wait = _called_by_wait;
 473     bits           = _bits;
 474   }
 475 
 476   ~TraceSuspendDebugBits() {
 477     if (!is_wait) {
 478 #if 1
 479       // By default, don't trace bits for is_ext_suspend_completed() calls.
 480       // That trace is very chatty.
 481       return;
 482 #else
 483       if (!called_by_wait) {
 484         // If tracing for is_ext_suspend_completed() is enabled, then only
 485         // trace calls to it from wait_for_ext_suspend_completion()
 486         return;
 487       }
 488 #endif
 489     }
 490 
 491     if (AssertOnSuspendWaitFailure || TraceSuspendWaitFailures) {
 492       if (bits != NULL && (*bits & DEBUG_FALSE_BITS) != 0) {
 493         MutexLocker ml(Threads_lock);  // needed for get_thread_name()
 494         ResourceMark rm;
 495 
 496         tty->print_cr(
 497                       "Failed wait_for_ext_suspend_completion(thread=%s, debug_bits=%x)",
 498                       jt->get_thread_name(), *bits);
 499 
 500         guarantee(!AssertOnSuspendWaitFailure, "external suspend wait failed");
 501       }
 502     }
 503   }
 504 };
 505 #undef DEBUG_FALSE_BITS
 506 
 507 
 508 bool JavaThread::is_ext_suspend_completed(bool called_by_wait, int delay,
 509                                           uint32_t *bits) {
 510   TraceSuspendDebugBits tsdb(this, false /* !is_wait */, called_by_wait, bits);
 511 
 512   bool did_trans_retry = false;  // only do thread_in_native_trans retry once
 513   bool do_trans_retry;           // flag to force the retry
 514 
 515   *bits |= 0x00000001;
 516 
 517   do {
 518     do_trans_retry = false;
 519 
 520     if (is_exiting()) {
 521       // Thread is in the process of exiting. This is always checked
 522       // first to reduce the risk of dereferencing a freed JavaThread.
 523       *bits |= 0x00000100;
 524       return false;
 525     }
 526 
 527     if (!is_external_suspend()) {
 528       // Suspend request is cancelled. This is always checked before
 529       // is_ext_suspended() to reduce the risk of a rogue resume
 530       // confusing the thread that made the suspend request.
 531       *bits |= 0x00000200;
 532       return false;
 533     }
 534 
 535     if (is_ext_suspended()) {
 536       // thread is suspended
 537       *bits |= 0x00000400;
 538       return true;
 539     }
 540 
 541     // Now that we no longer do hard suspends of threads running
 542     // native code, the target thread can be changing thread state
 543     // while we are in this routine:
 544     //
 545     //   _thread_in_native -> _thread_in_native_trans -> _thread_blocked
 546     //
 547     // We save a copy of the thread state as observed at this moment
 548     // and make our decision about suspend completeness based on the
 549     // copy. This closes the race where the thread state is seen as
 550     // _thread_in_native_trans in the if-thread_blocked check, but is
 551     // seen as _thread_blocked in if-thread_in_native_trans check.
 552     JavaThreadState save_state = thread_state();
 553 
 554     if (save_state == _thread_blocked && is_suspend_equivalent()) {
 555       // If the thread's state is _thread_blocked and this blocking
 556       // condition is known to be equivalent to a suspend, then we can
 557       // consider the thread to be externally suspended. This means that
 558       // the code that sets _thread_blocked has been modified to do
 559       // self-suspension if the blocking condition releases. We also
 560       // used to check for CONDVAR_WAIT here, but that is now covered by
 561       // the _thread_blocked with self-suspension check.
 562       //
 563       // Return true since we wouldn't be here unless there was still an
 564       // external suspend request.
 565       *bits |= 0x00001000;
 566       return true;
 567     } else if (save_state == _thread_in_native && frame_anchor()->walkable()) {
 568       // Threads running native code will self-suspend on native==>VM/Java
 569       // transitions. If its stack is walkable (should always be the case
 570       // unless this function is called before the actual java_suspend()
 571       // call), then the wait is done.
 572       *bits |= 0x00002000;
 573       return true;
 574     } else if (!called_by_wait && !did_trans_retry &&
 575                save_state == _thread_in_native_trans &&
 576                frame_anchor()->walkable()) {
 577       // The thread is transitioning from thread_in_native to another
 578       // thread state. check_safepoint_and_suspend_for_native_trans()
 579       // will force the thread to self-suspend. If it hasn't gotten
 580       // there yet we may have caught the thread in-between the native
 581       // code check above and the self-suspend. Lucky us. If we were
 582       // called by wait_for_ext_suspend_completion(), then it
 583       // will be doing the retries so we don't have to.
 584       //
 585       // Since we use the saved thread state in the if-statement above,
 586       // there is a chance that the thread has already transitioned to
 587       // _thread_blocked by the time we get here. In that case, we will
 588       // make a single unnecessary pass through the logic below. This
 589       // doesn't hurt anything since we still do the trans retry.
 590 
 591       *bits |= 0x00004000;
 592 
 593       // Once the thread leaves thread_in_native_trans for another
 594       // thread state, we break out of this retry loop. We shouldn't
 595       // need this flag to prevent us from getting back here, but
 596       // sometimes paranoia is good.
 597       did_trans_retry = true;
 598 
 599       // We wait for the thread to transition to a more usable state.
 600       for (int i = 1; i <= SuspendRetryCount; i++) {
 601         // We used to do an "os::yield_all(i)" call here with the intention
 602         // that yielding would increase on each retry. However, the parameter
 603         // is ignored on Linux which means the yield didn't scale up. Waiting
 604         // on the SR_lock below provides a much more predictable scale up for
 605         // the delay. It also provides a simple/direct point to check for any
 606         // safepoint requests from the VMThread
 607 
 608         // temporarily drops SR_lock while doing wait with safepoint check
 609         // (if we're a JavaThread - the WatcherThread can also call this)
 610         // and increase delay with each retry
 611         SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
 612 
 613         // check the actual thread state instead of what we saved above
 614         if (thread_state() != _thread_in_native_trans) {
 615           // the thread has transitioned to another thread state so
 616           // try all the checks (except this one) one more time.
 617           do_trans_retry = true;
 618           break;
 619         }
 620       } // end retry loop
 621 
 622 
 623     }
 624   } while (do_trans_retry);
 625 
 626   *bits |= 0x00000010;
 627   return false;
 628 }
 629 
 630 // Wait for an external suspend request to complete (or be cancelled).
 631 // Returns true if the thread is externally suspended and false otherwise.
 632 //
 633 bool JavaThread::wait_for_ext_suspend_completion(int retries, int delay,
 634                                                  uint32_t *bits) {
 635   TraceSuspendDebugBits tsdb(this, true /* is_wait */,
 636                              false /* !called_by_wait */, bits);
 637 
 638   // local flag copies to minimize SR_lock hold time
 639   bool is_suspended;
 640   bool pending;
 641   uint32_t reset_bits;
 642 
 643   // set a marker so is_ext_suspend_completed() knows we are the caller
 644   *bits |= 0x00010000;
 645 
 646   // We use reset_bits to reinitialize the bits value at the top of
 647   // each retry loop. This allows the caller to make use of any
 648   // unused bits for their own marking purposes.
 649   reset_bits = *bits;
 650 
 651   {
 652     MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
 653     is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 654                                             delay, bits);
 655     pending = is_external_suspend();
 656   }
 657   // must release SR_lock to allow suspension to complete
 658 
 659   if (!pending) {
 660     // A cancelled suspend request is the only false return from
 661     // is_ext_suspend_completed() that keeps us from entering the
 662     // retry loop.
 663     *bits |= 0x00020000;
 664     return false;
 665   }
 666 
 667   if (is_suspended) {
 668     *bits |= 0x00040000;
 669     return true;
 670   }
 671 
 672   for (int i = 1; i <= retries; i++) {
 673     *bits = reset_bits;  // reinit to only track last retry
 674 
 675     // We used to do an "os::yield_all(i)" call here with the intention
 676     // that yielding would increase on each retry. However, the parameter
 677     // is ignored on Linux which means the yield didn't scale up. Waiting
 678     // on the SR_lock below provides a much more predictable scale up for
 679     // the delay. It also provides a simple/direct point to check for any
 680     // safepoint requests from the VMThread
 681 
 682     {
 683       MutexLocker ml(SR_lock());
 684       // wait with safepoint check (if we're a JavaThread - the WatcherThread
 685       // can also call this)  and increase delay with each retry
 686       SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
 687 
 688       is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 689                                               delay, bits);
 690 
 691       // It is possible for the external suspend request to be cancelled
 692       // (by a resume) before the actual suspend operation is completed.
 693       // Refresh our local copy to see if we still need to wait.
 694       pending = is_external_suspend();
 695     }
 696 
 697     if (!pending) {
 698       // A cancelled suspend request is the only false return from
 699       // is_ext_suspend_completed() that keeps us from staying in the
 700       // retry loop.
 701       *bits |= 0x00080000;
 702       return false;
 703     }
 704 
 705     if (is_suspended) {
 706       *bits |= 0x00100000;
 707       return true;
 708     }
 709   } // end retry loop
 710 
 711   // thread did not suspend after all our retries
 712   *bits |= 0x00200000;
 713   return false;
 714 }
 715 
 716 #ifndef PRODUCT
 717 void JavaThread::record_jump(address target, address instr, const char* file,
 718                              int line) {
 719 
 720   // This should not need to be atomic as the only way for simultaneous
 721   // updates is via interrupts. Even then this should be rare or non-existent
 722   // and we don't care that much anyway.
 723 
 724   int index = _jmp_ring_index;
 725   _jmp_ring_index = (index + 1) & (jump_ring_buffer_size - 1);
 726   _jmp_ring[index]._target = (intptr_t) target;
 727   _jmp_ring[index]._instruction = (intptr_t) instr;
 728   _jmp_ring[index]._file = file;
 729   _jmp_ring[index]._line = line;
 730 }
 731 #endif // PRODUCT
 732 
 733 // Called by flat profiler
 734 // Callers have already called wait_for_ext_suspend_completion
 735 // The assertion for that is currently too complex to put here:
 736 bool JavaThread::profile_last_Java_frame(frame* _fr) {
 737   bool gotframe = false;
 738   // self suspension saves needed state.
 739   if (has_last_Java_frame() && _anchor.walkable()) {
 740     *_fr = pd_last_frame();
 741     gotframe = true;
 742   }
 743   return gotframe;
 744 }
 745 
 746 void Thread::interrupt(Thread* thread) {
 747   debug_only(check_for_dangling_thread_pointer(thread);)
 748   os::interrupt(thread);
 749 }
 750 
 751 bool Thread::is_interrupted(Thread* thread, bool clear_interrupted) {
 752   debug_only(check_for_dangling_thread_pointer(thread);)
 753   // Note:  If clear_interrupted==false, this simply fetches and
 754   // returns the value of the field osthread()->interrupted().
 755   return os::is_interrupted(thread, clear_interrupted);
 756 }
 757 
 758 
 759 // GC Support
 760 bool Thread::claim_oops_do_par_case(int strong_roots_parity) {
 761   jint thread_parity = _oops_do_parity;
 762   if (thread_parity != strong_roots_parity) {
 763     jint res = Atomic::cmpxchg(strong_roots_parity, &_oops_do_parity, thread_parity);
 764     if (res == thread_parity) {
 765       return true;
 766     } else {
 767       guarantee(res == strong_roots_parity, "Or else what?");
 768       return false;
 769     }
 770   }
 771   return false;
 772 }
 773 
 774 void Thread::oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
 775   active_handles()->oops_do(f);
 776   // Do oop for ThreadShadow
 777   f->do_oop((oop*)&_pending_exception);
 778   handle_area()->oops_do(f);
 779 }
 780 
 781 void Thread::nmethods_do(CodeBlobClosure* cf) {
 782   // no nmethods in a generic thread...
 783 }
 784 
 785 void Thread::metadata_handles_do(void f(Metadata*)) {
 786   // Only walk the Handles in Thread.
 787   if (metadata_handles() != NULL) {
 788     for (int i = 0; i< metadata_handles()->length(); i++) {
 789       f(metadata_handles()->at(i));
 790     }
 791   }
 792 }
 793 
 794 void Thread::print_on(outputStream* st) const {
 795   // get_priority assumes osthread initialized
 796   if (osthread() != NULL) {
 797     int os_prio;
 798     if (os::get_native_priority(this, &os_prio) == OS_OK) {
 799       st->print("os_prio=%d ", os_prio);
 800     }
 801     st->print("tid=" INTPTR_FORMAT " ", this);
 802     ext().print_on(st);
 803     osthread()->print_on(st);
 804   }
 805   debug_only(if (WizardMode) print_owned_locks_on(st);)
 806 }
 807 
 808 // Thread::print_on_error() is called by fatal error handler. Don't use
 809 // any lock or allocate memory.
 810 void Thread::print_on_error(outputStream* st, char* buf, int buflen) const {
 811   if (is_VM_thread())                 st->print("VMThread");
 812   else if (is_Compiler_thread())      st->print("CompilerThread");
 813   else if (is_Java_thread())          st->print("JavaThread");
 814   else if (is_GC_task_thread())       st->print("GCTaskThread");
 815   else if (is_Watcher_thread())       st->print("WatcherThread");
 816   else if (is_ConcurrentGC_thread())  st->print("ConcurrentGCThread");
 817   else                                st->print("Thread");
 818 
 819   st->print(" [stack: " PTR_FORMAT "," PTR_FORMAT "]",
 820             _stack_base - _stack_size, _stack_base);
 821 
 822   if (osthread()) {
 823     st->print(" [id=%d]", osthread()->thread_id());
 824   }
 825 }
 826 
 827 #ifdef ASSERT
 828 void Thread::print_owned_locks_on(outputStream* st) const {
 829   Monitor *cur = _owned_locks;
 830   if (cur == NULL) {
 831     st->print(" (no locks) ");
 832   } else {
 833     st->print_cr(" Locks owned:");
 834     while (cur) {
 835       cur->print_on(st);
 836       cur = cur->next();
 837     }
 838   }
 839 }
 840 
 841 static int ref_use_count  = 0;
 842 
 843 bool Thread::owns_locks_but_compiled_lock() const {
 844   for (Monitor *cur = _owned_locks; cur; cur = cur->next()) {
 845     if (cur != Compile_lock) return true;
 846   }
 847   return false;
 848 }
 849 
 850 
 851 #endif
 852 
 853 #ifndef PRODUCT
 854 
 855 // The flag: potential_vm_operation notifies if this particular safepoint state could potential
 856 // invoke the vm-thread (i.e., and oop allocation). In that case, we also have to make sure that
 857 // no threads which allow_vm_block's are held
 858 void Thread::check_for_valid_safepoint_state(bool potential_vm_operation) {
 859   // Check if current thread is allowed to block at a safepoint
 860   if (!(_allow_safepoint_count == 0)) {
 861     fatal("Possible safepoint reached by thread that does not allow it");
 862   }
 863   if (is_Java_thread() && ((JavaThread*)this)->thread_state() != _thread_in_vm) {
 864     fatal("LEAF method calling lock?");
 865   }
 866 
 867 #ifdef ASSERT
 868   if (potential_vm_operation && is_Java_thread()
 869       && !Universe::is_bootstrapping()) {
 870     // Make sure we do not hold any locks that the VM thread also uses.
 871     // This could potentially lead to deadlocks
 872     for (Monitor *cur = _owned_locks; cur; cur = cur->next()) {
 873       // Threads_lock is special, since the safepoint synchronization will not start before this is
 874       // acquired. Hence, a JavaThread cannot be holding it at a safepoint. So is VMOperationRequest_lock,
 875       // since it is used to transfer control between JavaThreads and the VMThread
 876       // Do not *exclude* any locks unless you are absolutely sure it is correct. Ask someone else first!
 877       if ((cur->allow_vm_block() &&
 878            cur != Threads_lock &&
 879            cur != Compile_lock &&               // Temporary: should not be necessary when we get separate compilation
 880            cur != VMOperationRequest_lock &&
 881            cur != VMOperationQueue_lock) ||
 882            cur->rank() == Mutex::special) {
 883         fatal(err_msg("Thread holding lock at safepoint that vm can block on: %s", cur->name()));
 884       }
 885     }
 886   }
 887 
 888   if (GCALotAtAllSafepoints) {
 889     // We could enter a safepoint here and thus have a gc
 890     InterfaceSupport::check_gc_alot();
 891   }
 892 #endif
 893 }
 894 #endif
 895 
 896 bool Thread::is_in_stack(address adr) const {
 897   assert(Thread::current() == this, "is_in_stack can only be called from current thread");
 898   address end = os::current_stack_pointer();
 899   // Allow non Java threads to call this without stack_base
 900   if (_stack_base == NULL) return true;
 901   if (stack_base() >= adr && adr >= end) return true;
 902 
 903   return false;
 904 }
 905 
 906 
 907 bool Thread::is_in_usable_stack(address adr) const {
 908   size_t stack_guard_size = os::uses_stack_guard_pages() ? (StackYellowPages + StackRedPages) * os::vm_page_size() : 0;
 909   size_t usable_stack_size = _stack_size - stack_guard_size;
 910 
 911   return ((adr < stack_base()) && (adr >= stack_base() - usable_stack_size));
 912 }
 913 
 914 
 915 // We had to move these methods here, because vm threads get into ObjectSynchronizer::enter
 916 // However, there is a note in JavaThread::is_lock_owned() about the VM threads not being
 917 // used for compilation in the future. If that change is made, the need for these methods
 918 // should be revisited, and they should be removed if possible.
 919 
 920 bool Thread::is_lock_owned(address adr) const {
 921   return on_local_stack(adr);
 922 }
 923 
 924 bool Thread::set_as_starting_thread() {
 925   // NOTE: this must be called inside the main thread.
 926   return os::create_main_thread((JavaThread*)this);
 927 }
 928 
 929 static void initialize_class(Symbol* class_name, TRAPS) {
 930   Klass* klass = SystemDictionary::resolve_or_fail(class_name, true, CHECK);
 931   InstanceKlass::cast(klass)->initialize(CHECK);
 932 }
 933 
 934 
 935 // Creates the initial ThreadGroup
 936 static Handle create_initial_thread_group(TRAPS) {
 937   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_ThreadGroup(), true, CHECK_NH);
 938   instanceKlassHandle klass (THREAD, k);
 939 
 940   Handle system_instance = klass->allocate_instance_handle(CHECK_NH);
 941   {
 942     JavaValue result(T_VOID);
 943     JavaCalls::call_special(&result,
 944                             system_instance,
 945                             klass,
 946                             vmSymbols::object_initializer_name(),
 947                             vmSymbols::void_method_signature(),
 948                             CHECK_NH);
 949   }
 950   Universe::set_system_thread_group(system_instance());
 951 
 952   Handle main_instance = klass->allocate_instance_handle(CHECK_NH);
 953   {
 954     JavaValue result(T_VOID);
 955     Handle string = java_lang_String::create_from_str("main", CHECK_NH);
 956     JavaCalls::call_special(&result,
 957                             main_instance,
 958                             klass,
 959                             vmSymbols::object_initializer_name(),
 960                             vmSymbols::threadgroup_string_void_signature(),
 961                             system_instance,
 962                             string,
 963                             CHECK_NH);
 964   }
 965   return main_instance;
 966 }
 967 
 968 // Creates the initial Thread
 969 static oop create_initial_thread(Handle thread_group, JavaThread* thread,
 970                                  TRAPS) {
 971   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK_NULL);
 972   instanceKlassHandle klass (THREAD, k);
 973   instanceHandle thread_oop = klass->allocate_instance_handle(CHECK_NULL);
 974 
 975   java_lang_Thread::set_thread(thread_oop(), thread);
 976   java_lang_Thread::set_priority(thread_oop(), NormPriority);
 977   thread->set_threadObj(thread_oop());
 978 
 979   Handle string = java_lang_String::create_from_str("main", CHECK_NULL);
 980 
 981   JavaValue result(T_VOID);
 982   JavaCalls::call_special(&result, thread_oop,
 983                           klass,
 984                           vmSymbols::object_initializer_name(),
 985                           vmSymbols::threadgroup_string_void_signature(),
 986                           thread_group,
 987                           string,
 988                           CHECK_NULL);
 989   return thread_oop();
 990 }
 991 
 992 static void call_initializeSystemClass(TRAPS) {
 993   Klass* k =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
 994   instanceKlassHandle klass (THREAD, k);
 995 
 996   JavaValue result(T_VOID);
 997   JavaCalls::call_static(&result, klass, vmSymbols::initializeSystemClass_name(),
 998                          vmSymbols::void_method_signature(), CHECK);
 999 }
1000 
1001 char java_runtime_name[128] = "";
1002 char java_runtime_version[128] = "";
1003 
1004 // extract the JRE name from sun.misc.Version.java_runtime_name
1005 static const char* get_java_runtime_name(TRAPS) {
1006   Klass* k = SystemDictionary::find(vmSymbols::sun_misc_Version(),
1007                                     Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1008   fieldDescriptor fd;
1009   bool found = k != NULL &&
1010                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_name_name(),
1011                                                         vmSymbols::string_signature(), &fd);
1012   if (found) {
1013     oop name_oop = k->java_mirror()->obj_field(fd.offset());
1014     if (name_oop == NULL) {
1015       return NULL;
1016     }
1017     const char* name = java_lang_String::as_utf8_string(name_oop,
1018                                                         java_runtime_name,
1019                                                         sizeof(java_runtime_name));
1020     return name;
1021   } else {
1022     return NULL;
1023   }
1024 }
1025 
1026 // extract the JRE version from sun.misc.Version.java_runtime_version
1027 static const char* get_java_runtime_version(TRAPS) {
1028   Klass* k = SystemDictionary::find(vmSymbols::sun_misc_Version(),
1029                                     Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1030   fieldDescriptor fd;
1031   bool found = k != NULL &&
1032                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_version_name(),
1033                                                         vmSymbols::string_signature(), &fd);
1034   if (found) {
1035     oop name_oop = k->java_mirror()->obj_field(fd.offset());
1036     if (name_oop == NULL) {
1037       return NULL;
1038     }
1039     const char* name = java_lang_String::as_utf8_string(name_oop,
1040                                                         java_runtime_version,
1041                                                         sizeof(java_runtime_version));
1042     return name;
1043   } else {
1044     return NULL;
1045   }
1046 }
1047 
1048 // General purpose hook into Java code, run once when the VM is initialized.
1049 // The Java library method itself may be changed independently from the VM.
1050 static void call_postVMInitHook(TRAPS) {
1051   Klass* k = SystemDictionary::resolve_or_null(vmSymbols::sun_misc_PostVMInitHook(), THREAD);
1052   instanceKlassHandle klass (THREAD, k);
1053   if (klass.not_null()) {
1054     JavaValue result(T_VOID);
1055     JavaCalls::call_static(&result, klass, vmSymbols::run_method_name(),
1056                            vmSymbols::void_method_signature(),
1057                            CHECK);
1058   }
1059 }
1060 
1061 static void reset_vm_info_property(TRAPS) {
1062   // the vm info string
1063   ResourceMark rm(THREAD);
1064   const char *vm_info = VM_Version::vm_info_string();
1065 
1066   // java.lang.System class
1067   Klass* k =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
1068   instanceKlassHandle klass (THREAD, k);
1069 
1070   // setProperty arguments
1071   Handle key_str    = java_lang_String::create_from_str("java.vm.info", CHECK);
1072   Handle value_str  = java_lang_String::create_from_str(vm_info, CHECK);
1073 
1074   // return value
1075   JavaValue r(T_OBJECT);
1076 
1077   // public static String setProperty(String key, String value);
1078   JavaCalls::call_static(&r,
1079                          klass,
1080                          vmSymbols::setProperty_name(),
1081                          vmSymbols::string_string_string_signature(),
1082                          key_str,
1083                          value_str,
1084                          CHECK);
1085 }
1086 
1087 
1088 void JavaThread::allocate_threadObj(Handle thread_group, const char* thread_name,
1089                                     bool daemon, TRAPS) {
1090   assert(thread_group.not_null(), "thread group should be specified");
1091   assert(threadObj() == NULL, "should only create Java thread object once");
1092 
1093   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK);
1094   instanceKlassHandle klass (THREAD, k);
1095   instanceHandle thread_oop = klass->allocate_instance_handle(CHECK);
1096 
1097   java_lang_Thread::set_thread(thread_oop(), this);
1098   java_lang_Thread::set_priority(thread_oop(), NormPriority);
1099   set_threadObj(thread_oop());
1100 
1101   JavaValue result(T_VOID);
1102   if (thread_name != NULL) {
1103     Handle name = java_lang_String::create_from_str(thread_name, CHECK);
1104     // Thread gets assigned specified name and null target
1105     JavaCalls::call_special(&result,
1106                             thread_oop,
1107                             klass,
1108                             vmSymbols::object_initializer_name(),
1109                             vmSymbols::threadgroup_string_void_signature(),
1110                             thread_group, // Argument 1
1111                             name,         // Argument 2
1112                             THREAD);
1113   } else {
1114     // Thread gets assigned name "Thread-nnn" and null target
1115     // (java.lang.Thread doesn't have a constructor taking only a ThreadGroup argument)
1116     JavaCalls::call_special(&result,
1117                             thread_oop,
1118                             klass,
1119                             vmSymbols::object_initializer_name(),
1120                             vmSymbols::threadgroup_runnable_void_signature(),
1121                             thread_group, // Argument 1
1122                             Handle(),     // Argument 2
1123                             THREAD);
1124   }
1125 
1126 
1127   if (daemon) {
1128     java_lang_Thread::set_daemon(thread_oop());
1129   }
1130 
1131   if (HAS_PENDING_EXCEPTION) {
1132     return;
1133   }
1134 
1135   KlassHandle group(THREAD, SystemDictionary::ThreadGroup_klass());
1136   Handle threadObj(THREAD, this->threadObj());
1137 
1138   JavaCalls::call_special(&result,
1139                           thread_group,
1140                           group,
1141                           vmSymbols::add_method_name(),
1142                           vmSymbols::thread_void_signature(),
1143                           threadObj,          // Arg 1
1144                           THREAD);
1145 }
1146 
1147 // NamedThread --  non-JavaThread subclasses with multiple
1148 // uniquely named instances should derive from this.
1149 NamedThread::NamedThread() : Thread() {
1150   _name = NULL;
1151   _processed_thread = NULL;
1152 }
1153 
1154 NamedThread::~NamedThread() {
1155   if (_name != NULL) {
1156     FREE_C_HEAP_ARRAY(char, _name);
1157     _name = NULL;
1158   }
1159 }
1160 
1161 void NamedThread::set_name(const char* format, ...) {
1162   guarantee(_name == NULL, "Only get to set name once.");
1163   _name = NEW_C_HEAP_ARRAY(char, max_name_len, mtThread);
1164   guarantee(_name != NULL, "alloc failure");
1165   va_list ap;
1166   va_start(ap, format);
1167   jio_vsnprintf(_name, max_name_len, format, ap);
1168   va_end(ap);
1169 }
1170 
1171 void NamedThread::initialize_named_thread() {
1172   set_native_thread_name(name());
1173 }
1174 
1175 void NamedThread::print_on(outputStream* st) const {
1176   st->print("\"%s\" ", name());
1177   Thread::print_on(st);
1178   st->cr();
1179 }
1180 
1181 
1182 // ======= WatcherThread ========
1183 
1184 // The watcher thread exists to simulate timer interrupts.  It should
1185 // be replaced by an abstraction over whatever native support for
1186 // timer interrupts exists on the platform.
1187 
1188 WatcherThread* WatcherThread::_watcher_thread   = NULL;
1189 bool WatcherThread::_startable = false;
1190 volatile bool  WatcherThread::_should_terminate = false;
1191 
1192 WatcherThread::WatcherThread() : Thread(), _crash_protection(NULL) {
1193   assert(watcher_thread() == NULL, "we can only allocate one WatcherThread");
1194   if (os::create_thread(this, os::watcher_thread)) {
1195     _watcher_thread = this;
1196 
1197     // Set the watcher thread to the highest OS priority which should not be
1198     // used, unless a Java thread with priority java.lang.Thread.MAX_PRIORITY
1199     // is created. The only normal thread using this priority is the reference
1200     // handler thread, which runs for very short intervals only.
1201     // If the VMThread's priority is not lower than the WatcherThread profiling
1202     // will be inaccurate.
1203     os::set_priority(this, MaxPriority);
1204     if (!DisableStartThread) {
1205       os::start_thread(this);
1206     }
1207   }
1208 }
1209 
1210 int WatcherThread::sleep() const {
1211   // The WatcherThread does not participate in the safepoint protocol
1212   // for the PeriodicTask_lock because it is not a JavaThread.
1213   MutexLockerEx ml(PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
1214 
1215   if (_should_terminate) {
1216     // check for termination before we do any housekeeping or wait
1217     return 0;  // we did not sleep.
1218   }
1219 
1220   // remaining will be zero if there are no tasks,
1221   // causing the WatcherThread to sleep until a task is
1222   // enrolled
1223   int remaining = PeriodicTask::time_to_wait();
1224   int time_slept = 0;
1225 
1226   // we expect this to timeout - we only ever get unparked when
1227   // we should terminate or when a new task has been enrolled
1228   OSThreadWaitState osts(this->osthread(), false /* not Object.wait() */);
1229 
1230   jlong time_before_loop = os::javaTimeNanos();
1231 
1232   while (true) {
1233     bool timedout = PeriodicTask_lock->wait(Mutex::_no_safepoint_check_flag,
1234                                             remaining);
1235     jlong now = os::javaTimeNanos();
1236 
1237     if (remaining == 0) {
1238       // if we didn't have any tasks we could have waited for a long time
1239       // consider the time_slept zero and reset time_before_loop
1240       time_slept = 0;
1241       time_before_loop = now;
1242     } else {
1243       // need to recalculate since we might have new tasks in _tasks
1244       time_slept = (int) ((now - time_before_loop) / 1000000);
1245     }
1246 
1247     // Change to task list or spurious wakeup of some kind
1248     if (timedout || _should_terminate) {
1249       break;
1250     }
1251 
1252     remaining = PeriodicTask::time_to_wait();
1253     if (remaining == 0) {
1254       // Last task was just disenrolled so loop around and wait until
1255       // another task gets enrolled
1256       continue;
1257     }
1258 
1259     remaining -= time_slept;
1260     if (remaining <= 0) {
1261       break;
1262     }
1263   }
1264 
1265   return time_slept;
1266 }
1267 
1268 void WatcherThread::run() {
1269   assert(this == watcher_thread(), "just checking");
1270 
1271   this->record_stack_base_and_size();
1272   this->initialize_thread_local_storage();
1273   this->set_native_thread_name(this->name());
1274   this->set_active_handles(JNIHandleBlock::allocate_block());
1275   while (true) {
1276     assert(watcher_thread() == Thread::current(), "thread consistency check");
1277     assert(watcher_thread() == this, "thread consistency check");
1278 
1279     // Calculate how long it'll be until the next PeriodicTask work
1280     // should be done, and sleep that amount of time.
1281     int time_waited = sleep();
1282 
1283     if (is_error_reported()) {
1284       // A fatal error has happened, the error handler(VMError::report_and_die)
1285       // should abort JVM after creating an error log file. However in some
1286       // rare cases, the error handler itself might deadlock. Here we try to
1287       // kill JVM if the fatal error handler fails to abort in 2 minutes.
1288       //
1289       // This code is in WatcherThread because WatcherThread wakes up
1290       // periodically so the fatal error handler doesn't need to do anything;
1291       // also because the WatcherThread is less likely to crash than other
1292       // threads.
1293 
1294       for (;;) {
1295         if (!ShowMessageBoxOnError
1296             && (OnError == NULL || OnError[0] == '\0')
1297             && Arguments::abort_hook() == NULL) {
1298           os::sleep(this, ErrorLogTimeout * 60 * 1000, false);
1299           fdStream err(defaultStream::output_fd());
1300           err.print_raw_cr("# [ timer expired, abort... ]");
1301           // skip atexit/vm_exit/vm_abort hooks
1302           os::die();
1303         }
1304 
1305         // Wake up 5 seconds later, the fatal handler may reset OnError or
1306         // ShowMessageBoxOnError when it is ready to abort.
1307         os::sleep(this, 5 * 1000, false);
1308       }
1309     }
1310 
1311     if (_should_terminate) {
1312       // check for termination before posting the next tick
1313       break;
1314     }
1315 
1316     PeriodicTask::real_time_tick(time_waited);
1317   }
1318 
1319   // Signal that it is terminated
1320   {
1321     MutexLockerEx mu(Terminator_lock, Mutex::_no_safepoint_check_flag);
1322     _watcher_thread = NULL;
1323     Terminator_lock->notify();
1324   }
1325 
1326   // Thread destructor usually does this..
1327   ThreadLocalStorage::set_thread(NULL);
1328 }
1329 
1330 void WatcherThread::start() {
1331   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1332 
1333   if (watcher_thread() == NULL && _startable) {
1334     _should_terminate = false;
1335     // Create the single instance of WatcherThread
1336     new WatcherThread();
1337   }
1338 }
1339 
1340 void WatcherThread::make_startable() {
1341   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1342   _startable = true;
1343 }
1344 
1345 void WatcherThread::stop() {
1346   {
1347     // Follow normal safepoint aware lock enter protocol since the
1348     // WatcherThread is stopped by another JavaThread.
1349     MutexLocker ml(PeriodicTask_lock);
1350     _should_terminate = true;
1351 
1352     WatcherThread* watcher = watcher_thread();
1353     if (watcher != NULL) {
1354       // unpark the WatcherThread so it can see that it should terminate
1355       watcher->unpark();
1356     }
1357   }
1358 
1359   MutexLocker mu(Terminator_lock);
1360 
1361   while (watcher_thread() != NULL) {
1362     // This wait should make safepoint checks, wait without a timeout,
1363     // and wait as a suspend-equivalent condition.
1364     //
1365     // Note: If the FlatProfiler is running, then this thread is waiting
1366     // for the WatcherThread to terminate and the WatcherThread, via the
1367     // FlatProfiler task, is waiting for the external suspend request on
1368     // this thread to complete. wait_for_ext_suspend_completion() will
1369     // eventually timeout, but that takes time. Making this wait a
1370     // suspend-equivalent condition solves that timeout problem.
1371     //
1372     Terminator_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
1373                           Mutex::_as_suspend_equivalent_flag);
1374   }
1375 }
1376 
1377 void WatcherThread::unpark() {
1378   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1379   PeriodicTask_lock->notify();
1380 }
1381 
1382 void WatcherThread::print_on(outputStream* st) const {
1383   st->print("\"%s\" ", name());
1384   Thread::print_on(st);
1385   st->cr();
1386 }
1387 
1388 // ======= JavaThread ========
1389 
1390 // A JavaThread is a normal Java thread
1391 
1392 void JavaThread::initialize() {
1393   // Initialize fields
1394 
1395   // Set the claimed par_id to UINT_MAX (ie not claiming any par_ids)
1396   set_claimed_par_id(UINT_MAX);
1397 
1398   set_saved_exception_pc(NULL);
1399   set_threadObj(NULL);
1400   _anchor.clear();
1401   set_entry_point(NULL);
1402   set_jni_functions(jni_functions());
1403   set_callee_target(NULL);
1404   set_vm_result(NULL);
1405   set_vm_result_2(NULL);
1406   set_vframe_array_head(NULL);
1407   set_vframe_array_last(NULL);
1408   set_deferred_locals(NULL);
1409   set_deopt_mark(NULL);
1410   set_deopt_nmethod(NULL);
1411   clear_must_deopt_id();
1412   set_monitor_chunks(NULL);
1413   set_next(NULL);
1414   set_thread_state(_thread_new);
1415   _terminated = _not_terminated;
1416   _privileged_stack_top = NULL;
1417   _array_for_gc = NULL;
1418   _suspend_equivalent = false;
1419   _in_deopt_handler = 0;
1420   _doing_unsafe_access = false;
1421   _stack_guard_state = stack_guard_unused;
1422   (void)const_cast<oop&>(_exception_oop = oop(NULL));
1423   _exception_pc  = 0;
1424   _exception_handler_pc = 0;
1425   _is_method_handle_return = 0;
1426   _jvmti_thread_state= NULL;
1427   _should_post_on_exceptions_flag = JNI_FALSE;
1428   _jvmti_get_loaded_classes_closure = NULL;
1429   _interp_only_mode    = 0;
1430   _special_runtime_exit_condition = _no_async_condition;
1431   _pending_async_exception = NULL;
1432   _thread_stat = NULL;
1433   _thread_stat = new ThreadStatistics();
1434   _blocked_on_compilation = false;
1435   _jni_active_critical = 0;
1436   _pending_jni_exception_check_fn = NULL;
1437   _do_not_unlock_if_synchronized = false;
1438   _cached_monitor_info = NULL;
1439   _parker = Parker::Allocate(this);
1440 
1441 #ifndef PRODUCT
1442   _jmp_ring_index = 0;
1443   for (int ji = 0; ji < jump_ring_buffer_size; ji++) {
1444     record_jump(NULL, NULL, NULL, 0);
1445   }
1446 #endif // PRODUCT
1447 
1448   set_thread_profiler(NULL);
1449   if (FlatProfiler::is_active()) {
1450     // This is where we would decide to either give each thread it's own profiler
1451     // or use one global one from FlatProfiler,
1452     // or up to some count of the number of profiled threads, etc.
1453     ThreadProfiler* pp = new ThreadProfiler();
1454     pp->engage();
1455     set_thread_profiler(pp);
1456   }
1457 
1458   // Setup safepoint state info for this thread
1459   ThreadSafepointState::create(this);
1460 
1461   debug_only(_java_call_counter = 0);
1462 
1463   // JVMTI PopFrame support
1464   _popframe_condition = popframe_inactive;
1465   _popframe_preserved_args = NULL;
1466   _popframe_preserved_args_size = 0;
1467   _frames_to_pop_failed_realloc = 0;
1468 
1469   pd_initialize();
1470 }
1471 
1472 #if INCLUDE_ALL_GCS
1473 SATBMarkQueueSet JavaThread::_satb_mark_queue_set;
1474 DirtyCardQueueSet JavaThread::_dirty_card_queue_set;
1475 #endif // INCLUDE_ALL_GCS
1476 
1477 JavaThread::JavaThread(bool is_attaching_via_jni) :
1478                        Thread()
1479 #if INCLUDE_ALL_GCS
1480                        , _satb_mark_queue(&_satb_mark_queue_set),
1481                        _dirty_card_queue(&_dirty_card_queue_set)
1482 #endif // INCLUDE_ALL_GCS
1483 {
1484   initialize();
1485   if (is_attaching_via_jni) {
1486     _jni_attach_state = _attaching_via_jni;
1487   } else {
1488     _jni_attach_state = _not_attaching_via_jni;
1489   }
1490   assert(deferred_card_mark().is_empty(), "Default MemRegion ctor");
1491 }
1492 
1493 bool JavaThread::reguard_stack(address cur_sp) {
1494   if (_stack_guard_state != stack_guard_yellow_disabled) {
1495     return true; // Stack already guarded or guard pages not needed.
1496   }
1497 
1498   if (register_stack_overflow()) {
1499     // For those architectures which have separate register and
1500     // memory stacks, we must check the register stack to see if
1501     // it has overflowed.
1502     return false;
1503   }
1504 
1505   // Java code never executes within the yellow zone: the latter is only
1506   // there to provoke an exception during stack banging.  If java code
1507   // is executing there, either StackShadowPages should be larger, or
1508   // some exception code in c1, c2 or the interpreter isn't unwinding
1509   // when it should.
1510   guarantee(cur_sp > stack_yellow_zone_base(), "not enough space to reguard - increase StackShadowPages");
1511 
1512   enable_stack_yellow_zone();
1513   return true;
1514 }
1515 
1516 bool JavaThread::reguard_stack(void) {
1517   return reguard_stack(os::current_stack_pointer());
1518 }
1519 
1520 
1521 void JavaThread::block_if_vm_exited() {
1522   if (_terminated == _vm_exited) {
1523     // _vm_exited is set at safepoint, and Threads_lock is never released
1524     // we will block here forever
1525     Threads_lock->lock_without_safepoint_check();
1526     ShouldNotReachHere();
1527   }
1528 }
1529 
1530 
1531 // Remove this ifdef when C1 is ported to the compiler interface.
1532 static void compiler_thread_entry(JavaThread* thread, TRAPS);
1533 static void sweeper_thread_entry(JavaThread* thread, TRAPS);
1534 
1535 JavaThread::JavaThread(ThreadFunction entry_point, size_t stack_sz) :
1536                        Thread()
1537 #if INCLUDE_ALL_GCS
1538                        , _satb_mark_queue(&_satb_mark_queue_set),
1539                        _dirty_card_queue(&_dirty_card_queue_set)
1540 #endif // INCLUDE_ALL_GCS
1541 {
1542   initialize();
1543   _jni_attach_state = _not_attaching_via_jni;
1544   set_entry_point(entry_point);
1545   // Create the native thread itself.
1546   // %note runtime_23
1547   os::ThreadType thr_type = os::java_thread;
1548   thr_type = entry_point == &compiler_thread_entry ? os::compiler_thread :
1549                                                      os::java_thread;
1550   os::create_thread(this, thr_type, stack_sz);
1551   // The _osthread may be NULL here because we ran out of memory (too many threads active).
1552   // We need to throw and OutOfMemoryError - however we cannot do this here because the caller
1553   // may hold a lock and all locks must be unlocked before throwing the exception (throwing
1554   // the exception consists of creating the exception object & initializing it, initialization
1555   // will leave the VM via a JavaCall and then all locks must be unlocked).
1556   //
1557   // The thread is still suspended when we reach here. Thread must be explicit started
1558   // by creator! Furthermore, the thread must also explicitly be added to the Threads list
1559   // by calling Threads:add. The reason why this is not done here, is because the thread
1560   // object must be fully initialized (take a look at JVM_Start)
1561 }
1562 
1563 JavaThread::~JavaThread() {
1564 
1565   // JSR166 -- return the parker to the free list
1566   Parker::Release(_parker);
1567   _parker = NULL;
1568 
1569   // Free any remaining  previous UnrollBlock
1570   vframeArray* old_array = vframe_array_last();
1571 
1572   if (old_array != NULL) {
1573     Deoptimization::UnrollBlock* old_info = old_array->unroll_block();
1574     old_array->set_unroll_block(NULL);
1575     delete old_info;
1576     delete old_array;
1577   }
1578 
1579   GrowableArray<jvmtiDeferredLocalVariableSet*>* deferred = deferred_locals();
1580   if (deferred != NULL) {
1581     // This can only happen if thread is destroyed before deoptimization occurs.
1582     assert(deferred->length() != 0, "empty array!");
1583     do {
1584       jvmtiDeferredLocalVariableSet* dlv = deferred->at(0);
1585       deferred->remove_at(0);
1586       // individual jvmtiDeferredLocalVariableSet are CHeapObj's
1587       delete dlv;
1588     } while (deferred->length() != 0);
1589     delete deferred;
1590   }
1591 
1592   // All Java related clean up happens in exit
1593   ThreadSafepointState::destroy(this);
1594   if (_thread_profiler != NULL) delete _thread_profiler;
1595   if (_thread_stat != NULL) delete _thread_stat;
1596 }
1597 
1598 
1599 // The first routine called by a new Java thread
1600 void JavaThread::run() {
1601   // initialize thread-local alloc buffer related fields
1602   this->initialize_tlab();
1603 
1604   // used to test validity of stack trace backs
1605   this->record_base_of_stack_pointer();
1606 
1607   // Record real stack base and size.
1608   this->record_stack_base_and_size();
1609 
1610   // Initialize thread local storage; set before calling MutexLocker
1611   this->initialize_thread_local_storage();
1612 
1613   this->create_stack_guard_pages();
1614 
1615   this->cache_global_variables();
1616 
1617   // Thread is now sufficient initialized to be handled by the safepoint code as being
1618   // in the VM. Change thread state from _thread_new to _thread_in_vm
1619   ThreadStateTransition::transition_and_fence(this, _thread_new, _thread_in_vm);
1620 
1621   assert(JavaThread::current() == this, "sanity check");
1622   assert(!Thread::current()->owns_locks(), "sanity check");
1623 
1624   DTRACE_THREAD_PROBE(start, this);
1625 
1626   // This operation might block. We call that after all safepoint checks for a new thread has
1627   // been completed.
1628   this->set_active_handles(JNIHandleBlock::allocate_block());
1629 
1630   if (JvmtiExport::should_post_thread_life()) {
1631     JvmtiExport::post_thread_start(this);
1632   }
1633 
1634   EventThreadStart event;
1635   if (event.should_commit()) {
1636     event.set_javalangthread(java_lang_Thread::thread_id(this->threadObj()));
1637     event.commit();
1638   }
1639 
1640   // We call another function to do the rest so we are sure that the stack addresses used
1641   // from there will be lower than the stack base just computed
1642   thread_main_inner();
1643 
1644   // Note, thread is no longer valid at this point!
1645 }
1646 
1647 
1648 void JavaThread::thread_main_inner() {
1649   assert(JavaThread::current() == this, "sanity check");
1650   assert(this->threadObj() != NULL, "just checking");
1651 
1652   // Execute thread entry point unless this thread has a pending exception
1653   // or has been stopped before starting.
1654   // Note: Due to JVM_StopThread we can have pending exceptions already!
1655   if (!this->has_pending_exception() &&
1656       !java_lang_Thread::is_stillborn(this->threadObj())) {
1657     {
1658       ResourceMark rm(this);
1659       this->set_native_thread_name(this->get_thread_name());
1660     }
1661     HandleMark hm(this);
1662     this->entry_point()(this, this);
1663   }
1664 
1665   DTRACE_THREAD_PROBE(stop, this);
1666 
1667   this->exit(false);
1668   delete this;
1669 }
1670 
1671 
1672 static void ensure_join(JavaThread* thread) {
1673   // We do not need to grap the Threads_lock, since we are operating on ourself.
1674   Handle threadObj(thread, thread->threadObj());
1675   assert(threadObj.not_null(), "java thread object must exist");
1676   ObjectLocker lock(threadObj, thread);
1677   // Ignore pending exception (ThreadDeath), since we are exiting anyway
1678   thread->clear_pending_exception();
1679   // Thread is exiting. So set thread_status field in  java.lang.Thread class to TERMINATED.
1680   java_lang_Thread::set_thread_status(threadObj(), java_lang_Thread::TERMINATED);
1681   // Clear the native thread instance - this makes isAlive return false and allows the join()
1682   // to complete once we've done the notify_all below
1683   java_lang_Thread::set_thread(threadObj(), NULL);
1684   lock.notify_all(thread);
1685   // Ignore pending exception (ThreadDeath), since we are exiting anyway
1686   thread->clear_pending_exception();
1687 }
1688 
1689 
1690 // For any new cleanup additions, please check to see if they need to be applied to
1691 // cleanup_failed_attach_current_thread as well.
1692 void JavaThread::exit(bool destroy_vm, ExitType exit_type) {
1693   assert(this == JavaThread::current(), "thread consistency check");
1694 
1695   HandleMark hm(this);
1696   Handle uncaught_exception(this, this->pending_exception());
1697   this->clear_pending_exception();
1698   Handle threadObj(this, this->threadObj());
1699   assert(threadObj.not_null(), "Java thread object should be created");
1700 
1701   if (get_thread_profiler() != NULL) {
1702     get_thread_profiler()->disengage();
1703     ResourceMark rm;
1704     get_thread_profiler()->print(get_thread_name());
1705   }
1706 
1707 
1708   // FIXIT: This code should be moved into else part, when reliable 1.2/1.3 check is in place
1709   {
1710     EXCEPTION_MARK;
1711 
1712     CLEAR_PENDING_EXCEPTION;
1713   }
1714   if (!destroy_vm) {
1715     if (uncaught_exception.not_null()) {
1716       EXCEPTION_MARK;
1717       // Call method Thread.dispatchUncaughtException().
1718       KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
1719       JavaValue result(T_VOID);
1720       JavaCalls::call_virtual(&result,
1721                               threadObj, thread_klass,
1722                               vmSymbols::dispatchUncaughtException_name(),
1723                               vmSymbols::throwable_void_signature(),
1724                               uncaught_exception,
1725                               THREAD);
1726       if (HAS_PENDING_EXCEPTION) {
1727         ResourceMark rm(this);
1728         jio_fprintf(defaultStream::error_stream(),
1729                     "\nException: %s thrown from the UncaughtExceptionHandler"
1730                     " in thread \"%s\"\n",
1731                     pending_exception()->klass()->external_name(),
1732                     get_thread_name());
1733         CLEAR_PENDING_EXCEPTION;
1734       }
1735     }
1736 
1737     // Called before the java thread exit since we want to read info
1738     // from java_lang_Thread object
1739     EventThreadEnd event;
1740     if (event.should_commit()) {
1741       event.set_javalangthread(java_lang_Thread::thread_id(this->threadObj()));
1742       event.commit();
1743     }
1744 
1745     // Call after last event on thread
1746     EVENT_THREAD_EXIT(this);
1747 
1748     // Call Thread.exit(). We try 3 times in case we got another Thread.stop during
1749     // the execution of the method. If that is not enough, then we don't really care. Thread.stop
1750     // is deprecated anyhow.
1751     if (!is_Compiler_thread()) {
1752       int count = 3;
1753       while (java_lang_Thread::threadGroup(threadObj()) != NULL && (count-- > 0)) {
1754         EXCEPTION_MARK;
1755         JavaValue result(T_VOID);
1756         KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
1757         JavaCalls::call_virtual(&result,
1758                                 threadObj, thread_klass,
1759                                 vmSymbols::exit_method_name(),
1760                                 vmSymbols::void_method_signature(),
1761                                 THREAD);
1762         CLEAR_PENDING_EXCEPTION;
1763       }
1764     }
1765     // notify JVMTI
1766     if (JvmtiExport::should_post_thread_life()) {
1767       JvmtiExport::post_thread_end(this);
1768     }
1769 
1770     // We have notified the agents that we are exiting, before we go on,
1771     // we must check for a pending external suspend request and honor it
1772     // in order to not surprise the thread that made the suspend request.
1773     while (true) {
1774       {
1775         MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
1776         if (!is_external_suspend()) {
1777           set_terminated(_thread_exiting);
1778           ThreadService::current_thread_exiting(this);
1779           break;
1780         }
1781         // Implied else:
1782         // Things get a little tricky here. We have a pending external
1783         // suspend request, but we are holding the SR_lock so we
1784         // can't just self-suspend. So we temporarily drop the lock
1785         // and then self-suspend.
1786       }
1787 
1788       ThreadBlockInVM tbivm(this);
1789       java_suspend_self();
1790 
1791       // We're done with this suspend request, but we have to loop around
1792       // and check again. Eventually we will get SR_lock without a pending
1793       // external suspend request and will be able to mark ourselves as
1794       // exiting.
1795     }
1796     // no more external suspends are allowed at this point
1797   } else {
1798     // before_exit() has already posted JVMTI THREAD_END events
1799   }
1800 
1801   // Notify waiters on thread object. This has to be done after exit() is called
1802   // on the thread (if the thread is the last thread in a daemon ThreadGroup the
1803   // group should have the destroyed bit set before waiters are notified).
1804   ensure_join(this);
1805   assert(!this->has_pending_exception(), "ensure_join should have cleared");
1806 
1807   // 6282335 JNI DetachCurrentThread spec states that all Java monitors
1808   // held by this thread must be released. The spec does not distinguish
1809   // between JNI-acquired and regular Java monitors. We can only see
1810   // regular Java monitors here if monitor enter-exit matching is broken.
1811   //
1812   // Optionally release any monitors for regular JavaThread exits. This
1813   // is provided as a work around for any bugs in monitor enter-exit
1814   // matching. This can be expensive so it is not enabled by default.
1815   // ObjectMonitor::Knob_ExitRelease is a superset of the
1816   // JNIDetachReleasesMonitors option.
1817   //
1818   // ensure_join() ignores IllegalThreadStateExceptions, and so does
1819   // ObjectSynchronizer::release_monitors_owned_by_thread().
1820   if ((exit_type == jni_detach && JNIDetachReleasesMonitors) ||
1821       ObjectMonitor::Knob_ExitRelease) {
1822     // Sanity check even though JNI DetachCurrentThread() would have
1823     // returned JNI_ERR if there was a Java frame. JavaThread exit
1824     // should be done executing Java code by the time we get here.
1825     assert(!this->has_last_Java_frame(),
1826            "should not have a Java frame when detaching or exiting");
1827     ObjectSynchronizer::release_monitors_owned_by_thread(this);
1828     assert(!this->has_pending_exception(), "release_monitors should have cleared");
1829   }
1830 
1831   // These things needs to be done while we are still a Java Thread. Make sure that thread
1832   // is in a consistent state, in case GC happens
1833   assert(_privileged_stack_top == NULL, "must be NULL when we get here");
1834 
1835   if (active_handles() != NULL) {
1836     JNIHandleBlock* block = active_handles();
1837     set_active_handles(NULL);
1838     JNIHandleBlock::release_block(block);
1839   }
1840 
1841   if (free_handle_block() != NULL) {
1842     JNIHandleBlock* block = free_handle_block();
1843     set_free_handle_block(NULL);
1844     JNIHandleBlock::release_block(block);
1845   }
1846 
1847   // These have to be removed while this is still a valid thread.
1848   remove_stack_guard_pages();
1849 
1850   if (UseTLAB) {
1851     tlab().make_parsable(true);  // retire TLAB
1852   }
1853 
1854   if (JvmtiEnv::environments_might_exist()) {
1855     JvmtiExport::cleanup_thread(this);
1856   }
1857 
1858   // We must flush any deferred card marks before removing a thread from
1859   // the list of active threads.
1860   Universe::heap()->flush_deferred_store_barrier(this);
1861   assert(deferred_card_mark().is_empty(), "Should have been flushed");
1862 
1863 #if INCLUDE_ALL_GCS
1864   // We must flush the G1-related buffers before removing a thread
1865   // from the list of active threads. We must do this after any deferred
1866   // card marks have been flushed (above) so that any entries that are
1867   // added to the thread's dirty card queue as a result are not lost.
1868   if (UseG1GC) {
1869     flush_barrier_queues();
1870   }
1871 #endif // INCLUDE_ALL_GCS
1872 
1873   // Remove from list of active threads list, and notify VM thread if we are the last non-daemon thread
1874   Threads::remove(this);
1875 }
1876 
1877 #if INCLUDE_ALL_GCS
1878 // Flush G1-related queues.
1879 void JavaThread::flush_barrier_queues() {
1880   satb_mark_queue().flush();
1881   dirty_card_queue().flush();
1882 }
1883 
1884 void JavaThread::initialize_queues() {
1885   assert(!SafepointSynchronize::is_at_safepoint(),
1886          "we should not be at a safepoint");
1887 
1888   ObjPtrQueue& satb_queue = satb_mark_queue();
1889   SATBMarkQueueSet& satb_queue_set = satb_mark_queue_set();
1890   // The SATB queue should have been constructed with its active
1891   // field set to false.
1892   assert(!satb_queue.is_active(), "SATB queue should not be active");
1893   assert(satb_queue.is_empty(), "SATB queue should be empty");
1894   // If we are creating the thread during a marking cycle, we should
1895   // set the active field of the SATB queue to true.
1896   if (satb_queue_set.is_active()) {
1897     satb_queue.set_active(true);
1898   }
1899 
1900   DirtyCardQueue& dirty_queue = dirty_card_queue();
1901   // The dirty card queue should have been constructed with its
1902   // active field set to true.
1903   assert(dirty_queue.is_active(), "dirty card queue should be active");
1904 }
1905 #endif // INCLUDE_ALL_GCS
1906 
1907 void JavaThread::cleanup_failed_attach_current_thread() {
1908   if (get_thread_profiler() != NULL) {
1909     get_thread_profiler()->disengage();
1910     ResourceMark rm;
1911     get_thread_profiler()->print(get_thread_name());
1912   }
1913 
1914   if (active_handles() != NULL) {
1915     JNIHandleBlock* block = active_handles();
1916     set_active_handles(NULL);
1917     JNIHandleBlock::release_block(block);
1918   }
1919 
1920   if (free_handle_block() != NULL) {
1921     JNIHandleBlock* block = free_handle_block();
1922     set_free_handle_block(NULL);
1923     JNIHandleBlock::release_block(block);
1924   }
1925 
1926   // These have to be removed while this is still a valid thread.
1927   remove_stack_guard_pages();
1928 
1929   if (UseTLAB) {
1930     tlab().make_parsable(true);  // retire TLAB, if any
1931   }
1932 
1933 #if INCLUDE_ALL_GCS
1934   if (UseG1GC) {
1935     flush_barrier_queues();
1936   }
1937 #endif // INCLUDE_ALL_GCS
1938 
1939   Threads::remove(this);
1940   delete this;
1941 }
1942 
1943 
1944 
1945 
1946 JavaThread* JavaThread::active() {
1947   Thread* thread = ThreadLocalStorage::thread();
1948   assert(thread != NULL, "just checking");
1949   if (thread->is_Java_thread()) {
1950     return (JavaThread*) thread;
1951   } else {
1952     assert(thread->is_VM_thread(), "this must be a vm thread");
1953     VM_Operation* op = ((VMThread*) thread)->vm_operation();
1954     JavaThread *ret=op == NULL ? NULL : (JavaThread *)op->calling_thread();
1955     assert(ret->is_Java_thread(), "must be a Java thread");
1956     return ret;
1957   }
1958 }
1959 
1960 bool JavaThread::is_lock_owned(address adr) const {
1961   if (Thread::is_lock_owned(adr)) return true;
1962 
1963   for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
1964     if (chunk->contains(adr)) return true;
1965   }
1966 
1967   return false;
1968 }
1969 
1970 
1971 void JavaThread::add_monitor_chunk(MonitorChunk* chunk) {
1972   chunk->set_next(monitor_chunks());
1973   set_monitor_chunks(chunk);
1974 }
1975 
1976 void JavaThread::remove_monitor_chunk(MonitorChunk* chunk) {
1977   guarantee(monitor_chunks() != NULL, "must be non empty");
1978   if (monitor_chunks() == chunk) {
1979     set_monitor_chunks(chunk->next());
1980   } else {
1981     MonitorChunk* prev = monitor_chunks();
1982     while (prev->next() != chunk) prev = prev->next();
1983     prev->set_next(chunk->next());
1984   }
1985 }
1986 
1987 // JVM support.
1988 
1989 // Note: this function shouldn't block if it's called in
1990 // _thread_in_native_trans state (such as from
1991 // check_special_condition_for_native_trans()).
1992 void JavaThread::check_and_handle_async_exceptions(bool check_unsafe_error) {
1993 
1994   if (has_last_Java_frame() && has_async_condition()) {
1995     // If we are at a polling page safepoint (not a poll return)
1996     // then we must defer async exception because live registers
1997     // will be clobbered by the exception path. Poll return is
1998     // ok because the call we a returning from already collides
1999     // with exception handling registers and so there is no issue.
2000     // (The exception handling path kills call result registers but
2001     //  this is ok since the exception kills the result anyway).
2002 
2003     if (is_at_poll_safepoint()) {
2004       // if the code we are returning to has deoptimized we must defer
2005       // the exception otherwise live registers get clobbered on the
2006       // exception path before deoptimization is able to retrieve them.
2007       //
2008       RegisterMap map(this, false);
2009       frame caller_fr = last_frame().sender(&map);
2010       assert(caller_fr.is_compiled_frame(), "what?");
2011       if (caller_fr.is_deoptimized_frame()) {
2012         if (TraceExceptions) {
2013           ResourceMark rm;
2014           tty->print_cr("deferred async exception at compiled safepoint");
2015         }
2016         return;
2017       }
2018     }
2019   }
2020 
2021   JavaThread::AsyncRequests condition = clear_special_runtime_exit_condition();
2022   if (condition == _no_async_condition) {
2023     // Conditions have changed since has_special_runtime_exit_condition()
2024     // was called:
2025     // - if we were here only because of an external suspend request,
2026     //   then that was taken care of above (or cancelled) so we are done
2027     // - if we were here because of another async request, then it has
2028     //   been cleared between the has_special_runtime_exit_condition()
2029     //   and now so again we are done
2030     return;
2031   }
2032 
2033   // Check for pending async. exception
2034   if (_pending_async_exception != NULL) {
2035     // Only overwrite an already pending exception, if it is not a threadDeath.
2036     if (!has_pending_exception() || !pending_exception()->is_a(SystemDictionary::ThreadDeath_klass())) {
2037 
2038       // We cannot call Exceptions::_throw(...) here because we cannot block
2039       set_pending_exception(_pending_async_exception, __FILE__, __LINE__);
2040 
2041       if (TraceExceptions) {
2042         ResourceMark rm;
2043         tty->print("Async. exception installed at runtime exit (" INTPTR_FORMAT ")", this);
2044         if (has_last_Java_frame()) {
2045           frame f = last_frame();
2046           tty->print(" (pc: " INTPTR_FORMAT " sp: " INTPTR_FORMAT " )", f.pc(), f.sp());
2047         }
2048         tty->print_cr(" of type: %s", InstanceKlass::cast(_pending_async_exception->klass())->external_name());
2049       }
2050       _pending_async_exception = NULL;
2051       clear_has_async_exception();
2052     }
2053   }
2054 
2055   if (check_unsafe_error &&
2056       condition == _async_unsafe_access_error && !has_pending_exception()) {
2057     condition = _no_async_condition;  // done
2058     switch (thread_state()) {
2059     case _thread_in_vm: {
2060       JavaThread* THREAD = this;
2061       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2062     }
2063     case _thread_in_native: {
2064       ThreadInVMfromNative tiv(this);
2065       JavaThread* THREAD = this;
2066       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2067     }
2068     case _thread_in_Java: {
2069       ThreadInVMfromJava tiv(this);
2070       JavaThread* THREAD = this;
2071       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in a recent unsafe memory access operation in compiled Java code");
2072     }
2073     default:
2074       ShouldNotReachHere();
2075     }
2076   }
2077 
2078   assert(condition == _no_async_condition || has_pending_exception() ||
2079          (!check_unsafe_error && condition == _async_unsafe_access_error),
2080          "must have handled the async condition, if no exception");
2081 }
2082 
2083 void JavaThread::handle_special_runtime_exit_condition(bool check_asyncs) {
2084   //
2085   // Check for pending external suspend. Internal suspend requests do
2086   // not use handle_special_runtime_exit_condition().
2087   // If JNIEnv proxies are allowed, don't self-suspend if the target
2088   // thread is not the current thread. In older versions of jdbx, jdbx
2089   // threads could call into the VM with another thread's JNIEnv so we
2090   // can be here operating on behalf of a suspended thread (4432884).
2091   bool do_self_suspend = is_external_suspend_with_lock();
2092   if (do_self_suspend && (!AllowJNIEnvProxy || this == JavaThread::current())) {
2093     //
2094     // Because thread is external suspended the safepoint code will count
2095     // thread as at a safepoint. This can be odd because we can be here
2096     // as _thread_in_Java which would normally transition to _thread_blocked
2097     // at a safepoint. We would like to mark the thread as _thread_blocked
2098     // before calling java_suspend_self like all other callers of it but
2099     // we must then observe proper safepoint protocol. (We can't leave
2100     // _thread_blocked with a safepoint in progress). However we can be
2101     // here as _thread_in_native_trans so we can't use a normal transition
2102     // constructor/destructor pair because they assert on that type of
2103     // transition. We could do something like:
2104     //
2105     // JavaThreadState state = thread_state();
2106     // set_thread_state(_thread_in_vm);
2107     // {
2108     //   ThreadBlockInVM tbivm(this);
2109     //   java_suspend_self()
2110     // }
2111     // set_thread_state(_thread_in_vm_trans);
2112     // if (safepoint) block;
2113     // set_thread_state(state);
2114     //
2115     // but that is pretty messy. Instead we just go with the way the
2116     // code has worked before and note that this is the only path to
2117     // java_suspend_self that doesn't put the thread in _thread_blocked
2118     // mode.
2119 
2120     frame_anchor()->make_walkable(this);
2121     java_suspend_self();
2122 
2123     // We might be here for reasons in addition to the self-suspend request
2124     // so check for other async requests.
2125   }
2126 
2127   if (check_asyncs) {
2128     check_and_handle_async_exceptions();
2129   }
2130 }
2131 
2132 void JavaThread::send_thread_stop(oop java_throwable)  {
2133   assert(Thread::current()->is_VM_thread(), "should be in the vm thread");
2134   assert(Threads_lock->is_locked(), "Threads_lock should be locked by safepoint code");
2135   assert(SafepointSynchronize::is_at_safepoint(), "all threads are stopped");
2136 
2137   // Do not throw asynchronous exceptions against the compiler thread
2138   // (the compiler thread should not be a Java thread -- fix in 1.4.2)
2139   if (is_Compiler_thread()) return;
2140 
2141   {
2142     // Actually throw the Throwable against the target Thread - however
2143     // only if there is no thread death exception installed already.
2144     if (_pending_async_exception == NULL || !_pending_async_exception->is_a(SystemDictionary::ThreadDeath_klass())) {
2145       // If the topmost frame is a runtime stub, then we are calling into
2146       // OptoRuntime from compiled code. Some runtime stubs (new, monitor_exit..)
2147       // must deoptimize the caller before continuing, as the compiled  exception handler table
2148       // may not be valid
2149       if (has_last_Java_frame()) {
2150         frame f = last_frame();
2151         if (f.is_runtime_frame() || f.is_safepoint_blob_frame()) {
2152           // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2153           RegisterMap reg_map(this, UseBiasedLocking);
2154           frame compiled_frame = f.sender(&reg_map);
2155           if (!StressCompiledExceptionHandlers && compiled_frame.can_be_deoptimized()) {
2156             Deoptimization::deoptimize(this, compiled_frame, &reg_map);
2157           }
2158         }
2159       }
2160 
2161       // Set async. pending exception in thread.
2162       set_pending_async_exception(java_throwable);
2163 
2164       if (TraceExceptions) {
2165         ResourceMark rm;
2166         tty->print_cr("Pending Async. exception installed of type: %s", InstanceKlass::cast(_pending_async_exception->klass())->external_name());
2167       }
2168       // for AbortVMOnException flag
2169       NOT_PRODUCT(Exceptions::debug_check_abort(InstanceKlass::cast(_pending_async_exception->klass())->external_name()));
2170     }
2171   }
2172 
2173 
2174   // Interrupt thread so it will wake up from a potential wait()
2175   Thread::interrupt(this);
2176 }
2177 
2178 // External suspension mechanism.
2179 //
2180 // Tell the VM to suspend a thread when ever it knows that it does not hold on
2181 // to any VM_locks and it is at a transition
2182 // Self-suspension will happen on the transition out of the vm.
2183 // Catch "this" coming in from JNIEnv pointers when the thread has been freed
2184 //
2185 // Guarantees on return:
2186 //   + Target thread will not execute any new bytecode (that's why we need to
2187 //     force a safepoint)
2188 //   + Target thread will not enter any new monitors
2189 //
2190 void JavaThread::java_suspend() {
2191   { MutexLocker mu(Threads_lock);
2192     if (!Threads::includes(this) || is_exiting() || this->threadObj() == NULL) {
2193       return;
2194     }
2195   }
2196 
2197   { MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2198     if (!is_external_suspend()) {
2199       // a racing resume has cancelled us; bail out now
2200       return;
2201     }
2202 
2203     // suspend is done
2204     uint32_t debug_bits = 0;
2205     // Warning: is_ext_suspend_completed() may temporarily drop the
2206     // SR_lock to allow the thread to reach a stable thread state if
2207     // it is currently in a transient thread state.
2208     if (is_ext_suspend_completed(false /* !called_by_wait */,
2209                                  SuspendRetryDelay, &debug_bits)) {
2210       return;
2211     }
2212   }
2213 
2214   VM_ForceSafepoint vm_suspend;
2215   VMThread::execute(&vm_suspend);
2216 }
2217 
2218 // Part II of external suspension.
2219 // A JavaThread self suspends when it detects a pending external suspend
2220 // request. This is usually on transitions. It is also done in places
2221 // where continuing to the next transition would surprise the caller,
2222 // e.g., monitor entry.
2223 //
2224 // Returns the number of times that the thread self-suspended.
2225 //
2226 // Note: DO NOT call java_suspend_self() when you just want to block current
2227 //       thread. java_suspend_self() is the second stage of cooperative
2228 //       suspension for external suspend requests and should only be used
2229 //       to complete an external suspend request.
2230 //
2231 int JavaThread::java_suspend_self() {
2232   int ret = 0;
2233 
2234   // we are in the process of exiting so don't suspend
2235   if (is_exiting()) {
2236     clear_external_suspend();
2237     return ret;
2238   }
2239 
2240   assert(_anchor.walkable() ||
2241          (is_Java_thread() && !((JavaThread*)this)->has_last_Java_frame()),
2242          "must have walkable stack");
2243 
2244   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2245 
2246   assert(!this->is_ext_suspended(),
2247          "a thread trying to self-suspend should not already be suspended");
2248 
2249   if (this->is_suspend_equivalent()) {
2250     // If we are self-suspending as a result of the lifting of a
2251     // suspend equivalent condition, then the suspend_equivalent
2252     // flag is not cleared until we set the ext_suspended flag so
2253     // that wait_for_ext_suspend_completion() returns consistent
2254     // results.
2255     this->clear_suspend_equivalent();
2256   }
2257 
2258   // A racing resume may have cancelled us before we grabbed SR_lock
2259   // above. Or another external suspend request could be waiting for us
2260   // by the time we return from SR_lock()->wait(). The thread
2261   // that requested the suspension may already be trying to walk our
2262   // stack and if we return now, we can change the stack out from under
2263   // it. This would be a "bad thing (TM)" and cause the stack walker
2264   // to crash. We stay self-suspended until there are no more pending
2265   // external suspend requests.
2266   while (is_external_suspend()) {
2267     ret++;
2268     this->set_ext_suspended();
2269 
2270     // _ext_suspended flag is cleared by java_resume()
2271     while (is_ext_suspended()) {
2272       this->SR_lock()->wait(Mutex::_no_safepoint_check_flag);
2273     }
2274   }
2275 
2276   return ret;
2277 }
2278 
2279 #ifdef ASSERT
2280 // verify the JavaThread has not yet been published in the Threads::list, and
2281 // hence doesn't need protection from concurrent access at this stage
2282 void JavaThread::verify_not_published() {
2283   if (!Threads_lock->owned_by_self()) {
2284     MutexLockerEx ml(Threads_lock,  Mutex::_no_safepoint_check_flag);
2285     assert(!Threads::includes(this),
2286            "java thread shouldn't have been published yet!");
2287   } else {
2288     assert(!Threads::includes(this),
2289            "java thread shouldn't have been published yet!");
2290   }
2291 }
2292 #endif
2293 
2294 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2295 // progress or when _suspend_flags is non-zero.
2296 // Current thread needs to self-suspend if there is a suspend request and/or
2297 // block if a safepoint is in progress.
2298 // Async exception ISN'T checked.
2299 // Note only the ThreadInVMfromNative transition can call this function
2300 // directly and when thread state is _thread_in_native_trans
2301 void JavaThread::check_safepoint_and_suspend_for_native_trans(JavaThread *thread) {
2302   assert(thread->thread_state() == _thread_in_native_trans, "wrong state");
2303 
2304   JavaThread *curJT = JavaThread::current();
2305   bool do_self_suspend = thread->is_external_suspend();
2306 
2307   assert(!curJT->has_last_Java_frame() || curJT->frame_anchor()->walkable(), "Unwalkable stack in native->vm transition");
2308 
2309   // If JNIEnv proxies are allowed, don't self-suspend if the target
2310   // thread is not the current thread. In older versions of jdbx, jdbx
2311   // threads could call into the VM with another thread's JNIEnv so we
2312   // can be here operating on behalf of a suspended thread (4432884).
2313   if (do_self_suspend && (!AllowJNIEnvProxy || curJT == thread)) {
2314     JavaThreadState state = thread->thread_state();
2315 
2316     // We mark this thread_blocked state as a suspend-equivalent so
2317     // that a caller to is_ext_suspend_completed() won't be confused.
2318     // The suspend-equivalent state is cleared by java_suspend_self().
2319     thread->set_suspend_equivalent();
2320 
2321     // If the safepoint code sees the _thread_in_native_trans state, it will
2322     // wait until the thread changes to other thread state. There is no
2323     // guarantee on how soon we can obtain the SR_lock and complete the
2324     // self-suspend request. It would be a bad idea to let safepoint wait for
2325     // too long. Temporarily change the state to _thread_blocked to
2326     // let the VM thread know that this thread is ready for GC. The problem
2327     // of changing thread state is that safepoint could happen just after
2328     // java_suspend_self() returns after being resumed, and VM thread will
2329     // see the _thread_blocked state. We must check for safepoint
2330     // after restoring the state and make sure we won't leave while a safepoint
2331     // is in progress.
2332     thread->set_thread_state(_thread_blocked);
2333     thread->java_suspend_self();
2334     thread->set_thread_state(state);
2335     // Make sure new state is seen by VM thread
2336     if (os::is_MP()) {
2337       if (UseMembar) {
2338         // Force a fence between the write above and read below
2339         OrderAccess::fence();
2340       } else {
2341         // Must use this rather than serialization page in particular on Windows
2342         InterfaceSupport::serialize_memory(thread);
2343       }
2344     }
2345   }
2346 
2347   if (SafepointSynchronize::do_call_back()) {
2348     // If we are safepointing, then block the caller which may not be
2349     // the same as the target thread (see above).
2350     SafepointSynchronize::block(curJT);
2351   }
2352 
2353   if (thread->is_deopt_suspend()) {
2354     thread->clear_deopt_suspend();
2355     RegisterMap map(thread, false);
2356     frame f = thread->last_frame();
2357     while (f.id() != thread->must_deopt_id() && ! f.is_first_frame()) {
2358       f = f.sender(&map);
2359     }
2360     if (f.id() == thread->must_deopt_id()) {
2361       thread->clear_must_deopt_id();
2362       f.deoptimize(thread);
2363     } else {
2364       fatal("missed deoptimization!");
2365     }
2366   }
2367 }
2368 
2369 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2370 // progress or when _suspend_flags is non-zero.
2371 // Current thread needs to self-suspend if there is a suspend request and/or
2372 // block if a safepoint is in progress.
2373 // Also check for pending async exception (not including unsafe access error).
2374 // Note only the native==>VM/Java barriers can call this function and when
2375 // thread state is _thread_in_native_trans.
2376 void JavaThread::check_special_condition_for_native_trans(JavaThread *thread) {
2377   check_safepoint_and_suspend_for_native_trans(thread);
2378 
2379   if (thread->has_async_exception()) {
2380     // We are in _thread_in_native_trans state, don't handle unsafe
2381     // access error since that may block.
2382     thread->check_and_handle_async_exceptions(false);
2383   }
2384 }
2385 
2386 // This is a variant of the normal
2387 // check_special_condition_for_native_trans with slightly different
2388 // semantics for use by critical native wrappers.  It does all the
2389 // normal checks but also performs the transition back into
2390 // thread_in_Java state.  This is required so that critical natives
2391 // can potentially block and perform a GC if they are the last thread
2392 // exiting the GC_locker.
2393 void JavaThread::check_special_condition_for_native_trans_and_transition(JavaThread *thread) {
2394   check_special_condition_for_native_trans(thread);
2395 
2396   // Finish the transition
2397   thread->set_thread_state(_thread_in_Java);
2398 
2399   if (thread->do_critical_native_unlock()) {
2400     ThreadInVMfromJavaNoAsyncException tiv(thread);
2401     GC_locker::unlock_critical(thread);
2402     thread->clear_critical_native_unlock();
2403   }
2404 }
2405 
2406 // We need to guarantee the Threads_lock here, since resumes are not
2407 // allowed during safepoint synchronization
2408 // Can only resume from an external suspension
2409 void JavaThread::java_resume() {
2410   assert_locked_or_safepoint(Threads_lock);
2411 
2412   // Sanity check: thread is gone, has started exiting or the thread
2413   // was not externally suspended.
2414   if (!Threads::includes(this) || is_exiting() || !is_external_suspend()) {
2415     return;
2416   }
2417 
2418   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2419 
2420   clear_external_suspend();
2421 
2422   if (is_ext_suspended()) {
2423     clear_ext_suspended();
2424     SR_lock()->notify_all();
2425   }
2426 }
2427 
2428 void JavaThread::create_stack_guard_pages() {
2429   if (! os::uses_stack_guard_pages() || _stack_guard_state != stack_guard_unused) return;
2430   address low_addr = stack_base() - stack_size();
2431   size_t len = (StackYellowPages + StackRedPages) * os::vm_page_size();
2432 
2433   int allocate = os::allocate_stack_guard_pages();
2434   // warning("Guarding at " PTR_FORMAT " for len " SIZE_FORMAT "\n", low_addr, len);
2435 
2436   if (allocate && !os::create_stack_guard_pages((char *) low_addr, len)) {
2437     warning("Attempt to allocate stack guard pages failed.");
2438     return;
2439   }
2440 
2441   if (os::guard_memory((char *) low_addr, len)) {
2442     _stack_guard_state = stack_guard_enabled;
2443   } else {
2444     warning("Attempt to protect stack guard pages failed.");
2445     if (os::uncommit_memory((char *) low_addr, len)) {
2446       warning("Attempt to deallocate stack guard pages failed.");
2447     }
2448   }
2449 }
2450 
2451 void JavaThread::remove_stack_guard_pages() {
2452   assert(Thread::current() == this, "from different thread");
2453   if (_stack_guard_state == stack_guard_unused) return;
2454   address low_addr = stack_base() - stack_size();
2455   size_t len = (StackYellowPages + StackRedPages) * os::vm_page_size();
2456 
2457   if (os::allocate_stack_guard_pages()) {
2458     if (os::remove_stack_guard_pages((char *) low_addr, len)) {
2459       _stack_guard_state = stack_guard_unused;
2460     } else {
2461       warning("Attempt to deallocate stack guard pages failed.");
2462     }
2463   } else {
2464     if (_stack_guard_state == stack_guard_unused) return;
2465     if (os::unguard_memory((char *) low_addr, len)) {
2466       _stack_guard_state = stack_guard_unused;
2467     } else {
2468       warning("Attempt to unprotect stack guard pages failed.");
2469     }
2470   }
2471 }
2472 
2473 void JavaThread::enable_stack_yellow_zone() {
2474   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2475   assert(_stack_guard_state != stack_guard_enabled, "already enabled");
2476 
2477   // The base notation is from the stacks point of view, growing downward.
2478   // We need to adjust it to work correctly with guard_memory()
2479   address base = stack_yellow_zone_base() - stack_yellow_zone_size();
2480 
2481   guarantee(base < stack_base(), "Error calculating stack yellow zone");
2482   guarantee(base < os::current_stack_pointer(), "Error calculating stack yellow zone");
2483 
2484   if (os::guard_memory((char *) base, stack_yellow_zone_size())) {
2485     _stack_guard_state = stack_guard_enabled;
2486   } else {
2487     warning("Attempt to guard stack yellow zone failed.");
2488   }
2489   enable_register_stack_guard();
2490 }
2491 
2492 void JavaThread::disable_stack_yellow_zone() {
2493   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2494   assert(_stack_guard_state != stack_guard_yellow_disabled, "already disabled");
2495 
2496   // Simply return if called for a thread that does not use guard pages.
2497   if (_stack_guard_state == stack_guard_unused) return;
2498 
2499   // The base notation is from the stacks point of view, growing downward.
2500   // We need to adjust it to work correctly with guard_memory()
2501   address base = stack_yellow_zone_base() - stack_yellow_zone_size();
2502 
2503   if (os::unguard_memory((char *)base, stack_yellow_zone_size())) {
2504     _stack_guard_state = stack_guard_yellow_disabled;
2505   } else {
2506     warning("Attempt to unguard stack yellow zone failed.");
2507   }
2508   disable_register_stack_guard();
2509 }
2510 
2511 void JavaThread::enable_stack_red_zone() {
2512   // The base notation is from the stacks point of view, growing downward.
2513   // We need to adjust it to work correctly with guard_memory()
2514   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2515   address base = stack_red_zone_base() - stack_red_zone_size();
2516 
2517   guarantee(base < stack_base(), "Error calculating stack red zone");
2518   guarantee(base < os::current_stack_pointer(), "Error calculating stack red zone");
2519 
2520   if (!os::guard_memory((char *) base, stack_red_zone_size())) {
2521     warning("Attempt to guard stack red zone failed.");
2522   }
2523 }
2524 
2525 void JavaThread::disable_stack_red_zone() {
2526   // The base notation is from the stacks point of view, growing downward.
2527   // We need to adjust it to work correctly with guard_memory()
2528   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2529   address base = stack_red_zone_base() - stack_red_zone_size();
2530   if (!os::unguard_memory((char *)base, stack_red_zone_size())) {
2531     warning("Attempt to unguard stack red zone failed.");
2532   }
2533 }
2534 
2535 void JavaThread::frames_do(void f(frame*, const RegisterMap* map)) {
2536   // ignore is there is no stack
2537   if (!has_last_Java_frame()) return;
2538   // traverse the stack frames. Starts from top frame.
2539   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2540     frame* fr = fst.current();
2541     f(fr, fst.register_map());
2542   }
2543 }
2544 
2545 
2546 #ifndef PRODUCT
2547 // Deoptimization
2548 // Function for testing deoptimization
2549 void JavaThread::deoptimize() {
2550   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2551   StackFrameStream fst(this, UseBiasedLocking);
2552   bool deopt = false;           // Dump stack only if a deopt actually happens.
2553   bool only_at = strlen(DeoptimizeOnlyAt) > 0;
2554   // Iterate over all frames in the thread and deoptimize
2555   for (; !fst.is_done(); fst.next()) {
2556     if (fst.current()->can_be_deoptimized()) {
2557 
2558       if (only_at) {
2559         // Deoptimize only at particular bcis.  DeoptimizeOnlyAt
2560         // consists of comma or carriage return separated numbers so
2561         // search for the current bci in that string.
2562         address pc = fst.current()->pc();
2563         nmethod* nm =  (nmethod*) fst.current()->cb();
2564         ScopeDesc* sd = nm->scope_desc_at(pc);
2565         char buffer[8];
2566         jio_snprintf(buffer, sizeof(buffer), "%d", sd->bci());
2567         size_t len = strlen(buffer);
2568         const char * found = strstr(DeoptimizeOnlyAt, buffer);
2569         while (found != NULL) {
2570           if ((found[len] == ',' || found[len] == '\n' || found[len] == '\0') &&
2571               (found == DeoptimizeOnlyAt || found[-1] == ',' || found[-1] == '\n')) {
2572             // Check that the bci found is bracketed by terminators.
2573             break;
2574           }
2575           found = strstr(found + 1, buffer);
2576         }
2577         if (!found) {
2578           continue;
2579         }
2580       }
2581 
2582       if (DebugDeoptimization && !deopt) {
2583         deopt = true; // One-time only print before deopt
2584         tty->print_cr("[BEFORE Deoptimization]");
2585         trace_frames();
2586         trace_stack();
2587       }
2588       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2589     }
2590   }
2591 
2592   if (DebugDeoptimization && deopt) {
2593     tty->print_cr("[AFTER Deoptimization]");
2594     trace_frames();
2595   }
2596 }
2597 
2598 
2599 // Make zombies
2600 void JavaThread::make_zombies() {
2601   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2602     if (fst.current()->can_be_deoptimized()) {
2603       // it is a Java nmethod
2604       nmethod* nm = CodeCache::find_nmethod(fst.current()->pc());
2605       nm->make_not_entrant();
2606     }
2607   }
2608 }
2609 #endif // PRODUCT
2610 
2611 
2612 void JavaThread::deoptimized_wrt_marked_nmethods() {
2613   if (!has_last_Java_frame()) return;
2614   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2615   StackFrameStream fst(this, UseBiasedLocking);
2616   for (; !fst.is_done(); fst.next()) {
2617     if (fst.current()->should_be_deoptimized()) {
2618       if (LogCompilation && xtty != NULL) {
2619         nmethod* nm = fst.current()->cb()->as_nmethod_or_null();
2620         xtty->elem("deoptimized thread='" UINTX_FORMAT "' compile_id='%d'",
2621                    this->name(), nm != NULL ? nm->compile_id() : -1);
2622       }
2623 
2624       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2625     }
2626   }
2627 }
2628 
2629 
2630 // If the caller is a NamedThread, then remember, in the current scope,
2631 // the given JavaThread in its _processed_thread field.
2632 class RememberProcessedThread: public StackObj {
2633   NamedThread* _cur_thr;
2634  public:
2635   RememberProcessedThread(JavaThread* jthr) {
2636     Thread* thread = Thread::current();
2637     if (thread->is_Named_thread()) {
2638       _cur_thr = (NamedThread *)thread;
2639       _cur_thr->set_processed_thread(jthr);
2640     } else {
2641       _cur_thr = NULL;
2642     }
2643   }
2644 
2645   ~RememberProcessedThread() {
2646     if (_cur_thr) {
2647       _cur_thr->set_processed_thread(NULL);
2648     }
2649   }
2650 };
2651 
2652 void JavaThread::oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
2653   // Verify that the deferred card marks have been flushed.
2654   assert(deferred_card_mark().is_empty(), "Should be empty during GC");
2655 
2656   // The ThreadProfiler oops_do is done from FlatProfiler::oops_do
2657   // since there may be more than one thread using each ThreadProfiler.
2658 
2659   // Traverse the GCHandles
2660   Thread::oops_do(f, cld_f, cf);
2661 
2662   assert((!has_last_Java_frame() && java_call_counter() == 0) ||
2663          (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2664 
2665   if (has_last_Java_frame()) {
2666     // Record JavaThread to GC thread
2667     RememberProcessedThread rpt(this);
2668 
2669     // Traverse the privileged stack
2670     if (_privileged_stack_top != NULL) {
2671       _privileged_stack_top->oops_do(f);
2672     }
2673 
2674     // traverse the registered growable array
2675     if (_array_for_gc != NULL) {
2676       for (int index = 0; index < _array_for_gc->length(); index++) {
2677         f->do_oop(_array_for_gc->adr_at(index));
2678       }
2679     }
2680 
2681     // Traverse the monitor chunks
2682     for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2683       chunk->oops_do(f);
2684     }
2685 
2686     // Traverse the execution stack
2687     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2688       fst.current()->oops_do(f, cld_f, cf, fst.register_map());
2689     }
2690   }
2691 
2692   // callee_target is never live across a gc point so NULL it here should
2693   // it still contain a methdOop.
2694 
2695   set_callee_target(NULL);
2696 
2697   assert(vframe_array_head() == NULL, "deopt in progress at a safepoint!");
2698   // If we have deferred set_locals there might be oops waiting to be
2699   // written
2700   GrowableArray<jvmtiDeferredLocalVariableSet*>* list = deferred_locals();
2701   if (list != NULL) {
2702     for (int i = 0; i < list->length(); i++) {
2703       list->at(i)->oops_do(f);
2704     }
2705   }
2706 
2707   // Traverse instance variables at the end since the GC may be moving things
2708   // around using this function
2709   f->do_oop((oop*) &_threadObj);
2710   f->do_oop((oop*) &_vm_result);
2711   f->do_oop((oop*) &_exception_oop);
2712   f->do_oop((oop*) &_pending_async_exception);
2713 
2714   if (jvmti_thread_state() != NULL) {
2715     jvmti_thread_state()->oops_do(f);
2716   }
2717 }
2718 
2719 void JavaThread::nmethods_do(CodeBlobClosure* cf) {
2720   Thread::nmethods_do(cf);  // (super method is a no-op)
2721 
2722   assert((!has_last_Java_frame() && java_call_counter() == 0) ||
2723          (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2724 
2725   if (has_last_Java_frame()) {
2726     // Traverse the execution stack
2727     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2728       fst.current()->nmethods_do(cf);
2729     }
2730   }
2731 }
2732 
2733 void JavaThread::metadata_do(void f(Metadata*)) {
2734   if (has_last_Java_frame()) {
2735     // Traverse the execution stack to call f() on the methods in the stack
2736     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2737       fst.current()->metadata_do(f);
2738     }
2739   } else if (is_Compiler_thread()) {
2740     // need to walk ciMetadata in current compile tasks to keep alive.
2741     CompilerThread* ct = (CompilerThread*)this;
2742     if (ct->env() != NULL) {
2743       ct->env()->metadata_do(f);
2744     }
2745     if (ct->task() != NULL) {
2746       ct->task()->metadata_do(f);
2747     }
2748   }
2749 }
2750 
2751 // Printing
2752 const char* _get_thread_state_name(JavaThreadState _thread_state) {
2753   switch (_thread_state) {
2754   case _thread_uninitialized:     return "_thread_uninitialized";
2755   case _thread_new:               return "_thread_new";
2756   case _thread_new_trans:         return "_thread_new_trans";
2757   case _thread_in_native:         return "_thread_in_native";
2758   case _thread_in_native_trans:   return "_thread_in_native_trans";
2759   case _thread_in_vm:             return "_thread_in_vm";
2760   case _thread_in_vm_trans:       return "_thread_in_vm_trans";
2761   case _thread_in_Java:           return "_thread_in_Java";
2762   case _thread_in_Java_trans:     return "_thread_in_Java_trans";
2763   case _thread_blocked:           return "_thread_blocked";
2764   case _thread_blocked_trans:     return "_thread_blocked_trans";
2765   default:                        return "unknown thread state";
2766   }
2767 }
2768 
2769 #ifndef PRODUCT
2770 void JavaThread::print_thread_state_on(outputStream *st) const {
2771   st->print_cr("   JavaThread state: %s", _get_thread_state_name(_thread_state));
2772 };
2773 void JavaThread::print_thread_state() const {
2774   print_thread_state_on(tty);
2775 }
2776 #endif // PRODUCT
2777 
2778 // Called by Threads::print() for VM_PrintThreads operation
2779 void JavaThread::print_on(outputStream *st) const {
2780   st->print("\"%s\" ", get_thread_name());
2781   oop thread_oop = threadObj();
2782   if (thread_oop != NULL) {
2783     st->print("#" INT64_FORMAT " ", java_lang_Thread::thread_id(thread_oop));
2784     if (java_lang_Thread::is_daemon(thread_oop))  st->print("daemon ");
2785     st->print("prio=%d ", java_lang_Thread::priority(thread_oop));
2786   }
2787   Thread::print_on(st);
2788   // print guess for valid stack memory region (assume 4K pages); helps lock debugging
2789   st->print_cr("[" INTPTR_FORMAT "]", (intptr_t)last_Java_sp() & ~right_n_bits(12));
2790   if (thread_oop != NULL) {
2791     st->print_cr("   java.lang.Thread.State: %s", java_lang_Thread::thread_status_name(thread_oop));
2792   }
2793 #ifndef PRODUCT
2794   print_thread_state_on(st);
2795   _safepoint_state->print_on(st);
2796 #endif // PRODUCT
2797 }
2798 
2799 // Called by fatal error handler. The difference between this and
2800 // JavaThread::print() is that we can't grab lock or allocate memory.
2801 void JavaThread::print_on_error(outputStream* st, char *buf, int buflen) const {
2802   st->print("JavaThread \"%s\"", get_thread_name_string(buf, buflen));
2803   oop thread_obj = threadObj();
2804   if (thread_obj != NULL) {
2805     if (java_lang_Thread::is_daemon(thread_obj)) st->print(" daemon");
2806   }
2807   st->print(" [");
2808   st->print("%s", _get_thread_state_name(_thread_state));
2809   if (osthread()) {
2810     st->print(", id=%d", osthread()->thread_id());
2811   }
2812   st->print(", stack(" PTR_FORMAT "," PTR_FORMAT ")",
2813             _stack_base - _stack_size, _stack_base);
2814   st->print("]");
2815   return;
2816 }
2817 
2818 // Verification
2819 
2820 static void frame_verify(frame* f, const RegisterMap *map) { f->verify(map); }
2821 
2822 void JavaThread::verify() {
2823   // Verify oops in the thread.
2824   oops_do(&VerifyOopClosure::verify_oop, NULL, NULL);
2825 
2826   // Verify the stack frames.
2827   frames_do(frame_verify);
2828 }
2829 
2830 // CR 6300358 (sub-CR 2137150)
2831 // Most callers of this method assume that it can't return NULL but a
2832 // thread may not have a name whilst it is in the process of attaching to
2833 // the VM - see CR 6412693, and there are places where a JavaThread can be
2834 // seen prior to having it's threadObj set (eg JNI attaching threads and
2835 // if vm exit occurs during initialization). These cases can all be accounted
2836 // for such that this method never returns NULL.
2837 const char* JavaThread::get_thread_name() const {
2838 #ifdef ASSERT
2839   // early safepoints can hit while current thread does not yet have TLS
2840   if (!SafepointSynchronize::is_at_safepoint()) {
2841     Thread *cur = Thread::current();
2842     if (!(cur->is_Java_thread() && cur == this)) {
2843       // Current JavaThreads are allowed to get their own name without
2844       // the Threads_lock.
2845       assert_locked_or_safepoint(Threads_lock);
2846     }
2847   }
2848 #endif // ASSERT
2849   return get_thread_name_string();
2850 }
2851 
2852 // Returns a non-NULL representation of this thread's name, or a suitable
2853 // descriptive string if there is no set name
2854 const char* JavaThread::get_thread_name_string(char* buf, int buflen) const {
2855   const char* name_str;
2856   oop thread_obj = threadObj();
2857   if (thread_obj != NULL) {
2858     oop name = java_lang_Thread::name(thread_obj);
2859     if (name != NULL) {
2860       if (buf == NULL) {
2861         name_str = java_lang_String::as_utf8_string(name);
2862       } else {
2863         name_str = java_lang_String::as_utf8_string(name, buf, buflen);
2864       }
2865     } else if (is_attaching_via_jni()) { // workaround for 6412693 - see 6404306
2866       name_str = "<no-name - thread is attaching>";
2867     } else {
2868       name_str = Thread::name();
2869     }
2870   } else {
2871     name_str = Thread::name();
2872   }
2873   assert(name_str != NULL, "unexpected NULL thread name");
2874   return name_str;
2875 }
2876 
2877 
2878 const char* JavaThread::get_threadgroup_name() const {
2879   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
2880   oop thread_obj = threadObj();
2881   if (thread_obj != NULL) {
2882     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
2883     if (thread_group != NULL) {
2884       typeArrayOop name = java_lang_ThreadGroup::name(thread_group);
2885       // ThreadGroup.name can be null
2886       if (name != NULL) {
2887         const char* str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
2888         return str;
2889       }
2890     }
2891   }
2892   return NULL;
2893 }
2894 
2895 const char* JavaThread::get_parent_name() const {
2896   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
2897   oop thread_obj = threadObj();
2898   if (thread_obj != NULL) {
2899     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
2900     if (thread_group != NULL) {
2901       oop parent = java_lang_ThreadGroup::parent(thread_group);
2902       if (parent != NULL) {
2903         typeArrayOop name = java_lang_ThreadGroup::name(parent);
2904         // ThreadGroup.name can be null
2905         if (name != NULL) {
2906           const char* str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
2907           return str;
2908         }
2909       }
2910     }
2911   }
2912   return NULL;
2913 }
2914 
2915 ThreadPriority JavaThread::java_priority() const {
2916   oop thr_oop = threadObj();
2917   if (thr_oop == NULL) return NormPriority; // Bootstrapping
2918   ThreadPriority priority = java_lang_Thread::priority(thr_oop);
2919   assert(MinPriority <= priority && priority <= MaxPriority, "sanity check");
2920   return priority;
2921 }
2922 
2923 void JavaThread::prepare(jobject jni_thread, ThreadPriority prio) {
2924 
2925   assert(Threads_lock->owner() == Thread::current(), "must have threads lock");
2926   // Link Java Thread object <-> C++ Thread
2927 
2928   // Get the C++ thread object (an oop) from the JNI handle (a jthread)
2929   // and put it into a new Handle.  The Handle "thread_oop" can then
2930   // be used to pass the C++ thread object to other methods.
2931 
2932   // Set the Java level thread object (jthread) field of the
2933   // new thread (a JavaThread *) to C++ thread object using the
2934   // "thread_oop" handle.
2935 
2936   // Set the thread field (a JavaThread *) of the
2937   // oop representing the java_lang_Thread to the new thread (a JavaThread *).
2938 
2939   Handle thread_oop(Thread::current(),
2940                     JNIHandles::resolve_non_null(jni_thread));
2941   assert(InstanceKlass::cast(thread_oop->klass())->is_linked(),
2942          "must be initialized");
2943   set_threadObj(thread_oop());
2944   java_lang_Thread::set_thread(thread_oop(), this);
2945 
2946   if (prio == NoPriority) {
2947     prio = java_lang_Thread::priority(thread_oop());
2948     assert(prio != NoPriority, "A valid priority should be present");
2949   }
2950 
2951   // Push the Java priority down to the native thread; needs Threads_lock
2952   Thread::set_priority(this, prio);
2953 
2954   prepare_ext();
2955 
2956   // Add the new thread to the Threads list and set it in motion.
2957   // We must have threads lock in order to call Threads::add.
2958   // It is crucial that we do not block before the thread is
2959   // added to the Threads list for if a GC happens, then the java_thread oop
2960   // will not be visited by GC.
2961   Threads::add(this);
2962 }
2963 
2964 oop JavaThread::current_park_blocker() {
2965   // Support for JSR-166 locks
2966   oop thread_oop = threadObj();
2967   if (thread_oop != NULL &&
2968       JDK_Version::current().supports_thread_park_blocker()) {
2969     return java_lang_Thread::park_blocker(thread_oop);
2970   }
2971   return NULL;
2972 }
2973 
2974 
2975 void JavaThread::print_stack_on(outputStream* st) {
2976   if (!has_last_Java_frame()) return;
2977   ResourceMark rm;
2978   HandleMark   hm;
2979 
2980   RegisterMap reg_map(this);
2981   vframe* start_vf = last_java_vframe(&reg_map);
2982   int count = 0;
2983   for (vframe* f = start_vf; f; f = f->sender()) {
2984     if (f->is_java_frame()) {
2985       javaVFrame* jvf = javaVFrame::cast(f);
2986       java_lang_Throwable::print_stack_element(st, jvf->method(), jvf->bci());
2987 
2988       // Print out lock information
2989       if (JavaMonitorsInStackTrace) {
2990         jvf->print_lock_info_on(st, count);
2991       }
2992     } else {
2993       // Ignore non-Java frames
2994     }
2995 
2996     // Bail-out case for too deep stacks
2997     count++;
2998     if (MaxJavaStackTraceDepth == count) return;
2999   }
3000 }
3001 
3002 
3003 // JVMTI PopFrame support
3004 void JavaThread::popframe_preserve_args(ByteSize size_in_bytes, void* start) {
3005   assert(_popframe_preserved_args == NULL, "should not wipe out old PopFrame preserved arguments");
3006   if (in_bytes(size_in_bytes) != 0) {
3007     _popframe_preserved_args = NEW_C_HEAP_ARRAY(char, in_bytes(size_in_bytes), mtThread);
3008     _popframe_preserved_args_size = in_bytes(size_in_bytes);
3009     Copy::conjoint_jbytes(start, _popframe_preserved_args, _popframe_preserved_args_size);
3010   }
3011 }
3012 
3013 void* JavaThread::popframe_preserved_args() {
3014   return _popframe_preserved_args;
3015 }
3016 
3017 ByteSize JavaThread::popframe_preserved_args_size() {
3018   return in_ByteSize(_popframe_preserved_args_size);
3019 }
3020 
3021 WordSize JavaThread::popframe_preserved_args_size_in_words() {
3022   int sz = in_bytes(popframe_preserved_args_size());
3023   assert(sz % wordSize == 0, "argument size must be multiple of wordSize");
3024   return in_WordSize(sz / wordSize);
3025 }
3026 
3027 void JavaThread::popframe_free_preserved_args() {
3028   assert(_popframe_preserved_args != NULL, "should not free PopFrame preserved arguments twice");
3029   FREE_C_HEAP_ARRAY(char, (char*) _popframe_preserved_args);
3030   _popframe_preserved_args = NULL;
3031   _popframe_preserved_args_size = 0;
3032 }
3033 
3034 #ifndef PRODUCT
3035 
3036 void JavaThread::trace_frames() {
3037   tty->print_cr("[Describe stack]");
3038   int frame_no = 1;
3039   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
3040     tty->print("  %d. ", frame_no++);
3041     fst.current()->print_value_on(tty, this);
3042     tty->cr();
3043   }
3044 }
3045 
3046 class PrintAndVerifyOopClosure: public OopClosure {
3047  protected:
3048   template <class T> inline void do_oop_work(T* p) {
3049     oop obj = oopDesc::load_decode_heap_oop(p);
3050     if (obj == NULL) return;
3051     tty->print(INTPTR_FORMAT ": ", p);
3052     if (obj->is_oop_or_null()) {
3053       if (obj->is_objArray()) {
3054         tty->print_cr("valid objArray: " INTPTR_FORMAT, (oopDesc*) obj);
3055       } else {
3056         obj->print();
3057       }
3058     } else {
3059       tty->print_cr("invalid oop: " INTPTR_FORMAT, (oopDesc*) obj);
3060     }
3061     tty->cr();
3062   }
3063  public:
3064   virtual void do_oop(oop* p) { do_oop_work(p); }
3065   virtual void do_oop(narrowOop* p)  { do_oop_work(p); }
3066 };
3067 
3068 
3069 static void oops_print(frame* f, const RegisterMap *map) {
3070   PrintAndVerifyOopClosure print;
3071   f->print_value();
3072   f->oops_do(&print, NULL, NULL, (RegisterMap*)map);
3073 }
3074 
3075 // Print our all the locations that contain oops and whether they are
3076 // valid or not.  This useful when trying to find the oldest frame
3077 // where an oop has gone bad since the frame walk is from youngest to
3078 // oldest.
3079 void JavaThread::trace_oops() {
3080   tty->print_cr("[Trace oops]");
3081   frames_do(oops_print);
3082 }
3083 
3084 
3085 #ifdef ASSERT
3086 // Print or validate the layout of stack frames
3087 void JavaThread::print_frame_layout(int depth, bool validate_only) {
3088   ResourceMark rm;
3089   PRESERVE_EXCEPTION_MARK;
3090   FrameValues values;
3091   int frame_no = 0;
3092   for (StackFrameStream fst(this, false); !fst.is_done(); fst.next()) {
3093     fst.current()->describe(values, ++frame_no);
3094     if (depth == frame_no) break;
3095   }
3096   if (validate_only) {
3097     values.validate();
3098   } else {
3099     tty->print_cr("[Describe stack layout]");
3100     values.print(this);
3101   }
3102 }
3103 #endif
3104 
3105 void JavaThread::trace_stack_from(vframe* start_vf) {
3106   ResourceMark rm;
3107   int vframe_no = 1;
3108   for (vframe* f = start_vf; f; f = f->sender()) {
3109     if (f->is_java_frame()) {
3110       javaVFrame::cast(f)->print_activation(vframe_no++);
3111     } else {
3112       f->print();
3113     }
3114     if (vframe_no > StackPrintLimit) {
3115       tty->print_cr("...<more frames>...");
3116       return;
3117     }
3118   }
3119 }
3120 
3121 
3122 void JavaThread::trace_stack() {
3123   if (!has_last_Java_frame()) return;
3124   ResourceMark rm;
3125   HandleMark   hm;
3126   RegisterMap reg_map(this);
3127   trace_stack_from(last_java_vframe(&reg_map));
3128 }
3129 
3130 
3131 #endif // PRODUCT
3132 
3133 
3134 javaVFrame* JavaThread::last_java_vframe(RegisterMap *reg_map) {
3135   assert(reg_map != NULL, "a map must be given");
3136   frame f = last_frame();
3137   for (vframe* vf = vframe::new_vframe(&f, reg_map, this); vf; vf = vf->sender()) {
3138     if (vf->is_java_frame()) return javaVFrame::cast(vf);
3139   }
3140   return NULL;
3141 }
3142 
3143 
3144 Klass* JavaThread::security_get_caller_class(int depth) {
3145   vframeStream vfst(this);
3146   vfst.security_get_caller_frame(depth);
3147   if (!vfst.at_end()) {
3148     return vfst.method()->method_holder();
3149   }
3150   return NULL;
3151 }
3152 
3153 static void compiler_thread_entry(JavaThread* thread, TRAPS) {
3154   assert(thread->is_Compiler_thread(), "must be compiler thread");
3155   CompileBroker::compiler_thread_loop();
3156 }
3157 
3158 static void sweeper_thread_entry(JavaThread* thread, TRAPS) {
3159   NMethodSweeper::sweeper_loop();
3160 }
3161 
3162 // Create a CompilerThread
3163 CompilerThread::CompilerThread(CompileQueue* queue,
3164                                CompilerCounters* counters)
3165                                : JavaThread(&compiler_thread_entry) {
3166   _env   = NULL;
3167   _log   = NULL;
3168   _task  = NULL;
3169   _queue = queue;
3170   _counters = counters;
3171   _buffer_blob = NULL;
3172   _compiler = NULL;
3173 
3174 #ifndef PRODUCT
3175   _ideal_graph_printer = NULL;
3176 #endif
3177 }
3178 
3179 // Create sweeper thread
3180 CodeCacheSweeperThread::CodeCacheSweeperThread()
3181 : JavaThread(&sweeper_thread_entry) {
3182   _scanned_nmethod = NULL;
3183 }
3184 void CodeCacheSweeperThread::oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
3185   JavaThread::oops_do(f, cld_f, cf);
3186   if (_scanned_nmethod != NULL && cf != NULL) {
3187     // Safepoints can occur when the sweeper is scanning an nmethod so
3188     // process it here to make sure it isn't unloaded in the middle of
3189     // a scan.
3190     cf->do_code_blob(_scanned_nmethod);
3191   }
3192 }
3193 
3194 
3195 // ======= Threads ========
3196 
3197 // The Threads class links together all active threads, and provides
3198 // operations over all threads.  It is protected by its own Mutex
3199 // lock, which is also used in other contexts to protect thread
3200 // operations from having the thread being operated on from exiting
3201 // and going away unexpectedly (e.g., safepoint synchronization)
3202 
3203 JavaThread* Threads::_thread_list = NULL;
3204 int         Threads::_number_of_threads = 0;
3205 int         Threads::_number_of_non_daemon_threads = 0;
3206 int         Threads::_return_code = 0;
3207 int         Threads::_thread_claim_parity = 0;
3208 size_t      JavaThread::_stack_size_at_create = 0;
3209 #ifdef ASSERT
3210 bool        Threads::_vm_complete = false;
3211 #endif
3212 
3213 // All JavaThreads
3214 #define ALL_JAVA_THREADS(X) for (JavaThread* X = _thread_list; X; X = X->next())
3215 
3216 // All JavaThreads + all non-JavaThreads (i.e., every thread in the system)
3217 void Threads::threads_do(ThreadClosure* tc) {
3218   assert_locked_or_safepoint(Threads_lock);
3219   // ALL_JAVA_THREADS iterates through all JavaThreads
3220   ALL_JAVA_THREADS(p) {
3221     tc->do_thread(p);
3222   }
3223   // Someday we could have a table or list of all non-JavaThreads.
3224   // For now, just manually iterate through them.
3225   tc->do_thread(VMThread::vm_thread());
3226   Universe::heap()->gc_threads_do(tc);
3227   WatcherThread *wt = WatcherThread::watcher_thread();
3228   // Strictly speaking, the following NULL check isn't sufficient to make sure
3229   // the data for WatcherThread is still valid upon being examined. However,
3230   // considering that WatchThread terminates when the VM is on the way to
3231   // exit at safepoint, the chance of the above is extremely small. The right
3232   // way to prevent termination of WatcherThread would be to acquire
3233   // Terminator_lock, but we can't do that without violating the lock rank
3234   // checking in some cases.
3235   if (wt != NULL) {
3236     tc->do_thread(wt);
3237   }
3238 
3239   // If CompilerThreads ever become non-JavaThreads, add them here
3240 }
3241 
3242 void Threads::initialize_java_lang_classes(JavaThread* main_thread, TRAPS) {
3243   TraceTime timer("Initialize java.lang classes", TraceStartupTime);
3244 
3245   if (EagerXrunInit && Arguments::init_libraries_at_startup()) {
3246     create_vm_init_libraries();
3247   }
3248 
3249   initialize_class(vmSymbols::java_lang_String(), CHECK);
3250 
3251   // Initialize java_lang.System (needed before creating the thread)
3252   initialize_class(vmSymbols::java_lang_System(), CHECK);
3253   // The VM creates & returns objects of this class. Make sure it's initialized.
3254   initialize_class(vmSymbols::java_lang_Class(), CHECK);
3255   initialize_class(vmSymbols::java_lang_ThreadGroup(), CHECK);
3256   Handle thread_group = create_initial_thread_group(CHECK);
3257   Universe::set_main_thread_group(thread_group());
3258   initialize_class(vmSymbols::java_lang_Thread(), CHECK);
3259   oop thread_object = create_initial_thread(thread_group, main_thread, CHECK);
3260   main_thread->set_threadObj(thread_object);
3261   // Set thread status to running since main thread has
3262   // been started and running.
3263   java_lang_Thread::set_thread_status(thread_object,
3264                                       java_lang_Thread::RUNNABLE);
3265 
3266   // The VM preresolves methods to these classes. Make sure that they get initialized
3267   initialize_class(vmSymbols::java_lang_reflect_Method(), CHECK);
3268   initialize_class(vmSymbols::java_lang_ref_Finalizer(), CHECK);
3269   call_initializeSystemClass(CHECK);
3270 
3271   // get the Java runtime name after java.lang.System is initialized
3272   JDK_Version::set_runtime_name(get_java_runtime_name(THREAD));
3273   JDK_Version::set_runtime_version(get_java_runtime_version(THREAD));
3274 
3275   // an instance of OutOfMemory exception has been allocated earlier
3276   initialize_class(vmSymbols::java_lang_OutOfMemoryError(), CHECK);
3277   initialize_class(vmSymbols::java_lang_NullPointerException(), CHECK);
3278   initialize_class(vmSymbols::java_lang_ClassCastException(), CHECK);
3279   initialize_class(vmSymbols::java_lang_ArrayStoreException(), CHECK);
3280   initialize_class(vmSymbols::java_lang_ArithmeticException(), CHECK);
3281   initialize_class(vmSymbols::java_lang_StackOverflowError(), CHECK);
3282   initialize_class(vmSymbols::java_lang_IllegalMonitorStateException(), CHECK);
3283   initialize_class(vmSymbols::java_lang_IllegalArgumentException(), CHECK);
3284 }
3285 
3286 void Threads::initialize_jsr292_core_classes(TRAPS) {
3287   initialize_class(vmSymbols::java_lang_invoke_MethodHandle(), CHECK);
3288   initialize_class(vmSymbols::java_lang_invoke_MemberName(), CHECK);
3289   initialize_class(vmSymbols::java_lang_invoke_MethodHandleNatives(), CHECK);
3290 }
3291 
3292 jint Threads::create_vm(JavaVMInitArgs* args, bool* canTryAgain) {
3293   extern void JDK_Version_init();
3294 
3295   // Preinitialize version info.
3296   VM_Version::early_initialize();
3297 
3298   // Check version
3299   if (!is_supported_jni_version(args->version)) return JNI_EVERSION;
3300 
3301   // Initialize the output stream module
3302   ostream_init();
3303 
3304   // Process java launcher properties.
3305   Arguments::process_sun_java_launcher_properties(args);
3306 
3307   // Initialize the os module before using TLS
3308   os::init();
3309 
3310   // Record VM creation timing statistics
3311   TraceVmCreationTime create_vm_timer;
3312   create_vm_timer.start();
3313 
3314   // Initialize system properties.
3315   Arguments::init_system_properties();
3316 
3317   // So that JDK version can be used as a discriminator when parsing arguments
3318   JDK_Version_init();
3319 
3320   // Update/Initialize System properties after JDK version number is known
3321   Arguments::init_version_specific_system_properties();
3322 
3323   // Make sure to initialize log configuration *before* parsing arguments
3324   LogConfiguration::initialize(create_vm_timer.begin_time());
3325 
3326   // Parse arguments
3327   jint parse_result = Arguments::parse(args);
3328   if (parse_result != JNI_OK) return parse_result;
3329 
3330   os::init_before_ergo();
3331 
3332   jint ergo_result = Arguments::apply_ergo();
3333   if (ergo_result != JNI_OK) return ergo_result;
3334 
3335   // Final check of all ranges after ergonomics which may change values.
3336   if (!CommandLineFlagRangeList::check_ranges()) {
3337     return JNI_EINVAL;
3338   }
3339 
3340   // Final check of all 'AfterErgo' constraints after ergonomics which may change values.
3341   bool constraint_result = CommandLineFlagConstraintList::check_constraints(CommandLineFlagConstraint::AfterErgo);
3342   if (!constraint_result) {
3343     return JNI_EINVAL;
3344   }
3345 
3346   if (PauseAtStartup) {
3347     os::pause();
3348   }
3349 
3350   HOTSPOT_VM_INIT_BEGIN();
3351 
3352   // Timing (must come after argument parsing)
3353   TraceTime timer("Create VM", TraceStartupTime);
3354 
3355   // Initialize the os module after parsing the args
3356   jint os_init_2_result = os::init_2();
3357   if (os_init_2_result != JNI_OK) return os_init_2_result;
3358 
3359   jint adjust_after_os_result = Arguments::adjust_after_os();
3360   if (adjust_after_os_result != JNI_OK) return adjust_after_os_result;
3361 
3362   // initialize TLS
3363   ThreadLocalStorage::init();
3364 
3365   // Initialize output stream logging
3366   ostream_init_log();
3367 
3368   // Convert -Xrun to -agentlib: if there is no JVM_OnLoad
3369   // Must be before create_vm_init_agents()
3370   if (Arguments::init_libraries_at_startup()) {
3371     convert_vm_init_libraries_to_agents();
3372   }
3373 
3374   // Launch -agentlib/-agentpath and converted -Xrun agents
3375   if (Arguments::init_agents_at_startup()) {
3376     create_vm_init_agents();
3377   }
3378 
3379   // Initialize Threads state
3380   _thread_list = NULL;
3381   _number_of_threads = 0;
3382   _number_of_non_daemon_threads = 0;
3383 
3384   // Initialize global data structures and create system classes in heap
3385   vm_init_globals();
3386 
3387   // Attach the main thread to this os thread
3388   JavaThread* main_thread = new JavaThread();
3389   main_thread->set_thread_state(_thread_in_vm);
3390   // must do this before set_active_handles and initialize_thread_local_storage
3391   // Note: on solaris initialize_thread_local_storage() will (indirectly)
3392   // change the stack size recorded here to one based on the java thread
3393   // stacksize. This adjusted size is what is used to figure the placement
3394   // of the guard pages.
3395   main_thread->record_stack_base_and_size();
3396   main_thread->initialize_thread_local_storage();
3397 
3398   main_thread->set_active_handles(JNIHandleBlock::allocate_block());
3399 
3400   if (!main_thread->set_as_starting_thread()) {
3401     vm_shutdown_during_initialization(
3402                                       "Failed necessary internal allocation. Out of swap space");
3403     delete main_thread;
3404     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3405     return JNI_ENOMEM;
3406   }
3407 
3408   // Enable guard page *after* os::create_main_thread(), otherwise it would
3409   // crash Linux VM, see notes in os_linux.cpp.
3410   main_thread->create_stack_guard_pages();
3411 
3412   // Initialize Java-Level synchronization subsystem
3413   ObjectMonitor::Initialize();
3414 
3415   // Initialize global modules
3416   jint status = init_globals();
3417   if (status != JNI_OK) {
3418     delete main_thread;
3419     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3420     return status;
3421   }
3422 
3423   // Should be done after the heap is fully created
3424   main_thread->cache_global_variables();
3425 
3426   HandleMark hm;
3427 
3428   { MutexLocker mu(Threads_lock);
3429     Threads::add(main_thread);
3430   }
3431 
3432   // Any JVMTI raw monitors entered in onload will transition into
3433   // real raw monitor. VM is setup enough here for raw monitor enter.
3434   JvmtiExport::transition_pending_onload_raw_monitors();
3435 
3436   // Create the VMThread
3437   { TraceTime timer("Start VMThread", TraceStartupTime);
3438     VMThread::create();
3439     Thread* vmthread = VMThread::vm_thread();
3440 
3441     if (!os::create_thread(vmthread, os::vm_thread)) {
3442       vm_exit_during_initialization("Cannot create VM thread. "
3443                                     "Out of system resources.");
3444     }
3445 
3446     // Wait for the VM thread to become ready, and VMThread::run to initialize
3447     // Monitors can have spurious returns, must always check another state flag
3448     {
3449       MutexLocker ml(Notify_lock);
3450       os::start_thread(vmthread);
3451       while (vmthread->active_handles() == NULL) {
3452         Notify_lock->wait();
3453       }
3454     }
3455   }
3456 
3457   assert(Universe::is_fully_initialized(), "not initialized");
3458   if (VerifyDuringStartup) {
3459     // Make sure we're starting with a clean slate.
3460     VM_Verify verify_op;
3461     VMThread::execute(&verify_op);
3462   }
3463 
3464   Thread* THREAD = Thread::current();
3465 
3466   // At this point, the Universe is initialized, but we have not executed
3467   // any byte code.  Now is a good time (the only time) to dump out the
3468   // internal state of the JVM for sharing.
3469   if (DumpSharedSpaces) {
3470     MetaspaceShared::preload_and_dump(CHECK_JNI_ERR);
3471     ShouldNotReachHere();
3472   }
3473 
3474   // Always call even when there are not JVMTI environments yet, since environments
3475   // may be attached late and JVMTI must track phases of VM execution
3476   JvmtiExport::enter_start_phase();
3477 
3478   // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
3479   JvmtiExport::post_vm_start();
3480 
3481   initialize_java_lang_classes(main_thread, CHECK_JNI_ERR);
3482 
3483   // We need this for ClassDataSharing - the initial vm.info property is set
3484   // with the default value of CDS "sharing" which may be reset through
3485   // command line options.
3486   reset_vm_info_property(CHECK_JNI_ERR);
3487 
3488   quicken_jni_functions();
3489 
3490   // Must be run after init_ft which initializes ft_enabled
3491   if (TRACE_INITIALIZE() != JNI_OK) {
3492     vm_exit_during_initialization("Failed to initialize tracing backend");
3493   }
3494 
3495   // Set flag that basic initialization has completed. Used by exceptions and various
3496   // debug stuff, that does not work until all basic classes have been initialized.
3497   set_init_completed();
3498 
3499   LogConfiguration::post_initialize();
3500   Metaspace::post_initialize();
3501 
3502   HOTSPOT_VM_INIT_END();
3503 
3504   // record VM initialization completion time
3505 #if INCLUDE_MANAGEMENT
3506   Management::record_vm_init_completed();
3507 #endif // INCLUDE_MANAGEMENT
3508 
3509   // Compute system loader. Note that this has to occur after set_init_completed, since
3510   // valid exceptions may be thrown in the process.
3511   // Note that we do not use CHECK_0 here since we are inside an EXCEPTION_MARK and
3512   // set_init_completed has just been called, causing exceptions not to be shortcut
3513   // anymore. We call vm_exit_during_initialization directly instead.
3514   SystemDictionary::compute_java_system_loader(CHECK_JNI_ERR);
3515 
3516 #if INCLUDE_ALL_GCS
3517   // Support for ConcurrentMarkSweep. This should be cleaned up
3518   // and better encapsulated. The ugly nested if test would go away
3519   // once things are properly refactored. XXX YSR
3520   if (UseConcMarkSweepGC || UseG1GC) {
3521     if (UseConcMarkSweepGC) {
3522       ConcurrentMarkSweepThread::makeSurrogateLockerThread(CHECK_JNI_ERR);
3523     } else {
3524       ConcurrentMarkThread::makeSurrogateLockerThread(CHECK_JNI_ERR);
3525     }
3526   }
3527 #endif // INCLUDE_ALL_GCS
3528 
3529   // Always call even when there are not JVMTI environments yet, since environments
3530   // may be attached late and JVMTI must track phases of VM execution
3531   JvmtiExport::enter_live_phase();
3532 
3533   // Signal Dispatcher needs to be started before VMInit event is posted
3534   os::signal_init();
3535 
3536   // Start Attach Listener if +StartAttachListener or it can't be started lazily
3537   if (!DisableAttachMechanism) {
3538     AttachListener::vm_start();
3539     if (StartAttachListener || AttachListener::init_at_startup()) {
3540       AttachListener::init();
3541     }
3542   }
3543 
3544   // Launch -Xrun agents
3545   // Must be done in the JVMTI live phase so that for backward compatibility the JDWP
3546   // back-end can launch with -Xdebug -Xrunjdwp.
3547   if (!EagerXrunInit && Arguments::init_libraries_at_startup()) {
3548     create_vm_init_libraries();
3549   }
3550 
3551   // Notify JVMTI agents that VM initialization is complete - nop if no agents.
3552   JvmtiExport::post_vm_initialized();
3553 
3554   if (TRACE_START() != JNI_OK) {
3555     vm_exit_during_initialization("Failed to start tracing backend.");
3556   }
3557 
3558   if (CleanChunkPoolAsync) {
3559     Chunk::start_chunk_pool_cleaner_task();
3560   }
3561 
3562   // initialize compiler(s)
3563 #if defined(COMPILER1) || defined(COMPILER2) || defined(SHARK)
3564   CompileBroker::compilation_init();
3565 #endif
3566 
3567   // Pre-initialize some JSR292 core classes to avoid deadlock during class loading.
3568   // It is done after compilers are initialized, because otherwise compilations of
3569   // signature polymorphic MH intrinsics can be missed
3570   // (see SystemDictionary::find_method_handle_intrinsic).
3571   initialize_jsr292_core_classes(CHECK_JNI_ERR);
3572 
3573 #if INCLUDE_MANAGEMENT
3574   Management::initialize(THREAD);
3575 
3576   if (HAS_PENDING_EXCEPTION) {
3577     // management agent fails to start possibly due to
3578     // configuration problem and is responsible for printing
3579     // stack trace if appropriate. Simply exit VM.
3580     vm_exit(1);
3581   }
3582 #endif // INCLUDE_MANAGEMENT
3583 
3584   if (Arguments::has_profile())       FlatProfiler::engage(main_thread, true);
3585   if (MemProfiling)                   MemProfiler::engage();
3586   StatSampler::engage();
3587   if (CheckJNICalls)                  JniPeriodicChecker::engage();
3588 
3589   BiasedLocking::init();
3590 
3591 #if INCLUDE_RTM_OPT
3592   RTMLockingCounters::init();
3593 #endif
3594 
3595   if (JDK_Version::current().post_vm_init_hook_enabled()) {
3596     call_postVMInitHook(THREAD);
3597     // The Java side of PostVMInitHook.run must deal with all
3598     // exceptions and provide means of diagnosis.
3599     if (HAS_PENDING_EXCEPTION) {
3600       CLEAR_PENDING_EXCEPTION;
3601     }
3602   }
3603 
3604   {
3605     MutexLocker ml(PeriodicTask_lock);
3606     // Make sure the WatcherThread can be started by WatcherThread::start()
3607     // or by dynamic enrollment.
3608     WatcherThread::make_startable();
3609     // Start up the WatcherThread if there are any periodic tasks
3610     // NOTE:  All PeriodicTasks should be registered by now. If they
3611     //   aren't, late joiners might appear to start slowly (we might
3612     //   take a while to process their first tick).
3613     if (PeriodicTask::num_tasks() > 0) {
3614       WatcherThread::start();
3615     }
3616   }
3617 
3618   CodeCacheExtensions::complete_step(CodeCacheExtensionsSteps::CreateVM);
3619 
3620   create_vm_timer.end();
3621 #ifdef ASSERT
3622   _vm_complete = true;
3623 #endif
3624   return JNI_OK;
3625 }
3626 
3627 // type for the Agent_OnLoad and JVM_OnLoad entry points
3628 extern "C" {
3629   typedef jint (JNICALL *OnLoadEntry_t)(JavaVM *, char *, void *);
3630 }
3631 // Find a command line agent library and return its entry point for
3632 //         -agentlib:  -agentpath:   -Xrun
3633 // num_symbol_entries must be passed-in since only the caller knows the number of symbols in the array.
3634 static OnLoadEntry_t lookup_on_load(AgentLibrary* agent,
3635                                     const char *on_load_symbols[],
3636                                     size_t num_symbol_entries) {
3637   OnLoadEntry_t on_load_entry = NULL;
3638   void *library = NULL;
3639 
3640   if (!agent->valid()) {
3641     char buffer[JVM_MAXPATHLEN];
3642     char ebuf[1024] = "";
3643     const char *name = agent->name();
3644     const char *msg = "Could not find agent library ";
3645 
3646     // First check to see if agent is statically linked into executable
3647     if (os::find_builtin_agent(agent, on_load_symbols, num_symbol_entries)) {
3648       library = agent->os_lib();
3649     } else if (agent->is_absolute_path()) {
3650       library = os::dll_load(name, ebuf, sizeof ebuf);
3651       if (library == NULL) {
3652         const char *sub_msg = " in absolute path, with error: ";
3653         size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
3654         char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
3655         jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
3656         // If we can't find the agent, exit.
3657         vm_exit_during_initialization(buf, NULL);
3658         FREE_C_HEAP_ARRAY(char, buf);
3659       }
3660     } else {
3661       // Try to load the agent from the standard dll directory
3662       if (os::dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(),
3663                              name)) {
3664         library = os::dll_load(buffer, ebuf, sizeof ebuf);
3665       }
3666       if (library == NULL) { // Try the local directory
3667         char ns[1] = {0};
3668         if (os::dll_build_name(buffer, sizeof(buffer), ns, name)) {
3669           library = os::dll_load(buffer, ebuf, sizeof ebuf);
3670         }
3671         if (library == NULL) {
3672           const char *sub_msg = " on the library path, with error: ";
3673           size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
3674           char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
3675           jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
3676           // If we can't find the agent, exit.
3677           vm_exit_during_initialization(buf, NULL);
3678           FREE_C_HEAP_ARRAY(char, buf);
3679         }
3680       }
3681     }
3682     agent->set_os_lib(library);
3683     agent->set_valid();
3684   }
3685 
3686   // Find the OnLoad function.
3687   on_load_entry =
3688     CAST_TO_FN_PTR(OnLoadEntry_t, os::find_agent_function(agent,
3689                                                           false,
3690                                                           on_load_symbols,
3691                                                           num_symbol_entries));
3692   return on_load_entry;
3693 }
3694 
3695 // Find the JVM_OnLoad entry point
3696 static OnLoadEntry_t lookup_jvm_on_load(AgentLibrary* agent) {
3697   const char *on_load_symbols[] = JVM_ONLOAD_SYMBOLS;
3698   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
3699 }
3700 
3701 // Find the Agent_OnLoad entry point
3702 static OnLoadEntry_t lookup_agent_on_load(AgentLibrary* agent) {
3703   const char *on_load_symbols[] = AGENT_ONLOAD_SYMBOLS;
3704   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
3705 }
3706 
3707 // For backwards compatibility with -Xrun
3708 // Convert libraries with no JVM_OnLoad, but which have Agent_OnLoad to be
3709 // treated like -agentpath:
3710 // Must be called before agent libraries are created
3711 void Threads::convert_vm_init_libraries_to_agents() {
3712   AgentLibrary* agent;
3713   AgentLibrary* next;
3714 
3715   for (agent = Arguments::libraries(); agent != NULL; agent = next) {
3716     next = agent->next();  // cache the next agent now as this agent may get moved off this list
3717     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
3718 
3719     // If there is an JVM_OnLoad function it will get called later,
3720     // otherwise see if there is an Agent_OnLoad
3721     if (on_load_entry == NULL) {
3722       on_load_entry = lookup_agent_on_load(agent);
3723       if (on_load_entry != NULL) {
3724         // switch it to the agent list -- so that Agent_OnLoad will be called,
3725         // JVM_OnLoad won't be attempted and Agent_OnUnload will
3726         Arguments::convert_library_to_agent(agent);
3727       } else {
3728         vm_exit_during_initialization("Could not find JVM_OnLoad or Agent_OnLoad function in the library", agent->name());
3729       }
3730     }
3731   }
3732 }
3733 
3734 // Create agents for -agentlib:  -agentpath:  and converted -Xrun
3735 // Invokes Agent_OnLoad
3736 // Called very early -- before JavaThreads exist
3737 void Threads::create_vm_init_agents() {
3738   extern struct JavaVM_ main_vm;
3739   AgentLibrary* agent;
3740 
3741   JvmtiExport::enter_onload_phase();
3742 
3743   for (agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
3744     OnLoadEntry_t  on_load_entry = lookup_agent_on_load(agent);
3745 
3746     if (on_load_entry != NULL) {
3747       // Invoke the Agent_OnLoad function
3748       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
3749       if (err != JNI_OK) {
3750         vm_exit_during_initialization("agent library failed to init", agent->name());
3751       }
3752     } else {
3753       vm_exit_during_initialization("Could not find Agent_OnLoad function in the agent library", agent->name());
3754     }
3755   }
3756   JvmtiExport::enter_primordial_phase();
3757 }
3758 
3759 extern "C" {
3760   typedef void (JNICALL *Agent_OnUnload_t)(JavaVM *);
3761 }
3762 
3763 void Threads::shutdown_vm_agents() {
3764   // Send any Agent_OnUnload notifications
3765   const char *on_unload_symbols[] = AGENT_ONUNLOAD_SYMBOLS;
3766   size_t num_symbol_entries = ARRAY_SIZE(on_unload_symbols);
3767   extern struct JavaVM_ main_vm;
3768   for (AgentLibrary* agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
3769 
3770     // Find the Agent_OnUnload function.
3771     Agent_OnUnload_t unload_entry = CAST_TO_FN_PTR(Agent_OnUnload_t,
3772                                                    os::find_agent_function(agent,
3773                                                    false,
3774                                                    on_unload_symbols,
3775                                                    num_symbol_entries));
3776 
3777     // Invoke the Agent_OnUnload function
3778     if (unload_entry != NULL) {
3779       JavaThread* thread = JavaThread::current();
3780       ThreadToNativeFromVM ttn(thread);
3781       HandleMark hm(thread);
3782       (*unload_entry)(&main_vm);
3783     }
3784   }
3785 }
3786 
3787 // Called for after the VM is initialized for -Xrun libraries which have not been converted to agent libraries
3788 // Invokes JVM_OnLoad
3789 void Threads::create_vm_init_libraries() {
3790   extern struct JavaVM_ main_vm;
3791   AgentLibrary* agent;
3792 
3793   for (agent = Arguments::libraries(); agent != NULL; agent = agent->next()) {
3794     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
3795 
3796     if (on_load_entry != NULL) {
3797       // Invoke the JVM_OnLoad function
3798       JavaThread* thread = JavaThread::current();
3799       ThreadToNativeFromVM ttn(thread);
3800       HandleMark hm(thread);
3801       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
3802       if (err != JNI_OK) {
3803         vm_exit_during_initialization("-Xrun library failed to init", agent->name());
3804       }
3805     } else {
3806       vm_exit_during_initialization("Could not find JVM_OnLoad function in -Xrun library", agent->name());
3807     }
3808   }
3809 }
3810 
3811 JavaThread* Threads::find_java_thread_from_java_tid(jlong java_tid) {
3812   assert(Threads_lock->owned_by_self(), "Must hold Threads_lock");
3813 
3814   JavaThread* java_thread = NULL;
3815   // Sequential search for now.  Need to do better optimization later.
3816   for (JavaThread* thread = Threads::first(); thread != NULL; thread = thread->next()) {
3817     oop tobj = thread->threadObj();
3818     if (!thread->is_exiting() &&
3819         tobj != NULL &&
3820         java_tid == java_lang_Thread::thread_id(tobj)) {
3821       java_thread = thread;
3822       break;
3823     }
3824   }
3825   return java_thread;
3826 }
3827 
3828 
3829 // Last thread running calls java.lang.Shutdown.shutdown()
3830 void JavaThread::invoke_shutdown_hooks() {
3831   HandleMark hm(this);
3832 
3833   // We could get here with a pending exception, if so clear it now.
3834   if (this->has_pending_exception()) {
3835     this->clear_pending_exception();
3836   }
3837 
3838   EXCEPTION_MARK;
3839   Klass* k =
3840     SystemDictionary::resolve_or_null(vmSymbols::java_lang_Shutdown(),
3841                                       THREAD);
3842   if (k != NULL) {
3843     // SystemDictionary::resolve_or_null will return null if there was
3844     // an exception.  If we cannot load the Shutdown class, just don't
3845     // call Shutdown.shutdown() at all.  This will mean the shutdown hooks
3846     // and finalizers (if runFinalizersOnExit is set) won't be run.
3847     // Note that if a shutdown hook was registered or runFinalizersOnExit
3848     // was called, the Shutdown class would have already been loaded
3849     // (Runtime.addShutdownHook and runFinalizersOnExit will load it).
3850     instanceKlassHandle shutdown_klass (THREAD, k);
3851     JavaValue result(T_VOID);
3852     JavaCalls::call_static(&result,
3853                            shutdown_klass,
3854                            vmSymbols::shutdown_method_name(),
3855                            vmSymbols::void_method_signature(),
3856                            THREAD);
3857   }
3858   CLEAR_PENDING_EXCEPTION;
3859 }
3860 
3861 // Threads::destroy_vm() is normally called from jni_DestroyJavaVM() when
3862 // the program falls off the end of main(). Another VM exit path is through
3863 // vm_exit() when the program calls System.exit() to return a value or when
3864 // there is a serious error in VM. The two shutdown paths are not exactly
3865 // the same, but they share Shutdown.shutdown() at Java level and before_exit()
3866 // and VM_Exit op at VM level.
3867 //
3868 // Shutdown sequence:
3869 //   + Shutdown native memory tracking if it is on
3870 //   + Wait until we are the last non-daemon thread to execute
3871 //     <-- every thing is still working at this moment -->
3872 //   + Call java.lang.Shutdown.shutdown(), which will invoke Java level
3873 //        shutdown hooks, run finalizers if finalization-on-exit
3874 //   + Call before_exit(), prepare for VM exit
3875 //      > run VM level shutdown hooks (they are registered through JVM_OnExit(),
3876 //        currently the only user of this mechanism is File.deleteOnExit())
3877 //      > stop flat profiler, StatSampler, watcher thread, CMS threads,
3878 //        post thread end and vm death events to JVMTI,
3879 //        stop signal thread
3880 //   + Call JavaThread::exit(), it will:
3881 //      > release JNI handle blocks, remove stack guard pages
3882 //      > remove this thread from Threads list
3883 //     <-- no more Java code from this thread after this point -->
3884 //   + Stop VM thread, it will bring the remaining VM to a safepoint and stop
3885 //     the compiler threads at safepoint
3886 //     <-- do not use anything that could get blocked by Safepoint -->
3887 //   + Disable tracing at JNI/JVM barriers
3888 //   + Set _vm_exited flag for threads that are still running native code
3889 //   + Delete this thread
3890 //   + Call exit_globals()
3891 //      > deletes tty
3892 //      > deletes PerfMemory resources
3893 //   + Return to caller
3894 
3895 bool Threads::destroy_vm() {
3896   JavaThread* thread = JavaThread::current();
3897 
3898 #ifdef ASSERT
3899   _vm_complete = false;
3900 #endif
3901   // Wait until we are the last non-daemon thread to execute
3902   { MutexLocker nu(Threads_lock);
3903     while (Threads::number_of_non_daemon_threads() > 1)
3904       // This wait should make safepoint checks, wait without a timeout,
3905       // and wait as a suspend-equivalent condition.
3906       //
3907       // Note: If the FlatProfiler is running and this thread is waiting
3908       // for another non-daemon thread to finish, then the FlatProfiler
3909       // is waiting for the external suspend request on this thread to
3910       // complete. wait_for_ext_suspend_completion() will eventually
3911       // timeout, but that takes time. Making this wait a suspend-
3912       // equivalent condition solves that timeout problem.
3913       //
3914       Threads_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
3915                          Mutex::_as_suspend_equivalent_flag);
3916   }
3917 
3918   // Hang forever on exit if we are reporting an error.
3919   if (ShowMessageBoxOnError && is_error_reported()) {
3920     os::infinite_sleep();
3921   }
3922   os::wait_for_keypress_at_exit();
3923 
3924   // run Java level shutdown hooks
3925   thread->invoke_shutdown_hooks();
3926 
3927   before_exit(thread);
3928 
3929   thread->exit(true);
3930 
3931   // Stop VM thread.
3932   {
3933     // 4945125 The vm thread comes to a safepoint during exit.
3934     // GC vm_operations can get caught at the safepoint, and the
3935     // heap is unparseable if they are caught. Grab the Heap_lock
3936     // to prevent this. The GC vm_operations will not be able to
3937     // queue until after the vm thread is dead. After this point,
3938     // we'll never emerge out of the safepoint before the VM exits.
3939 
3940     MutexLocker ml(Heap_lock);
3941 
3942     VMThread::wait_for_vm_thread_exit();
3943     assert(SafepointSynchronize::is_at_safepoint(), "VM thread should exit at Safepoint");
3944     VMThread::destroy();
3945   }
3946 
3947   // clean up ideal graph printers
3948 #if defined(COMPILER2) && !defined(PRODUCT)
3949   IdealGraphPrinter::clean_up();
3950 #endif
3951 
3952   // Now, all Java threads are gone except daemon threads. Daemon threads
3953   // running Java code or in VM are stopped by the Safepoint. However,
3954   // daemon threads executing native code are still running.  But they
3955   // will be stopped at native=>Java/VM barriers. Note that we can't
3956   // simply kill or suspend them, as it is inherently deadlock-prone.
3957 
3958 #ifndef PRODUCT
3959   // disable function tracing at JNI/JVM barriers
3960   TraceJNICalls = false;
3961   TraceJVMCalls = false;
3962   TraceRuntimeCalls = false;
3963 #endif
3964 
3965   VM_Exit::set_vm_exited();
3966 
3967   notify_vm_shutdown();
3968 
3969   delete thread;
3970 
3971   // exit_globals() will delete tty
3972   exit_globals();
3973 
3974   LogConfiguration::finalize();
3975 
3976   return true;
3977 }
3978 
3979 
3980 jboolean Threads::is_supported_jni_version_including_1_1(jint version) {
3981   if (version == JNI_VERSION_1_1) return JNI_TRUE;
3982   return is_supported_jni_version(version);
3983 }
3984 
3985 
3986 jboolean Threads::is_supported_jni_version(jint version) {
3987   if (version == JNI_VERSION_1_2) return JNI_TRUE;
3988   if (version == JNI_VERSION_1_4) return JNI_TRUE;
3989   if (version == JNI_VERSION_1_6) return JNI_TRUE;
3990   if (version == JNI_VERSION_1_8) return JNI_TRUE;
3991   return JNI_FALSE;
3992 }
3993 
3994 
3995 void Threads::add(JavaThread* p, bool force_daemon) {
3996   // The threads lock must be owned at this point
3997   assert_locked_or_safepoint(Threads_lock);
3998 
3999   // See the comment for this method in thread.hpp for its purpose and
4000   // why it is called here.
4001   p->initialize_queues();
4002   p->set_next(_thread_list);
4003   _thread_list = p;
4004   _number_of_threads++;
4005   oop threadObj = p->threadObj();
4006   bool daemon = true;
4007   // Bootstrapping problem: threadObj can be null for initial
4008   // JavaThread (or for threads attached via JNI)
4009   if ((!force_daemon) && (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj))) {
4010     _number_of_non_daemon_threads++;
4011     daemon = false;
4012   }
4013 
4014   ThreadService::add_thread(p, daemon);
4015 
4016   // Possible GC point.
4017   Events::log(p, "Thread added: " INTPTR_FORMAT, p);
4018 }
4019 
4020 void Threads::remove(JavaThread* p) {
4021   // Extra scope needed for Thread_lock, so we can check
4022   // that we do not remove thread without safepoint code notice
4023   { MutexLocker ml(Threads_lock);
4024 
4025     assert(includes(p), "p must be present");
4026 
4027     JavaThread* current = _thread_list;
4028     JavaThread* prev    = NULL;
4029 
4030     while (current != p) {
4031       prev    = current;
4032       current = current->next();
4033     }
4034 
4035     if (prev) {
4036       prev->set_next(current->next());
4037     } else {
4038       _thread_list = p->next();
4039     }
4040     _number_of_threads--;
4041     oop threadObj = p->threadObj();
4042     bool daemon = true;
4043     if (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj)) {
4044       _number_of_non_daemon_threads--;
4045       daemon = false;
4046 
4047       // Only one thread left, do a notify on the Threads_lock so a thread waiting
4048       // on destroy_vm will wake up.
4049       if (number_of_non_daemon_threads() == 1) {
4050         Threads_lock->notify_all();
4051       }
4052     }
4053     ThreadService::remove_thread(p, daemon);
4054 
4055     // Make sure that safepoint code disregard this thread. This is needed since
4056     // the thread might mess around with locks after this point. This can cause it
4057     // to do callbacks into the safepoint code. However, the safepoint code is not aware
4058     // of this thread since it is removed from the queue.
4059     p->set_terminated_value();
4060   } // unlock Threads_lock
4061 
4062   // Since Events::log uses a lock, we grab it outside the Threads_lock
4063   Events::log(p, "Thread exited: " INTPTR_FORMAT, p);
4064 }
4065 
4066 // Threads_lock must be held when this is called (or must be called during a safepoint)
4067 bool Threads::includes(JavaThread* p) {
4068   assert(Threads_lock->is_locked(), "sanity check");
4069   ALL_JAVA_THREADS(q) {
4070     if (q == p) {
4071       return true;
4072     }
4073   }
4074   return false;
4075 }
4076 
4077 // Operations on the Threads list for GC.  These are not explicitly locked,
4078 // but the garbage collector must provide a safe context for them to run.
4079 // In particular, these things should never be called when the Threads_lock
4080 // is held by some other thread. (Note: the Safepoint abstraction also
4081 // uses the Threads_lock to guarantee this property. It also makes sure that
4082 // all threads gets blocked when exiting or starting).
4083 
4084 void Threads::oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
4085   ALL_JAVA_THREADS(p) {
4086     p->oops_do(f, cld_f, cf);
4087   }
4088   VMThread::vm_thread()->oops_do(f, cld_f, cf);
4089 }
4090 
4091 void Threads::change_thread_claim_parity() {
4092   // Set the new claim parity.
4093   assert(_thread_claim_parity >= 0 && _thread_claim_parity <= 2,
4094          "Not in range.");
4095   _thread_claim_parity++;
4096   if (_thread_claim_parity == 3) _thread_claim_parity = 1;
4097   assert(_thread_claim_parity >= 1 && _thread_claim_parity <= 2,
4098          "Not in range.");
4099 }
4100 
4101 #ifdef ASSERT
4102 void Threads::assert_all_threads_claimed() {
4103   ALL_JAVA_THREADS(p) {
4104     const int thread_parity = p->oops_do_parity();
4105     assert((thread_parity == _thread_claim_parity),
4106         err_msg("Thread " PTR_FORMAT " has incorrect parity %d != %d", p2i(p), thread_parity, _thread_claim_parity));
4107   }
4108 }
4109 #endif // ASSERT
4110 
4111 void Threads::possibly_parallel_oops_do(bool is_par, OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
4112   int cp = Threads::thread_claim_parity();
4113   ALL_JAVA_THREADS(p) {
4114     if (p->claim_oops_do(is_par, cp)) {
4115       p->oops_do(f, cld_f, cf);
4116     }
4117   }
4118   VMThread* vmt = VMThread::vm_thread();
4119   if (vmt->claim_oops_do(is_par, cp)) {
4120     vmt->oops_do(f, cld_f, cf);
4121   }
4122 }
4123 
4124 #if INCLUDE_ALL_GCS
4125 // Used by ParallelScavenge
4126 void Threads::create_thread_roots_tasks(GCTaskQueue* q) {
4127   ALL_JAVA_THREADS(p) {
4128     q->enqueue(new ThreadRootsTask(p));
4129   }
4130   q->enqueue(new ThreadRootsTask(VMThread::vm_thread()));
4131 }
4132 
4133 // Used by Parallel Old
4134 void Threads::create_thread_roots_marking_tasks(GCTaskQueue* q) {
4135   ALL_JAVA_THREADS(p) {
4136     q->enqueue(new ThreadRootsMarkingTask(p));
4137   }
4138   q->enqueue(new ThreadRootsMarkingTask(VMThread::vm_thread()));
4139 }
4140 #endif // INCLUDE_ALL_GCS
4141 
4142 void Threads::nmethods_do(CodeBlobClosure* cf) {
4143   ALL_JAVA_THREADS(p) {
4144     p->nmethods_do(cf);
4145   }
4146   VMThread::vm_thread()->nmethods_do(cf);
4147 }
4148 
4149 void Threads::metadata_do(void f(Metadata*)) {
4150   ALL_JAVA_THREADS(p) {
4151     p->metadata_do(f);
4152   }
4153 }
4154 
4155 class ThreadHandlesClosure : public ThreadClosure {
4156   void (*_f)(Metadata*);
4157  public:
4158   ThreadHandlesClosure(void f(Metadata*)) : _f(f) {}
4159   virtual void do_thread(Thread* thread) {
4160     thread->metadata_handles_do(_f);
4161   }
4162 };
4163 
4164 void Threads::metadata_handles_do(void f(Metadata*)) {
4165   // Only walk the Handles in Thread.
4166   ThreadHandlesClosure handles_closure(f);
4167   threads_do(&handles_closure);
4168 }
4169 
4170 void Threads::deoptimized_wrt_marked_nmethods() {
4171   ALL_JAVA_THREADS(p) {
4172     p->deoptimized_wrt_marked_nmethods();
4173   }
4174 }
4175 
4176 
4177 // Get count Java threads that are waiting to enter the specified monitor.
4178 GrowableArray<JavaThread*>* Threads::get_pending_threads(int count,
4179                                                          address monitor,
4180                                                          bool doLock) {
4181   assert(doLock || SafepointSynchronize::is_at_safepoint(),
4182          "must grab Threads_lock or be at safepoint");
4183   GrowableArray<JavaThread*>* result = new GrowableArray<JavaThread*>(count);
4184 
4185   int i = 0;
4186   {
4187     MutexLockerEx ml(doLock ? Threads_lock : NULL);
4188     ALL_JAVA_THREADS(p) {
4189       if (p->is_Compiler_thread()) continue;
4190 
4191       address pending = (address)p->current_pending_monitor();
4192       if (pending == monitor) {             // found a match
4193         if (i < count) result->append(p);   // save the first count matches
4194         i++;
4195       }
4196     }
4197   }
4198   return result;
4199 }
4200 
4201 
4202 JavaThread *Threads::owning_thread_from_monitor_owner(address owner,
4203                                                       bool doLock) {
4204   assert(doLock ||
4205          Threads_lock->owned_by_self() ||
4206          SafepointSynchronize::is_at_safepoint(),
4207          "must grab Threads_lock or be at safepoint");
4208 
4209   // NULL owner means not locked so we can skip the search
4210   if (owner == NULL) return NULL;
4211 
4212   {
4213     MutexLockerEx ml(doLock ? Threads_lock : NULL);
4214     ALL_JAVA_THREADS(p) {
4215       // first, see if owner is the address of a Java thread
4216       if (owner == (address)p) return p;
4217     }
4218   }
4219   // Cannot assert on lack of success here since this function may be
4220   // used by code that is trying to report useful problem information
4221   // like deadlock detection.
4222   if (UseHeavyMonitors) return NULL;
4223 
4224   // If we didn't find a matching Java thread and we didn't force use of
4225   // heavyweight monitors, then the owner is the stack address of the
4226   // Lock Word in the owning Java thread's stack.
4227   //
4228   JavaThread* the_owner = NULL;
4229   {
4230     MutexLockerEx ml(doLock ? Threads_lock : NULL);
4231     ALL_JAVA_THREADS(q) {
4232       if (q->is_lock_owned(owner)) {
4233         the_owner = q;
4234         break;
4235       }
4236     }
4237   }
4238   // cannot assert on lack of success here; see above comment
4239   return the_owner;
4240 }
4241 
4242 // Threads::print_on() is called at safepoint by VM_PrintThreads operation.
4243 void Threads::print_on(outputStream* st, bool print_stacks,
4244                        bool internal_format, bool print_concurrent_locks) {
4245   char buf[32];
4246   st->print_cr("%s", os::local_time_string(buf, sizeof(buf)));
4247 
4248   st->print_cr("Full thread dump %s (%s %s):",
4249                Abstract_VM_Version::vm_name(),
4250                Abstract_VM_Version::vm_release(),
4251                Abstract_VM_Version::vm_info_string());
4252   st->cr();
4253 
4254 #if INCLUDE_SERVICES
4255   // Dump concurrent locks
4256   ConcurrentLocksDump concurrent_locks;
4257   if (print_concurrent_locks) {
4258     concurrent_locks.dump_at_safepoint();
4259   }
4260 #endif // INCLUDE_SERVICES
4261 
4262   ALL_JAVA_THREADS(p) {
4263     ResourceMark rm;
4264     p->print_on(st);
4265     if (print_stacks) {
4266       if (internal_format) {
4267         p->trace_stack();
4268       } else {
4269         p->print_stack_on(st);
4270       }
4271     }
4272     st->cr();
4273 #if INCLUDE_SERVICES
4274     if (print_concurrent_locks) {
4275       concurrent_locks.print_locks_on(p, st);
4276     }
4277 #endif // INCLUDE_SERVICES
4278   }
4279 
4280   VMThread::vm_thread()->print_on(st);
4281   st->cr();
4282   Universe::heap()->print_gc_threads_on(st);
4283   WatcherThread* wt = WatcherThread::watcher_thread();
4284   if (wt != NULL) {
4285     wt->print_on(st);
4286     st->cr();
4287   }
4288   CompileBroker::print_compiler_threads_on(st);
4289   st->flush();
4290 }
4291 
4292 // Threads::print_on_error() is called by fatal error handler. It's possible
4293 // that VM is not at safepoint and/or current thread is inside signal handler.
4294 // Don't print stack trace, as the stack may not be walkable. Don't allocate
4295 // memory (even in resource area), it might deadlock the error handler.
4296 void Threads::print_on_error(outputStream* st, Thread* current, char* buf,
4297                              int buflen) {
4298   bool found_current = false;
4299   st->print_cr("Java Threads: ( => current thread )");
4300   ALL_JAVA_THREADS(thread) {
4301     bool is_current = (current == thread);
4302     found_current = found_current || is_current;
4303 
4304     st->print("%s", is_current ? "=>" : "  ");
4305 
4306     st->print(PTR_FORMAT, thread);
4307     st->print(" ");
4308     thread->print_on_error(st, buf, buflen);
4309     st->cr();
4310   }
4311   st->cr();
4312 
4313   st->print_cr("Other Threads:");
4314   if (VMThread::vm_thread()) {
4315     bool is_current = (current == VMThread::vm_thread());
4316     found_current = found_current || is_current;
4317     st->print("%s", current == VMThread::vm_thread() ? "=>" : "  ");
4318 
4319     st->print(PTR_FORMAT, VMThread::vm_thread());
4320     st->print(" ");
4321     VMThread::vm_thread()->print_on_error(st, buf, buflen);
4322     st->cr();
4323   }
4324   WatcherThread* wt = WatcherThread::watcher_thread();
4325   if (wt != NULL) {
4326     bool is_current = (current == wt);
4327     found_current = found_current || is_current;
4328     st->print("%s", is_current ? "=>" : "  ");
4329 
4330     st->print(PTR_FORMAT, wt);
4331     st->print(" ");
4332     wt->print_on_error(st, buf, buflen);
4333     st->cr();
4334   }
4335   if (!found_current) {
4336     st->cr();
4337     st->print("=>" PTR_FORMAT " (exited) ", current);
4338     current->print_on_error(st, buf, buflen);
4339     st->cr();
4340   }
4341 }
4342 
4343 // Internal SpinLock and Mutex
4344 // Based on ParkEvent
4345 
4346 // Ad-hoc mutual exclusion primitives: SpinLock and Mux
4347 //
4348 // We employ SpinLocks _only for low-contention, fixed-length
4349 // short-duration critical sections where we're concerned
4350 // about native mutex_t or HotSpot Mutex:: latency.
4351 // The mux construct provides a spin-then-block mutual exclusion
4352 // mechanism.
4353 //
4354 // Testing has shown that contention on the ListLock guarding gFreeList
4355 // is common.  If we implement ListLock as a simple SpinLock it's common
4356 // for the JVM to devolve to yielding with little progress.  This is true
4357 // despite the fact that the critical sections protected by ListLock are
4358 // extremely short.
4359 //
4360 // TODO-FIXME: ListLock should be of type SpinLock.
4361 // We should make this a 1st-class type, integrated into the lock
4362 // hierarchy as leaf-locks.  Critically, the SpinLock structure
4363 // should have sufficient padding to avoid false-sharing and excessive
4364 // cache-coherency traffic.
4365 
4366 
4367 typedef volatile int SpinLockT;
4368 
4369 void Thread::SpinAcquire(volatile int * adr, const char * LockName) {
4370   if (Atomic::cmpxchg (1, adr, 0) == 0) {
4371     return;   // normal fast-path return
4372   }
4373 
4374   // Slow-path : We've encountered contention -- Spin/Yield/Block strategy.
4375   TEVENT(SpinAcquire - ctx);
4376   int ctr = 0;
4377   int Yields = 0;
4378   for (;;) {
4379     while (*adr != 0) {
4380       ++ctr;
4381       if ((ctr & 0xFFF) == 0 || !os::is_MP()) {
4382         if (Yields > 5) {
4383           os::naked_short_sleep(1);
4384         } else {
4385           os::naked_yield();
4386           ++Yields;
4387         }
4388       } else {
4389         SpinPause();
4390       }
4391     }
4392     if (Atomic::cmpxchg(1, adr, 0) == 0) return;
4393   }
4394 }
4395 
4396 void Thread::SpinRelease(volatile int * adr) {
4397   assert(*adr != 0, "invariant");
4398   OrderAccess::fence();      // guarantee at least release consistency.
4399   // Roach-motel semantics.
4400   // It's safe if subsequent LDs and STs float "up" into the critical section,
4401   // but prior LDs and STs within the critical section can't be allowed
4402   // to reorder or float past the ST that releases the lock.
4403   // Loads and stores in the critical section - which appear in program
4404   // order before the store that releases the lock - must also appear
4405   // before the store that releases the lock in memory visibility order.
4406   // Conceptually we need a #loadstore|#storestore "release" MEMBAR before
4407   // the ST of 0 into the lock-word which releases the lock, so fence
4408   // more than covers this on all platforms.
4409   *adr = 0;
4410 }
4411 
4412 // muxAcquire and muxRelease:
4413 //
4414 // *  muxAcquire and muxRelease support a single-word lock-word construct.
4415 //    The LSB of the word is set IFF the lock is held.
4416 //    The remainder of the word points to the head of a singly-linked list
4417 //    of threads blocked on the lock.
4418 //
4419 // *  The current implementation of muxAcquire-muxRelease uses its own
4420 //    dedicated Thread._MuxEvent instance.  If we're interested in
4421 //    minimizing the peak number of extant ParkEvent instances then
4422 //    we could eliminate _MuxEvent and "borrow" _ParkEvent as long
4423 //    as certain invariants were satisfied.  Specifically, care would need
4424 //    to be taken with regards to consuming unpark() "permits".
4425 //    A safe rule of thumb is that a thread would never call muxAcquire()
4426 //    if it's enqueued (cxq, EntryList, WaitList, etc) and will subsequently
4427 //    park().  Otherwise the _ParkEvent park() operation in muxAcquire() could
4428 //    consume an unpark() permit intended for monitorenter, for instance.
4429 //    One way around this would be to widen the restricted-range semaphore
4430 //    implemented in park().  Another alternative would be to provide
4431 //    multiple instances of the PlatformEvent() for each thread.  One
4432 //    instance would be dedicated to muxAcquire-muxRelease, for instance.
4433 //
4434 // *  Usage:
4435 //    -- Only as leaf locks
4436 //    -- for short-term locking only as muxAcquire does not perform
4437 //       thread state transitions.
4438 //
4439 // Alternatives:
4440 // *  We could implement muxAcquire and muxRelease with MCS or CLH locks
4441 //    but with parking or spin-then-park instead of pure spinning.
4442 // *  Use Taura-Oyama-Yonenzawa locks.
4443 // *  It's possible to construct a 1-0 lock if we encode the lockword as
4444 //    (List,LockByte).  Acquire will CAS the full lockword while Release
4445 //    will STB 0 into the LockByte.  The 1-0 scheme admits stranding, so
4446 //    acquiring threads use timers (ParkTimed) to detect and recover from
4447 //    the stranding window.  Thread/Node structures must be aligned on 256-byte
4448 //    boundaries by using placement-new.
4449 // *  Augment MCS with advisory back-link fields maintained with CAS().
4450 //    Pictorially:  LockWord -> T1 <-> T2 <-> T3 <-> ... <-> Tn <-> Owner.
4451 //    The validity of the backlinks must be ratified before we trust the value.
4452 //    If the backlinks are invalid the exiting thread must back-track through the
4453 //    the forward links, which are always trustworthy.
4454 // *  Add a successor indication.  The LockWord is currently encoded as
4455 //    (List, LOCKBIT:1).  We could also add a SUCCBIT or an explicit _succ variable
4456 //    to provide the usual futile-wakeup optimization.
4457 //    See RTStt for details.
4458 // *  Consider schedctl.sc_nopreempt to cover the critical section.
4459 //
4460 
4461 
4462 typedef volatile intptr_t MutexT;      // Mux Lock-word
4463 enum MuxBits { LOCKBIT = 1 };
4464 
4465 void Thread::muxAcquire(volatile intptr_t * Lock, const char * LockName) {
4466   intptr_t w = Atomic::cmpxchg_ptr(LOCKBIT, Lock, 0);
4467   if (w == 0) return;
4468   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4469     return;
4470   }
4471 
4472   TEVENT(muxAcquire - Contention);
4473   ParkEvent * const Self = Thread::current()->_MuxEvent;
4474   assert((intptr_t(Self) & LOCKBIT) == 0, "invariant");
4475   for (;;) {
4476     int its = (os::is_MP() ? 100 : 0) + 1;
4477 
4478     // Optional spin phase: spin-then-park strategy
4479     while (--its >= 0) {
4480       w = *Lock;
4481       if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4482         return;
4483       }
4484     }
4485 
4486     Self->reset();
4487     Self->OnList = intptr_t(Lock);
4488     // The following fence() isn't _strictly necessary as the subsequent
4489     // CAS() both serializes execution and ratifies the fetched *Lock value.
4490     OrderAccess::fence();
4491     for (;;) {
4492       w = *Lock;
4493       if ((w & LOCKBIT) == 0) {
4494         if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4495           Self->OnList = 0;   // hygiene - allows stronger asserts
4496           return;
4497         }
4498         continue;      // Interference -- *Lock changed -- Just retry
4499       }
4500       assert(w & LOCKBIT, "invariant");
4501       Self->ListNext = (ParkEvent *) (w & ~LOCKBIT);
4502       if (Atomic::cmpxchg_ptr(intptr_t(Self)|LOCKBIT, Lock, w) == w) break;
4503     }
4504 
4505     while (Self->OnList != 0) {
4506       Self->park();
4507     }
4508   }
4509 }
4510 
4511 void Thread::muxAcquireW(volatile intptr_t * Lock, ParkEvent * ev) {
4512   intptr_t w = Atomic::cmpxchg_ptr(LOCKBIT, Lock, 0);
4513   if (w == 0) return;
4514   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4515     return;
4516   }
4517 
4518   TEVENT(muxAcquire - Contention);
4519   ParkEvent * ReleaseAfter = NULL;
4520   if (ev == NULL) {
4521     ev = ReleaseAfter = ParkEvent::Allocate(NULL);
4522   }
4523   assert((intptr_t(ev) & LOCKBIT) == 0, "invariant");
4524   for (;;) {
4525     guarantee(ev->OnList == 0, "invariant");
4526     int its = (os::is_MP() ? 100 : 0) + 1;
4527 
4528     // Optional spin phase: spin-then-park strategy
4529     while (--its >= 0) {
4530       w = *Lock;
4531       if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4532         if (ReleaseAfter != NULL) {
4533           ParkEvent::Release(ReleaseAfter);
4534         }
4535         return;
4536       }
4537     }
4538 
4539     ev->reset();
4540     ev->OnList = intptr_t(Lock);
4541     // The following fence() isn't _strictly necessary as the subsequent
4542     // CAS() both serializes execution and ratifies the fetched *Lock value.
4543     OrderAccess::fence();
4544     for (;;) {
4545       w = *Lock;
4546       if ((w & LOCKBIT) == 0) {
4547         if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4548           ev->OnList = 0;
4549           // We call ::Release while holding the outer lock, thus
4550           // artificially lengthening the critical section.
4551           // Consider deferring the ::Release() until the subsequent unlock(),
4552           // after we've dropped the outer lock.
4553           if (ReleaseAfter != NULL) {
4554             ParkEvent::Release(ReleaseAfter);
4555           }
4556           return;
4557         }
4558         continue;      // Interference -- *Lock changed -- Just retry
4559       }
4560       assert(w & LOCKBIT, "invariant");
4561       ev->ListNext = (ParkEvent *) (w & ~LOCKBIT);
4562       if (Atomic::cmpxchg_ptr(intptr_t(ev)|LOCKBIT, Lock, w) == w) break;
4563     }
4564 
4565     while (ev->OnList != 0) {
4566       ev->park();
4567     }
4568   }
4569 }
4570 
4571 // Release() must extract a successor from the list and then wake that thread.
4572 // It can "pop" the front of the list or use a detach-modify-reattach (DMR) scheme
4573 // similar to that used by ParkEvent::Allocate() and ::Release().  DMR-based
4574 // Release() would :
4575 // (A) CAS() or swap() null to *Lock, releasing the lock and detaching the list.
4576 // (B) Extract a successor from the private list "in-hand"
4577 // (C) attempt to CAS() the residual back into *Lock over null.
4578 //     If there were any newly arrived threads and the CAS() would fail.
4579 //     In that case Release() would detach the RATs, re-merge the list in-hand
4580 //     with the RATs and repeat as needed.  Alternately, Release() might
4581 //     detach and extract a successor, but then pass the residual list to the wakee.
4582 //     The wakee would be responsible for reattaching and remerging before it
4583 //     competed for the lock.
4584 //
4585 // Both "pop" and DMR are immune from ABA corruption -- there can be
4586 // multiple concurrent pushers, but only one popper or detacher.
4587 // This implementation pops from the head of the list.  This is unfair,
4588 // but tends to provide excellent throughput as hot threads remain hot.
4589 // (We wake recently run threads first).
4590 //
4591 // All paths through muxRelease() will execute a CAS.
4592 // Release consistency -- We depend on the CAS in muxRelease() to provide full
4593 // bidirectional fence/MEMBAR semantics, ensuring that all prior memory operations
4594 // executed within the critical section are complete and globally visible before the
4595 // store (CAS) to the lock-word that releases the lock becomes globally visible.
4596 void Thread::muxRelease(volatile intptr_t * Lock)  {
4597   for (;;) {
4598     const intptr_t w = Atomic::cmpxchg_ptr(0, Lock, LOCKBIT);
4599     assert(w & LOCKBIT, "invariant");
4600     if (w == LOCKBIT) return;
4601     ParkEvent * const List = (ParkEvent *) (w & ~LOCKBIT);
4602     assert(List != NULL, "invariant");
4603     assert(List->OnList == intptr_t(Lock), "invariant");
4604     ParkEvent * const nxt = List->ListNext;
4605     guarantee((intptr_t(nxt) & LOCKBIT) == 0, "invariant");
4606 
4607     // The following CAS() releases the lock and pops the head element.
4608     // The CAS() also ratifies the previously fetched lock-word value.
4609     if (Atomic::cmpxchg_ptr (intptr_t(nxt), Lock, w) != w) {
4610       continue;
4611     }
4612     List->OnList = 0;
4613     OrderAccess::fence();
4614     List->unpark();
4615     return;
4616   }
4617 }
4618 
4619 
4620 void Threads::verify() {
4621   ALL_JAVA_THREADS(p) {
4622     p->verify();
4623   }
4624   VMThread* thread = VMThread::vm_thread();
4625   if (thread != NULL) thread->verify();
4626 }