1 /* 2 * Copyright (c) 2001, 2015, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "gc_implementation/parallelScavenge/adjoiningGenerations.hpp" 27 #include "gc_implementation/parallelScavenge/adjoiningVirtualSpaces.hpp" 28 #include "gc_implementation/parallelScavenge/cardTableExtension.hpp" 29 #include "gc_implementation/parallelScavenge/gcTaskManager.hpp" 30 #include "gc_implementation/parallelScavenge/generationSizer.hpp" 31 #include "gc_implementation/parallelScavenge/parallelScavengeHeap.inline.hpp" 32 #include "gc_implementation/parallelScavenge/psAdaptiveSizePolicy.hpp" 33 #include "gc_implementation/parallelScavenge/psMarkSweep.hpp" 34 #include "gc_implementation/parallelScavenge/psParallelCompact.hpp" 35 #include "gc_implementation/parallelScavenge/psPromotionManager.hpp" 36 #include "gc_implementation/parallelScavenge/psScavenge.hpp" 37 #include "gc_implementation/parallelScavenge/vmPSOperations.hpp" 38 #include "gc_implementation/shared/gcHeapSummary.hpp" 39 #include "gc_implementation/shared/gcWhen.hpp" 40 #include "memory/gcLocker.inline.hpp" 41 #include "oops/oop.inline.hpp" 42 #include "runtime/handles.inline.hpp" 43 #include "runtime/java.hpp" 44 #include "runtime/vmThread.hpp" 45 #include "services/memTracker.hpp" 46 #include "utilities/vmError.hpp" 47 48 PSYoungGen* ParallelScavengeHeap::_young_gen = NULL; 49 PSOldGen* ParallelScavengeHeap::_old_gen = NULL; 50 PSAdaptiveSizePolicy* ParallelScavengeHeap::_size_policy = NULL; 51 PSGCAdaptivePolicyCounters* ParallelScavengeHeap::_gc_policy_counters = NULL; 52 ParallelScavengeHeap* ParallelScavengeHeap::_psh = NULL; 53 GCTaskManager* ParallelScavengeHeap::_gc_task_manager = NULL; 54 55 jint ParallelScavengeHeap::initialize() { 56 CollectedHeap::pre_initialize(); 57 58 // Initialize collector policy 59 _collector_policy = new GenerationSizer(); 60 _collector_policy->initialize_all(); 61 62 const size_t heap_size = _collector_policy->max_heap_byte_size(); 63 64 ReservedSpace heap_rs = Universe::reserve_heap(heap_size, _collector_policy->heap_alignment()); 65 MemTracker::record_virtual_memory_type((address)heap_rs.base(), mtJavaHeap); 66 67 os::trace_page_sizes("ps main", _collector_policy->min_heap_byte_size(), 68 heap_size, generation_alignment(), 69 heap_rs.base(), 70 heap_rs.size()); 71 if (!heap_rs.is_reserved()) { 72 vm_shutdown_during_initialization( 73 "Could not reserve enough space for object heap"); 74 return JNI_ENOMEM; 75 } 76 77 initialize_reserved_region((HeapWord*)heap_rs.base(), (HeapWord*)(heap_rs.base() + heap_rs.size())); 78 79 CardTableExtension* const barrier_set = new CardTableExtension(reserved_region()); 80 barrier_set->initialize(); 81 _barrier_set = barrier_set; 82 oopDesc::set_bs(_barrier_set); 83 if (_barrier_set == NULL) { 84 vm_shutdown_during_initialization( 85 "Could not reserve enough space for barrier set"); 86 return JNI_ENOMEM; 87 } 88 89 // Make up the generations 90 // Calculate the maximum size that a generation can grow. This 91 // includes growth into the other generation. Note that the 92 // parameter _max_gen_size is kept as the maximum 93 // size of the generation as the boundaries currently stand. 94 // _max_gen_size is still used as that value. 95 double max_gc_pause_sec = ((double) MaxGCPauseMillis)/1000.0; 96 double max_gc_minor_pause_sec = ((double) MaxGCMinorPauseMillis)/1000.0; 97 98 _gens = new AdjoiningGenerations(heap_rs, _collector_policy, generation_alignment()); 99 100 _old_gen = _gens->old_gen(); 101 _young_gen = _gens->young_gen(); 102 103 const size_t eden_capacity = _young_gen->eden_space()->capacity_in_bytes(); 104 const size_t old_capacity = _old_gen->capacity_in_bytes(); 105 const size_t initial_promo_size = MIN2(eden_capacity, old_capacity); 106 _size_policy = 107 new PSAdaptiveSizePolicy(eden_capacity, 108 initial_promo_size, 109 young_gen()->to_space()->capacity_in_bytes(), 110 _collector_policy->gen_alignment(), 111 max_gc_pause_sec, 112 max_gc_minor_pause_sec, 113 GCTimeRatio 114 ); 115 116 assert(!UseAdaptiveGCBoundary || 117 (old_gen()->virtual_space()->high_boundary() == 118 young_gen()->virtual_space()->low_boundary()), 119 "Boundaries must meet"); 120 // initialize the policy counters - 2 collectors, 3 generations 121 _gc_policy_counters = 122 new PSGCAdaptivePolicyCounters("ParScav:MSC", 2, 3, _size_policy); 123 _psh = this; 124 125 // Set up the GCTaskManager 126 _gc_task_manager = GCTaskManager::create(ParallelGCThreads); 127 128 if (UseParallelOldGC && !PSParallelCompact::initialize()) { 129 return JNI_ENOMEM; 130 } 131 132 return JNI_OK; 133 } 134 135 void ParallelScavengeHeap::post_initialize() { 136 // Need to init the tenuring threshold 137 PSScavenge::initialize(); 138 if (UseParallelOldGC) { 139 PSParallelCompact::post_initialize(); 140 } else { 141 PSMarkSweep::initialize(); 142 } 143 PSPromotionManager::initialize(); 144 } 145 146 void ParallelScavengeHeap::update_counters() { 147 young_gen()->update_counters(); 148 old_gen()->update_counters(); 149 MetaspaceCounters::update_performance_counters(); 150 CompressedClassSpaceCounters::update_performance_counters(); 151 } 152 153 size_t ParallelScavengeHeap::capacity() const { 154 size_t value = young_gen()->capacity_in_bytes() + old_gen()->capacity_in_bytes(); 155 return value; 156 } 157 158 size_t ParallelScavengeHeap::used() const { 159 size_t value = young_gen()->used_in_bytes() + old_gen()->used_in_bytes(); 160 return value; 161 } 162 163 bool ParallelScavengeHeap::is_maximal_no_gc() const { 164 return old_gen()->is_maximal_no_gc() && young_gen()->is_maximal_no_gc(); 165 } 166 167 168 size_t ParallelScavengeHeap::max_capacity() const { 169 size_t estimated = reserved_region().byte_size(); 170 if (UseAdaptiveSizePolicy) { 171 estimated -= _size_policy->max_survivor_size(young_gen()->max_size()); 172 } else { 173 estimated -= young_gen()->to_space()->capacity_in_bytes(); 174 } 175 return MAX2(estimated, capacity()); 176 } 177 178 bool ParallelScavengeHeap::is_in(const void* p) const { 179 if (young_gen()->is_in(p)) { 180 return true; 181 } 182 183 if (old_gen()->is_in(p)) { 184 return true; 185 } 186 187 return false; 188 } 189 190 bool ParallelScavengeHeap::is_in_reserved(const void* p) const { 191 if (young_gen()->is_in_reserved(p)) { 192 return true; 193 } 194 195 if (old_gen()->is_in_reserved(p)) { 196 return true; 197 } 198 199 return false; 200 } 201 202 bool ParallelScavengeHeap::is_scavengable(const void* addr) { 203 return is_in_young((oop)addr); 204 } 205 206 #ifdef ASSERT 207 // Don't implement this by using is_in_young(). This method is used 208 // in some cases to check that is_in_young() is correct. 209 bool ParallelScavengeHeap::is_in_partial_collection(const void *p) { 210 assert(is_in_reserved(p) || p == NULL, 211 "Does not work if address is non-null and outside of the heap"); 212 // The order of the generations is old (low addr), young (high addr) 213 return p >= old_gen()->reserved().end(); 214 } 215 #endif 216 217 // There are two levels of allocation policy here. 218 // 219 // When an allocation request fails, the requesting thread must invoke a VM 220 // operation, transfer control to the VM thread, and await the results of a 221 // garbage collection. That is quite expensive, and we should avoid doing it 222 // multiple times if possible. 223 // 224 // To accomplish this, we have a basic allocation policy, and also a 225 // failed allocation policy. 226 // 227 // The basic allocation policy controls how you allocate memory without 228 // attempting garbage collection. It is okay to grab locks and 229 // expand the heap, if that can be done without coming to a safepoint. 230 // It is likely that the basic allocation policy will not be very 231 // aggressive. 232 // 233 // The failed allocation policy is invoked from the VM thread after 234 // the basic allocation policy is unable to satisfy a mem_allocate 235 // request. This policy needs to cover the entire range of collection, 236 // heap expansion, and out-of-memory conditions. It should make every 237 // attempt to allocate the requested memory. 238 239 // Basic allocation policy. Should never be called at a safepoint, or 240 // from the VM thread. 241 // 242 // This method must handle cases where many mem_allocate requests fail 243 // simultaneously. When that happens, only one VM operation will succeed, 244 // and the rest will not be executed. For that reason, this method loops 245 // during failed allocation attempts. If the java heap becomes exhausted, 246 // we rely on the size_policy object to force a bail out. 247 HeapWord* ParallelScavengeHeap::mem_allocate( 248 size_t size, 249 bool* gc_overhead_limit_was_exceeded) { 250 assert(!SafepointSynchronize::is_at_safepoint(), "should not be at safepoint"); 251 assert(Thread::current() != (Thread*)VMThread::vm_thread(), "should not be in vm thread"); 252 assert(!Heap_lock->owned_by_self(), "this thread should not own the Heap_lock"); 253 254 // In general gc_overhead_limit_was_exceeded should be false so 255 // set it so here and reset it to true only if the gc time 256 // limit is being exceeded as checked below. 257 *gc_overhead_limit_was_exceeded = false; 258 259 HeapWord* result = young_gen()->allocate(size); 260 261 uint loop_count = 0; 262 uint gc_count = 0; 263 uint gclocker_stalled_count = 0; 264 uint gc_attempt = 1; 265 266 while (result == NULL) { 267 // We don't want to have multiple collections for a single filled generation. 268 // To prevent this, each thread tracks the total_collections() value, and if 269 // the count has changed, does not do a new collection. 270 // 271 // The collection count must be read only while holding the heap lock. VM 272 // operations also hold the heap lock during collections. There is a lock 273 // contention case where thread A blocks waiting on the Heap_lock, while 274 // thread B is holding it doing a collection. When thread A gets the lock, 275 // the collection count has already changed. To prevent duplicate collections, 276 // The policy MUST attempt allocations during the same period it reads the 277 // total_collections() value! 278 { 279 MutexLocker ml(Heap_lock); 280 gc_count = Universe::heap()->total_collections(); 281 282 result = young_gen()->allocate(size); 283 if (result != NULL) { 284 return result; 285 } 286 287 // If certain conditions hold, try allocating from the old gen. 288 result = mem_allocate_old_gen(size); 289 if (result != NULL) { 290 return result; 291 } 292 293 if (gclocker_stalled_count > GCLockerRetryAllocationCount) { 294 return NULL; 295 } 296 297 // Failed to allocate without a gc. 298 if (GC_locker::is_active_and_needs_gc()) { 299 // If this thread is not in a jni critical section, we stall 300 // the requestor until the critical section has cleared and 301 // GC allowed. When the critical section clears, a GC is 302 // initiated by the last thread exiting the critical section; so 303 // we retry the allocation sequence from the beginning of the loop, 304 // rather than causing more, now probably unnecessary, GC attempts. 305 JavaThread* jthr = JavaThread::current(); 306 if (!jthr->in_critical()) { 307 MutexUnlocker mul(Heap_lock); 308 GC_locker::stall_until_clear(); 309 gclocker_stalled_count += 1; 310 continue; 311 } else { 312 if (CheckJNICalls) { 313 fatal("Possible deadlock due to allocating while" 314 " in jni critical section"); 315 } 316 return NULL; 317 } 318 } 319 } 320 321 if (result == NULL) { 322 // Generate a VM operation 323 VM_ParallelGCFailedAllocation op(size, gc_count, gc_attempt++); 324 VMThread::execute(&op); 325 326 // Did the VM operation execute? If so, return the result directly. 327 // This prevents us from looping until time out on requests that can 328 // not be satisfied. 329 if (op.prologue_succeeded()) { 330 assert(Universe::heap()->is_in_or_null(op.result()), 331 "result not in heap"); 332 333 // If GC was locked out during VM operation then retry allocation 334 // and/or stall as necessary. 335 if (op.gc_locked()) { 336 assert(op.result() == NULL, "must be NULL if gc_locked() is true"); 337 continue; // retry and/or stall as necessary 338 } 339 340 // Exit the loop if the gc time limit has been exceeded. 341 // The allocation must have failed above ("result" guarding 342 // this path is NULL) and the most recent collection has exceeded the 343 // gc overhead limit (although enough may have been collected to 344 // satisfy the allocation). Exit the loop so that an out-of-memory 345 // will be thrown (return a NULL ignoring the contents of 346 // op.result()), 347 // but clear gc_overhead_limit_exceeded so that the next collection 348 // starts with a clean slate (i.e., forgets about previous overhead 349 // excesses). Fill op.result() with a filler object so that the 350 // heap remains parsable. 351 const bool limit_exceeded = size_policy()->gc_overhead_limit_exceeded(); 352 const bool softrefs_clear = collector_policy()->all_soft_refs_clear(); 353 354 if (limit_exceeded && softrefs_clear) { 355 *gc_overhead_limit_was_exceeded = true; 356 size_policy()->set_gc_overhead_limit_exceeded(false); 357 if (PrintGCDetails && Verbose) { 358 gclog_or_tty->print_cr("ParallelScavengeHeap::mem_allocate: " 359 "return NULL because gc_overhead_limit_exceeded is set"); 360 } 361 if (op.result() != NULL) { 362 CollectedHeap::fill_with_object(op.result(), size); 363 } 364 return NULL; 365 } 366 367 return op.result(); 368 } 369 } 370 371 // The policy object will prevent us from looping forever. If the 372 // time spent in gc crosses a threshold, we will bail out. 373 loop_count++; 374 if ((result == NULL) && (QueuedAllocationWarningCount > 0) && 375 (loop_count % QueuedAllocationWarningCount == 0)) { 376 warning("ParallelScavengeHeap::mem_allocate retries %d times \n\t" 377 " size=" SIZE_FORMAT, loop_count, size); 378 } 379 } 380 381 return result; 382 } 383 384 // A "death march" is a series of ultra-slow allocations in which a full gc is 385 // done before each allocation, and after the full gc the allocation still 386 // cannot be satisfied from the young gen. This routine detects that condition; 387 // it should be called after a full gc has been done and the allocation 388 // attempted from the young gen. The parameter 'addr' should be the result of 389 // that young gen allocation attempt. 390 void 391 ParallelScavengeHeap::death_march_check(HeapWord* const addr, size_t size) { 392 if (addr != NULL) { 393 _death_march_count = 0; // death march has ended 394 } else if (_death_march_count == 0) { 395 if (should_alloc_in_eden(size)) { 396 _death_march_count = 1; // death march has started 397 } 398 } 399 } 400 401 HeapWord* ParallelScavengeHeap::mem_allocate_old_gen(size_t size) { 402 if (!should_alloc_in_eden(size) || GC_locker::is_active_and_needs_gc()) { 403 // Size is too big for eden, or gc is locked out. 404 return old_gen()->allocate(size); 405 } 406 407 // If a "death march" is in progress, allocate from the old gen a limited 408 // number of times before doing a GC. 409 if (_death_march_count > 0) { 410 if (_death_march_count < 64) { 411 ++_death_march_count; 412 return old_gen()->allocate(size); 413 } else { 414 _death_march_count = 0; 415 } 416 } 417 return NULL; 418 } 419 420 void ParallelScavengeHeap::do_full_collection(bool clear_all_soft_refs) { 421 if (UseParallelOldGC) { 422 // The do_full_collection() parameter clear_all_soft_refs 423 // is interpreted here as maximum_compaction which will 424 // cause SoftRefs to be cleared. 425 bool maximum_compaction = clear_all_soft_refs; 426 PSParallelCompact::invoke(maximum_compaction); 427 } else { 428 PSMarkSweep::invoke(clear_all_soft_refs); 429 } 430 } 431 432 // Failed allocation policy. Must be called from the VM thread, and 433 // only at a safepoint! Note that this method has policy for allocation 434 // flow, and NOT collection policy. So we do not check for gc collection 435 // time over limit here, that is the responsibility of the heap specific 436 // collection methods. This method decides where to attempt allocations, 437 // and when to attempt collections, but no collection specific policy. 438 HeapWord* ParallelScavengeHeap::failed_mem_allocate(size_t size) { 439 assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint"); 440 assert(Thread::current() == (Thread*)VMThread::vm_thread(), "should be in vm thread"); 441 assert(!Universe::heap()->is_gc_active(), "not reentrant"); 442 assert(!Heap_lock->owned_by_self(), "this thread should not own the Heap_lock"); 443 444 // We assume that allocation in eden will fail unless we collect. 445 446 // First level allocation failure, scavenge and allocate in young gen. 447 GCCauseSetter gccs(this, GCCause::_allocation_failure); 448 const bool invoked_full_gc = PSScavenge::invoke(); 449 HeapWord* result = young_gen()->allocate(size); 450 451 // Second level allocation failure. 452 // Mark sweep and allocate in young generation. 453 if (result == NULL && !invoked_full_gc) { 454 do_full_collection(false); 455 result = young_gen()->allocate(size); 456 } 457 458 death_march_check(result, size); 459 460 // Third level allocation failure. 461 // After mark sweep and young generation allocation failure, 462 // allocate in old generation. 463 if (result == NULL) { 464 result = old_gen()->allocate(size); 465 } 466 467 // Fourth level allocation failure. We're running out of memory. 468 // More complete mark sweep and allocate in young generation. 469 if (result == NULL) { 470 do_full_collection(true); 471 result = young_gen()->allocate(size); 472 } 473 474 // Fifth level allocation failure. 475 // After more complete mark sweep, allocate in old generation. 476 if (result == NULL) { 477 result = old_gen()->allocate(size); 478 } 479 480 return result; 481 } 482 483 void ParallelScavengeHeap::ensure_parsability(bool retire_tlabs) { 484 CollectedHeap::ensure_parsability(retire_tlabs); 485 young_gen()->eden_space()->ensure_parsability(); 486 } 487 488 size_t ParallelScavengeHeap::tlab_capacity(Thread* thr) const { 489 return young_gen()->eden_space()->tlab_capacity(thr); 490 } 491 492 size_t ParallelScavengeHeap::tlab_used(Thread* thr) const { 493 return young_gen()->eden_space()->tlab_used(thr); 494 } 495 496 size_t ParallelScavengeHeap::unsafe_max_tlab_alloc(Thread* thr) const { 497 return young_gen()->eden_space()->unsafe_max_tlab_alloc(thr); 498 } 499 500 HeapWord* ParallelScavengeHeap::allocate_new_tlab(size_t size) { 501 return young_gen()->allocate(size); 502 } 503 504 void ParallelScavengeHeap::accumulate_statistics_all_tlabs() { 505 CollectedHeap::accumulate_statistics_all_tlabs(); 506 } 507 508 void ParallelScavengeHeap::resize_all_tlabs() { 509 CollectedHeap::resize_all_tlabs(); 510 } 511 512 bool ParallelScavengeHeap::can_elide_initializing_store_barrier(oop new_obj) { 513 // We don't need barriers for stores to objects in the 514 // young gen and, a fortiori, for initializing stores to 515 // objects therein. 516 return is_in_young(new_obj); 517 } 518 519 // This method is used by System.gc() and JVMTI. 520 void ParallelScavengeHeap::collect(GCCause::Cause cause) { 521 assert(!Heap_lock->owned_by_self(), 522 "this thread should not own the Heap_lock"); 523 524 uint gc_count = 0; 525 uint full_gc_count = 0; 526 { 527 MutexLocker ml(Heap_lock); 528 // This value is guarded by the Heap_lock 529 gc_count = Universe::heap()->total_collections(); 530 full_gc_count = Universe::heap()->total_full_collections(); 531 } 532 533 VM_ParallelGCSystemGC op(gc_count, full_gc_count, cause); 534 VMThread::execute(&op); 535 } 536 537 void ParallelScavengeHeap::oop_iterate(ExtendedOopClosure* cl) { 538 Unimplemented(); 539 } 540 541 void ParallelScavengeHeap::object_iterate(ObjectClosure* cl) { 542 young_gen()->object_iterate(cl); 543 old_gen()->object_iterate(cl); 544 } 545 546 547 HeapWord* ParallelScavengeHeap::block_start(const void* addr) const { 548 if (young_gen()->is_in_reserved(addr)) { 549 assert(young_gen()->is_in(addr), 550 "addr should be in allocated part of young gen"); 551 // called from os::print_location by find or VMError 552 if (Debugging || VMError::fatal_error_in_progress()) return NULL; 553 Unimplemented(); 554 } else if (old_gen()->is_in_reserved(addr)) { 555 assert(old_gen()->is_in(addr), 556 "addr should be in allocated part of old gen"); 557 return old_gen()->start_array()->object_start((HeapWord*)addr); 558 } 559 return 0; 560 } 561 562 size_t ParallelScavengeHeap::block_size(const HeapWord* addr) const { 563 return oop(addr)->size(); 564 } 565 566 bool ParallelScavengeHeap::block_is_obj(const HeapWord* addr) const { 567 return block_start(addr) == addr; 568 } 569 570 jlong ParallelScavengeHeap::millis_since_last_gc() { 571 return UseParallelOldGC ? 572 PSParallelCompact::millis_since_last_gc() : 573 PSMarkSweep::millis_since_last_gc(); 574 } 575 576 void ParallelScavengeHeap::prepare_for_verify() { 577 ensure_parsability(false); // no need to retire TLABs for verification 578 } 579 580 PSHeapSummary ParallelScavengeHeap::create_ps_heap_summary() { 581 PSOldGen* old = old_gen(); 582 HeapWord* old_committed_end = (HeapWord*)old->virtual_space()->committed_high_addr(); 583 VirtualSpaceSummary old_summary(old->reserved().start(), old_committed_end, old->reserved().end()); 584 SpaceSummary old_space(old->reserved().start(), old_committed_end, old->used_in_bytes()); 585 586 PSYoungGen* young = young_gen(); 587 VirtualSpaceSummary young_summary(young->reserved().start(), 588 (HeapWord*)young->virtual_space()->committed_high_addr(), young->reserved().end()); 589 590 MutableSpace* eden = young_gen()->eden_space(); 591 SpaceSummary eden_space(eden->bottom(), eden->end(), eden->used_in_bytes()); 592 593 MutableSpace* from = young_gen()->from_space(); 594 SpaceSummary from_space(from->bottom(), from->end(), from->used_in_bytes()); 595 596 MutableSpace* to = young_gen()->to_space(); 597 SpaceSummary to_space(to->bottom(), to->end(), to->used_in_bytes()); 598 599 VirtualSpaceSummary heap_summary = create_heap_space_summary(); 600 return PSHeapSummary(heap_summary, used(), old_summary, old_space, young_summary, eden_space, from_space, to_space); 601 } 602 603 void ParallelScavengeHeap::print_on(outputStream* st) const { 604 young_gen()->print_on(st); 605 old_gen()->print_on(st); 606 MetaspaceAux::print_on(st); 607 } 608 609 void ParallelScavengeHeap::print_on_error(outputStream* st) const { 610 this->CollectedHeap::print_on_error(st); 611 612 if (UseParallelOldGC) { 613 st->cr(); 614 PSParallelCompact::print_on_error(st); 615 } 616 } 617 618 void ParallelScavengeHeap::gc_threads_do(ThreadClosure* tc) const { 619 PSScavenge::gc_task_manager()->threads_do(tc); 620 } 621 622 void ParallelScavengeHeap::print_gc_threads_on(outputStream* st) const { 623 PSScavenge::gc_task_manager()->print_threads_on(st); 624 } 625 626 void ParallelScavengeHeap::print_tracing_info() const { 627 if (TraceYoungGenTime) { 628 double time = PSScavenge::accumulated_time()->seconds(); 629 tty->print_cr("[Accumulated GC generation 0 time %3.7f secs]", time); 630 } 631 if (TraceOldGenTime) { 632 double time = UseParallelOldGC ? PSParallelCompact::accumulated_time()->seconds() : PSMarkSweep::accumulated_time()->seconds(); 633 tty->print_cr("[Accumulated GC generation 1 time %3.7f secs]", time); 634 } 635 } 636 637 638 void ParallelScavengeHeap::verify(bool silent, VerifyOption option /* ignored */) { 639 // Why do we need the total_collections()-filter below? 640 if (total_collections() > 0) { 641 if (!silent) { 642 gclog_or_tty->print("tenured "); 643 } 644 old_gen()->verify(); 645 646 if (!silent) { 647 gclog_or_tty->print("eden "); 648 } 649 young_gen()->verify(); 650 } 651 } 652 653 void ParallelScavengeHeap::print_heap_change(size_t prev_used) { 654 if (PrintGCDetails && Verbose) { 655 gclog_or_tty->print(" " SIZE_FORMAT 656 "->" SIZE_FORMAT 657 "(" SIZE_FORMAT ")", 658 prev_used, used(), capacity()); 659 } else { 660 gclog_or_tty->print(" " SIZE_FORMAT "K" 661 "->" SIZE_FORMAT "K" 662 "(" SIZE_FORMAT "K)", 663 prev_used / K, used() / K, capacity() / K); 664 } 665 } 666 667 void ParallelScavengeHeap::trace_heap(GCWhen::Type when, const GCTracer* gc_tracer) { 668 const PSHeapSummary& heap_summary = create_ps_heap_summary(); 669 gc_tracer->report_gc_heap_summary(when, heap_summary); 670 671 const MetaspaceSummary& metaspace_summary = create_metaspace_summary(); 672 gc_tracer->report_metaspace_summary(when, metaspace_summary); 673 } 674 675 ParallelScavengeHeap* ParallelScavengeHeap::heap() { 676 assert(_psh != NULL, "Uninitialized access to ParallelScavengeHeap::heap()"); 677 assert(_psh->kind() == CollectedHeap::ParallelScavengeHeap, "not a parallel scavenge heap"); 678 return _psh; 679 } 680 681 // Before delegating the resize to the young generation, 682 // the reserved space for the young and old generations 683 // may be changed to accommodate the desired resize. 684 void ParallelScavengeHeap::resize_young_gen(size_t eden_size, 685 size_t survivor_size) { 686 if (UseAdaptiveGCBoundary) { 687 if (size_policy()->bytes_absorbed_from_eden() != 0) { 688 size_policy()->reset_bytes_absorbed_from_eden(); 689 return; // The generation changed size already. 690 } 691 gens()->adjust_boundary_for_young_gen_needs(eden_size, survivor_size); 692 } 693 694 // Delegate the resize to the generation. 695 _young_gen->resize(eden_size, survivor_size); 696 } 697 698 // Before delegating the resize to the old generation, 699 // the reserved space for the young and old generations 700 // may be changed to accommodate the desired resize. 701 void ParallelScavengeHeap::resize_old_gen(size_t desired_free_space) { 702 if (UseAdaptiveGCBoundary) { 703 if (size_policy()->bytes_absorbed_from_eden() != 0) { 704 size_policy()->reset_bytes_absorbed_from_eden(); 705 return; // The generation changed size already. 706 } 707 gens()->adjust_boundary_for_old_gen_needs(desired_free_space); 708 } 709 710 // Delegate the resize to the generation. 711 _old_gen->resize(desired_free_space); 712 } 713 714 ParallelScavengeHeap::ParStrongRootsScope::ParStrongRootsScope() { 715 // nothing particular 716 } 717 718 ParallelScavengeHeap::ParStrongRootsScope::~ParStrongRootsScope() { 719 // nothing particular 720 } 721 722 #ifndef PRODUCT 723 void ParallelScavengeHeap::record_gen_tops_before_GC() { 724 if (ZapUnusedHeapArea) { 725 young_gen()->record_spaces_top(); 726 old_gen()->record_spaces_top(); 727 } 728 } 729 730 void ParallelScavengeHeap::gen_mangle_unused_area() { 731 if (ZapUnusedHeapArea) { 732 young_gen()->eden_space()->mangle_unused_area(); 733 young_gen()->to_space()->mangle_unused_area(); 734 young_gen()->from_space()->mangle_unused_area(); 735 old_gen()->object_space()->mangle_unused_area(); 736 } 737 } 738 #endif