1 /*
   2  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   3  *
   4  * This code is free software; you can redistribute it and/or modify it
   5  * under the terms of the GNU General Public License version 2 only, as
   6  * published by the Free Software Foundation.  Oracle designates this
   7  * particular file as subject to the "Classpath" exception as provided
   8  * by Oracle in the LICENSE file that accompanied this code.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  */
  24 
  25 /*
  26  * This file is available under and governed by the GNU General Public
  27  * License version 2 only, as published by the Free Software Foundation.
  28  * However, the following notice accompanied the original version of this
  29  * file:
  30  *
  31  * Written by Josh Bloch of Google Inc. and released to the public domain,
  32  * as explained at http://creativecommons.org/publicdomain/zero/1.0/.
  33  */
  34 
  35 package java.util;
  36 
  37 import java.io.Serializable;
  38 import java.util.function.Consumer;
  39 import java.util.function.Predicate;
  40 import java.util.function.UnaryOperator;
  41 
  42 /**
  43  * Resizable-array implementation of the {@link Deque} interface.  Array
  44  * deques have no capacity restrictions; they grow as necessary to support
  45  * usage.  They are not thread-safe; in the absence of external
  46  * synchronization, they do not support concurrent access by multiple threads.
  47  * Null elements are prohibited.  This class is likely to be faster than
  48  * {@link Stack} when used as a stack, and faster than {@link LinkedList}
  49  * when used as a queue.
  50  *
  51  * <p>Most {@code ArrayDeque} operations run in amortized constant time.
  52  * Exceptions include
  53  * {@link #remove(Object) remove},
  54  * {@link #removeFirstOccurrence removeFirstOccurrence},
  55  * {@link #removeLastOccurrence removeLastOccurrence},
  56  * {@link #contains contains},
  57  * {@link #iterator iterator.remove()},
  58  * and the bulk operations, all of which run in linear time.
  59  *
  60  * <p>The iterators returned by this class's {@link #iterator() iterator}
  61  * method are <em>fail-fast</em>: If the deque is modified at any time after
  62  * the iterator is created, in any way except through the iterator's own
  63  * {@code remove} method, the iterator will generally throw a {@link
  64  * ConcurrentModificationException}.  Thus, in the face of concurrent
  65  * modification, the iterator fails quickly and cleanly, rather than risking
  66  * arbitrary, non-deterministic behavior at an undetermined time in the
  67  * future.
  68  *
  69  * <p>Note that the fail-fast behavior of an iterator cannot be guaranteed
  70  * as it is, generally speaking, impossible to make any hard guarantees in the
  71  * presence of unsynchronized concurrent modification.  Fail-fast iterators
  72  * throw {@code ConcurrentModificationException} on a best-effort basis.
  73  * Therefore, it would be wrong to write a program that depended on this
  74  * exception for its correctness: <i>the fail-fast behavior of iterators
  75  * should be used only to detect bugs.</i>
  76  *
  77  * <p>This class and its iterator implement all of the
  78  * <em>optional</em> methods of the {@link Collection} and {@link
  79  * Iterator} interfaces.
  80  *
  81  * <p>This class is a member of the
  82  * <a href="{@docRoot}/../technotes/guides/collections/index.html">
  83  * Java Collections Framework</a>.
  84  *
  85  * @author  Josh Bloch and Doug Lea
  86  * @param <E> the type of elements held in this deque
  87  * @since   1.6
  88  */
  89 public class ArrayDeque<E> extends AbstractCollection<E>
  90                            implements Deque<E>, Cloneable, Serializable
  91 {
  92     /*
  93      * VMs excel at optimizing simple array loops where indices are
  94      * incrementing or decrementing over a valid slice, e.g.
  95      *
  96      * for (int i = start; i < end; i++) ... elements[i]
  97      *
  98      * Because in a circular array, elements are in general stored in
  99      * two disjoint such slices, we help the VM by writing unusual
 100      * nested loops for all traversals over the elements.  Having only
 101      * one hot inner loop body instead of two or three eases human
 102      * maintenance and encourages VM loop inlining into the caller.
 103      */
 104 
 105     /**
 106      * The array in which the elements of the deque are stored.
 107      * All array cells not holding deque elements are always null.
 108      * The array always has at least one null slot (at tail).
 109      */
 110     transient Object[] elements;
 111 
 112     /**
 113      * The index of the element at the head of the deque (which is the
 114      * element that would be removed by remove() or pop()); or an
 115      * arbitrary number 0 <= head < elements.length equal to tail if
 116      * the deque is empty.
 117      */
 118     transient int head;
 119 
 120     /**
 121      * The index at which the next element would be added to the tail
 122      * of the deque (via addLast(E), add(E), or push(E));
 123      * elements[tail] is always null.
 124      */
 125     transient int tail;
 126 
 127     /**
 128      * The maximum size of array to allocate.
 129      * Some VMs reserve some header words in an array.
 130      * Attempts to allocate larger arrays may result in
 131      * OutOfMemoryError: Requested array size exceeds VM limit
 132      */
 133     private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
 134 
 135     /**
 136      * Increases the capacity of this deque by at least the given amount.
 137      *
 138      * @param needed the required minimum extra capacity; must be positive
 139      */
 140     private void grow(int needed) {
 141         // overflow-conscious code
 142         final int oldCapacity = elements.length;
 143         int newCapacity;
 144         // Double capacity if small; else grow by 50%
 145         int jump = (oldCapacity < 64) ? (oldCapacity + 2) : (oldCapacity >> 1);
 146         if (jump < needed
 147             || (newCapacity = (oldCapacity + jump)) - MAX_ARRAY_SIZE > 0)
 148             newCapacity = newCapacity(needed, jump);
 149         final Object[] es = elements = Arrays.copyOf(elements, newCapacity);
 150         // Exceptionally, here tail == head needs to be disambiguated
 151         if (tail < head || (tail == head && es[head] != null)) {
 152             // wrap around; slide first leg forward to end of array
 153             int newSpace = newCapacity - oldCapacity;
 154             System.arraycopy(es, head,
 155                              es, head + newSpace,
 156                              oldCapacity - head);
 157             for (int i = head, to = (head += newSpace); i < to; i++)
 158                 es[i] = null;
 159         }
 160     }
 161 
 162     /** Capacity calculation for edge conditions, especially overflow. */
 163     private int newCapacity(int needed, int jump) {
 164         final int oldCapacity = elements.length, minCapacity;
 165         if ((minCapacity = oldCapacity + needed) - MAX_ARRAY_SIZE > 0) {
 166             if (minCapacity < 0)
 167                 throw new IllegalStateException("Sorry, deque too big");
 168             return Integer.MAX_VALUE;
 169         }
 170         if (needed > jump)
 171             return minCapacity;
 172         return (oldCapacity + jump - MAX_ARRAY_SIZE < 0)
 173             ? oldCapacity + jump
 174             : MAX_ARRAY_SIZE;
 175     }
 176 
 177     /**
 178      * Constructs an empty array deque with an initial capacity
 179      * sufficient to hold 16 elements.
 180      */
 181     public ArrayDeque() {
 182         elements = new Object[16];
 183     }
 184 
 185     /**
 186      * Constructs an empty array deque with an initial capacity
 187      * sufficient to hold the specified number of elements.
 188      *
 189      * @param numElements lower bound on initial capacity of the deque
 190      */
 191     public ArrayDeque(int numElements) {
 192         elements =
 193             new Object[(numElements < 1) ? 1 :
 194                        (numElements == Integer.MAX_VALUE) ? Integer.MAX_VALUE :
 195                        numElements + 1];
 196     }
 197 
 198     /**
 199      * Constructs a deque containing the elements of the specified
 200      * collection, in the order they are returned by the collection's
 201      * iterator.  (The first element returned by the collection's
 202      * iterator becomes the first element, or <i>front</i> of the
 203      * deque.)
 204      *
 205      * @param c the collection whose elements are to be placed into the deque
 206      * @throws NullPointerException if the specified collection is null
 207      */
 208     public ArrayDeque(Collection<? extends E> c) {
 209         this(c.size());
 210         addAll(c);
 211     }
 212 
 213     /**
 214      * Increments i, mod modulus.
 215      * Precondition and postcondition: 0 <= i < modulus.
 216      */
 217     static final int inc(int i, int modulus) {
 218         if (++i >= modulus) i = 0;
 219         return i;
 220     }
 221 
 222     /**
 223      * Decrements i, mod modulus.
 224      * Precondition and postcondition: 0 <= i < modulus.
 225      */
 226     static final int dec(int i, int modulus) {
 227         if (--i < 0) i = modulus - 1;
 228         return i;
 229     }
 230 
 231     /**
 232      * Circularly adds the given distance to index i, mod modulus.
 233      * Precondition: 0 <= i < modulus, 0 <= distance <= modulus.
 234      * @return index 0 <= i < modulus
 235      */
 236     static final int add(int i, int distance, int modulus) {
 237         if ((i += distance) - modulus >= 0) i -= modulus;
 238         return i;
 239     }
 240 
 241     /**
 242      * Subtracts j from i, mod modulus.
 243      * Index i must be logically ahead of index j.
 244      * Precondition: 0 <= i < modulus, 0 <= j < modulus.
 245      * @return the "circular distance" from j to i; corner case i == j
 246      * is diambiguated to "empty", returning 0.
 247      */
 248     static final int sub(int i, int j, int modulus) {
 249         if ((i -= j) < 0) i += modulus;
 250         return i;
 251     }
 252 
 253     /**
 254      * Returns element at array index i.
 255      * This is a slight abuse of generics, accepted by javac.
 256      */
 257     @SuppressWarnings("unchecked")
 258     static final <E> E elementAt(Object[] es, int i) {
 259         return (E) es[i];
 260     }
 261 
 262     /**
 263      * A version of elementAt that checks for null elements.
 264      * This check doesn't catch all possible comodifications,
 265      * but does catch ones that corrupt traversal.
 266      */
 267     static final <E> E nonNullElementAt(Object[] es, int i) {
 268         @SuppressWarnings("unchecked") E e = (E) es[i];
 269         if (e == null)
 270             throw new ConcurrentModificationException();
 271         return e;
 272     }
 273 
 274     // The main insertion and extraction methods are addFirst,
 275     // addLast, pollFirst, pollLast. The other methods are defined in
 276     // terms of these.
 277 
 278     /**
 279      * Inserts the specified element at the front of this deque.
 280      *
 281      * @param e the element to add
 282      * @throws NullPointerException if the specified element is null
 283      */
 284     public void addFirst(E e) {
 285         if (e == null)
 286             throw new NullPointerException();
 287         final Object[] es = elements;
 288         es[head = dec(head, es.length)] = e;
 289         if (head == tail)
 290             grow(1);
 291     }
 292 
 293     /**
 294      * Inserts the specified element at the end of this deque.
 295      *
 296      * <p>This method is equivalent to {@link #add}.
 297      *
 298      * @param e the element to add
 299      * @throws NullPointerException if the specified element is null
 300      */
 301     public void addLast(E e) {
 302         if (e == null)
 303             throw new NullPointerException();
 304         final Object[] es = elements;
 305         es[tail] = e;
 306         if (head == (tail = inc(tail, es.length)))
 307             grow(1);
 308     }
 309 
 310     /**
 311      * Adds all of the elements in the specified collection at the end
 312      * of this deque, as if by calling {@link #addLast} on each one,
 313      * in the order that they are returned by the collection's
 314      * iterator.
 315      *
 316      * @param c the elements to be inserted into this deque
 317      * @return {@code true} if this deque changed as a result of the call
 318      * @throws NullPointerException if the specified collection or any
 319      *         of its elements are null
 320      * @since 9
 321      */
 322     public boolean addAll(Collection<? extends E> c) {
 323         final int s, needed;
 324         if ((needed = (s = size()) + c.size() + 1 - elements.length) > 0)
 325             grow(needed);
 326         c.forEach(this::addLast);
 327         return size() > s;
 328     }
 329 
 330     /**
 331      * Inserts the specified element at the front of this deque.
 332      *
 333      * @param e the element to add
 334      * @return {@code true} (as specified by {@link Deque#offerFirst})
 335      * @throws NullPointerException if the specified element is null
 336      */
 337     public boolean offerFirst(E e) {
 338         addFirst(e);
 339         return true;
 340     }
 341 
 342     /**
 343      * Inserts the specified element at the end of this deque.
 344      *
 345      * @param e the element to add
 346      * @return {@code true} (as specified by {@link Deque#offerLast})
 347      * @throws NullPointerException if the specified element is null
 348      */
 349     public boolean offerLast(E e) {
 350         addLast(e);
 351         return true;
 352     }
 353 
 354     /**
 355      * @throws NoSuchElementException {@inheritDoc}
 356      */
 357     public E removeFirst() {
 358         E e = pollFirst();
 359         if (e == null)
 360             throw new NoSuchElementException();
 361         return e;
 362     }
 363 
 364     /**
 365      * @throws NoSuchElementException {@inheritDoc}
 366      */
 367     public E removeLast() {
 368         E e = pollLast();
 369         if (e == null)
 370             throw new NoSuchElementException();
 371         return e;
 372     }
 373 
 374     public E pollFirst() {
 375         final Object[] es;
 376         final int h;
 377         E e = elementAt(es = elements, h = head);
 378         if (e != null) {
 379             es[h] = null;
 380             head = inc(h, es.length);
 381         }
 382         return e;
 383     }
 384 
 385     public E pollLast() {
 386         final Object[] es;
 387         final int t;
 388         E e = elementAt(es = elements, t = dec(tail, es.length));
 389         if (e != null)
 390             es[tail = t] = null;
 391         return e;
 392     }
 393 
 394     /**
 395      * @throws NoSuchElementException {@inheritDoc}
 396      */
 397     public E getFirst() {
 398         E e = elementAt(elements, head);
 399         if (e == null)
 400             throw new NoSuchElementException();
 401         return e;
 402     }
 403 
 404     /**
 405      * @throws NoSuchElementException {@inheritDoc}
 406      */
 407     public E getLast() {
 408         final Object[] es = elements;
 409         E e = elementAt(es, dec(tail, es.length));
 410         if (e == null)
 411             throw new NoSuchElementException();
 412         return e;
 413     }
 414 
 415     public E peekFirst() {
 416         return elementAt(elements, head);
 417     }
 418 
 419     public E peekLast() {
 420         final Object[] es;
 421         return elementAt(es = elements, dec(tail, es.length));
 422     }
 423 
 424     /**
 425      * Removes the first occurrence of the specified element in this
 426      * deque (when traversing the deque from head to tail).
 427      * If the deque does not contain the element, it is unchanged.
 428      * More formally, removes the first element {@code e} such that
 429      * {@code o.equals(e)} (if such an element exists).
 430      * Returns {@code true} if this deque contained the specified element
 431      * (or equivalently, if this deque changed as a result of the call).
 432      *
 433      * @param o element to be removed from this deque, if present
 434      * @return {@code true} if the deque contained the specified element
 435      */
 436     public boolean removeFirstOccurrence(Object o) {
 437         if (o != null) {
 438             final Object[] es = elements;
 439             for (int i = head, end = tail, to = (i <= end) ? end : es.length;
 440                  ; i = 0, to = end) {
 441                 for (; i < to; i++)
 442                     if (o.equals(es[i])) {
 443                         delete(i);
 444                         return true;
 445                     }
 446                 if (to == end) break;
 447             }
 448         }
 449         return false;
 450     }
 451 
 452     /**
 453      * Removes the last occurrence of the specified element in this
 454      * deque (when traversing the deque from head to tail).
 455      * If the deque does not contain the element, it is unchanged.
 456      * More formally, removes the last element {@code e} such that
 457      * {@code o.equals(e)} (if such an element exists).
 458      * Returns {@code true} if this deque contained the specified element
 459      * (or equivalently, if this deque changed as a result of the call).
 460      *
 461      * @param o element to be removed from this deque, if present
 462      * @return {@code true} if the deque contained the specified element
 463      */
 464     public boolean removeLastOccurrence(Object o) {
 465         if (o != null) {
 466             final Object[] es = elements;
 467             for (int i = tail, end = head, to = (i >= end) ? end : 0;
 468                  ; i = es.length, to = end) {
 469                 for (i--; i > to - 1; i--)
 470                     if (o.equals(es[i])) {
 471                         delete(i);
 472                         return true;
 473                     }
 474                 if (to == end) break;
 475             }
 476         }
 477         return false;
 478     }
 479 
 480     // *** Queue methods ***
 481 
 482     /**
 483      * Inserts the specified element at the end of this deque.
 484      *
 485      * <p>This method is equivalent to {@link #addLast}.
 486      *
 487      * @param e the element to add
 488      * @return {@code true} (as specified by {@link Collection#add})
 489      * @throws NullPointerException if the specified element is null
 490      */
 491     public boolean add(E e) {
 492         addLast(e);
 493         return true;
 494     }
 495 
 496     /**
 497      * Inserts the specified element at the end of this deque.
 498      *
 499      * <p>This method is equivalent to {@link #offerLast}.
 500      *
 501      * @param e the element to add
 502      * @return {@code true} (as specified by {@link Queue#offer})
 503      * @throws NullPointerException if the specified element is null
 504      */
 505     public boolean offer(E e) {
 506         return offerLast(e);
 507     }
 508 
 509     /**
 510      * Retrieves and removes the head of the queue represented by this deque.
 511      *
 512      * This method differs from {@link #poll poll} only in that it throws an
 513      * exception if this deque is empty.
 514      *
 515      * <p>This method is equivalent to {@link #removeFirst}.
 516      *
 517      * @return the head of the queue represented by this deque
 518      * @throws NoSuchElementException {@inheritDoc}
 519      */
 520     public E remove() {
 521         return removeFirst();
 522     }
 523 
 524     /**
 525      * Retrieves and removes the head of the queue represented by this deque
 526      * (in other words, the first element of this deque), or returns
 527      * {@code null} if this deque is empty.
 528      *
 529      * <p>This method is equivalent to {@link #pollFirst}.
 530      *
 531      * @return the head of the queue represented by this deque, or
 532      *         {@code null} if this deque is empty
 533      */
 534     public E poll() {
 535         return pollFirst();
 536     }
 537 
 538     /**
 539      * Retrieves, but does not remove, the head of the queue represented by
 540      * this deque.  This method differs from {@link #peek peek} only in
 541      * that it throws an exception if this deque is empty.
 542      *
 543      * <p>This method is equivalent to {@link #getFirst}.
 544      *
 545      * @return the head of the queue represented by this deque
 546      * @throws NoSuchElementException {@inheritDoc}
 547      */
 548     public E element() {
 549         return getFirst();
 550     }
 551 
 552     /**
 553      * Retrieves, but does not remove, the head of the queue represented by
 554      * this deque, or returns {@code null} if this deque is empty.
 555      *
 556      * <p>This method is equivalent to {@link #peekFirst}.
 557      *
 558      * @return the head of the queue represented by this deque, or
 559      *         {@code null} if this deque is empty
 560      */
 561     public E peek() {
 562         return peekFirst();
 563     }
 564 
 565     // *** Stack methods ***
 566 
 567     /**
 568      * Pushes an element onto the stack represented by this deque.  In other
 569      * words, inserts the element at the front of this deque.
 570      *
 571      * <p>This method is equivalent to {@link #addFirst}.
 572      *
 573      * @param e the element to push
 574      * @throws NullPointerException if the specified element is null
 575      */
 576     public void push(E e) {
 577         addFirst(e);
 578     }
 579 
 580     /**
 581      * Pops an element from the stack represented by this deque.  In other
 582      * words, removes and returns the first element of this deque.
 583      *
 584      * <p>This method is equivalent to {@link #removeFirst()}.
 585      *
 586      * @return the element at the front of this deque (which is the top
 587      *         of the stack represented by this deque)
 588      * @throws NoSuchElementException {@inheritDoc}
 589      */
 590     public E pop() {
 591         return removeFirst();
 592     }
 593 
 594     /**
 595      * Removes the element at the specified position in the elements array.
 596      * This can result in forward or backwards motion of array elements.
 597      * We optimize for least element motion.
 598      *
 599      * <p>This method is called delete rather than remove to emphasize
 600      * that its semantics differ from those of {@link List#remove(int)}.
 601      *
 602      * @return true if elements near tail moved backwards
 603      */
 604     boolean delete(int i) {
 605         final Object[] es = elements;
 606         final int capacity = es.length;
 607         final int h, t;
 608         // number of elements before to-be-deleted elt
 609         final int front = sub(i, h = head, capacity);
 610         // number of elements after to-be-deleted elt
 611         final int back = sub(t = tail, i, capacity) - 1;
 612         if (front < back) {
 613             // move front elements forwards
 614             if (h <= i) {
 615                 System.arraycopy(es, h, es, h + 1, front);
 616             } else { // Wrap around
 617                 System.arraycopy(es, 0, es, 1, i);
 618                 es[0] = es[capacity - 1];
 619                 System.arraycopy(es, h, es, h + 1, front - (i + 1));
 620             }
 621             es[h] = null;
 622             head = inc(h, capacity);
 623             return false;
 624         } else {
 625             // move back elements backwards
 626             tail = dec(t, capacity);
 627             if (i <= tail) {
 628                 System.arraycopy(es, i + 1, es, i, back);
 629             } else { // Wrap around
 630                 System.arraycopy(es, i + 1, es, i, capacity - (i + 1));
 631                 es[capacity - 1] = es[0];
 632                 System.arraycopy(es, 1, es, 0, t - 1);
 633             }
 634             es[tail] = null;
 635             return true;
 636         }
 637     }
 638 
 639     // *** Collection Methods ***
 640 
 641     /**
 642      * Returns the number of elements in this deque.
 643      *
 644      * @return the number of elements in this deque
 645      */
 646     public int size() {
 647         return sub(tail, head, elements.length);
 648     }
 649 
 650     /**
 651      * Returns {@code true} if this deque contains no elements.
 652      *
 653      * @return {@code true} if this deque contains no elements
 654      */
 655     public boolean isEmpty() {
 656         return head == tail;
 657     }
 658 
 659     /**
 660      * Returns an iterator over the elements in this deque.  The elements
 661      * will be ordered from first (head) to last (tail).  This is the same
 662      * order that elements would be dequeued (via successive calls to
 663      * {@link #remove} or popped (via successive calls to {@link #pop}).
 664      *
 665      * @return an iterator over the elements in this deque
 666      */
 667     public Iterator<E> iterator() {
 668         return new DeqIterator();
 669     }
 670 
 671     public Iterator<E> descendingIterator() {
 672         return new DescendingIterator();
 673     }
 674 
 675     private class DeqIterator implements Iterator<E> {
 676         /** Index of element to be returned by subsequent call to next. */
 677         int cursor;
 678 
 679         /** Number of elements yet to be returned. */
 680         int remaining = size();
 681 
 682         /**
 683          * Index of element returned by most recent call to next.
 684          * Reset to -1 if element is deleted by a call to remove.
 685          */
 686         int lastRet = -1;
 687 
 688         DeqIterator() { cursor = head; }
 689 
 690         public final boolean hasNext() {
 691             return remaining > 0;
 692         }
 693 
 694         public E next() {
 695             if (remaining <= 0)
 696                 throw new NoSuchElementException();
 697             final Object[] es = elements;
 698             E e = nonNullElementAt(es, cursor);
 699             cursor = inc(lastRet = cursor, es.length);
 700             remaining--;
 701             return e;
 702         }
 703 
 704         void postDelete(boolean leftShifted) {
 705             if (leftShifted)
 706                 cursor = dec(cursor, elements.length);
 707         }
 708 
 709         public final void remove() {
 710             if (lastRet < 0)
 711                 throw new IllegalStateException();
 712             postDelete(delete(lastRet));
 713             lastRet = -1;
 714         }
 715 
 716         public void forEachRemaining(Consumer<? super E> action) {
 717             Objects.requireNonNull(action);
 718             int r;
 719             if ((r = remaining) <= 0)
 720                 return;
 721             remaining = 0;
 722             final Object[] es = elements;
 723             if (es[cursor] == null || sub(tail, cursor, es.length) != r)
 724                 throw new ConcurrentModificationException();
 725             for (int i = cursor, end = tail, to = (i <= end) ? end : es.length;
 726                  ; i = 0, to = end) {
 727                 for (; i < to; i++)
 728                     action.accept(elementAt(es, i));
 729                 if (to == end) {
 730                     if (end != tail)
 731                         throw new ConcurrentModificationException();
 732                     lastRet = dec(end, es.length);
 733                     break;
 734                 }
 735             }
 736         }
 737     }
 738 
 739     private class DescendingIterator extends DeqIterator {
 740         DescendingIterator() { cursor = dec(tail, elements.length); }
 741 
 742         public final E next() {
 743             if (remaining <= 0)
 744                 throw new NoSuchElementException();
 745             final Object[] es = elements;
 746             E e = nonNullElementAt(es, cursor);
 747             cursor = dec(lastRet = cursor, es.length);
 748             remaining--;
 749             return e;
 750         }
 751 
 752         void postDelete(boolean leftShifted) {
 753             if (!leftShifted)
 754                 cursor = inc(cursor, elements.length);
 755         }
 756 
 757         public final void forEachRemaining(Consumer<? super E> action) {
 758             Objects.requireNonNull(action);
 759             int r;
 760             if ((r = remaining) <= 0)
 761                 return;
 762             remaining = 0;
 763             final Object[] es = elements;
 764             if (es[cursor] == null || sub(cursor, head, es.length) + 1 != r)
 765                 throw new ConcurrentModificationException();
 766             for (int i = cursor, end = head, to = (i >= end) ? end : 0;
 767                  ; i = es.length - 1, to = end) {
 768                 // hotspot generates faster code than for: i >= to !
 769                 for (; i > to - 1; i--)
 770                     action.accept(elementAt(es, i));
 771                 if (to == end) {
 772                     if (end != head)
 773                         throw new ConcurrentModificationException();
 774                     lastRet = end;
 775                     break;
 776                 }
 777             }
 778         }
 779     }
 780 
 781     /**
 782      * Creates a <em><a href="Spliterator.html#binding">late-binding</a></em>
 783      * and <em>fail-fast</em> {@link Spliterator} over the elements in this
 784      * deque.
 785      *
 786      * <p>The {@code Spliterator} reports {@link Spliterator#SIZED},
 787      * {@link Spliterator#SUBSIZED}, {@link Spliterator#ORDERED}, and
 788      * {@link Spliterator#NONNULL}.  Overriding implementations should document
 789      * the reporting of additional characteristic values.
 790      *
 791      * @return a {@code Spliterator} over the elements in this deque
 792      * @since 1.8
 793      */
 794     public Spliterator<E> spliterator() {
 795         return new DeqSpliterator();
 796     }
 797 
 798     final class DeqSpliterator implements Spliterator<E> {
 799         private int fence;      // -1 until first use
 800         private int cursor;     // current index, modified on traverse/split
 801 
 802         /** Constructs late-binding spliterator over all elements. */
 803         DeqSpliterator() {
 804             this.fence = -1;
 805         }
 806 
 807         /** Constructs spliterator over the given range. */
 808         DeqSpliterator(int origin, int fence) {
 809             // assert 0 <= origin && origin < elements.length;
 810             // assert 0 <= fence && fence < elements.length;
 811             this.cursor = origin;
 812             this.fence = fence;
 813         }
 814 
 815         /** Ensures late-binding initialization; then returns fence. */
 816         private int getFence() { // force initialization
 817             int t;
 818             if ((t = fence) < 0) {
 819                 t = fence = tail;
 820                 cursor = head;
 821             }
 822             return t;
 823         }
 824 
 825         public DeqSpliterator trySplit() {
 826             final Object[] es = elements;
 827             final int i, n;
 828             return ((n = sub(getFence(), i = cursor, es.length) >> 1) <= 0)
 829                 ? null
 830                 : new DeqSpliterator(i, cursor = add(i, n, es.length));
 831         }
 832 
 833         public void forEachRemaining(Consumer<? super E> action) {
 834             if (action == null)
 835                 throw new NullPointerException();
 836             final int end = getFence(), cursor = this.cursor;
 837             final Object[] es = elements;
 838             if (cursor != end) {
 839                 this.cursor = end;
 840                 // null check at both ends of range is sufficient
 841                 if (es[cursor] == null || es[dec(end, es.length)] == null)
 842                     throw new ConcurrentModificationException();
 843                 for (int i = cursor, to = (i <= end) ? end : es.length;
 844                      ; i = 0, to = end) {
 845                     for (; i < to; i++)
 846                         action.accept(elementAt(es, i));
 847                     if (to == end) break;
 848                 }
 849             }
 850         }
 851 
 852         public boolean tryAdvance(Consumer<? super E> action) {
 853             Objects.requireNonNull(action);
 854             final Object[] es = elements;
 855             if (fence < 0) { fence = tail; cursor = head; } // late-binding
 856             final int i;
 857             if ((i = cursor) == fence)
 858                 return false;
 859             E e = nonNullElementAt(es, i);
 860             cursor = inc(i, es.length);
 861             action.accept(e);
 862             return true;
 863         }
 864 
 865         public long estimateSize() {
 866             return sub(getFence(), cursor, elements.length);
 867         }
 868 
 869         public int characteristics() {
 870             return Spliterator.NONNULL
 871                 | Spliterator.ORDERED
 872                 | Spliterator.SIZED
 873                 | Spliterator.SUBSIZED;
 874         }
 875     }
 876 
 877     /**
 878      * @throws NullPointerException {@inheritDoc}
 879      * @since 9
 880      */
 881     public void forEach(Consumer<? super E> action) {
 882         Objects.requireNonNull(action);
 883         final Object[] es = elements;
 884         for (int i = head, end = tail, to = (i <= end) ? end : es.length;
 885              ; i = 0, to = end) {
 886             for (; i < to; i++)
 887                 action.accept(elementAt(es, i));
 888             if (to == end) {
 889                 if (end != tail) throw new ConcurrentModificationException();
 890                 break;
 891             }
 892         }
 893     }
 894 
 895     /**
 896      * @throws NullPointerException {@inheritDoc}
 897      * @since 9
 898      */
 899     public boolean removeIf(Predicate<? super E> filter) {
 900         Objects.requireNonNull(filter);
 901         return bulkRemove(filter);
 902     }
 903 
 904     /**
 905      * @throws NullPointerException {@inheritDoc}
 906      * @since 9
 907      */
 908     public boolean removeAll(Collection<?> c) {
 909         Objects.requireNonNull(c);
 910         return bulkRemove(e -> c.contains(e));
 911     }
 912 
 913     /**
 914      * @throws NullPointerException {@inheritDoc}
 915      * @since 9
 916      */
 917     public boolean retainAll(Collection<?> c) {
 918         Objects.requireNonNull(c);
 919         return bulkRemove(e -> !c.contains(e));
 920     }
 921 
 922     /** Implementation of bulk remove methods. */
 923     private boolean bulkRemove(Predicate<? super E> filter) {
 924         final Object[] es = elements;
 925         // Optimize for initial run of survivors
 926         for (int i = head, end = tail, to = (i <= end) ? end : es.length;
 927              ; i = 0, to = end) {
 928             for (; i < to; i++)
 929                 if (filter.test(elementAt(es, i)))
 930                     return bulkRemoveModified(filter, i);
 931             if (to == end) {
 932                 if (end != tail) throw new ConcurrentModificationException();
 933                 break;
 934             }
 935         }
 936         return false;
 937     }
 938 
 939     // A tiny bit set implementation
 940 
 941     private static long[] nBits(int n) {
 942         return new long[((n - 1) >> 6) + 1];
 943     }
 944     private static void setBit(long[] bits, int i) {
 945         bits[i >> 6] |= 1L << i;
 946     }
 947     private static boolean isClear(long[] bits, int i) {
 948         return (bits[i >> 6] & (1L << i)) == 0;
 949     }
 950 
 951     /**
 952      * Helper for bulkRemove, in case of at least one deletion.
 953      * Tolerate predicates that reentrantly access the collection for
 954      * read (but writers still get CME), so traverse once to find
 955      * elements to delete, a second pass to physically expunge.
 956      *
 957      * @param beg valid index of first element to be deleted
 958      */
 959     private boolean bulkRemoveModified(
 960         Predicate<? super E> filter, final int beg) {
 961         final Object[] es = elements;
 962         final int capacity = es.length;
 963         final int end = tail;
 964         final long[] deathRow = nBits(sub(end, beg, capacity));
 965         deathRow[0] = 1L;   // set bit 0
 966         for (int i = beg + 1, to = (i <= end) ? end : es.length, k = beg;
 967              ; i = 0, to = end, k -= capacity) {
 968             for (; i < to; i++)
 969                 if (filter.test(elementAt(es, i)))
 970                     setBit(deathRow, i - k);
 971             if (to == end) break;
 972         }
 973         // a two-finger traversal, with hare i reading, tortoise w writing
 974         int w = beg;
 975         for (int i = beg + 1, to = (i <= end) ? end : es.length, k = beg;
 976              ; w = 0) { // w rejoins i on second leg
 977             // In this loop, i and w are on the same leg, with i > w
 978             for (; i < to; i++)
 979                 if (isClear(deathRow, i - k))
 980                     es[w++] = es[i];
 981             if (to == end) break;
 982             // In this loop, w is on the first leg, i on the second
 983             for (i = 0, to = end, k -= capacity; i < to && w < capacity; i++)
 984                 if (isClear(deathRow, i - k))
 985                     es[w++] = es[i];
 986             if (i >= to) {
 987                 if (w == capacity) w = 0; // "corner" case
 988                 break;
 989             }
 990         }
 991         if (end != tail) throw new ConcurrentModificationException();
 992         circularClear(es, tail = w, end);
 993         return true;
 994     }
 995 
 996     /**
 997      * Returns {@code true} if this deque contains the specified element.
 998      * More formally, returns {@code true} if and only if this deque contains
 999      * at least one element {@code e} such that {@code o.equals(e)}.
1000      *
1001      * @param o object to be checked for containment in this deque
1002      * @return {@code true} if this deque contains the specified element
1003      */
1004     public boolean contains(Object o) {
1005         if (o != null) {
1006             final Object[] es = elements;
1007             for (int i = head, end = tail, to = (i <= end) ? end : es.length;
1008                  ; i = 0, to = end) {
1009                 for (; i < to; i++)
1010                     if (o.equals(es[i]))
1011                         return true;
1012                 if (to == end) break;
1013             }
1014         }
1015         return false;
1016     }
1017 
1018     /**
1019      * Removes a single instance of the specified element from this deque.
1020      * If the deque does not contain the element, it is unchanged.
1021      * More formally, removes the first element {@code e} such that
1022      * {@code o.equals(e)} (if such an element exists).
1023      * Returns {@code true} if this deque contained the specified element
1024      * (or equivalently, if this deque changed as a result of the call).
1025      *
1026      * <p>This method is equivalent to {@link #removeFirstOccurrence(Object)}.
1027      *
1028      * @param o element to be removed from this deque, if present
1029      * @return {@code true} if this deque contained the specified element
1030      */
1031     public boolean remove(Object o) {
1032         return removeFirstOccurrence(o);
1033     }
1034 
1035     /**
1036      * Removes all of the elements from this deque.
1037      * The deque will be empty after this call returns.
1038      */
1039     public void clear() {
1040         circularClear(elements, head, tail);
1041         head = tail = 0;
1042     }
1043 
1044     /**
1045      * Nulls out slots starting at array index i, upto index end.
1046      * Condition i == end means "empty" - nothing to do.
1047      */
1048     private static void circularClear(Object[] es, int i, int end) {
1049         // assert 0 <= i && i < es.length;
1050         // assert 0 <= end && end < es.length;
1051         for (int to = (i <= end) ? end : es.length;
1052              ; i = 0, to = end) {
1053             for (; i < to; i++) es[i] = null;
1054             if (to == end) break;
1055         }
1056     }
1057 
1058     /**
1059      * Returns an array containing all of the elements in this deque
1060      * in proper sequence (from first to last element).
1061      *
1062      * <p>The returned array will be "safe" in that no references to it are
1063      * maintained by this deque.  (In other words, this method must allocate
1064      * a new array).  The caller is thus free to modify the returned array.
1065      *
1066      * <p>This method acts as bridge between array-based and collection-based
1067      * APIs.
1068      *
1069      * @return an array containing all of the elements in this deque
1070      */
1071     public Object[] toArray() {
1072         return toArray(Object[].class);
1073     }
1074 
1075     private <T> T[] toArray(Class<T[]> klazz) {
1076         final Object[] es = elements;
1077         final T[] a;
1078         final int head = this.head, tail = this.tail, end;
1079         if ((end = tail + ((head <= tail) ? 0 : es.length)) >= 0) {
1080             // Uses null extension feature of copyOfRange
1081             a = Arrays.copyOfRange(es, head, end, klazz);
1082         } else {
1083             // integer overflow!
1084             a = Arrays.copyOfRange(es, 0, end - head, klazz);
1085             System.arraycopy(es, head, a, 0, es.length - head);
1086         }
1087         if (end != tail)
1088             System.arraycopy(es, 0, a, es.length - head, tail);
1089         return a;
1090     }
1091 
1092     /**
1093      * Returns an array containing all of the elements in this deque in
1094      * proper sequence (from first to last element); the runtime type of the
1095      * returned array is that of the specified array.  If the deque fits in
1096      * the specified array, it is returned therein.  Otherwise, a new array
1097      * is allocated with the runtime type of the specified array and the
1098      * size of this deque.
1099      *
1100      * <p>If this deque fits in the specified array with room to spare
1101      * (i.e., the array has more elements than this deque), the element in
1102      * the array immediately following the end of the deque is set to
1103      * {@code null}.
1104      *
1105      * <p>Like the {@link #toArray()} method, this method acts as bridge between
1106      * array-based and collection-based APIs.  Further, this method allows
1107      * precise control over the runtime type of the output array, and may,
1108      * under certain circumstances, be used to save allocation costs.
1109      *
1110      * <p>Suppose {@code x} is a deque known to contain only strings.
1111      * The following code can be used to dump the deque into a newly
1112      * allocated array of {@code String}:
1113      *
1114      * <pre> {@code String[] y = x.toArray(new String[0]);}</pre>
1115      *
1116      * Note that {@code toArray(new Object[0])} is identical in function to
1117      * {@code toArray()}.
1118      *
1119      * @param a the array into which the elements of the deque are to
1120      *          be stored, if it is big enough; otherwise, a new array of the
1121      *          same runtime type is allocated for this purpose
1122      * @return an array containing all of the elements in this deque
1123      * @throws ArrayStoreException if the runtime type of the specified array
1124      *         is not a supertype of the runtime type of every element in
1125      *         this deque
1126      * @throws NullPointerException if the specified array is null
1127      */
1128     @SuppressWarnings("unchecked")
1129     public <T> T[] toArray(T[] a) {
1130         final int size;
1131         if ((size = size()) > a.length)
1132             return toArray((Class<T[]>) a.getClass());
1133         final Object[] es = elements;
1134         for (int i = head, j = 0, len = Math.min(size, es.length - i);
1135              ; i = 0, len = tail) {
1136             System.arraycopy(es, i, a, j, len);
1137             if ((j += len) == size) break;
1138         }
1139         if (size < a.length)
1140             a[size] = null;
1141         return a;
1142     }
1143 
1144     // *** Object methods ***
1145 
1146     /**
1147      * Returns a copy of this deque.
1148      *
1149      * @return a copy of this deque
1150      */
1151     public ArrayDeque<E> clone() {
1152         try {
1153             @SuppressWarnings("unchecked")
1154             ArrayDeque<E> result = (ArrayDeque<E>) super.clone();
1155             result.elements = Arrays.copyOf(elements, elements.length);
1156             return result;
1157         } catch (CloneNotSupportedException e) {
1158             throw new AssertionError();
1159         }
1160     }
1161 
1162     private static final long serialVersionUID = 2340985798034038923L;
1163 
1164     /**
1165      * Saves this deque to a stream (that is, serializes it).
1166      *
1167      * @param s the stream
1168      * @throws java.io.IOException if an I/O error occurs
1169      * @serialData The current size ({@code int}) of the deque,
1170      * followed by all of its elements (each an object reference) in
1171      * first-to-last order.
1172      */
1173     private void writeObject(java.io.ObjectOutputStream s)
1174             throws java.io.IOException {
1175         s.defaultWriteObject();
1176 
1177         // Write out size
1178         s.writeInt(size());
1179 
1180         // Write out elements in order.
1181         final Object[] es = elements;
1182         for (int i = head, end = tail, to = (i <= end) ? end : es.length;
1183              ; i = 0, to = end) {
1184             for (; i < to; i++)
1185                 s.writeObject(es[i]);
1186             if (to == end) break;
1187         }
1188     }
1189 
1190     /**
1191      * Reconstitutes this deque from a stream (that is, deserializes it).
1192      * @param s the stream
1193      * @throws ClassNotFoundException if the class of a serialized object
1194      *         could not be found
1195      * @throws java.io.IOException if an I/O error occurs
1196      */
1197     private void readObject(java.io.ObjectInputStream s)
1198             throws java.io.IOException, ClassNotFoundException {
1199         s.defaultReadObject();
1200 
1201         // Read in size and allocate array
1202         int size = s.readInt();
1203         elements = new Object[size + 1];
1204         this.tail = size;
1205 
1206         // Read in all elements in the proper order.
1207         for (int i = 0; i < size; i++)
1208             elements[i] = s.readObject();
1209     }
1210 
1211     /** debugging */
1212     void checkInvariants() {
1213         // Use head and tail fields with empty slot at tail strategy.
1214         // head == tail disambiguates to "empty".
1215         try {
1216             int capacity = elements.length;
1217             // assert 0 <= head && head < capacity;
1218             // assert 0 <= tail && tail < capacity;
1219             // assert capacity > 0;
1220             // assert size() < capacity;
1221             // assert head == tail || elements[head] != null;
1222             // assert elements[tail] == null;
1223             // assert head == tail || elements[dec(tail, capacity)] != null;
1224         } catch (Throwable t) {
1225             System.err.printf("head=%d tail=%d capacity=%d%n",
1226                               head, tail, elements.length);
1227             System.err.printf("elements=%s%n",
1228                               Arrays.toString(elements));
1229             throw t;
1230         }
1231     }
1232 
1233 }