/* * Copyright (c) 2001, 2015, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #ifndef SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_INLINE_HPP #define SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_INLINE_HPP #include "gc_implementation/g1/concurrentMark.hpp" #include "gc_implementation/g1/g1CollectedHeap.hpp" #include "gc_implementation/g1/g1AllocRegion.inline.hpp" #include "gc_implementation/g1/g1CollectorPolicy.hpp" #include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp" #include "gc_implementation/g1/heapRegionManager.inline.hpp" #include "gc_implementation/g1/heapRegionSet.inline.hpp" #include "runtime/orderAccess.inline.hpp" #include "utilities/taskqueue.hpp" PLABStats* G1CollectedHeap::alloc_buffer_stats(InCSetState dest) { switch (dest.value()) { case InCSetState::Young: return &_survivor_plab_stats; case InCSetState::Old: return &_old_plab_stats; default: ShouldNotReachHere(); return NULL; // Keep some compilers happy } } size_t G1CollectedHeap::desired_plab_sz(InCSetState dest) { size_t gclab_word_size = alloc_buffer_stats(dest)->desired_plab_sz(); // Prevent humongous PLAB sizes for two reasons: // * PLABs are allocated using a similar paths as oops, but should // never be in a humongous region // * Allowing humongous PLABs needlessly churns the region free lists return MIN2(_humongous_object_threshold_in_words, gclab_word_size); } HeapWord* G1CollectedHeap::par_allocate_during_gc(InCSetState dest, size_t word_size, AllocationContext_t context) { switch (dest.value()) { case InCSetState::Young: return survivor_attempt_allocation(word_size, context); case InCSetState::Old: return old_attempt_allocation(word_size, context); default: ShouldNotReachHere(); return NULL; // Keep some compilers happy } } // Inline functions for G1CollectedHeap inline AllocationContextStats& G1CollectedHeap::allocation_context_stats() { return _allocation_context_stats; } // Return the region with the given index. It assumes the index is valid. inline HeapRegion* G1CollectedHeap::region_at(uint index) const { return _hrm.at(index); } inline uint G1CollectedHeap::addr_to_region(HeapWord* addr) const { assert(is_in_reserved(addr), err_msg("Cannot calculate region index for address "PTR_FORMAT" that is outside of the heap ["PTR_FORMAT", "PTR_FORMAT")", p2i(addr), p2i(reserved_region().start()), p2i(reserved_region().end()))); return (uint)(pointer_delta(addr, reserved_region().start(), sizeof(uint8_t)) >> HeapRegion::LogOfHRGrainBytes); } inline HeapWord* G1CollectedHeap::bottom_addr_for_region(uint index) const { return _hrm.reserved().start() + index * HeapRegion::GrainWords; } template inline HeapRegion* G1CollectedHeap::heap_region_containing_raw(const T addr) const { assert(addr != NULL, "invariant"); assert(is_in_g1_reserved((const void*) addr), err_msg("Address "PTR_FORMAT" is outside of the heap ranging from ["PTR_FORMAT" to "PTR_FORMAT")", p2i((void*)addr), p2i(g1_reserved().start()), p2i(g1_reserved().end()))); return _hrm.addr_to_region((HeapWord*) addr); } template inline HeapRegion* G1CollectedHeap::heap_region_containing(const T addr) const { HeapRegion* hr = heap_region_containing_raw(addr); if (hr->is_continues_humongous()) { return hr->humongous_start_region(); } return hr; } inline void G1CollectedHeap::reset_gc_time_stamp() { _gc_time_stamp = 0; OrderAccess::fence(); // Clear the cached CSet starting regions and time stamps. // Their validity is dependent on the GC timestamp. clear_cset_start_regions(); } inline void G1CollectedHeap::increment_gc_time_stamp() { ++_gc_time_stamp; OrderAccess::fence(); } inline void G1CollectedHeap::old_set_remove(HeapRegion* hr) { _old_set.remove(hr); } inline bool G1CollectedHeap::obj_in_cs(oop obj) { HeapRegion* r = _hrm.addr_to_region((HeapWord*) obj); return r != NULL && r->in_collection_set(); } inline HeapWord* G1CollectedHeap::attempt_allocation(size_t word_size, uint* gc_count_before_ret, uint* gclocker_retry_count_ret, uint* gc_attempt) { assert_heap_not_locked_and_not_at_safepoint(); assert(!is_humongous(word_size), "attempt_allocation() should not " "be called for humongous allocation requests"); AllocationContext_t context = AllocationContext::current(); HeapWord* result = _allocator->mutator_alloc_region(context)->attempt_allocation(word_size, false /* bot_updates */); if (result == NULL) { result = attempt_allocation_slow(word_size, context, gc_count_before_ret, gclocker_retry_count_ret, gc_attempt); } assert_heap_not_locked(); if (result != NULL) { dirty_young_block(result, word_size); } return result; } inline HeapWord* G1CollectedHeap::survivor_attempt_allocation(size_t word_size, AllocationContext_t context) { assert(!is_humongous(word_size), "we should not be seeing humongous-size allocations in this path"); HeapWord* result = _allocator->survivor_gc_alloc_region(context)->attempt_allocation(word_size, false /* bot_updates */); if (result == NULL) { MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag); result = _allocator->survivor_gc_alloc_region(context)->attempt_allocation_locked(word_size, false /* bot_updates */); } if (result != NULL) { dirty_young_block(result, word_size); } return result; } inline HeapWord* G1CollectedHeap::old_attempt_allocation(size_t word_size, AllocationContext_t context) { assert(!is_humongous(word_size), "we should not be seeing humongous-size allocations in this path"); HeapWord* result = _allocator->old_gc_alloc_region(context)->attempt_allocation(word_size, true /* bot_updates */); if (result == NULL) { MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag); result = _allocator->old_gc_alloc_region(context)->attempt_allocation_locked(word_size, true /* bot_updates */); } return result; } // It dirties the cards that cover the block so that so that the post // write barrier never queues anything when updating objects on this // block. It is assumed (and in fact we assert) that the block // belongs to a young region. inline void G1CollectedHeap::dirty_young_block(HeapWord* start, size_t word_size) { assert_heap_not_locked(); // Assign the containing region to containing_hr so that we don't // have to keep calling heap_region_containing_raw() in the // asserts below. DEBUG_ONLY(HeapRegion* containing_hr = heap_region_containing_raw(start);) assert(word_size > 0, "pre-condition"); assert(containing_hr->is_in(start), "it should contain start"); assert(containing_hr->is_young(), "it should be young"); assert(!containing_hr->is_humongous(), "it should not be humongous"); HeapWord* end = start + word_size; assert(containing_hr->is_in(end - 1), "it should also contain end - 1"); MemRegion mr(start, end); g1_barrier_set()->g1_mark_as_young(mr); } inline RefToScanQueue* G1CollectedHeap::task_queue(int i) const { return _task_queues->queue(i); } inline bool G1CollectedHeap::isMarkedPrev(oop obj) const { return _cm->prevMarkBitMap()->isMarked((HeapWord *)obj); } inline bool G1CollectedHeap::isMarkedNext(oop obj) const { return _cm->nextMarkBitMap()->isMarked((HeapWord *)obj); } // This is a fast test on whether a reference points into the // collection set or not. Assume that the reference // points into the heap. inline bool G1CollectedHeap::is_in_cset(oop obj) { bool ret = _in_cset_fast_test.is_in_cset((HeapWord*)obj); // let's make sure the result is consistent with what the slower // test returns assert( ret || !obj_in_cs(obj), "sanity"); assert(!ret || obj_in_cs(obj), "sanity"); return ret; } bool G1CollectedHeap::is_in_cset(const HeapRegion* hr) { return _in_cset_fast_test.is_in_cset(hr); } bool G1CollectedHeap::is_in_cset_or_humongous(const oop obj) { return _in_cset_fast_test.is_in_cset_or_humongous((HeapWord*)obj); } InCSetState G1CollectedHeap::in_cset_state(const oop obj) { return _in_cset_fast_test.at((HeapWord*)obj); } void G1CollectedHeap::register_humongous_region_with_cset(uint index) { _in_cset_fast_test.set_humongous(index); } #ifndef PRODUCT // Support for G1EvacuationFailureALot inline bool G1CollectedHeap::evacuation_failure_alot_for_gc_type(bool gcs_are_young, bool during_initial_mark, bool during_marking) { bool res = false; if (during_marking) { res |= G1EvacuationFailureALotDuringConcMark; } if (during_initial_mark) { res |= G1EvacuationFailureALotDuringInitialMark; } if (gcs_are_young) { res |= G1EvacuationFailureALotDuringYoungGC; } else { // GCs are mixed res |= G1EvacuationFailureALotDuringMixedGC; } return res; } inline void G1CollectedHeap::set_evacuation_failure_alot_for_current_gc() { if (G1EvacuationFailureALot) { // Note we can't assert that _evacuation_failure_alot_for_current_gc // is clear here. It may have been set during a previous GC but that GC // did not copy enough objects (i.e. G1EvacuationFailureALotCount) to // trigger an evacuation failure and clear the flags and and counts. // Check if we have gone over the interval. const size_t gc_num = total_collections(); const size_t elapsed_gcs = gc_num - _evacuation_failure_alot_gc_number; _evacuation_failure_alot_for_current_gc = (elapsed_gcs >= G1EvacuationFailureALotInterval); // Now check if G1EvacuationFailureALot is enabled for the current GC type. const bool gcs_are_young = g1_policy()->gcs_are_young(); const bool during_im = g1_policy()->during_initial_mark_pause(); const bool during_marking = mark_in_progress(); _evacuation_failure_alot_for_current_gc &= evacuation_failure_alot_for_gc_type(gcs_are_young, during_im, during_marking); } } inline bool G1CollectedHeap::evacuation_should_fail() { if (!G1EvacuationFailureALot || !_evacuation_failure_alot_for_current_gc) { return false; } // G1EvacuationFailureALot is in effect for current GC // Access to _evacuation_failure_alot_count is not atomic; // the value does not have to be exact. if (++_evacuation_failure_alot_count < G1EvacuationFailureALotCount) { return false; } _evacuation_failure_alot_count = 0; return true; } inline void G1CollectedHeap::reset_evacuation_should_fail() { if (G1EvacuationFailureALot) { _evacuation_failure_alot_gc_number = total_collections(); _evacuation_failure_alot_count = 0; _evacuation_failure_alot_for_current_gc = false; } } #endif // #ifndef PRODUCT inline bool G1CollectedHeap::is_in_young(const oop obj) { if (obj == NULL) { return false; } return heap_region_containing(obj)->is_young(); } // We don't need barriers for initializing stores to objects // in the young gen: for the SATB pre-barrier, there is no // pre-value that needs to be remembered; for the remembered-set // update logging post-barrier, we don't maintain remembered set // information for young gen objects. inline bool G1CollectedHeap::can_elide_initializing_store_barrier(oop new_obj) { return is_in_young(new_obj); } inline bool G1CollectedHeap::is_obj_dead(const oop obj) const { if (obj == NULL) { return false; } return is_obj_dead(obj, heap_region_containing(obj)); } inline bool G1CollectedHeap::is_obj_ill(const oop obj) const { if (obj == NULL) { return false; } return is_obj_ill(obj, heap_region_containing(obj)); } inline void G1CollectedHeap::set_humongous_is_live(oop obj) { uint region = addr_to_region((HeapWord*)obj); // We not only set the "live" flag in the humongous_is_live table, but also // reset the entry in the _in_cset_fast_test table so that subsequent references // to the same humongous object do not go into the slow path again. // This is racy, as multiple threads may at the same time enter here, but this // is benign. // During collection we only ever set the "live" flag, and only ever clear the // entry in the in_cset_fast_table. // We only ever evaluate the contents of these tables (in the VM thread) after // having synchronized the worker threads with the VM thread, or in the same // thread (i.e. within the VM thread). if (!_humongous_is_live.is_live(region)) { _humongous_is_live.set_live(region); _in_cset_fast_test.clear_humongous(region); } } #endif // SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_INLINE_HPP