1 /*
   2  * Copyright (c) 2001, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #if !defined(__clang_major__) && defined(__GNUC__)
  26 // FIXME, formats have issues.  Disable this macro definition, compile, and study warnings for more information.
  27 #define ATTRIBUTE_PRINTF(x,y)
  28 #endif
  29 
  30 #include "precompiled.hpp"
  31 #include "classfile/metadataOnStackMark.hpp"
  32 #include "classfile/stringTable.hpp"
  33 #include "code/codeCache.hpp"
  34 #include "code/icBuffer.hpp"
  35 #include "gc_implementation/g1/bufferingOopClosure.hpp"
  36 #include "gc_implementation/g1/concurrentG1Refine.hpp"
  37 #include "gc_implementation/g1/concurrentG1RefineThread.hpp"
  38 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
  39 #include "gc_implementation/g1/g1AllocRegion.inline.hpp"
  40 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
  41 #include "gc_implementation/g1/g1CollectorPolicy.hpp"
  42 #include "gc_implementation/g1/g1ErgoVerbose.hpp"
  43 #include "gc_implementation/g1/g1EvacFailure.hpp"
  44 #include "gc_implementation/g1/g1GCPhaseTimes.hpp"
  45 #include "gc_implementation/g1/g1Log.hpp"
  46 #include "gc_implementation/g1/g1MarkSweep.hpp"
  47 #include "gc_implementation/g1/g1OopClosures.inline.hpp"
  48 #include "gc_implementation/g1/g1ParScanThreadState.inline.hpp"
  49 #include "gc_implementation/g1/g1RegionToSpaceMapper.hpp"
  50 #include "gc_implementation/g1/g1RemSet.inline.hpp"
  51 #include "gc_implementation/g1/g1RootProcessor.hpp"
  52 #include "gc_implementation/g1/g1StringDedup.hpp"
  53 #include "gc_implementation/g1/g1YCTypes.hpp"
  54 #include "gc_implementation/g1/heapRegion.inline.hpp"
  55 #include "gc_implementation/g1/heapRegionRemSet.hpp"
  56 #include "gc_implementation/g1/heapRegionSet.inline.hpp"
  57 #include "gc_implementation/g1/vm_operations_g1.hpp"
  58 #include "gc_implementation/shared/gcHeapSummary.hpp"
  59 #include "gc_implementation/shared/gcTimer.hpp"
  60 #include "gc_implementation/shared/gcTrace.hpp"
  61 #include "gc_implementation/shared/gcTraceTime.hpp"
  62 #include "gc_implementation/shared/isGCActiveMark.hpp"
  63 #include "memory/allocation.hpp"
  64 #include "memory/gcLocker.inline.hpp"
  65 #include "memory/generationSpec.hpp"
  66 #include "memory/iterator.hpp"
  67 #include "memory/referenceProcessor.hpp"
  68 #include "oops/oop.inline.hpp"
  69 #include "oops/oop.pcgc.inline.hpp"
  70 #include "runtime/atomic.inline.hpp"
  71 #include "runtime/orderAccess.inline.hpp"
  72 #include "runtime/vmThread.hpp"
  73 #include "utilities/globalDefinitions.hpp"
  74 
  75 size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;
  76 
  77 // turn it on so that the contents of the young list (scan-only /
  78 // to-be-collected) are printed at "strategic" points before / during
  79 // / after the collection --- this is useful for debugging
  80 #define YOUNG_LIST_VERBOSE 0
  81 // CURRENT STATUS
  82 // This file is under construction.  Search for "FIXME".
  83 
  84 // INVARIANTS/NOTES
  85 //
  86 // All allocation activity covered by the G1CollectedHeap interface is
  87 // serialized by acquiring the HeapLock.  This happens in mem_allocate
  88 // and allocate_new_tlab, which are the "entry" points to the
  89 // allocation code from the rest of the JVM.  (Note that this does not
  90 // apply to TLAB allocation, which is not part of this interface: it
  91 // is done by clients of this interface.)
  92 
  93 // Local to this file.
  94 
  95 class RefineCardTableEntryClosure: public CardTableEntryClosure {
  96   bool _concurrent;
  97 public:
  98   RefineCardTableEntryClosure() : _concurrent(true) { }
  99 
 100   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
 101     bool oops_into_cset = G1CollectedHeap::heap()->g1_rem_set()->refine_card(card_ptr, worker_i, false);
 102     // This path is executed by the concurrent refine or mutator threads,
 103     // concurrently, and so we do not care if card_ptr contains references
 104     // that point into the collection set.
 105     assert(!oops_into_cset, "should be");
 106 
 107     if (_concurrent && SuspendibleThreadSet::should_yield()) {
 108       // Caller will actually yield.
 109       return false;
 110     }
 111     // Otherwise, we finished successfully; return true.
 112     return true;
 113   }
 114 
 115   void set_concurrent(bool b) { _concurrent = b; }
 116 };
 117 
 118 
 119 class RedirtyLoggedCardTableEntryClosure : public CardTableEntryClosure {
 120  private:
 121   size_t _num_processed;
 122 
 123  public:
 124   RedirtyLoggedCardTableEntryClosure() : CardTableEntryClosure(), _num_processed(0) { }
 125 
 126   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
 127     *card_ptr = CardTableModRefBS::dirty_card_val();
 128     _num_processed++;
 129     return true;
 130   }
 131 
 132   size_t num_processed() const { return _num_processed; }
 133 };
 134 
 135 YoungList::YoungList(G1CollectedHeap* g1h) :
 136     _g1h(g1h), _head(NULL), _length(0), _last_sampled_rs_lengths(0),
 137     _survivor_head(NULL), _survivor_tail(NULL), _survivor_length(0) {
 138   guarantee(check_list_empty(false), "just making sure...");
 139 }
 140 
 141 void YoungList::push_region(HeapRegion *hr) {
 142   assert(!hr->is_young(), "should not already be young");
 143   assert(hr->get_next_young_region() == NULL, "cause it should!");
 144 
 145   hr->set_next_young_region(_head);
 146   _head = hr;
 147 
 148   _g1h->g1_policy()->set_region_eden(hr, (int) _length);
 149   ++_length;
 150 }
 151 
 152 void YoungList::add_survivor_region(HeapRegion* hr) {
 153   assert(hr->is_survivor(), "should be flagged as survivor region");
 154   assert(hr->get_next_young_region() == NULL, "cause it should!");
 155 
 156   hr->set_next_young_region(_survivor_head);
 157   if (_survivor_head == NULL) {
 158     _survivor_tail = hr;
 159   }
 160   _survivor_head = hr;
 161   ++_survivor_length;
 162 }
 163 
 164 void YoungList::empty_list(HeapRegion* list) {
 165   while (list != NULL) {
 166     HeapRegion* next = list->get_next_young_region();
 167     list->set_next_young_region(NULL);
 168     list->uninstall_surv_rate_group();
 169     // This is called before a Full GC and all the non-empty /
 170     // non-humongous regions at the end of the Full GC will end up as
 171     // old anyway.
 172     list->set_old();
 173     list = next;
 174   }
 175 }
 176 
 177 void YoungList::empty_list() {
 178   assert(check_list_well_formed(), "young list should be well formed");
 179 
 180   empty_list(_head);
 181   _head = NULL;
 182   _length = 0;
 183 
 184   empty_list(_survivor_head);
 185   _survivor_head = NULL;
 186   _survivor_tail = NULL;
 187   _survivor_length = 0;
 188 
 189   _last_sampled_rs_lengths = 0;
 190 
 191   assert(check_list_empty(false), "just making sure...");
 192 }
 193 
 194 bool YoungList::check_list_well_formed() {
 195   bool ret = true;
 196 
 197   uint length = 0;
 198   HeapRegion* curr = _head;
 199   HeapRegion* last = NULL;
 200   while (curr != NULL) {
 201     if (!curr->is_young()) {
 202       gclog_or_tty->print_cr("### YOUNG REGION "PTR_FORMAT"-"PTR_FORMAT" "
 203                              "incorrectly tagged (y: %d, surv: %d)",
 204                              curr->bottom(), curr->end(),
 205                              curr->is_young(), curr->is_survivor());
 206       ret = false;
 207     }
 208     ++length;
 209     last = curr;
 210     curr = curr->get_next_young_region();
 211   }
 212   ret = ret && (length == _length);
 213 
 214   if (!ret) {
 215     gclog_or_tty->print_cr("### YOUNG LIST seems not well formed!");
 216     gclog_or_tty->print_cr("###   list has %u entries, _length is %u",
 217                            length, _length);
 218   }
 219 
 220   return ret;
 221 }
 222 
 223 bool YoungList::check_list_empty(bool check_sample) {
 224   bool ret = true;
 225 
 226   if (_length != 0) {
 227     gclog_or_tty->print_cr("### YOUNG LIST should have 0 length, not %u",
 228                   _length);
 229     ret = false;
 230   }
 231   if (check_sample && _last_sampled_rs_lengths != 0) {
 232     gclog_or_tty->print_cr("### YOUNG LIST has non-zero last sampled RS lengths");
 233     ret = false;
 234   }
 235   if (_head != NULL) {
 236     gclog_or_tty->print_cr("### YOUNG LIST does not have a NULL head");
 237     ret = false;
 238   }
 239   if (!ret) {
 240     gclog_or_tty->print_cr("### YOUNG LIST does not seem empty");
 241   }
 242 
 243   return ret;
 244 }
 245 
 246 void
 247 YoungList::rs_length_sampling_init() {
 248   _sampled_rs_lengths = 0;
 249   _curr               = _head;
 250 }
 251 
 252 bool
 253 YoungList::rs_length_sampling_more() {
 254   return _curr != NULL;
 255 }
 256 
 257 void
 258 YoungList::rs_length_sampling_next() {
 259   assert( _curr != NULL, "invariant" );
 260   size_t rs_length = _curr->rem_set()->occupied();
 261 
 262   _sampled_rs_lengths += rs_length;
 263 
 264   // The current region may not yet have been added to the
 265   // incremental collection set (it gets added when it is
 266   // retired as the current allocation region).
 267   if (_curr->in_collection_set()) {
 268     // Update the collection set policy information for this region
 269     _g1h->g1_policy()->update_incremental_cset_info(_curr, rs_length);
 270   }
 271 
 272   _curr = _curr->get_next_young_region();
 273   if (_curr == NULL) {
 274     _last_sampled_rs_lengths = _sampled_rs_lengths;
 275     // gclog_or_tty->print_cr("last sampled RS lengths = %d", _last_sampled_rs_lengths);
 276   }
 277 }
 278 
 279 void
 280 YoungList::reset_auxilary_lists() {
 281   guarantee( is_empty(), "young list should be empty" );
 282   assert(check_list_well_formed(), "young list should be well formed");
 283 
 284   // Add survivor regions to SurvRateGroup.
 285   _g1h->g1_policy()->note_start_adding_survivor_regions();
 286   _g1h->g1_policy()->finished_recalculating_age_indexes(true /* is_survivors */);
 287 
 288   int young_index_in_cset = 0;
 289   for (HeapRegion* curr = _survivor_head;
 290        curr != NULL;
 291        curr = curr->get_next_young_region()) {
 292     _g1h->g1_policy()->set_region_survivor(curr, young_index_in_cset);
 293 
 294     // The region is a non-empty survivor so let's add it to
 295     // the incremental collection set for the next evacuation
 296     // pause.
 297     _g1h->g1_policy()->add_region_to_incremental_cset_rhs(curr);
 298     young_index_in_cset += 1;
 299   }
 300   assert((uint) young_index_in_cset == _survivor_length, "post-condition");
 301   _g1h->g1_policy()->note_stop_adding_survivor_regions();
 302 
 303   _head   = _survivor_head;
 304   _length = _survivor_length;
 305   if (_survivor_head != NULL) {
 306     assert(_survivor_tail != NULL, "cause it shouldn't be");
 307     assert(_survivor_length > 0, "invariant");
 308     _survivor_tail->set_next_young_region(NULL);
 309   }
 310 
 311   // Don't clear the survivor list handles until the start of
 312   // the next evacuation pause - we need it in order to re-tag
 313   // the survivor regions from this evacuation pause as 'young'
 314   // at the start of the next.
 315 
 316   _g1h->g1_policy()->finished_recalculating_age_indexes(false /* is_survivors */);
 317 
 318   assert(check_list_well_formed(), "young list should be well formed");
 319 }
 320 
 321 void YoungList::print() {
 322   HeapRegion* lists[] = {_head,   _survivor_head};
 323   const char* names[] = {"YOUNG", "SURVIVOR"};
 324 
 325   for (uint list = 0; list < ARRAY_SIZE(lists); ++list) {
 326     gclog_or_tty->print_cr("%s LIST CONTENTS", names[list]);
 327     HeapRegion *curr = lists[list];
 328     if (curr == NULL)
 329       gclog_or_tty->print_cr("  empty");
 330     while (curr != NULL) {
 331       gclog_or_tty->print_cr("  "HR_FORMAT", P: "PTR_FORMAT ", N: "PTR_FORMAT", age: %4d",
 332                              HR_FORMAT_PARAMS(curr),
 333                              curr->prev_top_at_mark_start(),
 334                              curr->next_top_at_mark_start(),
 335                              curr->age_in_surv_rate_group_cond());
 336       curr = curr->get_next_young_region();
 337     }
 338   }
 339 
 340   gclog_or_tty->cr();
 341 }
 342 
 343 void G1RegionMappingChangedListener::reset_from_card_cache(uint start_idx, size_t num_regions) {
 344   HeapRegionRemSet::invalidate_from_card_cache(start_idx, num_regions);
 345 }
 346 
 347 void G1RegionMappingChangedListener::on_commit(uint start_idx, size_t num_regions, bool zero_filled) {
 348   // The from card cache is not the memory that is actually committed. So we cannot
 349   // take advantage of the zero_filled parameter.
 350   reset_from_card_cache(start_idx, num_regions);
 351 }
 352 
 353 void G1CollectedHeap::push_dirty_cards_region(HeapRegion* hr)
 354 {
 355   // Claim the right to put the region on the dirty cards region list
 356   // by installing a self pointer.
 357   HeapRegion* next = hr->get_next_dirty_cards_region();
 358   if (next == NULL) {
 359     HeapRegion* res = (HeapRegion*)
 360       Atomic::cmpxchg_ptr(hr, hr->next_dirty_cards_region_addr(),
 361                           NULL);
 362     if (res == NULL) {
 363       HeapRegion* head;
 364       do {
 365         // Put the region to the dirty cards region list.
 366         head = _dirty_cards_region_list;
 367         next = (HeapRegion*)
 368           Atomic::cmpxchg_ptr(hr, &_dirty_cards_region_list, head);
 369         if (next == head) {
 370           assert(hr->get_next_dirty_cards_region() == hr,
 371                  "hr->get_next_dirty_cards_region() != hr");
 372           if (next == NULL) {
 373             // The last region in the list points to itself.
 374             hr->set_next_dirty_cards_region(hr);
 375           } else {
 376             hr->set_next_dirty_cards_region(next);
 377           }
 378         }
 379       } while (next != head);
 380     }
 381   }
 382 }
 383 
 384 HeapRegion* G1CollectedHeap::pop_dirty_cards_region()
 385 {
 386   HeapRegion* head;
 387   HeapRegion* hr;
 388   do {
 389     head = _dirty_cards_region_list;
 390     if (head == NULL) {
 391       return NULL;
 392     }
 393     HeapRegion* new_head = head->get_next_dirty_cards_region();
 394     if (head == new_head) {
 395       // The last region.
 396       new_head = NULL;
 397     }
 398     hr = (HeapRegion*)Atomic::cmpxchg_ptr(new_head, &_dirty_cards_region_list,
 399                                           head);
 400   } while (hr != head);
 401   assert(hr != NULL, "invariant");
 402   hr->set_next_dirty_cards_region(NULL);
 403   return hr;
 404 }
 405 
 406 #ifdef ASSERT
 407 // A region is added to the collection set as it is retired
 408 // so an address p can point to a region which will be in the
 409 // collection set but has not yet been retired.  This method
 410 // therefore is only accurate during a GC pause after all
 411 // regions have been retired.  It is used for debugging
 412 // to check if an nmethod has references to objects that can
 413 // be move during a partial collection.  Though it can be
 414 // inaccurate, it is sufficient for G1 because the conservative
 415 // implementation of is_scavengable() for G1 will indicate that
 416 // all nmethods must be scanned during a partial collection.
 417 bool G1CollectedHeap::is_in_partial_collection(const void* p) {
 418   if (p == NULL) {
 419     return false;
 420   }
 421   return heap_region_containing(p)->in_collection_set();
 422 }
 423 #endif
 424 
 425 // Returns true if the reference points to an object that
 426 // can move in an incremental collection.
 427 bool G1CollectedHeap::is_scavengable(const void* p) {
 428   HeapRegion* hr = heap_region_containing(p);
 429   return !hr->is_humongous();
 430 }
 431 
 432 // Private class members.
 433 
 434 G1CollectedHeap* G1CollectedHeap::_g1h;
 435 
 436 // Private methods.
 437 
 438 HeapRegion*
 439 G1CollectedHeap::new_region_try_secondary_free_list(bool is_old) {
 440   MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
 441   while (!_secondary_free_list.is_empty() || free_regions_coming()) {
 442     if (!_secondary_free_list.is_empty()) {
 443       if (G1ConcRegionFreeingVerbose) {
 444         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 445                                "secondary_free_list has %u entries",
 446                                _secondary_free_list.length());
 447       }
 448       // It looks as if there are free regions available on the
 449       // secondary_free_list. Let's move them to the free_list and try
 450       // again to allocate from it.
 451       append_secondary_free_list();
 452 
 453       assert(_hrm.num_free_regions() > 0, "if the secondary_free_list was not "
 454              "empty we should have moved at least one entry to the free_list");
 455       HeapRegion* res = _hrm.allocate_free_region(is_old);
 456       if (G1ConcRegionFreeingVerbose) {
 457         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 458                                "allocated "HR_FORMAT" from secondary_free_list",
 459                                HR_FORMAT_PARAMS(res));
 460       }
 461       return res;
 462     }
 463 
 464     // Wait here until we get notified either when (a) there are no
 465     // more free regions coming or (b) some regions have been moved on
 466     // the secondary_free_list.
 467     SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
 468   }
 469 
 470   if (G1ConcRegionFreeingVerbose) {
 471     gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 472                            "could not allocate from secondary_free_list");
 473   }
 474   return NULL;
 475 }
 476 
 477 HeapRegion* G1CollectedHeap::new_region(size_t word_size, bool is_old, bool do_expand) {
 478   assert(!is_humongous(word_size) || word_size <= HeapRegion::GrainWords,
 479          "the only time we use this to allocate a humongous region is "
 480          "when we are allocating a single humongous region");
 481 
 482   HeapRegion* res;
 483   if (G1StressConcRegionFreeing) {
 484     if (!_secondary_free_list.is_empty()) {
 485       if (G1ConcRegionFreeingVerbose) {
 486         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 487                                "forced to look at the secondary_free_list");
 488       }
 489       res = new_region_try_secondary_free_list(is_old);
 490       if (res != NULL) {
 491         return res;
 492       }
 493     }
 494   }
 495 
 496   res = _hrm.allocate_free_region(is_old);
 497 
 498   if (res == NULL) {
 499     if (G1ConcRegionFreeingVerbose) {
 500       gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 501                              "res == NULL, trying the secondary_free_list");
 502     }
 503     res = new_region_try_secondary_free_list(is_old);
 504   }
 505   if (res == NULL && do_expand && _expand_heap_after_alloc_failure) {
 506     // Currently, only attempts to allocate GC alloc regions set
 507     // do_expand to true. So, we should only reach here during a
 508     // safepoint. If this assumption changes we might have to
 509     // reconsider the use of _expand_heap_after_alloc_failure.
 510     assert(SafepointSynchronize::is_at_safepoint(), "invariant");
 511 
 512     ergo_verbose1(ErgoHeapSizing,
 513                   "attempt heap expansion",
 514                   ergo_format_reason("region allocation request failed")
 515                   ergo_format_byte("allocation request"),
 516                   word_size * HeapWordSize);
 517     if (expand(word_size * HeapWordSize)) {
 518       // Given that expand() succeeded in expanding the heap, and we
 519       // always expand the heap by an amount aligned to the heap
 520       // region size, the free list should in theory not be empty.
 521       // In either case allocate_free_region() will check for NULL.
 522       res = _hrm.allocate_free_region(is_old);
 523     } else {
 524       _expand_heap_after_alloc_failure = false;
 525     }
 526   }
 527   return res;
 528 }
 529 
 530 HeapWord*
 531 G1CollectedHeap::humongous_obj_allocate_initialize_regions(uint first,
 532                                                            uint num_regions,
 533                                                            size_t word_size,
 534                                                            AllocationContext_t context) {
 535   assert(first != G1_NO_HRM_INDEX, "pre-condition");
 536   assert(is_humongous(word_size), "word_size should be humongous");
 537   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
 538 
 539   // Index of last region in the series + 1.
 540   uint last = first + num_regions;
 541 
 542   // We need to initialize the region(s) we just discovered. This is
 543   // a bit tricky given that it can happen concurrently with
 544   // refinement threads refining cards on these regions and
 545   // potentially wanting to refine the BOT as they are scanning
 546   // those cards (this can happen shortly after a cleanup; see CR
 547   // 6991377). So we have to set up the region(s) carefully and in
 548   // a specific order.
 549 
 550   // The word size sum of all the regions we will allocate.
 551   size_t word_size_sum = (size_t) num_regions * HeapRegion::GrainWords;
 552   assert(word_size <= word_size_sum, "sanity");
 553 
 554   // This will be the "starts humongous" region.
 555   HeapRegion* first_hr = region_at(first);
 556   // The header of the new object will be placed at the bottom of
 557   // the first region.
 558   HeapWord* new_obj = first_hr->bottom();
 559   // This will be the new end of the first region in the series that
 560   // should also match the end of the last region in the series.
 561   HeapWord* new_end = new_obj + word_size_sum;
 562   // This will be the new top of the first region that will reflect
 563   // this allocation.
 564   HeapWord* new_top = new_obj + word_size;
 565 
 566   // First, we need to zero the header of the space that we will be
 567   // allocating. When we update top further down, some refinement
 568   // threads might try to scan the region. By zeroing the header we
 569   // ensure that any thread that will try to scan the region will
 570   // come across the zero klass word and bail out.
 571   //
 572   // NOTE: It would not have been correct to have used
 573   // CollectedHeap::fill_with_object() and make the space look like
 574   // an int array. The thread that is doing the allocation will
 575   // later update the object header to a potentially different array
 576   // type and, for a very short period of time, the klass and length
 577   // fields will be inconsistent. This could cause a refinement
 578   // thread to calculate the object size incorrectly.
 579   Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);
 580 
 581   // We will set up the first region as "starts humongous". This
 582   // will also update the BOT covering all the regions to reflect
 583   // that there is a single object that starts at the bottom of the
 584   // first region.
 585   first_hr->set_starts_humongous(new_top, new_end);
 586   first_hr->set_allocation_context(context);
 587   // Then, if there are any, we will set up the "continues
 588   // humongous" regions.
 589   HeapRegion* hr = NULL;
 590   for (uint i = first + 1; i < last; ++i) {
 591     hr = region_at(i);
 592     hr->set_continues_humongous(first_hr);
 593     hr->set_allocation_context(context);
 594   }
 595   // If we have "continues humongous" regions (hr != NULL), then the
 596   // end of the last one should match new_end.
 597   assert(hr == NULL || hr->end() == new_end, "sanity");
 598 
 599   // Up to this point no concurrent thread would have been able to
 600   // do any scanning on any region in this series. All the top
 601   // fields still point to bottom, so the intersection between
 602   // [bottom,top] and [card_start,card_end] will be empty. Before we
 603   // update the top fields, we'll do a storestore to make sure that
 604   // no thread sees the update to top before the zeroing of the
 605   // object header and the BOT initialization.
 606   OrderAccess::storestore();
 607 
 608   // Now that the BOT and the object header have been initialized,
 609   // we can update top of the "starts humongous" region.
 610   assert(first_hr->bottom() < new_top && new_top <= first_hr->end(),
 611          "new_top should be in this region");
 612   first_hr->set_top(new_top);
 613   if (_hr_printer.is_active()) {
 614     HeapWord* bottom = first_hr->bottom();
 615     HeapWord* end = first_hr->orig_end();
 616     if ((first + 1) == last) {
 617       // the series has a single humongous region
 618       _hr_printer.alloc(G1HRPrinter::SingleHumongous, first_hr, new_top);
 619     } else {
 620       // the series has more than one humongous regions
 621       _hr_printer.alloc(G1HRPrinter::StartsHumongous, first_hr, end);
 622     }
 623   }
 624 
 625   // Now, we will update the top fields of the "continues humongous"
 626   // regions. The reason we need to do this is that, otherwise,
 627   // these regions would look empty and this will confuse parts of
 628   // G1. For example, the code that looks for a consecutive number
 629   // of empty regions will consider them empty and try to
 630   // re-allocate them. We can extend is_empty() to also include
 631   // !is_continues_humongous(), but it is easier to just update the top
 632   // fields here. The way we set top for all regions (i.e., top ==
 633   // end for all regions but the last one, top == new_top for the
 634   // last one) is actually used when we will free up the humongous
 635   // region in free_humongous_region().
 636   hr = NULL;
 637   for (uint i = first + 1; i < last; ++i) {
 638     hr = region_at(i);
 639     if ((i + 1) == last) {
 640       // last continues humongous region
 641       assert(hr->bottom() < new_top && new_top <= hr->end(),
 642              "new_top should fall on this region");
 643       hr->set_top(new_top);
 644       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, new_top);
 645     } else {
 646       // not last one
 647       assert(new_top > hr->end(), "new_top should be above this region");
 648       hr->set_top(hr->end());
 649       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, hr->end());
 650     }
 651   }
 652   // If we have continues humongous regions (hr != NULL), then the
 653   // end of the last one should match new_end and its top should
 654   // match new_top.
 655   assert(hr == NULL ||
 656          (hr->end() == new_end && hr->top() == new_top), "sanity");
 657   check_bitmaps("Humongous Region Allocation", first_hr);
 658 
 659   assert(first_hr->used() == word_size * HeapWordSize, "invariant");
 660   _allocator->increase_used(first_hr->used());
 661   _humongous_set.add(first_hr);
 662 
 663   return new_obj;
 664 }
 665 
 666 // If could fit into free regions w/o expansion, try.
 667 // Otherwise, if can expand, do so.
 668 // Otherwise, if using ex regions might help, try with ex given back.
 669 HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size, AllocationContext_t context) {
 670   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
 671 
 672   verify_region_sets_optional();
 673 
 674   uint first = G1_NO_HRM_INDEX;
 675   uint obj_regions = (uint)(align_size_up_(word_size, HeapRegion::GrainWords) / HeapRegion::GrainWords);
 676 
 677   if (obj_regions == 1) {
 678     // Only one region to allocate, try to use a fast path by directly allocating
 679     // from the free lists. Do not try to expand here, we will potentially do that
 680     // later.
 681     HeapRegion* hr = new_region(word_size, true /* is_old */, false /* do_expand */);
 682     if (hr != NULL) {
 683       first = hr->hrm_index();
 684     }
 685   } else {
 686     // We can't allocate humongous regions spanning more than one region while
 687     // cleanupComplete() is running, since some of the regions we find to be
 688     // empty might not yet be added to the free list. It is not straightforward
 689     // to know in which list they are on so that we can remove them. We only
 690     // need to do this if we need to allocate more than one region to satisfy the
 691     // current humongous allocation request. If we are only allocating one region
 692     // we use the one-region region allocation code (see above), that already
 693     // potentially waits for regions from the secondary free list.
 694     wait_while_free_regions_coming();
 695     append_secondary_free_list_if_not_empty_with_lock();
 696 
 697     // Policy: Try only empty regions (i.e. already committed first). Maybe we
 698     // are lucky enough to find some.
 699     first = _hrm.find_contiguous_only_empty(obj_regions);
 700     if (first != G1_NO_HRM_INDEX) {
 701       _hrm.allocate_free_regions_starting_at(first, obj_regions);
 702     }
 703   }
 704 
 705   if (first == G1_NO_HRM_INDEX) {
 706     // Policy: We could not find enough regions for the humongous object in the
 707     // free list. Look through the heap to find a mix of free and uncommitted regions.
 708     // If so, try expansion.
 709     first = _hrm.find_contiguous_empty_or_unavailable(obj_regions);
 710     if (first != G1_NO_HRM_INDEX) {
 711       // We found something. Make sure these regions are committed, i.e. expand
 712       // the heap. Alternatively we could do a defragmentation GC.
 713       ergo_verbose1(ErgoHeapSizing,
 714                     "attempt heap expansion",
 715                     ergo_format_reason("humongous allocation request failed")
 716                     ergo_format_byte("allocation request"),
 717                     word_size * HeapWordSize);
 718 
 719       _hrm.expand_at(first, obj_regions);
 720       g1_policy()->record_new_heap_size(num_regions());
 721 
 722 #ifdef ASSERT
 723       for (uint i = first; i < first + obj_regions; ++i) {
 724         HeapRegion* hr = region_at(i);
 725         assert(hr->is_free(), "sanity");
 726         assert(hr->is_empty(), "sanity");
 727         assert(is_on_master_free_list(hr), "sanity");
 728       }
 729 #endif
 730       _hrm.allocate_free_regions_starting_at(first, obj_regions);
 731     } else {
 732       // Policy: Potentially trigger a defragmentation GC.
 733     }
 734   }
 735 
 736   HeapWord* result = NULL;
 737   if (first != G1_NO_HRM_INDEX) {
 738     result = humongous_obj_allocate_initialize_regions(first, obj_regions,
 739                                                        word_size, context);
 740     assert(result != NULL, "it should always return a valid result");
 741 
 742     // A successful humongous object allocation changes the used space
 743     // information of the old generation so we need to recalculate the
 744     // sizes and update the jstat counters here.
 745     g1mm()->update_sizes();
 746   }
 747 
 748   verify_region_sets_optional();
 749 
 750   return result;
 751 }
 752 
 753 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t word_size) {
 754   assert_heap_not_locked_and_not_at_safepoint();
 755   assert(!is_humongous(word_size), "we do not allow humongous TLABs");
 756 
 757   uint dummy_gc_count_before;
 758   uint dummy_gclocker_retry_count = 0;
 759   uint gc_attempts = 1;
 760   return attempt_allocation(word_size, &dummy_gc_count_before, &dummy_gclocker_retry_count, &gc_attempts);
 761 }
 762 
 763 HeapWord*
 764 G1CollectedHeap::mem_allocate(size_t word_size,
 765                               bool*  gc_overhead_limit_was_exceeded) {
 766   assert_heap_not_locked_and_not_at_safepoint();
 767 
 768   // Loop until the allocation is satisfied, or unsatisfied after GC.
 769   for (uint try_count = 1, gclocker_retry_count = 0, gc_attempt = 1; /* we'll return */; try_count += 1) {
 770     uint gc_count_before;
 771 
 772     HeapWord* result = NULL;
 773     if (!is_humongous(word_size)) {
 774       result = attempt_allocation(word_size, &gc_count_before, &gclocker_retry_count, &gc_attempt);
 775     } else {
 776       result = attempt_allocation_humongous(word_size, &gc_count_before, &gclocker_retry_count, &gc_attempt);
 777     }
 778     if (result != NULL) {
 779       return result;
 780     }
 781 
 782     // Create the garbage collection operation...
 783     VM_G1CollectForAllocation op(gc_count_before, word_size, gc_attempt++);
 784     op.set_allocation_context(AllocationContext::current());
 785 
 786     // ...and get the VM thread to execute it.
 787     VMThread::execute(&op);
 788 
 789     if (op.prologue_succeeded() && op.pause_succeeded()) {
 790       // If the operation was successful we'll return the result even
 791       // if it is NULL. If the allocation attempt failed immediately
 792       // after a Full GC, it's unlikely we'll be able to allocate now.
 793       HeapWord* result = op.result();
 794       if (result != NULL && !is_humongous(word_size)) {
 795         // Allocations that take place on VM operations do not do any
 796         // card dirtying and we have to do it here. We only have to do
 797         // this for non-humongous allocations, though.
 798         dirty_young_block(result, word_size);
 799       }
 800       return result;
 801     } else {
 802       if (gclocker_retry_count > GCLockerRetryAllocationCount) {
 803         return NULL;
 804       }
 805       assert(op.result() == NULL,
 806              "the result should be NULL if the VM op did not succeed");
 807     }
 808 
 809     // Give a warning if we seem to be looping forever.
 810     if ((QueuedAllocationWarningCount > 0) &&
 811         (try_count % QueuedAllocationWarningCount == 0)) {
 812       warning("G1CollectedHeap::mem_allocate retries %d times", try_count);
 813     }
 814   }
 815 
 816   ShouldNotReachHere();
 817   return NULL;
 818 }
 819 
 820 HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size,
 821                                                    AllocationContext_t context,
 822                                                    uint* gc_count_before_ret,
 823                                                    uint* gclocker_retry_count_ret,
 824                                                    uint* gc_attempt) {
 825   // Make sure you read the note in attempt_allocation_humongous().
 826 
 827   assert_heap_not_locked_and_not_at_safepoint();
 828   assert(!is_humongous(word_size), "attempt_allocation_slow() should not "
 829          "be called for humongous allocation requests");
 830 
 831   // We should only get here after the first-level allocation attempt
 832   // (attempt_allocation()) failed to allocate.
 833 
 834   // We will loop until a) we manage to successfully perform the
 835   // allocation or b) we successfully schedule a collection which
 836   // fails to perform the allocation. b) is the only case when we'll
 837   // return NULL.
 838   HeapWord* result = NULL;
 839   for (int try_count = 1; /* we'll return */; try_count += 1) {
 840     bool should_try_gc;
 841     uint gc_count_before;
 842 
 843     {
 844       MutexLockerEx x(Heap_lock);
 845       result = _allocator->mutator_alloc_region(context)->attempt_allocation_locked(word_size,
 846                                                                                     false /* bot_updates */);
 847       if (result != NULL) {
 848         return result;
 849       }
 850 
 851       // If we reach here, attempt_allocation_locked() above failed to
 852       // allocate a new region. So the mutator alloc region should be NULL.
 853       assert(_allocator->mutator_alloc_region(context)->get() == NULL, "only way to get here");
 854 
 855       if (GC_locker::is_active_and_needs_gc()) {
 856         if (g1_policy()->can_expand_young_list()) {
 857           // No need for an ergo verbose message here,
 858           // can_expand_young_list() does this when it returns true.
 859           result = _allocator->mutator_alloc_region(context)->attempt_allocation_force(word_size,
 860                                                                                        false /* bot_updates */);
 861           if (result != NULL) {
 862             return result;
 863           }
 864         }
 865         should_try_gc = false;
 866       } else {
 867         // The GCLocker may not be active but the GCLocker initiated
 868         // GC may not yet have been performed (GCLocker::needs_gc()
 869         // returns true). In this case we do not try this GC and
 870         // wait until the GCLocker initiated GC is performed, and
 871         // then retry the allocation.
 872         if (GC_locker::needs_gc()) {
 873           should_try_gc = false;
 874         } else {
 875           // Read the GC count while still holding the Heap_lock.
 876           gc_count_before = total_collections();
 877           should_try_gc = true;
 878         }
 879       }
 880     }
 881 
 882     if (should_try_gc) {
 883       bool succeeded;
 884       result = do_collection_pause(word_size, gc_count_before, &succeeded,
 885                                    GCCause::_g1_inc_collection_pause, *gc_attempt);
 886       *gc_attempt += 1;
 887       if (result != NULL) {
 888         assert(succeeded, "only way to get back a non-NULL result");
 889         return result;
 890       }
 891 
 892       if (succeeded) {
 893         // If we get here we successfully scheduled a collection which
 894         // failed to allocate. No point in trying to allocate
 895         // further. We'll just return NULL.
 896         MutexLockerEx x(Heap_lock);
 897         *gc_count_before_ret = total_collections();
 898         return NULL;
 899       }
 900     } else {
 901       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
 902         MutexLockerEx x(Heap_lock);
 903         *gc_count_before_ret = total_collections();
 904         return NULL;
 905       }
 906       // The GCLocker is either active or the GCLocker initiated
 907       // GC has not yet been performed. Stall until it is and
 908       // then retry the allocation.
 909       GC_locker::stall_until_clear();
 910       (*gclocker_retry_count_ret) += 1;
 911     }
 912 
 913     // We can reach here if we were unsuccessful in scheduling a
 914     // collection (because another thread beat us to it) or if we were
 915     // stalled due to the GC locker. In either can we should retry the
 916     // allocation attempt in case another thread successfully
 917     // performed a collection and reclaimed enough space. We do the
 918     // first attempt (without holding the Heap_lock) here and the
 919     // follow-on attempt will be at the start of the next loop
 920     // iteration (after taking the Heap_lock).
 921     result = _allocator->mutator_alloc_region(context)->attempt_allocation(word_size,
 922                                                                            false /* bot_updates */);
 923     if (result != NULL) {
 924       return result;
 925     }
 926 
 927     // Give a warning if we seem to be looping forever.
 928     if ((QueuedAllocationWarningCount > 0) &&
 929         (try_count % QueuedAllocationWarningCount == 0)) {
 930       warning("G1CollectedHeap::attempt_allocation_slow() "
 931               "retries %d times", try_count);
 932     }
 933   }
 934 
 935   ShouldNotReachHere();
 936   return NULL;
 937 }
 938 
 939 HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size,
 940                                                         uint* gc_count_before_ret,
 941                                                         uint* gclocker_retry_count_ret,
 942                                                         uint* gc_attempt) {
 943   // The structure of this method has a lot of similarities to
 944   // attempt_allocation_slow(). The reason these two were not merged
 945   // into a single one is that such a method would require several "if
 946   // allocation is not humongous do this, otherwise do that"
 947   // conditional paths which would obscure its flow. In fact, an early
 948   // version of this code did use a unified method which was harder to
 949   // follow and, as a result, it had subtle bugs that were hard to
 950   // track down. So keeping these two methods separate allows each to
 951   // be more readable. It will be good to keep these two in sync as
 952   // much as possible.
 953 
 954   assert_heap_not_locked_and_not_at_safepoint();
 955   assert(is_humongous(word_size), "attempt_allocation_humongous() "
 956          "should only be called for humongous allocations");
 957 
 958   // Humongous objects can exhaust the heap quickly, so we should check if we
 959   // need to start a marking cycle at each humongous object allocation. We do
 960   // the check before we do the actual allocation. The reason for doing it
 961   // before the allocation is that we avoid having to keep track of the newly
 962   // allocated memory while we do a GC.
 963   if (g1_policy()->need_to_start_conc_mark("concurrent humongous allocation",
 964                                            word_size)) {
 965     collect(GCCause::_g1_humongous_allocation);
 966   }
 967 
 968   // We will loop until a) we manage to successfully perform the
 969   // allocation or b) we successfully schedule a collection which
 970   // fails to perform the allocation. b) is the only case when we'll
 971   // return NULL.
 972   HeapWord* result = NULL;
 973   for (int try_count = 1; /* we'll return */; try_count += 1) {
 974     bool should_try_gc;
 975     uint gc_count_before;
 976 
 977     {
 978       MutexLockerEx x(Heap_lock);
 979 
 980       // Given that humongous objects are not allocated in young
 981       // regions, we'll first try to do the allocation without doing a
 982       // collection hoping that there's enough space in the heap.
 983       result = humongous_obj_allocate(word_size, AllocationContext::current());
 984       if (result != NULL) {
 985         return result;
 986       }
 987 
 988       if (GC_locker::is_active_and_needs_gc()) {
 989         should_try_gc = false;
 990       } else {
 991          // The GCLocker may not be active but the GCLocker initiated
 992         // GC may not yet have been performed (GCLocker::needs_gc()
 993         // returns true). In this case we do not try this GC and
 994         // wait until the GCLocker initiated GC is performed, and
 995         // then retry the allocation.
 996         if (GC_locker::needs_gc()) {
 997           should_try_gc = false;
 998         } else {
 999           // Read the GC count while still holding the Heap_lock.
1000           gc_count_before = total_collections();
1001           should_try_gc = true;
1002         }
1003       }
1004     }
1005 
1006     if (should_try_gc) {
1007       // If we failed to allocate the humongous object, we should try to
1008       // do a collection pause (if we're allowed) in case it reclaims
1009       // enough space for the allocation to succeed after the pause.
1010 
1011       bool succeeded;
1012       result = do_collection_pause(word_size, gc_count_before, &succeeded,
1013                                    GCCause::_g1_humongous_allocation, *gc_attempt);
1014       *gc_attempt += 1;
1015       if (result != NULL) {
1016         assert(succeeded, "only way to get back a non-NULL result");
1017         return result;
1018       }
1019 
1020       if (succeeded) {
1021         // If we get here we successfully scheduled a collection which
1022         // failed to allocate. No point in trying to allocate
1023         // further. We'll just return NULL.
1024         MutexLockerEx x(Heap_lock);
1025         *gc_count_before_ret = total_collections();
1026         return NULL;
1027       }
1028     } else {
1029       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
1030         MutexLockerEx x(Heap_lock);
1031         *gc_count_before_ret = total_collections();
1032         return NULL;
1033       }
1034       // The GCLocker is either active or the GCLocker initiated
1035       // GC has not yet been performed. Stall until it is and
1036       // then retry the allocation.
1037       GC_locker::stall_until_clear();
1038       (*gclocker_retry_count_ret) += 1;
1039     }
1040 
1041     // We can reach here if we were unsuccessful in scheduling a
1042     // collection (because another thread beat us to it) or if we were
1043     // stalled due to the GC locker. In either can we should retry the
1044     // allocation attempt in case another thread successfully
1045     // performed a collection and reclaimed enough space.  Give a
1046     // warning if we seem to be looping forever.
1047 
1048     if ((QueuedAllocationWarningCount > 0) &&
1049         (try_count % QueuedAllocationWarningCount == 0)) {
1050       warning("G1CollectedHeap::attempt_allocation_humongous() "
1051               "retries %d times", try_count);
1052     }
1053   }
1054 
1055   ShouldNotReachHere();
1056   return NULL;
1057 }
1058 
1059 HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
1060                                                            AllocationContext_t context,
1061                                                            bool expect_null_mutator_alloc_region) {
1062   assert_at_safepoint(true /* should_be_vm_thread */);
1063   assert(_allocator->mutator_alloc_region(context)->get() == NULL ||
1064                                              !expect_null_mutator_alloc_region,
1065          "the current alloc region was unexpectedly found to be non-NULL");
1066 
1067   if (!is_humongous(word_size)) {
1068     return _allocator->mutator_alloc_region(context)->attempt_allocation_locked(word_size,
1069                                                       false /* bot_updates */);
1070   } else {
1071     HeapWord* result = humongous_obj_allocate(word_size, context);
1072     if (result != NULL && g1_policy()->need_to_start_conc_mark("STW humongous allocation")) {
1073       g1_policy()->set_initiate_conc_mark_if_possible();
1074     }
1075     return result;
1076   }
1077 
1078   ShouldNotReachHere();
1079 }
1080 
1081 class PostMCRemSetClearClosure: public HeapRegionClosure {
1082   G1CollectedHeap* _g1h;
1083   ModRefBarrierSet* _mr_bs;
1084 public:
1085   PostMCRemSetClearClosure(G1CollectedHeap* g1h, ModRefBarrierSet* mr_bs) :
1086     _g1h(g1h), _mr_bs(mr_bs) {}
1087 
1088   bool doHeapRegion(HeapRegion* r) {
1089     HeapRegionRemSet* hrrs = r->rem_set();
1090 
1091     if (r->is_continues_humongous()) {
1092       // We'll assert that the strong code root list and RSet is empty
1093       assert(hrrs->strong_code_roots_list_length() == 0, "sanity");
1094       assert(hrrs->occupied() == 0, "RSet should be empty");
1095       return false;
1096     }
1097 
1098     _g1h->reset_gc_time_stamps(r);
1099     hrrs->clear();
1100     // You might think here that we could clear just the cards
1101     // corresponding to the used region.  But no: if we leave a dirty card
1102     // in a region we might allocate into, then it would prevent that card
1103     // from being enqueued, and cause it to be missed.
1104     // Re: the performance cost: we shouldn't be doing full GC anyway!
1105     _mr_bs->clear(MemRegion(r->bottom(), r->end()));
1106 
1107     return false;
1108   }
1109 };
1110 
1111 void G1CollectedHeap::clear_rsets_post_compaction() {
1112   PostMCRemSetClearClosure rs_clear(this, g1_barrier_set());
1113   heap_region_iterate(&rs_clear);
1114 }
1115 
1116 class RebuildRSOutOfRegionClosure: public HeapRegionClosure {
1117   G1CollectedHeap*   _g1h;
1118   UpdateRSOopClosure _cl;
1119   int                _worker_i;
1120 public:
1121   RebuildRSOutOfRegionClosure(G1CollectedHeap* g1, int worker_i = 0) :
1122     _cl(g1->g1_rem_set(), worker_i),
1123     _worker_i(worker_i),
1124     _g1h(g1)
1125   { }
1126 
1127   bool doHeapRegion(HeapRegion* r) {
1128     if (!r->is_continues_humongous()) {
1129       _cl.set_from(r);
1130       r->oop_iterate(&_cl);
1131     }
1132     return false;
1133   }
1134 };
1135 
1136 class ParRebuildRSTask: public AbstractGangTask {
1137   G1CollectedHeap* _g1;
1138   HeapRegionClaimer _hrclaimer;
1139 
1140 public:
1141   ParRebuildRSTask(G1CollectedHeap* g1) :
1142       AbstractGangTask("ParRebuildRSTask"), _g1(g1), _hrclaimer(g1->workers()->active_workers()) {}
1143 
1144   void work(uint worker_id) {
1145     RebuildRSOutOfRegionClosure rebuild_rs(_g1, worker_id);
1146     _g1->heap_region_par_iterate(&rebuild_rs, worker_id, &_hrclaimer);
1147   }
1148 };
1149 
1150 class PostCompactionPrinterClosure: public HeapRegionClosure {
1151 private:
1152   G1HRPrinter* _hr_printer;
1153 public:
1154   bool doHeapRegion(HeapRegion* hr) {
1155     assert(!hr->is_young(), "not expecting to find young regions");
1156     if (hr->is_free()) {
1157       // We only generate output for non-empty regions.
1158     } else if (hr->is_starts_humongous()) {
1159       if (hr->region_num() == 1) {
1160         // single humongous region
1161         _hr_printer->post_compaction(hr, G1HRPrinter::SingleHumongous);
1162       } else {
1163         _hr_printer->post_compaction(hr, G1HRPrinter::StartsHumongous);
1164       }
1165     } else if (hr->is_continues_humongous()) {
1166       _hr_printer->post_compaction(hr, G1HRPrinter::ContinuesHumongous);
1167     } else if (hr->is_old()) {
1168       _hr_printer->post_compaction(hr, G1HRPrinter::Old);
1169     } else {
1170       ShouldNotReachHere();
1171     }
1172     return false;
1173   }
1174 
1175   PostCompactionPrinterClosure(G1HRPrinter* hr_printer)
1176     : _hr_printer(hr_printer) { }
1177 };
1178 
1179 void G1CollectedHeap::print_hrm_post_compaction() {
1180   PostCompactionPrinterClosure cl(hr_printer());
1181   heap_region_iterate(&cl);
1182 }
1183 
1184 bool G1CollectedHeap::do_collection(bool explicit_gc,
1185                                     bool clear_all_soft_refs,
1186                                     size_t word_size) {
1187   assert_at_safepoint(true /* should_be_vm_thread */);
1188 
1189   if (GC_locker::check_active_before_gc()) {
1190     return false;
1191   }
1192 
1193   STWGCTimer* gc_timer = G1MarkSweep::gc_timer();
1194   gc_timer->register_gc_start();
1195 
1196   SerialOldTracer* gc_tracer = G1MarkSweep::gc_tracer();
1197   gc_tracer->report_gc_start(gc_cause(), gc_timer->gc_start());
1198 
1199   SvcGCMarker sgcm(SvcGCMarker::FULL);
1200   ResourceMark rm;
1201 
1202   print_heap_before_gc();
1203   trace_heap_before_gc(gc_tracer);
1204 
1205   size_t metadata_prev_used = MetaspaceAux::used_bytes();
1206 
1207   verify_region_sets_optional();
1208 
1209   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
1210                            collector_policy()->should_clear_all_soft_refs();
1211 
1212   ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy());
1213 
1214   {
1215     IsGCActiveMark x;
1216 
1217     // Timing
1218     assert(gc_cause() != GCCause::_java_lang_system_gc || explicit_gc, "invariant");
1219     TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
1220 
1221     {
1222       GCTraceTime t(GCCauseString("Full GC", gc_cause()), G1Log::fine(), true, NULL, gc_tracer->gc_id());
1223       TraceCollectorStats tcs(g1mm()->full_collection_counters());
1224       TraceMemoryManagerStats tms(true /* fullGC */, gc_cause());
1225 
1226       g1_policy()->record_full_collection_start();
1227 
1228       // Note: When we have a more flexible GC logging framework that
1229       // allows us to add optional attributes to a GC log record we
1230       // could consider timing and reporting how long we wait in the
1231       // following two methods.
1232       wait_while_free_regions_coming();
1233       // If we start the compaction before the CM threads finish
1234       // scanning the root regions we might trip them over as we'll
1235       // be moving objects / updating references. So let's wait until
1236       // they are done. By telling them to abort, they should complete
1237       // early.
1238       _cm->root_regions()->abort();
1239       _cm->root_regions()->wait_until_scan_finished();
1240       append_secondary_free_list_if_not_empty_with_lock();
1241 
1242       gc_prologue(true);
1243       increment_total_collections(true /* full gc */);
1244       increment_old_marking_cycles_started();
1245 
1246       assert(used() == recalculate_used(), "Should be equal");
1247 
1248       verify_before_gc();
1249 
1250       check_bitmaps("Full GC Start");
1251       pre_full_gc_dump(gc_timer);
1252 
1253       COMPILER2_PRESENT(DerivedPointerTable::clear());
1254 
1255       // Disable discovery and empty the discovered lists
1256       // for the CM ref processor.
1257       ref_processor_cm()->disable_discovery();
1258       ref_processor_cm()->abandon_partial_discovery();
1259       ref_processor_cm()->verify_no_references_recorded();
1260 
1261       // Abandon current iterations of concurrent marking and concurrent
1262       // refinement, if any are in progress. We have to do this before
1263       // wait_until_scan_finished() below.
1264       concurrent_mark()->abort();
1265 
1266       // Make sure we'll choose a new allocation region afterwards.
1267       _allocator->release_mutator_alloc_region();
1268       _allocator->abandon_gc_alloc_regions();
1269       g1_rem_set()->cleanupHRRS();
1270 
1271       // We should call this after we retire any currently active alloc
1272       // regions so that all the ALLOC / RETIRE events are generated
1273       // before the start GC event.
1274       _hr_printer.start_gc(true /* full */, (size_t) total_collections());
1275 
1276       // We may have added regions to the current incremental collection
1277       // set between the last GC or pause and now. We need to clear the
1278       // incremental collection set and then start rebuilding it afresh
1279       // after this full GC.
1280       abandon_collection_set(g1_policy()->inc_cset_head());
1281       g1_policy()->clear_incremental_cset();
1282       g1_policy()->stop_incremental_cset_building();
1283 
1284       tear_down_region_sets(false /* free_list_only */);
1285       g1_policy()->set_gcs_are_young(true);
1286 
1287       // See the comments in g1CollectedHeap.hpp and
1288       // G1CollectedHeap::ref_processing_init() about
1289       // how reference processing currently works in G1.
1290 
1291       // Temporarily make discovery by the STW ref processor single threaded (non-MT).
1292       ReferenceProcessorMTDiscoveryMutator stw_rp_disc_ser(ref_processor_stw(), false);
1293 
1294       // Temporarily clear the STW ref processor's _is_alive_non_header field.
1295       ReferenceProcessorIsAliveMutator stw_rp_is_alive_null(ref_processor_stw(), NULL);
1296 
1297       ref_processor_stw()->enable_discovery();
1298       ref_processor_stw()->setup_policy(do_clear_all_soft_refs);
1299 
1300       // Do collection work
1301       {
1302         HandleMark hm;  // Discard invalid handles created during gc
1303         G1MarkSweep::invoke_at_safepoint(ref_processor_stw(), do_clear_all_soft_refs);
1304       }
1305 
1306       assert(num_free_regions() == 0, "we should not have added any free regions");
1307       rebuild_region_sets(false /* free_list_only */);
1308 
1309       // Enqueue any discovered reference objects that have
1310       // not been removed from the discovered lists.
1311       ref_processor_stw()->enqueue_discovered_references();
1312 
1313       COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
1314 
1315       MemoryService::track_memory_usage();
1316 
1317       assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
1318       ref_processor_stw()->verify_no_references_recorded();
1319 
1320       // Delete metaspaces for unloaded class loaders and clean up loader_data graph
1321       ClassLoaderDataGraph::purge();
1322       MetaspaceAux::verify_metrics();
1323 
1324       // Note: since we've just done a full GC, concurrent
1325       // marking is no longer active. Therefore we need not
1326       // re-enable reference discovery for the CM ref processor.
1327       // That will be done at the start of the next marking cycle.
1328       assert(!ref_processor_cm()->discovery_enabled(), "Postcondition");
1329       ref_processor_cm()->verify_no_references_recorded();
1330 
1331       reset_gc_time_stamp();
1332       // Since everything potentially moved, we will clear all remembered
1333       // sets, and clear all cards.  Later we will rebuild remembered
1334       // sets. We will also reset the GC time stamps of the regions.
1335       clear_rsets_post_compaction();
1336       check_gc_time_stamps();
1337 
1338       // Resize the heap if necessary.
1339       resize_if_necessary_after_full_collection(explicit_gc ? 0 : word_size);
1340 
1341       if (_hr_printer.is_active()) {
1342         // We should do this after we potentially resize the heap so
1343         // that all the COMMIT / UNCOMMIT events are generated before
1344         // the end GC event.
1345 
1346         print_hrm_post_compaction();
1347         _hr_printer.end_gc(true /* full */, (size_t) total_collections());
1348       }
1349 
1350       G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
1351       if (hot_card_cache->use_cache()) {
1352         hot_card_cache->reset_card_counts();
1353         hot_card_cache->reset_hot_cache();
1354       }
1355 
1356       // Rebuild remembered sets of all regions.
1357       uint n_workers =
1358         AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
1359                                                 workers()->active_workers(),
1360                                                 Threads::number_of_non_daemon_threads());
1361       assert(UseDynamicNumberOfGCThreads ||
1362              n_workers == workers()->total_workers(),
1363              "If not dynamic should be using all the  workers");
1364       workers()->set_active_workers(n_workers);
1365       // Set parallel threads in the heap (_n_par_threads) only
1366       // before a parallel phase and always reset it to 0 after
1367       // the phase so that the number of parallel threads does
1368       // no get carried forward to a serial phase where there
1369       // may be code that is "possibly_parallel".
1370       set_par_threads(n_workers);
1371 
1372       ParRebuildRSTask rebuild_rs_task(this);
1373       assert(UseDynamicNumberOfGCThreads ||
1374              workers()->active_workers() == workers()->total_workers(),
1375              "Unless dynamic should use total workers");
1376       // Use the most recent number of  active workers
1377       assert(workers()->active_workers() > 0,
1378              "Active workers not properly set");
1379       set_par_threads(workers()->active_workers());
1380       workers()->run_task(&rebuild_rs_task);
1381       set_par_threads(0);
1382 
1383       // Rebuild the strong code root lists for each region
1384       rebuild_strong_code_roots();
1385 
1386       if (true) { // FIXME
1387         MetaspaceGC::compute_new_size();
1388       }
1389 
1390 #ifdef TRACESPINNING
1391       ParallelTaskTerminator::print_termination_counts();
1392 #endif
1393 
1394       // Discard all rset updates
1395       JavaThread::dirty_card_queue_set().abandon_logs();
1396       assert(dirty_card_queue_set().completed_buffers_num() == 0, "DCQS should be empty");
1397 
1398       _young_list->reset_sampled_info();
1399       // At this point there should be no regions in the
1400       // entire heap tagged as young.
1401       assert(check_young_list_empty(true /* check_heap */),
1402              "young list should be empty at this point");
1403 
1404       // Update the number of full collections that have been completed.
1405       increment_old_marking_cycles_completed(false /* concurrent */);
1406 
1407       _hrm.verify_optional();
1408       verify_region_sets_optional();
1409 
1410       verify_after_gc();
1411 
1412       // Clear the previous marking bitmap, if needed for bitmap verification.
1413       // Note we cannot do this when we clear the next marking bitmap in
1414       // ConcurrentMark::abort() above since VerifyDuringGC verifies the
1415       // objects marked during a full GC against the previous bitmap.
1416       // But we need to clear it before calling check_bitmaps below since
1417       // the full GC has compacted objects and updated TAMS but not updated
1418       // the prev bitmap.
1419       if (G1VerifyBitmaps) {
1420         ((CMBitMap*) concurrent_mark()->prevMarkBitMap())->clearAll();
1421       }
1422       check_bitmaps("Full GC End");
1423 
1424       // Start a new incremental collection set for the next pause
1425       assert(g1_policy()->collection_set() == NULL, "must be");
1426       g1_policy()->start_incremental_cset_building();
1427 
1428       clear_cset_fast_test();
1429 
1430       _allocator->init_mutator_alloc_region();
1431 
1432       g1_policy()->record_full_collection_end();
1433 
1434       if (G1Log::fine()) {
1435         g1_policy()->print_heap_transition();
1436       }
1437 
1438       // We must call G1MonitoringSupport::update_sizes() in the same scoping level
1439       // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
1440       // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
1441       // before any GC notifications are raised.
1442       g1mm()->update_sizes();
1443 
1444       gc_epilogue(true);
1445     }
1446 
1447     if (G1Log::finer()) {
1448       g1_policy()->print_detailed_heap_transition(true /* full */);
1449     }
1450 
1451     print_heap_after_gc();
1452     trace_heap_after_gc(gc_tracer);
1453 
1454     post_full_gc_dump(gc_timer);
1455 
1456     gc_timer->register_gc_end();
1457     gc_tracer->report_gc_end(gc_timer->gc_end(), gc_timer->time_partitions());
1458   }
1459 
1460   return true;
1461 }
1462 
1463 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
1464   // do_collection() will return whether it succeeded in performing
1465   // the GC. Currently, there is no facility on the
1466   // do_full_collection() API to notify the caller than the collection
1467   // did not succeed (e.g., because it was locked out by the GC
1468   // locker). So, right now, we'll ignore the return value.
1469   bool dummy = do_collection(true,                /* explicit_gc */
1470                              clear_all_soft_refs,
1471                              0                    /* word_size */);
1472 }
1473 
1474 // This code is mostly copied from TenuredGeneration.
1475 void
1476 G1CollectedHeap::
1477 resize_if_necessary_after_full_collection(size_t word_size) {
1478   // Include the current allocation, if any, and bytes that will be
1479   // pre-allocated to support collections, as "used".
1480   const size_t used_after_gc = used();
1481   const size_t capacity_after_gc = capacity();
1482   const size_t free_after_gc = capacity_after_gc - used_after_gc;
1483 
1484   // This is enforced in arguments.cpp.
1485   assert(MinHeapFreeRatio <= MaxHeapFreeRatio,
1486          "otherwise the code below doesn't make sense");
1487 
1488   // We don't have floating point command-line arguments
1489   const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0;
1490   const double maximum_used_percentage = 1.0 - minimum_free_percentage;
1491   const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0;
1492   const double minimum_used_percentage = 1.0 - maximum_free_percentage;
1493 
1494   const size_t min_heap_size = collector_policy()->min_heap_byte_size();
1495   const size_t max_heap_size = collector_policy()->max_heap_byte_size();
1496 
1497   // We have to be careful here as these two calculations can overflow
1498   // 32-bit size_t's.
1499   double used_after_gc_d = (double) used_after_gc;
1500   double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage;
1501   double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage;
1502 
1503   // Let's make sure that they are both under the max heap size, which
1504   // by default will make them fit into a size_t.
1505   double desired_capacity_upper_bound = (double) max_heap_size;
1506   minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d,
1507                                     desired_capacity_upper_bound);
1508   maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d,
1509                                     desired_capacity_upper_bound);
1510 
1511   // We can now safely turn them into size_t's.
1512   size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d;
1513   size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d;
1514 
1515   // This assert only makes sense here, before we adjust them
1516   // with respect to the min and max heap size.
1517   assert(minimum_desired_capacity <= maximum_desired_capacity,
1518          err_msg("minimum_desired_capacity = "SIZE_FORMAT", "
1519                  "maximum_desired_capacity = "SIZE_FORMAT,
1520                  minimum_desired_capacity, maximum_desired_capacity));
1521 
1522   // Should not be greater than the heap max size. No need to adjust
1523   // it with respect to the heap min size as it's a lower bound (i.e.,
1524   // we'll try to make the capacity larger than it, not smaller).
1525   minimum_desired_capacity = MIN2(minimum_desired_capacity, max_heap_size);
1526   // Should not be less than the heap min size. No need to adjust it
1527   // with respect to the heap max size as it's an upper bound (i.e.,
1528   // we'll try to make the capacity smaller than it, not greater).
1529   maximum_desired_capacity =  MAX2(maximum_desired_capacity, min_heap_size);
1530 
1531   if (capacity_after_gc < minimum_desired_capacity) {
1532     // Don't expand unless it's significant
1533     size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
1534     ergo_verbose4(ErgoHeapSizing,
1535                   "attempt heap expansion",
1536                   ergo_format_reason("capacity lower than "
1537                                      "min desired capacity after Full GC")
1538                   ergo_format_byte("capacity")
1539                   ergo_format_byte("occupancy")
1540                   ergo_format_byte_perc("min desired capacity"),
1541                   capacity_after_gc, used_after_gc,
1542                   minimum_desired_capacity, (double) MinHeapFreeRatio);
1543     expand(expand_bytes);
1544 
1545     // No expansion, now see if we want to shrink
1546   } else if (capacity_after_gc > maximum_desired_capacity) {
1547     // Capacity too large, compute shrinking size
1548     size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
1549     ergo_verbose4(ErgoHeapSizing,
1550                   "attempt heap shrinking",
1551                   ergo_format_reason("capacity higher than "
1552                                      "max desired capacity after Full GC")
1553                   ergo_format_byte("capacity")
1554                   ergo_format_byte("occupancy")
1555                   ergo_format_byte_perc("max desired capacity"),
1556                   capacity_after_gc, used_after_gc,
1557                   maximum_desired_capacity, (double) MaxHeapFreeRatio);
1558     shrink(shrink_bytes);
1559   }
1560 }
1561 
1562 
1563 HeapWord*
1564 G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
1565                                            AllocationContext_t context,
1566                                            bool* succeeded) {
1567   assert_at_safepoint(true /* should_be_vm_thread */);
1568 
1569   *succeeded = true;
1570   // Let's attempt the allocation first.
1571   HeapWord* result =
1572     attempt_allocation_at_safepoint(word_size,
1573                                     context,
1574                                     false /* expect_null_mutator_alloc_region */);
1575   if (result != NULL) {
1576     assert(*succeeded, "sanity");
1577     return result;
1578   }
1579 
1580   // In a G1 heap, we're supposed to keep allocation from failing by
1581   // incremental pauses.  Therefore, at least for now, we'll favor
1582   // expansion over collection.  (This might change in the future if we can
1583   // do something smarter than full collection to satisfy a failed alloc.)
1584   result = expand_and_allocate(word_size, context);
1585   if (result != NULL) {
1586     assert(*succeeded, "sanity");
1587     return result;
1588   }
1589 
1590   // Expansion didn't work, we'll try to do a Full GC.
1591   bool gc_succeeded = do_collection(false, /* explicit_gc */
1592                                     false, /* clear_all_soft_refs */
1593                                     word_size);
1594   if (!gc_succeeded) {
1595     *succeeded = false;
1596     return NULL;
1597   }
1598 
1599   // Retry the allocation
1600   result = attempt_allocation_at_safepoint(word_size,
1601                                            context,
1602                                            true /* expect_null_mutator_alloc_region */);
1603   if (result != NULL) {
1604     assert(*succeeded, "sanity");
1605     return result;
1606   }
1607 
1608   // Then, try a Full GC that will collect all soft references.
1609   gc_succeeded = do_collection(false, /* explicit_gc */
1610                                true,  /* clear_all_soft_refs */
1611                                word_size);
1612   if (!gc_succeeded) {
1613     *succeeded = false;
1614     return NULL;
1615   }
1616 
1617   // Retry the allocation once more
1618   result = attempt_allocation_at_safepoint(word_size,
1619                                            context,
1620                                            true /* expect_null_mutator_alloc_region */);
1621   if (result != NULL) {
1622     assert(*succeeded, "sanity");
1623     return result;
1624   }
1625 
1626   assert(!collector_policy()->should_clear_all_soft_refs(),
1627          "Flag should have been handled and cleared prior to this point");
1628 
1629   // What else?  We might try synchronous finalization later.  If the total
1630   // space available is large enough for the allocation, then a more
1631   // complete compaction phase than we've tried so far might be
1632   // appropriate.
1633   assert(*succeeded, "sanity");
1634   return NULL;
1635 }
1636 
1637 // Attempting to expand the heap sufficiently
1638 // to support an allocation of the given "word_size".  If
1639 // successful, perform the allocation and return the address of the
1640 // allocated block, or else "NULL".
1641 
1642 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size, AllocationContext_t context) {
1643   assert_at_safepoint(true /* should_be_vm_thread */);
1644 
1645   verify_region_sets_optional();
1646 
1647   size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
1648   ergo_verbose1(ErgoHeapSizing,
1649                 "attempt heap expansion",
1650                 ergo_format_reason("allocation request failed")
1651                 ergo_format_byte("allocation request"),
1652                 word_size * HeapWordSize);
1653   if (expand(expand_bytes)) {
1654     _hrm.verify_optional();
1655     verify_region_sets_optional();
1656     return attempt_allocation_at_safepoint(word_size,
1657                                            context,
1658                                            false /* expect_null_mutator_alloc_region */);
1659   }
1660   return NULL;
1661 }
1662 
1663 bool G1CollectedHeap::expand(size_t expand_bytes) {
1664   size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
1665   aligned_expand_bytes = align_size_up(aligned_expand_bytes,
1666                                        HeapRegion::GrainBytes);
1667   ergo_verbose2(ErgoHeapSizing,
1668                 "expand the heap",
1669                 ergo_format_byte("requested expansion amount")
1670                 ergo_format_byte("attempted expansion amount"),
1671                 expand_bytes, aligned_expand_bytes);
1672 
1673   if (is_maximal_no_gc()) {
1674     ergo_verbose0(ErgoHeapSizing,
1675                       "did not expand the heap",
1676                       ergo_format_reason("heap already fully expanded"));
1677     return false;
1678   }
1679 
1680   uint regions_to_expand = (uint)(aligned_expand_bytes / HeapRegion::GrainBytes);
1681   assert(regions_to_expand > 0, "Must expand by at least one region");
1682 
1683   uint expanded_by = _hrm.expand_by(regions_to_expand);
1684 
1685   if (expanded_by > 0) {
1686     size_t actual_expand_bytes = expanded_by * HeapRegion::GrainBytes;
1687     assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition");
1688     g1_policy()->record_new_heap_size(num_regions());
1689   } else {
1690     ergo_verbose0(ErgoHeapSizing,
1691                   "did not expand the heap",
1692                   ergo_format_reason("heap expansion operation failed"));
1693     // The expansion of the virtual storage space was unsuccessful.
1694     // Let's see if it was because we ran out of swap.
1695     if (G1ExitOnExpansionFailure &&
1696         _hrm.available() >= regions_to_expand) {
1697       // We had head room...
1698       vm_exit_out_of_memory(aligned_expand_bytes, OOM_MMAP_ERROR, "G1 heap expansion");
1699     }
1700   }
1701   return regions_to_expand > 0;
1702 }
1703 
1704 void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
1705   size_t aligned_shrink_bytes =
1706     ReservedSpace::page_align_size_down(shrink_bytes);
1707   aligned_shrink_bytes = align_size_down(aligned_shrink_bytes,
1708                                          HeapRegion::GrainBytes);
1709   uint num_regions_to_remove = (uint)(shrink_bytes / HeapRegion::GrainBytes);
1710 
1711   uint num_regions_removed = _hrm.shrink_by(num_regions_to_remove);
1712   size_t shrunk_bytes = num_regions_removed * HeapRegion::GrainBytes;
1713 
1714   ergo_verbose3(ErgoHeapSizing,
1715                 "shrink the heap",
1716                 ergo_format_byte("requested shrinking amount")
1717                 ergo_format_byte("aligned shrinking amount")
1718                 ergo_format_byte("attempted shrinking amount"),
1719                 shrink_bytes, aligned_shrink_bytes, shrunk_bytes);
1720   if (num_regions_removed > 0) {
1721     g1_policy()->record_new_heap_size(num_regions());
1722   } else {
1723     ergo_verbose0(ErgoHeapSizing,
1724                   "did not shrink the heap",
1725                   ergo_format_reason("heap shrinking operation failed"));
1726   }
1727 }
1728 
1729 void G1CollectedHeap::shrink(size_t shrink_bytes) {
1730   verify_region_sets_optional();
1731 
1732   // We should only reach here at the end of a Full GC which means we
1733   // should not not be holding to any GC alloc regions. The method
1734   // below will make sure of that and do any remaining clean up.
1735   _allocator->abandon_gc_alloc_regions();
1736 
1737   // Instead of tearing down / rebuilding the free lists here, we
1738   // could instead use the remove_all_pending() method on free_list to
1739   // remove only the ones that we need to remove.
1740   tear_down_region_sets(true /* free_list_only */);
1741   shrink_helper(shrink_bytes);
1742   rebuild_region_sets(true /* free_list_only */);
1743 
1744   _hrm.verify_optional();
1745   verify_region_sets_optional();
1746 }
1747 
1748 // Public methods.
1749 
1750 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
1751 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
1752 #endif // _MSC_VER
1753 
1754 
1755 G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* policy_) :
1756   SharedHeap(policy_),
1757   _g1_policy(policy_),
1758   _dirty_card_queue_set(false),
1759   _into_cset_dirty_card_queue_set(false),
1760   _is_alive_closure_cm(this),
1761   _is_alive_closure_stw(this),
1762   _ref_processor_cm(NULL),
1763   _ref_processor_stw(NULL),
1764   _bot_shared(NULL),
1765   _evac_failure_scan_stack(NULL),
1766   _mark_in_progress(false),
1767   _cg1r(NULL),
1768   _g1mm(NULL),
1769   _refine_cte_cl(NULL),
1770   _full_collection(false),
1771   _secondary_free_list("Secondary Free List", new SecondaryFreeRegionListMtSafeChecker()),
1772   _old_set("Old Set", false /* humongous */, new OldRegionSetMtSafeChecker()),
1773   _humongous_set("Master Humongous Set", true /* humongous */, new HumongousRegionSetMtSafeChecker()),
1774   _humongous_is_live(),
1775   _has_humongous_reclaim_candidates(false),
1776   _free_regions_coming(false),
1777   _young_list(new YoungList(this)),
1778   _gc_time_stamp(0),
1779   _survivor_plab_stats(YoungPLABSize, PLABWeight),
1780   _old_plab_stats(OldPLABSize, PLABWeight),
1781   _expand_heap_after_alloc_failure(true),
1782   _surviving_young_words(NULL),
1783   _old_marking_cycles_started(0),
1784   _old_marking_cycles_completed(0),
1785   _concurrent_cycle_started(false),
1786   _heap_summary_sent(false),
1787   _in_cset_fast_test(),
1788   _dirty_cards_region_list(NULL),
1789   _worker_cset_start_region(NULL),
1790   _worker_cset_start_region_time_stamp(NULL),
1791   _gc_timer_stw(new (ResourceObj::C_HEAP, mtGC) STWGCTimer()),
1792   _gc_timer_cm(new (ResourceObj::C_HEAP, mtGC) ConcurrentGCTimer()),
1793   _gc_tracer_stw(new (ResourceObj::C_HEAP, mtGC) G1NewTracer()),
1794   _gc_tracer_cm(new (ResourceObj::C_HEAP, mtGC) G1OldTracer()) {
1795 
1796   _g1h = this;
1797 
1798   _allocator = G1Allocator::create_allocator(_g1h);
1799   _humongous_object_threshold_in_words = HeapRegion::GrainWords / 2;
1800 
1801   int n_queues = MAX2((int)ParallelGCThreads, 1);
1802   _task_queues = new RefToScanQueueSet(n_queues);
1803 
1804   uint n_rem_sets = HeapRegionRemSet::num_par_rem_sets();
1805   assert(n_rem_sets > 0, "Invariant.");
1806 
1807   _worker_cset_start_region = NEW_C_HEAP_ARRAY(HeapRegion*, n_queues, mtGC);
1808   _worker_cset_start_region_time_stamp = NEW_C_HEAP_ARRAY(uint, n_queues, mtGC);
1809   _evacuation_failed_info_array = NEW_C_HEAP_ARRAY(EvacuationFailedInfo, n_queues, mtGC);
1810 
1811   for (int i = 0; i < n_queues; i++) {
1812     RefToScanQueue* q = new RefToScanQueue();
1813     q->initialize();
1814     _task_queues->register_queue(i, q);
1815     ::new (&_evacuation_failed_info_array[i]) EvacuationFailedInfo();
1816   }
1817   clear_cset_start_regions();
1818 
1819   // Initialize the G1EvacuationFailureALot counters and flags.
1820   NOT_PRODUCT(reset_evacuation_should_fail();)
1821 
1822   guarantee(_task_queues != NULL, "task_queues allocation failure.");
1823 }
1824 
1825 jint G1CollectedHeap::initialize() {
1826   CollectedHeap::pre_initialize();
1827   os::enable_vtime();
1828 
1829   G1Log::init();
1830 
1831   // Necessary to satisfy locking discipline assertions.
1832 
1833   MutexLocker x(Heap_lock);
1834 
1835   // We have to initialize the printer before committing the heap, as
1836   // it will be used then.
1837   _hr_printer.set_active(G1PrintHeapRegions);
1838 
1839   // While there are no constraints in the GC code that HeapWordSize
1840   // be any particular value, there are multiple other areas in the
1841   // system which believe this to be true (e.g. oop->object_size in some
1842   // cases incorrectly returns the size in wordSize units rather than
1843   // HeapWordSize).
1844   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
1845 
1846   size_t init_byte_size = collector_policy()->initial_heap_byte_size();
1847   size_t max_byte_size = collector_policy()->max_heap_byte_size();
1848   size_t heap_alignment = collector_policy()->heap_alignment();
1849 
1850   // Ensure that the sizes are properly aligned.
1851   Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
1852   Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
1853   Universe::check_alignment(max_byte_size, heap_alignment, "g1 heap");
1854 
1855   _refine_cte_cl = new RefineCardTableEntryClosure();
1856 
1857   _cg1r = new ConcurrentG1Refine(this, _refine_cte_cl);
1858 
1859   // Reserve the maximum.
1860 
1861   // When compressed oops are enabled, the preferred heap base
1862   // is calculated by subtracting the requested size from the
1863   // 32Gb boundary and using the result as the base address for
1864   // heap reservation. If the requested size is not aligned to
1865   // HeapRegion::GrainBytes (i.e. the alignment that is passed
1866   // into the ReservedHeapSpace constructor) then the actual
1867   // base of the reserved heap may end up differing from the
1868   // address that was requested (i.e. the preferred heap base).
1869   // If this happens then we could end up using a non-optimal
1870   // compressed oops mode.
1871 
1872   ReservedSpace heap_rs = Universe::reserve_heap(max_byte_size,
1873                                                  heap_alignment);
1874 
1875   initialize_reserved_region((HeapWord*)heap_rs.base(), (HeapWord*)(heap_rs.base() + heap_rs.size()));
1876 
1877   // Create the barrier set for the entire reserved region.
1878   G1SATBCardTableLoggingModRefBS* bs
1879     = new G1SATBCardTableLoggingModRefBS(reserved_region());
1880   bs->initialize();
1881   assert(bs->is_a(BarrierSet::G1SATBCTLogging), "sanity");
1882   set_barrier_set(bs);
1883 
1884   // Also create a G1 rem set.
1885   _g1_rem_set = new G1RemSet(this, g1_barrier_set());
1886 
1887   // Carve out the G1 part of the heap.
1888 
1889   ReservedSpace g1_rs = heap_rs.first_part(max_byte_size);
1890   G1RegionToSpaceMapper* heap_storage =
1891     G1RegionToSpaceMapper::create_mapper(g1_rs,
1892                                          UseLargePages ? os::large_page_size() : os::vm_page_size(),
1893                                          HeapRegion::GrainBytes,
1894                                          1,
1895                                          mtJavaHeap);
1896   heap_storage->set_mapping_changed_listener(&_listener);
1897 
1898   // Reserve space for the block offset table. We do not support automatic uncommit
1899   // for the card table at this time. BOT only.
1900   ReservedSpace bot_rs(G1BlockOffsetSharedArray::compute_size(g1_rs.size() / HeapWordSize));
1901   G1RegionToSpaceMapper* bot_storage =
1902     G1RegionToSpaceMapper::create_mapper(bot_rs,
1903                                          os::vm_page_size(),
1904                                          HeapRegion::GrainBytes,
1905                                          G1BlockOffsetSharedArray::N_bytes,
1906                                          mtGC);
1907 
1908   ReservedSpace cardtable_rs(G1SATBCardTableLoggingModRefBS::compute_size(g1_rs.size() / HeapWordSize));
1909   G1RegionToSpaceMapper* cardtable_storage =
1910     G1RegionToSpaceMapper::create_mapper(cardtable_rs,
1911                                          os::vm_page_size(),
1912                                          HeapRegion::GrainBytes,
1913                                          G1BlockOffsetSharedArray::N_bytes,
1914                                          mtGC);
1915 
1916   // Reserve space for the card counts table.
1917   ReservedSpace card_counts_rs(G1BlockOffsetSharedArray::compute_size(g1_rs.size() / HeapWordSize));
1918   G1RegionToSpaceMapper* card_counts_storage =
1919     G1RegionToSpaceMapper::create_mapper(card_counts_rs,
1920                                          os::vm_page_size(),
1921                                          HeapRegion::GrainBytes,
1922                                          G1BlockOffsetSharedArray::N_bytes,
1923                                          mtGC);
1924 
1925   // Reserve space for prev and next bitmap.
1926   size_t bitmap_size = CMBitMap::compute_size(g1_rs.size());
1927 
1928   ReservedSpace prev_bitmap_rs(ReservedSpace::allocation_align_size_up(bitmap_size));
1929   G1RegionToSpaceMapper* prev_bitmap_storage =
1930     G1RegionToSpaceMapper::create_mapper(prev_bitmap_rs,
1931                                          os::vm_page_size(),
1932                                          HeapRegion::GrainBytes,
1933                                          CMBitMap::mark_distance(),
1934                                          mtGC);
1935 
1936   ReservedSpace next_bitmap_rs(ReservedSpace::allocation_align_size_up(bitmap_size));
1937   G1RegionToSpaceMapper* next_bitmap_storage =
1938     G1RegionToSpaceMapper::create_mapper(next_bitmap_rs,
1939                                          os::vm_page_size(),
1940                                          HeapRegion::GrainBytes,
1941                                          CMBitMap::mark_distance(),
1942                                          mtGC);
1943 
1944   _hrm.initialize(heap_storage, prev_bitmap_storage, next_bitmap_storage, bot_storage, cardtable_storage, card_counts_storage);
1945   g1_barrier_set()->initialize(cardtable_storage);
1946    // Do later initialization work for concurrent refinement.
1947   _cg1r->init(card_counts_storage);
1948 
1949   // 6843694 - ensure that the maximum region index can fit
1950   // in the remembered set structures.
1951   const uint max_region_idx = (1U << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
1952   guarantee((max_regions() - 1) <= max_region_idx, "too many regions");
1953 
1954   size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
1955   guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
1956   guarantee(HeapRegion::CardsPerRegion < max_cards_per_region,
1957             "too many cards per region");
1958 
1959   FreeRegionList::set_unrealistically_long_length(max_regions() + 1);
1960 
1961   _bot_shared = new G1BlockOffsetSharedArray(reserved_region(), bot_storage);
1962 
1963   _g1h = this;
1964 
1965   _in_cset_fast_test.initialize(_hrm.reserved().start(), _hrm.reserved().end(), HeapRegion::GrainBytes);
1966   _humongous_is_live.initialize(_hrm.reserved().start(), _hrm.reserved().end(), HeapRegion::GrainBytes);
1967 
1968   // Create the ConcurrentMark data structure and thread.
1969   // (Must do this late, so that "max_regions" is defined.)
1970   _cm = new ConcurrentMark(this, prev_bitmap_storage, next_bitmap_storage);
1971   if (_cm == NULL || !_cm->completed_initialization()) {
1972     vm_shutdown_during_initialization("Could not create/initialize ConcurrentMark");
1973     return JNI_ENOMEM;
1974   }
1975   _cmThread = _cm->cmThread();
1976 
1977   // Initialize the from_card cache structure of HeapRegionRemSet.
1978   HeapRegionRemSet::init_heap(max_regions());
1979 
1980   // Now expand into the initial heap size.
1981   if (!expand(init_byte_size)) {
1982     vm_shutdown_during_initialization("Failed to allocate initial heap.");
1983     return JNI_ENOMEM;
1984   }
1985 
1986   // Perform any initialization actions delegated to the policy.
1987   g1_policy()->init();
1988 
1989   JavaThread::satb_mark_queue_set().initialize(SATB_Q_CBL_mon,
1990                                                SATB_Q_FL_lock,
1991                                                G1SATBProcessCompletedThreshold,
1992                                                Shared_SATB_Q_lock);
1993 
1994   JavaThread::dirty_card_queue_set().initialize(_refine_cte_cl,
1995                                                 DirtyCardQ_CBL_mon,
1996                                                 DirtyCardQ_FL_lock,
1997                                                 concurrent_g1_refine()->yellow_zone(),
1998                                                 concurrent_g1_refine()->red_zone(),
1999                                                 Shared_DirtyCardQ_lock);
2000 
2001   dirty_card_queue_set().initialize(NULL, // Should never be called by the Java code
2002                                     DirtyCardQ_CBL_mon,
2003                                     DirtyCardQ_FL_lock,
2004                                     -1, // never trigger processing
2005                                     -1, // no limit on length
2006                                     Shared_DirtyCardQ_lock,
2007                                     &JavaThread::dirty_card_queue_set());
2008 
2009   // Initialize the card queue set used to hold cards containing
2010   // references into the collection set.
2011   _into_cset_dirty_card_queue_set.initialize(NULL, // Should never be called by the Java code
2012                                              DirtyCardQ_CBL_mon,
2013                                              DirtyCardQ_FL_lock,
2014                                              -1, // never trigger processing
2015                                              -1, // no limit on length
2016                                              Shared_DirtyCardQ_lock,
2017                                              &JavaThread::dirty_card_queue_set());
2018 
2019   // Here we allocate the dummy HeapRegion that is required by the
2020   // G1AllocRegion class.
2021   HeapRegion* dummy_region = _hrm.get_dummy_region();
2022 
2023   // We'll re-use the same region whether the alloc region will
2024   // require BOT updates or not and, if it doesn't, then a non-young
2025   // region will complain that it cannot support allocations without
2026   // BOT updates. So we'll tag the dummy region as eden to avoid that.
2027   dummy_region->set_eden();
2028   // Make sure it's full.
2029   dummy_region->set_top(dummy_region->end());
2030   G1AllocRegion::setup(this, dummy_region);
2031 
2032   _allocator->init_mutator_alloc_region();
2033 
2034   // Do create of the monitoring and management support so that
2035   // values in the heap have been properly initialized.
2036   _g1mm = new G1MonitoringSupport(this);
2037 
2038   G1StringDedup::initialize();
2039 
2040   return JNI_OK;
2041 }
2042 
2043 void G1CollectedHeap::stop() {
2044   // Stop all concurrent threads. We do this to make sure these threads
2045   // do not continue to execute and access resources (e.g. gclog_or_tty)
2046   // that are destroyed during shutdown.
2047   _cg1r->stop();
2048   _cmThread->stop();
2049   if (G1StringDedup::is_enabled()) {
2050     G1StringDedup::stop();
2051   }
2052 }
2053 
2054 void G1CollectedHeap::clear_humongous_is_live_table() {
2055   guarantee(G1EagerReclaimHumongousObjects, "Should only be called if true");
2056   _humongous_is_live.clear();
2057 }
2058 
2059 size_t G1CollectedHeap::conservative_max_heap_alignment() {
2060   return HeapRegion::max_region_size();
2061 }
2062 
2063 void G1CollectedHeap::ref_processing_init() {
2064   // Reference processing in G1 currently works as follows:
2065   //
2066   // * There are two reference processor instances. One is
2067   //   used to record and process discovered references
2068   //   during concurrent marking; the other is used to
2069   //   record and process references during STW pauses
2070   //   (both full and incremental).
2071   // * Both ref processors need to 'span' the entire heap as
2072   //   the regions in the collection set may be dotted around.
2073   //
2074   // * For the concurrent marking ref processor:
2075   //   * Reference discovery is enabled at initial marking.
2076   //   * Reference discovery is disabled and the discovered
2077   //     references processed etc during remarking.
2078   //   * Reference discovery is MT (see below).
2079   //   * Reference discovery requires a barrier (see below).
2080   //   * Reference processing may or may not be MT
2081   //     (depending on the value of ParallelRefProcEnabled
2082   //     and ParallelGCThreads).
2083   //   * A full GC disables reference discovery by the CM
2084   //     ref processor and abandons any entries on it's
2085   //     discovered lists.
2086   //
2087   // * For the STW processor:
2088   //   * Non MT discovery is enabled at the start of a full GC.
2089   //   * Processing and enqueueing during a full GC is non-MT.
2090   //   * During a full GC, references are processed after marking.
2091   //
2092   //   * Discovery (may or may not be MT) is enabled at the start
2093   //     of an incremental evacuation pause.
2094   //   * References are processed near the end of a STW evacuation pause.
2095   //   * For both types of GC:
2096   //     * Discovery is atomic - i.e. not concurrent.
2097   //     * Reference discovery will not need a barrier.
2098 
2099   SharedHeap::ref_processing_init();
2100   MemRegion mr = reserved_region();
2101 
2102   // Concurrent Mark ref processor
2103   _ref_processor_cm =
2104     new ReferenceProcessor(mr,    // span
2105                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
2106                                 // mt processing
2107                            (int) ParallelGCThreads,
2108                                 // degree of mt processing
2109                            (ParallelGCThreads > 1) || (ConcGCThreads > 1),
2110                                 // mt discovery
2111                            (int) MAX2(ParallelGCThreads, ConcGCThreads),
2112                                 // degree of mt discovery
2113                            false,
2114                                 // Reference discovery is not atomic
2115                            &_is_alive_closure_cm);
2116                                 // is alive closure
2117                                 // (for efficiency/performance)
2118 
2119   // STW ref processor
2120   _ref_processor_stw =
2121     new ReferenceProcessor(mr,    // span
2122                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
2123                                 // mt processing
2124                            MAX2((int)ParallelGCThreads, 1),
2125                                 // degree of mt processing
2126                            (ParallelGCThreads > 1),
2127                                 // mt discovery
2128                            MAX2((int)ParallelGCThreads, 1),
2129                                 // degree of mt discovery
2130                            true,
2131                                 // Reference discovery is atomic
2132                            &_is_alive_closure_stw);
2133                                 // is alive closure
2134                                 // (for efficiency/performance)
2135 }
2136 
2137 size_t G1CollectedHeap::capacity() const {
2138   return _hrm.length() * HeapRegion::GrainBytes;
2139 }
2140 
2141 void G1CollectedHeap::reset_gc_time_stamps(HeapRegion* hr) {
2142   assert(!hr->is_continues_humongous(), "pre-condition");
2143   hr->reset_gc_time_stamp();
2144   if (hr->is_starts_humongous()) {
2145     uint first_index = hr->hrm_index() + 1;
2146     uint last_index = hr->last_hc_index();
2147     for (uint i = first_index; i < last_index; i += 1) {
2148       HeapRegion* chr = region_at(i);
2149       assert(chr->is_continues_humongous(), "sanity");
2150       chr->reset_gc_time_stamp();
2151     }
2152   }
2153 }
2154 
2155 #ifndef PRODUCT
2156 class CheckGCTimeStampsHRClosure : public HeapRegionClosure {
2157 private:
2158   unsigned _gc_time_stamp;
2159   bool _failures;
2160 
2161 public:
2162   CheckGCTimeStampsHRClosure(unsigned gc_time_stamp) :
2163     _gc_time_stamp(gc_time_stamp), _failures(false) { }
2164 
2165   virtual bool doHeapRegion(HeapRegion* hr) {
2166     unsigned region_gc_time_stamp = hr->get_gc_time_stamp();
2167     if (_gc_time_stamp != region_gc_time_stamp) {
2168       gclog_or_tty->print_cr("Region "HR_FORMAT" has GC time stamp = %d, "
2169                              "expected %d", HR_FORMAT_PARAMS(hr),
2170                              region_gc_time_stamp, _gc_time_stamp);
2171       _failures = true;
2172     }
2173     return false;
2174   }
2175 
2176   bool failures() { return _failures; }
2177 };
2178 
2179 void G1CollectedHeap::check_gc_time_stamps() {
2180   CheckGCTimeStampsHRClosure cl(_gc_time_stamp);
2181   heap_region_iterate(&cl);
2182   guarantee(!cl.failures(), "all GC time stamps should have been reset");
2183 }
2184 #endif // PRODUCT
2185 
2186 void G1CollectedHeap::iterate_dirty_card_closure(CardTableEntryClosure* cl,
2187                                                  DirtyCardQueue* into_cset_dcq,
2188                                                  bool concurrent,
2189                                                  uint worker_i) {
2190   // Clean cards in the hot card cache
2191   G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
2192   hot_card_cache->drain(worker_i, g1_rem_set(), into_cset_dcq);
2193 
2194   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
2195   size_t n_completed_buffers = 0;
2196   while (dcqs.apply_closure_to_completed_buffer(cl, worker_i, 0, true)) {
2197     n_completed_buffers++;
2198   }
2199   g1_policy()->phase_times()->record_thread_work_item(G1GCPhaseTimes::UpdateRS, worker_i, n_completed_buffers);
2200   dcqs.clear_n_completed_buffers();
2201   assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!");
2202 }
2203 
2204 
2205 // Computes the sum of the storage used by the various regions.
2206 size_t G1CollectedHeap::used() const {
2207   return _allocator->used();
2208 }
2209 
2210 size_t G1CollectedHeap::used_unlocked() const {
2211   return _allocator->used_unlocked();
2212 }
2213 
2214 class SumUsedClosure: public HeapRegionClosure {
2215   size_t _used;
2216 public:
2217   SumUsedClosure() : _used(0) {}
2218   bool doHeapRegion(HeapRegion* r) {
2219     if (!r->is_continues_humongous()) {
2220       _used += r->used();
2221     }
2222     return false;
2223   }
2224   size_t result() { return _used; }
2225 };
2226 
2227 size_t G1CollectedHeap::recalculate_used() const {
2228   double recalculate_used_start = os::elapsedTime();
2229 
2230   SumUsedClosure blk;
2231   heap_region_iterate(&blk);
2232 
2233   g1_policy()->phase_times()->record_evac_fail_recalc_used_time((os::elapsedTime() - recalculate_used_start) * 1000.0);
2234   return blk.result();
2235 }
2236 
2237 bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
2238   switch (cause) {
2239     case GCCause::_gc_locker:               return GCLockerInvokesConcurrent;
2240     case GCCause::_java_lang_system_gc:     return ExplicitGCInvokesConcurrent;
2241     case GCCause::_g1_humongous_allocation: return true;
2242     case GCCause::_update_allocation_context_stats_inc: return true;
2243     case GCCause::_wb_conc_mark:            return true;
2244     default:                                return false;
2245   }
2246 }
2247 
2248 #ifndef PRODUCT
2249 void G1CollectedHeap::allocate_dummy_regions() {
2250   // Let's fill up most of the region
2251   size_t word_size = HeapRegion::GrainWords - 1024;
2252   // And as a result the region we'll allocate will be humongous.
2253   guarantee(is_humongous(word_size), "sanity");
2254 
2255   for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) {
2256     // Let's use the existing mechanism for the allocation
2257     HeapWord* dummy_obj = humongous_obj_allocate(word_size,
2258                                                  AllocationContext::system());
2259     if (dummy_obj != NULL) {
2260       MemRegion mr(dummy_obj, word_size);
2261       CollectedHeap::fill_with_object(mr);
2262     } else {
2263       // If we can't allocate once, we probably cannot allocate
2264       // again. Let's get out of the loop.
2265       break;
2266     }
2267   }
2268 }
2269 #endif // !PRODUCT
2270 
2271 void G1CollectedHeap::increment_old_marking_cycles_started() {
2272   assert(_old_marking_cycles_started == _old_marking_cycles_completed ||
2273     _old_marking_cycles_started == _old_marking_cycles_completed + 1,
2274     err_msg("Wrong marking cycle count (started: %d, completed: %d)",
2275     _old_marking_cycles_started, _old_marking_cycles_completed));
2276 
2277   _old_marking_cycles_started++;
2278 }
2279 
2280 void G1CollectedHeap::increment_old_marking_cycles_completed(bool concurrent) {
2281   MonitorLockerEx x(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
2282 
2283   // We assume that if concurrent == true, then the caller is a
2284   // concurrent thread that was joined the Suspendible Thread
2285   // Set. If there's ever a cheap way to check this, we should add an
2286   // assert here.
2287 
2288   // Given that this method is called at the end of a Full GC or of a
2289   // concurrent cycle, and those can be nested (i.e., a Full GC can
2290   // interrupt a concurrent cycle), the number of full collections
2291   // completed should be either one (in the case where there was no
2292   // nesting) or two (when a Full GC interrupted a concurrent cycle)
2293   // behind the number of full collections started.
2294 
2295   // This is the case for the inner caller, i.e. a Full GC.
2296   assert(concurrent ||
2297          (_old_marking_cycles_started == _old_marking_cycles_completed + 1) ||
2298          (_old_marking_cycles_started == _old_marking_cycles_completed + 2),
2299          err_msg("for inner caller (Full GC): _old_marking_cycles_started = %u "
2300                  "is inconsistent with _old_marking_cycles_completed = %u",
2301                  _old_marking_cycles_started, _old_marking_cycles_completed));
2302 
2303   // This is the case for the outer caller, i.e. the concurrent cycle.
2304   assert(!concurrent ||
2305          (_old_marking_cycles_started == _old_marking_cycles_completed + 1),
2306          err_msg("for outer caller (concurrent cycle): "
2307                  "_old_marking_cycles_started = %u "
2308                  "is inconsistent with _old_marking_cycles_completed = %u",
2309                  _old_marking_cycles_started, _old_marking_cycles_completed));
2310 
2311   _old_marking_cycles_completed += 1;
2312 
2313   // We need to clear the "in_progress" flag in the CM thread before
2314   // we wake up any waiters (especially when ExplicitInvokesConcurrent
2315   // is set) so that if a waiter requests another System.gc() it doesn't
2316   // incorrectly see that a marking cycle is still in progress.
2317   if (concurrent) {
2318     _cmThread->clear_in_progress();
2319   }
2320 
2321   // This notify_all() will ensure that a thread that called
2322   // System.gc() with (with ExplicitGCInvokesConcurrent set or not)
2323   // and it's waiting for a full GC to finish will be woken up. It is
2324   // waiting in VM_G1IncCollectionPause::doit_epilogue().
2325   FullGCCount_lock->notify_all();
2326 }
2327 
2328 void G1CollectedHeap::register_concurrent_cycle_start(const Ticks& start_time) {
2329   _concurrent_cycle_started = true;
2330   _gc_timer_cm->register_gc_start(start_time);
2331 
2332   _gc_tracer_cm->report_gc_start(gc_cause(), _gc_timer_cm->gc_start());
2333   trace_heap_before_gc(_gc_tracer_cm);
2334 }
2335 
2336 void G1CollectedHeap::register_concurrent_cycle_end() {
2337   if (_concurrent_cycle_started) {
2338     if (_cm->has_aborted()) {
2339       _gc_tracer_cm->report_concurrent_mode_failure();
2340     }
2341 
2342     _gc_timer_cm->register_gc_end();
2343     _gc_tracer_cm->report_gc_end(_gc_timer_cm->gc_end(), _gc_timer_cm->time_partitions());
2344 
2345     // Clear state variables to prepare for the next concurrent cycle.
2346     _concurrent_cycle_started = false;
2347     _heap_summary_sent = false;
2348   }
2349 }
2350 
2351 void G1CollectedHeap::trace_heap_after_concurrent_cycle() {
2352   if (_concurrent_cycle_started) {
2353     // This function can be called when:
2354     //  the cleanup pause is run
2355     //  the concurrent cycle is aborted before the cleanup pause.
2356     //  the concurrent cycle is aborted after the cleanup pause,
2357     //   but before the concurrent cycle end has been registered.
2358     // Make sure that we only send the heap information once.
2359     if (!_heap_summary_sent) {
2360       trace_heap_after_gc(_gc_tracer_cm);
2361       _heap_summary_sent = true;
2362     }
2363   }
2364 }
2365 
2366 G1YCType G1CollectedHeap::yc_type() {
2367   bool is_young = g1_policy()->gcs_are_young();
2368   bool is_initial_mark = g1_policy()->during_initial_mark_pause();
2369   bool is_during_mark = mark_in_progress();
2370 
2371   if (is_initial_mark) {
2372     return InitialMark;
2373   } else if (is_during_mark) {
2374     return DuringMark;
2375   } else if (is_young) {
2376     return Normal;
2377   } else {
2378     return Mixed;
2379   }
2380 }
2381 
2382 void G1CollectedHeap::collect(GCCause::Cause cause) {
2383   assert_heap_not_locked();
2384 
2385   uint gc_count_before;
2386   uint old_marking_count_before;
2387   uint full_gc_count_before;
2388   bool retry_gc;
2389 
2390   do {
2391     retry_gc = false;
2392 
2393     {
2394       MutexLocker ml(Heap_lock);
2395 
2396       // Read the GC count while holding the Heap_lock
2397       gc_count_before = total_collections();
2398       full_gc_count_before = total_full_collections();
2399       old_marking_count_before = _old_marking_cycles_started;
2400     }
2401 
2402     if (should_do_concurrent_full_gc(cause)) {
2403       // Schedule an initial-mark evacuation pause that will start a
2404       // concurrent cycle. We're setting word_size to 0 which means that
2405       // we are not requesting a post-GC allocation.
2406       VM_G1IncCollectionPause op(gc_count_before,
2407                                  0,     /* word_size */
2408                                  true,  /* should_initiate_conc_mark */
2409                                  g1_policy()->max_pause_time_ms(),
2410                                  cause);
2411       op.set_allocation_context(AllocationContext::current());
2412 
2413       VMThread::execute(&op);
2414       if (!op.pause_succeeded()) {
2415         if (old_marking_count_before == _old_marking_cycles_started) {
2416           retry_gc = op.should_retry_gc();
2417         } else {
2418           // A Full GC happened while we were trying to schedule the
2419           // initial-mark GC. No point in starting a new cycle given
2420           // that the whole heap was collected anyway.
2421         }
2422 
2423         if (retry_gc) {
2424           if (GC_locker::is_active_and_needs_gc()) {
2425             GC_locker::stall_until_clear();
2426           }
2427         }
2428       }
2429     } else {
2430       if (cause == GCCause::_gc_locker || cause == GCCause::_wb_young_gc
2431           DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {
2432 
2433         // Schedule a standard evacuation pause. We're setting word_size
2434         // to 0 which means that we are not requesting a post-GC allocation.
2435         VM_G1IncCollectionPause op(gc_count_before,
2436                                    0,     /* word_size */
2437                                    false, /* should_initiate_conc_mark */
2438                                    g1_policy()->max_pause_time_ms(),
2439                                    cause);
2440         VMThread::execute(&op);
2441       } else {
2442         // Schedule a Full GC.
2443         VM_G1CollectFull op(gc_count_before, full_gc_count_before, cause);
2444         VMThread::execute(&op);
2445       }
2446     }
2447   } while (retry_gc);
2448 }
2449 
2450 bool G1CollectedHeap::is_in(const void* p) const {
2451   if (_hrm.reserved().contains(p)) {
2452     // Given that we know that p is in the reserved space,
2453     // heap_region_containing_raw() should successfully
2454     // return the containing region.
2455     HeapRegion* hr = heap_region_containing_raw(p);
2456     return hr->is_in(p);
2457   } else {
2458     return false;
2459   }
2460 }
2461 
2462 #ifdef ASSERT
2463 bool G1CollectedHeap::is_in_exact(const void* p) const {
2464   bool contains = reserved_region().contains(p);
2465   bool available = _hrm.is_available(addr_to_region((HeapWord*)p));
2466   if (contains && available) {
2467     return true;
2468   } else {
2469     return false;
2470   }
2471 }
2472 #endif
2473 
2474 // Iteration functions.
2475 
2476 // Applies an ExtendedOopClosure onto all references of objects within a HeapRegion.
2477 
2478 class IterateOopClosureRegionClosure: public HeapRegionClosure {
2479   ExtendedOopClosure* _cl;
2480 public:
2481   IterateOopClosureRegionClosure(ExtendedOopClosure* cl) : _cl(cl) {}
2482   bool doHeapRegion(HeapRegion* r) {
2483     if (!r->is_continues_humongous()) {
2484       r->oop_iterate(_cl);
2485     }
2486     return false;
2487   }
2488 };
2489 
2490 void G1CollectedHeap::oop_iterate(ExtendedOopClosure* cl) {
2491   IterateOopClosureRegionClosure blk(cl);
2492   heap_region_iterate(&blk);
2493 }
2494 
2495 // Iterates an ObjectClosure over all objects within a HeapRegion.
2496 
2497 class IterateObjectClosureRegionClosure: public HeapRegionClosure {
2498   ObjectClosure* _cl;
2499 public:
2500   IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
2501   bool doHeapRegion(HeapRegion* r) {
2502     if (!r->is_continues_humongous()) {
2503       r->object_iterate(_cl);
2504     }
2505     return false;
2506   }
2507 };
2508 
2509 void G1CollectedHeap::object_iterate(ObjectClosure* cl) {
2510   IterateObjectClosureRegionClosure blk(cl);
2511   heap_region_iterate(&blk);
2512 }
2513 
2514 // Calls a SpaceClosure on a HeapRegion.
2515 
2516 class SpaceClosureRegionClosure: public HeapRegionClosure {
2517   SpaceClosure* _cl;
2518 public:
2519   SpaceClosureRegionClosure(SpaceClosure* cl) : _cl(cl) {}
2520   bool doHeapRegion(HeapRegion* r) {
2521     _cl->do_space(r);
2522     return false;
2523   }
2524 };
2525 
2526 void G1CollectedHeap::space_iterate(SpaceClosure* cl) {
2527   SpaceClosureRegionClosure blk(cl);
2528   heap_region_iterate(&blk);
2529 }
2530 
2531 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const {
2532   _hrm.iterate(cl);
2533 }
2534 
2535 void
2536 G1CollectedHeap::heap_region_par_iterate(HeapRegionClosure* cl,
2537                                          uint worker_id,
2538                                          HeapRegionClaimer *hrclaimer,
2539                                          bool concurrent) const {
2540   _hrm.par_iterate(cl, worker_id, hrclaimer, concurrent);
2541 }
2542 
2543 // Clear the cached CSet starting regions and (more importantly)
2544 // the time stamps. Called when we reset the GC time stamp.
2545 void G1CollectedHeap::clear_cset_start_regions() {
2546   assert(_worker_cset_start_region != NULL, "sanity");
2547   assert(_worker_cset_start_region_time_stamp != NULL, "sanity");
2548 
2549   int n_queues = MAX2((int)ParallelGCThreads, 1);
2550   for (int i = 0; i < n_queues; i++) {
2551     _worker_cset_start_region[i] = NULL;
2552     _worker_cset_start_region_time_stamp[i] = 0;
2553   }
2554 }
2555 
2556 // Given the id of a worker, obtain or calculate a suitable
2557 // starting region for iterating over the current collection set.
2558 HeapRegion* G1CollectedHeap::start_cset_region_for_worker(uint worker_i) {
2559   assert(get_gc_time_stamp() > 0, "should have been updated by now");
2560 
2561   HeapRegion* result = NULL;
2562   unsigned gc_time_stamp = get_gc_time_stamp();
2563 
2564   if (_worker_cset_start_region_time_stamp[worker_i] == gc_time_stamp) {
2565     // Cached starting region for current worker was set
2566     // during the current pause - so it's valid.
2567     // Note: the cached starting heap region may be NULL
2568     // (when the collection set is empty).
2569     result = _worker_cset_start_region[worker_i];
2570     assert(result == NULL || result->in_collection_set(), "sanity");
2571     return result;
2572   }
2573 
2574   // The cached entry was not valid so let's calculate
2575   // a suitable starting heap region for this worker.
2576 
2577   // We want the parallel threads to start their collection
2578   // set iteration at different collection set regions to
2579   // avoid contention.
2580   // If we have:
2581   //          n collection set regions
2582   //          p threads
2583   // Then thread t will start at region floor ((t * n) / p)
2584 
2585   result = g1_policy()->collection_set();
2586   uint cs_size = g1_policy()->cset_region_length();
2587   uint active_workers = workers()->active_workers();
2588   assert(UseDynamicNumberOfGCThreads ||
2589            active_workers == workers()->total_workers(),
2590            "Unless dynamic should use total workers");
2591 
2592   uint end_ind   = (cs_size * worker_i) / active_workers;
2593   uint start_ind = 0;
2594 
2595   if (worker_i > 0 &&
2596       _worker_cset_start_region_time_stamp[worker_i - 1] == gc_time_stamp) {
2597     // Previous workers starting region is valid
2598     // so let's iterate from there
2599     start_ind = (cs_size * (worker_i - 1)) / active_workers;
2600     result = _worker_cset_start_region[worker_i - 1];
2601   }
2602 
2603   for (uint i = start_ind; i < end_ind; i++) {
2604     result = result->next_in_collection_set();
2605   }
2606 
2607   // Note: the calculated starting heap region may be NULL
2608   // (when the collection set is empty).
2609   assert(result == NULL || result->in_collection_set(), "sanity");
2610   assert(_worker_cset_start_region_time_stamp[worker_i] != gc_time_stamp,
2611          "should be updated only once per pause");
2612   _worker_cset_start_region[worker_i] = result;
2613   OrderAccess::storestore();
2614   _worker_cset_start_region_time_stamp[worker_i] = gc_time_stamp;
2615   return result;
2616 }
2617 
2618 void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) {
2619   HeapRegion* r = g1_policy()->collection_set();
2620   while (r != NULL) {
2621     HeapRegion* next = r->next_in_collection_set();
2622     if (cl->doHeapRegion(r)) {
2623       cl->incomplete();
2624       return;
2625     }
2626     r = next;
2627   }
2628 }
2629 
2630 void G1CollectedHeap::collection_set_iterate_from(HeapRegion* r,
2631                                                   HeapRegionClosure *cl) {
2632   if (r == NULL) {
2633     // The CSet is empty so there's nothing to do.
2634     return;
2635   }
2636 
2637   assert(r->in_collection_set(),
2638          "Start region must be a member of the collection set.");
2639   HeapRegion* cur = r;
2640   while (cur != NULL) {
2641     HeapRegion* next = cur->next_in_collection_set();
2642     if (cl->doHeapRegion(cur) && false) {
2643       cl->incomplete();
2644       return;
2645     }
2646     cur = next;
2647   }
2648   cur = g1_policy()->collection_set();
2649   while (cur != r) {
2650     HeapRegion* next = cur->next_in_collection_set();
2651     if (cl->doHeapRegion(cur) && false) {
2652       cl->incomplete();
2653       return;
2654     }
2655     cur = next;
2656   }
2657 }
2658 
2659 HeapRegion* G1CollectedHeap::next_compaction_region(const HeapRegion* from) const {
2660   HeapRegion* result = _hrm.next_region_in_heap(from);
2661   while (result != NULL && result->is_humongous()) {
2662     result = _hrm.next_region_in_heap(result);
2663   }
2664   return result;
2665 }
2666 
2667 Space* G1CollectedHeap::space_containing(const void* addr) const {
2668   return heap_region_containing(addr);
2669 }
2670 
2671 HeapWord* G1CollectedHeap::block_start(const void* addr) const {
2672   Space* sp = space_containing(addr);
2673   return sp->block_start(addr);
2674 }
2675 
2676 size_t G1CollectedHeap::block_size(const HeapWord* addr) const {
2677   Space* sp = space_containing(addr);
2678   return sp->block_size(addr);
2679 }
2680 
2681 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
2682   Space* sp = space_containing(addr);
2683   return sp->block_is_obj(addr);
2684 }
2685 
2686 bool G1CollectedHeap::supports_tlab_allocation() const {
2687   return true;
2688 }
2689 
2690 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
2691   return (_g1_policy->young_list_target_length() - young_list()->survivor_length()) * HeapRegion::GrainBytes;
2692 }
2693 
2694 size_t G1CollectedHeap::tlab_used(Thread* ignored) const {
2695   return young_list()->eden_used_bytes();
2696 }
2697 
2698 // For G1 TLABs should not contain humongous objects, so the maximum TLAB size
2699 // must be smaller than the humongous object limit.
2700 size_t G1CollectedHeap::max_tlab_size() const {
2701   return align_size_down(_humongous_object_threshold_in_words - 1, MinObjAlignment);
2702 }
2703 
2704 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
2705   // Return the remaining space in the cur alloc region, but not less than
2706   // the min TLAB size.
2707 
2708   // Also, this value can be at most the humongous object threshold,
2709   // since we can't allow tlabs to grow big enough to accommodate
2710   // humongous objects.
2711 
2712   HeapRegion* hr = _allocator->mutator_alloc_region(AllocationContext::current())->get();
2713   size_t max_tlab = max_tlab_size() * wordSize;
2714   if (hr == NULL) {
2715     return max_tlab;
2716   } else {
2717     return MIN2(MAX2(hr->free(), (size_t) MinTLABSize), max_tlab);
2718   }
2719 }
2720 
2721 size_t G1CollectedHeap::max_capacity() const {
2722   return _hrm.reserved().byte_size();
2723 }
2724 
2725 jlong G1CollectedHeap::millis_since_last_gc() {
2726   // assert(false, "NYI");
2727   return 0;
2728 }
2729 
2730 void G1CollectedHeap::prepare_for_verify() {
2731   if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
2732     ensure_parsability(false);
2733   }
2734   g1_rem_set()->prepare_for_verify();
2735 }
2736 
2737 bool G1CollectedHeap::allocated_since_marking(oop obj, HeapRegion* hr,
2738                                               VerifyOption vo) {
2739   switch (vo) {
2740   case VerifyOption_G1UsePrevMarking:
2741     return hr->obj_allocated_since_prev_marking(obj);
2742   case VerifyOption_G1UseNextMarking:
2743     return hr->obj_allocated_since_next_marking(obj);
2744   case VerifyOption_G1UseMarkWord:
2745     return false;
2746   default:
2747     ShouldNotReachHere();
2748   }
2749   return false; // keep some compilers happy
2750 }
2751 
2752 HeapWord* G1CollectedHeap::top_at_mark_start(HeapRegion* hr, VerifyOption vo) {
2753   switch (vo) {
2754   case VerifyOption_G1UsePrevMarking: return hr->prev_top_at_mark_start();
2755   case VerifyOption_G1UseNextMarking: return hr->next_top_at_mark_start();
2756   case VerifyOption_G1UseMarkWord:    return NULL;
2757   default:                            ShouldNotReachHere();
2758   }
2759   return NULL; // keep some compilers happy
2760 }
2761 
2762 bool G1CollectedHeap::is_marked(oop obj, VerifyOption vo) {
2763   switch (vo) {
2764   case VerifyOption_G1UsePrevMarking: return isMarkedPrev(obj);
2765   case VerifyOption_G1UseNextMarking: return isMarkedNext(obj);
2766   case VerifyOption_G1UseMarkWord:    return obj->is_gc_marked();
2767   default:                            ShouldNotReachHere();
2768   }
2769   return false; // keep some compilers happy
2770 }
2771 
2772 const char* G1CollectedHeap::top_at_mark_start_str(VerifyOption vo) {
2773   switch (vo) {
2774   case VerifyOption_G1UsePrevMarking: return "PTAMS";
2775   case VerifyOption_G1UseNextMarking: return "NTAMS";
2776   case VerifyOption_G1UseMarkWord:    return "NONE";
2777   default:                            ShouldNotReachHere();
2778   }
2779   return NULL; // keep some compilers happy
2780 }
2781 
2782 class VerifyRootsClosure: public OopClosure {
2783 private:
2784   G1CollectedHeap* _g1h;
2785   VerifyOption     _vo;
2786   bool             _failures;
2787 public:
2788   // _vo == UsePrevMarking -> use "prev" marking information,
2789   // _vo == UseNextMarking -> use "next" marking information,
2790   // _vo == UseMarkWord    -> use mark word from object header.
2791   VerifyRootsClosure(VerifyOption vo) :
2792     _g1h(G1CollectedHeap::heap()),
2793     _vo(vo),
2794     _failures(false) { }
2795 
2796   bool failures() { return _failures; }
2797 
2798   template <class T> void do_oop_nv(T* p) {
2799     T heap_oop = oopDesc::load_heap_oop(p);
2800     if (!oopDesc::is_null(heap_oop)) {
2801       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
2802       if (_g1h->is_obj_dead_cond(obj, _vo)) {
2803         gclog_or_tty->print_cr("Root location "PTR_FORMAT" "
2804                               "points to dead obj "PTR_FORMAT, p, (void*) obj);
2805         if (_vo == VerifyOption_G1UseMarkWord) {
2806           gclog_or_tty->print_cr("  Mark word: "PTR_FORMAT, (void*)(obj->mark()));
2807         }
2808         obj->print_on(gclog_or_tty);
2809         _failures = true;
2810       }
2811     }
2812   }
2813 
2814   void do_oop(oop* p)       { do_oop_nv(p); }
2815   void do_oop(narrowOop* p) { do_oop_nv(p); }
2816 };
2817 
2818 class G1VerifyCodeRootOopClosure: public OopClosure {
2819   G1CollectedHeap* _g1h;
2820   OopClosure* _root_cl;
2821   nmethod* _nm;
2822   VerifyOption _vo;
2823   bool _failures;
2824 
2825   template <class T> void do_oop_work(T* p) {
2826     // First verify that this root is live
2827     _root_cl->do_oop(p);
2828 
2829     if (!G1VerifyHeapRegionCodeRoots) {
2830       // We're not verifying the code roots attached to heap region.
2831       return;
2832     }
2833 
2834     // Don't check the code roots during marking verification in a full GC
2835     if (_vo == VerifyOption_G1UseMarkWord) {
2836       return;
2837     }
2838 
2839     // Now verify that the current nmethod (which contains p) is
2840     // in the code root list of the heap region containing the
2841     // object referenced by p.
2842 
2843     T heap_oop = oopDesc::load_heap_oop(p);
2844     if (!oopDesc::is_null(heap_oop)) {
2845       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
2846 
2847       // Now fetch the region containing the object
2848       HeapRegion* hr = _g1h->heap_region_containing(obj);
2849       HeapRegionRemSet* hrrs = hr->rem_set();
2850       // Verify that the strong code root list for this region
2851       // contains the nmethod
2852       if (!hrrs->strong_code_roots_list_contains(_nm)) {
2853         gclog_or_tty->print_cr("Code root location "PTR_FORMAT" "
2854                               "from nmethod "PTR_FORMAT" not in strong "
2855                               "code roots for region ["PTR_FORMAT","PTR_FORMAT")",
2856                               p, _nm, hr->bottom(), hr->end());
2857         _failures = true;
2858       }
2859     }
2860   }
2861 
2862 public:
2863   G1VerifyCodeRootOopClosure(G1CollectedHeap* g1h, OopClosure* root_cl, VerifyOption vo):
2864     _g1h(g1h), _root_cl(root_cl), _vo(vo), _nm(NULL), _failures(false) {}
2865 
2866   void do_oop(oop* p) { do_oop_work(p); }
2867   void do_oop(narrowOop* p) { do_oop_work(p); }
2868 
2869   void set_nmethod(nmethod* nm) { _nm = nm; }
2870   bool failures() { return _failures; }
2871 };
2872 
2873 class G1VerifyCodeRootBlobClosure: public CodeBlobClosure {
2874   G1VerifyCodeRootOopClosure* _oop_cl;
2875 
2876 public:
2877   G1VerifyCodeRootBlobClosure(G1VerifyCodeRootOopClosure* oop_cl):
2878     _oop_cl(oop_cl) {}
2879 
2880   void do_code_blob(CodeBlob* cb) {
2881     nmethod* nm = cb->as_nmethod_or_null();
2882     if (nm != NULL) {
2883       _oop_cl->set_nmethod(nm);
2884       nm->oops_do(_oop_cl);
2885     }
2886   }
2887 };
2888 
2889 class YoungRefCounterClosure : public OopClosure {
2890   G1CollectedHeap* _g1h;
2891   int              _count;
2892  public:
2893   YoungRefCounterClosure(G1CollectedHeap* g1h) : _g1h(g1h), _count(0) {}
2894   void do_oop(oop* p)       { if (_g1h->is_in_young(*p)) { _count++; } }
2895   void do_oop(narrowOop* p) { ShouldNotReachHere(); }
2896 
2897   int count() { return _count; }
2898   void reset_count() { _count = 0; };
2899 };
2900 
2901 class VerifyKlassClosure: public KlassClosure {
2902   YoungRefCounterClosure _young_ref_counter_closure;
2903   OopClosure *_oop_closure;
2904  public:
2905   VerifyKlassClosure(G1CollectedHeap* g1h, OopClosure* cl) : _young_ref_counter_closure(g1h), _oop_closure(cl) {}
2906   void do_klass(Klass* k) {
2907     k->oops_do(_oop_closure);
2908 
2909     _young_ref_counter_closure.reset_count();
2910     k->oops_do(&_young_ref_counter_closure);
2911     if (_young_ref_counter_closure.count() > 0) {
2912       guarantee(k->has_modified_oops(), err_msg("Klass " PTR_FORMAT ", has young refs but is not dirty.", k));
2913     }
2914   }
2915 };
2916 
2917 class VerifyLivenessOopClosure: public OopClosure {
2918   G1CollectedHeap* _g1h;
2919   VerifyOption _vo;
2920 public:
2921   VerifyLivenessOopClosure(G1CollectedHeap* g1h, VerifyOption vo):
2922     _g1h(g1h), _vo(vo)
2923   { }
2924   void do_oop(narrowOop *p) { do_oop_work(p); }
2925   void do_oop(      oop *p) { do_oop_work(p); }
2926 
2927   template <class T> void do_oop_work(T *p) {
2928     oop obj = oopDesc::load_decode_heap_oop(p);
2929     guarantee(obj == NULL || !_g1h->is_obj_dead_cond(obj, _vo),
2930               "Dead object referenced by a not dead object");
2931   }
2932 };
2933 
2934 class VerifyObjsInRegionClosure: public ObjectClosure {
2935 private:
2936   G1CollectedHeap* _g1h;
2937   size_t _live_bytes;
2938   HeapRegion *_hr;
2939   VerifyOption _vo;
2940 public:
2941   // _vo == UsePrevMarking -> use "prev" marking information,
2942   // _vo == UseNextMarking -> use "next" marking information,
2943   // _vo == UseMarkWord    -> use mark word from object header.
2944   VerifyObjsInRegionClosure(HeapRegion *hr, VerifyOption vo)
2945     : _live_bytes(0), _hr(hr), _vo(vo) {
2946     _g1h = G1CollectedHeap::heap();
2947   }
2948   void do_object(oop o) {
2949     VerifyLivenessOopClosure isLive(_g1h, _vo);
2950     assert(o != NULL, "Huh?");
2951     if (!_g1h->is_obj_dead_cond(o, _vo)) {
2952       // If the object is alive according to the mark word,
2953       // then verify that the marking information agrees.
2954       // Note we can't verify the contra-positive of the
2955       // above: if the object is dead (according to the mark
2956       // word), it may not be marked, or may have been marked
2957       // but has since became dead, or may have been allocated
2958       // since the last marking.
2959       if (_vo == VerifyOption_G1UseMarkWord) {
2960         guarantee(!_g1h->is_obj_dead(o), "mark word and concurrent mark mismatch");
2961       }
2962 
2963       o->oop_iterate_no_header(&isLive);
2964       if (!_hr->obj_allocated_since_prev_marking(o)) {
2965         size_t obj_size = o->size();    // Make sure we don't overflow
2966         _live_bytes += (obj_size * HeapWordSize);
2967       }
2968     }
2969   }
2970   size_t live_bytes() { return _live_bytes; }
2971 };
2972 
2973 class PrintObjsInRegionClosure : public ObjectClosure {
2974   HeapRegion *_hr;
2975   G1CollectedHeap *_g1;
2976 public:
2977   PrintObjsInRegionClosure(HeapRegion *hr) : _hr(hr) {
2978     _g1 = G1CollectedHeap::heap();
2979   };
2980 
2981   void do_object(oop o) {
2982     if (o != NULL) {
2983       HeapWord *start = (HeapWord *) o;
2984       size_t word_sz = o->size();
2985       gclog_or_tty->print("\nPrinting obj "PTR_FORMAT" of size " SIZE_FORMAT
2986                           " isMarkedPrev %d isMarkedNext %d isAllocSince %d\n",
2987                           (void*) o, word_sz,
2988                           _g1->isMarkedPrev(o),
2989                           _g1->isMarkedNext(o),
2990                           _hr->obj_allocated_since_prev_marking(o));
2991       HeapWord *end = start + word_sz;
2992       HeapWord *cur;
2993       int *val;
2994       for (cur = start; cur < end; cur++) {
2995         val = (int *) cur;
2996         gclog_or_tty->print("\t "PTR_FORMAT":%d\n", val, *val);
2997       }
2998     }
2999   }
3000 };
3001 
3002 class VerifyRegionClosure: public HeapRegionClosure {
3003 private:
3004   bool             _par;
3005   VerifyOption     _vo;
3006   bool             _failures;
3007 public:
3008   // _vo == UsePrevMarking -> use "prev" marking information,
3009   // _vo == UseNextMarking -> use "next" marking information,
3010   // _vo == UseMarkWord    -> use mark word from object header.
3011   VerifyRegionClosure(bool par, VerifyOption vo)
3012     : _par(par),
3013       _vo(vo),
3014       _failures(false) {}
3015 
3016   bool failures() {
3017     return _failures;
3018   }
3019 
3020   bool doHeapRegion(HeapRegion* r) {
3021     if (!r->is_continues_humongous()) {
3022       bool failures = false;
3023       r->verify(_vo, &failures);
3024       if (failures) {
3025         _failures = true;
3026       } else {
3027         VerifyObjsInRegionClosure not_dead_yet_cl(r, _vo);
3028         r->object_iterate(&not_dead_yet_cl);
3029         if (_vo != VerifyOption_G1UseNextMarking) {
3030           if (r->max_live_bytes() < not_dead_yet_cl.live_bytes()) {
3031             gclog_or_tty->print_cr("["PTR_FORMAT","PTR_FORMAT"] "
3032                                    "max_live_bytes "SIZE_FORMAT" "
3033                                    "< calculated "SIZE_FORMAT,
3034                                    r->bottom(), r->end(),
3035                                    r->max_live_bytes(),
3036                                  not_dead_yet_cl.live_bytes());
3037             _failures = true;
3038           }
3039         } else {
3040           // When vo == UseNextMarking we cannot currently do a sanity
3041           // check on the live bytes as the calculation has not been
3042           // finalized yet.
3043         }
3044       }
3045     }
3046     return false; // stop the region iteration if we hit a failure
3047   }
3048 };
3049 
3050 // This is the task used for parallel verification of the heap regions
3051 
3052 class G1ParVerifyTask: public AbstractGangTask {
3053 private:
3054   G1CollectedHeap*  _g1h;
3055   VerifyOption      _vo;
3056   bool              _failures;
3057   HeapRegionClaimer _hrclaimer;
3058 
3059 public:
3060   // _vo == UsePrevMarking -> use "prev" marking information,
3061   // _vo == UseNextMarking -> use "next" marking information,
3062   // _vo == UseMarkWord    -> use mark word from object header.
3063   G1ParVerifyTask(G1CollectedHeap* g1h, VerifyOption vo) :
3064       AbstractGangTask("Parallel verify task"),
3065       _g1h(g1h),
3066       _vo(vo),
3067       _failures(false),
3068       _hrclaimer(g1h->workers()->active_workers()) {}
3069 
3070   bool failures() {
3071     return _failures;
3072   }
3073 
3074   void work(uint worker_id) {
3075     HandleMark hm;
3076     VerifyRegionClosure blk(true, _vo);
3077     _g1h->heap_region_par_iterate(&blk, worker_id, &_hrclaimer);
3078     if (blk.failures()) {
3079       _failures = true;
3080     }
3081   }
3082 };
3083 
3084 void G1CollectedHeap::verify(bool silent, VerifyOption vo) {
3085   if (SafepointSynchronize::is_at_safepoint()) {
3086     assert(Thread::current()->is_VM_thread(),
3087            "Expected to be executed serially by the VM thread at this point");
3088 
3089     if (!silent) { gclog_or_tty->print("Roots "); }
3090     VerifyRootsClosure rootsCl(vo);
3091     VerifyKlassClosure klassCl(this, &rootsCl);
3092     CLDToKlassAndOopClosure cldCl(&klassCl, &rootsCl, false);
3093 
3094     // We apply the relevant closures to all the oops in the
3095     // system dictionary, class loader data graph, the string table
3096     // and the nmethods in the code cache.
3097     G1VerifyCodeRootOopClosure codeRootsCl(this, &rootsCl, vo);
3098     G1VerifyCodeRootBlobClosure blobsCl(&codeRootsCl);
3099 
3100     {
3101       G1RootProcessor root_processor(this);
3102       root_processor.process_all_roots(&rootsCl,
3103                                        &cldCl,
3104                                        &blobsCl);
3105     }
3106 
3107     bool failures = rootsCl.failures() || codeRootsCl.failures();
3108 
3109     if (vo != VerifyOption_G1UseMarkWord) {
3110       // If we're verifying during a full GC then the region sets
3111       // will have been torn down at the start of the GC. Therefore
3112       // verifying the region sets will fail. So we only verify
3113       // the region sets when not in a full GC.
3114       if (!silent) { gclog_or_tty->print("HeapRegionSets "); }
3115       verify_region_sets();
3116     }
3117 
3118     if (!silent) { gclog_or_tty->print("HeapRegions "); }
3119     if (GCParallelVerificationEnabled && ParallelGCThreads > 1) {
3120 
3121       G1ParVerifyTask task(this, vo);
3122       assert(UseDynamicNumberOfGCThreads ||
3123         workers()->active_workers() == workers()->total_workers(),
3124         "If not dynamic should be using all the workers");
3125       int n_workers = workers()->active_workers();
3126       set_par_threads(n_workers);
3127       workers()->run_task(&task);
3128       set_par_threads(0);
3129       if (task.failures()) {
3130         failures = true;
3131       }
3132 
3133     } else {
3134       VerifyRegionClosure blk(false, vo);
3135       heap_region_iterate(&blk);
3136       if (blk.failures()) {
3137         failures = true;
3138       }
3139     }
3140 
3141     if (G1StringDedup::is_enabled()) {
3142       if (!silent) gclog_or_tty->print("StrDedup ");
3143       G1StringDedup::verify();
3144     }
3145 
3146     if (failures) {
3147       gclog_or_tty->print_cr("Heap:");
3148       // It helps to have the per-region information in the output to
3149       // help us track down what went wrong. This is why we call
3150       // print_extended_on() instead of print_on().
3151       print_extended_on(gclog_or_tty);
3152       gclog_or_tty->cr();
3153 #ifndef PRODUCT
3154       if (VerifyDuringGC && G1VerifyDuringGCPrintReachable) {
3155         concurrent_mark()->print_reachable("at-verification-failure",
3156                                            vo, false /* all */);
3157       }
3158 #endif
3159       gclog_or_tty->flush();
3160     }
3161     guarantee(!failures, "there should not have been any failures");
3162   } else {
3163     if (!silent) {
3164       gclog_or_tty->print("(SKIPPING Roots, HeapRegionSets, HeapRegions, RemSet");
3165       if (G1StringDedup::is_enabled()) {
3166         gclog_or_tty->print(", StrDedup");
3167       }
3168       gclog_or_tty->print(") ");
3169     }
3170   }
3171 }
3172 
3173 void G1CollectedHeap::verify(bool silent) {
3174   verify(silent, VerifyOption_G1UsePrevMarking);
3175 }
3176 
3177 double G1CollectedHeap::verify(bool guard, const char* msg) {
3178   double verify_time_ms = 0.0;
3179 
3180   if (guard && total_collections() >= VerifyGCStartAt) {
3181     double verify_start = os::elapsedTime();
3182     HandleMark hm;  // Discard invalid handles created during verification
3183     prepare_for_verify();
3184     Universe::verify(VerifyOption_G1UsePrevMarking, msg);
3185     verify_time_ms = (os::elapsedTime() - verify_start) * 1000;
3186   }
3187 
3188   return verify_time_ms;
3189 }
3190 
3191 void G1CollectedHeap::verify_before_gc() {
3192   double verify_time_ms = verify(VerifyBeforeGC, " VerifyBeforeGC:");
3193   g1_policy()->phase_times()->record_verify_before_time_ms(verify_time_ms);
3194 }
3195 
3196 void G1CollectedHeap::verify_after_gc() {
3197   double verify_time_ms = verify(VerifyAfterGC, " VerifyAfterGC:");
3198   g1_policy()->phase_times()->record_verify_after_time_ms(verify_time_ms);
3199 }
3200 
3201 class PrintRegionClosure: public HeapRegionClosure {
3202   outputStream* _st;
3203 public:
3204   PrintRegionClosure(outputStream* st) : _st(st) {}
3205   bool doHeapRegion(HeapRegion* r) {
3206     r->print_on(_st);
3207     return false;
3208   }
3209 };
3210 
3211 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
3212                                        const HeapRegion* hr,
3213                                        const VerifyOption vo) const {
3214   switch (vo) {
3215   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj, hr);
3216   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj, hr);
3217   case VerifyOption_G1UseMarkWord:    return !obj->is_gc_marked();
3218   default:                            ShouldNotReachHere();
3219   }
3220   return false; // keep some compilers happy
3221 }
3222 
3223 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
3224                                        const VerifyOption vo) const {
3225   switch (vo) {
3226   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj);
3227   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj);
3228   case VerifyOption_G1UseMarkWord:    return !obj->is_gc_marked();
3229   default:                            ShouldNotReachHere();
3230   }
3231   return false; // keep some compilers happy
3232 }
3233 
3234 void G1CollectedHeap::print_on(outputStream* st) const {
3235   st->print(" %-20s", "garbage-first heap");
3236   st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
3237             capacity()/K, used_unlocked()/K);
3238   st->print(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", " INTPTR_FORMAT ")",
3239             _hrm.reserved().start(),
3240             _hrm.reserved().start() + _hrm.length() + HeapRegion::GrainWords,
3241             _hrm.reserved().end());
3242   st->cr();
3243   st->print("  region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K);
3244   uint young_regions = _young_list->length();
3245   st->print("%u young (" SIZE_FORMAT "K), ", young_regions,
3246             (size_t) young_regions * HeapRegion::GrainBytes / K);
3247   uint survivor_regions = g1_policy()->recorded_survivor_regions();
3248   st->print("%u survivors (" SIZE_FORMAT "K)", survivor_regions,
3249             (size_t) survivor_regions * HeapRegion::GrainBytes / K);
3250   st->cr();
3251   MetaspaceAux::print_on(st);
3252 }
3253 
3254 void G1CollectedHeap::print_extended_on(outputStream* st) const {
3255   print_on(st);
3256 
3257   // Print the per-region information.
3258   st->cr();
3259   st->print_cr("Heap Regions: (Y=young(eden), SU=young(survivor), "
3260                "HS=humongous(starts), HC=humongous(continues), "
3261                "CS=collection set, F=free, TS=gc time stamp, "
3262                "PTAMS=previous top-at-mark-start, "
3263                "NTAMS=next top-at-mark-start)");
3264   PrintRegionClosure blk(st);
3265   heap_region_iterate(&blk);
3266 }
3267 
3268 void G1CollectedHeap::print_on_error(outputStream* st) const {
3269   this->CollectedHeap::print_on_error(st);
3270 
3271   if (_cm != NULL) {
3272     st->cr();
3273     _cm->print_on_error(st);
3274   }
3275 }
3276 
3277 void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
3278   workers()->print_worker_threads_on(st);
3279   _cmThread->print_on(st);
3280   st->cr();
3281   _cm->print_worker_threads_on(st);
3282   _cg1r->print_worker_threads_on(st);
3283   if (G1StringDedup::is_enabled()) {
3284     G1StringDedup::print_worker_threads_on(st);
3285   }
3286 }
3287 
3288 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
3289   workers()->threads_do(tc);
3290   tc->do_thread(_cmThread);
3291   _cg1r->threads_do(tc);
3292   if (G1StringDedup::is_enabled()) {
3293     G1StringDedup::threads_do(tc);
3294   }
3295 }
3296 
3297 void G1CollectedHeap::print_tracing_info() const {
3298   // We'll overload this to mean "trace GC pause statistics."
3299   if (TraceYoungGenTime || TraceOldGenTime) {
3300     // The "G1CollectorPolicy" is keeping track of these stats, so delegate
3301     // to that.
3302     g1_policy()->print_tracing_info();
3303   }
3304   if (G1SummarizeRSetStats) {
3305     g1_rem_set()->print_summary_info();
3306   }
3307   if (G1SummarizeConcMark) {
3308     concurrent_mark()->print_summary_info();
3309   }
3310   g1_policy()->print_yg_surv_rate_info();
3311 }
3312 
3313 #ifndef PRODUCT
3314 // Helpful for debugging RSet issues.
3315 
3316 class PrintRSetsClosure : public HeapRegionClosure {
3317 private:
3318   const char* _msg;
3319   size_t _occupied_sum;
3320 
3321 public:
3322   bool doHeapRegion(HeapRegion* r) {
3323     HeapRegionRemSet* hrrs = r->rem_set();
3324     size_t occupied = hrrs->occupied();
3325     _occupied_sum += occupied;
3326 
3327     gclog_or_tty->print_cr("Printing RSet for region "HR_FORMAT,
3328                            HR_FORMAT_PARAMS(r));
3329     if (occupied == 0) {
3330       gclog_or_tty->print_cr("  RSet is empty");
3331     } else {
3332       hrrs->print();
3333     }
3334     gclog_or_tty->print_cr("----------");
3335     return false;
3336   }
3337 
3338   PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) {
3339     gclog_or_tty->cr();
3340     gclog_or_tty->print_cr("========================================");
3341     gclog_or_tty->print_cr("%s", msg);
3342     gclog_or_tty->cr();
3343   }
3344 
3345   ~PrintRSetsClosure() {
3346     gclog_or_tty->print_cr("Occupied Sum: "SIZE_FORMAT, _occupied_sum);
3347     gclog_or_tty->print_cr("========================================");
3348     gclog_or_tty->cr();
3349   }
3350 };
3351 
3352 void G1CollectedHeap::print_cset_rsets() {
3353   PrintRSetsClosure cl("Printing CSet RSets");
3354   collection_set_iterate(&cl);
3355 }
3356 
3357 void G1CollectedHeap::print_all_rsets() {
3358   PrintRSetsClosure cl("Printing All RSets");;
3359   heap_region_iterate(&cl);
3360 }
3361 #endif // PRODUCT
3362 
3363 G1CollectedHeap* G1CollectedHeap::heap() {
3364   assert(_sh->kind() == CollectedHeap::G1CollectedHeap,
3365          "not a garbage-first heap");
3366   return _g1h;
3367 }
3368 
3369 void G1CollectedHeap::gc_prologue(bool full /* Ignored */) {
3370   // always_do_update_barrier = false;
3371   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
3372   // Fill TLAB's and such
3373   accumulate_statistics_all_tlabs();
3374   ensure_parsability(true);
3375 
3376   if (G1SummarizeRSetStats && (G1SummarizeRSetStatsPeriod > 0) &&
3377       (total_collections() % G1SummarizeRSetStatsPeriod == 0)) {
3378     g1_rem_set()->print_periodic_summary_info("Before GC RS summary");
3379   }
3380 }
3381 
3382 void G1CollectedHeap::gc_epilogue(bool full) {
3383 
3384   if (G1SummarizeRSetStats &&
3385       (G1SummarizeRSetStatsPeriod > 0) &&
3386       // we are at the end of the GC. Total collections has already been increased.
3387       ((total_collections() - 1) % G1SummarizeRSetStatsPeriod == 0)) {
3388     g1_rem_set()->print_periodic_summary_info("After GC RS summary");
3389   }
3390 
3391   // FIXME: what is this about?
3392   // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
3393   // is set.
3394   COMPILER2_PRESENT(assert(DerivedPointerTable::is_empty(),
3395                         "derived pointer present"));
3396   // always_do_update_barrier = true;
3397 
3398   resize_all_tlabs();
3399   allocation_context_stats().update(full);
3400 
3401   // We have just completed a GC. Update the soft reference
3402   // policy with the new heap occupancy
3403   Universe::update_heap_info_at_gc();
3404 }
3405 
3406 HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
3407                                                uint gc_count_before,
3408                                                bool* succeeded,
3409                                                GCCause::Cause gc_cause,
3410                                                uint gc_attempt) {
3411   assert_heap_not_locked_and_not_at_safepoint();
3412   g1_policy()->record_stop_world_start();
3413   VM_G1IncCollectionPause op(gc_count_before,
3414                              word_size,
3415                              false, /* should_initiate_conc_mark */
3416                              g1_policy()->max_pause_time_ms(),
3417                              gc_cause,
3418                              gc_attempt);
3419 
3420   op.set_allocation_context(AllocationContext::current());
3421   VMThread::execute(&op);
3422 
3423   HeapWord* result = op.result();
3424   bool ret_succeeded = op.prologue_succeeded() && op.pause_succeeded();
3425   assert(result == NULL || ret_succeeded,
3426          "the result should be NULL if the VM did not succeed");
3427   *succeeded = ret_succeeded;
3428 
3429   assert_heap_not_locked();
3430   return result;
3431 }
3432 
3433 void
3434 G1CollectedHeap::doConcurrentMark() {
3435   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
3436   if (!_cmThread->in_progress()) {
3437     _cmThread->set_started();
3438     CGC_lock->notify();
3439   }
3440 }
3441 
3442 size_t G1CollectedHeap::pending_card_num() {
3443   size_t extra_cards = 0;
3444   JavaThread *curr = Threads::first();
3445   while (curr != NULL) {
3446     DirtyCardQueue& dcq = curr->dirty_card_queue();
3447     extra_cards += dcq.size();
3448     curr = curr->next();
3449   }
3450   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
3451   size_t buffer_size = dcqs.buffer_size();
3452   size_t buffer_num = dcqs.completed_buffers_num();
3453 
3454   // PtrQueueSet::buffer_size() and PtrQueue:size() return sizes
3455   // in bytes - not the number of 'entries'. We need to convert
3456   // into a number of cards.
3457   return (buffer_size * buffer_num + extra_cards) / oopSize;
3458 }
3459 
3460 size_t G1CollectedHeap::cards_scanned() {
3461   return g1_rem_set()->cardsScanned();
3462 }
3463 
3464 bool G1CollectedHeap::humongous_region_is_always_live(uint index) {
3465   HeapRegion* region = region_at(index);
3466   assert(region->is_starts_humongous(), "Must start a humongous object");
3467   return oop(region->bottom())->is_objArray() || !region->rem_set()->is_empty();
3468 }
3469 
3470 class RegisterHumongousWithInCSetFastTestClosure : public HeapRegionClosure {
3471  private:
3472   size_t _total_humongous;
3473   size_t _candidate_humongous;
3474 
3475   DirtyCardQueue _dcq;
3476 
3477   bool humongous_region_is_candidate(uint index) {
3478     HeapRegion* region = G1CollectedHeap::heap()->region_at(index);
3479     assert(region->is_starts_humongous(), "Must start a humongous object");
3480     HeapRegionRemSet* const rset = region->rem_set();
3481     bool const allow_stale_refs = G1EagerReclaimHumongousObjectsWithStaleRefs;
3482     return !oop(region->bottom())->is_objArray() &&
3483            ((allow_stale_refs && rset->occupancy_less_or_equal_than(G1RSetSparseRegionEntries)) ||
3484             (!allow_stale_refs && rset->is_empty()));
3485   }
3486 
3487  public:
3488   RegisterHumongousWithInCSetFastTestClosure()
3489   : _total_humongous(0),
3490     _candidate_humongous(0),
3491     _dcq(&JavaThread::dirty_card_queue_set()) {
3492   }
3493 
3494   virtual bool doHeapRegion(HeapRegion* r) {
3495     if (!r->is_starts_humongous()) {
3496       return false;
3497     }
3498     G1CollectedHeap* g1h = G1CollectedHeap::heap();
3499 
3500     uint region_idx = r->hrm_index();
3501     bool is_candidate = humongous_region_is_candidate(region_idx);
3502     // Is_candidate already filters out humongous object with large remembered sets.
3503     // If we have a humongous object with a few remembered sets, we simply flush these
3504     // remembered set entries into the DCQS. That will result in automatic
3505     // re-evaluation of their remembered set entries during the following evacuation
3506     // phase.
3507     if (is_candidate) {
3508       if (!r->rem_set()->is_empty()) {
3509         guarantee(r->rem_set()->occupancy_less_or_equal_than(G1RSetSparseRegionEntries),
3510                   "Found a not-small remembered set here. This is inconsistent with previous assumptions.");
3511         G1SATBCardTableLoggingModRefBS* bs = g1h->g1_barrier_set();
3512         HeapRegionRemSetIterator hrrs(r->rem_set());
3513         size_t card_index;
3514         while (hrrs.has_next(card_index)) {
3515           jbyte* card_ptr = (jbyte*)bs->byte_for_index(card_index);
3516           // The remembered set might contain references to already freed
3517           // regions. Filter out such entries to avoid failing card table
3518           // verification.
3519           if (!g1h->heap_region_containing(bs->addr_for(card_ptr))->is_free()) {
3520             if (*card_ptr != CardTableModRefBS::dirty_card_val()) {
3521               *card_ptr = CardTableModRefBS::dirty_card_val();
3522               _dcq.enqueue(card_ptr);
3523             }
3524           }
3525         }
3526         r->rem_set()->clear_locked();
3527       }
3528       assert(r->rem_set()->is_empty(), "At this point any humongous candidate remembered set must be empty.");
3529       g1h->register_humongous_region_with_cset(region_idx);
3530       _candidate_humongous++;
3531     }
3532     _total_humongous++;
3533 
3534     return false;
3535   }
3536 
3537   size_t total_humongous() const { return _total_humongous; }
3538   size_t candidate_humongous() const { return _candidate_humongous; }
3539 
3540   void flush_rem_set_entries() { _dcq.flush(); }
3541 };
3542 
3543 void G1CollectedHeap::register_humongous_regions_with_cset() {
3544   if (!G1EagerReclaimHumongousObjects) {
3545     g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(0.0, 0, 0);
3546     return;
3547   }
3548   double time = os::elapsed_counter();
3549 
3550   RegisterHumongousWithInCSetFastTestClosure cl;
3551   heap_region_iterate(&cl);
3552 
3553   time = ((double)(os::elapsed_counter() - time) / os::elapsed_frequency()) * 1000.0;
3554   g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(time,
3555                                                                   cl.total_humongous(),
3556                                                                   cl.candidate_humongous());
3557   _has_humongous_reclaim_candidates = cl.candidate_humongous() > 0;
3558 
3559   if (_has_humongous_reclaim_candidates || G1TraceEagerReclaimHumongousObjects) {
3560     clear_humongous_is_live_table();
3561   }
3562 
3563   // Finally flush all remembered set entries to re-check into the global DCQS.
3564   cl.flush_rem_set_entries();
3565 }
3566 
3567 void
3568 G1CollectedHeap::setup_surviving_young_words() {
3569   assert(_surviving_young_words == NULL, "pre-condition");
3570   uint array_length = g1_policy()->young_cset_region_length();
3571   _surviving_young_words = NEW_C_HEAP_ARRAY(size_t, (size_t) array_length, mtGC);
3572   if (_surviving_young_words == NULL) {
3573     vm_exit_out_of_memory(sizeof(size_t) * array_length, OOM_MALLOC_ERROR,
3574                           "Not enough space for young surv words summary.");
3575   }
3576   memset(_surviving_young_words, 0, (size_t) array_length * sizeof(size_t));
3577 #ifdef ASSERT
3578   for (uint i = 0;  i < array_length; ++i) {
3579     assert( _surviving_young_words[i] == 0, "memset above" );
3580   }
3581 #endif // !ASSERT
3582 }
3583 
3584 void
3585 G1CollectedHeap::update_surviving_young_words(size_t* surv_young_words) {
3586   MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
3587   uint array_length = g1_policy()->young_cset_region_length();
3588   for (uint i = 0; i < array_length; ++i) {
3589     _surviving_young_words[i] += surv_young_words[i];
3590   }
3591 }
3592 
3593 void
3594 G1CollectedHeap::cleanup_surviving_young_words() {
3595   guarantee( _surviving_young_words != NULL, "pre-condition" );
3596   FREE_C_HEAP_ARRAY(size_t, _surviving_young_words);
3597   _surviving_young_words = NULL;
3598 }
3599 
3600 #ifdef ASSERT
3601 class VerifyCSetClosure: public HeapRegionClosure {
3602 public:
3603   bool doHeapRegion(HeapRegion* hr) {
3604     // Here we check that the CSet region's RSet is ready for parallel
3605     // iteration. The fields that we'll verify are only manipulated
3606     // when the region is part of a CSet and is collected. Afterwards,
3607     // we reset these fields when we clear the region's RSet (when the
3608     // region is freed) so they are ready when the region is
3609     // re-allocated. The only exception to this is if there's an
3610     // evacuation failure and instead of freeing the region we leave
3611     // it in the heap. In that case, we reset these fields during
3612     // evacuation failure handling.
3613     guarantee(hr->rem_set()->verify_ready_for_par_iteration(), "verification");
3614 
3615     // Here's a good place to add any other checks we'd like to
3616     // perform on CSet regions.
3617     return false;
3618   }
3619 };
3620 #endif // ASSERT
3621 
3622 #if TASKQUEUE_STATS
3623 void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
3624   st->print_raw_cr("GC Task Stats");
3625   st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
3626   st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
3627 }
3628 
3629 void G1CollectedHeap::print_taskqueue_stats(outputStream* const st) const {
3630   print_taskqueue_stats_hdr(st);
3631 
3632   TaskQueueStats totals;
3633   const int n = workers()->total_workers();
3634   for (int i = 0; i < n; ++i) {
3635     st->print("%3d ", i); task_queue(i)->stats.print(st); st->cr();
3636     totals += task_queue(i)->stats;
3637   }
3638   st->print_raw("tot "); totals.print(st); st->cr();
3639 
3640   DEBUG_ONLY(totals.verify());
3641 }
3642 
3643 void G1CollectedHeap::reset_taskqueue_stats() {
3644   const int n = workers()->total_workers();
3645   for (int i = 0; i < n; ++i) {
3646     task_queue(i)->stats.reset();
3647   }
3648 }
3649 #endif // TASKQUEUE_STATS
3650 
3651 void G1CollectedHeap::log_gc_header() {
3652   if (!G1Log::fine()) {
3653     return;
3654   }
3655 
3656   gclog_or_tty->gclog_stamp(_gc_tracer_stw->gc_id());
3657 
3658   GCCauseString gc_cause_str = GCCauseString("GC pause", gc_cause())
3659     .append(g1_policy()->gcs_are_young() ? "(young)" : "(mixed)")
3660     .append(g1_policy()->during_initial_mark_pause() ? " (initial-mark)" : "");
3661 
3662   gclog_or_tty->print("[%s", (const char*)gc_cause_str);
3663 }
3664 
3665 void G1CollectedHeap::log_gc_footer(double pause_time_sec) {
3666   if (!G1Log::fine()) {
3667     return;
3668   }
3669 
3670   if (G1Log::finer()) {
3671     if (evacuation_failed()) {
3672       gclog_or_tty->print(" (to-space exhausted)");
3673     }
3674     gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec);
3675     g1_policy()->phase_times()->note_gc_end();
3676     g1_policy()->phase_times()->print(pause_time_sec);
3677     g1_policy()->print_detailed_heap_transition();
3678   } else {
3679     if (evacuation_failed()) {
3680       gclog_or_tty->print("--");
3681     }
3682     g1_policy()->print_heap_transition();
3683     gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec);
3684   }
3685   gclog_or_tty->flush();
3686 }
3687 
3688 bool
3689 G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
3690   assert_at_safepoint(true /* should_be_vm_thread */);
3691   guarantee(!is_gc_active(), "collection is not reentrant");
3692 
3693   if (GC_locker::check_active_before_gc()) {
3694     return false;
3695   }
3696 
3697   _gc_timer_stw->register_gc_start();
3698 
3699   _gc_tracer_stw->report_gc_start(gc_cause(), _gc_timer_stw->gc_start());
3700 
3701   SvcGCMarker sgcm(SvcGCMarker::MINOR);
3702   ResourceMark rm;
3703 
3704   print_heap_before_gc();
3705   trace_heap_before_gc(_gc_tracer_stw);
3706 
3707   verify_region_sets_optional();
3708   verify_dirty_young_regions();
3709 
3710   // This call will decide whether this pause is an initial-mark
3711   // pause. If it is, during_initial_mark_pause() will return true
3712   // for the duration of this pause.
3713   g1_policy()->decide_on_conc_mark_initiation();
3714 
3715   // We do not allow initial-mark to be piggy-backed on a mixed GC.
3716   assert(!g1_policy()->during_initial_mark_pause() ||
3717           g1_policy()->gcs_are_young(), "sanity");
3718 
3719   // We also do not allow mixed GCs during marking.
3720   assert(!mark_in_progress() || g1_policy()->gcs_are_young(), "sanity");
3721 
3722   // Record whether this pause is an initial mark. When the current
3723   // thread has completed its logging output and it's safe to signal
3724   // the CM thread, the flag's value in the policy has been reset.
3725   bool should_start_conc_mark = g1_policy()->during_initial_mark_pause();
3726 
3727   // Inner scope for scope based logging, timers, and stats collection
3728   {
3729     EvacuationInfo evacuation_info;
3730 
3731     if (g1_policy()->during_initial_mark_pause()) {
3732       // We are about to start a marking cycle, so we increment the
3733       // full collection counter.
3734       increment_old_marking_cycles_started();
3735       register_concurrent_cycle_start(_gc_timer_stw->gc_start());
3736     }
3737 
3738     _gc_tracer_stw->report_yc_type(yc_type());
3739 
3740     TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
3741 
3742     uint active_workers = workers()->active_workers();
3743     double pause_start_sec = os::elapsedTime();
3744     g1_policy()->phase_times()->note_gc_start(active_workers, mark_in_progress());
3745     log_gc_header();
3746 
3747     TraceCollectorStats tcs(g1mm()->incremental_collection_counters());
3748     TraceMemoryManagerStats tms(false /* fullGC */, gc_cause());
3749 
3750     // If the secondary_free_list is not empty, append it to the
3751     // free_list. No need to wait for the cleanup operation to finish;
3752     // the region allocation code will check the secondary_free_list
3753     // and wait if necessary. If the G1StressConcRegionFreeing flag is
3754     // set, skip this step so that the region allocation code has to
3755     // get entries from the secondary_free_list.
3756     if (!G1StressConcRegionFreeing) {
3757       append_secondary_free_list_if_not_empty_with_lock();
3758     }
3759 
3760     assert(check_young_list_well_formed(), "young list should be well formed");
3761 
3762     // Don't dynamically change the number of GC threads this early.  A value of
3763     // 0 is used to indicate serial work.  When parallel work is done,
3764     // it will be set.
3765 
3766     { // Call to jvmpi::post_class_unload_events must occur outside of active GC
3767       IsGCActiveMark x;
3768 
3769       gc_prologue(false);
3770       increment_total_collections(false /* full gc */);
3771       increment_gc_time_stamp();
3772 
3773       verify_before_gc();
3774 
3775       check_bitmaps("GC Start");
3776 
3777       COMPILER2_PRESENT(DerivedPointerTable::clear());
3778 
3779       // Please see comment in g1CollectedHeap.hpp and
3780       // G1CollectedHeap::ref_processing_init() to see how
3781       // reference processing currently works in G1.
3782 
3783       // Enable discovery in the STW reference processor
3784       ref_processor_stw()->enable_discovery();
3785 
3786       {
3787         // We want to temporarily turn off discovery by the
3788         // CM ref processor, if necessary, and turn it back on
3789         // on again later if we do. Using a scoped
3790         // NoRefDiscovery object will do this.
3791         NoRefDiscovery no_cm_discovery(ref_processor_cm());
3792 
3793         // Forget the current alloc region (we might even choose it to be part
3794         // of the collection set!).
3795         _allocator->release_mutator_alloc_region();
3796 
3797         // We should call this after we retire the mutator alloc
3798         // region(s) so that all the ALLOC / RETIRE events are generated
3799         // before the start GC event.
3800         _hr_printer.start_gc(false /* full */, (size_t) total_collections());
3801 
3802         // This timing is only used by the ergonomics to handle our pause target.
3803         // It is unclear why this should not include the full pause. We will
3804         // investigate this in CR 7178365.
3805         //
3806         // Preserving the old comment here if that helps the investigation:
3807         //
3808         // The elapsed time induced by the start time below deliberately elides
3809         // the possible verification above.
3810         double sample_start_time_sec = os::elapsedTime();
3811 
3812 #if YOUNG_LIST_VERBOSE
3813         gclog_or_tty->print_cr("\nBefore recording pause start.\nYoung_list:");
3814         _young_list->print();
3815         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
3816 #endif // YOUNG_LIST_VERBOSE
3817 
3818         g1_policy()->record_collection_pause_start(sample_start_time_sec);
3819 
3820         double scan_wait_start = os::elapsedTime();
3821         // We have to wait until the CM threads finish scanning the
3822         // root regions as it's the only way to ensure that all the
3823         // objects on them have been correctly scanned before we start
3824         // moving them during the GC.
3825         bool waited = _cm->root_regions()->wait_until_scan_finished();
3826         double wait_time_ms = 0.0;
3827         if (waited) {
3828           double scan_wait_end = os::elapsedTime();
3829           wait_time_ms = (scan_wait_end - scan_wait_start) * 1000.0;
3830         }
3831         g1_policy()->phase_times()->record_root_region_scan_wait_time(wait_time_ms);
3832 
3833 #if YOUNG_LIST_VERBOSE
3834         gclog_or_tty->print_cr("\nAfter recording pause start.\nYoung_list:");
3835         _young_list->print();
3836 #endif // YOUNG_LIST_VERBOSE
3837 
3838         if (g1_policy()->during_initial_mark_pause()) {
3839           concurrent_mark()->checkpointRootsInitialPre();
3840         }
3841 
3842 #if YOUNG_LIST_VERBOSE
3843         gclog_or_tty->print_cr("\nBefore choosing collection set.\nYoung_list:");
3844         _young_list->print();
3845         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
3846 #endif // YOUNG_LIST_VERBOSE
3847 
3848         g1_policy()->finalize_cset(target_pause_time_ms, evacuation_info);
3849 
3850         register_humongous_regions_with_cset();
3851 
3852         assert(check_cset_fast_test(), "Inconsistency in the InCSetState table.");
3853 
3854         _cm->note_start_of_gc();
3855         // We should not verify the per-thread SATB buffers given that
3856         // we have not filtered them yet (we'll do so during the
3857         // GC). We also call this after finalize_cset() to
3858         // ensure that the CSet has been finalized.
3859         _cm->verify_no_cset_oops(true  /* verify_stacks */,
3860                                  true  /* verify_enqueued_buffers */,
3861                                  false /* verify_thread_buffers */,
3862                                  true  /* verify_fingers */);
3863 
3864         if (_hr_printer.is_active()) {
3865           HeapRegion* hr = g1_policy()->collection_set();
3866           while (hr != NULL) {
3867             _hr_printer.cset(hr);
3868             hr = hr->next_in_collection_set();
3869           }
3870         }
3871 
3872 #ifdef ASSERT
3873         VerifyCSetClosure cl;
3874         collection_set_iterate(&cl);
3875 #endif // ASSERT
3876 
3877         setup_surviving_young_words();
3878 
3879         // Initialize the GC alloc regions.
3880         _allocator->init_gc_alloc_regions(evacuation_info);
3881 
3882         // Actually do the work...
3883         evacuate_collection_set(evacuation_info);
3884 
3885         // We do this to mainly verify the per-thread SATB buffers
3886         // (which have been filtered by now) since we didn't verify
3887         // them earlier. No point in re-checking the stacks / enqueued
3888         // buffers given that the CSet has not changed since last time
3889         // we checked.
3890         _cm->verify_no_cset_oops(false /* verify_stacks */,
3891                                  false /* verify_enqueued_buffers */,
3892                                  true  /* verify_thread_buffers */,
3893                                  true  /* verify_fingers */);
3894 
3895         free_collection_set(g1_policy()->collection_set(), evacuation_info);
3896 
3897         eagerly_reclaim_humongous_regions();
3898 
3899         g1_policy()->clear_collection_set();
3900 
3901         cleanup_surviving_young_words();
3902 
3903         // Start a new incremental collection set for the next pause.
3904         g1_policy()->start_incremental_cset_building();
3905 
3906         clear_cset_fast_test();
3907 
3908         _young_list->reset_sampled_info();
3909 
3910         // Don't check the whole heap at this point as the
3911         // GC alloc regions from this pause have been tagged
3912         // as survivors and moved on to the survivor list.
3913         // Survivor regions will fail the !is_young() check.
3914         assert(check_young_list_empty(false /* check_heap */),
3915           "young list should be empty");
3916 
3917 #if YOUNG_LIST_VERBOSE
3918         gclog_or_tty->print_cr("Before recording survivors.\nYoung List:");
3919         _young_list->print();
3920 #endif // YOUNG_LIST_VERBOSE
3921 
3922         g1_policy()->record_survivor_regions(_young_list->survivor_length(),
3923                                              _young_list->first_survivor_region(),
3924                                              _young_list->last_survivor_region());
3925 
3926         _young_list->reset_auxilary_lists();
3927 
3928         if (evacuation_failed()) {
3929           _allocator->set_used(recalculate_used());
3930           uint n_queues = MAX2((int)ParallelGCThreads, 1);
3931           for (uint i = 0; i < n_queues; i++) {
3932             if (_evacuation_failed_info_array[i].has_failed()) {
3933               _gc_tracer_stw->report_evacuation_failed(_evacuation_failed_info_array[i]);
3934             }
3935           }
3936         } else {
3937           // The "used" of the the collection set have already been subtracted
3938           // when they were freed.  Add in the bytes evacuated.
3939           _allocator->increase_used(g1_policy()->bytes_copied_during_gc());
3940         }
3941 
3942         if (g1_policy()->during_initial_mark_pause()) {
3943           // We have to do this before we notify the CM threads that
3944           // they can start working to make sure that all the
3945           // appropriate initialization is done on the CM object.
3946           concurrent_mark()->checkpointRootsInitialPost();
3947           set_marking_started();
3948           // Note that we don't actually trigger the CM thread at
3949           // this point. We do that later when we're sure that
3950           // the current thread has completed its logging output.
3951         }
3952 
3953         allocate_dummy_regions();
3954 
3955 #if YOUNG_LIST_VERBOSE
3956         gclog_or_tty->print_cr("\nEnd of the pause.\nYoung_list:");
3957         _young_list->print();
3958         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
3959 #endif // YOUNG_LIST_VERBOSE
3960 
3961         _allocator->init_mutator_alloc_region();
3962 
3963         {
3964           size_t expand_bytes = g1_policy()->expansion_amount();
3965           if (expand_bytes > 0) {
3966             size_t bytes_before = capacity();
3967             // No need for an ergo verbose message here,
3968             // expansion_amount() does this when it returns a value > 0.
3969             if (!expand(expand_bytes)) {
3970               // We failed to expand the heap. Cannot do anything about it.
3971             }
3972           }
3973         }
3974 
3975         // We redo the verification but now wrt to the new CSet which
3976         // has just got initialized after the previous CSet was freed.
3977         _cm->verify_no_cset_oops(true  /* verify_stacks */,
3978                                  true  /* verify_enqueued_buffers */,
3979                                  true  /* verify_thread_buffers */,
3980                                  true  /* verify_fingers */);
3981         _cm->note_end_of_gc();
3982 
3983         // This timing is only used by the ergonomics to handle our pause target.
3984         // It is unclear why this should not include the full pause. We will
3985         // investigate this in CR 7178365.
3986         double sample_end_time_sec = os::elapsedTime();
3987         double pause_time_ms = (sample_end_time_sec - sample_start_time_sec) * MILLIUNITS;
3988         g1_policy()->record_collection_pause_end(pause_time_ms, evacuation_info);
3989 
3990         MemoryService::track_memory_usage();
3991 
3992         // In prepare_for_verify() below we'll need to scan the deferred
3993         // update buffers to bring the RSets up-to-date if
3994         // G1HRRSFlushLogBuffersOnVerify has been set. While scanning
3995         // the update buffers we'll probably need to scan cards on the
3996         // regions we just allocated to (i.e., the GC alloc
3997         // regions). However, during the last GC we called
3998         // set_saved_mark() on all the GC alloc regions, so card
3999         // scanning might skip the [saved_mark_word()...top()] area of
4000         // those regions (i.e., the area we allocated objects into
4001         // during the last GC). But it shouldn't. Given that
4002         // saved_mark_word() is conditional on whether the GC time stamp
4003         // on the region is current or not, by incrementing the GC time
4004         // stamp here we invalidate all the GC time stamps on all the
4005         // regions and saved_mark_word() will simply return top() for
4006         // all the regions. This is a nicer way of ensuring this rather
4007         // than iterating over the regions and fixing them. In fact, the
4008         // GC time stamp increment here also ensures that
4009         // saved_mark_word() will return top() between pauses, i.e.,
4010         // during concurrent refinement. So we don't need the
4011         // is_gc_active() check to decided which top to use when
4012         // scanning cards (see CR 7039627).
4013         increment_gc_time_stamp();
4014 
4015         verify_after_gc();
4016         check_bitmaps("GC End");
4017 
4018         assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
4019         ref_processor_stw()->verify_no_references_recorded();
4020 
4021         // CM reference discovery will be re-enabled if necessary.
4022       }
4023 
4024       // We should do this after we potentially expand the heap so
4025       // that all the COMMIT events are generated before the end GC
4026       // event, and after we retire the GC alloc regions so that all
4027       // RETIRE events are generated before the end GC event.
4028       _hr_printer.end_gc(false /* full */, (size_t) total_collections());
4029 
4030 #ifdef TRACESPINNING
4031       ParallelTaskTerminator::print_termination_counts();
4032 #endif
4033 
4034       gc_epilogue(false);
4035     }
4036 
4037     // Print the remainder of the GC log output.
4038     log_gc_footer(os::elapsedTime() - pause_start_sec);
4039 
4040     // It is not yet to safe to tell the concurrent mark to
4041     // start as we have some optional output below. We don't want the
4042     // output from the concurrent mark thread interfering with this
4043     // logging output either.
4044 
4045     _hrm.verify_optional();
4046     verify_region_sets_optional();
4047 
4048     TASKQUEUE_STATS_ONLY(if (PrintTaskqueue) print_taskqueue_stats());
4049     TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());
4050 
4051     print_heap_after_gc();
4052     trace_heap_after_gc(_gc_tracer_stw);
4053 
4054     // We must call G1MonitoringSupport::update_sizes() in the same scoping level
4055     // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
4056     // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
4057     // before any GC notifications are raised.
4058     g1mm()->update_sizes();
4059 
4060     _gc_tracer_stw->report_evacuation_info(&evacuation_info);
4061     _gc_tracer_stw->report_tenuring_threshold(_g1_policy->tenuring_threshold());
4062     _gc_timer_stw->register_gc_end();
4063     _gc_tracer_stw->report_gc_end(_gc_timer_stw->gc_end(), _gc_timer_stw->time_partitions());
4064   }
4065   // It should now be safe to tell the concurrent mark thread to start
4066   // without its logging output interfering with the logging output
4067   // that came from the pause.
4068 
4069   if (should_start_conc_mark) {
4070     // CAUTION: after the doConcurrentMark() call below,
4071     // the concurrent marking thread(s) could be running
4072     // concurrently with us. Make sure that anything after
4073     // this point does not assume that we are the only GC thread
4074     // running. Note: of course, the actual marking work will
4075     // not start until the safepoint itself is released in
4076     // SuspendibleThreadSet::desynchronize().
4077     doConcurrentMark();
4078   }
4079 
4080   return true;
4081 }
4082 
4083 void G1CollectedHeap::init_for_evac_failure(OopsInHeapRegionClosure* cl) {
4084   _drain_in_progress = false;
4085   set_evac_failure_closure(cl);
4086   _evac_failure_scan_stack = new (ResourceObj::C_HEAP, mtGC) GrowableArray<oop>(40, true);
4087 }
4088 
4089 void G1CollectedHeap::finalize_for_evac_failure() {
4090   assert(_evac_failure_scan_stack != NULL &&
4091          _evac_failure_scan_stack->length() == 0,
4092          "Postcondition");
4093   assert(!_drain_in_progress, "Postcondition");
4094   delete _evac_failure_scan_stack;
4095   _evac_failure_scan_stack = NULL;
4096 }
4097 
4098 void G1CollectedHeap::remove_self_forwarding_pointers() {
4099   double remove_self_forwards_start = os::elapsedTime();
4100 
4101   set_par_threads();
4102   G1ParRemoveSelfForwardPtrsTask rsfp_task(this);
4103   workers()->run_task(&rsfp_task);
4104   set_par_threads(0);
4105 
4106   // Now restore saved marks, if any.
4107   assert(_objs_with_preserved_marks.size() ==
4108             _preserved_marks_of_objs.size(), "Both or none.");
4109   while (!_objs_with_preserved_marks.is_empty()) {
4110     oop obj = _objs_with_preserved_marks.pop();
4111     markOop m = _preserved_marks_of_objs.pop();
4112     obj->set_mark(m);
4113   }
4114   _objs_with_preserved_marks.clear(true);
4115   _preserved_marks_of_objs.clear(true);
4116 
4117   g1_policy()->phase_times()->record_evac_fail_remove_self_forwards((os::elapsedTime() - remove_self_forwards_start) * 1000.0);
4118 }
4119 
4120 void G1CollectedHeap::push_on_evac_failure_scan_stack(oop obj) {
4121   _evac_failure_scan_stack->push(obj);
4122 }
4123 
4124 void G1CollectedHeap::drain_evac_failure_scan_stack() {
4125   assert(_evac_failure_scan_stack != NULL, "precondition");
4126 
4127   while (_evac_failure_scan_stack->length() > 0) {
4128      oop obj = _evac_failure_scan_stack->pop();
4129      _evac_failure_closure->set_region(heap_region_containing(obj));
4130      obj->oop_iterate_backwards(_evac_failure_closure);
4131   }
4132 }
4133 
4134 oop
4135 G1CollectedHeap::handle_evacuation_failure_par(G1ParScanThreadState* _par_scan_state,
4136                                                oop old) {
4137   assert(obj_in_cs(old),
4138          err_msg("obj: "PTR_FORMAT" should still be in the CSet",
4139                  (HeapWord*) old));
4140   markOop m = old->mark();
4141   oop forward_ptr = old->forward_to_atomic(old);
4142   if (forward_ptr == NULL) {
4143     // Forward-to-self succeeded.
4144     assert(_par_scan_state != NULL, "par scan state");
4145     OopsInHeapRegionClosure* cl = _par_scan_state->evac_failure_closure();
4146     uint queue_num = _par_scan_state->queue_num();
4147 
4148     _evacuation_failed = true;
4149     _evacuation_failed_info_array[queue_num].register_copy_failure(old->size());
4150     if (_evac_failure_closure != cl) {
4151       MutexLockerEx x(EvacFailureStack_lock, Mutex::_no_safepoint_check_flag);
4152       assert(!_drain_in_progress,
4153              "Should only be true while someone holds the lock.");
4154       // Set the global evac-failure closure to the current thread's.
4155       assert(_evac_failure_closure == NULL, "Or locking has failed.");
4156       set_evac_failure_closure(cl);
4157       // Now do the common part.
4158       handle_evacuation_failure_common(old, m);
4159       // Reset to NULL.
4160       set_evac_failure_closure(NULL);
4161     } else {
4162       // The lock is already held, and this is recursive.
4163       assert(_drain_in_progress, "This should only be the recursive case.");
4164       handle_evacuation_failure_common(old, m);
4165     }
4166     return old;
4167   } else {
4168     // Forward-to-self failed. Either someone else managed to allocate
4169     // space for this object (old != forward_ptr) or they beat us in
4170     // self-forwarding it (old == forward_ptr).
4171     assert(old == forward_ptr || !obj_in_cs(forward_ptr),
4172            err_msg("obj: "PTR_FORMAT" forwarded to: "PTR_FORMAT" "
4173                    "should not be in the CSet",
4174                    (HeapWord*) old, (HeapWord*) forward_ptr));
4175     return forward_ptr;
4176   }
4177 }
4178 
4179 void G1CollectedHeap::handle_evacuation_failure_common(oop old, markOop m) {
4180   preserve_mark_if_necessary(old, m);
4181 
4182   HeapRegion* r = heap_region_containing(old);
4183   if (!r->evacuation_failed()) {
4184     r->set_evacuation_failed(true);
4185     _hr_printer.evac_failure(r);
4186   }
4187 
4188   push_on_evac_failure_scan_stack(old);
4189 
4190   if (!_drain_in_progress) {
4191     // prevent recursion in copy_to_survivor_space()
4192     _drain_in_progress = true;
4193     drain_evac_failure_scan_stack();
4194     _drain_in_progress = false;
4195   }
4196 }
4197 
4198 void G1CollectedHeap::preserve_mark_if_necessary(oop obj, markOop m) {
4199   assert(evacuation_failed(), "Oversaving!");
4200   // We want to call the "for_promotion_failure" version only in the
4201   // case of a promotion failure.
4202   if (m->must_be_preserved_for_promotion_failure(obj)) {
4203     _objs_with_preserved_marks.push(obj);
4204     _preserved_marks_of_objs.push(m);
4205   }
4206 }
4207 
4208 void G1ParCopyHelper::mark_object(oop obj) {
4209   assert(!_g1->heap_region_containing(obj)->in_collection_set(), "should not mark objects in the CSet");
4210 
4211   // We know that the object is not moving so it's safe to read its size.
4212   _cm->grayRoot(obj, (size_t) obj->size(), _worker_id);
4213 }
4214 
4215 void G1ParCopyHelper::mark_forwarded_object(oop from_obj, oop to_obj) {
4216   assert(from_obj->is_forwarded(), "from obj should be forwarded");
4217   assert(from_obj->forwardee() == to_obj, "to obj should be the forwardee");
4218   assert(from_obj != to_obj, "should not be self-forwarded");
4219 
4220   assert(_g1->heap_region_containing(from_obj)->in_collection_set(), "from obj should be in the CSet");
4221   assert(!_g1->heap_region_containing(to_obj)->in_collection_set(), "should not mark objects in the CSet");
4222 
4223   // The object might be in the process of being copied by another
4224   // worker so we cannot trust that its to-space image is
4225   // well-formed. So we have to read its size from its from-space
4226   // image which we know should not be changing.
4227   _cm->grayRoot(to_obj, (size_t) from_obj->size(), _worker_id);
4228 }
4229 
4230 template <class T>
4231 void G1ParCopyHelper::do_klass_barrier(T* p, oop new_obj) {
4232   if (_g1->heap_region_containing_raw(new_obj)->is_young()) {
4233     _scanned_klass->record_modified_oops();
4234   }
4235 }
4236 
4237 template <G1Barrier barrier, G1Mark do_mark_object>
4238 template <class T>
4239 void G1ParCopyClosure<barrier, do_mark_object>::do_oop_work(T* p) {
4240   T heap_oop = oopDesc::load_heap_oop(p);
4241 
4242   if (oopDesc::is_null(heap_oop)) {
4243     return;
4244   }
4245 
4246   oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
4247 
4248   assert(_worker_id == _par_scan_state->queue_num(), "sanity");
4249 
4250   const InCSetState state = _g1->in_cset_state(obj);
4251   if (state.is_in_cset()) {
4252     oop forwardee;
4253     markOop m = obj->mark();
4254     if (m->is_marked()) {
4255       forwardee = (oop) m->decode_pointer();
4256     } else {
4257       forwardee = _par_scan_state->copy_to_survivor_space(state, obj, m);
4258     }
4259     assert(forwardee != NULL, "forwardee should not be NULL");
4260     oopDesc::encode_store_heap_oop(p, forwardee);
4261     if (do_mark_object != G1MarkNone && forwardee != obj) {
4262       // If the object is self-forwarded we don't need to explicitly
4263       // mark it, the evacuation failure protocol will do so.
4264       mark_forwarded_object(obj, forwardee);
4265     }
4266 
4267     if (barrier == G1BarrierKlass) {
4268       do_klass_barrier(p, forwardee);
4269     }
4270   } else {
4271     if (state.is_humongous()) {
4272       _g1->set_humongous_is_live(obj);
4273     }
4274     // The object is not in collection set. If we're a root scanning
4275     // closure during an initial mark pause then attempt to mark the object.
4276     if (do_mark_object == G1MarkFromRoot) {
4277       mark_object(obj);
4278     }
4279   }
4280 
4281   if (barrier == G1BarrierEvac) {
4282     _par_scan_state->update_rs(_from, p, _worker_id);
4283   }
4284 }
4285 
4286 template void G1ParCopyClosure<G1BarrierEvac, G1MarkNone>::do_oop_work(oop* p);
4287 template void G1ParCopyClosure<G1BarrierEvac, G1MarkNone>::do_oop_work(narrowOop* p);
4288 
4289 class G1ParEvacuateFollowersClosure : public VoidClosure {
4290 protected:
4291   G1CollectedHeap*              _g1h;
4292   G1ParScanThreadState*         _par_scan_state;
4293   RefToScanQueueSet*            _queues;
4294   ParallelTaskTerminator*       _terminator;
4295 
4296   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
4297   RefToScanQueueSet*      queues()         { return _queues; }
4298   ParallelTaskTerminator* terminator()     { return _terminator; }
4299 
4300 public:
4301   G1ParEvacuateFollowersClosure(G1CollectedHeap* g1h,
4302                                 G1ParScanThreadState* par_scan_state,
4303                                 RefToScanQueueSet* queues,
4304                                 ParallelTaskTerminator* terminator)
4305     : _g1h(g1h), _par_scan_state(par_scan_state),
4306       _queues(queues), _terminator(terminator) {}
4307 
4308   void do_void();
4309 
4310 private:
4311   inline bool offer_termination();
4312 };
4313 
4314 bool G1ParEvacuateFollowersClosure::offer_termination() {
4315   G1ParScanThreadState* const pss = par_scan_state();
4316   pss->start_term_time();
4317   const bool res = terminator()->offer_termination();
4318   pss->end_term_time();
4319   return res;
4320 }
4321 
4322 void G1ParEvacuateFollowersClosure::do_void() {
4323   G1ParScanThreadState* const pss = par_scan_state();
4324   pss->trim_queue();
4325   do {
4326     pss->steal_and_trim_queue(queues());
4327   } while (!offer_termination());
4328 }
4329 
4330 class G1KlassScanClosure : public KlassClosure {
4331  G1ParCopyHelper* _closure;
4332  bool             _process_only_dirty;
4333  int              _count;
4334  public:
4335   G1KlassScanClosure(G1ParCopyHelper* closure, bool process_only_dirty)
4336       : _process_only_dirty(process_only_dirty), _closure(closure), _count(0) {}
4337   void do_klass(Klass* klass) {
4338     // If the klass has not been dirtied we know that there's
4339     // no references into  the young gen and we can skip it.
4340    if (!_process_only_dirty || klass->has_modified_oops()) {
4341       // Clean the klass since we're going to scavenge all the metadata.
4342       klass->clear_modified_oops();
4343 
4344       // Tell the closure that this klass is the Klass to scavenge
4345       // and is the one to dirty if oops are left pointing into the young gen.
4346       _closure->set_scanned_klass(klass);
4347 
4348       klass->oops_do(_closure);
4349 
4350       _closure->set_scanned_klass(NULL);
4351     }
4352     _count++;
4353   }
4354 };
4355 
4356 class G1ParTask : public AbstractGangTask {
4357 protected:
4358   G1CollectedHeap*       _g1h;
4359   RefToScanQueueSet      *_queues;
4360   G1RootProcessor*       _root_processor;
4361   ParallelTaskTerminator _terminator;
4362   uint _n_workers;
4363 
4364   Mutex _stats_lock;
4365   Mutex* stats_lock() { return &_stats_lock; }
4366 
4367 public:
4368   G1ParTask(G1CollectedHeap* g1h, RefToScanQueueSet *task_queues, G1RootProcessor* root_processor)
4369     : AbstractGangTask("G1 collection"),
4370       _g1h(g1h),
4371       _queues(task_queues),
4372       _root_processor(root_processor),
4373       _terminator(0, _queues),
4374       _stats_lock(Mutex::leaf, "parallel G1 stats lock", true)
4375   {}
4376 
4377   RefToScanQueueSet* queues() { return _queues; }
4378 
4379   RefToScanQueue *work_queue(int i) {
4380     return queues()->queue(i);
4381   }
4382 
4383   ParallelTaskTerminator* terminator() { return &_terminator; }
4384 
4385   virtual void set_for_termination(int active_workers) {
4386     _root_processor->set_num_workers(active_workers);
4387     terminator()->reset_for_reuse(active_workers);
4388     _n_workers = active_workers;
4389   }
4390 
4391   // Helps out with CLD processing.
4392   //
4393   // During InitialMark we need to:
4394   // 1) Scavenge all CLDs for the young GC.
4395   // 2) Mark all objects directly reachable from strong CLDs.
4396   template <G1Mark do_mark_object>
4397   class G1CLDClosure : public CLDClosure {
4398     G1ParCopyClosure<G1BarrierNone,  do_mark_object>* _oop_closure;
4399     G1ParCopyClosure<G1BarrierKlass, do_mark_object>  _oop_in_klass_closure;
4400     G1KlassScanClosure                                _klass_in_cld_closure;
4401     bool                                              _claim;
4402 
4403    public:
4404     G1CLDClosure(G1ParCopyClosure<G1BarrierNone, do_mark_object>* oop_closure,
4405                  bool only_young, bool claim)
4406         : _oop_closure(oop_closure),
4407           _oop_in_klass_closure(oop_closure->g1(),
4408                                 oop_closure->pss(),
4409                                 oop_closure->rp()),
4410           _klass_in_cld_closure(&_oop_in_klass_closure, only_young),
4411           _claim(claim) {
4412 
4413     }
4414 
4415     void do_cld(ClassLoaderData* cld) {
4416       cld->oops_do(_oop_closure, &_klass_in_cld_closure, _claim);
4417     }
4418   };
4419 
4420   void work(uint worker_id) {
4421     if (worker_id >= _n_workers) return;  // no work needed this round
4422 
4423     _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerStart, worker_id, os::elapsedTime());
4424 
4425     {
4426       ResourceMark rm;
4427       HandleMark   hm;
4428 
4429       ReferenceProcessor*             rp = _g1h->ref_processor_stw();
4430 
4431       G1ParScanThreadState            pss(_g1h, worker_id, rp);
4432       G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, rp);
4433 
4434       pss.set_evac_failure_closure(&evac_failure_cl);
4435 
4436       bool only_young = _g1h->g1_policy()->gcs_are_young();
4437 
4438       // Non-IM young GC.
4439       G1ParCopyClosure<G1BarrierNone, G1MarkNone>             scan_only_root_cl(_g1h, &pss, rp);
4440       G1CLDClosure<G1MarkNone>                                scan_only_cld_cl(&scan_only_root_cl,
4441                                                                                only_young, // Only process dirty klasses.
4442                                                                                false);     // No need to claim CLDs.
4443       // IM young GC.
4444       //    Strong roots closures.
4445       G1ParCopyClosure<G1BarrierNone, G1MarkFromRoot>         scan_mark_root_cl(_g1h, &pss, rp);
4446       G1CLDClosure<G1MarkFromRoot>                            scan_mark_cld_cl(&scan_mark_root_cl,
4447                                                                                false, // Process all klasses.
4448                                                                                true); // Need to claim CLDs.
4449       //    Weak roots closures.
4450       G1ParCopyClosure<G1BarrierNone, G1MarkPromotedFromRoot> scan_mark_weak_root_cl(_g1h, &pss, rp);
4451       G1CLDClosure<G1MarkPromotedFromRoot>                    scan_mark_weak_cld_cl(&scan_mark_weak_root_cl,
4452                                                                                     false, // Process all klasses.
4453                                                                                     true); // Need to claim CLDs.
4454 
4455       OopClosure* strong_root_cl;
4456       OopClosure* weak_root_cl;
4457       CLDClosure* strong_cld_cl;
4458       CLDClosure* weak_cld_cl;
4459 
4460       bool trace_metadata = false;
4461 
4462       if (_g1h->g1_policy()->during_initial_mark_pause()) {
4463         // We also need to mark copied objects.
4464         strong_root_cl = &scan_mark_root_cl;
4465         strong_cld_cl  = &scan_mark_cld_cl;
4466         if (ClassUnloadingWithConcurrentMark) {
4467           weak_root_cl = &scan_mark_weak_root_cl;
4468           weak_cld_cl  = &scan_mark_weak_cld_cl;
4469           trace_metadata = true;
4470         } else {
4471           weak_root_cl = &scan_mark_root_cl;
4472           weak_cld_cl  = &scan_mark_cld_cl;
4473         }
4474       } else {
4475         strong_root_cl = &scan_only_root_cl;
4476         weak_root_cl   = &scan_only_root_cl;
4477         strong_cld_cl  = &scan_only_cld_cl;
4478         weak_cld_cl    = &scan_only_cld_cl;
4479       }
4480 
4481       pss.start_strong_roots();
4482 
4483       _root_processor->evacuate_roots(strong_root_cl,
4484                                       weak_root_cl,
4485                                       strong_cld_cl,
4486                                       weak_cld_cl,
4487                                       trace_metadata,
4488                                       worker_id);
4489 
4490       G1ParPushHeapRSClosure push_heap_rs_cl(_g1h, &pss);
4491       _root_processor->scan_remembered_sets(&push_heap_rs_cl,
4492                                             weak_root_cl,
4493                                             worker_id);
4494       pss.end_strong_roots();
4495 
4496       {
4497         double start = os::elapsedTime();
4498         G1ParEvacuateFollowersClosure evac(_g1h, &pss, _queues, &_terminator);
4499         evac.do_void();
4500         double elapsed_sec = os::elapsedTime() - start;
4501         double term_sec = pss.term_time();
4502         _g1h->g1_policy()->phase_times()->add_time_secs(G1GCPhaseTimes::ObjCopy, worker_id, elapsed_sec - term_sec);
4503         _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::Termination, worker_id, term_sec);
4504         _g1h->g1_policy()->phase_times()->record_thread_work_item(G1GCPhaseTimes::Termination, worker_id, pss.term_attempts());
4505       }
4506       _g1h->g1_policy()->record_thread_age_table(pss.age_table());
4507       _g1h->update_surviving_young_words(pss.surviving_young_words()+1);
4508 
4509       if (PrintTerminationStats) {
4510         MutexLocker x(stats_lock());
4511         pss.print_termination_stats(worker_id);
4512       }
4513 
4514       assert(pss.queue_is_empty(), "should be empty");
4515 
4516       // Close the inner scope so that the ResourceMark and HandleMark
4517       // destructors are executed here and are included as part of the
4518       // "GC Worker Time".
4519     }
4520     _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerEnd, worker_id, os::elapsedTime());
4521   }
4522 };
4523 
4524 class G1StringSymbolTableUnlinkTask : public AbstractGangTask {
4525 private:
4526   BoolObjectClosure* _is_alive;
4527   int _initial_string_table_size;
4528   int _initial_symbol_table_size;
4529 
4530   bool  _process_strings;
4531   int _strings_processed;
4532   int _strings_removed;
4533 
4534   bool  _process_symbols;
4535   int _symbols_processed;
4536   int _symbols_removed;
4537 
4538 public:
4539   G1StringSymbolTableUnlinkTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols) :
4540     AbstractGangTask("String/Symbol Unlinking"),
4541     _is_alive(is_alive),
4542     _process_strings(process_strings), _strings_processed(0), _strings_removed(0),
4543     _process_symbols(process_symbols), _symbols_processed(0), _symbols_removed(0) {
4544 
4545     _initial_string_table_size = StringTable::the_table()->table_size();
4546     _initial_symbol_table_size = SymbolTable::the_table()->table_size();
4547     if (process_strings) {
4548       StringTable::clear_parallel_claimed_index();
4549     }
4550     if (process_symbols) {
4551       SymbolTable::clear_parallel_claimed_index();
4552     }
4553   }
4554 
4555   ~G1StringSymbolTableUnlinkTask() {
4556     guarantee(!_process_strings || StringTable::parallel_claimed_index() >= _initial_string_table_size,
4557               err_msg("claim value %d after unlink less than initial string table size %d",
4558                       StringTable::parallel_claimed_index(), _initial_string_table_size));
4559     guarantee(!_process_symbols || SymbolTable::parallel_claimed_index() >= _initial_symbol_table_size,
4560               err_msg("claim value %d after unlink less than initial symbol table size %d",
4561                       SymbolTable::parallel_claimed_index(), _initial_symbol_table_size));
4562 
4563     if (G1TraceStringSymbolTableScrubbing) {
4564       gclog_or_tty->print_cr("Cleaned string and symbol table, "
4565                              "strings: "SIZE_FORMAT" processed, "SIZE_FORMAT" removed, "
4566                              "symbols: "SIZE_FORMAT" processed, "SIZE_FORMAT" removed",
4567                              strings_processed(), strings_removed(),
4568                              symbols_processed(), symbols_removed());
4569     }
4570   }
4571 
4572   void work(uint worker_id) {
4573     int strings_processed = 0;
4574     int strings_removed = 0;
4575     int symbols_processed = 0;
4576     int symbols_removed = 0;
4577     if (_process_strings) {
4578       StringTable::possibly_parallel_unlink(_is_alive, &strings_processed, &strings_removed);
4579       Atomic::add(strings_processed, &_strings_processed);
4580       Atomic::add(strings_removed, &_strings_removed);
4581     }
4582     if (_process_symbols) {
4583       SymbolTable::possibly_parallel_unlink(&symbols_processed, &symbols_removed);
4584       Atomic::add(symbols_processed, &_symbols_processed);
4585       Atomic::add(symbols_removed, &_symbols_removed);
4586     }
4587   }
4588 
4589   size_t strings_processed() const { return (size_t)_strings_processed; }
4590   size_t strings_removed()   const { return (size_t)_strings_removed; }
4591 
4592   size_t symbols_processed() const { return (size_t)_symbols_processed; }
4593   size_t symbols_removed()   const { return (size_t)_symbols_removed; }
4594 };
4595 
4596 class G1CodeCacheUnloadingTask VALUE_OBJ_CLASS_SPEC {
4597 private:
4598   static Monitor* _lock;
4599 
4600   BoolObjectClosure* const _is_alive;
4601   const bool               _unloading_occurred;
4602   const uint               _num_workers;
4603 
4604   // Variables used to claim nmethods.
4605   nmethod* _first_nmethod;
4606   volatile nmethod* _claimed_nmethod;
4607 
4608   // The list of nmethods that need to be processed by the second pass.
4609   volatile nmethod* _postponed_list;
4610   volatile uint     _num_entered_barrier;
4611 
4612  public:
4613   G1CodeCacheUnloadingTask(uint num_workers, BoolObjectClosure* is_alive, bool unloading_occurred) :
4614       _is_alive(is_alive),
4615       _unloading_occurred(unloading_occurred),
4616       _num_workers(num_workers),
4617       _first_nmethod(NULL),
4618       _claimed_nmethod(NULL),
4619       _postponed_list(NULL),
4620       _num_entered_barrier(0)
4621   {
4622     nmethod::increase_unloading_clock();
4623     // Get first alive nmethod
4624     NMethodIterator iter = NMethodIterator();
4625     if(iter.next_alive()) {
4626       _first_nmethod = iter.method();
4627     }
4628     _claimed_nmethod = (volatile nmethod*)_first_nmethod;
4629   }
4630 
4631   ~G1CodeCacheUnloadingTask() {
4632     CodeCache::verify_clean_inline_caches();
4633 
4634     CodeCache::set_needs_cache_clean(false);
4635     guarantee(CodeCache::scavenge_root_nmethods() == NULL, "Must be");
4636 
4637     CodeCache::verify_icholder_relocations();
4638   }
4639 
4640  private:
4641   void add_to_postponed_list(nmethod* nm) {
4642       nmethod* old;
4643       do {
4644         old = (nmethod*)_postponed_list;
4645         nm->set_unloading_next(old);
4646       } while ((nmethod*)Atomic::cmpxchg_ptr(nm, &_postponed_list, old) != old);
4647   }
4648 
4649   void clean_nmethod(nmethod* nm) {
4650     bool postponed = nm->do_unloading_parallel(_is_alive, _unloading_occurred);
4651 
4652     if (postponed) {
4653       // This nmethod referred to an nmethod that has not been cleaned/unloaded yet.
4654       add_to_postponed_list(nm);
4655     }
4656 
4657     // Mark that this thread has been cleaned/unloaded.
4658     // After this call, it will be safe to ask if this nmethod was unloaded or not.
4659     nm->set_unloading_clock(nmethod::global_unloading_clock());
4660   }
4661 
4662   void clean_nmethod_postponed(nmethod* nm) {
4663     nm->do_unloading_parallel_postponed(_is_alive, _unloading_occurred);
4664   }
4665 
4666   static const int MaxClaimNmethods = 16;
4667 
4668   void claim_nmethods(nmethod** claimed_nmethods, int *num_claimed_nmethods) {
4669     nmethod* first;
4670     NMethodIterator last;
4671 
4672     do {
4673       *num_claimed_nmethods = 0;
4674 
4675       first = (nmethod*)_claimed_nmethod;
4676       last = NMethodIterator(first);
4677 
4678       if (first != NULL) {
4679 
4680         for (int i = 0; i < MaxClaimNmethods; i++) {
4681           if (!last.next_alive()) {
4682             break;
4683           }
4684           claimed_nmethods[i] = last.method();
4685           (*num_claimed_nmethods)++;
4686         }
4687       }
4688 
4689     } while ((nmethod*)Atomic::cmpxchg_ptr(last.method(), &_claimed_nmethod, first) != first);
4690   }
4691 
4692   nmethod* claim_postponed_nmethod() {
4693     nmethod* claim;
4694     nmethod* next;
4695 
4696     do {
4697       claim = (nmethod*)_postponed_list;
4698       if (claim == NULL) {
4699         return NULL;
4700       }
4701 
4702       next = claim->unloading_next();
4703 
4704     } while ((nmethod*)Atomic::cmpxchg_ptr(next, &_postponed_list, claim) != claim);
4705 
4706     return claim;
4707   }
4708 
4709  public:
4710   // Mark that we're done with the first pass of nmethod cleaning.
4711   void barrier_mark(uint worker_id) {
4712     MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
4713     _num_entered_barrier++;
4714     if (_num_entered_barrier == _num_workers) {
4715       ml.notify_all();
4716     }
4717   }
4718 
4719   // See if we have to wait for the other workers to
4720   // finish their first-pass nmethod cleaning work.
4721   void barrier_wait(uint worker_id) {
4722     if (_num_entered_barrier < _num_workers) {
4723       MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
4724       while (_num_entered_barrier < _num_workers) {
4725           ml.wait(Mutex::_no_safepoint_check_flag, 0, false);
4726       }
4727     }
4728   }
4729 
4730   // Cleaning and unloading of nmethods. Some work has to be postponed
4731   // to the second pass, when we know which nmethods survive.
4732   void work_first_pass(uint worker_id) {
4733     // The first nmethods is claimed by the first worker.
4734     if (worker_id == 0 && _first_nmethod != NULL) {
4735       clean_nmethod(_first_nmethod);
4736       _first_nmethod = NULL;
4737     }
4738 
4739     int num_claimed_nmethods;
4740     nmethod* claimed_nmethods[MaxClaimNmethods];
4741 
4742     while (true) {
4743       claim_nmethods(claimed_nmethods, &num_claimed_nmethods);
4744 
4745       if (num_claimed_nmethods == 0) {
4746         break;
4747       }
4748 
4749       for (int i = 0; i < num_claimed_nmethods; i++) {
4750         clean_nmethod(claimed_nmethods[i]);
4751       }
4752     }
4753   }
4754 
4755   void work_second_pass(uint worker_id) {
4756     nmethod* nm;
4757     // Take care of postponed nmethods.
4758     while ((nm = claim_postponed_nmethod()) != NULL) {
4759       clean_nmethod_postponed(nm);
4760     }
4761   }
4762 };
4763 
4764 Monitor* G1CodeCacheUnloadingTask::_lock = new Monitor(Mutex::leaf, "Code Cache Unload lock", false, Monitor::_safepoint_check_never);
4765 
4766 class G1KlassCleaningTask : public StackObj {
4767   BoolObjectClosure*                      _is_alive;
4768   volatile jint                           _clean_klass_tree_claimed;
4769   ClassLoaderDataGraphKlassIteratorAtomic _klass_iterator;
4770 
4771  public:
4772   G1KlassCleaningTask(BoolObjectClosure* is_alive) :
4773       _is_alive(is_alive),
4774       _clean_klass_tree_claimed(0),
4775       _klass_iterator() {
4776   }
4777 
4778  private:
4779   bool claim_clean_klass_tree_task() {
4780     if (_clean_klass_tree_claimed) {
4781       return false;
4782     }
4783 
4784     return Atomic::cmpxchg(1, (jint*)&_clean_klass_tree_claimed, 0) == 0;
4785   }
4786 
4787   InstanceKlass* claim_next_klass() {
4788     Klass* klass;
4789     do {
4790       klass =_klass_iterator.next_klass();
4791     } while (klass != NULL && !klass->oop_is_instance());
4792 
4793     return (InstanceKlass*)klass;
4794   }
4795 
4796 public:
4797 
4798   void clean_klass(InstanceKlass* ik) {
4799     ik->clean_implementors_list(_is_alive);
4800     ik->clean_method_data(_is_alive);
4801 
4802     // G1 specific cleanup work that has
4803     // been moved here to be done in parallel.
4804     ik->clean_dependent_nmethods();
4805   }
4806 
4807   void work() {
4808     ResourceMark rm;
4809 
4810     // One worker will clean the subklass/sibling klass tree.
4811     if (claim_clean_klass_tree_task()) {
4812       Klass::clean_subklass_tree(_is_alive);
4813     }
4814 
4815     // All workers will help cleaning the classes,
4816     InstanceKlass* klass;
4817     while ((klass = claim_next_klass()) != NULL) {
4818       clean_klass(klass);
4819     }
4820   }
4821 };
4822 
4823 // To minimize the remark pause times, the tasks below are done in parallel.
4824 class G1ParallelCleaningTask : public AbstractGangTask {
4825 private:
4826   G1StringSymbolTableUnlinkTask _string_symbol_task;
4827   G1CodeCacheUnloadingTask      _code_cache_task;
4828   G1KlassCleaningTask           _klass_cleaning_task;
4829 
4830 public:
4831   // The constructor is run in the VMThread.
4832   G1ParallelCleaningTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols, uint num_workers, bool unloading_occurred) :
4833       AbstractGangTask("Parallel Cleaning"),
4834       _string_symbol_task(is_alive, process_strings, process_symbols),
4835       _code_cache_task(num_workers, is_alive, unloading_occurred),
4836       _klass_cleaning_task(is_alive) {
4837   }
4838 
4839   // The parallel work done by all worker threads.
4840   void work(uint worker_id) {
4841     // Do first pass of code cache cleaning.
4842     _code_cache_task.work_first_pass(worker_id);
4843 
4844     // Let the threads mark that the first pass is done.
4845     _code_cache_task.barrier_mark(worker_id);
4846 
4847     // Clean the Strings and Symbols.
4848     _string_symbol_task.work(worker_id);
4849 
4850     // Wait for all workers to finish the first code cache cleaning pass.
4851     _code_cache_task.barrier_wait(worker_id);
4852 
4853     // Do the second code cache cleaning work, which realize on
4854     // the liveness information gathered during the first pass.
4855     _code_cache_task.work_second_pass(worker_id);
4856 
4857     // Clean all klasses that were not unloaded.
4858     _klass_cleaning_task.work();
4859   }
4860 };
4861 
4862 
4863 void G1CollectedHeap::parallel_cleaning(BoolObjectClosure* is_alive,
4864                                         bool process_strings,
4865                                         bool process_symbols,
4866                                         bool class_unloading_occurred) {
4867   uint n_workers = workers()->active_workers();
4868 
4869   G1ParallelCleaningTask g1_unlink_task(is_alive, process_strings, process_symbols,
4870                                         n_workers, class_unloading_occurred);
4871   set_par_threads(n_workers);
4872   workers()->run_task(&g1_unlink_task);
4873   set_par_threads(0);
4874 }
4875 
4876 void G1CollectedHeap::unlink_string_and_symbol_table(BoolObjectClosure* is_alive,
4877                                                      bool process_strings, bool process_symbols) {
4878   {
4879     uint n_workers = _g1h->workers()->active_workers();
4880     G1StringSymbolTableUnlinkTask g1_unlink_task(is_alive, process_strings, process_symbols);
4881     set_par_threads(n_workers);
4882     workers()->run_task(&g1_unlink_task);
4883     set_par_threads(0);
4884   }
4885 
4886   if (G1StringDedup::is_enabled()) {
4887     G1StringDedup::unlink(is_alive);
4888   }
4889 }
4890 
4891 class G1RedirtyLoggedCardsTask : public AbstractGangTask {
4892  private:
4893   DirtyCardQueueSet* _queue;
4894  public:
4895   G1RedirtyLoggedCardsTask(DirtyCardQueueSet* queue) : AbstractGangTask("Redirty Cards"), _queue(queue) { }
4896 
4897   virtual void work(uint worker_id) {
4898     G1GCPhaseTimes* phase_times = G1CollectedHeap::heap()->g1_policy()->phase_times();
4899     G1GCParPhaseTimesTracker x(phase_times, G1GCPhaseTimes::RedirtyCards, worker_id);
4900 
4901     RedirtyLoggedCardTableEntryClosure cl;
4902     _queue->par_apply_closure_to_all_completed_buffers(&cl);
4903 
4904     phase_times->record_thread_work_item(G1GCPhaseTimes::RedirtyCards, worker_id, cl.num_processed());
4905   }
4906 };
4907 
4908 void G1CollectedHeap::redirty_logged_cards() {
4909   double redirty_logged_cards_start = os::elapsedTime();
4910 
4911   uint n_workers = _g1h->workers()->active_workers();
4912 
4913   G1RedirtyLoggedCardsTask redirty_task(&dirty_card_queue_set());
4914   dirty_card_queue_set().reset_for_par_iteration();
4915   set_par_threads(n_workers);
4916   workers()->run_task(&redirty_task);
4917   set_par_threads(0);
4918 
4919   DirtyCardQueueSet& dcq = JavaThread::dirty_card_queue_set();
4920   dcq.merge_bufferlists(&dirty_card_queue_set());
4921   assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed");
4922 
4923   g1_policy()->phase_times()->record_redirty_logged_cards_time_ms((os::elapsedTime() - redirty_logged_cards_start) * 1000.0);
4924 }
4925 
4926 // Weak Reference Processing support
4927 
4928 // An always "is_alive" closure that is used to preserve referents.
4929 // If the object is non-null then it's alive.  Used in the preservation
4930 // of referent objects that are pointed to by reference objects
4931 // discovered by the CM ref processor.
4932 class G1AlwaysAliveClosure: public BoolObjectClosure {
4933   G1CollectedHeap* _g1;
4934 public:
4935   G1AlwaysAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
4936   bool do_object_b(oop p) {
4937     if (p != NULL) {
4938       return true;
4939     }
4940     return false;
4941   }
4942 };
4943 
4944 bool G1STWIsAliveClosure::do_object_b(oop p) {
4945   // An object is reachable if it is outside the collection set,
4946   // or is inside and copied.
4947   return !_g1->obj_in_cs(p) || p->is_forwarded();
4948 }
4949 
4950 // Non Copying Keep Alive closure
4951 class G1KeepAliveClosure: public OopClosure {
4952   G1CollectedHeap* _g1;
4953 public:
4954   G1KeepAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
4955   void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
4956   void do_oop(oop* p) {
4957     oop obj = *p;
4958     assert(obj != NULL, "the caller should have filtered out NULL values");
4959 
4960     const InCSetState cset_state = _g1->in_cset_state(obj);
4961     if (!cset_state.is_in_cset_or_humongous()) {
4962       return;
4963     }
4964     if (cset_state.is_in_cset()) {
4965       assert( obj->is_forwarded(), "invariant" );
4966       *p = obj->forwardee();
4967     } else {
4968       assert(!obj->is_forwarded(), "invariant" );
4969       assert(cset_state.is_humongous(),
4970              err_msg("Only allowed InCSet state is IsHumongous, but is %d", cset_state.value()));
4971       _g1->set_humongous_is_live(obj);
4972     }
4973   }
4974 };
4975 
4976 // Copying Keep Alive closure - can be called from both
4977 // serial and parallel code as long as different worker
4978 // threads utilize different G1ParScanThreadState instances
4979 // and different queues.
4980 
4981 class G1CopyingKeepAliveClosure: public OopClosure {
4982   G1CollectedHeap*         _g1h;
4983   OopClosure*              _copy_non_heap_obj_cl;
4984   G1ParScanThreadState*    _par_scan_state;
4985 
4986 public:
4987   G1CopyingKeepAliveClosure(G1CollectedHeap* g1h,
4988                             OopClosure* non_heap_obj_cl,
4989                             G1ParScanThreadState* pss):
4990     _g1h(g1h),
4991     _copy_non_heap_obj_cl(non_heap_obj_cl),
4992     _par_scan_state(pss)
4993   {}
4994 
4995   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
4996   virtual void do_oop(      oop* p) { do_oop_work(p); }
4997 
4998   template <class T> void do_oop_work(T* p) {
4999     oop obj = oopDesc::load_decode_heap_oop(p);
5000 
5001     if (_g1h->is_in_cset_or_humongous(obj)) {
5002       // If the referent object has been forwarded (either copied
5003       // to a new location or to itself in the event of an
5004       // evacuation failure) then we need to update the reference
5005       // field and, if both reference and referent are in the G1
5006       // heap, update the RSet for the referent.
5007       //
5008       // If the referent has not been forwarded then we have to keep
5009       // it alive by policy. Therefore we have copy the referent.
5010       //
5011       // If the reference field is in the G1 heap then we can push
5012       // on the PSS queue. When the queue is drained (after each
5013       // phase of reference processing) the object and it's followers
5014       // will be copied, the reference field set to point to the
5015       // new location, and the RSet updated. Otherwise we need to
5016       // use the the non-heap or metadata closures directly to copy
5017       // the referent object and update the pointer, while avoiding
5018       // updating the RSet.
5019 
5020       if (_g1h->is_in_g1_reserved(p)) {
5021         _par_scan_state->push_on_queue(p);
5022       } else {
5023         assert(!Metaspace::contains((const void*)p),
5024                err_msg("Unexpectedly found a pointer from metadata: "
5025                               PTR_FORMAT, p));
5026         _copy_non_heap_obj_cl->do_oop(p);
5027       }
5028     }
5029   }
5030 };
5031 
5032 // Serial drain queue closure. Called as the 'complete_gc'
5033 // closure for each discovered list in some of the
5034 // reference processing phases.
5035 
5036 class G1STWDrainQueueClosure: public VoidClosure {
5037 protected:
5038   G1CollectedHeap* _g1h;
5039   G1ParScanThreadState* _par_scan_state;
5040 
5041   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
5042 
5043 public:
5044   G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) :
5045     _g1h(g1h),
5046     _par_scan_state(pss)
5047   { }
5048 
5049   void do_void() {
5050     G1ParScanThreadState* const pss = par_scan_state();
5051     pss->trim_queue();
5052   }
5053 };
5054 
5055 // Parallel Reference Processing closures
5056 
5057 // Implementation of AbstractRefProcTaskExecutor for parallel reference
5058 // processing during G1 evacuation pauses.
5059 
5060 class G1STWRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
5061 private:
5062   G1CollectedHeap*   _g1h;
5063   RefToScanQueueSet* _queues;
5064   FlexibleWorkGang*  _workers;
5065   int                _active_workers;
5066 
5067 public:
5068   G1STWRefProcTaskExecutor(G1CollectedHeap* g1h,
5069                         FlexibleWorkGang* workers,
5070                         RefToScanQueueSet *task_queues,
5071                         int n_workers) :
5072     _g1h(g1h),
5073     _queues(task_queues),
5074     _workers(workers),
5075     _active_workers(n_workers)
5076   {
5077     assert(n_workers > 0, "shouldn't call this otherwise");
5078   }
5079 
5080   // Executes the given task using concurrent marking worker threads.
5081   virtual void execute(ProcessTask& task);
5082   virtual void execute(EnqueueTask& task);
5083 };
5084 
5085 // Gang task for possibly parallel reference processing
5086 
5087 class G1STWRefProcTaskProxy: public AbstractGangTask {
5088   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
5089   ProcessTask&     _proc_task;
5090   G1CollectedHeap* _g1h;
5091   RefToScanQueueSet *_task_queues;
5092   ParallelTaskTerminator* _terminator;
5093 
5094 public:
5095   G1STWRefProcTaskProxy(ProcessTask& proc_task,
5096                      G1CollectedHeap* g1h,
5097                      RefToScanQueueSet *task_queues,
5098                      ParallelTaskTerminator* terminator) :
5099     AbstractGangTask("Process reference objects in parallel"),
5100     _proc_task(proc_task),
5101     _g1h(g1h),
5102     _task_queues(task_queues),
5103     _terminator(terminator)
5104   {}
5105 
5106   virtual void work(uint worker_id) {
5107     // The reference processing task executed by a single worker.
5108     ResourceMark rm;
5109     HandleMark   hm;
5110 
5111     G1STWIsAliveClosure is_alive(_g1h);
5112 
5113     G1ParScanThreadState            pss(_g1h, worker_id, NULL);
5114     G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL);
5115 
5116     pss.set_evac_failure_closure(&evac_failure_cl);
5117 
5118     G1ParScanExtRootClosure        only_copy_non_heap_cl(_g1h, &pss, NULL);
5119 
5120     G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL);
5121 
5122     OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5123 
5124     if (_g1h->g1_policy()->during_initial_mark_pause()) {
5125       // We also need to mark copied objects.
5126       copy_non_heap_cl = &copy_mark_non_heap_cl;
5127     }
5128 
5129     // Keep alive closure.
5130     G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, &pss);
5131 
5132     // Complete GC closure
5133     G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _task_queues, _terminator);
5134 
5135     // Call the reference processing task's work routine.
5136     _proc_task.work(worker_id, is_alive, keep_alive, drain_queue);
5137 
5138     // Note we cannot assert that the refs array is empty here as not all
5139     // of the processing tasks (specifically phase2 - pp2_work) execute
5140     // the complete_gc closure (which ordinarily would drain the queue) so
5141     // the queue may not be empty.
5142   }
5143 };
5144 
5145 // Driver routine for parallel reference processing.
5146 // Creates an instance of the ref processing gang
5147 // task and has the worker threads execute it.
5148 void G1STWRefProcTaskExecutor::execute(ProcessTask& proc_task) {
5149   assert(_workers != NULL, "Need parallel worker threads.");
5150 
5151   ParallelTaskTerminator terminator(_active_workers, _queues);
5152   G1STWRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _queues, &terminator);
5153 
5154   _g1h->set_par_threads(_active_workers);
5155   _workers->run_task(&proc_task_proxy);
5156   _g1h->set_par_threads(0);
5157 }
5158 
5159 // Gang task for parallel reference enqueueing.
5160 
5161 class G1STWRefEnqueueTaskProxy: public AbstractGangTask {
5162   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
5163   EnqueueTask& _enq_task;
5164 
5165 public:
5166   G1STWRefEnqueueTaskProxy(EnqueueTask& enq_task) :
5167     AbstractGangTask("Enqueue reference objects in parallel"),
5168     _enq_task(enq_task)
5169   { }
5170 
5171   virtual void work(uint worker_id) {
5172     _enq_task.work(worker_id);
5173   }
5174 };
5175 
5176 // Driver routine for parallel reference enqueueing.
5177 // Creates an instance of the ref enqueueing gang
5178 // task and has the worker threads execute it.
5179 
5180 void G1STWRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
5181   assert(_workers != NULL, "Need parallel worker threads.");
5182 
5183   G1STWRefEnqueueTaskProxy enq_task_proxy(enq_task);
5184 
5185   _g1h->set_par_threads(_active_workers);
5186   _workers->run_task(&enq_task_proxy);
5187   _g1h->set_par_threads(0);
5188 }
5189 
5190 // End of weak reference support closures
5191 
5192 // Abstract task used to preserve (i.e. copy) any referent objects
5193 // that are in the collection set and are pointed to by reference
5194 // objects discovered by the CM ref processor.
5195 
5196 class G1ParPreserveCMReferentsTask: public AbstractGangTask {
5197 protected:
5198   G1CollectedHeap* _g1h;
5199   RefToScanQueueSet      *_queues;
5200   ParallelTaskTerminator _terminator;
5201   uint _n_workers;
5202 
5203 public:
5204   G1ParPreserveCMReferentsTask(G1CollectedHeap* g1h,int workers, RefToScanQueueSet *task_queues) :
5205     AbstractGangTask("ParPreserveCMReferents"),
5206     _g1h(g1h),
5207     _queues(task_queues),
5208     _terminator(workers, _queues),
5209     _n_workers(workers)
5210   { }
5211 
5212   void work(uint worker_id) {
5213     ResourceMark rm;
5214     HandleMark   hm;
5215 
5216     G1ParScanThreadState            pss(_g1h, worker_id, NULL);
5217     G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL);
5218 
5219     pss.set_evac_failure_closure(&evac_failure_cl);
5220 
5221     assert(pss.queue_is_empty(), "both queue and overflow should be empty");
5222 
5223     G1ParScanExtRootClosure        only_copy_non_heap_cl(_g1h, &pss, NULL);
5224 
5225     G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL);
5226 
5227     OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5228 
5229     if (_g1h->g1_policy()->during_initial_mark_pause()) {
5230       // We also need to mark copied objects.
5231       copy_non_heap_cl = &copy_mark_non_heap_cl;
5232     }
5233 
5234     // Is alive closure
5235     G1AlwaysAliveClosure always_alive(_g1h);
5236 
5237     // Copying keep alive closure. Applied to referent objects that need
5238     // to be copied.
5239     G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, &pss);
5240 
5241     ReferenceProcessor* rp = _g1h->ref_processor_cm();
5242 
5243     uint limit = ReferenceProcessor::number_of_subclasses_of_ref() * rp->max_num_q();
5244     uint stride = MIN2(MAX2(_n_workers, 1U), limit);
5245 
5246     // limit is set using max_num_q() - which was set using ParallelGCThreads.
5247     // So this must be true - but assert just in case someone decides to
5248     // change the worker ids.
5249     assert(worker_id < limit, "sanity");
5250     assert(!rp->discovery_is_atomic(), "check this code");
5251 
5252     // Select discovered lists [i, i+stride, i+2*stride,...,limit)
5253     for (uint idx = worker_id; idx < limit; idx += stride) {
5254       DiscoveredList& ref_list = rp->discovered_refs()[idx];
5255 
5256       DiscoveredListIterator iter(ref_list, &keep_alive, &always_alive);
5257       while (iter.has_next()) {
5258         // Since discovery is not atomic for the CM ref processor, we
5259         // can see some null referent objects.
5260         iter.load_ptrs(DEBUG_ONLY(true));
5261         oop ref = iter.obj();
5262 
5263         // This will filter nulls.
5264         if (iter.is_referent_alive()) {
5265           iter.make_referent_alive();
5266         }
5267         iter.move_to_next();
5268       }
5269     }
5270 
5271     // Drain the queue - which may cause stealing
5272     G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _queues, &_terminator);
5273     drain_queue.do_void();
5274     // Allocation buffers were retired at the end of G1ParEvacuateFollowersClosure
5275     assert(pss.queue_is_empty(), "should be");
5276   }
5277 };
5278 
5279 // Weak Reference processing during an evacuation pause (part 1).
5280 void G1CollectedHeap::process_discovered_references(uint no_of_gc_workers) {
5281   double ref_proc_start = os::elapsedTime();
5282 
5283   ReferenceProcessor* rp = _ref_processor_stw;
5284   assert(rp->discovery_enabled(), "should have been enabled");
5285 
5286   // Any reference objects, in the collection set, that were 'discovered'
5287   // by the CM ref processor should have already been copied (either by
5288   // applying the external root copy closure to the discovered lists, or
5289   // by following an RSet entry).
5290   //
5291   // But some of the referents, that are in the collection set, that these
5292   // reference objects point to may not have been copied: the STW ref
5293   // processor would have seen that the reference object had already
5294   // been 'discovered' and would have skipped discovering the reference,
5295   // but would not have treated the reference object as a regular oop.
5296   // As a result the copy closure would not have been applied to the
5297   // referent object.
5298   //
5299   // We need to explicitly copy these referent objects - the references
5300   // will be processed at the end of remarking.
5301   //
5302   // We also need to do this copying before we process the reference
5303   // objects discovered by the STW ref processor in case one of these
5304   // referents points to another object which is also referenced by an
5305   // object discovered by the STW ref processor.
5306 
5307   assert(no_of_gc_workers == workers()->active_workers(), "Need to reset active GC workers");
5308 
5309   set_par_threads(no_of_gc_workers);
5310   G1ParPreserveCMReferentsTask keep_cm_referents(this,
5311                                                  no_of_gc_workers,
5312                                                  _task_queues);
5313 
5314   workers()->run_task(&keep_cm_referents);
5315 
5316   set_par_threads(0);
5317 
5318   // Closure to test whether a referent is alive.
5319   G1STWIsAliveClosure is_alive(this);
5320 
5321   // Even when parallel reference processing is enabled, the processing
5322   // of JNI refs is serial and performed serially by the current thread
5323   // rather than by a worker. The following PSS will be used for processing
5324   // JNI refs.
5325 
5326   // Use only a single queue for this PSS.
5327   G1ParScanThreadState            pss(this, 0, NULL);
5328 
5329   // We do not embed a reference processor in the copying/scanning
5330   // closures while we're actually processing the discovered
5331   // reference objects.
5332   G1ParScanHeapEvacFailureClosure evac_failure_cl(this, &pss, NULL);
5333 
5334   pss.set_evac_failure_closure(&evac_failure_cl);
5335 
5336   assert(pss.queue_is_empty(), "pre-condition");
5337 
5338   G1ParScanExtRootClosure        only_copy_non_heap_cl(this, &pss, NULL);
5339 
5340   G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(this, &pss, NULL);
5341 
5342   OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5343 
5344   if (_g1h->g1_policy()->during_initial_mark_pause()) {
5345     // We also need to mark copied objects.
5346     copy_non_heap_cl = &copy_mark_non_heap_cl;
5347   }
5348 
5349   // Keep alive closure.
5350   G1CopyingKeepAliveClosure keep_alive(this, copy_non_heap_cl, &pss);
5351 
5352   // Serial Complete GC closure
5353   G1STWDrainQueueClosure drain_queue(this, &pss);
5354 
5355   // Setup the soft refs policy...
5356   rp->setup_policy(false);
5357 
5358   ReferenceProcessorStats stats;
5359   if (!rp->processing_is_mt()) {
5360     // Serial reference processing...
5361     stats = rp->process_discovered_references(&is_alive,
5362                                               &keep_alive,
5363                                               &drain_queue,
5364                                               NULL,
5365                                               _gc_timer_stw,
5366                                               _gc_tracer_stw->gc_id());
5367   } else {
5368     // Parallel reference processing
5369     assert(rp->num_q() == no_of_gc_workers, "sanity");
5370     assert(no_of_gc_workers <= rp->max_num_q(), "sanity");
5371 
5372     G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, no_of_gc_workers);
5373     stats = rp->process_discovered_references(&is_alive,
5374                                               &keep_alive,
5375                                               &drain_queue,
5376                                               &par_task_executor,
5377                                               _gc_timer_stw,
5378                                               _gc_tracer_stw->gc_id());
5379   }
5380 
5381   _gc_tracer_stw->report_gc_reference_stats(stats);
5382 
5383   // We have completed copying any necessary live referent objects.
5384   assert(pss.queue_is_empty(), "both queue and overflow should be empty");
5385 
5386   double ref_proc_time = os::elapsedTime() - ref_proc_start;
5387   g1_policy()->phase_times()->record_ref_proc_time(ref_proc_time * 1000.0);
5388 }
5389 
5390 // Weak Reference processing during an evacuation pause (part 2).
5391 void G1CollectedHeap::enqueue_discovered_references(uint no_of_gc_workers) {
5392   double ref_enq_start = os::elapsedTime();
5393 
5394   ReferenceProcessor* rp = _ref_processor_stw;
5395   assert(!rp->discovery_enabled(), "should have been disabled as part of processing");
5396 
5397   // Now enqueue any remaining on the discovered lists on to
5398   // the pending list.
5399   if (!rp->processing_is_mt()) {
5400     // Serial reference processing...
5401     rp->enqueue_discovered_references();
5402   } else {
5403     // Parallel reference enqueueing
5404 
5405     assert(no_of_gc_workers == workers()->active_workers(),
5406            "Need to reset active workers");
5407     assert(rp->num_q() == no_of_gc_workers, "sanity");
5408     assert(no_of_gc_workers <= rp->max_num_q(), "sanity");
5409 
5410     G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, no_of_gc_workers);
5411     rp->enqueue_discovered_references(&par_task_executor);
5412   }
5413 
5414   rp->verify_no_references_recorded();
5415   assert(!rp->discovery_enabled(), "should have been disabled");
5416 
5417   // FIXME
5418   // CM's reference processing also cleans up the string and symbol tables.
5419   // Should we do that here also? We could, but it is a serial operation
5420   // and could significantly increase the pause time.
5421 
5422   double ref_enq_time = os::elapsedTime() - ref_enq_start;
5423   g1_policy()->phase_times()->record_ref_enq_time(ref_enq_time * 1000.0);
5424 }
5425 
5426 void G1CollectedHeap::evacuate_collection_set(EvacuationInfo& evacuation_info) {
5427   _expand_heap_after_alloc_failure = true;
5428   _evacuation_failed = false;
5429 
5430   // Should G1EvacuationFailureALot be in effect for this GC?
5431   NOT_PRODUCT(set_evacuation_failure_alot_for_current_gc();)
5432 
5433   g1_rem_set()->prepare_for_oops_into_collection_set_do();
5434 
5435   // Disable the hot card cache.
5436   G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
5437   hot_card_cache->reset_hot_cache_claimed_index();
5438   hot_card_cache->set_use_cache(false);
5439 
5440   uint n_workers;
5441   n_workers =
5442     AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
5443                                    workers()->active_workers(),
5444                                    Threads::number_of_non_daemon_threads());
5445   assert(UseDynamicNumberOfGCThreads ||
5446          n_workers == workers()->total_workers(),
5447          "If not dynamic should be using all the  workers");
5448   workers()->set_active_workers(n_workers);
5449   set_par_threads(n_workers);
5450 
5451 
5452   init_for_evac_failure(NULL);
5453 
5454   assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty");
5455   double start_par_time_sec = os::elapsedTime();
5456   double end_par_time_sec;
5457 
5458   {
5459     G1RootProcessor root_processor(this);
5460     G1ParTask g1_par_task(this, _task_queues, &root_processor);
5461     // InitialMark needs claim bits to keep track of the marked-through CLDs.
5462     if (g1_policy()->during_initial_mark_pause()) {
5463       ClassLoaderDataGraph::clear_claimed_marks();
5464     }
5465 
5466      // The individual threads will set their evac-failure closures.
5467      if (PrintTerminationStats) G1ParScanThreadState::print_termination_stats_hdr();
5468      // These tasks use ShareHeap::_process_strong_tasks
5469      assert(UseDynamicNumberOfGCThreads ||
5470             workers()->active_workers() == workers()->total_workers(),
5471             "If not dynamic should be using all the  workers");
5472     workers()->run_task(&g1_par_task);
5473     end_par_time_sec = os::elapsedTime();
5474 
5475     // Closing the inner scope will execute the destructor
5476     // for the G1RootProcessor object. We record the current
5477     // elapsed time before closing the scope so that time
5478     // taken for the destructor is NOT included in the
5479     // reported parallel time.
5480   }
5481 
5482   G1GCPhaseTimes* phase_times = g1_policy()->phase_times();
5483 
5484   double par_time_ms = (end_par_time_sec - start_par_time_sec) * 1000.0;
5485   phase_times->record_par_time(par_time_ms);
5486 
5487   double code_root_fixup_time_ms =
5488         (os::elapsedTime() - end_par_time_sec) * 1000.0;
5489   phase_times->record_code_root_fixup_time(code_root_fixup_time_ms);
5490 
5491   set_par_threads(0);
5492 
5493   // Process any discovered reference objects - we have
5494   // to do this _before_ we retire the GC alloc regions
5495   // as we may have to copy some 'reachable' referent
5496   // objects (and their reachable sub-graphs) that were
5497   // not copied during the pause.
5498   process_discovered_references(n_workers);
5499 
5500   if (G1StringDedup::is_enabled()) {
5501     double fixup_start = os::elapsedTime();
5502 
5503     G1STWIsAliveClosure is_alive(this);
5504     G1KeepAliveClosure keep_alive(this);
5505     G1StringDedup::unlink_or_oops_do(&is_alive, &keep_alive, true, phase_times);
5506 
5507     double fixup_time_ms = (os::elapsedTime() - fixup_start) * 1000.0;
5508     phase_times->record_string_dedup_fixup_time(fixup_time_ms);
5509   }
5510 
5511   _allocator->release_gc_alloc_regions(n_workers, evacuation_info);
5512   g1_rem_set()->cleanup_after_oops_into_collection_set_do();
5513 
5514   // Reset and re-enable the hot card cache.
5515   // Note the counts for the cards in the regions in the
5516   // collection set are reset when the collection set is freed.
5517   hot_card_cache->reset_hot_cache();
5518   hot_card_cache->set_use_cache(true);
5519 
5520   purge_code_root_memory();
5521 
5522   finalize_for_evac_failure();
5523 
5524   if (evacuation_failed()) {
5525     remove_self_forwarding_pointers();
5526 
5527     // Reset the G1EvacuationFailureALot counters and flags
5528     // Note: the values are reset only when an actual
5529     // evacuation failure occurs.
5530     NOT_PRODUCT(reset_evacuation_should_fail();)
5531   }
5532 
5533   // Enqueue any remaining references remaining on the STW
5534   // reference processor's discovered lists. We need to do
5535   // this after the card table is cleaned (and verified) as
5536   // the act of enqueueing entries on to the pending list
5537   // will log these updates (and dirty their associated
5538   // cards). We need these updates logged to update any
5539   // RSets.
5540   enqueue_discovered_references(n_workers);
5541 
5542   redirty_logged_cards();
5543   COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
5544 }
5545 
5546 void G1CollectedHeap::free_region(HeapRegion* hr,
5547                                   FreeRegionList* free_list,
5548                                   bool par,
5549                                   bool locked) {
5550   assert(!hr->is_free(), "the region should not be free");
5551   assert(!hr->is_empty(), "the region should not be empty");
5552   assert(_hrm.is_available(hr->hrm_index()), "region should be committed");
5553   assert(free_list != NULL, "pre-condition");
5554 
5555   if (G1VerifyBitmaps) {
5556     MemRegion mr(hr->bottom(), hr->end());
5557     concurrent_mark()->clearRangePrevBitmap(mr);
5558   }
5559 
5560   // Clear the card counts for this region.
5561   // Note: we only need to do this if the region is not young
5562   // (since we don't refine cards in young regions).
5563   if (!hr->is_young()) {
5564     _cg1r->hot_card_cache()->reset_card_counts(hr);
5565   }
5566   hr->hr_clear(par, true /* clear_space */, locked /* locked */);
5567   free_list->add_ordered(hr);
5568 }
5569 
5570 void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
5571                                      FreeRegionList* free_list,
5572                                      bool par) {
5573   assert(hr->is_starts_humongous(), "this is only for starts humongous regions");
5574   assert(free_list != NULL, "pre-condition");
5575 
5576   size_t hr_capacity = hr->capacity();
5577   // We need to read this before we make the region non-humongous,
5578   // otherwise the information will be gone.
5579   uint last_index = hr->last_hc_index();
5580   hr->clear_humongous();
5581   free_region(hr, free_list, par);
5582 
5583   uint i = hr->hrm_index() + 1;
5584   while (i < last_index) {
5585     HeapRegion* curr_hr = region_at(i);
5586     assert(curr_hr->is_continues_humongous(), "invariant");
5587     curr_hr->clear_humongous();
5588     free_region(curr_hr, free_list, par);
5589     i += 1;
5590   }
5591 }
5592 
5593 void G1CollectedHeap::remove_from_old_sets(const HeapRegionSetCount& old_regions_removed,
5594                                        const HeapRegionSetCount& humongous_regions_removed) {
5595   if (old_regions_removed.length() > 0 || humongous_regions_removed.length() > 0) {
5596     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
5597     _old_set.bulk_remove(old_regions_removed);
5598     _humongous_set.bulk_remove(humongous_regions_removed);
5599   }
5600 
5601 }
5602 
5603 void G1CollectedHeap::prepend_to_freelist(FreeRegionList* list) {
5604   assert(list != NULL, "list can't be null");
5605   if (!list->is_empty()) {
5606     MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
5607     _hrm.insert_list_into_free_list(list);
5608   }
5609 }
5610 
5611 void G1CollectedHeap::decrement_summary_bytes(size_t bytes) {
5612   _allocator->decrease_used(bytes);
5613 }
5614 
5615 class G1ParCleanupCTTask : public AbstractGangTask {
5616   G1SATBCardTableModRefBS* _ct_bs;
5617   G1CollectedHeap* _g1h;
5618   HeapRegion* volatile _su_head;
5619 public:
5620   G1ParCleanupCTTask(G1SATBCardTableModRefBS* ct_bs,
5621                      G1CollectedHeap* g1h) :
5622     AbstractGangTask("G1 Par Cleanup CT Task"),
5623     _ct_bs(ct_bs), _g1h(g1h) { }
5624 
5625   void work(uint worker_id) {
5626     HeapRegion* r;
5627     while (r = _g1h->pop_dirty_cards_region()) {
5628       clear_cards(r);
5629     }
5630   }
5631 
5632   void clear_cards(HeapRegion* r) {
5633     // Cards of the survivors should have already been dirtied.
5634     if (!r->is_survivor()) {
5635       _ct_bs->clear(MemRegion(r->bottom(), r->end()));
5636     }
5637   }
5638 };
5639 
5640 #ifndef PRODUCT
5641 class G1VerifyCardTableCleanup: public HeapRegionClosure {
5642   G1CollectedHeap* _g1h;
5643   G1SATBCardTableModRefBS* _ct_bs;
5644 public:
5645   G1VerifyCardTableCleanup(G1CollectedHeap* g1h, G1SATBCardTableModRefBS* ct_bs)
5646     : _g1h(g1h), _ct_bs(ct_bs) { }
5647   virtual bool doHeapRegion(HeapRegion* r) {
5648     if (r->is_survivor()) {
5649       _g1h->verify_dirty_region(r);
5650     } else {
5651       _g1h->verify_not_dirty_region(r);
5652     }
5653     return false;
5654   }
5655 };
5656 
5657 void G1CollectedHeap::verify_not_dirty_region(HeapRegion* hr) {
5658   // All of the region should be clean.
5659   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
5660   MemRegion mr(hr->bottom(), hr->end());
5661   ct_bs->verify_not_dirty_region(mr);
5662 }
5663 
5664 void G1CollectedHeap::verify_dirty_region(HeapRegion* hr) {
5665   // We cannot guarantee that [bottom(),end()] is dirty.  Threads
5666   // dirty allocated blocks as they allocate them. The thread that
5667   // retires each region and replaces it with a new one will do a
5668   // maximal allocation to fill in [pre_dummy_top(),end()] but will
5669   // not dirty that area (one less thing to have to do while holding
5670   // a lock). So we can only verify that [bottom(),pre_dummy_top()]
5671   // is dirty.
5672   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
5673   MemRegion mr(hr->bottom(), hr->pre_dummy_top());
5674   if (hr->is_young()) {
5675     ct_bs->verify_g1_young_region(mr);
5676   } else {
5677     ct_bs->verify_dirty_region(mr);
5678   }
5679 }
5680 
5681 void G1CollectedHeap::verify_dirty_young_list(HeapRegion* head) {
5682   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
5683   for (HeapRegion* hr = head; hr != NULL; hr = hr->get_next_young_region()) {
5684     verify_dirty_region(hr);
5685   }
5686 }
5687 
5688 void G1CollectedHeap::verify_dirty_young_regions() {
5689   verify_dirty_young_list(_young_list->first_region());
5690 }
5691 
5692 bool G1CollectedHeap::verify_no_bits_over_tams(const char* bitmap_name, CMBitMapRO* bitmap,
5693                                                HeapWord* tams, HeapWord* end) {
5694   guarantee(tams <= end,
5695             err_msg("tams: "PTR_FORMAT" end: "PTR_FORMAT, tams, end));
5696   HeapWord* result = bitmap->getNextMarkedWordAddress(tams, end);
5697   if (result < end) {
5698     gclog_or_tty->cr();
5699     gclog_or_tty->print_cr("## wrong marked address on %s bitmap: "PTR_FORMAT,
5700                            bitmap_name, result);
5701     gclog_or_tty->print_cr("## %s tams: "PTR_FORMAT" end: "PTR_FORMAT,
5702                            bitmap_name, tams, end);
5703     return false;
5704   }
5705   return true;
5706 }
5707 
5708 bool G1CollectedHeap::verify_bitmaps(const char* caller, HeapRegion* hr) {
5709   CMBitMapRO* prev_bitmap = concurrent_mark()->prevMarkBitMap();
5710   CMBitMapRO* next_bitmap = (CMBitMapRO*) concurrent_mark()->nextMarkBitMap();
5711 
5712   HeapWord* bottom = hr->bottom();
5713   HeapWord* ptams  = hr->prev_top_at_mark_start();
5714   HeapWord* ntams  = hr->next_top_at_mark_start();
5715   HeapWord* end    = hr->end();
5716 
5717   bool res_p = verify_no_bits_over_tams("prev", prev_bitmap, ptams, end);
5718 
5719   bool res_n = true;
5720   // We reset mark_in_progress() before we reset _cmThread->in_progress() and in this window
5721   // we do the clearing of the next bitmap concurrently. Thus, we can not verify the bitmap
5722   // if we happen to be in that state.
5723   if (mark_in_progress() || !_cmThread->in_progress()) {
5724     res_n = verify_no_bits_over_tams("next", next_bitmap, ntams, end);
5725   }
5726   if (!res_p || !res_n) {
5727     gclog_or_tty->print_cr("#### Bitmap verification failed for "HR_FORMAT,
5728                            HR_FORMAT_PARAMS(hr));
5729     gclog_or_tty->print_cr("#### Caller: %s", caller);
5730     return false;
5731   }
5732   return true;
5733 }
5734 
5735 void G1CollectedHeap::check_bitmaps(const char* caller, HeapRegion* hr) {
5736   if (!G1VerifyBitmaps) return;
5737 
5738   guarantee(verify_bitmaps(caller, hr), "bitmap verification");
5739 }
5740 
5741 class G1VerifyBitmapClosure : public HeapRegionClosure {
5742 private:
5743   const char* _caller;
5744   G1CollectedHeap* _g1h;
5745   bool _failures;
5746 
5747 public:
5748   G1VerifyBitmapClosure(const char* caller, G1CollectedHeap* g1h) :
5749     _caller(caller), _g1h(g1h), _failures(false) { }
5750 
5751   bool failures() { return _failures; }
5752 
5753   virtual bool doHeapRegion(HeapRegion* hr) {
5754     if (hr->is_continues_humongous()) return false;
5755 
5756     bool result = _g1h->verify_bitmaps(_caller, hr);
5757     if (!result) {
5758       _failures = true;
5759     }
5760     return false;
5761   }
5762 };
5763 
5764 void G1CollectedHeap::check_bitmaps(const char* caller) {
5765   if (!G1VerifyBitmaps) return;
5766 
5767   G1VerifyBitmapClosure cl(caller, this);
5768   heap_region_iterate(&cl);
5769   guarantee(!cl.failures(), "bitmap verification");
5770 }
5771 
5772 class G1CheckCSetFastTableClosure : public HeapRegionClosure {
5773  private:
5774   bool _failures;
5775  public:
5776   G1CheckCSetFastTableClosure() : HeapRegionClosure(), _failures(false) { }
5777 
5778   virtual bool doHeapRegion(HeapRegion* hr) {
5779     uint i = hr->hrm_index();
5780     InCSetState cset_state = (InCSetState) G1CollectedHeap::heap()->_in_cset_fast_test.get_by_index(i);
5781     if (hr->is_humongous()) {
5782       if (hr->in_collection_set()) {
5783         gclog_or_tty->print_cr("\n## humongous region %u in CSet", i);
5784         _failures = true;
5785         return true;
5786       }
5787       if (cset_state.is_in_cset()) {
5788         gclog_or_tty->print_cr("\n## inconsistent cset state %d for humongous region %u", cset_state.value(), i);
5789         _failures = true;
5790         return true;
5791       }
5792       if (hr->is_continues_humongous() && cset_state.is_humongous()) {
5793         gclog_or_tty->print_cr("\n## inconsistent cset state %d for continues humongous region %u", cset_state.value(), i);
5794         _failures = true;
5795         return true;
5796       }
5797     } else {
5798       if (cset_state.is_humongous()) {
5799         gclog_or_tty->print_cr("\n## inconsistent cset state %d for non-humongous region %u", cset_state.value(), i);
5800         _failures = true;
5801         return true;
5802       }
5803       if (hr->in_collection_set() != cset_state.is_in_cset()) {
5804         gclog_or_tty->print_cr("\n## in CSet %d / cset state %d inconsistency for region %u",
5805                                hr->in_collection_set(), cset_state.value(), i);
5806         _failures = true;
5807         return true;
5808       }
5809       if (cset_state.is_in_cset()) {
5810         if (hr->is_young() != (cset_state.is_young())) {
5811           gclog_or_tty->print_cr("\n## is_young %d / cset state %d inconsistency for region %u",
5812                                  hr->is_young(), cset_state.value(), i);
5813           _failures = true;
5814           return true;
5815         }
5816         if (hr->is_old() != (cset_state.is_old())) {
5817           gclog_or_tty->print_cr("\n## is_old %d / cset state %d inconsistency for region %u",
5818                                  hr->is_old(), cset_state.value(), i);
5819           _failures = true;
5820           return true;
5821         }
5822       }
5823     }
5824     return false;
5825   }
5826 
5827   bool failures() const { return _failures; }
5828 };
5829 
5830 bool G1CollectedHeap::check_cset_fast_test() {
5831   G1CheckCSetFastTableClosure cl;
5832   _hrm.iterate(&cl);
5833   return !cl.failures();
5834 }
5835 #endif // PRODUCT
5836 
5837 void G1CollectedHeap::cleanUpCardTable() {
5838   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
5839   double start = os::elapsedTime();
5840 
5841   {
5842     // Iterate over the dirty cards region list.
5843     G1ParCleanupCTTask cleanup_task(ct_bs, this);
5844 
5845     set_par_threads();
5846     workers()->run_task(&cleanup_task);
5847     set_par_threads(0);
5848 #ifndef PRODUCT
5849     if (G1VerifyCTCleanup || VerifyAfterGC) {
5850       G1VerifyCardTableCleanup cleanup_verifier(this, ct_bs);
5851       heap_region_iterate(&cleanup_verifier);
5852     }
5853 #endif
5854   }
5855 
5856   double elapsed = os::elapsedTime() - start;
5857   g1_policy()->phase_times()->record_clear_ct_time(elapsed * 1000.0);
5858 }
5859 
5860 void G1CollectedHeap::free_collection_set(HeapRegion* cs_head, EvacuationInfo& evacuation_info) {
5861   size_t pre_used = 0;
5862   FreeRegionList local_free_list("Local List for CSet Freeing");
5863 
5864   double young_time_ms     = 0.0;
5865   double non_young_time_ms = 0.0;
5866 
5867   // Since the collection set is a superset of the the young list,
5868   // all we need to do to clear the young list is clear its
5869   // head and length, and unlink any young regions in the code below
5870   _young_list->clear();
5871 
5872   G1CollectorPolicy* policy = g1_policy();
5873 
5874   double start_sec = os::elapsedTime();
5875   bool non_young = true;
5876 
5877   HeapRegion* cur = cs_head;
5878   int age_bound = -1;
5879   size_t rs_lengths = 0;
5880 
5881   while (cur != NULL) {
5882     assert(!is_on_master_free_list(cur), "sanity");
5883     if (non_young) {
5884       if (cur->is_young()) {
5885         double end_sec = os::elapsedTime();
5886         double elapsed_ms = (end_sec - start_sec) * 1000.0;
5887         non_young_time_ms += elapsed_ms;
5888 
5889         start_sec = os::elapsedTime();
5890         non_young = false;
5891       }
5892     } else {
5893       if (!cur->is_young()) {
5894         double end_sec = os::elapsedTime();
5895         double elapsed_ms = (end_sec - start_sec) * 1000.0;
5896         young_time_ms += elapsed_ms;
5897 
5898         start_sec = os::elapsedTime();
5899         non_young = true;
5900       }
5901     }
5902 
5903     rs_lengths += cur->rem_set()->occupied_locked();
5904 
5905     HeapRegion* next = cur->next_in_collection_set();
5906     assert(cur->in_collection_set(), "bad CS");
5907     cur->set_next_in_collection_set(NULL);
5908     clear_in_cset(cur);
5909 
5910     if (cur->is_young()) {
5911       int index = cur->young_index_in_cset();
5912       assert(index != -1, "invariant");
5913       assert((uint) index < policy->young_cset_region_length(), "invariant");
5914       size_t words_survived = _surviving_young_words[index];
5915       cur->record_surv_words_in_group(words_survived);
5916 
5917       // At this point the we have 'popped' cur from the collection set
5918       // (linked via next_in_collection_set()) but it is still in the
5919       // young list (linked via next_young_region()). Clear the
5920       // _next_young_region field.
5921       cur->set_next_young_region(NULL);
5922     } else {
5923       int index = cur->young_index_in_cset();
5924       assert(index == -1, "invariant");
5925     }
5926 
5927     assert( (cur->is_young() && cur->young_index_in_cset() > -1) ||
5928             (!cur->is_young() && cur->young_index_in_cset() == -1),
5929             "invariant" );
5930 
5931     if (!cur->evacuation_failed()) {
5932       MemRegion used_mr = cur->used_region();
5933 
5934       // And the region is empty.
5935       assert(!used_mr.is_empty(), "Should not have empty regions in a CS.");
5936       pre_used += cur->used();
5937       free_region(cur, &local_free_list, false /* par */, true /* locked */);
5938     } else {
5939       cur->uninstall_surv_rate_group();
5940       if (cur->is_young()) {
5941         cur->set_young_index_in_cset(-1);
5942       }
5943       cur->set_evacuation_failed(false);
5944       // The region is now considered to be old.
5945       cur->set_old();
5946       _old_set.add(cur);
5947       evacuation_info.increment_collectionset_used_after(cur->used());
5948     }
5949     cur = next;
5950   }
5951 
5952   evacuation_info.set_regions_freed(local_free_list.length());
5953   policy->record_max_rs_lengths(rs_lengths);
5954   policy->cset_regions_freed();
5955 
5956   double end_sec = os::elapsedTime();
5957   double elapsed_ms = (end_sec - start_sec) * 1000.0;
5958 
5959   if (non_young) {
5960     non_young_time_ms += elapsed_ms;
5961   } else {
5962     young_time_ms += elapsed_ms;
5963   }
5964 
5965   prepend_to_freelist(&local_free_list);
5966   decrement_summary_bytes(pre_used);
5967   policy->phase_times()->record_young_free_cset_time_ms(young_time_ms);
5968   policy->phase_times()->record_non_young_free_cset_time_ms(non_young_time_ms);
5969 }
5970 
5971 class G1FreeHumongousRegionClosure : public HeapRegionClosure {
5972  private:
5973   FreeRegionList* _free_region_list;
5974   HeapRegionSet* _proxy_set;
5975   HeapRegionSetCount _humongous_regions_removed;
5976   size_t _freed_bytes;
5977  public:
5978 
5979   G1FreeHumongousRegionClosure(FreeRegionList* free_region_list) :
5980     _free_region_list(free_region_list), _humongous_regions_removed(), _freed_bytes(0) {
5981   }
5982 
5983   virtual bool doHeapRegion(HeapRegion* r) {
5984     if (!r->is_starts_humongous()) {
5985       return false;
5986     }
5987 
5988     G1CollectedHeap* g1h = G1CollectedHeap::heap();
5989 
5990     oop obj = (oop)r->bottom();
5991     CMBitMap* next_bitmap = g1h->concurrent_mark()->nextMarkBitMap();
5992 
5993     // The following checks whether the humongous object is live are sufficient.
5994     // The main additional check (in addition to having a reference from the roots
5995     // or the young gen) is whether the humongous object has a remembered set entry.
5996     //
5997     // A humongous object cannot be live if there is no remembered set for it
5998     // because:
5999     // - there can be no references from within humongous starts regions referencing
6000     // the object because we never allocate other objects into them.
6001     // (I.e. there are no intra-region references that may be missed by the
6002     // remembered set)
6003     // - as soon there is a remembered set entry to the humongous starts region
6004     // (i.e. it has "escaped" to an old object) this remembered set entry will stay
6005     // until the end of a concurrent mark.
6006     //
6007     // It is not required to check whether the object has been found dead by marking
6008     // or not, in fact it would prevent reclamation within a concurrent cycle, as
6009     // all objects allocated during that time are considered live.
6010     // SATB marking is even more conservative than the remembered set.
6011     // So if at this point in the collection there is no remembered set entry,
6012     // nobody has a reference to it.
6013     // At the start of collection we flush all refinement logs, and remembered sets
6014     // are completely up-to-date wrt to references to the humongous object.
6015     //
6016     // Other implementation considerations:
6017     // - never consider object arrays at this time because they would pose
6018     // considerable effort for cleaning up the the remembered sets. This is
6019     // required because stale remembered sets might reference locations that
6020     // are currently allocated into.
6021     uint region_idx = r->hrm_index();
6022     if (g1h->humongous_is_live(region_idx) ||
6023         g1h->humongous_region_is_always_live(region_idx)) {
6024 
6025       if (G1TraceEagerReclaimHumongousObjects) {
6026         gclog_or_tty->print_cr("Live humongous region %u size "SIZE_FORMAT" start "PTR_FORMAT" length "UINT32_FORMAT" with remset "SIZE_FORMAT" code roots "SIZE_FORMAT" is marked %d live-other %d obj array %d",
6027                                region_idx,
6028                                obj->size()*HeapWordSize,
6029                                r->bottom(),
6030                                r->region_num(),
6031                                r->rem_set()->occupied(),
6032                                r->rem_set()->strong_code_roots_list_length(),
6033                                next_bitmap->isMarked(r->bottom()),
6034                                g1h->humongous_is_live(region_idx),
6035                                obj->is_objArray()
6036                               );
6037       }
6038 
6039       return false;
6040     }
6041 
6042     guarantee(!obj->is_objArray(),
6043               err_msg("Eagerly reclaiming object arrays is not supported, but the object "PTR_FORMAT" is.",
6044                       r->bottom()));
6045 
6046     if (G1TraceEagerReclaimHumongousObjects) {
6047       gclog_or_tty->print_cr("Dead humongous region %u size "SIZE_FORMAT" start "PTR_FORMAT" length "UINT32_FORMAT" with remset "SIZE_FORMAT" code roots "SIZE_FORMAT" is marked %d live-other %d obj array %d",
6048                              region_idx,
6049                              obj->size()*HeapWordSize,
6050                              r->bottom(),
6051                              r->region_num(),
6052                              r->rem_set()->occupied(),
6053                              r->rem_set()->strong_code_roots_list_length(),
6054                              next_bitmap->isMarked(r->bottom()),
6055                              g1h->humongous_is_live(region_idx),
6056                              obj->is_objArray()
6057                             );
6058     }
6059     // Need to clear mark bit of the humongous object if already set.
6060     if (next_bitmap->isMarked(r->bottom())) {
6061       next_bitmap->clear(r->bottom());
6062     }
6063     _freed_bytes += r->used();
6064     r->set_containing_set(NULL);
6065     _humongous_regions_removed.increment(1u, r->capacity());
6066     g1h->free_humongous_region(r, _free_region_list, false);
6067 
6068     return false;
6069   }
6070 
6071   HeapRegionSetCount& humongous_free_count() {
6072     return _humongous_regions_removed;
6073   }
6074 
6075   size_t bytes_freed() const {
6076     return _freed_bytes;
6077   }
6078 
6079   size_t humongous_reclaimed() const {
6080     return _humongous_regions_removed.length();
6081   }
6082 };
6083 
6084 void G1CollectedHeap::eagerly_reclaim_humongous_regions() {
6085   assert_at_safepoint(true);
6086 
6087   if (!G1EagerReclaimHumongousObjects ||
6088       (!_has_humongous_reclaim_candidates && !G1TraceEagerReclaimHumongousObjects)) {
6089     g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms(0.0, 0);
6090     return;
6091   }
6092 
6093   double start_time = os::elapsedTime();
6094 
6095   FreeRegionList local_cleanup_list("Local Humongous Cleanup List");
6096 
6097   G1FreeHumongousRegionClosure cl(&local_cleanup_list);
6098   heap_region_iterate(&cl);
6099 
6100   HeapRegionSetCount empty_set;
6101   remove_from_old_sets(empty_set, cl.humongous_free_count());
6102 
6103   G1HRPrinter* hr_printer = _g1h->hr_printer();
6104   if (hr_printer->is_active()) {
6105     FreeRegionListIterator iter(&local_cleanup_list);
6106     while (iter.more_available()) {
6107       HeapRegion* hr = iter.get_next();
6108       hr_printer->cleanup(hr);
6109     }
6110   }
6111 
6112   prepend_to_freelist(&local_cleanup_list);
6113   decrement_summary_bytes(cl.bytes_freed());
6114 
6115   g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms((os::elapsedTime() - start_time) * 1000.0,
6116                                                                     cl.humongous_reclaimed());
6117 }
6118 
6119 // This routine is similar to the above but does not record
6120 // any policy statistics or update free lists; we are abandoning
6121 // the current incremental collection set in preparation of a
6122 // full collection. After the full GC we will start to build up
6123 // the incremental collection set again.
6124 // This is only called when we're doing a full collection
6125 // and is immediately followed by the tearing down of the young list.
6126 
6127 void G1CollectedHeap::abandon_collection_set(HeapRegion* cs_head) {
6128   HeapRegion* cur = cs_head;
6129 
6130   while (cur != NULL) {
6131     HeapRegion* next = cur->next_in_collection_set();
6132     assert(cur->in_collection_set(), "bad CS");
6133     cur->set_next_in_collection_set(NULL);
6134     clear_in_cset(cur);
6135     cur->set_young_index_in_cset(-1);
6136     cur = next;
6137   }
6138 }
6139 
6140 void G1CollectedHeap::set_free_regions_coming() {
6141   if (G1ConcRegionFreeingVerbose) {
6142     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
6143                            "setting free regions coming");
6144   }
6145 
6146   assert(!free_regions_coming(), "pre-condition");
6147   _free_regions_coming = true;
6148 }
6149 
6150 void G1CollectedHeap::reset_free_regions_coming() {
6151   assert(free_regions_coming(), "pre-condition");
6152 
6153   {
6154     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6155     _free_regions_coming = false;
6156     SecondaryFreeList_lock->notify_all();
6157   }
6158 
6159   if (G1ConcRegionFreeingVerbose) {
6160     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
6161                            "reset free regions coming");
6162   }
6163 }
6164 
6165 void G1CollectedHeap::wait_while_free_regions_coming() {
6166   // Most of the time we won't have to wait, so let's do a quick test
6167   // first before we take the lock.
6168   if (!free_regions_coming()) {
6169     return;
6170   }
6171 
6172   if (G1ConcRegionFreeingVerbose) {
6173     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
6174                            "waiting for free regions");
6175   }
6176 
6177   {
6178     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6179     while (free_regions_coming()) {
6180       SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
6181     }
6182   }
6183 
6184   if (G1ConcRegionFreeingVerbose) {
6185     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
6186                            "done waiting for free regions");
6187   }
6188 }
6189 
6190 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
6191   assert(heap_lock_held_for_gc(),
6192               "the heap lock should already be held by or for this thread");
6193   _young_list->push_region(hr);
6194 }
6195 
6196 class NoYoungRegionsClosure: public HeapRegionClosure {
6197 private:
6198   bool _success;
6199 public:
6200   NoYoungRegionsClosure() : _success(true) { }
6201   bool doHeapRegion(HeapRegion* r) {
6202     if (r->is_young()) {
6203       gclog_or_tty->print_cr("Region ["PTR_FORMAT", "PTR_FORMAT") tagged as young",
6204                              r->bottom(), r->end());
6205       _success = false;
6206     }
6207     return false;
6208   }
6209   bool success() { return _success; }
6210 };
6211 
6212 bool G1CollectedHeap::check_young_list_empty(bool check_heap, bool check_sample) {
6213   bool ret = _young_list->check_list_empty(check_sample);
6214 
6215   if (check_heap) {
6216     NoYoungRegionsClosure closure;
6217     heap_region_iterate(&closure);
6218     ret = ret && closure.success();
6219   }
6220 
6221   return ret;
6222 }
6223 
6224 class TearDownRegionSetsClosure : public HeapRegionClosure {
6225 private:
6226   HeapRegionSet *_old_set;
6227 
6228 public:
6229   TearDownRegionSetsClosure(HeapRegionSet* old_set) : _old_set(old_set) { }
6230 
6231   bool doHeapRegion(HeapRegion* r) {
6232     if (r->is_old()) {
6233       _old_set->remove(r);
6234     } else {
6235       // We ignore free regions, we'll empty the free list afterwards.
6236       // We ignore young regions, we'll empty the young list afterwards.
6237       // We ignore humongous regions, we're not tearing down the
6238       // humongous regions set.
6239       assert(r->is_free() || r->is_young() || r->is_humongous(),
6240              "it cannot be another type");
6241     }
6242     return false;
6243   }
6244 
6245   ~TearDownRegionSetsClosure() {
6246     assert(_old_set->is_empty(), "post-condition");
6247   }
6248 };
6249 
6250 void G1CollectedHeap::tear_down_region_sets(bool free_list_only) {
6251   assert_at_safepoint(true /* should_be_vm_thread */);
6252 
6253   if (!free_list_only) {
6254     TearDownRegionSetsClosure cl(&_old_set);
6255     heap_region_iterate(&cl);
6256 
6257     // Note that emptying the _young_list is postponed and instead done as
6258     // the first step when rebuilding the regions sets again. The reason for
6259     // this is that during a full GC string deduplication needs to know if
6260     // a collected region was young or old when the full GC was initiated.
6261   }
6262   _hrm.remove_all_free_regions();
6263 }
6264 
6265 class RebuildRegionSetsClosure : public HeapRegionClosure {
6266 private:
6267   bool            _free_list_only;
6268   HeapRegionSet*   _old_set;
6269   HeapRegionManager*   _hrm;
6270   size_t          _total_used;
6271 
6272 public:
6273   RebuildRegionSetsClosure(bool free_list_only,
6274                            HeapRegionSet* old_set, HeapRegionManager* hrm) :
6275     _free_list_only(free_list_only),
6276     _old_set(old_set), _hrm(hrm), _total_used(0) {
6277     assert(_hrm->num_free_regions() == 0, "pre-condition");
6278     if (!free_list_only) {
6279       assert(_old_set->is_empty(), "pre-condition");
6280     }
6281   }
6282 
6283   bool doHeapRegion(HeapRegion* r) {
6284     if (r->is_continues_humongous()) {
6285       return false;
6286     }
6287 
6288     if (r->is_empty()) {
6289       // Add free regions to the free list
6290       r->set_free();
6291       r->set_allocation_context(AllocationContext::system());
6292       _hrm->insert_into_free_list(r);
6293     } else if (!_free_list_only) {
6294       assert(!r->is_young(), "we should not come across young regions");
6295 
6296       if (r->is_humongous()) {
6297         // We ignore humongous regions, we left the humongous set unchanged
6298       } else {
6299         // Objects that were compacted would have ended up on regions
6300         // that were previously old or free.
6301         assert(r->is_free() || r->is_old(), "invariant");
6302         // We now consider them old, so register as such.
6303         r->set_old();
6304         _old_set->add(r);
6305       }
6306       _total_used += r->used();
6307     }
6308 
6309     return false;
6310   }
6311 
6312   size_t total_used() {
6313     return _total_used;
6314   }
6315 };
6316 
6317 void G1CollectedHeap::rebuild_region_sets(bool free_list_only) {
6318   assert_at_safepoint(true /* should_be_vm_thread */);
6319 
6320   if (!free_list_only) {
6321     _young_list->empty_list();
6322   }
6323 
6324   RebuildRegionSetsClosure cl(free_list_only, &_old_set, &_hrm);
6325   heap_region_iterate(&cl);
6326 
6327   if (!free_list_only) {
6328     _allocator->set_used(cl.total_used());
6329   }
6330   assert(_allocator->used_unlocked() == recalculate_used(),
6331          err_msg("inconsistent _allocator->used_unlocked(), "
6332                  "value: "SIZE_FORMAT" recalculated: "SIZE_FORMAT,
6333                  _allocator->used_unlocked(), recalculate_used()));
6334 }
6335 
6336 void G1CollectedHeap::set_refine_cte_cl_concurrency(bool concurrent) {
6337   _refine_cte_cl->set_concurrent(concurrent);
6338 }
6339 
6340 bool G1CollectedHeap::is_in_closed_subset(const void* p) const {
6341   HeapRegion* hr = heap_region_containing(p);
6342   return hr->is_in(p);
6343 }
6344 
6345 // Methods for the mutator alloc region
6346 
6347 HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
6348                                                       bool force) {
6349   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6350   assert(!force || g1_policy()->can_expand_young_list(),
6351          "if force is true we should be able to expand the young list");
6352   bool young_list_full = g1_policy()->is_young_list_full();
6353   if (force || !young_list_full) {
6354     HeapRegion* new_alloc_region = new_region(word_size,
6355                                               false /* is_old */,
6356                                               false /* do_expand */);
6357     if (new_alloc_region != NULL) {
6358       set_region_short_lived_locked(new_alloc_region);
6359       _hr_printer.alloc(new_alloc_region, G1HRPrinter::Eden, young_list_full);
6360       check_bitmaps("Mutator Region Allocation", new_alloc_region);
6361       return new_alloc_region;
6362     }
6363   }
6364   return NULL;
6365 }
6366 
6367 void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region,
6368                                                   size_t allocated_bytes) {
6369   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6370   assert(alloc_region->is_eden(), "all mutator alloc regions should be eden");
6371 
6372   g1_policy()->add_region_to_incremental_cset_lhs(alloc_region);
6373   _allocator->increase_used(allocated_bytes);
6374   _hr_printer.retire(alloc_region);
6375   // We update the eden sizes here, when the region is retired,
6376   // instead of when it's allocated, since this is the point that its
6377   // used space has been recored in _summary_bytes_used.
6378   g1mm()->update_eden_size();
6379 }
6380 
6381 void G1CollectedHeap::set_par_threads() {
6382   // Don't change the number of workers.  Use the value previously set
6383   // in the workgroup.
6384   uint n_workers = workers()->active_workers();
6385   assert(UseDynamicNumberOfGCThreads ||
6386            n_workers == workers()->total_workers(),
6387       "Otherwise should be using the total number of workers");
6388   if (n_workers == 0) {
6389     assert(false, "Should have been set in prior evacuation pause.");
6390     n_workers = ParallelGCThreads;
6391     workers()->set_active_workers(n_workers);
6392   }
6393   set_par_threads(n_workers);
6394 }
6395 
6396 // Methods for the GC alloc regions
6397 
6398 HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size,
6399                                                  uint count,
6400                                                  InCSetState dest) {
6401   assert(FreeList_lock->owned_by_self(), "pre-condition");
6402 
6403   if (count < g1_policy()->max_regions(dest)) {
6404     const bool is_survivor = (dest.is_young());
6405     HeapRegion* new_alloc_region = new_region(word_size,
6406                                               !is_survivor,
6407                                               true /* do_expand */);
6408     if (new_alloc_region != NULL) {
6409       // We really only need to do this for old regions given that we
6410       // should never scan survivors. But it doesn't hurt to do it
6411       // for survivors too.
6412       new_alloc_region->record_timestamp();
6413       if (is_survivor) {
6414         new_alloc_region->set_survivor();
6415         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Survivor);
6416         check_bitmaps("Survivor Region Allocation", new_alloc_region);
6417       } else {
6418         new_alloc_region->set_old();
6419         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Old);
6420         check_bitmaps("Old Region Allocation", new_alloc_region);
6421       }
6422       bool during_im = g1_policy()->during_initial_mark_pause();
6423       new_alloc_region->note_start_of_copying(during_im);
6424       return new_alloc_region;
6425     }
6426   }
6427   return NULL;
6428 }
6429 
6430 void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region,
6431                                              size_t allocated_bytes,
6432                                              InCSetState dest) {
6433   bool during_im = g1_policy()->during_initial_mark_pause();
6434   alloc_region->note_end_of_copying(during_im);
6435   g1_policy()->record_bytes_copied_during_gc(allocated_bytes);
6436   if (dest.is_young()) {
6437     young_list()->add_survivor_region(alloc_region);
6438   } else {
6439     _old_set.add(alloc_region);
6440   }
6441   _hr_printer.retire(alloc_region);
6442 }
6443 
6444 // Heap region set verification
6445 
6446 class VerifyRegionListsClosure : public HeapRegionClosure {
6447 private:
6448   HeapRegionSet*   _old_set;
6449   HeapRegionSet*   _humongous_set;
6450   HeapRegionManager*   _hrm;
6451 
6452 public:
6453   HeapRegionSetCount _old_count;
6454   HeapRegionSetCount _humongous_count;
6455   HeapRegionSetCount _free_count;
6456 
6457   VerifyRegionListsClosure(HeapRegionSet* old_set,
6458                            HeapRegionSet* humongous_set,
6459                            HeapRegionManager* hrm) :
6460     _old_set(old_set), _humongous_set(humongous_set), _hrm(hrm),
6461     _old_count(), _humongous_count(), _free_count(){ }
6462 
6463   bool doHeapRegion(HeapRegion* hr) {
6464     if (hr->is_continues_humongous()) {
6465       return false;
6466     }
6467 
6468     if (hr->is_young()) {
6469       // TODO
6470     } else if (hr->is_starts_humongous()) {
6471       assert(hr->containing_set() == _humongous_set, err_msg("Heap region %u is starts humongous but not in humongous set.", hr->hrm_index()));
6472       _humongous_count.increment(1u, hr->capacity());
6473     } else if (hr->is_empty()) {
6474       assert(_hrm->is_free(hr), err_msg("Heap region %u is empty but not on the free list.", hr->hrm_index()));
6475       _free_count.increment(1u, hr->capacity());
6476     } else if (hr->is_old()) {
6477       assert(hr->containing_set() == _old_set, err_msg("Heap region %u is old but not in the old set.", hr->hrm_index()));
6478       _old_count.increment(1u, hr->capacity());
6479     } else {
6480       ShouldNotReachHere();
6481     }
6482     return false;
6483   }
6484 
6485   void verify_counts(HeapRegionSet* old_set, HeapRegionSet* humongous_set, HeapRegionManager* free_list) {
6486     guarantee(old_set->length() == _old_count.length(), err_msg("Old set count mismatch. Expected %u, actual %u.", old_set->length(), _old_count.length()));
6487     guarantee(old_set->total_capacity_bytes() == _old_count.capacity(), err_msg("Old set capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
6488         old_set->total_capacity_bytes(), _old_count.capacity()));
6489 
6490     guarantee(humongous_set->length() == _humongous_count.length(), err_msg("Hum set count mismatch. Expected %u, actual %u.", humongous_set->length(), _humongous_count.length()));
6491     guarantee(humongous_set->total_capacity_bytes() == _humongous_count.capacity(), err_msg("Hum set capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
6492         humongous_set->total_capacity_bytes(), _humongous_count.capacity()));
6493 
6494     guarantee(free_list->num_free_regions() == _free_count.length(), err_msg("Free list count mismatch. Expected %u, actual %u.", free_list->num_free_regions(), _free_count.length()));
6495     guarantee(free_list->total_capacity_bytes() == _free_count.capacity(), err_msg("Free list capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
6496         free_list->total_capacity_bytes(), _free_count.capacity()));
6497   }
6498 };
6499 
6500 void G1CollectedHeap::verify_region_sets() {
6501   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6502 
6503   // First, check the explicit lists.
6504   _hrm.verify();
6505   {
6506     // Given that a concurrent operation might be adding regions to
6507     // the secondary free list we have to take the lock before
6508     // verifying it.
6509     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6510     _secondary_free_list.verify_list();
6511   }
6512 
6513   // If a concurrent region freeing operation is in progress it will
6514   // be difficult to correctly attributed any free regions we come
6515   // across to the correct free list given that they might belong to
6516   // one of several (free_list, secondary_free_list, any local lists,
6517   // etc.). So, if that's the case we will skip the rest of the
6518   // verification operation. Alternatively, waiting for the concurrent
6519   // operation to complete will have a non-trivial effect on the GC's
6520   // operation (no concurrent operation will last longer than the
6521   // interval between two calls to verification) and it might hide
6522   // any issues that we would like to catch during testing.
6523   if (free_regions_coming()) {
6524     return;
6525   }
6526 
6527   // Make sure we append the secondary_free_list on the free_list so
6528   // that all free regions we will come across can be safely
6529   // attributed to the free_list.
6530   append_secondary_free_list_if_not_empty_with_lock();
6531 
6532   // Finally, make sure that the region accounting in the lists is
6533   // consistent with what we see in the heap.
6534 
6535   VerifyRegionListsClosure cl(&_old_set, &_humongous_set, &_hrm);
6536   heap_region_iterate(&cl);
6537   cl.verify_counts(&_old_set, &_humongous_set, &_hrm);
6538 }
6539 
6540 // Optimized nmethod scanning
6541 
6542 class RegisterNMethodOopClosure: public OopClosure {
6543   G1CollectedHeap* _g1h;
6544   nmethod* _nm;
6545 
6546   template <class T> void do_oop_work(T* p) {
6547     T heap_oop = oopDesc::load_heap_oop(p);
6548     if (!oopDesc::is_null(heap_oop)) {
6549       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
6550       HeapRegion* hr = _g1h->heap_region_containing(obj);
6551       assert(!hr->is_continues_humongous(),
6552              err_msg("trying to add code root "PTR_FORMAT" in continuation of humongous region "HR_FORMAT
6553                      " starting at "HR_FORMAT,
6554                      _nm, HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region())));
6555 
6556       // HeapRegion::add_strong_code_root_locked() avoids adding duplicate entries.
6557       hr->add_strong_code_root_locked(_nm);
6558     }
6559   }
6560 
6561 public:
6562   RegisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
6563     _g1h(g1h), _nm(nm) {}
6564 
6565   void do_oop(oop* p)       { do_oop_work(p); }
6566   void do_oop(narrowOop* p) { do_oop_work(p); }
6567 };
6568 
6569 class UnregisterNMethodOopClosure: public OopClosure {
6570   G1CollectedHeap* _g1h;
6571   nmethod* _nm;
6572 
6573   template <class T> void do_oop_work(T* p) {
6574     T heap_oop = oopDesc::load_heap_oop(p);
6575     if (!oopDesc::is_null(heap_oop)) {
6576       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
6577       HeapRegion* hr = _g1h->heap_region_containing(obj);
6578       assert(!hr->is_continues_humongous(),
6579              err_msg("trying to remove code root "PTR_FORMAT" in continuation of humongous region "HR_FORMAT
6580                      " starting at "HR_FORMAT,
6581                      _nm, HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region())));
6582 
6583       hr->remove_strong_code_root(_nm);
6584     }
6585   }
6586 
6587 public:
6588   UnregisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
6589     _g1h(g1h), _nm(nm) {}
6590 
6591   void do_oop(oop* p)       { do_oop_work(p); }
6592   void do_oop(narrowOop* p) { do_oop_work(p); }
6593 };
6594 
6595 void G1CollectedHeap::register_nmethod(nmethod* nm) {
6596   CollectedHeap::register_nmethod(nm);
6597 
6598   guarantee(nm != NULL, "sanity");
6599   RegisterNMethodOopClosure reg_cl(this, nm);
6600   nm->oops_do(&reg_cl);
6601 }
6602 
6603 void G1CollectedHeap::unregister_nmethod(nmethod* nm) {
6604   CollectedHeap::unregister_nmethod(nm);
6605 
6606   guarantee(nm != NULL, "sanity");
6607   UnregisterNMethodOopClosure reg_cl(this, nm);
6608   nm->oops_do(&reg_cl, true);
6609 }
6610 
6611 void G1CollectedHeap::purge_code_root_memory() {
6612   double purge_start = os::elapsedTime();
6613   G1CodeRootSet::purge();
6614   double purge_time_ms = (os::elapsedTime() - purge_start) * 1000.0;
6615   g1_policy()->phase_times()->record_strong_code_root_purge_time(purge_time_ms);
6616 }
6617 
6618 class RebuildStrongCodeRootClosure: public CodeBlobClosure {
6619   G1CollectedHeap* _g1h;
6620 
6621 public:
6622   RebuildStrongCodeRootClosure(G1CollectedHeap* g1h) :
6623     _g1h(g1h) {}
6624 
6625   void do_code_blob(CodeBlob* cb) {
6626     nmethod* nm = (cb != NULL) ? cb->as_nmethod_or_null() : NULL;
6627     if (nm == NULL) {
6628       return;
6629     }
6630 
6631     if (ScavengeRootsInCode) {
6632       _g1h->register_nmethod(nm);
6633     }
6634   }
6635 };
6636 
6637 void G1CollectedHeap::rebuild_strong_code_roots() {
6638   RebuildStrongCodeRootClosure blob_cl(this);
6639   CodeCache::blobs_do(&blob_cl);
6640 }