1 /*
   2  * Copyright (c) 2001, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/symbolTable.hpp"
  27 #include "code/codeCache.hpp"
  28 #include "gc_implementation/g1/concurrentMark.inline.hpp"
  29 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
  30 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
  31 #include "gc_implementation/g1/g1CollectorPolicy.hpp"
  32 #include "gc_implementation/g1/g1ErgoVerbose.hpp"
  33 #include "gc_implementation/g1/g1Log.hpp"
  34 #include "gc_implementation/g1/g1OopClosures.inline.hpp"
  35 #include "gc_implementation/g1/g1RemSet.hpp"
  36 #include "gc_implementation/g1/heapRegion.inline.hpp"
  37 #include "gc_implementation/g1/heapRegionManager.inline.hpp"
  38 #include "gc_implementation/g1/heapRegionRemSet.hpp"
  39 #include "gc_implementation/g1/heapRegionSet.inline.hpp"
  40 #include "gc_implementation/shared/vmGCOperations.hpp"
  41 #include "gc_implementation/shared/gcTimer.hpp"
  42 #include "gc_implementation/shared/gcTrace.hpp"
  43 #include "gc_implementation/shared/gcTraceTime.hpp"
  44 #include "memory/allocation.hpp"
  45 #include "memory/genOopClosures.inline.hpp"
  46 #include "memory/referencePolicy.hpp"
  47 #include "memory/resourceArea.hpp"
  48 #include "oops/oop.inline.hpp"
  49 #include "runtime/handles.inline.hpp"
  50 #include "runtime/java.hpp"
  51 #include "runtime/atomic.inline.hpp"
  52 #include "runtime/prefetch.inline.hpp"
  53 #include "services/memTracker.hpp"
  54 
  55 // Concurrent marking bit map wrapper
  56 
  57 CMBitMapRO::CMBitMapRO(int shifter) :
  58   _bm(),
  59   _shifter(shifter) {
  60   _bmStartWord = 0;
  61   _bmWordSize = 0;
  62 }
  63 
  64 HeapWord* CMBitMapRO::getNextMarkedWordAddress(const HeapWord* addr,
  65                                                const HeapWord* limit) const {
  66   // First we must round addr *up* to a possible object boundary.
  67   addr = (HeapWord*)align_size_up((intptr_t)addr,
  68                                   HeapWordSize << _shifter);
  69   size_t addrOffset = heapWordToOffset(addr);
  70   if (limit == NULL) {
  71     limit = _bmStartWord + _bmWordSize;
  72   }
  73   size_t limitOffset = heapWordToOffset(limit);
  74   size_t nextOffset = _bm.get_next_one_offset(addrOffset, limitOffset);
  75   HeapWord* nextAddr = offsetToHeapWord(nextOffset);
  76   assert(nextAddr >= addr, "get_next_one postcondition");
  77   assert(nextAddr == limit || isMarked(nextAddr),
  78          "get_next_one postcondition");
  79   return nextAddr;
  80 }
  81 
  82 HeapWord* CMBitMapRO::getNextUnmarkedWordAddress(const HeapWord* addr,
  83                                                  const HeapWord* limit) const {
  84   size_t addrOffset = heapWordToOffset(addr);
  85   if (limit == NULL) {
  86     limit = _bmStartWord + _bmWordSize;
  87   }
  88   size_t limitOffset = heapWordToOffset(limit);
  89   size_t nextOffset = _bm.get_next_zero_offset(addrOffset, limitOffset);
  90   HeapWord* nextAddr = offsetToHeapWord(nextOffset);
  91   assert(nextAddr >= addr, "get_next_one postcondition");
  92   assert(nextAddr == limit || !isMarked(nextAddr),
  93          "get_next_one postcondition");
  94   return nextAddr;
  95 }
  96 
  97 int CMBitMapRO::heapWordDiffToOffsetDiff(size_t diff) const {
  98   assert((diff & ((1 << _shifter) - 1)) == 0, "argument check");
  99   return (int) (diff >> _shifter);
 100 }
 101 
 102 #ifndef PRODUCT
 103 bool CMBitMapRO::covers(MemRegion heap_rs) const {
 104   // assert(_bm.map() == _virtual_space.low(), "map inconsistency");
 105   assert(((size_t)_bm.size() * ((size_t)1 << _shifter)) == _bmWordSize,
 106          "size inconsistency");
 107   return _bmStartWord == (HeapWord*)(heap_rs.start()) &&
 108          _bmWordSize  == heap_rs.word_size();
 109 }
 110 #endif
 111 
 112 void CMBitMapRO::print_on_error(outputStream* st, const char* prefix) const {
 113   _bm.print_on_error(st, prefix);
 114 }
 115 
 116 size_t CMBitMap::compute_size(size_t heap_size) {
 117   return heap_size / mark_distance();
 118 }
 119 
 120 size_t CMBitMap::mark_distance() {
 121   return MinObjAlignmentInBytes * BitsPerByte;
 122 }
 123 
 124 void CMBitMap::initialize(MemRegion heap, G1RegionToSpaceMapper* storage) {
 125   _bmStartWord = heap.start();
 126   _bmWordSize = heap.word_size();
 127 
 128   _bm.set_map((BitMap::bm_word_t*) storage->reserved().start());
 129   _bm.set_size(_bmWordSize >> _shifter);
 130 
 131   storage->set_mapping_changed_listener(&_listener);
 132 }
 133 
 134 void CMBitMapMappingChangedListener::on_commit(uint start_region, size_t num_regions) {
 135   // We need to clear the bitmap on commit, removing any existing information.
 136   MemRegion mr(G1CollectedHeap::heap()->bottom_addr_for_region(start_region), num_regions * HeapRegion::GrainWords);
 137   _bm->clearRange(mr);
 138 }
 139 
 140 // Closure used for clearing the given mark bitmap.
 141 class ClearBitmapHRClosure : public HeapRegionClosure {
 142  private:
 143   ConcurrentMark* _cm;
 144   CMBitMap* _bitmap;
 145   bool _may_yield;      // The closure may yield during iteration. If yielded, abort the iteration.
 146  public:
 147   ClearBitmapHRClosure(ConcurrentMark* cm, CMBitMap* bitmap, bool may_yield) : HeapRegionClosure(), _cm(cm), _bitmap(bitmap), _may_yield(may_yield) {
 148     assert(!may_yield || cm != NULL, "CM must be non-NULL if this closure is expected to yield.");
 149   }
 150 
 151   virtual bool doHeapRegion(HeapRegion* r) {
 152     size_t const chunk_size_in_words = M / HeapWordSize;
 153 
 154     HeapWord* cur = r->bottom();
 155     HeapWord* const end = r->end();
 156 
 157     while (cur < end) {
 158       MemRegion mr(cur, MIN2(cur + chunk_size_in_words, end));
 159       _bitmap->clearRange(mr);
 160 
 161       cur += chunk_size_in_words;
 162 
 163       // Abort iteration if after yielding the marking has been aborted.
 164       if (_may_yield && _cm->do_yield_check() && _cm->has_aborted()) {
 165         return true;
 166       }
 167       // Repeat the asserts from before the start of the closure. We will do them
 168       // as asserts here to minimize their overhead on the product. However, we
 169       // will have them as guarantees at the beginning / end of the bitmap
 170       // clearing to get some checking in the product.
 171       assert(!_may_yield || _cm->cmThread()->during_cycle(), "invariant");
 172       assert(!_may_yield || !G1CollectedHeap::heap()->mark_in_progress(), "invariant");
 173     }
 174 
 175     return false;
 176   }
 177 };
 178 
 179 void CMBitMap::clearAll() {
 180   ClearBitmapHRClosure cl(NULL, this, false /* may_yield */);
 181   G1CollectedHeap::heap()->heap_region_iterate(&cl);
 182   guarantee(cl.complete(), "Must have completed iteration.");
 183   return;
 184 }
 185 
 186 void CMBitMap::markRange(MemRegion mr) {
 187   mr.intersection(MemRegion(_bmStartWord, _bmWordSize));
 188   assert(!mr.is_empty(), "unexpected empty region");
 189   assert((offsetToHeapWord(heapWordToOffset(mr.end())) ==
 190           ((HeapWord *) mr.end())),
 191          "markRange memory region end is not card aligned");
 192   // convert address range into offset range
 193   _bm.at_put_range(heapWordToOffset(mr.start()),
 194                    heapWordToOffset(mr.end()), true);
 195 }
 196 
 197 void CMBitMap::clearRange(MemRegion mr) {
 198   mr.intersection(MemRegion(_bmStartWord, _bmWordSize));
 199   assert(!mr.is_empty(), "unexpected empty region");
 200   // convert address range into offset range
 201   _bm.at_put_range(heapWordToOffset(mr.start()),
 202                    heapWordToOffset(mr.end()), false);
 203 }
 204 
 205 MemRegion CMBitMap::getAndClearMarkedRegion(HeapWord* addr,
 206                                             HeapWord* end_addr) {
 207   HeapWord* start = getNextMarkedWordAddress(addr);
 208   start = MIN2(start, end_addr);
 209   HeapWord* end   = getNextUnmarkedWordAddress(start);
 210   end = MIN2(end, end_addr);
 211   assert(start <= end, "Consistency check");
 212   MemRegion mr(start, end);
 213   if (!mr.is_empty()) {
 214     clearRange(mr);
 215   }
 216   return mr;
 217 }
 218 
 219 CMMarkStack::CMMarkStack(ConcurrentMark* cm) :
 220   _base(NULL), _cm(cm)
 221 #ifdef ASSERT
 222   , _drain_in_progress(false)
 223   , _drain_in_progress_yields(false)
 224 #endif
 225 {}
 226 
 227 bool CMMarkStack::allocate(size_t capacity) {
 228   // allocate a stack of the requisite depth
 229   ReservedSpace rs(ReservedSpace::allocation_align_size_up(capacity * sizeof(oop)));
 230   if (!rs.is_reserved()) {
 231     warning("ConcurrentMark MarkStack allocation failure");
 232     return false;
 233   }
 234   MemTracker::record_virtual_memory_type((address)rs.base(), mtGC);
 235   if (!_virtual_space.initialize(rs, rs.size())) {
 236     warning("ConcurrentMark MarkStack backing store failure");
 237     // Release the virtual memory reserved for the marking stack
 238     rs.release();
 239     return false;
 240   }
 241   assert(_virtual_space.committed_size() == rs.size(),
 242          "Didn't reserve backing store for all of ConcurrentMark stack?");
 243   _base = (oop*) _virtual_space.low();
 244   setEmpty();
 245   _capacity = (jint) capacity;
 246   _saved_index = -1;
 247   _should_expand = false;
 248   NOT_PRODUCT(_max_depth = 0);
 249   return true;
 250 }
 251 
 252 void CMMarkStack::expand() {
 253   // Called, during remark, if we've overflown the marking stack during marking.
 254   assert(isEmpty(), "stack should been emptied while handling overflow");
 255   assert(_capacity <= (jint) MarkStackSizeMax, "stack bigger than permitted");
 256   // Clear expansion flag
 257   _should_expand = false;
 258   if (_capacity == (jint) MarkStackSizeMax) {
 259     if (PrintGCDetails && Verbose) {
 260       gclog_or_tty->print_cr(" (benign) Can't expand marking stack capacity, at max size limit");
 261     }
 262     return;
 263   }
 264   // Double capacity if possible
 265   jint new_capacity = MIN2(_capacity*2, (jint) MarkStackSizeMax);
 266   // Do not give up existing stack until we have managed to
 267   // get the double capacity that we desired.
 268   ReservedSpace rs(ReservedSpace::allocation_align_size_up(new_capacity *
 269                                                            sizeof(oop)));
 270   if (rs.is_reserved()) {
 271     // Release the backing store associated with old stack
 272     _virtual_space.release();
 273     // Reinitialize virtual space for new stack
 274     if (!_virtual_space.initialize(rs, rs.size())) {
 275       fatal("Not enough swap for expanded marking stack capacity");
 276     }
 277     _base = (oop*)(_virtual_space.low());
 278     _index = 0;
 279     _capacity = new_capacity;
 280   } else {
 281     if (PrintGCDetails && Verbose) {
 282       // Failed to double capacity, continue;
 283       gclog_or_tty->print(" (benign) Failed to expand marking stack capacity from "
 284                           SIZE_FORMAT"K to " SIZE_FORMAT"K",
 285                           _capacity / K, new_capacity / K);
 286     }
 287   }
 288 }
 289 
 290 void CMMarkStack::set_should_expand() {
 291   // If we're resetting the marking state because of an
 292   // marking stack overflow, record that we should, if
 293   // possible, expand the stack.
 294   _should_expand = _cm->has_overflown();
 295 }
 296 
 297 CMMarkStack::~CMMarkStack() {
 298   if (_base != NULL) {
 299     _base = NULL;
 300     _virtual_space.release();
 301   }
 302 }
 303 
 304 void CMMarkStack::par_push(oop ptr) {
 305   while (true) {
 306     if (isFull()) {
 307       _overflow = true;
 308       return;
 309     }
 310     // Otherwise...
 311     jint index = _index;
 312     jint next_index = index+1;
 313     jint res = Atomic::cmpxchg(next_index, &_index, index);
 314     if (res == index) {
 315       _base[index] = ptr;
 316       // Note that we don't maintain this atomically.  We could, but it
 317       // doesn't seem necessary.
 318       NOT_PRODUCT(_max_depth = MAX2(_max_depth, next_index));
 319       return;
 320     }
 321     // Otherwise, we need to try again.
 322   }
 323 }
 324 
 325 void CMMarkStack::par_adjoin_arr(oop* ptr_arr, int n) {
 326   while (true) {
 327     if (isFull()) {
 328       _overflow = true;
 329       return;
 330     }
 331     // Otherwise...
 332     jint index = _index;
 333     jint next_index = index + n;
 334     if (next_index > _capacity) {
 335       _overflow = true;
 336       return;
 337     }
 338     jint res = Atomic::cmpxchg(next_index, &_index, index);
 339     if (res == index) {
 340       for (int i = 0; i < n; i++) {
 341         int  ind = index + i;
 342         assert(ind < _capacity, "By overflow test above.");
 343         _base[ind] = ptr_arr[i];
 344       }
 345       NOT_PRODUCT(_max_depth = MAX2(_max_depth, next_index));
 346       return;
 347     }
 348     // Otherwise, we need to try again.
 349   }
 350 }
 351 
 352 void CMMarkStack::par_push_arr(oop* ptr_arr, int n) {
 353   MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
 354   jint start = _index;
 355   jint next_index = start + n;
 356   if (next_index > _capacity) {
 357     _overflow = true;
 358     return;
 359   }
 360   // Otherwise.
 361   _index = next_index;
 362   for (int i = 0; i < n; i++) {
 363     int ind = start + i;
 364     assert(ind < _capacity, "By overflow test above.");
 365     _base[ind] = ptr_arr[i];
 366   }
 367   NOT_PRODUCT(_max_depth = MAX2(_max_depth, next_index));
 368 }
 369 
 370 bool CMMarkStack::par_pop_arr(oop* ptr_arr, int max, int* n) {
 371   MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
 372   jint index = _index;
 373   if (index == 0) {
 374     *n = 0;
 375     return false;
 376   } else {
 377     int k = MIN2(max, index);
 378     jint  new_ind = index - k;
 379     for (int j = 0; j < k; j++) {
 380       ptr_arr[j] = _base[new_ind + j];
 381     }
 382     _index = new_ind;
 383     *n = k;
 384     return true;
 385   }
 386 }
 387 
 388 template<class OopClosureClass>
 389 bool CMMarkStack::drain(OopClosureClass* cl, CMBitMap* bm, bool yield_after) {
 390   assert(!_drain_in_progress || !_drain_in_progress_yields || yield_after
 391          || SafepointSynchronize::is_at_safepoint(),
 392          "Drain recursion must be yield-safe.");
 393   bool res = true;
 394   debug_only(_drain_in_progress = true);
 395   debug_only(_drain_in_progress_yields = yield_after);
 396   while (!isEmpty()) {
 397     oop newOop = pop();
 398     assert(G1CollectedHeap::heap()->is_in_reserved(newOop), "Bad pop");
 399     assert(newOop->is_oop(), "Expected an oop");
 400     assert(bm == NULL || bm->isMarked((HeapWord*)newOop),
 401            "only grey objects on this stack");
 402     newOop->oop_iterate(cl);
 403     if (yield_after && _cm->do_yield_check()) {
 404       res = false;
 405       break;
 406     }
 407   }
 408   debug_only(_drain_in_progress = false);
 409   return res;
 410 }
 411 
 412 void CMMarkStack::note_start_of_gc() {
 413   assert(_saved_index == -1,
 414          "note_start_of_gc()/end_of_gc() bracketed incorrectly");
 415   _saved_index = _index;
 416 }
 417 
 418 void CMMarkStack::note_end_of_gc() {
 419   // This is intentionally a guarantee, instead of an assert. If we
 420   // accidentally add something to the mark stack during GC, it
 421   // will be a correctness issue so it's better if we crash. we'll
 422   // only check this once per GC anyway, so it won't be a performance
 423   // issue in any way.
 424   guarantee(_saved_index == _index,
 425             err_msg("saved index: %d index: %d", _saved_index, _index));
 426   _saved_index = -1;
 427 }
 428 
 429 void CMMarkStack::oops_do(OopClosure* f) {
 430   assert(_saved_index == _index,
 431          err_msg("saved index: %d index: %d", _saved_index, _index));
 432   for (int i = 0; i < _index; i += 1) {
 433     f->do_oop(&_base[i]);
 434   }
 435 }
 436 
 437 CMRootRegions::CMRootRegions() :
 438   _young_list(NULL), _cm(NULL), _scan_in_progress(false),
 439   _should_abort(false),  _next_survivor(NULL) { }
 440 
 441 void CMRootRegions::init(G1CollectedHeap* g1h, ConcurrentMark* cm) {
 442   _young_list = g1h->young_list();
 443   _cm = cm;
 444 }
 445 
 446 void CMRootRegions::prepare_for_scan() {
 447   assert(!scan_in_progress(), "pre-condition");
 448 
 449   // Currently, only survivors can be root regions.
 450   assert(_next_survivor == NULL, "pre-condition");
 451   _next_survivor = _young_list->first_survivor_region();
 452   _scan_in_progress = (_next_survivor != NULL);
 453   _should_abort = false;
 454 }
 455 
 456 HeapRegion* CMRootRegions::claim_next() {
 457   if (_should_abort) {
 458     // If someone has set the should_abort flag, we return NULL to
 459     // force the caller to bail out of their loop.
 460     return NULL;
 461   }
 462 
 463   // Currently, only survivors can be root regions.
 464   HeapRegion* res = _next_survivor;
 465   if (res != NULL) {
 466     MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
 467     // Read it again in case it changed while we were waiting for the lock.
 468     res = _next_survivor;
 469     if (res != NULL) {
 470       if (res == _young_list->last_survivor_region()) {
 471         // We just claimed the last survivor so store NULL to indicate
 472         // that we're done.
 473         _next_survivor = NULL;
 474       } else {
 475         _next_survivor = res->get_next_young_region();
 476       }
 477     } else {
 478       // Someone else claimed the last survivor while we were trying
 479       // to take the lock so nothing else to do.
 480     }
 481   }
 482   assert(res == NULL || res->is_survivor(), "post-condition");
 483 
 484   return res;
 485 }
 486 
 487 void CMRootRegions::scan_finished() {
 488   assert(scan_in_progress(), "pre-condition");
 489 
 490   // Currently, only survivors can be root regions.
 491   if (!_should_abort) {
 492     assert(_next_survivor == NULL, "we should have claimed all survivors");
 493   }
 494   _next_survivor = NULL;
 495 
 496   {
 497     MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
 498     _scan_in_progress = false;
 499     RootRegionScan_lock->notify_all();
 500   }
 501 }
 502 
 503 bool CMRootRegions::wait_until_scan_finished() {
 504   if (!scan_in_progress()) return false;
 505 
 506   {
 507     MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
 508     while (scan_in_progress()) {
 509       RootRegionScan_lock->wait(Mutex::_no_safepoint_check_flag);
 510     }
 511   }
 512   return true;
 513 }
 514 
 515 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
 516 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
 517 #endif // _MSC_VER
 518 
 519 uint ConcurrentMark::scale_parallel_threads(uint n_par_threads) {
 520   return MAX2((n_par_threads + 2) / 4, 1U);
 521 }
 522 
 523 ConcurrentMark::ConcurrentMark(G1CollectedHeap* g1h, G1RegionToSpaceMapper* prev_bitmap_storage, G1RegionToSpaceMapper* next_bitmap_storage) :
 524   _g1h(g1h),
 525   _markBitMap1(),
 526   _markBitMap2(),
 527   _parallel_marking_threads(0),
 528   _max_parallel_marking_threads(0),
 529   _sleep_factor(0.0),
 530   _marking_task_overhead(1.0),
 531   _cleanup_sleep_factor(0.0),
 532   _cleanup_task_overhead(1.0),
 533   _cleanup_list("Cleanup List"),
 534   _region_bm((BitMap::idx_t)(g1h->max_regions()), false /* in_resource_area*/),
 535   _card_bm((g1h->reserved_region().byte_size() + CardTableModRefBS::card_size - 1) >>
 536             CardTableModRefBS::card_shift,
 537             false /* in_resource_area*/),
 538 
 539   _prevMarkBitMap(&_markBitMap1),
 540   _nextMarkBitMap(&_markBitMap2),
 541 
 542   _markStack(this),
 543   // _finger set in set_non_marking_state
 544 
 545   _max_worker_id(MAX2((uint)ParallelGCThreads, 1U)),
 546   // _active_tasks set in set_non_marking_state
 547   // _tasks set inside the constructor
 548   _task_queues(new CMTaskQueueSet((int) _max_worker_id)),
 549   _terminator(ParallelTaskTerminator((int) _max_worker_id, _task_queues)),
 550 
 551   _has_overflown(false),
 552   _concurrent(false),
 553   _has_aborted(false),
 554   _aborted_gc_id(GCId::undefined()),
 555   _restart_for_overflow(false),
 556   _concurrent_marking_in_progress(false),
 557 
 558   // _verbose_level set below
 559 
 560   _init_times(),
 561   _remark_times(), _remark_mark_times(), _remark_weak_ref_times(),
 562   _cleanup_times(),
 563   _total_counting_time(0.0),
 564   _total_rs_scrub_time(0.0),
 565 
 566   _parallel_workers(NULL),
 567 
 568   _count_card_bitmaps(NULL),
 569   _count_marked_bytes(NULL),
 570   _completed_initialization(false) {
 571   CMVerboseLevel verbose_level = (CMVerboseLevel) G1MarkingVerboseLevel;
 572   if (verbose_level < no_verbose) {
 573     verbose_level = no_verbose;
 574   }
 575   if (verbose_level > high_verbose) {
 576     verbose_level = high_verbose;
 577   }
 578   _verbose_level = verbose_level;
 579 
 580   if (verbose_low()) {
 581     gclog_or_tty->print_cr("[global] init, heap start = "PTR_FORMAT", "
 582                            "heap end = " PTR_FORMAT, p2i(_heap_start), p2i(_heap_end));
 583   }
 584 
 585   _markBitMap1.initialize(g1h->reserved_region(), prev_bitmap_storage);
 586   _markBitMap2.initialize(g1h->reserved_region(), next_bitmap_storage);
 587 
 588   // Create & start a ConcurrentMark thread.
 589   _cmThread = new ConcurrentMarkThread(this);
 590   assert(cmThread() != NULL, "CM Thread should have been created");
 591   assert(cmThread()->cm() != NULL, "CM Thread should refer to this cm");
 592   if (_cmThread->osthread() == NULL) {
 593       vm_shutdown_during_initialization("Could not create ConcurrentMarkThread");
 594   }
 595 
 596   assert(CGC_lock != NULL, "Where's the CGC_lock?");
 597   assert(_markBitMap1.covers(g1h->reserved_region()), "_markBitMap1 inconsistency");
 598   assert(_markBitMap2.covers(g1h->reserved_region()), "_markBitMap2 inconsistency");
 599 
 600   SATBMarkQueueSet& satb_qs = JavaThread::satb_mark_queue_set();
 601   satb_qs.set_buffer_size(G1SATBBufferSize);
 602 
 603   _root_regions.init(_g1h, this);
 604 
 605   if (ConcGCThreads > ParallelGCThreads) {
 606     warning("Can't have more ConcGCThreads (" UINTX_FORMAT ") "
 607             "than ParallelGCThreads (" UINTX_FORMAT ").",
 608             ConcGCThreads, ParallelGCThreads);
 609     return;
 610   }
 611   if (ParallelGCThreads == 0) {
 612     // if we are not running with any parallel GC threads we will not
 613     // spawn any marking threads either
 614     _parallel_marking_threads =       0;
 615     _max_parallel_marking_threads =   0;
 616     _sleep_factor             =     0.0;
 617     _marking_task_overhead    =     1.0;
 618   } else {
 619     if (!FLAG_IS_DEFAULT(ConcGCThreads) && ConcGCThreads > 0) {
 620       // Note: ConcGCThreads has precedence over G1MarkingOverheadPercent
 621       // if both are set
 622       _sleep_factor             = 0.0;
 623       _marking_task_overhead    = 1.0;
 624     } else if (G1MarkingOverheadPercent > 0) {
 625       // We will calculate the number of parallel marking threads based
 626       // on a target overhead with respect to the soft real-time goal
 627       double marking_overhead = (double) G1MarkingOverheadPercent / 100.0;
 628       double overall_cm_overhead =
 629         (double) MaxGCPauseMillis * marking_overhead /
 630         (double) GCPauseIntervalMillis;
 631       double cpu_ratio = 1.0 / (double) os::processor_count();
 632       double marking_thread_num = ceil(overall_cm_overhead / cpu_ratio);
 633       double marking_task_overhead =
 634         overall_cm_overhead / marking_thread_num *
 635                                                 (double) os::processor_count();
 636       double sleep_factor =
 637                          (1.0 - marking_task_overhead) / marking_task_overhead;
 638 
 639       FLAG_SET_ERGO(uintx, ConcGCThreads, (uint) marking_thread_num);
 640       _sleep_factor             = sleep_factor;
 641       _marking_task_overhead    = marking_task_overhead;
 642     } else {
 643       // Calculate the number of parallel marking threads by scaling
 644       // the number of parallel GC threads.
 645       uint marking_thread_num = scale_parallel_threads((uint) ParallelGCThreads);
 646       FLAG_SET_ERGO(uintx, ConcGCThreads, marking_thread_num);
 647       _sleep_factor             = 0.0;
 648       _marking_task_overhead    = 1.0;
 649     }
 650 
 651     assert(ConcGCThreads > 0, "Should have been set");
 652     _parallel_marking_threads = (uint) ConcGCThreads;
 653     _max_parallel_marking_threads = _parallel_marking_threads;
 654 
 655     if (parallel_marking_threads() > 1) {
 656       _cleanup_task_overhead = 1.0;
 657     } else {
 658       _cleanup_task_overhead = marking_task_overhead();
 659     }
 660     _cleanup_sleep_factor =
 661                      (1.0 - cleanup_task_overhead()) / cleanup_task_overhead();
 662 
 663 #if 0
 664     gclog_or_tty->print_cr("Marking Threads          %d", parallel_marking_threads());
 665     gclog_or_tty->print_cr("CM Marking Task Overhead %1.4lf", marking_task_overhead());
 666     gclog_or_tty->print_cr("CM Sleep Factor          %1.4lf", sleep_factor());
 667     gclog_or_tty->print_cr("CL Marking Task Overhead %1.4lf", cleanup_task_overhead());
 668     gclog_or_tty->print_cr("CL Sleep Factor          %1.4lf", cleanup_sleep_factor());
 669 #endif
 670 
 671     guarantee(parallel_marking_threads() > 0, "peace of mind");
 672     _parallel_workers = new FlexibleWorkGang("G1 Parallel Marking Threads",
 673          _max_parallel_marking_threads, false, true);
 674     if (_parallel_workers == NULL) {
 675       vm_exit_during_initialization("Failed necessary allocation.");
 676     } else {
 677       _parallel_workers->initialize_workers();
 678     }
 679   }
 680 
 681   if (FLAG_IS_DEFAULT(MarkStackSize)) {
 682     uintx mark_stack_size =
 683       MIN2(MarkStackSizeMax,
 684           MAX2(MarkStackSize, (uintx) (parallel_marking_threads() * TASKQUEUE_SIZE)));
 685     // Verify that the calculated value for MarkStackSize is in range.
 686     // It would be nice to use the private utility routine from Arguments.
 687     if (!(mark_stack_size >= 1 && mark_stack_size <= MarkStackSizeMax)) {
 688       warning("Invalid value calculated for MarkStackSize (" UINTX_FORMAT "): "
 689               "must be between " UINTX_FORMAT " and " UINTX_FORMAT,
 690               mark_stack_size, (uintx) 1, MarkStackSizeMax);
 691       return;
 692     }
 693     FLAG_SET_ERGO(uintx, MarkStackSize, mark_stack_size);
 694   } else {
 695     // Verify MarkStackSize is in range.
 696     if (FLAG_IS_CMDLINE(MarkStackSize)) {
 697       if (FLAG_IS_DEFAULT(MarkStackSizeMax)) {
 698         if (!(MarkStackSize >= 1 && MarkStackSize <= MarkStackSizeMax)) {
 699           warning("Invalid value specified for MarkStackSize (" UINTX_FORMAT "): "
 700                   "must be between " UINTX_FORMAT " and " UINTX_FORMAT,
 701                   MarkStackSize, (uintx) 1, MarkStackSizeMax);
 702           return;
 703         }
 704       } else if (FLAG_IS_CMDLINE(MarkStackSizeMax)) {
 705         if (!(MarkStackSize >= 1 && MarkStackSize <= MarkStackSizeMax)) {
 706           warning("Invalid value specified for MarkStackSize (" UINTX_FORMAT ")"
 707                   " or for MarkStackSizeMax (" UINTX_FORMAT ")",
 708                   MarkStackSize, MarkStackSizeMax);
 709           return;
 710         }
 711       }
 712     }
 713   }
 714 
 715   if (!_markStack.allocate(MarkStackSize)) {
 716     warning("Failed to allocate CM marking stack");
 717     return;
 718   }
 719 
 720   _tasks = NEW_C_HEAP_ARRAY(CMTask*, _max_worker_id, mtGC);
 721   _accum_task_vtime = NEW_C_HEAP_ARRAY(double, _max_worker_id, mtGC);
 722 
 723   _count_card_bitmaps = NEW_C_HEAP_ARRAY(BitMap,  _max_worker_id, mtGC);
 724   _count_marked_bytes = NEW_C_HEAP_ARRAY(size_t*, _max_worker_id, mtGC);
 725 
 726   BitMap::idx_t card_bm_size = _card_bm.size();
 727 
 728   // so that the assertion in MarkingTaskQueue::task_queue doesn't fail
 729   _active_tasks = _max_worker_id;
 730 
 731   size_t max_regions = (size_t) _g1h->max_regions();
 732   for (uint i = 0; i < _max_worker_id; ++i) {
 733     CMTaskQueue* task_queue = new CMTaskQueue();
 734     task_queue->initialize();
 735     _task_queues->register_queue(i, task_queue);
 736 
 737     _count_card_bitmaps[i] = BitMap(card_bm_size, false);
 738     _count_marked_bytes[i] = NEW_C_HEAP_ARRAY(size_t, max_regions, mtGC);
 739 
 740     _tasks[i] = new CMTask(i, this,
 741                            _count_marked_bytes[i],
 742                            &_count_card_bitmaps[i],
 743                            task_queue, _task_queues);
 744 
 745     _accum_task_vtime[i] = 0.0;
 746   }
 747 
 748   // Calculate the card number for the bottom of the heap. Used
 749   // in biasing indexes into the accounting card bitmaps.
 750   _heap_bottom_card_num =
 751     intptr_t(uintptr_t(_g1h->reserved_region().start()) >>
 752                                 CardTableModRefBS::card_shift);
 753 
 754   // Clear all the liveness counting data
 755   clear_all_count_data();
 756 
 757   // so that the call below can read a sensible value
 758   _heap_start = g1h->reserved_region().start();
 759   set_non_marking_state();
 760   _completed_initialization = true;
 761 }
 762 
 763 void ConcurrentMark::reset() {
 764   // Starting values for these two. This should be called in a STW
 765   // phase.
 766   MemRegion reserved = _g1h->g1_reserved();
 767   _heap_start = reserved.start();
 768   _heap_end   = reserved.end();
 769 
 770   // Separated the asserts so that we know which one fires.
 771   assert(_heap_start != NULL, "heap bounds should look ok");
 772   assert(_heap_end != NULL, "heap bounds should look ok");
 773   assert(_heap_start < _heap_end, "heap bounds should look ok");
 774 
 775   // Reset all the marking data structures and any necessary flags
 776   reset_marking_state();
 777 
 778   if (verbose_low()) {
 779     gclog_or_tty->print_cr("[global] resetting");
 780   }
 781 
 782   // We do reset all of them, since different phases will use
 783   // different number of active threads. So, it's easiest to have all
 784   // of them ready.
 785   for (uint i = 0; i < _max_worker_id; ++i) {
 786     _tasks[i]->reset(_nextMarkBitMap);
 787   }
 788 
 789   // we need this to make sure that the flag is on during the evac
 790   // pause with initial mark piggy-backed
 791   set_concurrent_marking_in_progress();
 792 }
 793 
 794 
 795 void ConcurrentMark::reset_marking_state(bool clear_overflow) {
 796   _markStack.set_should_expand();
 797   _markStack.setEmpty();        // Also clears the _markStack overflow flag
 798   if (clear_overflow) {
 799     clear_has_overflown();
 800   } else {
 801     assert(has_overflown(), "pre-condition");
 802   }
 803   _finger = _heap_start;
 804 
 805   for (uint i = 0; i < _max_worker_id; ++i) {
 806     CMTaskQueue* queue = _task_queues->queue(i);
 807     queue->set_empty();
 808   }
 809 }
 810 
 811 void ConcurrentMark::set_concurrency(uint active_tasks) {
 812   assert(active_tasks <= _max_worker_id, "we should not have more");
 813 
 814   _active_tasks = active_tasks;
 815   // Need to update the three data structures below according to the
 816   // number of active threads for this phase.
 817   _terminator   = ParallelTaskTerminator((int) active_tasks, _task_queues);
 818   _first_overflow_barrier_sync.set_n_workers((int) active_tasks);
 819   _second_overflow_barrier_sync.set_n_workers((int) active_tasks);
 820 }
 821 
 822 void ConcurrentMark::set_concurrency_and_phase(uint active_tasks, bool concurrent) {
 823   set_concurrency(active_tasks);
 824 
 825   _concurrent = concurrent;
 826   // We propagate this to all tasks, not just the active ones.
 827   for (uint i = 0; i < _max_worker_id; ++i)
 828     _tasks[i]->set_concurrent(concurrent);
 829 
 830   if (concurrent) {
 831     set_concurrent_marking_in_progress();
 832   } else {
 833     // We currently assume that the concurrent flag has been set to
 834     // false before we start remark. At this point we should also be
 835     // in a STW phase.
 836     assert(!concurrent_marking_in_progress(), "invariant");
 837     assert(out_of_regions(),
 838            err_msg("only way to get here: _finger: "PTR_FORMAT", _heap_end: "PTR_FORMAT,
 839                    p2i(_finger), p2i(_heap_end)));
 840   }
 841 }
 842 
 843 void ConcurrentMark::set_non_marking_state() {
 844   // We set the global marking state to some default values when we're
 845   // not doing marking.
 846   reset_marking_state();
 847   _active_tasks = 0;
 848   clear_concurrent_marking_in_progress();
 849 }
 850 
 851 ConcurrentMark::~ConcurrentMark() {
 852   // The ConcurrentMark instance is never freed.
 853   ShouldNotReachHere();
 854 }
 855 
 856 void ConcurrentMark::clearNextBitmap() {
 857   G1CollectedHeap* g1h = G1CollectedHeap::heap();
 858 
 859   // Make sure that the concurrent mark thread looks to still be in
 860   // the current cycle.
 861   guarantee(cmThread()->during_cycle(), "invariant");
 862 
 863   // We are finishing up the current cycle by clearing the next
 864   // marking bitmap and getting it ready for the next cycle. During
 865   // this time no other cycle can start. So, let's make sure that this
 866   // is the case.
 867   guarantee(!g1h->mark_in_progress(), "invariant");
 868 
 869   ClearBitmapHRClosure cl(this, _nextMarkBitMap, true /* may_yield */);
 870   g1h->heap_region_iterate(&cl);
 871 
 872   // Clear the liveness counting data. If the marking has been aborted, the abort()
 873   // call already did that.
 874   if (cl.complete()) {
 875     clear_all_count_data();
 876   }
 877 
 878   // Repeat the asserts from above.
 879   guarantee(cmThread()->during_cycle(), "invariant");
 880   guarantee(!g1h->mark_in_progress(), "invariant");
 881 }
 882 
 883 class CheckBitmapClearHRClosure : public HeapRegionClosure {
 884   CMBitMap* _bitmap;
 885   bool _error;
 886  public:
 887   CheckBitmapClearHRClosure(CMBitMap* bitmap) : _bitmap(bitmap) {
 888   }
 889 
 890   virtual bool doHeapRegion(HeapRegion* r) {
 891     // This closure can be called concurrently to the mutator, so we must make sure
 892     // that the result of the getNextMarkedWordAddress() call is compared to the
 893     // value passed to it as limit to detect any found bits.
 894     // We can use the region's orig_end() for the limit and the comparison value
 895     // as it always contains the "real" end of the region that never changes and
 896     // has no side effects.
 897     // Due to the latter, there can also be no problem with the compiler generating
 898     // reloads of the orig_end() call.
 899     HeapWord* end = r->orig_end();
 900     return _bitmap->getNextMarkedWordAddress(r->bottom(), end) != end;
 901   }
 902 };
 903 
 904 bool ConcurrentMark::nextMarkBitmapIsClear() {
 905   CheckBitmapClearHRClosure cl(_nextMarkBitMap);
 906   _g1h->heap_region_iterate(&cl);
 907   return cl.complete();
 908 }
 909 
 910 class NoteStartOfMarkHRClosure: public HeapRegionClosure {
 911 public:
 912   bool doHeapRegion(HeapRegion* r) {
 913     if (!r->is_continues_humongous()) {
 914       r->note_start_of_marking();
 915     }
 916     return false;
 917   }
 918 };
 919 
 920 void ConcurrentMark::checkpointRootsInitialPre() {
 921   G1CollectedHeap*   g1h = G1CollectedHeap::heap();
 922   G1CollectorPolicy* g1p = g1h->g1_policy();
 923 
 924   _has_aborted = false;
 925 
 926 #ifndef PRODUCT
 927   if (G1PrintReachableAtInitialMark) {
 928     print_reachable("at-cycle-start",
 929                     VerifyOption_G1UsePrevMarking, true /* all */);
 930   }
 931 #endif
 932 
 933   // Initialize marking structures. This has to be done in a STW phase.
 934   reset();
 935 
 936   // For each region note start of marking.
 937   NoteStartOfMarkHRClosure startcl;
 938   g1h->heap_region_iterate(&startcl);
 939 }
 940 
 941 
 942 void ConcurrentMark::checkpointRootsInitialPost() {
 943   G1CollectedHeap*   g1h = G1CollectedHeap::heap();
 944 
 945   // If we force an overflow during remark, the remark operation will
 946   // actually abort and we'll restart concurrent marking. If we always
 947   // force an overflow during remark we'll never actually complete the
 948   // marking phase. So, we initialize this here, at the start of the
 949   // cycle, so that at the remaining overflow number will decrease at
 950   // every remark and we'll eventually not need to cause one.
 951   force_overflow_stw()->init();
 952 
 953   // Start Concurrent Marking weak-reference discovery.
 954   ReferenceProcessor* rp = g1h->ref_processor_cm();
 955   // enable ("weak") refs discovery
 956   rp->enable_discovery(true /*verify_disabled*/, true /*verify_no_refs*/);
 957   rp->setup_policy(false); // snapshot the soft ref policy to be used in this cycle
 958 
 959   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
 960   // This is the start of  the marking cycle, we're expected all
 961   // threads to have SATB queues with active set to false.
 962   satb_mq_set.set_active_all_threads(true, /* new active value */
 963                                      false /* expected_active */);
 964 
 965   _root_regions.prepare_for_scan();
 966 
 967   // update_g1_committed() will be called at the end of an evac pause
 968   // when marking is on. So, it's also called at the end of the
 969   // initial-mark pause to update the heap end, if the heap expands
 970   // during it. No need to call it here.
 971 }
 972 
 973 /*
 974  * Notice that in the next two methods, we actually leave the STS
 975  * during the barrier sync and join it immediately afterwards. If we
 976  * do not do this, the following deadlock can occur: one thread could
 977  * be in the barrier sync code, waiting for the other thread to also
 978  * sync up, whereas another one could be trying to yield, while also
 979  * waiting for the other threads to sync up too.
 980  *
 981  * Note, however, that this code is also used during remark and in
 982  * this case we should not attempt to leave / enter the STS, otherwise
 983  * we'll either hit an assert (debug / fastdebug) or deadlock
 984  * (product). So we should only leave / enter the STS if we are
 985  * operating concurrently.
 986  *
 987  * Because the thread that does the sync barrier has left the STS, it
 988  * is possible to be suspended for a Full GC or an evacuation pause
 989  * could occur. This is actually safe, since the entering the sync
 990  * barrier is one of the last things do_marking_step() does, and it
 991  * doesn't manipulate any data structures afterwards.
 992  */
 993 
 994 void ConcurrentMark::enter_first_sync_barrier(uint worker_id) {
 995   if (verbose_low()) {
 996     gclog_or_tty->print_cr("[%u] entering first barrier", worker_id);
 997   }
 998 
 999   if (concurrent()) {
1000     SuspendibleThreadSet::leave();
1001   }
1002 
1003   bool barrier_aborted = !_first_overflow_barrier_sync.enter();
1004 
1005   if (concurrent()) {
1006     SuspendibleThreadSet::join();
1007   }
1008   // at this point everyone should have synced up and not be doing any
1009   // more work
1010 
1011   if (verbose_low()) {
1012     if (barrier_aborted) {
1013       gclog_or_tty->print_cr("[%u] aborted first barrier", worker_id);
1014     } else {
1015       gclog_or_tty->print_cr("[%u] leaving first barrier", worker_id);
1016     }
1017   }
1018 
1019   if (barrier_aborted) {
1020     // If the barrier aborted we ignore the overflow condition and
1021     // just abort the whole marking phase as quickly as possible.
1022     return;
1023   }
1024 
1025   // If we're executing the concurrent phase of marking, reset the marking
1026   // state; otherwise the marking state is reset after reference processing,
1027   // during the remark pause.
1028   // If we reset here as a result of an overflow during the remark we will
1029   // see assertion failures from any subsequent set_concurrency_and_phase()
1030   // calls.
1031   if (concurrent()) {
1032     // let the task associated with with worker 0 do this
1033     if (worker_id == 0) {
1034       // task 0 is responsible for clearing the global data structures
1035       // We should be here because of an overflow. During STW we should
1036       // not clear the overflow flag since we rely on it being true when
1037       // we exit this method to abort the pause and restart concurrent
1038       // marking.
1039       reset_marking_state(true /* clear_overflow */);
1040       force_overflow()->update();
1041 
1042       if (G1Log::fine()) {
1043         gclog_or_tty->gclog_stamp(concurrent_gc_id());
1044         gclog_or_tty->print_cr("[GC concurrent-mark-reset-for-overflow]");
1045       }
1046     }
1047   }
1048 
1049   // after this, each task should reset its own data structures then
1050   // then go into the second barrier
1051 }
1052 
1053 void ConcurrentMark::enter_second_sync_barrier(uint worker_id) {
1054   if (verbose_low()) {
1055     gclog_or_tty->print_cr("[%u] entering second barrier", worker_id);
1056   }
1057 
1058   if (concurrent()) {
1059     SuspendibleThreadSet::leave();
1060   }
1061 
1062   bool barrier_aborted = !_second_overflow_barrier_sync.enter();
1063 
1064   if (concurrent()) {
1065     SuspendibleThreadSet::join();
1066   }
1067   // at this point everything should be re-initialized and ready to go
1068 
1069   if (verbose_low()) {
1070     if (barrier_aborted) {
1071       gclog_or_tty->print_cr("[%u] aborted second barrier", worker_id);
1072     } else {
1073       gclog_or_tty->print_cr("[%u] leaving second barrier", worker_id);
1074     }
1075   }
1076 }
1077 
1078 #ifndef PRODUCT
1079 void ForceOverflowSettings::init() {
1080   _num_remaining = G1ConcMarkForceOverflow;
1081   _force = false;
1082   update();
1083 }
1084 
1085 void ForceOverflowSettings::update() {
1086   if (_num_remaining > 0) {
1087     _num_remaining -= 1;
1088     _force = true;
1089   } else {
1090     _force = false;
1091   }
1092 }
1093 
1094 bool ForceOverflowSettings::should_force() {
1095   if (_force) {
1096     _force = false;
1097     return true;
1098   } else {
1099     return false;
1100   }
1101 }
1102 #endif // !PRODUCT
1103 
1104 class CMConcurrentMarkingTask: public AbstractGangTask {
1105 private:
1106   ConcurrentMark*       _cm;
1107   ConcurrentMarkThread* _cmt;
1108 
1109 public:
1110   void work(uint worker_id) {
1111     assert(Thread::current()->is_ConcurrentGC_thread(),
1112            "this should only be done by a conc GC thread");
1113     ResourceMark rm;
1114 
1115     double start_vtime = os::elapsedVTime();
1116 
1117     SuspendibleThreadSet::join();
1118 
1119     assert(worker_id < _cm->active_tasks(), "invariant");
1120     CMTask* the_task = _cm->task(worker_id);
1121     the_task->record_start_time();
1122     if (!_cm->has_aborted()) {
1123       do {
1124         double start_vtime_sec = os::elapsedVTime();
1125         double mark_step_duration_ms = G1ConcMarkStepDurationMillis;
1126 
1127         the_task->do_marking_step(mark_step_duration_ms,
1128                                   true  /* do_termination */,
1129                                   false /* is_serial*/);
1130 
1131         double end_vtime_sec = os::elapsedVTime();
1132         double elapsed_vtime_sec = end_vtime_sec - start_vtime_sec;
1133         _cm->clear_has_overflown();
1134 
1135         _cm->do_yield_check(worker_id);
1136 
1137         jlong sleep_time_ms;
1138         if (!_cm->has_aborted() && the_task->has_aborted()) {
1139           sleep_time_ms =
1140             (jlong) (elapsed_vtime_sec * _cm->sleep_factor() * 1000.0);
1141           SuspendibleThreadSet::leave();
1142           os::sleep(Thread::current(), sleep_time_ms, false);
1143           SuspendibleThreadSet::join();
1144         }
1145       } while (!_cm->has_aborted() && the_task->has_aborted());
1146     }
1147     the_task->record_end_time();
1148     guarantee(!the_task->has_aborted() || _cm->has_aborted(), "invariant");
1149 
1150     SuspendibleThreadSet::leave();
1151 
1152     double end_vtime = os::elapsedVTime();
1153     _cm->update_accum_task_vtime(worker_id, end_vtime - start_vtime);
1154   }
1155 
1156   CMConcurrentMarkingTask(ConcurrentMark* cm,
1157                           ConcurrentMarkThread* cmt) :
1158       AbstractGangTask("Concurrent Mark"), _cm(cm), _cmt(cmt) { }
1159 
1160   ~CMConcurrentMarkingTask() { }
1161 };
1162 
1163 // Calculates the number of active workers for a concurrent
1164 // phase.
1165 uint ConcurrentMark::calc_parallel_marking_threads() {
1166   if (G1CollectedHeap::use_parallel_gc_threads()) {
1167     uint n_conc_workers = 0;
1168     if (!UseDynamicNumberOfGCThreads ||
1169         (!FLAG_IS_DEFAULT(ConcGCThreads) &&
1170          !ForceDynamicNumberOfGCThreads)) {
1171       n_conc_workers = max_parallel_marking_threads();
1172     } else {
1173       n_conc_workers =
1174         AdaptiveSizePolicy::calc_default_active_workers(
1175                                      max_parallel_marking_threads(),
1176                                      1, /* Minimum workers */
1177                                      parallel_marking_threads(),
1178                                      Threads::number_of_non_daemon_threads());
1179       // Don't scale down "n_conc_workers" by scale_parallel_threads() because
1180       // that scaling has already gone into "_max_parallel_marking_threads".
1181     }
1182     assert(n_conc_workers > 0, "Always need at least 1");
1183     return n_conc_workers;
1184   }
1185   // If we are not running with any parallel GC threads we will not
1186   // have spawned any marking threads either. Hence the number of
1187   // concurrent workers should be 0.
1188   return 0;
1189 }
1190 
1191 void ConcurrentMark::scanRootRegion(HeapRegion* hr, uint worker_id) {
1192   // Currently, only survivors can be root regions.
1193   assert(hr->next_top_at_mark_start() == hr->bottom(), "invariant");
1194   G1RootRegionScanClosure cl(_g1h, this, worker_id);
1195 
1196   const uintx interval = PrefetchScanIntervalInBytes;
1197   HeapWord* curr = hr->bottom();
1198   const HeapWord* end = hr->top();
1199   while (curr < end) {
1200     Prefetch::read(curr, interval);
1201     oop obj = oop(curr);
1202     int size = obj->oop_iterate(&cl);
1203     assert(size == obj->size(), "sanity");
1204     curr += size;
1205   }
1206 }
1207 
1208 class CMRootRegionScanTask : public AbstractGangTask {
1209 private:
1210   ConcurrentMark* _cm;
1211 
1212 public:
1213   CMRootRegionScanTask(ConcurrentMark* cm) :
1214     AbstractGangTask("Root Region Scan"), _cm(cm) { }
1215 
1216   void work(uint worker_id) {
1217     assert(Thread::current()->is_ConcurrentGC_thread(),
1218            "this should only be done by a conc GC thread");
1219 
1220     CMRootRegions* root_regions = _cm->root_regions();
1221     HeapRegion* hr = root_regions->claim_next();
1222     while (hr != NULL) {
1223       _cm->scanRootRegion(hr, worker_id);
1224       hr = root_regions->claim_next();
1225     }
1226   }
1227 };
1228 
1229 void ConcurrentMark::scanRootRegions() {
1230   // Start of concurrent marking.
1231   ClassLoaderDataGraph::clear_claimed_marks();
1232 
1233   // scan_in_progress() will have been set to true only if there was
1234   // at least one root region to scan. So, if it's false, we
1235   // should not attempt to do any further work.
1236   if (root_regions()->scan_in_progress()) {
1237     _parallel_marking_threads = calc_parallel_marking_threads();
1238     assert(parallel_marking_threads() <= max_parallel_marking_threads(),
1239            "Maximum number of marking threads exceeded");
1240     uint active_workers = MAX2(1U, parallel_marking_threads());
1241 
1242     CMRootRegionScanTask task(this);
1243     if (use_parallel_marking_threads()) {
1244       _parallel_workers->set_active_workers((int) active_workers);
1245       _parallel_workers->run_task(&task);
1246     } else {
1247       task.work(0);
1248     }
1249 
1250     // It's possible that has_aborted() is true here without actually
1251     // aborting the survivor scan earlier. This is OK as it's
1252     // mainly used for sanity checking.
1253     root_regions()->scan_finished();
1254   }
1255 }
1256 
1257 void ConcurrentMark::markFromRoots() {
1258   // we might be tempted to assert that:
1259   // assert(asynch == !SafepointSynchronize::is_at_safepoint(),
1260   //        "inconsistent argument?");
1261   // However that wouldn't be right, because it's possible that
1262   // a safepoint is indeed in progress as a younger generation
1263   // stop-the-world GC happens even as we mark in this generation.
1264 
1265   _restart_for_overflow = false;
1266   force_overflow_conc()->init();
1267 
1268   // _g1h has _n_par_threads
1269   _parallel_marking_threads = calc_parallel_marking_threads();
1270   assert(parallel_marking_threads() <= max_parallel_marking_threads(),
1271     "Maximum number of marking threads exceeded");
1272 
1273   uint active_workers = MAX2(1U, parallel_marking_threads());
1274 
1275   // Parallel task terminator is set in "set_concurrency_and_phase()"
1276   set_concurrency_and_phase(active_workers, true /* concurrent */);
1277 
1278   CMConcurrentMarkingTask markingTask(this, cmThread());
1279   if (use_parallel_marking_threads()) {
1280     _parallel_workers->set_active_workers((int)active_workers);
1281     // Don't set _n_par_threads because it affects MT in process_roots()
1282     // and the decisions on that MT processing is made elsewhere.
1283     assert(_parallel_workers->active_workers() > 0, "Should have been set");
1284     _parallel_workers->run_task(&markingTask);
1285   } else {
1286     markingTask.work(0);
1287   }
1288   print_stats();
1289 }
1290 
1291 // Helper class to get rid of some boilerplate code.
1292 class G1CMTraceTime : public GCTraceTime {
1293   static bool doit_and_prepend(bool doit) {
1294     if (doit) {
1295       gclog_or_tty->put(' ');
1296     }
1297     return doit;
1298   }
1299 
1300  public:
1301   G1CMTraceTime(const char* title, bool doit)
1302     : GCTraceTime(title, doit_and_prepend(doit), false, G1CollectedHeap::heap()->gc_timer_cm(),
1303         G1CollectedHeap::heap()->concurrent_mark()->concurrent_gc_id()) {
1304   }
1305 };
1306 
1307 void ConcurrentMark::checkpointRootsFinal(bool clear_all_soft_refs) {
1308   // world is stopped at this checkpoint
1309   assert(SafepointSynchronize::is_at_safepoint(),
1310          "world should be stopped");
1311 
1312   G1CollectedHeap* g1h = G1CollectedHeap::heap();
1313 
1314   // If a full collection has happened, we shouldn't do this.
1315   if (has_aborted()) {
1316     g1h->set_marking_complete(); // So bitmap clearing isn't confused
1317     return;
1318   }
1319 
1320   SvcGCMarker sgcm(SvcGCMarker::OTHER);
1321 
1322   if (VerifyDuringGC) {
1323     HandleMark hm;  // handle scope
1324     Universe::heap()->prepare_for_verify();
1325     Universe::verify(VerifyOption_G1UsePrevMarking,
1326                      " VerifyDuringGC:(before)");
1327   }
1328   g1h->check_bitmaps("Remark Start");
1329 
1330   G1CollectorPolicy* g1p = g1h->g1_policy();
1331   g1p->record_concurrent_mark_remark_start();
1332 
1333   double start = os::elapsedTime();
1334 
1335   checkpointRootsFinalWork();
1336 
1337   double mark_work_end = os::elapsedTime();
1338 
1339   weakRefsWork(clear_all_soft_refs);
1340 
1341   if (has_overflown()) {
1342     // Oops.  We overflowed.  Restart concurrent marking.
1343     _restart_for_overflow = true;
1344     if (G1TraceMarkStackOverflow) {
1345       gclog_or_tty->print_cr("\nRemark led to restart for overflow.");
1346     }
1347 
1348     // Verify the heap w.r.t. the previous marking bitmap.
1349     if (VerifyDuringGC) {
1350       HandleMark hm;  // handle scope
1351       Universe::heap()->prepare_for_verify();
1352       Universe::verify(VerifyOption_G1UsePrevMarking,
1353                        " VerifyDuringGC:(overflow)");
1354     }
1355 
1356     // Clear the marking state because we will be restarting
1357     // marking due to overflowing the global mark stack.
1358     reset_marking_state();
1359   } else {
1360     {
1361       G1CMTraceTime trace("GC aggregate-data", G1Log::finer());
1362 
1363       // Aggregate the per-task counting data that we have accumulated
1364       // while marking.
1365       aggregate_count_data();
1366     }
1367 
1368     SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
1369     // We're done with marking.
1370     // This is the end of  the marking cycle, we're expected all
1371     // threads to have SATB queues with active set to true.
1372     satb_mq_set.set_active_all_threads(false, /* new active value */
1373                                        true /* expected_active */);
1374 
1375     if (VerifyDuringGC) {
1376       HandleMark hm;  // handle scope
1377       Universe::heap()->prepare_for_verify();
1378       Universe::verify(VerifyOption_G1UseNextMarking,
1379                        " VerifyDuringGC:(after)");
1380     }
1381     g1h->check_bitmaps("Remark End");
1382     assert(!restart_for_overflow(), "sanity");
1383     // Completely reset the marking state since marking completed
1384     set_non_marking_state();
1385   }
1386 
1387   // Expand the marking stack, if we have to and if we can.
1388   if (_markStack.should_expand()) {
1389     _markStack.expand();
1390   }
1391 
1392   // Statistics
1393   double now = os::elapsedTime();
1394   _remark_mark_times.add((mark_work_end - start) * 1000.0);
1395   _remark_weak_ref_times.add((now - mark_work_end) * 1000.0);
1396   _remark_times.add((now - start) * 1000.0);
1397 
1398   g1p->record_concurrent_mark_remark_end();
1399 
1400   G1CMIsAliveClosure is_alive(g1h);
1401   g1h->gc_tracer_cm()->report_object_count_after_gc(&is_alive);
1402 }
1403 
1404 // Base class of the closures that finalize and verify the
1405 // liveness counting data.
1406 class CMCountDataClosureBase: public HeapRegionClosure {
1407 protected:
1408   G1CollectedHeap* _g1h;
1409   ConcurrentMark* _cm;
1410   CardTableModRefBS* _ct_bs;
1411 
1412   BitMap* _region_bm;
1413   BitMap* _card_bm;
1414 
1415   // Takes a region that's not empty (i.e., it has at least one
1416   // live object in it and sets its corresponding bit on the region
1417   // bitmap to 1. If the region is "starts humongous" it will also set
1418   // to 1 the bits on the region bitmap that correspond to its
1419   // associated "continues humongous" regions.
1420   void set_bit_for_region(HeapRegion* hr) {
1421     assert(!hr->is_continues_humongous(), "should have filtered those out");
1422 
1423     BitMap::idx_t index = (BitMap::idx_t) hr->hrm_index();
1424     if (!hr->is_starts_humongous()) {
1425       // Normal (non-humongous) case: just set the bit.
1426       _region_bm->par_at_put(index, true);
1427     } else {
1428       // Starts humongous case: calculate how many regions are part of
1429       // this humongous region and then set the bit range.
1430       BitMap::idx_t end_index = (BitMap::idx_t) hr->last_hc_index();
1431       _region_bm->par_at_put_range(index, end_index, true);
1432     }
1433   }
1434 
1435 public:
1436   CMCountDataClosureBase(G1CollectedHeap* g1h,
1437                          BitMap* region_bm, BitMap* card_bm):
1438     _g1h(g1h), _cm(g1h->concurrent_mark()),
1439     _ct_bs((CardTableModRefBS*) (g1h->barrier_set())),
1440     _region_bm(region_bm), _card_bm(card_bm) { }
1441 };
1442 
1443 // Closure that calculates the # live objects per region. Used
1444 // for verification purposes during the cleanup pause.
1445 class CalcLiveObjectsClosure: public CMCountDataClosureBase {
1446   CMBitMapRO* _bm;
1447   size_t _region_marked_bytes;
1448 
1449 public:
1450   CalcLiveObjectsClosure(CMBitMapRO *bm, G1CollectedHeap* g1h,
1451                          BitMap* region_bm, BitMap* card_bm) :
1452     CMCountDataClosureBase(g1h, region_bm, card_bm),
1453     _bm(bm), _region_marked_bytes(0) { }
1454 
1455   bool doHeapRegion(HeapRegion* hr) {
1456 
1457     if (hr->is_continues_humongous()) {
1458       // We will ignore these here and process them when their
1459       // associated "starts humongous" region is processed (see
1460       // set_bit_for_heap_region()). Note that we cannot rely on their
1461       // associated "starts humongous" region to have their bit set to
1462       // 1 since, due to the region chunking in the parallel region
1463       // iteration, a "continues humongous" region might be visited
1464       // before its associated "starts humongous".
1465       return false;
1466     }
1467 
1468     HeapWord* ntams = hr->next_top_at_mark_start();
1469     HeapWord* start = hr->bottom();
1470 
1471     assert(start <= hr->end() && start <= ntams && ntams <= hr->end(),
1472            err_msg("Preconditions not met - "
1473                    "start: "PTR_FORMAT", ntams: "PTR_FORMAT", end: "PTR_FORMAT,
1474                    p2i(start), p2i(ntams), p2i(hr->end())));
1475 
1476     // Find the first marked object at or after "start".
1477     start = _bm->getNextMarkedWordAddress(start, ntams);
1478 
1479     size_t marked_bytes = 0;
1480 
1481     while (start < ntams) {
1482       oop obj = oop(start);
1483       int obj_sz = obj->size();
1484       HeapWord* obj_end = start + obj_sz;
1485 
1486       BitMap::idx_t start_idx = _cm->card_bitmap_index_for(start);
1487       BitMap::idx_t end_idx = _cm->card_bitmap_index_for(obj_end);
1488 
1489       // Note: if we're looking at the last region in heap - obj_end
1490       // could be actually just beyond the end of the heap; end_idx
1491       // will then correspond to a (non-existent) card that is also
1492       // just beyond the heap.
1493       if (_g1h->is_in_g1_reserved(obj_end) && !_ct_bs->is_card_aligned(obj_end)) {
1494         // end of object is not card aligned - increment to cover
1495         // all the cards spanned by the object
1496         end_idx += 1;
1497       }
1498 
1499       // Set the bits in the card BM for the cards spanned by this object.
1500       _cm->set_card_bitmap_range(_card_bm, start_idx, end_idx, true /* is_par */);
1501 
1502       // Add the size of this object to the number of marked bytes.
1503       marked_bytes += (size_t)obj_sz * HeapWordSize;
1504 
1505       // Find the next marked object after this one.
1506       start = _bm->getNextMarkedWordAddress(obj_end, ntams);
1507     }
1508 
1509     // Mark the allocated-since-marking portion...
1510     HeapWord* top = hr->top();
1511     if (ntams < top) {
1512       BitMap::idx_t start_idx = _cm->card_bitmap_index_for(ntams);
1513       BitMap::idx_t end_idx = _cm->card_bitmap_index_for(top);
1514 
1515       // Note: if we're looking at the last region in heap - top
1516       // could be actually just beyond the end of the heap; end_idx
1517       // will then correspond to a (non-existent) card that is also
1518       // just beyond the heap.
1519       if (_g1h->is_in_g1_reserved(top) && !_ct_bs->is_card_aligned(top)) {
1520         // end of object is not card aligned - increment to cover
1521         // all the cards spanned by the object
1522         end_idx += 1;
1523       }
1524       _cm->set_card_bitmap_range(_card_bm, start_idx, end_idx, true /* is_par */);
1525 
1526       // This definitely means the region has live objects.
1527       set_bit_for_region(hr);
1528     }
1529 
1530     // Update the live region bitmap.
1531     if (marked_bytes > 0) {
1532       set_bit_for_region(hr);
1533     }
1534 
1535     // Set the marked bytes for the current region so that
1536     // it can be queried by a calling verification routine
1537     _region_marked_bytes = marked_bytes;
1538 
1539     return false;
1540   }
1541 
1542   size_t region_marked_bytes() const { return _region_marked_bytes; }
1543 };
1544 
1545 // Heap region closure used for verifying the counting data
1546 // that was accumulated concurrently and aggregated during
1547 // the remark pause. This closure is applied to the heap
1548 // regions during the STW cleanup pause.
1549 
1550 class VerifyLiveObjectDataHRClosure: public HeapRegionClosure {
1551   G1CollectedHeap* _g1h;
1552   ConcurrentMark* _cm;
1553   CalcLiveObjectsClosure _calc_cl;
1554   BitMap* _region_bm;   // Region BM to be verified
1555   BitMap* _card_bm;     // Card BM to be verified
1556   bool _verbose;        // verbose output?
1557 
1558   BitMap* _exp_region_bm; // Expected Region BM values
1559   BitMap* _exp_card_bm;   // Expected card BM values
1560 
1561   int _failures;
1562 
1563 public:
1564   VerifyLiveObjectDataHRClosure(G1CollectedHeap* g1h,
1565                                 BitMap* region_bm,
1566                                 BitMap* card_bm,
1567                                 BitMap* exp_region_bm,
1568                                 BitMap* exp_card_bm,
1569                                 bool verbose) :
1570     _g1h(g1h), _cm(g1h->concurrent_mark()),
1571     _calc_cl(_cm->nextMarkBitMap(), g1h, exp_region_bm, exp_card_bm),
1572     _region_bm(region_bm), _card_bm(card_bm), _verbose(verbose),
1573     _exp_region_bm(exp_region_bm), _exp_card_bm(exp_card_bm),
1574     _failures(0) { }
1575 
1576   int failures() const { return _failures; }
1577 
1578   bool doHeapRegion(HeapRegion* hr) {
1579     if (hr->is_continues_humongous()) {
1580       // We will ignore these here and process them when their
1581       // associated "starts humongous" region is processed (see
1582       // set_bit_for_heap_region()). Note that we cannot rely on their
1583       // associated "starts humongous" region to have their bit set to
1584       // 1 since, due to the region chunking in the parallel region
1585       // iteration, a "continues humongous" region might be visited
1586       // before its associated "starts humongous".
1587       return false;
1588     }
1589 
1590     int failures = 0;
1591 
1592     // Call the CalcLiveObjectsClosure to walk the marking bitmap for
1593     // this region and set the corresponding bits in the expected region
1594     // and card bitmaps.
1595     bool res = _calc_cl.doHeapRegion(hr);
1596     assert(res == false, "should be continuing");
1597 
1598     MutexLockerEx x((_verbose ? ParGCRareEvent_lock : NULL),
1599                     Mutex::_no_safepoint_check_flag);
1600 
1601     // Verify the marked bytes for this region.
1602     size_t exp_marked_bytes = _calc_cl.region_marked_bytes();
1603     size_t act_marked_bytes = hr->next_marked_bytes();
1604 
1605     // We're not OK if expected marked bytes > actual marked bytes. It means
1606     // we have missed accounting some objects during the actual marking.
1607     if (exp_marked_bytes > act_marked_bytes) {
1608       if (_verbose) {
1609         gclog_or_tty->print_cr("Region %u: marked bytes mismatch: "
1610                                "expected: " SIZE_FORMAT ", actual: " SIZE_FORMAT,
1611                                hr->hrm_index(), exp_marked_bytes, act_marked_bytes);
1612       }
1613       failures += 1;
1614     }
1615 
1616     // Verify the bit, for this region, in the actual and expected
1617     // (which was just calculated) region bit maps.
1618     // We're not OK if the bit in the calculated expected region
1619     // bitmap is set and the bit in the actual region bitmap is not.
1620     BitMap::idx_t index = (BitMap::idx_t) hr->hrm_index();
1621 
1622     bool expected = _exp_region_bm->at(index);
1623     bool actual = _region_bm->at(index);
1624     if (expected && !actual) {
1625       if (_verbose) {
1626         gclog_or_tty->print_cr("Region %u: region bitmap mismatch: "
1627                                "expected: %s, actual: %s",
1628                                hr->hrm_index(),
1629                                BOOL_TO_STR(expected), BOOL_TO_STR(actual));
1630       }
1631       failures += 1;
1632     }
1633 
1634     // Verify that the card bit maps for the cards spanned by the current
1635     // region match. We have an error if we have a set bit in the expected
1636     // bit map and the corresponding bit in the actual bitmap is not set.
1637 
1638     BitMap::idx_t start_idx = _cm->card_bitmap_index_for(hr->bottom());
1639     BitMap::idx_t end_idx = _cm->card_bitmap_index_for(hr->top());
1640 
1641     for (BitMap::idx_t i = start_idx; i < end_idx; i+=1) {
1642       expected = _exp_card_bm->at(i);
1643       actual = _card_bm->at(i);
1644 
1645       if (expected && !actual) {
1646         if (_verbose) {
1647           gclog_or_tty->print_cr("Region %u: card bitmap mismatch at " SIZE_FORMAT ": "
1648                                  "expected: %s, actual: %s",
1649                                  hr->hrm_index(), i,
1650                                  BOOL_TO_STR(expected), BOOL_TO_STR(actual));
1651         }
1652         failures += 1;
1653       }
1654     }
1655 
1656     if (failures > 0 && _verbose)  {
1657       gclog_or_tty->print_cr("Region " HR_FORMAT ", ntams: " PTR_FORMAT ", "
1658                              "marked_bytes: calc/actual " SIZE_FORMAT "/" SIZE_FORMAT,
1659                              HR_FORMAT_PARAMS(hr), p2i(hr->next_top_at_mark_start()),
1660                              _calc_cl.region_marked_bytes(), hr->next_marked_bytes());
1661     }
1662 
1663     _failures += failures;
1664 
1665     // We could stop iteration over the heap when we
1666     // find the first violating region by returning true.
1667     return false;
1668   }
1669 };
1670 
1671 class G1ParVerifyFinalCountTask: public AbstractGangTask {
1672 protected:
1673   G1CollectedHeap* _g1h;
1674   ConcurrentMark* _cm;
1675   BitMap* _actual_region_bm;
1676   BitMap* _actual_card_bm;
1677 
1678   uint    _n_workers;
1679 
1680   BitMap* _expected_region_bm;
1681   BitMap* _expected_card_bm;
1682 
1683   int  _failures;
1684   bool _verbose;
1685 
1686   HeapRegionClaimer _hrclaimer;
1687 
1688 public:
1689   G1ParVerifyFinalCountTask(G1CollectedHeap* g1h,
1690                             BitMap* region_bm, BitMap* card_bm,
1691                             BitMap* expected_region_bm, BitMap* expected_card_bm)
1692     : AbstractGangTask("G1 verify final counting"),
1693       _g1h(g1h), _cm(_g1h->concurrent_mark()),
1694       _actual_region_bm(region_bm), _actual_card_bm(card_bm),
1695       _expected_region_bm(expected_region_bm), _expected_card_bm(expected_card_bm),
1696       _failures(0), _verbose(false),
1697       _n_workers(0) {
1698     assert(VerifyDuringGC, "don't call this otherwise");
1699 
1700     // Use the value already set as the number of active threads
1701     // in the call to run_task().
1702     if (G1CollectedHeap::use_parallel_gc_threads()) {
1703       assert( _g1h->workers()->active_workers() > 0,
1704         "Should have been previously set");
1705       _n_workers = _g1h->workers()->active_workers();
1706       _hrclaimer.initialize(_n_workers);
1707     } else {
1708       _n_workers = 1;
1709     }
1710 
1711     assert(_expected_card_bm->size() == _actual_card_bm->size(), "sanity");
1712     assert(_expected_region_bm->size() == _actual_region_bm->size(), "sanity");
1713 
1714     _verbose = _cm->verbose_medium();
1715   }
1716 
1717   void work(uint worker_id) {
1718     assert(worker_id < _n_workers, "invariant");
1719 
1720     VerifyLiveObjectDataHRClosure verify_cl(_g1h,
1721                                             _actual_region_bm, _actual_card_bm,
1722                                             _expected_region_bm,
1723                                             _expected_card_bm,
1724                                             _verbose);
1725 
1726     if (G1CollectedHeap::use_parallel_gc_threads()) {
1727       _g1h->heap_region_par_iterate(&verify_cl, worker_id, &_hrclaimer);
1728     } else {
1729       _g1h->heap_region_iterate(&verify_cl);
1730     }
1731 
1732     Atomic::add(verify_cl.failures(), &_failures);
1733   }
1734 
1735   int failures() const { return _failures; }
1736 };
1737 
1738 // Closure that finalizes the liveness counting data.
1739 // Used during the cleanup pause.
1740 // Sets the bits corresponding to the interval [NTAMS, top]
1741 // (which contains the implicitly live objects) in the
1742 // card liveness bitmap. Also sets the bit for each region,
1743 // containing live data, in the region liveness bitmap.
1744 
1745 class FinalCountDataUpdateClosure: public CMCountDataClosureBase {
1746  public:
1747   FinalCountDataUpdateClosure(G1CollectedHeap* g1h,
1748                               BitMap* region_bm,
1749                               BitMap* card_bm) :
1750     CMCountDataClosureBase(g1h, region_bm, card_bm) { }
1751 
1752   bool doHeapRegion(HeapRegion* hr) {
1753 
1754     if (hr->is_continues_humongous()) {
1755       // We will ignore these here and process them when their
1756       // associated "starts humongous" region is processed (see
1757       // set_bit_for_heap_region()). Note that we cannot rely on their
1758       // associated "starts humongous" region to have their bit set to
1759       // 1 since, due to the region chunking in the parallel region
1760       // iteration, a "continues humongous" region might be visited
1761       // before its associated "starts humongous".
1762       return false;
1763     }
1764 
1765     HeapWord* ntams = hr->next_top_at_mark_start();
1766     HeapWord* top   = hr->top();
1767 
1768     assert(hr->bottom() <= ntams && ntams <= hr->end(), "Preconditions.");
1769 
1770     // Mark the allocated-since-marking portion...
1771     if (ntams < top) {
1772       // This definitely means the region has live objects.
1773       set_bit_for_region(hr);
1774 
1775       // Now set the bits in the card bitmap for [ntams, top)
1776       BitMap::idx_t start_idx = _cm->card_bitmap_index_for(ntams);
1777       BitMap::idx_t end_idx = _cm->card_bitmap_index_for(top);
1778 
1779       // Note: if we're looking at the last region in heap - top
1780       // could be actually just beyond the end of the heap; end_idx
1781       // will then correspond to a (non-existent) card that is also
1782       // just beyond the heap.
1783       if (_g1h->is_in_g1_reserved(top) && !_ct_bs->is_card_aligned(top)) {
1784         // end of object is not card aligned - increment to cover
1785         // all the cards spanned by the object
1786         end_idx += 1;
1787       }
1788 
1789       assert(end_idx <= _card_bm->size(),
1790              err_msg("oob: end_idx=  "SIZE_FORMAT", bitmap size= "SIZE_FORMAT,
1791                      end_idx, _card_bm->size()));
1792       assert(start_idx < _card_bm->size(),
1793              err_msg("oob: start_idx=  "SIZE_FORMAT", bitmap size= "SIZE_FORMAT,
1794                      start_idx, _card_bm->size()));
1795 
1796       _cm->set_card_bitmap_range(_card_bm, start_idx, end_idx, true /* is_par */);
1797     }
1798 
1799     // Set the bit for the region if it contains live data
1800     if (hr->next_marked_bytes() > 0) {
1801       set_bit_for_region(hr);
1802     }
1803 
1804     return false;
1805   }
1806 };
1807 
1808 class G1ParFinalCountTask: public AbstractGangTask {
1809 protected:
1810   G1CollectedHeap* _g1h;
1811   ConcurrentMark* _cm;
1812   BitMap* _actual_region_bm;
1813   BitMap* _actual_card_bm;
1814 
1815   uint    _n_workers;
1816   HeapRegionClaimer _hrclaimer;
1817 
1818 public:
1819   G1ParFinalCountTask(G1CollectedHeap* g1h, BitMap* region_bm, BitMap* card_bm)
1820     : AbstractGangTask("G1 final counting"),
1821       _g1h(g1h), _cm(_g1h->concurrent_mark()),
1822       _actual_region_bm(region_bm), _actual_card_bm(card_bm),
1823       _n_workers(0) {
1824     // Use the value already set as the number of active threads
1825     // in the call to run_task().
1826     if (G1CollectedHeap::use_parallel_gc_threads()) {
1827       assert( _g1h->workers()->active_workers() > 0,
1828         "Should have been previously set");
1829       _n_workers = _g1h->workers()->active_workers();
1830       _hrclaimer.initialize(_n_workers);
1831     } else {
1832       _n_workers = 1;
1833     }
1834   }
1835 
1836   void work(uint worker_id) {
1837     assert(worker_id < _n_workers, "invariant");
1838 
1839     FinalCountDataUpdateClosure final_update_cl(_g1h,
1840                                                 _actual_region_bm,
1841                                                 _actual_card_bm);
1842 
1843     if (G1CollectedHeap::use_parallel_gc_threads()) {
1844       _g1h->heap_region_par_iterate(&final_update_cl, worker_id, &_hrclaimer);
1845     } else {
1846       _g1h->heap_region_iterate(&final_update_cl);
1847     }
1848   }
1849 };
1850 
1851 class G1ParNoteEndTask;
1852 
1853 class G1NoteEndOfConcMarkClosure : public HeapRegionClosure {
1854   G1CollectedHeap* _g1;
1855   size_t _max_live_bytes;
1856   uint _regions_claimed;
1857   size_t _freed_bytes;
1858   FreeRegionList* _local_cleanup_list;
1859   HeapRegionSetCount _old_regions_removed;
1860   HeapRegionSetCount _humongous_regions_removed;
1861   HRRSCleanupTask* _hrrs_cleanup_task;
1862   double _claimed_region_time;
1863   double _max_region_time;
1864 
1865 public:
1866   G1NoteEndOfConcMarkClosure(G1CollectedHeap* g1,
1867                              FreeRegionList* local_cleanup_list,
1868                              HRRSCleanupTask* hrrs_cleanup_task) :
1869     _g1(g1),
1870     _max_live_bytes(0), _regions_claimed(0),
1871     _freed_bytes(0),
1872     _claimed_region_time(0.0), _max_region_time(0.0),
1873     _local_cleanup_list(local_cleanup_list),
1874     _old_regions_removed(),
1875     _humongous_regions_removed(),
1876     _hrrs_cleanup_task(hrrs_cleanup_task) { }
1877 
1878   size_t freed_bytes() { return _freed_bytes; }
1879   const HeapRegionSetCount& old_regions_removed() { return _old_regions_removed; }
1880   const HeapRegionSetCount& humongous_regions_removed() { return _humongous_regions_removed; }
1881 
1882   bool doHeapRegion(HeapRegion *hr) {
1883     if (hr->is_continues_humongous()) {
1884       return false;
1885     }
1886     // We use a claim value of zero here because all regions
1887     // were claimed with value 1 in the FinalCount task.
1888     _g1->reset_gc_time_stamps(hr);
1889     double start = os::elapsedTime();
1890     _regions_claimed++;
1891     hr->note_end_of_marking();
1892     _max_live_bytes += hr->max_live_bytes();
1893 
1894     if (hr->used() > 0 && hr->max_live_bytes() == 0 && !hr->is_young()) {
1895       _freed_bytes += hr->used();
1896       hr->set_containing_set(NULL);
1897       if (hr->is_humongous()) {
1898         assert(hr->is_starts_humongous(), "we should only see starts humongous");
1899         _humongous_regions_removed.increment(1u, hr->capacity());
1900         _g1->free_humongous_region(hr, _local_cleanup_list, true);
1901       } else {
1902         _old_regions_removed.increment(1u, hr->capacity());
1903         _g1->free_region(hr, _local_cleanup_list, true);
1904       }
1905     } else {
1906       hr->rem_set()->do_cleanup_work(_hrrs_cleanup_task);
1907     }
1908 
1909     double region_time = (os::elapsedTime() - start);
1910     _claimed_region_time += region_time;
1911     if (region_time > _max_region_time) {
1912       _max_region_time = region_time;
1913     }
1914     return false;
1915   }
1916 
1917   size_t max_live_bytes() { return _max_live_bytes; }
1918   uint regions_claimed() { return _regions_claimed; }
1919   double claimed_region_time_sec() { return _claimed_region_time; }
1920   double max_region_time_sec() { return _max_region_time; }
1921 };
1922 
1923 class G1ParNoteEndTask: public AbstractGangTask {
1924   friend class G1NoteEndOfConcMarkClosure;
1925 
1926 protected:
1927   G1CollectedHeap* _g1h;
1928   size_t _max_live_bytes;
1929   size_t _freed_bytes;
1930   FreeRegionList* _cleanup_list;
1931   HeapRegionClaimer _hrclaimer;
1932 
1933 public:
1934   G1ParNoteEndTask(G1CollectedHeap* g1h, FreeRegionList* cleanup_list, uint n_workers) :
1935       AbstractGangTask("G1 note end"), _g1h(g1h), _max_live_bytes(0), _freed_bytes(0), _cleanup_list(cleanup_list) {
1936     if (G1CollectedHeap::use_parallel_gc_threads()) {
1937       _hrclaimer.initialize(n_workers);
1938     }
1939   }
1940 
1941   void work(uint worker_id) {
1942     double start = os::elapsedTime();
1943     FreeRegionList local_cleanup_list("Local Cleanup List");
1944     HRRSCleanupTask hrrs_cleanup_task;
1945     G1NoteEndOfConcMarkClosure g1_note_end(_g1h, &local_cleanup_list,
1946                                            &hrrs_cleanup_task);
1947     if (G1CollectedHeap::use_parallel_gc_threads()) {
1948       _g1h->heap_region_par_iterate(&g1_note_end, worker_id, &_hrclaimer);
1949     } else {
1950       _g1h->heap_region_iterate(&g1_note_end);
1951     }
1952     assert(g1_note_end.complete(), "Shouldn't have yielded!");
1953 
1954     // Now update the lists
1955     _g1h->remove_from_old_sets(g1_note_end.old_regions_removed(), g1_note_end.humongous_regions_removed());
1956     {
1957       MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
1958       _g1h->decrement_summary_bytes(g1_note_end.freed_bytes());
1959       _max_live_bytes += g1_note_end.max_live_bytes();
1960       _freed_bytes += g1_note_end.freed_bytes();
1961 
1962       // If we iterate over the global cleanup list at the end of
1963       // cleanup to do this printing we will not guarantee to only
1964       // generate output for the newly-reclaimed regions (the list
1965       // might not be empty at the beginning of cleanup; we might
1966       // still be working on its previous contents). So we do the
1967       // printing here, before we append the new regions to the global
1968       // cleanup list.
1969 
1970       G1HRPrinter* hr_printer = _g1h->hr_printer();
1971       if (hr_printer->is_active()) {
1972         FreeRegionListIterator iter(&local_cleanup_list);
1973         while (iter.more_available()) {
1974           HeapRegion* hr = iter.get_next();
1975           hr_printer->cleanup(hr);
1976         }
1977       }
1978 
1979       _cleanup_list->add_ordered(&local_cleanup_list);
1980       assert(local_cleanup_list.is_empty(), "post-condition");
1981 
1982       HeapRegionRemSet::finish_cleanup_task(&hrrs_cleanup_task);
1983     }
1984   }
1985   size_t max_live_bytes() { return _max_live_bytes; }
1986   size_t freed_bytes() { return _freed_bytes; }
1987 };
1988 
1989 class G1ParScrubRemSetTask: public AbstractGangTask {
1990 protected:
1991   G1RemSet* _g1rs;
1992   BitMap* _region_bm;
1993   BitMap* _card_bm;
1994   HeapRegionClaimer _hrclaimer;
1995 
1996 public:
1997   G1ParScrubRemSetTask(G1CollectedHeap* g1h, BitMap* region_bm, BitMap* card_bm, uint n_workers) :
1998       AbstractGangTask("G1 ScrubRS"), _g1rs(g1h->g1_rem_set()), _region_bm(region_bm), _card_bm(card_bm) {
1999     if (G1CollectedHeap::use_parallel_gc_threads()) {
2000       _hrclaimer.initialize(n_workers);
2001     }
2002   }
2003 
2004   void work(uint worker_id) {
2005     if (G1CollectedHeap::use_parallel_gc_threads()) {
2006       _g1rs->scrub_par(_region_bm, _card_bm, worker_id, &_hrclaimer);
2007     } else {
2008       _g1rs->scrub(_region_bm, _card_bm);
2009     }
2010   }
2011 
2012 };
2013 
2014 void ConcurrentMark::cleanup() {
2015   // world is stopped at this checkpoint
2016   assert(SafepointSynchronize::is_at_safepoint(),
2017          "world should be stopped");
2018   G1CollectedHeap* g1h = G1CollectedHeap::heap();
2019 
2020   // If a full collection has happened, we shouldn't do this.
2021   if (has_aborted()) {
2022     g1h->set_marking_complete(); // So bitmap clearing isn't confused
2023     return;
2024   }
2025 
2026   g1h->verify_region_sets_optional();
2027 
2028   if (VerifyDuringGC) {
2029     HandleMark hm;  // handle scope
2030     Universe::heap()->prepare_for_verify();
2031     Universe::verify(VerifyOption_G1UsePrevMarking,
2032                      " VerifyDuringGC:(before)");
2033   }
2034   g1h->check_bitmaps("Cleanup Start");
2035 
2036   G1CollectorPolicy* g1p = G1CollectedHeap::heap()->g1_policy();
2037   g1p->record_concurrent_mark_cleanup_start();
2038 
2039   double start = os::elapsedTime();
2040 
2041   HeapRegionRemSet::reset_for_cleanup_tasks();
2042 
2043   uint n_workers;
2044 
2045   // Do counting once more with the world stopped for good measure.
2046   G1ParFinalCountTask g1_par_count_task(g1h, &_region_bm, &_card_bm);
2047 
2048   if (G1CollectedHeap::use_parallel_gc_threads()) {
2049     g1h->set_par_threads();
2050     n_workers = g1h->n_par_threads();
2051     assert(g1h->n_par_threads() == n_workers,
2052            "Should not have been reset");
2053     g1h->workers()->run_task(&g1_par_count_task);
2054     // Done with the parallel phase so reset to 0.
2055     g1h->set_par_threads(0);
2056   } else {
2057     n_workers = 1;
2058     g1_par_count_task.work(0);
2059   }
2060 
2061   if (VerifyDuringGC) {
2062     // Verify that the counting data accumulated during marking matches
2063     // that calculated by walking the marking bitmap.
2064 
2065     // Bitmaps to hold expected values
2066     BitMap expected_region_bm(_region_bm.size(), true);
2067     BitMap expected_card_bm(_card_bm.size(), true);
2068 
2069     G1ParVerifyFinalCountTask g1_par_verify_task(g1h,
2070                                                  &_region_bm,
2071                                                  &_card_bm,
2072                                                  &expected_region_bm,
2073                                                  &expected_card_bm);
2074 
2075     if (G1CollectedHeap::use_parallel_gc_threads()) {
2076       g1h->set_par_threads((int)n_workers);
2077       g1h->workers()->run_task(&g1_par_verify_task);
2078       // Done with the parallel phase so reset to 0.
2079       g1h->set_par_threads(0);
2080     } else {
2081       g1_par_verify_task.work(0);
2082     }
2083 
2084     guarantee(g1_par_verify_task.failures() == 0, "Unexpected accounting failures");
2085   }
2086 
2087   size_t start_used_bytes = g1h->used();
2088   g1h->set_marking_complete();
2089 
2090   double count_end = os::elapsedTime();
2091   double this_final_counting_time = (count_end - start);
2092   _total_counting_time += this_final_counting_time;
2093 
2094   if (G1PrintRegionLivenessInfo) {
2095     G1PrintRegionLivenessInfoClosure cl(gclog_or_tty, "Post-Marking");
2096     _g1h->heap_region_iterate(&cl);
2097   }
2098 
2099   // Install newly created mark bitMap as "prev".
2100   swapMarkBitMaps();
2101 
2102   g1h->reset_gc_time_stamp();
2103 
2104   // Note end of marking in all heap regions.
2105   G1ParNoteEndTask g1_par_note_end_task(g1h, &_cleanup_list, n_workers);
2106   if (G1CollectedHeap::use_parallel_gc_threads()) {
2107     g1h->set_par_threads((int)n_workers);
2108     g1h->workers()->run_task(&g1_par_note_end_task);
2109     g1h->set_par_threads(0);
2110   } else {
2111     g1_par_note_end_task.work(0);
2112   }
2113   g1h->check_gc_time_stamps();
2114 
2115   if (!cleanup_list_is_empty()) {
2116     // The cleanup list is not empty, so we'll have to process it
2117     // concurrently. Notify anyone else that might be wanting free
2118     // regions that there will be more free regions coming soon.
2119     g1h->set_free_regions_coming();
2120   }
2121 
2122   // call below, since it affects the metric by which we sort the heap
2123   // regions.
2124   if (G1ScrubRemSets) {
2125     double rs_scrub_start = os::elapsedTime();
2126     G1ParScrubRemSetTask g1_par_scrub_rs_task(g1h, &_region_bm, &_card_bm, n_workers);
2127     if (G1CollectedHeap::use_parallel_gc_threads()) {
2128       g1h->set_par_threads((int)n_workers);
2129       g1h->workers()->run_task(&g1_par_scrub_rs_task);
2130       g1h->set_par_threads(0);
2131     } else {
2132       g1_par_scrub_rs_task.work(0);
2133     }
2134 
2135     double rs_scrub_end = os::elapsedTime();
2136     double this_rs_scrub_time = (rs_scrub_end - rs_scrub_start);
2137     _total_rs_scrub_time += this_rs_scrub_time;
2138   }
2139 
2140   // this will also free any regions totally full of garbage objects,
2141   // and sort the regions.
2142   g1h->g1_policy()->record_concurrent_mark_cleanup_end((int)n_workers);
2143 
2144   // Statistics.
2145   double end = os::elapsedTime();
2146   _cleanup_times.add((end - start) * 1000.0);
2147 
2148   if (G1Log::fine()) {
2149     g1h->print_size_transition(gclog_or_tty,
2150                                start_used_bytes,
2151                                g1h->used(),
2152                                g1h->capacity());
2153   }
2154 
2155   // Clean up will have freed any regions completely full of garbage.
2156   // Update the soft reference policy with the new heap occupancy.
2157   Universe::update_heap_info_at_gc();
2158 
2159   if (VerifyDuringGC) {
2160     HandleMark hm;  // handle scope
2161     Universe::heap()->prepare_for_verify();
2162     Universe::verify(VerifyOption_G1UsePrevMarking,
2163                      " VerifyDuringGC:(after)");
2164   }
2165 
2166   g1h->check_bitmaps("Cleanup End");
2167 
2168   g1h->verify_region_sets_optional();
2169 
2170   // We need to make this be a "collection" so any collection pause that
2171   // races with it goes around and waits for completeCleanup to finish.
2172   g1h->increment_total_collections();
2173 
2174   // Clean out dead classes and update Metaspace sizes.
2175   if (ClassUnloadingWithConcurrentMark) {
2176     ClassLoaderDataGraph::purge();
2177   }
2178   MetaspaceGC::compute_new_size();
2179 
2180   // We reclaimed old regions so we should calculate the sizes to make
2181   // sure we update the old gen/space data.
2182   g1h->g1mm()->update_sizes();
2183 
2184   g1h->trace_heap_after_concurrent_cycle();
2185 }
2186 
2187 void ConcurrentMark::completeCleanup() {
2188   if (has_aborted()) return;
2189 
2190   G1CollectedHeap* g1h = G1CollectedHeap::heap();
2191 
2192   _cleanup_list.verify_optional();
2193   FreeRegionList tmp_free_list("Tmp Free List");
2194 
2195   if (G1ConcRegionFreeingVerbose) {
2196     gclog_or_tty->print_cr("G1ConcRegionFreeing [complete cleanup] : "
2197                            "cleanup list has %u entries",
2198                            _cleanup_list.length());
2199   }
2200 
2201   // No one else should be accessing the _cleanup_list at this point,
2202   // so it is not necessary to take any locks
2203   while (!_cleanup_list.is_empty()) {
2204     HeapRegion* hr = _cleanup_list.remove_region(true /* from_head */);
2205     assert(hr != NULL, "Got NULL from a non-empty list");
2206     hr->par_clear();
2207     tmp_free_list.add_ordered(hr);
2208 
2209     // Instead of adding one region at a time to the secondary_free_list,
2210     // we accumulate them in the local list and move them a few at a
2211     // time. This also cuts down on the number of notify_all() calls
2212     // we do during this process. We'll also append the local list when
2213     // _cleanup_list is empty (which means we just removed the last
2214     // region from the _cleanup_list).
2215     if ((tmp_free_list.length() % G1SecondaryFreeListAppendLength == 0) ||
2216         _cleanup_list.is_empty()) {
2217       if (G1ConcRegionFreeingVerbose) {
2218         gclog_or_tty->print_cr("G1ConcRegionFreeing [complete cleanup] : "
2219                                "appending %u entries to the secondary_free_list, "
2220                                "cleanup list still has %u entries",
2221                                tmp_free_list.length(),
2222                                _cleanup_list.length());
2223       }
2224 
2225       {
2226         MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
2227         g1h->secondary_free_list_add(&tmp_free_list);
2228         SecondaryFreeList_lock->notify_all();
2229       }
2230 
2231       if (G1StressConcRegionFreeing) {
2232         for (uintx i = 0; i < G1StressConcRegionFreeingDelayMillis; ++i) {
2233           os::sleep(Thread::current(), (jlong) 1, false);
2234         }
2235       }
2236     }
2237   }
2238   assert(tmp_free_list.is_empty(), "post-condition");
2239 }
2240 
2241 // Supporting Object and Oop closures for reference discovery
2242 // and processing in during marking
2243 
2244 bool G1CMIsAliveClosure::do_object_b(oop obj) {
2245   HeapWord* addr = (HeapWord*)obj;
2246   return addr != NULL &&
2247          (!_g1->is_in_g1_reserved(addr) || !_g1->is_obj_ill(obj));
2248 }
2249 
2250 // 'Keep Alive' oop closure used by both serial parallel reference processing.
2251 // Uses the CMTask associated with a worker thread (for serial reference
2252 // processing the CMTask for worker 0 is used) to preserve (mark) and
2253 // trace referent objects.
2254 //
2255 // Using the CMTask and embedded local queues avoids having the worker
2256 // threads operating on the global mark stack. This reduces the risk
2257 // of overflowing the stack - which we would rather avoid at this late
2258 // state. Also using the tasks' local queues removes the potential
2259 // of the workers interfering with each other that could occur if
2260 // operating on the global stack.
2261 
2262 class G1CMKeepAliveAndDrainClosure: public OopClosure {
2263   ConcurrentMark* _cm;
2264   CMTask*         _task;
2265   int             _ref_counter_limit;
2266   int             _ref_counter;
2267   bool            _is_serial;
2268  public:
2269   G1CMKeepAliveAndDrainClosure(ConcurrentMark* cm, CMTask* task, bool is_serial) :
2270     _cm(cm), _task(task), _is_serial(is_serial),
2271     _ref_counter_limit(G1RefProcDrainInterval) {
2272     assert(_ref_counter_limit > 0, "sanity");
2273     assert(!_is_serial || _task->worker_id() == 0, "only task 0 for serial code");
2274     _ref_counter = _ref_counter_limit;
2275   }
2276 
2277   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
2278   virtual void do_oop(      oop* p) { do_oop_work(p); }
2279 
2280   template <class T> void do_oop_work(T* p) {
2281     if (!_cm->has_overflown()) {
2282       oop obj = oopDesc::load_decode_heap_oop(p);
2283       if (_cm->verbose_high()) {
2284         gclog_or_tty->print_cr("\t[%u] we're looking at location "
2285                                "*"PTR_FORMAT" = "PTR_FORMAT,
2286                                _task->worker_id(), p2i(p), p2i((void*) obj));
2287       }
2288 
2289       _task->deal_with_reference(obj);
2290       _ref_counter--;
2291 
2292       if (_ref_counter == 0) {
2293         // We have dealt with _ref_counter_limit references, pushing them
2294         // and objects reachable from them on to the local stack (and
2295         // possibly the global stack). Call CMTask::do_marking_step() to
2296         // process these entries.
2297         //
2298         // We call CMTask::do_marking_step() in a loop, which we'll exit if
2299         // there's nothing more to do (i.e. we're done with the entries that
2300         // were pushed as a result of the CMTask::deal_with_reference() calls
2301         // above) or we overflow.
2302         //
2303         // Note: CMTask::do_marking_step() can set the CMTask::has_aborted()
2304         // flag while there may still be some work to do. (See the comment at
2305         // the beginning of CMTask::do_marking_step() for those conditions -
2306         // one of which is reaching the specified time target.) It is only
2307         // when CMTask::do_marking_step() returns without setting the
2308         // has_aborted() flag that the marking step has completed.
2309         do {
2310           double mark_step_duration_ms = G1ConcMarkStepDurationMillis;
2311           _task->do_marking_step(mark_step_duration_ms,
2312                                  false      /* do_termination */,
2313                                  _is_serial);
2314         } while (_task->has_aborted() && !_cm->has_overflown());
2315         _ref_counter = _ref_counter_limit;
2316       }
2317     } else {
2318       if (_cm->verbose_high()) {
2319          gclog_or_tty->print_cr("\t[%u] CM Overflow", _task->worker_id());
2320       }
2321     }
2322   }
2323 };
2324 
2325 // 'Drain' oop closure used by both serial and parallel reference processing.
2326 // Uses the CMTask associated with a given worker thread (for serial
2327 // reference processing the CMtask for worker 0 is used). Calls the
2328 // do_marking_step routine, with an unbelievably large timeout value,
2329 // to drain the marking data structures of the remaining entries
2330 // added by the 'keep alive' oop closure above.
2331 
2332 class G1CMDrainMarkingStackClosure: public VoidClosure {
2333   ConcurrentMark* _cm;
2334   CMTask*         _task;
2335   bool            _is_serial;
2336  public:
2337   G1CMDrainMarkingStackClosure(ConcurrentMark* cm, CMTask* task, bool is_serial) :
2338     _cm(cm), _task(task), _is_serial(is_serial) {
2339     assert(!_is_serial || _task->worker_id() == 0, "only task 0 for serial code");
2340   }
2341 
2342   void do_void() {
2343     do {
2344       if (_cm->verbose_high()) {
2345         gclog_or_tty->print_cr("\t[%u] Drain: Calling do_marking_step - serial: %s",
2346                                _task->worker_id(), BOOL_TO_STR(_is_serial));
2347       }
2348 
2349       // We call CMTask::do_marking_step() to completely drain the local
2350       // and global marking stacks of entries pushed by the 'keep alive'
2351       // oop closure (an instance of G1CMKeepAliveAndDrainClosure above).
2352       //
2353       // CMTask::do_marking_step() is called in a loop, which we'll exit
2354       // if there's nothing more to do (i.e. we've completely drained the
2355       // entries that were pushed as a a result of applying the 'keep alive'
2356       // closure to the entries on the discovered ref lists) or we overflow
2357       // the global marking stack.
2358       //
2359       // Note: CMTask::do_marking_step() can set the CMTask::has_aborted()
2360       // flag while there may still be some work to do. (See the comment at
2361       // the beginning of CMTask::do_marking_step() for those conditions -
2362       // one of which is reaching the specified time target.) It is only
2363       // when CMTask::do_marking_step() returns without setting the
2364       // has_aborted() flag that the marking step has completed.
2365 
2366       _task->do_marking_step(1000000000.0 /* something very large */,
2367                              true         /* do_termination */,
2368                              _is_serial);
2369     } while (_task->has_aborted() && !_cm->has_overflown());
2370   }
2371 };
2372 
2373 // Implementation of AbstractRefProcTaskExecutor for parallel
2374 // reference processing at the end of G1 concurrent marking
2375 
2376 class G1CMRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
2377 private:
2378   G1CollectedHeap* _g1h;
2379   ConcurrentMark*  _cm;
2380   WorkGang*        _workers;
2381   int              _active_workers;
2382 
2383 public:
2384   G1CMRefProcTaskExecutor(G1CollectedHeap* g1h,
2385                         ConcurrentMark* cm,
2386                         WorkGang* workers,
2387                         int n_workers) :
2388     _g1h(g1h), _cm(cm),
2389     _workers(workers), _active_workers(n_workers) { }
2390 
2391   // Executes the given task using concurrent marking worker threads.
2392   virtual void execute(ProcessTask& task);
2393   virtual void execute(EnqueueTask& task);
2394 };
2395 
2396 class G1CMRefProcTaskProxy: public AbstractGangTask {
2397   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
2398   ProcessTask&     _proc_task;
2399   G1CollectedHeap* _g1h;
2400   ConcurrentMark*  _cm;
2401 
2402 public:
2403   G1CMRefProcTaskProxy(ProcessTask& proc_task,
2404                      G1CollectedHeap* g1h,
2405                      ConcurrentMark* cm) :
2406     AbstractGangTask("Process reference objects in parallel"),
2407     _proc_task(proc_task), _g1h(g1h), _cm(cm) {
2408     ReferenceProcessor* rp = _g1h->ref_processor_cm();
2409     assert(rp->processing_is_mt(), "shouldn't be here otherwise");
2410   }
2411 
2412   virtual void work(uint worker_id) {
2413     ResourceMark rm;
2414     HandleMark hm;
2415     CMTask* task = _cm->task(worker_id);
2416     G1CMIsAliveClosure g1_is_alive(_g1h);
2417     G1CMKeepAliveAndDrainClosure g1_par_keep_alive(_cm, task, false /* is_serial */);
2418     G1CMDrainMarkingStackClosure g1_par_drain(_cm, task, false /* is_serial */);
2419 
2420     _proc_task.work(worker_id, g1_is_alive, g1_par_keep_alive, g1_par_drain);
2421   }
2422 };
2423 
2424 void G1CMRefProcTaskExecutor::execute(ProcessTask& proc_task) {
2425   assert(_workers != NULL, "Need parallel worker threads.");
2426   assert(_g1h->ref_processor_cm()->processing_is_mt(), "processing is not MT");
2427 
2428   G1CMRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _cm);
2429 
2430   // We need to reset the concurrency level before each
2431   // proxy task execution, so that the termination protocol
2432   // and overflow handling in CMTask::do_marking_step() knows
2433   // how many workers to wait for.
2434   _cm->set_concurrency(_active_workers);
2435   _g1h->set_par_threads(_active_workers);
2436   _workers->run_task(&proc_task_proxy);
2437   _g1h->set_par_threads(0);
2438 }
2439 
2440 class G1CMRefEnqueueTaskProxy: public AbstractGangTask {
2441   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
2442   EnqueueTask& _enq_task;
2443 
2444 public:
2445   G1CMRefEnqueueTaskProxy(EnqueueTask& enq_task) :
2446     AbstractGangTask("Enqueue reference objects in parallel"),
2447     _enq_task(enq_task) { }
2448 
2449   virtual void work(uint worker_id) {
2450     _enq_task.work(worker_id);
2451   }
2452 };
2453 
2454 void G1CMRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
2455   assert(_workers != NULL, "Need parallel worker threads.");
2456   assert(_g1h->ref_processor_cm()->processing_is_mt(), "processing is not MT");
2457 
2458   G1CMRefEnqueueTaskProxy enq_task_proxy(enq_task);
2459 
2460   // Not strictly necessary but...
2461   //
2462   // We need to reset the concurrency level before each
2463   // proxy task execution, so that the termination protocol
2464   // and overflow handling in CMTask::do_marking_step() knows
2465   // how many workers to wait for.
2466   _cm->set_concurrency(_active_workers);
2467   _g1h->set_par_threads(_active_workers);
2468   _workers->run_task(&enq_task_proxy);
2469   _g1h->set_par_threads(0);
2470 }
2471 
2472 void ConcurrentMark::weakRefsWorkParallelPart(BoolObjectClosure* is_alive, bool purged_classes) {
2473   G1CollectedHeap::heap()->parallel_cleaning(is_alive, true, true, purged_classes);
2474 }
2475 
2476 void ConcurrentMark::weakRefsWork(bool clear_all_soft_refs) {
2477   if (has_overflown()) {
2478     // Skip processing the discovered references if we have
2479     // overflown the global marking stack. Reference objects
2480     // only get discovered once so it is OK to not
2481     // de-populate the discovered reference lists. We could have,
2482     // but the only benefit would be that, when marking restarts,
2483     // less reference objects are discovered.
2484     return;
2485   }
2486 
2487   ResourceMark rm;
2488   HandleMark   hm;
2489 
2490   G1CollectedHeap* g1h = G1CollectedHeap::heap();
2491 
2492   // Is alive closure.
2493   G1CMIsAliveClosure g1_is_alive(g1h);
2494 
2495   // Inner scope to exclude the cleaning of the string and symbol
2496   // tables from the displayed time.
2497   {
2498     G1CMTraceTime t("GC ref-proc", G1Log::finer());
2499 
2500     ReferenceProcessor* rp = g1h->ref_processor_cm();
2501 
2502     // See the comment in G1CollectedHeap::ref_processing_init()
2503     // about how reference processing currently works in G1.
2504 
2505     // Set the soft reference policy
2506     rp->setup_policy(clear_all_soft_refs);
2507     assert(_markStack.isEmpty(), "mark stack should be empty");
2508 
2509     // Instances of the 'Keep Alive' and 'Complete GC' closures used
2510     // in serial reference processing. Note these closures are also
2511     // used for serially processing (by the the current thread) the
2512     // JNI references during parallel reference processing.
2513     //
2514     // These closures do not need to synchronize with the worker
2515     // threads involved in parallel reference processing as these
2516     // instances are executed serially by the current thread (e.g.
2517     // reference processing is not multi-threaded and is thus
2518     // performed by the current thread instead of a gang worker).
2519     //
2520     // The gang tasks involved in parallel reference processing create
2521     // their own instances of these closures, which do their own
2522     // synchronization among themselves.
2523     G1CMKeepAliveAndDrainClosure g1_keep_alive(this, task(0), true /* is_serial */);
2524     G1CMDrainMarkingStackClosure g1_drain_mark_stack(this, task(0), true /* is_serial */);
2525 
2526     // We need at least one active thread. If reference processing
2527     // is not multi-threaded we use the current (VMThread) thread,
2528     // otherwise we use the work gang from the G1CollectedHeap and
2529     // we utilize all the worker threads we can.
2530     bool processing_is_mt = rp->processing_is_mt() && g1h->workers() != NULL;
2531     uint active_workers = (processing_is_mt ? g1h->workers()->active_workers() : 1U);
2532     active_workers = MAX2(MIN2(active_workers, _max_worker_id), 1U);
2533 
2534     // Parallel processing task executor.
2535     G1CMRefProcTaskExecutor par_task_executor(g1h, this,
2536                                               g1h->workers(), active_workers);
2537     AbstractRefProcTaskExecutor* executor = (processing_is_mt ? &par_task_executor : NULL);
2538 
2539     // Set the concurrency level. The phase was already set prior to
2540     // executing the remark task.
2541     set_concurrency(active_workers);
2542 
2543     // Set the degree of MT processing here.  If the discovery was done MT,
2544     // the number of threads involved during discovery could differ from
2545     // the number of active workers.  This is OK as long as the discovered
2546     // Reference lists are balanced (see balance_all_queues() and balance_queues()).
2547     rp->set_active_mt_degree(active_workers);
2548 
2549     // Process the weak references.
2550     const ReferenceProcessorStats& stats =
2551         rp->process_discovered_references(&g1_is_alive,
2552                                           &g1_keep_alive,
2553                                           &g1_drain_mark_stack,
2554                                           executor,
2555                                           g1h->gc_timer_cm(),
2556                                           concurrent_gc_id());
2557     g1h->gc_tracer_cm()->report_gc_reference_stats(stats);
2558 
2559     // The do_oop work routines of the keep_alive and drain_marking_stack
2560     // oop closures will set the has_overflown flag if we overflow the
2561     // global marking stack.
2562 
2563     assert(_markStack.overflow() || _markStack.isEmpty(),
2564             "mark stack should be empty (unless it overflowed)");
2565 
2566     if (_markStack.overflow()) {
2567       // This should have been done already when we tried to push an
2568       // entry on to the global mark stack. But let's do it again.
2569       set_has_overflown();
2570     }
2571 
2572     assert(rp->num_q() == active_workers, "why not");
2573 
2574     rp->enqueue_discovered_references(executor);
2575 
2576     rp->verify_no_references_recorded();
2577     assert(!rp->discovery_enabled(), "Post condition");
2578   }
2579 
2580   if (has_overflown()) {
2581     // We can not trust g1_is_alive if the marking stack overflowed
2582     return;
2583   }
2584 
2585   assert(_markStack.isEmpty(), "Marking should have completed");
2586 
2587   // Unload Klasses, String, Symbols, Code Cache, etc.
2588   {
2589     G1CMTraceTime trace("Unloading", G1Log::finer());
2590 
2591     if (ClassUnloadingWithConcurrentMark) {
2592       bool purged_classes;
2593 
2594       {
2595         G1CMTraceTime trace("System Dictionary Unloading", G1Log::finest());
2596         purged_classes = SystemDictionary::do_unloading(&g1_is_alive);
2597       }
2598 
2599       {
2600         G1CMTraceTime trace("Parallel Unloading", G1Log::finest());
2601         weakRefsWorkParallelPart(&g1_is_alive, purged_classes);
2602       }
2603     }
2604 
2605     if (G1StringDedup::is_enabled()) {
2606       G1CMTraceTime trace("String Deduplication Unlink", G1Log::finest());
2607       G1StringDedup::unlink(&g1_is_alive);
2608     }
2609   }
2610 }
2611 
2612 void ConcurrentMark::swapMarkBitMaps() {
2613   CMBitMapRO* temp = _prevMarkBitMap;
2614   _prevMarkBitMap  = (CMBitMapRO*)_nextMarkBitMap;
2615   _nextMarkBitMap  = (CMBitMap*)  temp;
2616 }
2617 
2618 class CMObjectClosure;
2619 
2620 // Closure for iterating over objects, currently only used for
2621 // processing SATB buffers.
2622 class CMObjectClosure : public ObjectClosure {
2623 private:
2624   CMTask* _task;
2625 
2626 public:
2627   void do_object(oop obj) {
2628     _task->deal_with_reference(obj);
2629   }
2630 
2631   CMObjectClosure(CMTask* task) : _task(task) { }
2632 };
2633 
2634 class G1RemarkThreadsClosure : public ThreadClosure {
2635   CMObjectClosure _cm_obj;
2636   G1CMOopClosure _cm_cl;
2637   MarkingCodeBlobClosure _code_cl;
2638   int _thread_parity;
2639   bool _is_par;
2640 
2641  public:
2642   G1RemarkThreadsClosure(G1CollectedHeap* g1h, CMTask* task, bool is_par) :
2643     _cm_obj(task), _cm_cl(g1h, g1h->concurrent_mark(), task), _code_cl(&_cm_cl, !CodeBlobToOopClosure::FixRelocations),
2644     _thread_parity(SharedHeap::heap()->strong_roots_parity()), _is_par(is_par) {}
2645 
2646   void do_thread(Thread* thread) {
2647     if (thread->is_Java_thread()) {
2648       if (thread->claim_oops_do(_is_par, _thread_parity)) {
2649         JavaThread* jt = (JavaThread*)thread;
2650 
2651         // In theory it should not be neccessary to explicitly walk the nmethods to find roots for concurrent marking
2652         // however the liveness of oops reachable from nmethods have very complex lifecycles:
2653         // * Alive if on the stack of an executing method
2654         // * Weakly reachable otherwise
2655         // Some objects reachable from nmethods, such as the class loader (or klass_holder) of the receiver should be
2656         // live by the SATB invariant but other oops recorded in nmethods may behave differently.
2657         jt->nmethods_do(&_code_cl);
2658 
2659         jt->satb_mark_queue().apply_closure_and_empty(&_cm_obj);
2660       }
2661     } else if (thread->is_VM_thread()) {
2662       if (thread->claim_oops_do(_is_par, _thread_parity)) {
2663         JavaThread::satb_mark_queue_set().shared_satb_queue()->apply_closure_and_empty(&_cm_obj);
2664       }
2665     }
2666   }
2667 };
2668 
2669 class CMRemarkTask: public AbstractGangTask {
2670 private:
2671   ConcurrentMark* _cm;
2672   bool            _is_serial;
2673 public:
2674   void work(uint worker_id) {
2675     // Since all available tasks are actually started, we should
2676     // only proceed if we're supposed to be active.
2677     if (worker_id < _cm->active_tasks()) {
2678       CMTask* task = _cm->task(worker_id);
2679       task->record_start_time();
2680       {
2681         ResourceMark rm;
2682         HandleMark hm;
2683 
2684         G1RemarkThreadsClosure threads_f(G1CollectedHeap::heap(), task, !_is_serial);
2685         Threads::threads_do(&threads_f);
2686       }
2687 
2688       do {
2689         task->do_marking_step(1000000000.0 /* something very large */,
2690                               true         /* do_termination       */,
2691                               _is_serial);
2692       } while (task->has_aborted() && !_cm->has_overflown());
2693       // If we overflow, then we do not want to restart. We instead
2694       // want to abort remark and do concurrent marking again.
2695       task->record_end_time();
2696     }
2697   }
2698 
2699   CMRemarkTask(ConcurrentMark* cm, int active_workers, bool is_serial) :
2700     AbstractGangTask("Par Remark"), _cm(cm), _is_serial(is_serial) {
2701     _cm->terminator()->reset_for_reuse(active_workers);
2702   }
2703 };
2704 
2705 void ConcurrentMark::checkpointRootsFinalWork() {
2706   ResourceMark rm;
2707   HandleMark   hm;
2708   G1CollectedHeap* g1h = G1CollectedHeap::heap();
2709 
2710   G1CMTraceTime trace("Finalize Marking", G1Log::finer());
2711 
2712   g1h->ensure_parsability(false);
2713 
2714   if (G1CollectedHeap::use_parallel_gc_threads()) {
2715     G1CollectedHeap::StrongRootsScope srs(g1h);
2716     // this is remark, so we'll use up all active threads
2717     uint active_workers = g1h->workers()->active_workers();
2718     if (active_workers == 0) {
2719       assert(active_workers > 0, "Should have been set earlier");
2720       active_workers = (uint) ParallelGCThreads;
2721       g1h->workers()->set_active_workers(active_workers);
2722     }
2723     set_concurrency_and_phase(active_workers, false /* concurrent */);
2724     // Leave _parallel_marking_threads at it's
2725     // value originally calculated in the ConcurrentMark
2726     // constructor and pass values of the active workers
2727     // through the gang in the task.
2728 
2729     CMRemarkTask remarkTask(this, active_workers, false /* is_serial */);
2730     // We will start all available threads, even if we decide that the
2731     // active_workers will be fewer. The extra ones will just bail out
2732     // immediately.
2733     g1h->set_par_threads(active_workers);
2734     g1h->workers()->run_task(&remarkTask);
2735     g1h->set_par_threads(0);
2736   } else {
2737     G1CollectedHeap::StrongRootsScope srs(g1h);
2738     uint active_workers = 1;
2739     set_concurrency_and_phase(active_workers, false /* concurrent */);
2740 
2741     // Note - if there's no work gang then the VMThread will be
2742     // the thread to execute the remark - serially. We have
2743     // to pass true for the is_serial parameter so that
2744     // CMTask::do_marking_step() doesn't enter the sync
2745     // barriers in the event of an overflow. Doing so will
2746     // cause an assert that the current thread is not a
2747     // concurrent GC thread.
2748     CMRemarkTask remarkTask(this, active_workers, true /* is_serial*/);
2749     remarkTask.work(0);
2750   }
2751   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
2752   guarantee(has_overflown() ||
2753             satb_mq_set.completed_buffers_num() == 0,
2754             err_msg("Invariant: has_overflown = %s, num buffers = %d",
2755                     BOOL_TO_STR(has_overflown()),
2756                     satb_mq_set.completed_buffers_num()));
2757 
2758   print_stats();
2759 }
2760 
2761 #ifndef PRODUCT
2762 
2763 class PrintReachableOopClosure: public OopClosure {
2764 private:
2765   G1CollectedHeap* _g1h;
2766   outputStream*    _out;
2767   VerifyOption     _vo;
2768   bool             _all;
2769 
2770 public:
2771   PrintReachableOopClosure(outputStream* out,
2772                            VerifyOption  vo,
2773                            bool          all) :
2774     _g1h(G1CollectedHeap::heap()),
2775     _out(out), _vo(vo), _all(all) { }
2776 
2777   void do_oop(narrowOop* p) { do_oop_work(p); }
2778   void do_oop(      oop* p) { do_oop_work(p); }
2779 
2780   template <class T> void do_oop_work(T* p) {
2781     oop         obj = oopDesc::load_decode_heap_oop(p);
2782     const char* str = NULL;
2783     const char* str2 = "";
2784 
2785     if (obj == NULL) {
2786       str = "";
2787     } else if (!_g1h->is_in_g1_reserved(obj)) {
2788       str = " O";
2789     } else {
2790       HeapRegion* hr  = _g1h->heap_region_containing(obj);
2791       bool over_tams = _g1h->allocated_since_marking(obj, hr, _vo);
2792       bool marked = _g1h->is_marked(obj, _vo);
2793 
2794       if (over_tams) {
2795         str = " >";
2796         if (marked) {
2797           str2 = " AND MARKED";
2798         }
2799       } else if (marked) {
2800         str = " M";
2801       } else {
2802         str = " NOT";
2803       }
2804     }
2805 
2806     _out->print_cr("  "PTR_FORMAT": "PTR_FORMAT"%s%s",
2807                    p2i(p), p2i((void*) obj), str, str2);
2808   }
2809 };
2810 
2811 class PrintReachableObjectClosure : public ObjectClosure {
2812 private:
2813   G1CollectedHeap* _g1h;
2814   outputStream*    _out;
2815   VerifyOption     _vo;
2816   bool             _all;
2817   HeapRegion*      _hr;
2818 
2819 public:
2820   PrintReachableObjectClosure(outputStream* out,
2821                               VerifyOption  vo,
2822                               bool          all,
2823                               HeapRegion*   hr) :
2824     _g1h(G1CollectedHeap::heap()),
2825     _out(out), _vo(vo), _all(all), _hr(hr) { }
2826 
2827   void do_object(oop o) {
2828     bool over_tams = _g1h->allocated_since_marking(o, _hr, _vo);
2829     bool marked = _g1h->is_marked(o, _vo);
2830     bool print_it = _all || over_tams || marked;
2831 
2832     if (print_it) {
2833       _out->print_cr(" "PTR_FORMAT"%s",
2834                      p2i((void *)o), (over_tams) ? " >" : (marked) ? " M" : "");
2835       PrintReachableOopClosure oopCl(_out, _vo, _all);
2836       o->oop_iterate_no_header(&oopCl);
2837     }
2838   }
2839 };
2840 
2841 class PrintReachableRegionClosure : public HeapRegionClosure {
2842 private:
2843   G1CollectedHeap* _g1h;
2844   outputStream*    _out;
2845   VerifyOption     _vo;
2846   bool             _all;
2847 
2848 public:
2849   bool doHeapRegion(HeapRegion* hr) {
2850     HeapWord* b = hr->bottom();
2851     HeapWord* e = hr->end();
2852     HeapWord* t = hr->top();
2853     HeapWord* p = _g1h->top_at_mark_start(hr, _vo);
2854     _out->print_cr("** ["PTR_FORMAT", "PTR_FORMAT"] top: "PTR_FORMAT" "
2855                    "TAMS: " PTR_FORMAT, p2i(b), p2i(e), p2i(t), p2i(p));
2856     _out->cr();
2857 
2858     HeapWord* from = b;
2859     HeapWord* to   = t;
2860 
2861     if (to > from) {
2862       _out->print_cr("Objects in [" PTR_FORMAT ", " PTR_FORMAT "]", p2i(from), p2i(to));
2863       _out->cr();
2864       PrintReachableObjectClosure ocl(_out, _vo, _all, hr);
2865       hr->object_iterate_mem_careful(MemRegion(from, to), &ocl);
2866       _out->cr();
2867     }
2868 
2869     return false;
2870   }
2871 
2872   PrintReachableRegionClosure(outputStream* out,
2873                               VerifyOption  vo,
2874                               bool          all) :
2875     _g1h(G1CollectedHeap::heap()), _out(out), _vo(vo), _all(all) { }
2876 };
2877 
2878 void ConcurrentMark::print_reachable(const char* str,
2879                                      VerifyOption vo,
2880                                      bool all) {
2881   gclog_or_tty->cr();
2882   gclog_or_tty->print_cr("== Doing heap dump... ");
2883 
2884   if (G1PrintReachableBaseFile == NULL) {
2885     gclog_or_tty->print_cr("  #### error: no base file defined");
2886     return;
2887   }
2888 
2889   if (strlen(G1PrintReachableBaseFile) + 1 + strlen(str) >
2890       (JVM_MAXPATHLEN - 1)) {
2891     gclog_or_tty->print_cr("  #### error: file name too long");
2892     return;
2893   }
2894 
2895   char file_name[JVM_MAXPATHLEN];
2896   sprintf(file_name, "%s.%s", G1PrintReachableBaseFile, str);
2897   gclog_or_tty->print_cr("  dumping to file %s", file_name);
2898 
2899   fileStream fout(file_name);
2900   if (!fout.is_open()) {
2901     gclog_or_tty->print_cr("  #### error: could not open file");
2902     return;
2903   }
2904 
2905   outputStream* out = &fout;
2906   out->print_cr("-- USING %s", _g1h->top_at_mark_start_str(vo));
2907   out->cr();
2908 
2909   out->print_cr("--- ITERATING OVER REGIONS");
2910   out->cr();
2911   PrintReachableRegionClosure rcl(out, vo, all);
2912   _g1h->heap_region_iterate(&rcl);
2913   out->cr();
2914 
2915   gclog_or_tty->print_cr("  done");
2916   gclog_or_tty->flush();
2917 }
2918 
2919 #endif // PRODUCT
2920 
2921 void ConcurrentMark::clearRangePrevBitmap(MemRegion mr) {
2922   // Note we are overriding the read-only view of the prev map here, via
2923   // the cast.
2924   ((CMBitMap*)_prevMarkBitMap)->clearRange(mr);
2925 }
2926 
2927 void ConcurrentMark::clearRangeNextBitmap(MemRegion mr) {
2928   _nextMarkBitMap->clearRange(mr);
2929 }
2930 
2931 HeapRegion*
2932 ConcurrentMark::claim_region(uint worker_id) {
2933   // "checkpoint" the finger
2934   HeapWord* finger = _finger;
2935 
2936   // _heap_end will not change underneath our feet; it only changes at
2937   // yield points.
2938   while (finger < _heap_end) {
2939     assert(_g1h->is_in_g1_reserved(finger), "invariant");
2940 
2941     // Note on how this code handles humongous regions. In the
2942     // normal case the finger will reach the start of a "starts
2943     // humongous" (SH) region. Its end will either be the end of the
2944     // last "continues humongous" (CH) region in the sequence, or the
2945     // standard end of the SH region (if the SH is the only region in
2946     // the sequence). That way claim_region() will skip over the CH
2947     // regions. However, there is a subtle race between a CM thread
2948     // executing this method and a mutator thread doing a humongous
2949     // object allocation. The two are not mutually exclusive as the CM
2950     // thread does not need to hold the Heap_lock when it gets
2951     // here. So there is a chance that claim_region() will come across
2952     // a free region that's in the progress of becoming a SH or a CH
2953     // region. In the former case, it will either
2954     //   a) Miss the update to the region's end, in which case it will
2955     //      visit every subsequent CH region, will find their bitmaps
2956     //      empty, and do nothing, or
2957     //   b) Will observe the update of the region's end (in which case
2958     //      it will skip the subsequent CH regions).
2959     // If it comes across a region that suddenly becomes CH, the
2960     // scenario will be similar to b). So, the race between
2961     // claim_region() and a humongous object allocation might force us
2962     // to do a bit of unnecessary work (due to some unnecessary bitmap
2963     // iterations) but it should not introduce and correctness issues.
2964     HeapRegion* curr_region = _g1h->heap_region_containing_raw(finger);
2965 
2966     // Above heap_region_containing_raw may return NULL as we always scan claim
2967     // until the end of the heap. In this case, just jump to the next region.
2968     HeapWord* end = curr_region != NULL ? curr_region->end() : finger + HeapRegion::GrainWords;
2969 
2970     // Is the gap between reading the finger and doing the CAS too long?
2971     HeapWord* res = (HeapWord*) Atomic::cmpxchg_ptr(end, &_finger, finger);
2972     if (res == finger && curr_region != NULL) {
2973       // we succeeded
2974       HeapWord*   bottom        = curr_region->bottom();
2975       HeapWord*   limit         = curr_region->next_top_at_mark_start();
2976 
2977       if (verbose_low()) {
2978         gclog_or_tty->print_cr("[%u] curr_region = "PTR_FORMAT" "
2979                                "["PTR_FORMAT", "PTR_FORMAT"), "
2980                                "limit = "PTR_FORMAT,
2981                                worker_id, p2i(curr_region), p2i(bottom), p2i(end), p2i(limit));
2982       }
2983 
2984       // notice that _finger == end cannot be guaranteed here since,
2985       // someone else might have moved the finger even further
2986       assert(_finger >= end, "the finger should have moved forward");
2987 
2988       if (verbose_low()) {
2989         gclog_or_tty->print_cr("[%u] we were successful with region = "
2990                                PTR_FORMAT, worker_id, p2i(curr_region));
2991       }
2992 
2993       if (limit > bottom) {
2994         if (verbose_low()) {
2995           gclog_or_tty->print_cr("[%u] region "PTR_FORMAT" is not empty, "
2996                                  "returning it ", worker_id, p2i(curr_region));
2997         }
2998         return curr_region;
2999       } else {
3000         assert(limit == bottom,
3001                "the region limit should be at bottom");
3002         if (verbose_low()) {
3003           gclog_or_tty->print_cr("[%u] region "PTR_FORMAT" is empty, "
3004                                  "returning NULL", worker_id, p2i(curr_region));
3005         }
3006         // we return NULL and the caller should try calling
3007         // claim_region() again.
3008         return NULL;
3009       }
3010     } else {
3011       assert(_finger > finger, "the finger should have moved forward");
3012       if (verbose_low()) {
3013         if (curr_region == NULL) {
3014           gclog_or_tty->print_cr("[%u] found uncommitted region, moving finger, "
3015                                  "global finger = "PTR_FORMAT", "
3016                                  "our finger = "PTR_FORMAT,
3017                                  worker_id, p2i(_finger), p2i(finger));
3018         } else {
3019           gclog_or_tty->print_cr("[%u] somebody else moved the finger, "
3020                                  "global finger = "PTR_FORMAT", "
3021                                  "our finger = "PTR_FORMAT,
3022                                  worker_id, p2i(_finger), p2i(finger));
3023         }
3024       }
3025 
3026       // read it again
3027       finger = _finger;
3028     }
3029   }
3030 
3031   return NULL;
3032 }
3033 
3034 #ifndef PRODUCT
3035 enum VerifyNoCSetOopsPhase {
3036   VerifyNoCSetOopsStack,
3037   VerifyNoCSetOopsQueues,
3038   VerifyNoCSetOopsSATBCompleted,
3039   VerifyNoCSetOopsSATBThread
3040 };
3041 
3042 class VerifyNoCSetOopsClosure : public OopClosure, public ObjectClosure  {
3043 private:
3044   G1CollectedHeap* _g1h;
3045   VerifyNoCSetOopsPhase _phase;
3046   int _info;
3047 
3048   const char* phase_str() {
3049     switch (_phase) {
3050     case VerifyNoCSetOopsStack:         return "Stack";
3051     case VerifyNoCSetOopsQueues:        return "Queue";
3052     case VerifyNoCSetOopsSATBCompleted: return "Completed SATB Buffers";
3053     case VerifyNoCSetOopsSATBThread:    return "Thread SATB Buffers";
3054     default:                            ShouldNotReachHere();
3055     }
3056     return NULL;
3057   }
3058 
3059   void do_object_work(oop obj) {
3060     guarantee(!_g1h->obj_in_cs(obj),
3061               err_msg("obj: "PTR_FORMAT" in CSet, phase: %s, info: %d",
3062                       p2i((void*) obj), phase_str(), _info));
3063   }
3064 
3065 public:
3066   VerifyNoCSetOopsClosure() : _g1h(G1CollectedHeap::heap()) { }
3067 
3068   void set_phase(VerifyNoCSetOopsPhase phase, int info = -1) {
3069     _phase = phase;
3070     _info = info;
3071   }
3072 
3073   virtual void do_oop(oop* p) {
3074     oop obj = oopDesc::load_decode_heap_oop(p);
3075     do_object_work(obj);
3076   }
3077 
3078   virtual void do_oop(narrowOop* p) {
3079     // We should not come across narrow oops while scanning marking
3080     // stacks and SATB buffers.
3081     ShouldNotReachHere();
3082   }
3083 
3084   virtual void do_object(oop obj) {
3085     do_object_work(obj);
3086   }
3087 };
3088 
3089 void ConcurrentMark::verify_no_cset_oops(bool verify_stacks,
3090                                          bool verify_enqueued_buffers,
3091                                          bool verify_thread_buffers,
3092                                          bool verify_fingers) {
3093   assert(SafepointSynchronize::is_at_safepoint(), "should be at a safepoint");
3094   if (!G1CollectedHeap::heap()->mark_in_progress()) {
3095     return;
3096   }
3097 
3098   VerifyNoCSetOopsClosure cl;
3099 
3100   if (verify_stacks) {
3101     // Verify entries on the global mark stack
3102     cl.set_phase(VerifyNoCSetOopsStack);
3103     _markStack.oops_do(&cl);
3104 
3105     // Verify entries on the task queues
3106     for (uint i = 0; i < _max_worker_id; i += 1) {
3107       cl.set_phase(VerifyNoCSetOopsQueues, i);
3108       CMTaskQueue* queue = _task_queues->queue(i);
3109       queue->oops_do(&cl);
3110     }
3111   }
3112 
3113   SATBMarkQueueSet& satb_qs = JavaThread::satb_mark_queue_set();
3114 
3115   // Verify entries on the enqueued SATB buffers
3116   if (verify_enqueued_buffers) {
3117     cl.set_phase(VerifyNoCSetOopsSATBCompleted);
3118     satb_qs.iterate_completed_buffers_read_only(&cl);
3119   }
3120 
3121   // Verify entries on the per-thread SATB buffers
3122   if (verify_thread_buffers) {
3123     cl.set_phase(VerifyNoCSetOopsSATBThread);
3124     satb_qs.iterate_thread_buffers_read_only(&cl);
3125   }
3126 
3127   if (verify_fingers) {
3128     // Verify the global finger
3129     HeapWord* global_finger = finger();
3130     if (global_finger != NULL && global_finger < _heap_end) {
3131       // The global finger always points to a heap region boundary. We
3132       // use heap_region_containing_raw() to get the containing region
3133       // given that the global finger could be pointing to a free region
3134       // which subsequently becomes continues humongous. If that
3135       // happens, heap_region_containing() will return the bottom of the
3136       // corresponding starts humongous region and the check below will
3137       // not hold any more.
3138       // Since we always iterate over all regions, we might get a NULL HeapRegion
3139       // here.
3140       HeapRegion* global_hr = _g1h->heap_region_containing_raw(global_finger);
3141       guarantee(global_hr == NULL || global_finger == global_hr->bottom(),
3142                 err_msg("global finger: "PTR_FORMAT" region: "HR_FORMAT,
3143                         p2i(global_finger), HR_FORMAT_PARAMS(global_hr)));
3144     }
3145 
3146     // Verify the task fingers
3147     assert(parallel_marking_threads() <= _max_worker_id, "sanity");
3148     for (int i = 0; i < (int) parallel_marking_threads(); i += 1) {
3149       CMTask* task = _tasks[i];
3150       HeapWord* task_finger = task->finger();
3151       if (task_finger != NULL && task_finger < _heap_end) {
3152         // See above note on the global finger verification.
3153         HeapRegion* task_hr = _g1h->heap_region_containing_raw(task_finger);
3154         guarantee(task_hr == NULL || task_finger == task_hr->bottom() ||
3155                   !task_hr->in_collection_set(),
3156                   err_msg("task finger: "PTR_FORMAT" region: "HR_FORMAT,
3157                           p2i(task_finger), HR_FORMAT_PARAMS(task_hr)));
3158       }
3159     }
3160   }
3161 }
3162 #endif // PRODUCT
3163 
3164 // Aggregate the counting data that was constructed concurrently
3165 // with marking.
3166 class AggregateCountDataHRClosure: public HeapRegionClosure {
3167   G1CollectedHeap* _g1h;
3168   ConcurrentMark* _cm;
3169   CardTableModRefBS* _ct_bs;
3170   BitMap* _cm_card_bm;
3171   uint _max_worker_id;
3172 
3173  public:
3174   AggregateCountDataHRClosure(G1CollectedHeap* g1h,
3175                               BitMap* cm_card_bm,
3176                               uint max_worker_id) :
3177     _g1h(g1h), _cm(g1h->concurrent_mark()),
3178     _ct_bs((CardTableModRefBS*) (g1h->barrier_set())),
3179     _cm_card_bm(cm_card_bm), _max_worker_id(max_worker_id) { }
3180 
3181   bool doHeapRegion(HeapRegion* hr) {
3182     if (hr->is_continues_humongous()) {
3183       // We will ignore these here and process them when their
3184       // associated "starts humongous" region is processed.
3185       // Note that we cannot rely on their associated
3186       // "starts humongous" region to have their bit set to 1
3187       // since, due to the region chunking in the parallel region
3188       // iteration, a "continues humongous" region might be visited
3189       // before its associated "starts humongous".
3190       return false;
3191     }
3192 
3193     HeapWord* start = hr->bottom();
3194     HeapWord* limit = hr->next_top_at_mark_start();
3195     HeapWord* end = hr->end();
3196 
3197     assert(start <= limit && limit <= hr->top() && hr->top() <= hr->end(),
3198            err_msg("Preconditions not met - "
3199                    "start: "PTR_FORMAT", limit: "PTR_FORMAT", "
3200                    "top: "PTR_FORMAT", end: "PTR_FORMAT,
3201                    p2i(start), p2i(limit), p2i(hr->top()), p2i(hr->end())));
3202 
3203     assert(hr->next_marked_bytes() == 0, "Precondition");
3204 
3205     if (start == limit) {
3206       // NTAMS of this region has not been set so nothing to do.
3207       return false;
3208     }
3209 
3210     // 'start' should be in the heap.
3211     assert(_g1h->is_in_g1_reserved(start) && _ct_bs->is_card_aligned(start), "sanity");
3212     // 'end' *may* be just beyond the end of the heap (if hr is the last region)
3213     assert(!_g1h->is_in_g1_reserved(end) || _ct_bs->is_card_aligned(end), "sanity");
3214 
3215     BitMap::idx_t start_idx = _cm->card_bitmap_index_for(start);
3216     BitMap::idx_t limit_idx = _cm->card_bitmap_index_for(limit);
3217     BitMap::idx_t end_idx = _cm->card_bitmap_index_for(end);
3218 
3219     // If ntams is not card aligned then we bump card bitmap index
3220     // for limit so that we get the all the cards spanned by
3221     // the object ending at ntams.
3222     // Note: if this is the last region in the heap then ntams
3223     // could be actually just beyond the end of the the heap;
3224     // limit_idx will then  correspond to a (non-existent) card
3225     // that is also outside the heap.
3226     if (_g1h->is_in_g1_reserved(limit) && !_ct_bs->is_card_aligned(limit)) {
3227       limit_idx += 1;
3228     }
3229 
3230     assert(limit_idx <= end_idx, "or else use atomics");
3231 
3232     // Aggregate the "stripe" in the count data associated with hr.
3233     uint hrm_index = hr->hrm_index();
3234     size_t marked_bytes = 0;
3235 
3236     for (uint i = 0; i < _max_worker_id; i += 1) {
3237       size_t* marked_bytes_array = _cm->count_marked_bytes_array_for(i);
3238       BitMap* task_card_bm = _cm->count_card_bitmap_for(i);
3239 
3240       // Fetch the marked_bytes in this region for task i and
3241       // add it to the running total for this region.
3242       marked_bytes += marked_bytes_array[hrm_index];
3243 
3244       // Now union the bitmaps[0,max_worker_id)[start_idx..limit_idx)
3245       // into the global card bitmap.
3246       BitMap::idx_t scan_idx = task_card_bm->get_next_one_offset(start_idx, limit_idx);
3247 
3248       while (scan_idx < limit_idx) {
3249         assert(task_card_bm->at(scan_idx) == true, "should be");
3250         _cm_card_bm->set_bit(scan_idx);
3251         assert(_cm_card_bm->at(scan_idx) == true, "should be");
3252 
3253         // BitMap::get_next_one_offset() can handle the case when
3254         // its left_offset parameter is greater than its right_offset
3255         // parameter. It does, however, have an early exit if
3256         // left_offset == right_offset. So let's limit the value
3257         // passed in for left offset here.
3258         BitMap::idx_t next_idx = MIN2(scan_idx + 1, limit_idx);
3259         scan_idx = task_card_bm->get_next_one_offset(next_idx, limit_idx);
3260       }
3261     }
3262 
3263     // Update the marked bytes for this region.
3264     hr->add_to_marked_bytes(marked_bytes);
3265 
3266     // Next heap region
3267     return false;
3268   }
3269 };
3270 
3271 class G1AggregateCountDataTask: public AbstractGangTask {
3272 protected:
3273   G1CollectedHeap* _g1h;
3274   ConcurrentMark* _cm;
3275   BitMap* _cm_card_bm;
3276   uint _max_worker_id;
3277   int _active_workers;
3278   HeapRegionClaimer _hrclaimer;
3279 
3280 public:
3281   G1AggregateCountDataTask(G1CollectedHeap* g1h,
3282                            ConcurrentMark* cm,
3283                            BitMap* cm_card_bm,
3284                            uint max_worker_id,
3285                            int n_workers) :
3286       AbstractGangTask("Count Aggregation"),
3287       _g1h(g1h), _cm(cm), _cm_card_bm(cm_card_bm),
3288       _max_worker_id(max_worker_id),
3289       _active_workers(n_workers) {
3290     if (G1CollectedHeap::use_parallel_gc_threads()) {
3291       _hrclaimer.initialize(_active_workers);
3292     }
3293   }
3294 
3295   void work(uint worker_id) {
3296     AggregateCountDataHRClosure cl(_g1h, _cm_card_bm, _max_worker_id);
3297 
3298     if (G1CollectedHeap::use_parallel_gc_threads()) {
3299       _g1h->heap_region_par_iterate(&cl, worker_id, &_hrclaimer);
3300     } else {
3301       _g1h->heap_region_iterate(&cl);
3302     }
3303   }
3304 };
3305 
3306 
3307 void ConcurrentMark::aggregate_count_data() {
3308   int n_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
3309                         _g1h->workers()->active_workers() :
3310                         1);
3311 
3312   G1AggregateCountDataTask g1_par_agg_task(_g1h, this, &_card_bm,
3313                                            _max_worker_id, n_workers);
3314 
3315   if (G1CollectedHeap::use_parallel_gc_threads()) {
3316     _g1h->set_par_threads(n_workers);
3317     _g1h->workers()->run_task(&g1_par_agg_task);
3318     _g1h->set_par_threads(0);
3319   } else {
3320     g1_par_agg_task.work(0);
3321   }
3322   _g1h->allocation_context_stats().update_at_remark();
3323 }
3324 
3325 // Clear the per-worker arrays used to store the per-region counting data
3326 void ConcurrentMark::clear_all_count_data() {
3327   // Clear the global card bitmap - it will be filled during
3328   // liveness count aggregation (during remark) and the
3329   // final counting task.
3330   _card_bm.clear();
3331 
3332   // Clear the global region bitmap - it will be filled as part
3333   // of the final counting task.
3334   _region_bm.clear();
3335 
3336   uint max_regions = _g1h->max_regions();
3337   assert(_max_worker_id > 0, "uninitialized");
3338 
3339   for (uint i = 0; i < _max_worker_id; i += 1) {
3340     BitMap* task_card_bm = count_card_bitmap_for(i);
3341     size_t* marked_bytes_array = count_marked_bytes_array_for(i);
3342 
3343     assert(task_card_bm->size() == _card_bm.size(), "size mismatch");
3344     assert(marked_bytes_array != NULL, "uninitialized");
3345 
3346     memset(marked_bytes_array, 0, (size_t) max_regions * sizeof(size_t));
3347     task_card_bm->clear();
3348   }
3349 }
3350 
3351 void ConcurrentMark::print_stats() {
3352   if (verbose_stats()) {
3353     gclog_or_tty->print_cr("---------------------------------------------------------------------");
3354     for (size_t i = 0; i < _active_tasks; ++i) {
3355       _tasks[i]->print_stats();
3356       gclog_or_tty->print_cr("---------------------------------------------------------------------");
3357     }
3358   }
3359 }
3360 
3361 // abandon current marking iteration due to a Full GC
3362 void ConcurrentMark::abort() {
3363   // Clear all marks in the next bitmap for the next marking cycle. This will allow us to skip the next
3364   // concurrent bitmap clearing.
3365   _nextMarkBitMap->clearAll();
3366 
3367   // Note we cannot clear the previous marking bitmap here
3368   // since VerifyDuringGC verifies the objects marked during
3369   // a full GC against the previous bitmap.
3370 
3371   // Clear the liveness counting data
3372   clear_all_count_data();
3373   // Empty mark stack
3374   reset_marking_state();
3375   for (uint i = 0; i < _max_worker_id; ++i) {
3376     _tasks[i]->clear_region_fields();
3377   }
3378   _first_overflow_barrier_sync.abort();
3379   _second_overflow_barrier_sync.abort();
3380   const GCId& gc_id = _g1h->gc_tracer_cm()->gc_id();
3381   if (!gc_id.is_undefined()) {
3382     // We can do multiple full GCs before ConcurrentMarkThread::run() gets a chance
3383     // to detect that it was aborted. Only keep track of the first GC id that we aborted.
3384     _aborted_gc_id = gc_id;
3385    }
3386   _has_aborted = true;
3387 
3388   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
3389   satb_mq_set.abandon_partial_marking();
3390   // This can be called either during or outside marking, we'll read
3391   // the expected_active value from the SATB queue set.
3392   satb_mq_set.set_active_all_threads(
3393                                  false, /* new active value */
3394                                  satb_mq_set.is_active() /* expected_active */);
3395 
3396   _g1h->trace_heap_after_concurrent_cycle();
3397   _g1h->register_concurrent_cycle_end();
3398 }
3399 
3400 const GCId& ConcurrentMark::concurrent_gc_id() {
3401   if (has_aborted()) {
3402     return _aborted_gc_id;
3403   }
3404   return _g1h->gc_tracer_cm()->gc_id();
3405 }
3406 
3407 static void print_ms_time_info(const char* prefix, const char* name,
3408                                NumberSeq& ns) {
3409   gclog_or_tty->print_cr("%s%5d %12s: total time = %8.2f s (avg = %8.2f ms).",
3410                          prefix, ns.num(), name, ns.sum()/1000.0, ns.avg());
3411   if (ns.num() > 0) {
3412     gclog_or_tty->print_cr("%s         [std. dev = %8.2f ms, max = %8.2f ms]",
3413                            prefix, ns.sd(), ns.maximum());
3414   }
3415 }
3416 
3417 void ConcurrentMark::print_summary_info() {
3418   gclog_or_tty->print_cr(" Concurrent marking:");
3419   print_ms_time_info("  ", "init marks", _init_times);
3420   print_ms_time_info("  ", "remarks", _remark_times);
3421   {
3422     print_ms_time_info("     ", "final marks", _remark_mark_times);
3423     print_ms_time_info("     ", "weak refs", _remark_weak_ref_times);
3424 
3425   }
3426   print_ms_time_info("  ", "cleanups", _cleanup_times);
3427   gclog_or_tty->print_cr("    Final counting total time = %8.2f s (avg = %8.2f ms).",
3428                          _total_counting_time,
3429                          (_cleanup_times.num() > 0 ? _total_counting_time * 1000.0 /
3430                           (double)_cleanup_times.num()
3431                          : 0.0));
3432   if (G1ScrubRemSets) {
3433     gclog_or_tty->print_cr("    RS scrub total time = %8.2f s (avg = %8.2f ms).",
3434                            _total_rs_scrub_time,
3435                            (_cleanup_times.num() > 0 ? _total_rs_scrub_time * 1000.0 /
3436                             (double)_cleanup_times.num()
3437                            : 0.0));
3438   }
3439   gclog_or_tty->print_cr("  Total stop_world time = %8.2f s.",
3440                          (_init_times.sum() + _remark_times.sum() +
3441                           _cleanup_times.sum())/1000.0);
3442   gclog_or_tty->print_cr("  Total concurrent time = %8.2f s "
3443                 "(%8.2f s marking).",
3444                 cmThread()->vtime_accum(),
3445                 cmThread()->vtime_mark_accum());
3446 }
3447 
3448 void ConcurrentMark::print_worker_threads_on(outputStream* st) const {
3449   if (use_parallel_marking_threads()) {
3450     _parallel_workers->print_worker_threads_on(st);
3451   }
3452 }
3453 
3454 void ConcurrentMark::print_on_error(outputStream* st) const {
3455   st->print_cr("Marking Bits (Prev, Next): (CMBitMap*) " PTR_FORMAT ", (CMBitMap*) " PTR_FORMAT,
3456       p2i(_prevMarkBitMap), p2i(_nextMarkBitMap));
3457   _prevMarkBitMap->print_on_error(st, " Prev Bits: ");
3458   _nextMarkBitMap->print_on_error(st, " Next Bits: ");
3459 }
3460 
3461 // We take a break if someone is trying to stop the world.
3462 bool ConcurrentMark::do_yield_check(uint worker_id) {
3463   if (SuspendibleThreadSet::should_yield()) {
3464     if (worker_id == 0) {
3465       _g1h->g1_policy()->record_concurrent_pause();
3466     }
3467     SuspendibleThreadSet::yield();
3468     return true;
3469   } else {
3470     return false;
3471   }
3472 }
3473 
3474 #ifndef PRODUCT
3475 // for debugging purposes
3476 void ConcurrentMark::print_finger() {
3477   gclog_or_tty->print_cr("heap ["PTR_FORMAT", "PTR_FORMAT"), global finger = "PTR_FORMAT,
3478                          p2i(_heap_start), p2i(_heap_end), p2i(_finger));
3479   for (uint i = 0; i < _max_worker_id; ++i) {
3480     gclog_or_tty->print("   %u: " PTR_FORMAT, i, p2i(_tasks[i]->finger()));
3481   }
3482   gclog_or_tty->cr();
3483 }
3484 #endif
3485 
3486 void CMTask::scan_object(oop obj) {
3487   assert(_nextMarkBitMap->isMarked((HeapWord*) obj), "invariant");
3488 
3489   if (_cm->verbose_high()) {
3490     gclog_or_tty->print_cr("[%u] we're scanning object "PTR_FORMAT,
3491                            _worker_id, p2i((void*) obj));
3492   }
3493 
3494   size_t obj_size = obj->size();
3495   _words_scanned += obj_size;
3496 
3497   obj->oop_iterate(_cm_oop_closure);
3498   statsOnly( ++_objs_scanned );
3499   check_limits();
3500 }
3501 
3502 // Closure for iteration over bitmaps
3503 class CMBitMapClosure : public BitMapClosure {
3504 private:
3505   // the bitmap that is being iterated over
3506   CMBitMap*                   _nextMarkBitMap;
3507   ConcurrentMark*             _cm;
3508   CMTask*                     _task;
3509 
3510 public:
3511   CMBitMapClosure(CMTask *task, ConcurrentMark* cm, CMBitMap* nextMarkBitMap) :
3512     _task(task), _cm(cm), _nextMarkBitMap(nextMarkBitMap) { }
3513 
3514   bool do_bit(size_t offset) {
3515     HeapWord* addr = _nextMarkBitMap->offsetToHeapWord(offset);
3516     assert(_nextMarkBitMap->isMarked(addr), "invariant");
3517     assert( addr < _cm->finger(), "invariant");
3518 
3519     statsOnly( _task->increase_objs_found_on_bitmap() );
3520     assert(addr >= _task->finger(), "invariant");
3521 
3522     // We move that task's local finger along.
3523     _task->move_finger_to(addr);
3524 
3525     _task->scan_object(oop(addr));
3526     // we only partially drain the local queue and global stack
3527     _task->drain_local_queue(true);
3528     _task->drain_global_stack(true);
3529 
3530     // if the has_aborted flag has been raised, we need to bail out of
3531     // the iteration
3532     return !_task->has_aborted();
3533   }
3534 };
3535 
3536 G1CMOopClosure::G1CMOopClosure(G1CollectedHeap* g1h,
3537                                ConcurrentMark* cm,
3538                                CMTask* task)
3539   : _g1h(g1h), _cm(cm), _task(task) {
3540   assert(_ref_processor == NULL, "should be initialized to NULL");
3541 
3542   if (G1UseConcMarkReferenceProcessing) {
3543     _ref_processor = g1h->ref_processor_cm();
3544     assert(_ref_processor != NULL, "should not be NULL");
3545   }
3546 }
3547 
3548 void CMTask::setup_for_region(HeapRegion* hr) {
3549   assert(hr != NULL,
3550         "claim_region() should have filtered out NULL regions");
3551   assert(!hr->is_continues_humongous(),
3552         "claim_region() should have filtered out continues humongous regions");
3553 
3554   if (_cm->verbose_low()) {
3555     gclog_or_tty->print_cr("[%u] setting up for region "PTR_FORMAT,
3556                            _worker_id, p2i(hr));
3557   }
3558 
3559   _curr_region  = hr;
3560   _finger       = hr->bottom();
3561   update_region_limit();
3562 }
3563 
3564 void CMTask::update_region_limit() {
3565   HeapRegion* hr            = _curr_region;
3566   HeapWord* bottom          = hr->bottom();
3567   HeapWord* limit           = hr->next_top_at_mark_start();
3568 
3569   if (limit == bottom) {
3570     if (_cm->verbose_low()) {
3571       gclog_or_tty->print_cr("[%u] found an empty region "
3572                              "["PTR_FORMAT", "PTR_FORMAT")",
3573                              _worker_id, p2i(bottom), p2i(limit));
3574     }
3575     // The region was collected underneath our feet.
3576     // We set the finger to bottom to ensure that the bitmap
3577     // iteration that will follow this will not do anything.
3578     // (this is not a condition that holds when we set the region up,
3579     // as the region is not supposed to be empty in the first place)
3580     _finger = bottom;
3581   } else if (limit >= _region_limit) {
3582     assert(limit >= _finger, "peace of mind");
3583   } else {
3584     assert(limit < _region_limit, "only way to get here");
3585     // This can happen under some pretty unusual circumstances.  An
3586     // evacuation pause empties the region underneath our feet (NTAMS
3587     // at bottom). We then do some allocation in the region (NTAMS
3588     // stays at bottom), followed by the region being used as a GC
3589     // alloc region (NTAMS will move to top() and the objects
3590     // originally below it will be grayed). All objects now marked in
3591     // the region are explicitly grayed, if below the global finger,
3592     // and we do not need in fact to scan anything else. So, we simply
3593     // set _finger to be limit to ensure that the bitmap iteration
3594     // doesn't do anything.
3595     _finger = limit;
3596   }
3597 
3598   _region_limit = limit;
3599 }
3600 
3601 void CMTask::giveup_current_region() {
3602   assert(_curr_region != NULL, "invariant");
3603   if (_cm->verbose_low()) {
3604     gclog_or_tty->print_cr("[%u] giving up region "PTR_FORMAT,
3605                            _worker_id, p2i(_curr_region));
3606   }
3607   clear_region_fields();
3608 }
3609 
3610 void CMTask::clear_region_fields() {
3611   // Values for these three fields that indicate that we're not
3612   // holding on to a region.
3613   _curr_region   = NULL;
3614   _finger        = NULL;
3615   _region_limit  = NULL;
3616 }
3617 
3618 void CMTask::set_cm_oop_closure(G1CMOopClosure* cm_oop_closure) {
3619   if (cm_oop_closure == NULL) {
3620     assert(_cm_oop_closure != NULL, "invariant");
3621   } else {
3622     assert(_cm_oop_closure == NULL, "invariant");
3623   }
3624   _cm_oop_closure = cm_oop_closure;
3625 }
3626 
3627 void CMTask::reset(CMBitMap* nextMarkBitMap) {
3628   guarantee(nextMarkBitMap != NULL, "invariant");
3629 
3630   if (_cm->verbose_low()) {
3631     gclog_or_tty->print_cr("[%u] resetting", _worker_id);
3632   }
3633 
3634   _nextMarkBitMap                = nextMarkBitMap;
3635   clear_region_fields();
3636 
3637   _calls                         = 0;
3638   _elapsed_time_ms               = 0.0;
3639   _termination_time_ms           = 0.0;
3640   _termination_start_time_ms     = 0.0;
3641 
3642 #if _MARKING_STATS_
3643   _local_pushes                  = 0;
3644   _local_pops                    = 0;
3645   _local_max_size                = 0;
3646   _objs_scanned                  = 0;
3647   _global_pushes                 = 0;
3648   _global_pops                   = 0;
3649   _global_max_size               = 0;
3650   _global_transfers_to           = 0;
3651   _global_transfers_from         = 0;
3652   _regions_claimed               = 0;
3653   _objs_found_on_bitmap          = 0;
3654   _satb_buffers_processed        = 0;
3655   _steal_attempts                = 0;
3656   _steals                        = 0;
3657   _aborted                       = 0;
3658   _aborted_overflow              = 0;
3659   _aborted_cm_aborted            = 0;
3660   _aborted_yield                 = 0;
3661   _aborted_timed_out             = 0;
3662   _aborted_satb                  = 0;
3663   _aborted_termination           = 0;
3664 #endif // _MARKING_STATS_
3665 }
3666 
3667 bool CMTask::should_exit_termination() {
3668   regular_clock_call();
3669   // This is called when we are in the termination protocol. We should
3670   // quit if, for some reason, this task wants to abort or the global
3671   // stack is not empty (this means that we can get work from it).
3672   return !_cm->mark_stack_empty() || has_aborted();
3673 }
3674 
3675 void CMTask::reached_limit() {
3676   assert(_words_scanned >= _words_scanned_limit ||
3677          _refs_reached >= _refs_reached_limit ,
3678          "shouldn't have been called otherwise");
3679   regular_clock_call();
3680 }
3681 
3682 void CMTask::regular_clock_call() {
3683   if (has_aborted()) return;
3684 
3685   // First, we need to recalculate the words scanned and refs reached
3686   // limits for the next clock call.
3687   recalculate_limits();
3688 
3689   // During the regular clock call we do the following
3690 
3691   // (1) If an overflow has been flagged, then we abort.
3692   if (_cm->has_overflown()) {
3693     set_has_aborted();
3694     return;
3695   }
3696 
3697   // If we are not concurrent (i.e. we're doing remark) we don't need
3698   // to check anything else. The other steps are only needed during
3699   // the concurrent marking phase.
3700   if (!concurrent()) return;
3701 
3702   // (2) If marking has been aborted for Full GC, then we also abort.
3703   if (_cm->has_aborted()) {
3704     set_has_aborted();
3705     statsOnly( ++_aborted_cm_aborted );
3706     return;
3707   }
3708 
3709   double curr_time_ms = os::elapsedVTime() * 1000.0;
3710 
3711   // (3) If marking stats are enabled, then we update the step history.
3712 #if _MARKING_STATS_
3713   if (_words_scanned >= _words_scanned_limit) {
3714     ++_clock_due_to_scanning;
3715   }
3716   if (_refs_reached >= _refs_reached_limit) {
3717     ++_clock_due_to_marking;
3718   }
3719 
3720   double last_interval_ms = curr_time_ms - _interval_start_time_ms;
3721   _interval_start_time_ms = curr_time_ms;
3722   _all_clock_intervals_ms.add(last_interval_ms);
3723 
3724   if (_cm->verbose_medium()) {
3725       gclog_or_tty->print_cr("[%u] regular clock, interval = %1.2lfms, "
3726                         "scanned = "SIZE_FORMAT"%s, refs reached = "SIZE_FORMAT"%s",
3727                         _worker_id, last_interval_ms,
3728                         _words_scanned,
3729                         (_words_scanned >= _words_scanned_limit) ? " (*)" : "",
3730                         _refs_reached,
3731                         (_refs_reached >= _refs_reached_limit) ? " (*)" : "");
3732   }
3733 #endif // _MARKING_STATS_
3734 
3735   // (4) We check whether we should yield. If we have to, then we abort.
3736   if (SuspendibleThreadSet::should_yield()) {
3737     // We should yield. To do this we abort the task. The caller is
3738     // responsible for yielding.
3739     set_has_aborted();
3740     statsOnly( ++_aborted_yield );
3741     return;
3742   }
3743 
3744   // (5) We check whether we've reached our time quota. If we have,
3745   // then we abort.
3746   double elapsed_time_ms = curr_time_ms - _start_time_ms;
3747   if (elapsed_time_ms > _time_target_ms) {
3748     set_has_aborted();
3749     _has_timed_out = true;
3750     statsOnly( ++_aborted_timed_out );
3751     return;
3752   }
3753 
3754   // (6) Finally, we check whether there are enough completed STAB
3755   // buffers available for processing. If there are, we abort.
3756   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
3757   if (!_draining_satb_buffers && satb_mq_set.process_completed_buffers()) {
3758     if (_cm->verbose_low()) {
3759       gclog_or_tty->print_cr("[%u] aborting to deal with pending SATB buffers",
3760                              _worker_id);
3761     }
3762     // we do need to process SATB buffers, we'll abort and restart
3763     // the marking task to do so
3764     set_has_aborted();
3765     statsOnly( ++_aborted_satb );
3766     return;
3767   }
3768 }
3769 
3770 void CMTask::recalculate_limits() {
3771   _real_words_scanned_limit = _words_scanned + words_scanned_period;
3772   _words_scanned_limit      = _real_words_scanned_limit;
3773 
3774   _real_refs_reached_limit  = _refs_reached  + refs_reached_period;
3775   _refs_reached_limit       = _real_refs_reached_limit;
3776 }
3777 
3778 void CMTask::decrease_limits() {
3779   // This is called when we believe that we're going to do an infrequent
3780   // operation which will increase the per byte scanned cost (i.e. move
3781   // entries to/from the global stack). It basically tries to decrease the
3782   // scanning limit so that the clock is called earlier.
3783 
3784   if (_cm->verbose_medium()) {
3785     gclog_or_tty->print_cr("[%u] decreasing limits", _worker_id);
3786   }
3787 
3788   _words_scanned_limit = _real_words_scanned_limit -
3789     3 * words_scanned_period / 4;
3790   _refs_reached_limit  = _real_refs_reached_limit -
3791     3 * refs_reached_period / 4;
3792 }
3793 
3794 void CMTask::move_entries_to_global_stack() {
3795   // local array where we'll store the entries that will be popped
3796   // from the local queue
3797   oop buffer[global_stack_transfer_size];
3798 
3799   int n = 0;
3800   oop obj;
3801   while (n < global_stack_transfer_size && _task_queue->pop_local(obj)) {
3802     buffer[n] = obj;
3803     ++n;
3804   }
3805 
3806   if (n > 0) {
3807     // we popped at least one entry from the local queue
3808 
3809     statsOnly( ++_global_transfers_to; _local_pops += n );
3810 
3811     if (!_cm->mark_stack_push(buffer, n)) {
3812       if (_cm->verbose_low()) {
3813         gclog_or_tty->print_cr("[%u] aborting due to global stack overflow",
3814                                _worker_id);
3815       }
3816       set_has_aborted();
3817     } else {
3818       // the transfer was successful
3819 
3820       if (_cm->verbose_medium()) {
3821         gclog_or_tty->print_cr("[%u] pushed %d entries to the global stack",
3822                                _worker_id, n);
3823       }
3824       statsOnly( int tmp_size = _cm->mark_stack_size();
3825                  if (tmp_size > _global_max_size) {
3826                    _global_max_size = tmp_size;
3827                  }
3828                  _global_pushes += n );
3829     }
3830   }
3831 
3832   // this operation was quite expensive, so decrease the limits
3833   decrease_limits();
3834 }
3835 
3836 void CMTask::get_entries_from_global_stack() {
3837   // local array where we'll store the entries that will be popped
3838   // from the global stack.
3839   oop buffer[global_stack_transfer_size];
3840   int n;
3841   _cm->mark_stack_pop(buffer, global_stack_transfer_size, &n);
3842   assert(n <= global_stack_transfer_size,
3843          "we should not pop more than the given limit");
3844   if (n > 0) {
3845     // yes, we did actually pop at least one entry
3846 
3847     statsOnly( ++_global_transfers_from; _global_pops += n );
3848     if (_cm->verbose_medium()) {
3849       gclog_or_tty->print_cr("[%u] popped %d entries from the global stack",
3850                              _worker_id, n);
3851     }
3852     for (int i = 0; i < n; ++i) {
3853       bool success = _task_queue->push(buffer[i]);
3854       // We only call this when the local queue is empty or under a
3855       // given target limit. So, we do not expect this push to fail.
3856       assert(success, "invariant");
3857     }
3858 
3859     statsOnly( int tmp_size = _task_queue->size();
3860                if (tmp_size > _local_max_size) {
3861                  _local_max_size = tmp_size;
3862                }
3863                _local_pushes += n );
3864   }
3865 
3866   // this operation was quite expensive, so decrease the limits
3867   decrease_limits();
3868 }
3869 
3870 void CMTask::drain_local_queue(bool partially) {
3871   if (has_aborted()) return;
3872 
3873   // Decide what the target size is, depending whether we're going to
3874   // drain it partially (so that other tasks can steal if they run out
3875   // of things to do) or totally (at the very end).
3876   size_t target_size;
3877   if (partially) {
3878     target_size = MIN2((size_t)_task_queue->max_elems()/3, GCDrainStackTargetSize);
3879   } else {
3880     target_size = 0;
3881   }
3882 
3883   if (_task_queue->size() > target_size) {
3884     if (_cm->verbose_high()) {
3885       gclog_or_tty->print_cr("[%u] draining local queue, target size = " SIZE_FORMAT,
3886                              _worker_id, target_size);
3887     }
3888 
3889     oop obj;
3890     bool ret = _task_queue->pop_local(obj);
3891     while (ret) {
3892       statsOnly( ++_local_pops );
3893 
3894       if (_cm->verbose_high()) {
3895         gclog_or_tty->print_cr("[%u] popped "PTR_FORMAT, _worker_id,
3896                                p2i((void*) obj));
3897       }
3898 
3899       assert(_g1h->is_in_g1_reserved((HeapWord*) obj), "invariant" );
3900       assert(!_g1h->is_on_master_free_list(
3901                   _g1h->heap_region_containing((HeapWord*) obj)), "invariant");
3902 
3903       scan_object(obj);
3904 
3905       if (_task_queue->size() <= target_size || has_aborted()) {
3906         ret = false;
3907       } else {
3908         ret = _task_queue->pop_local(obj);
3909       }
3910     }
3911 
3912     if (_cm->verbose_high()) {
3913       gclog_or_tty->print_cr("[%u] drained local queue, size = %u",
3914                              _worker_id, _task_queue->size());
3915     }
3916   }
3917 }
3918 
3919 void CMTask::drain_global_stack(bool partially) {
3920   if (has_aborted()) return;
3921 
3922   // We have a policy to drain the local queue before we attempt to
3923   // drain the global stack.
3924   assert(partially || _task_queue->size() == 0, "invariant");
3925 
3926   // Decide what the target size is, depending whether we're going to
3927   // drain it partially (so that other tasks can steal if they run out
3928   // of things to do) or totally (at the very end).  Notice that,
3929   // because we move entries from the global stack in chunks or
3930   // because another task might be doing the same, we might in fact
3931   // drop below the target. But, this is not a problem.
3932   size_t target_size;
3933   if (partially) {
3934     target_size = _cm->partial_mark_stack_size_target();
3935   } else {
3936     target_size = 0;
3937   }
3938 
3939   if (_cm->mark_stack_size() > target_size) {
3940     if (_cm->verbose_low()) {
3941       gclog_or_tty->print_cr("[%u] draining global_stack, target size " SIZE_FORMAT,
3942                              _worker_id, target_size);
3943     }
3944 
3945     while (!has_aborted() && _cm->mark_stack_size() > target_size) {
3946       get_entries_from_global_stack();
3947       drain_local_queue(partially);
3948     }
3949 
3950     if (_cm->verbose_low()) {
3951       gclog_or_tty->print_cr("[%u] drained global stack, size = " SIZE_FORMAT,
3952                              _worker_id, _cm->mark_stack_size());
3953     }
3954   }
3955 }
3956 
3957 // SATB Queue has several assumptions on whether to call the par or
3958 // non-par versions of the methods. this is why some of the code is
3959 // replicated. We should really get rid of the single-threaded version
3960 // of the code to simplify things.
3961 void CMTask::drain_satb_buffers() {
3962   if (has_aborted()) return;
3963 
3964   // We set this so that the regular clock knows that we're in the
3965   // middle of draining buffers and doesn't set the abort flag when it
3966   // notices that SATB buffers are available for draining. It'd be
3967   // very counter productive if it did that. :-)
3968   _draining_satb_buffers = true;
3969 
3970   CMObjectClosure oc(this);
3971   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
3972   if (G1CollectedHeap::use_parallel_gc_threads()) {
3973     satb_mq_set.set_par_closure(_worker_id, &oc);
3974   } else {
3975     satb_mq_set.set_closure(&oc);
3976   }
3977 
3978   // This keeps claiming and applying the closure to completed buffers
3979   // until we run out of buffers or we need to abort.
3980   if (G1CollectedHeap::use_parallel_gc_threads()) {
3981     while (!has_aborted() &&
3982            satb_mq_set.par_apply_closure_to_completed_buffer(_worker_id)) {
3983       if (_cm->verbose_medium()) {
3984         gclog_or_tty->print_cr("[%u] processed an SATB buffer", _worker_id);
3985       }
3986       statsOnly( ++_satb_buffers_processed );
3987       regular_clock_call();
3988     }
3989   } else {
3990     while (!has_aborted() &&
3991            satb_mq_set.apply_closure_to_completed_buffer()) {
3992       if (_cm->verbose_medium()) {
3993         gclog_or_tty->print_cr("[%u] processed an SATB buffer", _worker_id);
3994       }
3995       statsOnly( ++_satb_buffers_processed );
3996       regular_clock_call();
3997     }
3998   }
3999 
4000   _draining_satb_buffers = false;
4001 
4002   assert(has_aborted() ||
4003          concurrent() ||
4004          satb_mq_set.completed_buffers_num() == 0, "invariant");
4005 
4006   if (G1CollectedHeap::use_parallel_gc_threads()) {
4007     satb_mq_set.set_par_closure(_worker_id, NULL);
4008   } else {
4009     satb_mq_set.set_closure(NULL);
4010   }
4011 
4012   // again, this was a potentially expensive operation, decrease the
4013   // limits to get the regular clock call early
4014   decrease_limits();
4015 }
4016 
4017 void CMTask::print_stats() {
4018   gclog_or_tty->print_cr("Marking Stats, task = %u, calls = %d",
4019                          _worker_id, _calls);
4020   gclog_or_tty->print_cr("  Elapsed time = %1.2lfms, Termination time = %1.2lfms",
4021                          _elapsed_time_ms, _termination_time_ms);
4022   gclog_or_tty->print_cr("  Step Times (cum): num = %d, avg = %1.2lfms, sd = %1.2lfms",
4023                          _step_times_ms.num(), _step_times_ms.avg(),
4024                          _step_times_ms.sd());
4025   gclog_or_tty->print_cr("                    max = %1.2lfms, total = %1.2lfms",
4026                          _step_times_ms.maximum(), _step_times_ms.sum());
4027 
4028 #if _MARKING_STATS_
4029   gclog_or_tty->print_cr("  Clock Intervals (cum): num = %d, avg = %1.2lfms, sd = %1.2lfms",
4030                          _all_clock_intervals_ms.num(), _all_clock_intervals_ms.avg(),
4031                          _all_clock_intervals_ms.sd());
4032   gclog_or_tty->print_cr("                         max = %1.2lfms, total = %1.2lfms",
4033                          _all_clock_intervals_ms.maximum(),
4034                          _all_clock_intervals_ms.sum());
4035   gclog_or_tty->print_cr("  Clock Causes (cum): scanning = %d, marking = %d",
4036                          _clock_due_to_scanning, _clock_due_to_marking);
4037   gclog_or_tty->print_cr("  Objects: scanned = %d, found on the bitmap = %d",
4038                          _objs_scanned, _objs_found_on_bitmap);
4039   gclog_or_tty->print_cr("  Local Queue:  pushes = %d, pops = %d, max size = %d",
4040                          _local_pushes, _local_pops, _local_max_size);
4041   gclog_or_tty->print_cr("  Global Stack: pushes = %d, pops = %d, max size = %d",
4042                          _global_pushes, _global_pops, _global_max_size);
4043   gclog_or_tty->print_cr("                transfers to = %d, transfers from = %d",
4044                          _global_transfers_to,_global_transfers_from);
4045   gclog_or_tty->print_cr("  Regions: claimed = %d", _regions_claimed);
4046   gclog_or_tty->print_cr("  SATB buffers: processed = %d", _satb_buffers_processed);
4047   gclog_or_tty->print_cr("  Steals: attempts = %d, successes = %d",
4048                          _steal_attempts, _steals);
4049   gclog_or_tty->print_cr("  Aborted: %d, due to", _aborted);
4050   gclog_or_tty->print_cr("    overflow: %d, global abort: %d, yield: %d",
4051                          _aborted_overflow, _aborted_cm_aborted, _aborted_yield);
4052   gclog_or_tty->print_cr("    time out: %d, SATB: %d, termination: %d",
4053                          _aborted_timed_out, _aborted_satb, _aborted_termination);
4054 #endif // _MARKING_STATS_
4055 }
4056 
4057 /*****************************************************************************
4058 
4059     The do_marking_step(time_target_ms, ...) method is the building
4060     block of the parallel marking framework. It can be called in parallel
4061     with other invocations of do_marking_step() on different tasks
4062     (but only one per task, obviously) and concurrently with the
4063     mutator threads, or during remark, hence it eliminates the need
4064     for two versions of the code. When called during remark, it will
4065     pick up from where the task left off during the concurrent marking
4066     phase. Interestingly, tasks are also claimable during evacuation
4067     pauses too, since do_marking_step() ensures that it aborts before
4068     it needs to yield.
4069 
4070     The data structures that it uses to do marking work are the
4071     following:
4072 
4073       (1) Marking Bitmap. If there are gray objects that appear only
4074       on the bitmap (this happens either when dealing with an overflow
4075       or when the initial marking phase has simply marked the roots
4076       and didn't push them on the stack), then tasks claim heap
4077       regions whose bitmap they then scan to find gray objects. A
4078       global finger indicates where the end of the last claimed region
4079       is. A local finger indicates how far into the region a task has
4080       scanned. The two fingers are used to determine how to gray an
4081       object (i.e. whether simply marking it is OK, as it will be
4082       visited by a task in the future, or whether it needs to be also
4083       pushed on a stack).
4084 
4085       (2) Local Queue. The local queue of the task which is accessed
4086       reasonably efficiently by the task. Other tasks can steal from
4087       it when they run out of work. Throughout the marking phase, a
4088       task attempts to keep its local queue short but not totally
4089       empty, so that entries are available for stealing by other
4090       tasks. Only when there is no more work, a task will totally
4091       drain its local queue.
4092 
4093       (3) Global Mark Stack. This handles local queue overflow. During
4094       marking only sets of entries are moved between it and the local
4095       queues, as access to it requires a mutex and more fine-grain
4096       interaction with it which might cause contention. If it
4097       overflows, then the marking phase should restart and iterate
4098       over the bitmap to identify gray objects. Throughout the marking
4099       phase, tasks attempt to keep the global mark stack at a small
4100       length but not totally empty, so that entries are available for
4101       popping by other tasks. Only when there is no more work, tasks
4102       will totally drain the global mark stack.
4103 
4104       (4) SATB Buffer Queue. This is where completed SATB buffers are
4105       made available. Buffers are regularly removed from this queue
4106       and scanned for roots, so that the queue doesn't get too
4107       long. During remark, all completed buffers are processed, as
4108       well as the filled in parts of any uncompleted buffers.
4109 
4110     The do_marking_step() method tries to abort when the time target
4111     has been reached. There are a few other cases when the
4112     do_marking_step() method also aborts:
4113 
4114       (1) When the marking phase has been aborted (after a Full GC).
4115 
4116       (2) When a global overflow (on the global stack) has been
4117       triggered. Before the task aborts, it will actually sync up with
4118       the other tasks to ensure that all the marking data structures
4119       (local queues, stacks, fingers etc.)  are re-initialized so that
4120       when do_marking_step() completes, the marking phase can
4121       immediately restart.
4122 
4123       (3) When enough completed SATB buffers are available. The
4124       do_marking_step() method only tries to drain SATB buffers right
4125       at the beginning. So, if enough buffers are available, the
4126       marking step aborts and the SATB buffers are processed at
4127       the beginning of the next invocation.
4128 
4129       (4) To yield. when we have to yield then we abort and yield
4130       right at the end of do_marking_step(). This saves us from a lot
4131       of hassle as, by yielding we might allow a Full GC. If this
4132       happens then objects will be compacted underneath our feet, the
4133       heap might shrink, etc. We save checking for this by just
4134       aborting and doing the yield right at the end.
4135 
4136     From the above it follows that the do_marking_step() method should
4137     be called in a loop (or, otherwise, regularly) until it completes.
4138 
4139     If a marking step completes without its has_aborted() flag being
4140     true, it means it has completed the current marking phase (and
4141     also all other marking tasks have done so and have all synced up).
4142 
4143     A method called regular_clock_call() is invoked "regularly" (in
4144     sub ms intervals) throughout marking. It is this clock method that
4145     checks all the abort conditions which were mentioned above and
4146     decides when the task should abort. A work-based scheme is used to
4147     trigger this clock method: when the number of object words the
4148     marking phase has scanned or the number of references the marking
4149     phase has visited reach a given limit. Additional invocations to
4150     the method clock have been planted in a few other strategic places
4151     too. The initial reason for the clock method was to avoid calling
4152     vtime too regularly, as it is quite expensive. So, once it was in
4153     place, it was natural to piggy-back all the other conditions on it
4154     too and not constantly check them throughout the code.
4155 
4156     If do_termination is true then do_marking_step will enter its
4157     termination protocol.
4158 
4159     The value of is_serial must be true when do_marking_step is being
4160     called serially (i.e. by the VMThread) and do_marking_step should
4161     skip any synchronization in the termination and overflow code.
4162     Examples include the serial remark code and the serial reference
4163     processing closures.
4164 
4165     The value of is_serial must be false when do_marking_step is
4166     being called by any of the worker threads in a work gang.
4167     Examples include the concurrent marking code (CMMarkingTask),
4168     the MT remark code, and the MT reference processing closures.
4169 
4170  *****************************************************************************/
4171 
4172 void CMTask::do_marking_step(double time_target_ms,
4173                              bool do_termination,
4174                              bool is_serial) {
4175   assert(time_target_ms >= 1.0, "minimum granularity is 1ms");
4176   assert(concurrent() == _cm->concurrent(), "they should be the same");
4177 
4178   G1CollectorPolicy* g1_policy = _g1h->g1_policy();
4179   assert(_task_queues != NULL, "invariant");
4180   assert(_task_queue != NULL, "invariant");
4181   assert(_task_queues->queue(_worker_id) == _task_queue, "invariant");
4182 
4183   assert(!_claimed,
4184          "only one thread should claim this task at any one time");
4185 
4186   // OK, this doesn't safeguard again all possible scenarios, as it is
4187   // possible for two threads to set the _claimed flag at the same
4188   // time. But it is only for debugging purposes anyway and it will
4189   // catch most problems.
4190   _claimed = true;
4191 
4192   _start_time_ms = os::elapsedVTime() * 1000.0;
4193   statsOnly( _interval_start_time_ms = _start_time_ms );
4194 
4195   // If do_stealing is true then do_marking_step will attempt to
4196   // steal work from the other CMTasks. It only makes sense to
4197   // enable stealing when the termination protocol is enabled
4198   // and do_marking_step() is not being called serially.
4199   bool do_stealing = do_termination && !is_serial;
4200 
4201   double diff_prediction_ms =
4202     g1_policy->get_new_prediction(&_marking_step_diffs_ms);
4203   _time_target_ms = time_target_ms - diff_prediction_ms;
4204 
4205   // set up the variables that are used in the work-based scheme to
4206   // call the regular clock method
4207   _words_scanned = 0;
4208   _refs_reached  = 0;
4209   recalculate_limits();
4210 
4211   // clear all flags
4212   clear_has_aborted();
4213   _has_timed_out = false;
4214   _draining_satb_buffers = false;
4215 
4216   ++_calls;
4217 
4218   if (_cm->verbose_low()) {
4219     gclog_or_tty->print_cr("[%u] >>>>>>>>>> START, call = %d, "
4220                            "target = %1.2lfms >>>>>>>>>>",
4221                            _worker_id, _calls, _time_target_ms);
4222   }
4223 
4224   // Set up the bitmap and oop closures. Anything that uses them is
4225   // eventually called from this method, so it is OK to allocate these
4226   // statically.
4227   CMBitMapClosure bitmap_closure(this, _cm, _nextMarkBitMap);
4228   G1CMOopClosure  cm_oop_closure(_g1h, _cm, this);
4229   set_cm_oop_closure(&cm_oop_closure);
4230 
4231   if (_cm->has_overflown()) {
4232     // This can happen if the mark stack overflows during a GC pause
4233     // and this task, after a yield point, restarts. We have to abort
4234     // as we need to get into the overflow protocol which happens
4235     // right at the end of this task.
4236     set_has_aborted();
4237   }
4238 
4239   // First drain any available SATB buffers. After this, we will not
4240   // look at SATB buffers before the next invocation of this method.
4241   // If enough completed SATB buffers are queued up, the regular clock
4242   // will abort this task so that it restarts.
4243   drain_satb_buffers();
4244   // ...then partially drain the local queue and the global stack
4245   drain_local_queue(true);
4246   drain_global_stack(true);
4247 
4248   do {
4249     if (!has_aborted() && _curr_region != NULL) {
4250       // This means that we're already holding on to a region.
4251       assert(_finger != NULL, "if region is not NULL, then the finger "
4252              "should not be NULL either");
4253 
4254       // We might have restarted this task after an evacuation pause
4255       // which might have evacuated the region we're holding on to
4256       // underneath our feet. Let's read its limit again to make sure
4257       // that we do not iterate over a region of the heap that
4258       // contains garbage (update_region_limit() will also move
4259       // _finger to the start of the region if it is found empty).
4260       update_region_limit();
4261       // We will start from _finger not from the start of the region,
4262       // as we might be restarting this task after aborting half-way
4263       // through scanning this region. In this case, _finger points to
4264       // the address where we last found a marked object. If this is a
4265       // fresh region, _finger points to start().
4266       MemRegion mr = MemRegion(_finger, _region_limit);
4267 
4268       if (_cm->verbose_low()) {
4269         gclog_or_tty->print_cr("[%u] we're scanning part "
4270                                "["PTR_FORMAT", "PTR_FORMAT") "
4271                                "of region "HR_FORMAT,
4272                                _worker_id, p2i(_finger), p2i(_region_limit),
4273                                HR_FORMAT_PARAMS(_curr_region));
4274       }
4275 
4276       assert(!_curr_region->is_humongous() || mr.start() == _curr_region->bottom(),
4277              "humongous regions should go around loop once only");
4278 
4279       // Some special cases:
4280       // If the memory region is empty, we can just give up the region.
4281       // If the current region is humongous then we only need to check
4282       // the bitmap for the bit associated with the start of the object,
4283       // scan the object if it's live, and give up the region.
4284       // Otherwise, let's iterate over the bitmap of the part of the region
4285       // that is left.
4286       // If the iteration is successful, give up the region.
4287       if (mr.is_empty()) {
4288         giveup_current_region();
4289         regular_clock_call();
4290       } else if (_curr_region->is_humongous() && mr.start() == _curr_region->bottom()) {
4291         if (_nextMarkBitMap->isMarked(mr.start())) {
4292           // The object is marked - apply the closure
4293           BitMap::idx_t offset = _nextMarkBitMap->heapWordToOffset(mr.start());
4294           bitmap_closure.do_bit(offset);
4295         }
4296         // Even if this task aborted while scanning the humongous object
4297         // we can (and should) give up the current region.
4298         giveup_current_region();
4299         regular_clock_call();
4300       } else if (_nextMarkBitMap->iterate(&bitmap_closure, mr)) {
4301         giveup_current_region();
4302         regular_clock_call();
4303       } else {
4304         assert(has_aborted(), "currently the only way to do so");
4305         // The only way to abort the bitmap iteration is to return
4306         // false from the do_bit() method. However, inside the
4307         // do_bit() method we move the _finger to point to the
4308         // object currently being looked at. So, if we bail out, we
4309         // have definitely set _finger to something non-null.
4310         assert(_finger != NULL, "invariant");
4311 
4312         // Region iteration was actually aborted. So now _finger
4313         // points to the address of the object we last scanned. If we
4314         // leave it there, when we restart this task, we will rescan
4315         // the object. It is easy to avoid this. We move the finger by
4316         // enough to point to the next possible object header (the
4317         // bitmap knows by how much we need to move it as it knows its
4318         // granularity).
4319         assert(_finger < _region_limit, "invariant");
4320         HeapWord* new_finger = _nextMarkBitMap->nextObject(_finger);
4321         // Check if bitmap iteration was aborted while scanning the last object
4322         if (new_finger >= _region_limit) {
4323           giveup_current_region();
4324         } else {
4325           move_finger_to(new_finger);
4326         }
4327       }
4328     }
4329     // At this point we have either completed iterating over the
4330     // region we were holding on to, or we have aborted.
4331 
4332     // We then partially drain the local queue and the global stack.
4333     // (Do we really need this?)
4334     drain_local_queue(true);
4335     drain_global_stack(true);
4336 
4337     // Read the note on the claim_region() method on why it might
4338     // return NULL with potentially more regions available for
4339     // claiming and why we have to check out_of_regions() to determine
4340     // whether we're done or not.
4341     while (!has_aborted() && _curr_region == NULL && !_cm->out_of_regions()) {
4342       // We are going to try to claim a new region. We should have
4343       // given up on the previous one.
4344       // Separated the asserts so that we know which one fires.
4345       assert(_curr_region  == NULL, "invariant");
4346       assert(_finger       == NULL, "invariant");
4347       assert(_region_limit == NULL, "invariant");
4348       if (_cm->verbose_low()) {
4349         gclog_or_tty->print_cr("[%u] trying to claim a new region", _worker_id);
4350       }
4351       HeapRegion* claimed_region = _cm->claim_region(_worker_id);
4352       if (claimed_region != NULL) {
4353         // Yes, we managed to claim one
4354         statsOnly( ++_regions_claimed );
4355 
4356         if (_cm->verbose_low()) {
4357           gclog_or_tty->print_cr("[%u] we successfully claimed "
4358                                  "region "PTR_FORMAT,
4359                                  _worker_id, p2i(claimed_region));
4360         }
4361 
4362         setup_for_region(claimed_region);
4363         assert(_curr_region == claimed_region, "invariant");
4364       }
4365       // It is important to call the regular clock here. It might take
4366       // a while to claim a region if, for example, we hit a large
4367       // block of empty regions. So we need to call the regular clock
4368       // method once round the loop to make sure it's called
4369       // frequently enough.
4370       regular_clock_call();
4371     }
4372 
4373     if (!has_aborted() && _curr_region == NULL) {
4374       assert(_cm->out_of_regions(),
4375              "at this point we should be out of regions");
4376     }
4377   } while ( _curr_region != NULL && !has_aborted());
4378 
4379   if (!has_aborted()) {
4380     // We cannot check whether the global stack is empty, since other
4381     // tasks might be pushing objects to it concurrently.
4382     assert(_cm->out_of_regions(),
4383            "at this point we should be out of regions");
4384 
4385     if (_cm->verbose_low()) {
4386       gclog_or_tty->print_cr("[%u] all regions claimed", _worker_id);
4387     }
4388 
4389     // Try to reduce the number of available SATB buffers so that
4390     // remark has less work to do.
4391     drain_satb_buffers();
4392   }
4393 
4394   // Since we've done everything else, we can now totally drain the
4395   // local queue and global stack.
4396   drain_local_queue(false);
4397   drain_global_stack(false);
4398 
4399   // Attempt at work stealing from other task's queues.
4400   if (do_stealing && !has_aborted()) {
4401     // We have not aborted. This means that we have finished all that
4402     // we could. Let's try to do some stealing...
4403 
4404     // We cannot check whether the global stack is empty, since other
4405     // tasks might be pushing objects to it concurrently.
4406     assert(_cm->out_of_regions() && _task_queue->size() == 0,
4407            "only way to reach here");
4408 
4409     if (_cm->verbose_low()) {
4410       gclog_or_tty->print_cr("[%u] starting to steal", _worker_id);
4411     }
4412 
4413     while (!has_aborted()) {
4414       oop obj;
4415       statsOnly( ++_steal_attempts );
4416 
4417       if (_cm->try_stealing(_worker_id, &_hash_seed, obj)) {
4418         if (_cm->verbose_medium()) {
4419           gclog_or_tty->print_cr("[%u] stolen "PTR_FORMAT" successfully",
4420                                  _worker_id, p2i((void*) obj));
4421         }
4422 
4423         statsOnly( ++_steals );
4424 
4425         assert(_nextMarkBitMap->isMarked((HeapWord*) obj),
4426                "any stolen object should be marked");
4427         scan_object(obj);
4428 
4429         // And since we're towards the end, let's totally drain the
4430         // local queue and global stack.
4431         drain_local_queue(false);
4432         drain_global_stack(false);
4433       } else {
4434         break;
4435       }
4436     }
4437   }
4438 
4439   // If we are about to wrap up and go into termination, check if we
4440   // should raise the overflow flag.
4441   if (do_termination && !has_aborted()) {
4442     if (_cm->force_overflow()->should_force()) {
4443       _cm->set_has_overflown();
4444       regular_clock_call();
4445     }
4446   }
4447 
4448   // We still haven't aborted. Now, let's try to get into the
4449   // termination protocol.
4450   if (do_termination && !has_aborted()) {
4451     // We cannot check whether the global stack is empty, since other
4452     // tasks might be concurrently pushing objects on it.
4453     // Separated the asserts so that we know which one fires.
4454     assert(_cm->out_of_regions(), "only way to reach here");
4455     assert(_task_queue->size() == 0, "only way to reach here");
4456 
4457     if (_cm->verbose_low()) {
4458       gclog_or_tty->print_cr("[%u] starting termination protocol", _worker_id);
4459     }
4460 
4461     _termination_start_time_ms = os::elapsedVTime() * 1000.0;
4462 
4463     // The CMTask class also extends the TerminatorTerminator class,
4464     // hence its should_exit_termination() method will also decide
4465     // whether to exit the termination protocol or not.
4466     bool finished = (is_serial ||
4467                      _cm->terminator()->offer_termination(this));
4468     double termination_end_time_ms = os::elapsedVTime() * 1000.0;
4469     _termination_time_ms +=
4470       termination_end_time_ms - _termination_start_time_ms;
4471 
4472     if (finished) {
4473       // We're all done.
4474 
4475       if (_worker_id == 0) {
4476         // let's allow task 0 to do this
4477         if (concurrent()) {
4478           assert(_cm->concurrent_marking_in_progress(), "invariant");
4479           // we need to set this to false before the next
4480           // safepoint. This way we ensure that the marking phase
4481           // doesn't observe any more heap expansions.
4482           _cm->clear_concurrent_marking_in_progress();
4483         }
4484       }
4485 
4486       // We can now guarantee that the global stack is empty, since
4487       // all other tasks have finished. We separated the guarantees so
4488       // that, if a condition is false, we can immediately find out
4489       // which one.
4490       guarantee(_cm->out_of_regions(), "only way to reach here");
4491       guarantee(_cm->mark_stack_empty(), "only way to reach here");
4492       guarantee(_task_queue->size() == 0, "only way to reach here");
4493       guarantee(!_cm->has_overflown(), "only way to reach here");
4494       guarantee(!_cm->mark_stack_overflow(), "only way to reach here");
4495 
4496       if (_cm->verbose_low()) {
4497         gclog_or_tty->print_cr("[%u] all tasks terminated", _worker_id);
4498       }
4499     } else {
4500       // Apparently there's more work to do. Let's abort this task. It
4501       // will restart it and we can hopefully find more things to do.
4502 
4503       if (_cm->verbose_low()) {
4504         gclog_or_tty->print_cr("[%u] apparently there is more work to do",
4505                                _worker_id);
4506       }
4507 
4508       set_has_aborted();
4509       statsOnly( ++_aborted_termination );
4510     }
4511   }
4512 
4513   // Mainly for debugging purposes to make sure that a pointer to the
4514   // closure which was statically allocated in this frame doesn't
4515   // escape it by accident.
4516   set_cm_oop_closure(NULL);
4517   double end_time_ms = os::elapsedVTime() * 1000.0;
4518   double elapsed_time_ms = end_time_ms - _start_time_ms;
4519   // Update the step history.
4520   _step_times_ms.add(elapsed_time_ms);
4521 
4522   if (has_aborted()) {
4523     // The task was aborted for some reason.
4524 
4525     statsOnly( ++_aborted );
4526 
4527     if (_has_timed_out) {
4528       double diff_ms = elapsed_time_ms - _time_target_ms;
4529       // Keep statistics of how well we did with respect to hitting
4530       // our target only if we actually timed out (if we aborted for
4531       // other reasons, then the results might get skewed).
4532       _marking_step_diffs_ms.add(diff_ms);
4533     }
4534 
4535     if (_cm->has_overflown()) {
4536       // This is the interesting one. We aborted because a global
4537       // overflow was raised. This means we have to restart the
4538       // marking phase and start iterating over regions. However, in
4539       // order to do this we have to make sure that all tasks stop
4540       // what they are doing and re-initialize in a safe manner. We
4541       // will achieve this with the use of two barrier sync points.
4542 
4543       if (_cm->verbose_low()) {
4544         gclog_or_tty->print_cr("[%u] detected overflow", _worker_id);
4545       }
4546 
4547       if (!is_serial) {
4548         // We only need to enter the sync barrier if being called
4549         // from a parallel context
4550         _cm->enter_first_sync_barrier(_worker_id);
4551 
4552         // When we exit this sync barrier we know that all tasks have
4553         // stopped doing marking work. So, it's now safe to
4554         // re-initialize our data structures. At the end of this method,
4555         // task 0 will clear the global data structures.
4556       }
4557 
4558       statsOnly( ++_aborted_overflow );
4559 
4560       // We clear the local state of this task...
4561       clear_region_fields();
4562 
4563       if (!is_serial) {
4564         // ...and enter the second barrier.
4565         _cm->enter_second_sync_barrier(_worker_id);
4566       }
4567       // At this point, if we're during the concurrent phase of
4568       // marking, everything has been re-initialized and we're
4569       // ready to restart.
4570     }
4571 
4572     if (_cm->verbose_low()) {
4573       gclog_or_tty->print_cr("[%u] <<<<<<<<<< ABORTING, target = %1.2lfms, "
4574                              "elapsed = %1.2lfms <<<<<<<<<<",
4575                              _worker_id, _time_target_ms, elapsed_time_ms);
4576       if (_cm->has_aborted()) {
4577         gclog_or_tty->print_cr("[%u] ========== MARKING ABORTED ==========",
4578                                _worker_id);
4579       }
4580     }
4581   } else {
4582     if (_cm->verbose_low()) {
4583       gclog_or_tty->print_cr("[%u] <<<<<<<<<< FINISHED, target = %1.2lfms, "
4584                              "elapsed = %1.2lfms <<<<<<<<<<",
4585                              _worker_id, _time_target_ms, elapsed_time_ms);
4586     }
4587   }
4588 
4589   _claimed = false;
4590 }
4591 
4592 CMTask::CMTask(uint worker_id,
4593                ConcurrentMark* cm,
4594                size_t* marked_bytes,
4595                BitMap* card_bm,
4596                CMTaskQueue* task_queue,
4597                CMTaskQueueSet* task_queues)
4598   : _g1h(G1CollectedHeap::heap()),
4599     _worker_id(worker_id), _cm(cm),
4600     _claimed(false),
4601     _nextMarkBitMap(NULL), _hash_seed(17),
4602     _task_queue(task_queue),
4603     _task_queues(task_queues),
4604     _cm_oop_closure(NULL),
4605     _marked_bytes_array(marked_bytes),
4606     _card_bm(card_bm) {
4607   guarantee(task_queue != NULL, "invariant");
4608   guarantee(task_queues != NULL, "invariant");
4609 
4610   statsOnly( _clock_due_to_scanning = 0;
4611              _clock_due_to_marking  = 0 );
4612 
4613   _marking_step_diffs_ms.add(0.5);
4614 }
4615 
4616 // These are formatting macros that are used below to ensure
4617 // consistent formatting. The *_H_* versions are used to format the
4618 // header for a particular value and they should be kept consistent
4619 // with the corresponding macro. Also note that most of the macros add
4620 // the necessary white space (as a prefix) which makes them a bit
4621 // easier to compose.
4622 
4623 // All the output lines are prefixed with this string to be able to
4624 // identify them easily in a large log file.
4625 #define G1PPRL_LINE_PREFIX            "###"
4626 
4627 #define G1PPRL_ADDR_BASE_FORMAT    " "PTR_FORMAT"-"PTR_FORMAT
4628 #ifdef _LP64
4629 #define G1PPRL_ADDR_BASE_H_FORMAT  " %37s"
4630 #else // _LP64
4631 #define G1PPRL_ADDR_BASE_H_FORMAT  " %21s"
4632 #endif // _LP64
4633 
4634 // For per-region info
4635 #define G1PPRL_TYPE_FORMAT            "   %-4s"
4636 #define G1PPRL_TYPE_H_FORMAT          "   %4s"
4637 #define G1PPRL_BYTE_FORMAT            "  "SIZE_FORMAT_W(9)
4638 #define G1PPRL_BYTE_H_FORMAT          "  %9s"
4639 #define G1PPRL_DOUBLE_FORMAT          "  %14.1f"
4640 #define G1PPRL_DOUBLE_H_FORMAT        "  %14s"
4641 
4642 // For summary info
4643 #define G1PPRL_SUM_ADDR_FORMAT(tag)    "  "tag":"G1PPRL_ADDR_BASE_FORMAT
4644 #define G1PPRL_SUM_BYTE_FORMAT(tag)    "  "tag": "SIZE_FORMAT
4645 #define G1PPRL_SUM_MB_FORMAT(tag)      "  "tag": %1.2f MB"
4646 #define G1PPRL_SUM_MB_PERC_FORMAT(tag) G1PPRL_SUM_MB_FORMAT(tag)" / %1.2f %%"
4647 
4648 G1PrintRegionLivenessInfoClosure::
4649 G1PrintRegionLivenessInfoClosure(outputStream* out, const char* phase_name)
4650   : _out(out),
4651     _total_used_bytes(0), _total_capacity_bytes(0),
4652     _total_prev_live_bytes(0), _total_next_live_bytes(0),
4653     _hum_used_bytes(0), _hum_capacity_bytes(0),
4654     _hum_prev_live_bytes(0), _hum_next_live_bytes(0),
4655     _total_remset_bytes(0), _total_strong_code_roots_bytes(0) {
4656   G1CollectedHeap* g1h = G1CollectedHeap::heap();
4657   MemRegion g1_reserved = g1h->g1_reserved();
4658   double now = os::elapsedTime();
4659 
4660   // Print the header of the output.
4661   _out->cr();
4662   _out->print_cr(G1PPRL_LINE_PREFIX" PHASE %s @ %1.3f", phase_name, now);
4663   _out->print_cr(G1PPRL_LINE_PREFIX" HEAP"
4664                  G1PPRL_SUM_ADDR_FORMAT("reserved")
4665                  G1PPRL_SUM_BYTE_FORMAT("region-size"),
4666                  p2i(g1_reserved.start()), p2i(g1_reserved.end()),
4667                  HeapRegion::GrainBytes);
4668   _out->print_cr(G1PPRL_LINE_PREFIX);
4669   _out->print_cr(G1PPRL_LINE_PREFIX
4670                 G1PPRL_TYPE_H_FORMAT
4671                 G1PPRL_ADDR_BASE_H_FORMAT
4672                 G1PPRL_BYTE_H_FORMAT
4673                 G1PPRL_BYTE_H_FORMAT
4674                 G1PPRL_BYTE_H_FORMAT
4675                 G1PPRL_DOUBLE_H_FORMAT
4676                 G1PPRL_BYTE_H_FORMAT
4677                 G1PPRL_BYTE_H_FORMAT,
4678                 "type", "address-range",
4679                 "used", "prev-live", "next-live", "gc-eff",
4680                 "remset", "code-roots");
4681   _out->print_cr(G1PPRL_LINE_PREFIX
4682                 G1PPRL_TYPE_H_FORMAT
4683                 G1PPRL_ADDR_BASE_H_FORMAT
4684                 G1PPRL_BYTE_H_FORMAT
4685                 G1PPRL_BYTE_H_FORMAT
4686                 G1PPRL_BYTE_H_FORMAT
4687                 G1PPRL_DOUBLE_H_FORMAT
4688                 G1PPRL_BYTE_H_FORMAT
4689                 G1PPRL_BYTE_H_FORMAT,
4690                 "", "",
4691                 "(bytes)", "(bytes)", "(bytes)", "(bytes/ms)",
4692                 "(bytes)", "(bytes)");
4693 }
4694 
4695 // It takes as a parameter a reference to one of the _hum_* fields, it
4696 // deduces the corresponding value for a region in a humongous region
4697 // series (either the region size, or what's left if the _hum_* field
4698 // is < the region size), and updates the _hum_* field accordingly.
4699 size_t G1PrintRegionLivenessInfoClosure::get_hum_bytes(size_t* hum_bytes) {
4700   size_t bytes = 0;
4701   // The > 0 check is to deal with the prev and next live bytes which
4702   // could be 0.
4703   if (*hum_bytes > 0) {
4704     bytes = MIN2(HeapRegion::GrainBytes, *hum_bytes);
4705     *hum_bytes -= bytes;
4706   }
4707   return bytes;
4708 }
4709 
4710 // It deduces the values for a region in a humongous region series
4711 // from the _hum_* fields and updates those accordingly. It assumes
4712 // that that _hum_* fields have already been set up from the "starts
4713 // humongous" region and we visit the regions in address order.
4714 void G1PrintRegionLivenessInfoClosure::get_hum_bytes(size_t* used_bytes,
4715                                                      size_t* capacity_bytes,
4716                                                      size_t* prev_live_bytes,
4717                                                      size_t* next_live_bytes) {
4718   assert(_hum_used_bytes > 0 && _hum_capacity_bytes > 0, "pre-condition");
4719   *used_bytes      = get_hum_bytes(&_hum_used_bytes);
4720   *capacity_bytes  = get_hum_bytes(&_hum_capacity_bytes);
4721   *prev_live_bytes = get_hum_bytes(&_hum_prev_live_bytes);
4722   *next_live_bytes = get_hum_bytes(&_hum_next_live_bytes);
4723 }
4724 
4725 bool G1PrintRegionLivenessInfoClosure::doHeapRegion(HeapRegion* r) {
4726   const char* type       = r->get_type_str();
4727   HeapWord* bottom       = r->bottom();
4728   HeapWord* end          = r->end();
4729   size_t capacity_bytes  = r->capacity();
4730   size_t used_bytes      = r->used();
4731   size_t prev_live_bytes = r->live_bytes();
4732   size_t next_live_bytes = r->next_live_bytes();
4733   double gc_eff          = r->gc_efficiency();
4734   size_t remset_bytes    = r->rem_set()->mem_size();
4735   size_t strong_code_roots_bytes = r->rem_set()->strong_code_roots_mem_size();
4736 
4737   if (r->is_starts_humongous()) {
4738     assert(_hum_used_bytes == 0 && _hum_capacity_bytes == 0 &&
4739            _hum_prev_live_bytes == 0 && _hum_next_live_bytes == 0,
4740            "they should have been zeroed after the last time we used them");
4741     // Set up the _hum_* fields.
4742     _hum_capacity_bytes  = capacity_bytes;
4743     _hum_used_bytes      = used_bytes;
4744     _hum_prev_live_bytes = prev_live_bytes;
4745     _hum_next_live_bytes = next_live_bytes;
4746     get_hum_bytes(&used_bytes, &capacity_bytes,
4747                   &prev_live_bytes, &next_live_bytes);
4748     end = bottom + HeapRegion::GrainWords;
4749   } else if (r->is_continues_humongous()) {
4750     get_hum_bytes(&used_bytes, &capacity_bytes,
4751                   &prev_live_bytes, &next_live_bytes);
4752     assert(end == bottom + HeapRegion::GrainWords, "invariant");
4753   }
4754 
4755   _total_used_bytes      += used_bytes;
4756   _total_capacity_bytes  += capacity_bytes;
4757   _total_prev_live_bytes += prev_live_bytes;
4758   _total_next_live_bytes += next_live_bytes;
4759   _total_remset_bytes    += remset_bytes;
4760   _total_strong_code_roots_bytes += strong_code_roots_bytes;
4761 
4762   // Print a line for this particular region.
4763   _out->print_cr(G1PPRL_LINE_PREFIX
4764                  G1PPRL_TYPE_FORMAT
4765                  G1PPRL_ADDR_BASE_FORMAT
4766                  G1PPRL_BYTE_FORMAT
4767                  G1PPRL_BYTE_FORMAT
4768                  G1PPRL_BYTE_FORMAT
4769                  G1PPRL_DOUBLE_FORMAT
4770                  G1PPRL_BYTE_FORMAT
4771                  G1PPRL_BYTE_FORMAT,
4772                  type, p2i(bottom), p2i(end),
4773                  used_bytes, prev_live_bytes, next_live_bytes, gc_eff,
4774                  remset_bytes, strong_code_roots_bytes);
4775 
4776   return false;
4777 }
4778 
4779 G1PrintRegionLivenessInfoClosure::~G1PrintRegionLivenessInfoClosure() {
4780   // add static memory usages to remembered set sizes
4781   _total_remset_bytes += HeapRegionRemSet::fl_mem_size() + HeapRegionRemSet::static_mem_size();
4782   // Print the footer of the output.
4783   _out->print_cr(G1PPRL_LINE_PREFIX);
4784   _out->print_cr(G1PPRL_LINE_PREFIX
4785                  " SUMMARY"
4786                  G1PPRL_SUM_MB_FORMAT("capacity")
4787                  G1PPRL_SUM_MB_PERC_FORMAT("used")
4788                  G1PPRL_SUM_MB_PERC_FORMAT("prev-live")
4789                  G1PPRL_SUM_MB_PERC_FORMAT("next-live")
4790                  G1PPRL_SUM_MB_FORMAT("remset")
4791                  G1PPRL_SUM_MB_FORMAT("code-roots"),
4792                  bytes_to_mb(_total_capacity_bytes),
4793                  bytes_to_mb(_total_used_bytes),
4794                  perc(_total_used_bytes, _total_capacity_bytes),
4795                  bytes_to_mb(_total_prev_live_bytes),
4796                  perc(_total_prev_live_bytes, _total_capacity_bytes),
4797                  bytes_to_mb(_total_next_live_bytes),
4798                  perc(_total_next_live_bytes, _total_capacity_bytes),
4799                  bytes_to_mb(_total_remset_bytes),
4800                  bytes_to_mb(_total_strong_code_roots_bytes));
4801   _out->cr();
4802 }