1 /*
   2  * Copyright (c) 2016, Oracle and/or its affiliates. All rights reserved.
   3  * Copyright (c) 2016 SAP SE. All rights reserved.
   4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5  *
   6  * This code is free software; you can redistribute it and/or modify it
   7  * under the terms of the GNU General Public License version 2 only, as
   8  * published by the Free Software Foundation.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  *
  24  */
  25 
  26 #include "precompiled.hpp"
  27 #include "asm/macroAssembler.inline.hpp"
  28 #include "interpreter/abstractInterpreter.hpp"
  29 #include "interpreter/bytecodeHistogram.hpp"
  30 #include "interpreter/interpreter.hpp"
  31 #include "interpreter/interpreterRuntime.hpp"
  32 #include "interpreter/interp_masm.hpp"
  33 #include "interpreter/templateInterpreterGenerator.hpp"
  34 #include "interpreter/templateTable.hpp"
  35 #include "oops/arrayOop.hpp"
  36 #include "oops/oop.inline.hpp"
  37 #include "prims/jvmtiExport.hpp"
  38 #include "prims/jvmtiThreadState.hpp"
  39 #include "runtime/arguments.hpp"
  40 #include "runtime/deoptimization.hpp"
  41 #include "runtime/frame.inline.hpp"
  42 #include "runtime/sharedRuntime.hpp"
  43 #include "runtime/stubRoutines.hpp"
  44 #include "runtime/synchronizer.hpp"
  45 #include "runtime/timer.hpp"
  46 #include "runtime/vframeArray.hpp"
  47 #include "utilities/debug.hpp"
  48 
  49 
  50 // Size of interpreter code.  Increase if too small.  Interpreter will
  51 // fail with a guarantee ("not enough space for interpreter generation");
  52 // if too small.
  53 // Run with +PrintInterpreter to get the VM to print out the size.
  54 // Max size with JVMTI
  55 int TemplateInterpreter::InterpreterCodeSize = 320*K;
  56 
  57 #undef  __
  58 #ifdef PRODUCT
  59   #define __ _masm->
  60 #else
  61   #define __ _masm->
  62 //  #define __ (Verbose ? (_masm->block_comment(FILE_AND_LINE),_masm):_masm)->
  63 #endif
  64 
  65 #define BLOCK_COMMENT(str) __ block_comment(str)
  66 #define BIND(label)        __ bind(label); BLOCK_COMMENT(#label ":")
  67 
  68 #define oop_tmp_offset     _z_ijava_state_neg(oop_tmp)
  69 
  70 //-----------------------------------------------------------------------------
  71 
  72 address TemplateInterpreterGenerator::generate_slow_signature_handler() {
  73   //
  74   // New slow_signature handler that respects the z/Architecture
  75   // C calling conventions.
  76   //
  77   // We get called by the native entry code with our output register
  78   // area == 8. First we call InterpreterRuntime::get_result_handler
  79   // to copy the pointer to the signature string temporarily to the
  80   // first C-argument and to return the result_handler in
  81   // Z_RET. Since native_entry will copy the jni-pointer to the
  82   // first C-argument slot later on, it's OK to occupy this slot
  83   // temporarily. Then we copy the argument list on the java
  84   // expression stack into native varargs format on the native stack
  85   // and load arguments into argument registers. Integer arguments in
  86   // the varargs vector will be sign-extended to 8 bytes.
  87   //
  88   // On entry:
  89   //   Z_ARG1  - intptr_t*       Address of java argument list in memory.
  90   //   Z_state - cppInterpreter* Address of interpreter state for
  91   //                               this method
  92   //   Z_method
  93   //
  94   // On exit (just before return instruction):
  95   //   Z_RET contains the address of the result_handler.
  96   //   Z_ARG2 is not updated for static methods and contains "this" otherwise.
  97   //   Z_ARG3-Z_ARG5 contain the first 3 arguments of types other than float and double.
  98   //   Z_FARG1-Z_FARG4 contain the first 4 arguments of type float or double.
  99 
 100   const int LogSizeOfCase = 3;
 101 
 102   const int max_fp_register_arguments   = Argument::n_float_register_parameters;
 103   const int max_int_register_arguments  = Argument::n_register_parameters - 2;  // First 2 are reserved.
 104 
 105   const Register arg_java       = Z_tmp_2;
 106   const Register arg_c          = Z_tmp_3;
 107   const Register signature      = Z_R1_scratch; // Is a string.
 108   const Register fpcnt          = Z_R0_scratch;
 109   const Register argcnt         = Z_tmp_4;
 110   const Register intSlot        = Z_tmp_1;
 111   const Register sig_end        = Z_tmp_1; // Assumed end of signature (only used in do_object).
 112   const Register target_sp      = Z_tmp_1;
 113   const FloatRegister floatSlot = Z_F1;
 114 
 115   const int d_signature         = _z_abi(gpr6); // Only spill space, register contents not affected.
 116   const int d_fpcnt             = _z_abi(gpr7); // Only spill space, register contents not affected.
 117 
 118   unsigned int entry_offset = __ offset();
 119 
 120   BLOCK_COMMENT("slow_signature_handler {");
 121 
 122   // We use target_sp for storing arguments in the C frame.
 123   __ save_return_pc();
 124 
 125   __ z_stmg(Z_R10,Z_R13,-32,Z_SP);
 126   __ push_frame_abi160(32);
 127 
 128   __ z_lgr(arg_java, Z_ARG1);
 129 
 130   Register   method = Z_ARG2; // Directly load into correct argument register.
 131 
 132   __ get_method(method);
 133   __ call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::get_signature), Z_thread, method);
 134 
 135   // Move signature to callee saved register.
 136   // Don't directly write to stack. Frame is used by VM call.
 137   __ z_lgr(Z_tmp_1, Z_RET);
 138 
 139   // Reload method. Register may have been altered by VM call.
 140   __ get_method(method);
 141 
 142   // Get address of result handler.
 143   __ call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::get_result_handler), Z_thread, method);
 144 
 145   // Save signature address to stack.
 146   __ z_stg(Z_tmp_1, d_signature, Z_SP);
 147 
 148   // Don't overwrite return value (Z_RET, Z_ARG1) in rest of the method !
 149 
 150   {
 151     Label   isStatic;
 152 
 153     // Test if static.
 154     // We can test the bit directly.
 155     // Path is Z_method->_access_flags._flags.
 156     // We only support flag bits in the least significant byte (assert !).
 157     // Therefore add 3 to address that byte within "_flags".
 158     // Reload method. VM call above may have destroyed register contents
 159     __ get_method(method);
 160     __ testbit(method2_(method, access_flags), JVM_ACC_STATIC_BIT);
 161     method = noreg;  // end of life
 162     __ z_btrue(isStatic);
 163 
 164     // For non-static functions, pass "this" in Z_ARG2 and copy it to 2nd C-arg slot.
 165     // Need to box the Java object here, so we use arg_java
 166     // (address of current Java stack slot) as argument and
 167     // don't dereference it as in case of ints, floats, etc..
 168     __ z_lgr(Z_ARG2, arg_java);
 169     __ add2reg(arg_java, -BytesPerWord);
 170     __ bind(isStatic);
 171   }
 172 
 173   // argcnt == 0 corresponds to 3rd C argument.
 174   //   arg #1 (result handler) and
 175   //   arg #2 (this, for non-statics), unused else
 176   // are reserved and pre-filled above.
 177   // arg_java points to the corresponding Java argument here. It
 178   // has been decremented by one argument (this) in case of non-static.
 179   __ clear_reg(argcnt, true, false);  // Don't set CC.
 180   __ z_lg(target_sp, 0, Z_SP);
 181   __ add2reg(arg_c, _z_abi(remaining_cargs), target_sp);
 182   // No floating-point args parsed so far.
 183   __ clear_mem(Address(Z_SP, d_fpcnt), 8);
 184 
 185   NearLabel   move_intSlot_to_ARG, move_floatSlot_to_FARG;
 186   NearLabel   loop_start, loop_start_restore, loop_end;
 187   NearLabel   do_int, do_long, do_float, do_double;
 188   NearLabel   do_dontreachhere, do_object, do_array, do_boxed;
 189 
 190 #ifdef ASSERT
 191   // Signature needs to point to '(' (== 0x28) at entry.
 192   __ z_lg(signature, d_signature, Z_SP);
 193   __ z_cli(0, signature, (int) '(');
 194   __ z_brne(do_dontreachhere);
 195 #endif
 196 
 197   __ bind(loop_start_restore);
 198   __ z_lg(signature, d_signature, Z_SP);  // Restore signature ptr, destroyed by move_XX_to_ARG.
 199 
 200   BIND(loop_start);
 201   // Advance to next argument type token from the signature.
 202   __ add2reg(signature, 1);
 203 
 204   // Use CLI, works well on all CPU versions.
 205     __ z_cli(0, signature, (int) ')');
 206     __ z_bre(loop_end);                // end of signature
 207     __ z_cli(0, signature, (int) 'L');
 208     __ z_bre(do_object);               // object     #9
 209     __ z_cli(0, signature, (int) 'F');
 210     __ z_bre(do_float);                // float      #7
 211     __ z_cli(0, signature, (int) 'J');
 212     __ z_bre(do_long);                 // long       #6
 213     __ z_cli(0, signature, (int) 'B');
 214     __ z_bre(do_int);                  // byte       #1
 215     __ z_cli(0, signature, (int) 'Z');
 216     __ z_bre(do_int);                  // boolean    #2
 217     __ z_cli(0, signature, (int) 'C');
 218     __ z_bre(do_int);                  // char       #3
 219     __ z_cli(0, signature, (int) 'S');
 220     __ z_bre(do_int);                  // short      #4
 221     __ z_cli(0, signature, (int) 'I');
 222     __ z_bre(do_int);                  // int        #5
 223     __ z_cli(0, signature, (int) 'D');
 224     __ z_bre(do_double);               // double     #8
 225     __ z_cli(0, signature, (int) '[');
 226     __ z_bre(do_array);                // array      #10
 227 
 228   __ bind(do_dontreachhere);
 229 
 230   __ unimplemented("ShouldNotReachHere in slow_signature_handler", 120);
 231 
 232   // Array argument
 233   BIND(do_array);
 234 
 235   {
 236     Label   start_skip, end_skip;
 237 
 238     __ bind(start_skip);
 239 
 240     // Advance to next type tag from signature.
 241     __ add2reg(signature, 1);
 242 
 243     // Use CLI, works well on all CPU versions.
 244     __ z_cli(0, signature, (int) '[');
 245     __ z_bre(start_skip);               // Skip further brackets.
 246 
 247     __ z_cli(0, signature, (int) '9');
 248     __ z_brh(end_skip);                 // no optional size
 249 
 250     __ z_cli(0, signature, (int) '0');
 251     __ z_brnl(start_skip);              // Skip optional size.
 252 
 253     __ bind(end_skip);
 254 
 255     __ z_cli(0, signature, (int) 'L');
 256     __ z_brne(do_boxed);                // If not array of objects: go directly to do_boxed.
 257   }
 258 
 259   //  OOP argument
 260   BIND(do_object);
 261   // Pass by an object's type name.
 262   {
 263     Label   L;
 264 
 265     __ add2reg(sig_end, 4095, signature);     // Assume object type name is shorter than 4k.
 266     __ load_const_optimized(Z_R0, (int) ';'); // Type name terminator (must be in Z_R0!).
 267     __ MacroAssembler::search_string(sig_end, signature);
 268     __ z_brl(L);
 269     __ z_illtrap();  // No semicolon found: internal error or object name too long.
 270     __ bind(L);
 271     __ z_lgr(signature, sig_end);
 272     // fallthru to do_boxed
 273   }
 274 
 275   // Need to box the Java object here, so we use arg_java
 276   // (address of current Java stack slot) as argument and
 277   // don't dereference it as in case of ints, floats, etc..
 278 
 279   // UNBOX argument
 280   // Load reference and check for NULL.
 281   Label  do_int_Entry4Boxed;
 282   __ bind(do_boxed);
 283   {
 284     __ load_and_test_long(intSlot, Address(arg_java));
 285     __ z_bre(do_int_Entry4Boxed);
 286     __ z_lgr(intSlot, arg_java);
 287     __ z_bru(do_int_Entry4Boxed);
 288   }
 289 
 290   // INT argument
 291 
 292   // (also for byte, boolean, char, short)
 293   // Use lgf for load (sign-extend) and stg for store.
 294   BIND(do_int);
 295   __ z_lgf(intSlot, 0, arg_java);
 296 
 297   __ bind(do_int_Entry4Boxed);
 298   __ add2reg(arg_java, -BytesPerWord);
 299   // If argument fits into argument register, go and handle it, otherwise continue.
 300   __ compare32_and_branch(argcnt, max_int_register_arguments,
 301                           Assembler::bcondLow, move_intSlot_to_ARG);
 302   __ z_stg(intSlot, 0, arg_c);
 303   __ add2reg(arg_c, BytesPerWord);
 304   __ z_bru(loop_start);
 305 
 306   // LONG argument
 307 
 308   BIND(do_long);
 309   __ add2reg(arg_java, -2*BytesPerWord);  // Decrement first to have positive displacement for lg.
 310   __ z_lg(intSlot, BytesPerWord, arg_java);
 311   // If argument fits into argument register, go and handle it, otherwise continue.
 312   __ compare32_and_branch(argcnt, max_int_register_arguments,
 313                           Assembler::bcondLow, move_intSlot_to_ARG);
 314   __ z_stg(intSlot, 0, arg_c);
 315   __ add2reg(arg_c, BytesPerWord);
 316   __ z_bru(loop_start);
 317 
 318   // FLOAT argumen
 319 
 320   BIND(do_float);
 321   __ z_le(floatSlot, 0, arg_java);
 322   __ add2reg(arg_java, -BytesPerWord);
 323   assert(max_fp_register_arguments <= 255, "always true");  // safety net
 324   __ z_cli(d_fpcnt+7, Z_SP, max_fp_register_arguments);
 325   __ z_brl(move_floatSlot_to_FARG);
 326   __ z_ste(floatSlot, 4, arg_c);
 327   __ add2reg(arg_c, BytesPerWord);
 328   __ z_bru(loop_start);
 329 
 330   // DOUBLE argument
 331 
 332   BIND(do_double);
 333   __ add2reg(arg_java, -2*BytesPerWord);  // Decrement first to have positive displacement for lg.
 334   __ z_ld(floatSlot, BytesPerWord, arg_java);
 335   assert(max_fp_register_arguments <= 255, "always true");  // safety net
 336   __ z_cli(d_fpcnt+7, Z_SP, max_fp_register_arguments);
 337   __ z_brl(move_floatSlot_to_FARG);
 338   __ z_std(floatSlot, 0, arg_c);
 339   __ add2reg(arg_c, BytesPerWord);
 340   __ z_bru(loop_start);
 341 
 342   // Method exit, all arguments proocessed.
 343   __ bind(loop_end);
 344   __ pop_frame();
 345   __ restore_return_pc();
 346   __ z_lmg(Z_R10,Z_R13,-32,Z_SP);
 347   __ z_br(Z_R14);
 348 
 349   // Copy int arguments.
 350 
 351   Label  iarg_caselist;   // Distance between each case has to be a power of 2
 352                           // (= 1 << LogSizeOfCase).
 353   __ align(16);
 354   BIND(iarg_caselist);
 355   __ z_lgr(Z_ARG3, intSlot);    // 4 bytes
 356   __ z_bru(loop_start_restore); // 4 bytes
 357 
 358   __ z_lgr(Z_ARG4, intSlot);
 359   __ z_bru(loop_start_restore);
 360 
 361   __ z_lgr(Z_ARG5, intSlot);
 362   __ z_bru(loop_start_restore);
 363 
 364   __ align(16);
 365   __ bind(move_intSlot_to_ARG);
 366   __ z_stg(signature, d_signature, Z_SP);       // Spill since signature == Z_R1_scratch.
 367   __ z_larl(Z_R1_scratch, iarg_caselist);
 368   __ z_sllg(Z_R0_scratch, argcnt, LogSizeOfCase);
 369   __ add2reg(argcnt, 1);
 370   __ z_agr(Z_R1_scratch, Z_R0_scratch);
 371   __ z_bcr(Assembler::bcondAlways, Z_R1_scratch);
 372 
 373   // Copy float arguments.
 374 
 375   Label  farg_caselist;   // Distance between each case has to be a power of 2
 376                           // (= 1 << logSizeOfCase, padded with nop.
 377   __ align(16);
 378   BIND(farg_caselist);
 379   __ z_ldr(Z_FARG1, floatSlot); // 2 bytes
 380   __ z_bru(loop_start_restore); // 4 bytes
 381   __ z_nop();                   // 2 bytes
 382 
 383   __ z_ldr(Z_FARG2, floatSlot);
 384   __ z_bru(loop_start_restore);
 385   __ z_nop();
 386 
 387   __ z_ldr(Z_FARG3, floatSlot);
 388   __ z_bru(loop_start_restore);
 389   __ z_nop();
 390 
 391   __ z_ldr(Z_FARG4, floatSlot);
 392   __ z_bru(loop_start_restore);
 393   __ z_nop();
 394 
 395   __ align(16);
 396   __ bind(move_floatSlot_to_FARG);
 397   __ z_stg(signature, d_signature, Z_SP);        // Spill since signature == Z_R1_scratch.
 398   __ z_lg(Z_R0_scratch, d_fpcnt, Z_SP);          // Need old value for indexing.
 399   __ add2mem_64(Address(Z_SP, d_fpcnt), 1, Z_R1_scratch); // Increment index.
 400   __ z_larl(Z_R1_scratch, farg_caselist);
 401   __ z_sllg(Z_R0_scratch, Z_R0_scratch, LogSizeOfCase);
 402   __ z_agr(Z_R1_scratch, Z_R0_scratch);
 403   __ z_bcr(Assembler::bcondAlways, Z_R1_scratch);
 404 
 405   BLOCK_COMMENT("} slow_signature_handler");
 406 
 407   return __ addr_at(entry_offset);
 408 }
 409 
 410 address TemplateInterpreterGenerator::generate_result_handler_for (BasicType type) {
 411   address entry = __ pc();
 412 
 413   assert(Z_tos == Z_RET, "Result handler: must move result!");
 414   assert(Z_ftos == Z_FRET, "Result handler: must move float result!");
 415 
 416   switch (type) {
 417     case T_BOOLEAN:
 418       __ c2bool(Z_tos);
 419       break;
 420     case T_CHAR:
 421       __ and_imm(Z_tos, 0xffff);
 422       break;
 423     case T_BYTE:
 424       __ z_lbr(Z_tos, Z_tos);
 425       break;
 426     case T_SHORT:
 427       __ z_lhr(Z_tos, Z_tos);
 428       break;
 429     case T_INT:
 430     case T_LONG:
 431     case T_VOID:
 432     case T_FLOAT:
 433     case T_DOUBLE:
 434       break;
 435     case T_OBJECT:
 436       // Retrieve result from frame...
 437       __ mem2reg_opt(Z_tos, Address(Z_fp, oop_tmp_offset));
 438       // and verify it.
 439       __ verify_oop(Z_tos);
 440       break;
 441     default:
 442       ShouldNotReachHere();
 443   }
 444   __ z_br(Z_R14);      // Return from result handler.
 445   return entry;
 446 }
 447 
 448 // Abstract method entry.
 449 // Attempt to execute abstract method. Throw exception.
 450 address TemplateInterpreterGenerator::generate_abstract_entry(void) {
 451   unsigned int entry_offset = __ offset();
 452 
 453   // Caller could be the call_stub or a compiled method (x86 version is wrong!).
 454 
 455   BLOCK_COMMENT("abstract_entry {");
 456 
 457   // Implement call of InterpreterRuntime::throw_AbstractMethodError.
 458   __ set_top_ijava_frame_at_SP_as_last_Java_frame(Z_SP, Z_R1);
 459   __ save_return_pc();       // Save Z_R14.
 460   __ push_frame_abi160(0);   // Without new frame the RT call could overwrite the saved Z_R14.
 461 
 462   __ call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_AbstractMethodError), Z_thread);
 463 
 464   __ pop_frame();
 465   __ restore_return_pc();    // Restore Z_R14.
 466   __ reset_last_Java_frame();
 467 
 468   // Restore caller sp for c2i case.
 469   __ resize_frame_absolute(Z_R10, Z_R0, true); // Cut the stack back to where the caller started.
 470 
 471   // branch to SharedRuntime::generate_forward_exception() which handles all possible callers,
 472   // i.e. call stub, compiled method, interpreted method.
 473   __ load_absolute_address(Z_tmp_1, StubRoutines::forward_exception_entry());
 474   __ z_br(Z_tmp_1);
 475 
 476   BLOCK_COMMENT("} abstract_entry");
 477 
 478   return __ addr_at(entry_offset);
 479 }
 480 
 481 address TemplateInterpreterGenerator::generate_Reference_get_entry(void) {
 482 #if INCLUDE_ALL_GCS
 483   if (UseG1GC) {
 484     // Inputs:
 485     //  Z_ARG1 - receiver
 486     //
 487     // What we do:
 488     //  - Load the referent field address.
 489     //  - Load the value in the referent field.
 490     //  - Pass that value to the pre-barrier.
 491     //
 492     // In the case of G1 this will record the value of the
 493     // referent in an SATB buffer if marking is active.
 494     // This will cause concurrent marking to mark the referent
 495     // field as live.
 496 
 497     Register  scratch1 = Z_tmp_2;
 498     Register  scratch2 = Z_tmp_3;
 499     Register  pre_val  = Z_RET;   // return value
 500     // Z_esp is callers operand stack pointer, i.e. it points to the parameters.
 501     Register  Rargp    = Z_esp;
 502 
 503     Label     slow_path;
 504     address   entry = __ pc();
 505 
 506     const int referent_offset = java_lang_ref_Reference::referent_offset;
 507     guarantee(referent_offset > 0, "referent offset not initialized");
 508 
 509     BLOCK_COMMENT("Reference_get {");
 510 
 511     //  If the receiver is null then it is OK to jump to the slow path.
 512     __ load_and_test_long(pre_val, Address(Rargp, Interpreter::stackElementSize)); // Get receiver.
 513     __ z_bre(slow_path);
 514 
 515     //  Load the value of the referent field.
 516     __ load_heap_oop(pre_val, referent_offset, pre_val);
 517 
 518     // Restore caller sp for c2i case.
 519     __ resize_frame_absolute(Z_R10, Z_R0, true); // Cut the stack back to where the caller started.
 520 
 521     // Generate the G1 pre-barrier code to log the value of
 522     // the referent field in an SATB buffer.
 523     // Note:
 524     //   With these parameters the write_barrier_pre does not
 525     //   generate instructions to load the previous value.
 526     __ g1_write_barrier_pre(noreg,      // obj
 527                             noreg,      // offset
 528                             pre_val,    // pre_val
 529                             noreg,      // no new val to preserve
 530                             scratch1,   // tmp
 531                             scratch2,   // tmp
 532                             true);      // pre_val_needed
 533 
 534     __ z_br(Z_R14);
 535 
 536     // Branch to previously generated regular method entry.
 537     __ bind(slow_path);
 538 
 539     address meth_entry = Interpreter::entry_for_kind(Interpreter::zerolocals);
 540     __ jump_to_entry(meth_entry, Z_R1);
 541 
 542     BLOCK_COMMENT("} Reference_get");
 543 
 544     return entry;
 545   }
 546 #endif // INCLUDE_ALL_GCS
 547 
 548   return NULL;
 549 }
 550 
 551 address TemplateInterpreterGenerator::generate_StackOverflowError_handler() {
 552   address entry = __ pc();
 553 
 554   DEBUG_ONLY(__ verify_esp(Z_esp, Z_ARG5));
 555 
 556   // Restore bcp under the assumption that the current frame is still
 557   // interpreted.
 558   __ restore_bcp();
 559 
 560   // Expression stack must be empty before entering the VM if an
 561   // exception happened.
 562   __ empty_expression_stack();
 563   // Throw exception.
 564   __ call_VM(noreg,
 565              CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_StackOverflowError));
 566   return entry;
 567 }
 568 
 569 //
 570 // Args:
 571 //   Z_ARG3: aberrant index
 572 //
 573 address TemplateInterpreterGenerator::generate_ArrayIndexOutOfBounds_handler(const char * name) {
 574   address entry = __ pc();
 575   address excp = CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_ArrayIndexOutOfBoundsException);
 576 
 577   // Expression stack must be empty before entering the VM if an
 578   // exception happened.
 579   __ empty_expression_stack();
 580 
 581   // Setup parameters.
 582   // Leave out the name and use register for array to create more detailed exceptions.
 583   __ load_absolute_address(Z_ARG2, (address) name);
 584   __ call_VM(noreg, excp, Z_ARG2, Z_ARG3);
 585   return entry;
 586 }
 587 
 588 address TemplateInterpreterGenerator::generate_ClassCastException_handler() {
 589   address entry = __ pc();
 590 
 591   // Object is at TOS.
 592   __ pop_ptr(Z_ARG2);
 593 
 594   // Expression stack must be empty before entering the VM if an
 595   // exception happened.
 596   __ empty_expression_stack();
 597 
 598   __ call_VM(Z_ARG1,
 599              CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_ClassCastException),
 600              Z_ARG2);
 601 
 602   DEBUG_ONLY(__ should_not_reach_here();)
 603 
 604   return entry;
 605 }
 606 
 607 address TemplateInterpreterGenerator::generate_exception_handler_common(const char* name, const char* message, bool pass_oop) {
 608   assert(!pass_oop || message == NULL, "either oop or message but not both");
 609   address entry = __ pc();
 610 
 611   BLOCK_COMMENT("exception_handler_common {");
 612 
 613   // Expression stack must be empty before entering the VM if an
 614   // exception happened.
 615   __ empty_expression_stack();
 616   if (name != NULL) {
 617     __ load_absolute_address(Z_ARG2, (address)name);
 618   } else {
 619     __ clear_reg(Z_ARG2, true, false);
 620   }
 621 
 622   if (pass_oop) {
 623     __ call_VM(Z_tos,
 624                CAST_FROM_FN_PTR(address, InterpreterRuntime::create_klass_exception),
 625                Z_ARG2, Z_tos /*object (see TT::aastore())*/);
 626   } else {
 627     if (message != NULL) {
 628       __ load_absolute_address(Z_ARG3, (address)message);
 629     } else {
 630       __ clear_reg(Z_ARG3, true, false);
 631     }
 632     __ call_VM(Z_tos,
 633                CAST_FROM_FN_PTR(address, InterpreterRuntime::create_exception),
 634                Z_ARG2, Z_ARG3);
 635   }
 636   // Throw exception.
 637   __ load_absolute_address(Z_R1_scratch, Interpreter::throw_exception_entry());
 638   __ z_br(Z_R1_scratch);
 639 
 640   BLOCK_COMMENT("} exception_handler_common");
 641 
 642   return entry;
 643 }
 644 
 645 // Unused, should never pass by.
 646 address TemplateInterpreterGenerator::generate_continuation_for (TosState state) {
 647   address entry = __ pc();
 648   __ should_not_reach_here();
 649   return entry;
 650 }
 651 
 652 address TemplateInterpreterGenerator::generate_return_entry_for (TosState state, int step, size_t index_size) {
 653   address entry = __ pc();
 654 
 655   BLOCK_COMMENT("return_entry {");
 656 
 657   // Pop i2c extension or revert top-2-parent-resize done by interpreted callees.
 658   Register sp_before_i2c_extension = Z_bcp;
 659   __ z_lg(Z_fp, _z_abi(callers_sp), Z_SP); // Restore frame pointer.
 660   __ z_lg(sp_before_i2c_extension, Address(Z_fp, _z_ijava_state_neg(top_frame_sp)));
 661   __ resize_frame_absolute(sp_before_i2c_extension, Z_locals/*tmp*/, true/*load_fp*/);
 662 
 663   // TODO(ZASM): necessary??
 664   //  // and NULL it as marker that esp is now tos until next java call
 665   //  __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD);
 666 
 667   __ restore_bcp();
 668   __ restore_locals();
 669   __ restore_esp();
 670 
 671   if (state == atos) {
 672     __ profile_return_type(Z_tmp_1, Z_tos, Z_tmp_2);
 673   }
 674 
 675   Register cache  = Z_tmp_1;
 676   Register size   = Z_tmp_1;
 677   Register offset = Z_tmp_2;
 678   const int flags_offset = in_bytes(ConstantPoolCache::base_offset() +
 679                                     ConstantPoolCacheEntry::flags_offset());
 680   __ get_cache_and_index_at_bcp(cache, offset, 1, index_size);
 681 
 682   // #args is in rightmost byte of the _flags field.
 683   __ z_llgc(size, Address(cache, offset, flags_offset+(sizeof(size_t)-1)));
 684   __ z_sllg(size, size, Interpreter::logStackElementSize); // Each argument size in bytes.
 685   __ z_agr(Z_esp, size);                                   // Pop arguments.
 686   __ dispatch_next(state, step);
 687 
 688   BLOCK_COMMENT("} return_entry");
 689 
 690   return entry;
 691 }
 692 
 693 address TemplateInterpreterGenerator::generate_deopt_entry_for (TosState state,
 694                                                                int step) {
 695   address entry = __ pc();
 696 
 697   BLOCK_COMMENT("deopt_entry {");
 698 
 699   // TODO(ZASM): necessary? NULL last_sp until next java call
 700   // __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD);
 701   __ z_lg(Z_fp, _z_abi(callers_sp), Z_SP); // Restore frame pointer.
 702   __ restore_bcp();
 703   __ restore_locals();
 704   __ restore_esp();
 705 
 706   // Handle exceptions.
 707   {
 708     Label L;
 709     __ load_and_test_long(Z_R0/*pending_exception*/, thread_(pending_exception));
 710     __ z_bre(L);
 711     __ call_VM(noreg,
 712                CAST_FROM_FN_PTR(address,
 713                                 InterpreterRuntime::throw_pending_exception));
 714     __ should_not_reach_here();
 715     __ bind(L);
 716   }
 717   __ dispatch_next(state, step);
 718 
 719   BLOCK_COMMENT("} deopt_entry");
 720 
 721   return entry;
 722 }
 723 
 724 address TemplateInterpreterGenerator::generate_safept_entry_for (TosState state,
 725                                                                 address runtime_entry) {
 726   address entry = __ pc();
 727   __ push(state);
 728   __ call_VM(noreg, runtime_entry);
 729   __ dispatch_via(vtos, Interpreter::_normal_table.table_for (vtos));
 730   return entry;
 731 }
 732 
 733 //
 734 // Helpers for commoning out cases in the various type of method entries.
 735 //
 736 
 737 // Increment invocation count & check for overflow.
 738 //
 739 // Note: checking for negative value instead of overflow
 740 // so we have a 'sticky' overflow test.
 741 //
 742 // Z_ARG2: method (see generate_fixed_frame())
 743 //
 744 void TemplateInterpreterGenerator::generate_counter_incr(Label* overflow, Label* profile_method, Label* profile_method_continue) {
 745   Label done;
 746   Register method = Z_ARG2; // Generate_fixed_frame() copies Z_method into Z_ARG2.
 747   Register m_counters = Z_ARG4;
 748 
 749   BLOCK_COMMENT("counter_incr {");
 750 
 751   // Note: In tiered we increment either counters in method or in MDO depending
 752   // if we are profiling or not.
 753   if (TieredCompilation) {
 754     int increment = InvocationCounter::count_increment;
 755     if (ProfileInterpreter) {
 756       NearLabel no_mdo;
 757       Register mdo = m_counters;
 758       // Are we profiling?
 759       __ load_and_test_long(mdo, method2_(method, method_data));
 760       __ branch_optimized(Assembler::bcondZero, no_mdo);
 761       // Increment counter in the MDO.
 762       const Address mdo_invocation_counter(mdo, MethodData::invocation_counter_offset() +
 763                                            InvocationCounter::counter_offset());
 764       const Address mask(mdo, MethodData::invoke_mask_offset());
 765       __ increment_mask_and_jump(mdo_invocation_counter, increment, mask,
 766                                  Z_R1_scratch, false, Assembler::bcondZero,
 767                                  overflow);
 768       __ z_bru(done);
 769       __ bind(no_mdo);
 770     }
 771 
 772     // Increment counter in MethodCounters.
 773     const Address invocation_counter(m_counters,
 774                                      MethodCounters::invocation_counter_offset() +
 775                                      InvocationCounter::counter_offset());
 776     // Get address of MethodCounters object.
 777     __ get_method_counters(method, m_counters, done);
 778     const Address mask(m_counters, MethodCounters::invoke_mask_offset());
 779     __ increment_mask_and_jump(invocation_counter,
 780                                increment, mask,
 781                                Z_R1_scratch, false, Assembler::bcondZero,
 782                                overflow);
 783   } else {
 784     Register counter_sum = Z_ARG3; // The result of this piece of code.
 785     Register tmp         = Z_R1_scratch;
 786 #ifdef ASSERT
 787     {
 788       NearLabel ok;
 789       __ get_method(tmp);
 790       __ compare64_and_branch(method, tmp, Assembler::bcondEqual, ok);
 791       __ z_illtrap(0x66);
 792       __ bind(ok);
 793     }
 794 #endif
 795 
 796     // Get address of MethodCounters object.
 797     __ get_method_counters(method, m_counters, done);
 798     // Update standard invocation counters.
 799     __ increment_invocation_counter(m_counters, counter_sum);
 800     if (ProfileInterpreter) {
 801       __ add2mem_32(Address(m_counters, MethodCounters::interpreter_invocation_counter_offset()), 1, tmp);
 802       if (profile_method != NULL) {
 803         const Address profile_limit(m_counters, MethodCounters::interpreter_profile_limit_offset());
 804         __ z_cl(counter_sum, profile_limit);
 805         __ branch_optimized(Assembler::bcondLow, *profile_method_continue);
 806         // If no method data exists, go to profile_method.
 807         __ test_method_data_pointer(tmp, *profile_method);
 808       }
 809     }
 810 
 811     const Address invocation_limit(m_counters, MethodCounters::interpreter_invocation_limit_offset());
 812     __ z_cl(counter_sum, invocation_limit);
 813     __ branch_optimized(Assembler::bcondNotLow, *overflow);
 814   }
 815 
 816   __ bind(done);
 817 
 818   BLOCK_COMMENT("} counter_incr");
 819 }
 820 
 821 void TemplateInterpreterGenerator::generate_counter_overflow(Label& do_continue) {
 822   // InterpreterRuntime::frequency_counter_overflow takes two
 823   // arguments, the first (thread) is passed by call_VM, the second
 824   // indicates if the counter overflow occurs at a backwards branch
 825   // (NULL bcp). We pass zero for it. The call returns the address
 826   // of the verified entry point for the method or NULL if the
 827   // compilation did not complete (either went background or bailed
 828   // out).
 829   __ clear_reg(Z_ARG2);
 830   __ call_VM(noreg,
 831              CAST_FROM_FN_PTR(address, InterpreterRuntime::frequency_counter_overflow),
 832              Z_ARG2);
 833   __ z_bru(do_continue);
 834 }
 835 
 836 void TemplateInterpreterGenerator::generate_stack_overflow_check(Register frame_size, Register tmp1) {
 837   Register tmp2 = Z_R1_scratch;
 838   const int page_size = os::vm_page_size();
 839   NearLabel after_frame_check;
 840 
 841   BLOCK_COMMENT("counter_overflow {");
 842 
 843   assert_different_registers(frame_size, tmp1);
 844 
 845   // Stack banging is sufficient overflow check if frame_size < page_size.
 846   if (Immediate::is_uimm(page_size, 15)) {
 847     __ z_chi(frame_size, page_size);
 848     __ z_brl(after_frame_check);
 849   } else {
 850     __ load_const_optimized(tmp1, page_size);
 851     __ compareU32_and_branch(frame_size, tmp1, Assembler::bcondLow, after_frame_check);
 852   }
 853 
 854   // Get the stack base, and in debug, verify it is non-zero.
 855   __ z_lg(tmp1, thread_(stack_base));
 856 #ifdef ASSERT
 857   address reentry = NULL;
 858   NearLabel base_not_zero;
 859   __ compareU64_and_branch(tmp1, (intptr_t)0L, Assembler::bcondNotEqual, base_not_zero);
 860   reentry = __ stop_chain_static(reentry, "stack base is zero in generate_stack_overflow_check");
 861   __ bind(base_not_zero);
 862 #endif
 863 
 864   // Get the stack size, and in debug, verify it is non-zero.
 865   assert(sizeof(size_t) == sizeof(intptr_t), "wrong load size");
 866   __ z_lg(tmp2, thread_(stack_size));
 867 #ifdef ASSERT
 868   NearLabel size_not_zero;
 869   __ compareU64_and_branch(tmp2, (intptr_t)0L, Assembler::bcondNotEqual, size_not_zero);
 870   reentry = __ stop_chain_static(reentry, "stack size is zero in generate_stack_overflow_check");
 871   __ bind(size_not_zero);
 872 #endif
 873 
 874   // Compute the beginning of the protected zone minus the requested frame size.
 875   __ z_sgr(tmp1, tmp2);
 876   __ add2reg(tmp1, JavaThread::stack_guard_zone_size());
 877 
 878   // Add in the size of the frame (which is the same as subtracting it from the
 879   // SP, which would take another register.
 880   __ z_agr(tmp1, frame_size);
 881 
 882   // The frame is greater than one page in size, so check against
 883   // the bottom of the stack.
 884   __ compareU64_and_branch(Z_SP, tmp1, Assembler::bcondHigh, after_frame_check);
 885 
 886   // The stack will overflow, throw an exception.
 887 
 888   // Restore SP to sender's sp. This is necessary if the sender's frame is an
 889   // extended compiled frame (see gen_c2i_adapter()) and safer anyway in case of
 890   // JSR292 adaptations.
 891   __ resize_frame_absolute(Z_R10, tmp1, true/*load_fp*/);
 892 
 893   // Note also that the restored frame is not necessarily interpreted.
 894   // Use the shared runtime version of the StackOverflowError.
 895   assert(StubRoutines::throw_StackOverflowError_entry() != NULL, "stub not yet generated");
 896   AddressLiteral stub(StubRoutines::throw_StackOverflowError_entry());
 897   __ load_absolute_address(tmp1, StubRoutines::throw_StackOverflowError_entry());
 898   __ z_br(tmp1);
 899 
 900   // If you get to here, then there is enough stack space.
 901   __ bind(after_frame_check);
 902 
 903   BLOCK_COMMENT("} counter_overflow");
 904 }
 905 
 906 // Allocate monitor and lock method (asm interpreter).
 907 //
 908 // Args:
 909 //   Z_locals: locals
 910 
 911 void TemplateInterpreterGenerator::lock_method(void) {
 912 
 913   BLOCK_COMMENT("lock_method {");
 914 
 915   // Synchronize method.
 916   const Register method = Z_tmp_2;
 917   __ get_method(method);
 918 
 919 #ifdef ASSERT
 920   address reentry = NULL;
 921   {
 922     Label L;
 923     __ testbit(method2_(method, access_flags), JVM_ACC_SYNCHRONIZED_BIT);
 924     __ z_btrue(L);
 925     reentry = __ stop_chain_static(reentry, "method doesn't need synchronization");
 926     __ bind(L);
 927   }
 928 #endif // ASSERT
 929 
 930   // Get synchronization object.
 931   const Register object = Z_tmp_2;
 932 
 933   {
 934     Label     done;
 935     Label     static_method;
 936 
 937     __ testbit(method2_(method, access_flags), JVM_ACC_STATIC_BIT);
 938     __ z_btrue(static_method);
 939 
 940     // non-static method: Load receiver obj from stack.
 941     __ mem2reg_opt(object, Address(Z_locals, Interpreter::local_offset_in_bytes(0)));
 942     __ z_bru(done);
 943 
 944     __ bind(static_method);
 945 
 946     // Lock the java mirror.
 947     __ load_mirror(object, method);
 948 #ifdef ASSERT
 949     {
 950       NearLabel L;
 951       __ compare64_and_branch(object, (intptr_t) 0, Assembler::bcondNotEqual, L);
 952       reentry = __ stop_chain_static(reentry, "synchronization object is NULL");
 953       __ bind(L);
 954     }
 955 #endif // ASSERT
 956 
 957     __ bind(done);
 958   }
 959 
 960   __ add_monitor_to_stack(true, Z_ARG3, Z_ARG4, Z_ARG5); // Allocate monitor elem.
 961   // Store object and lock it.
 962   __ get_monitors(Z_tmp_1);
 963   __ reg2mem_opt(object, Address(Z_tmp_1, BasicObjectLock::obj_offset_in_bytes()));
 964   __ lock_object(Z_tmp_1, object);
 965 
 966   BLOCK_COMMENT("} lock_method");
 967 }
 968 
 969 // Generate a fixed interpreter frame. This is identical setup for
 970 // interpreted methods and for native methods hence the shared code.
 971 //
 972 // Registers alive
 973 //   Z_thread   - JavaThread*
 974 //   Z_SP       - old stack pointer
 975 //   Z_method   - callee's method
 976 //   Z_esp      - parameter list (slot 'above' last param)
 977 //   Z_R14      - return pc, to be stored in caller's frame
 978 //   Z_R10      - sender sp, note: Z_tmp_1 is Z_R10!
 979 //
 980 // Registers updated
 981 //   Z_SP       - new stack pointer
 982 //   Z_esp      - callee's operand stack pointer
 983 //                points to the slot above the value on top
 984 //   Z_locals   - used to access locals: locals[i] := *(Z_locals - i*BytesPerWord)
 985 //   Z_bcp      - the bytecode pointer
 986 //   Z_fp       - the frame pointer, thereby killing Z_method
 987 //   Z_ARG2     - copy of Z_method
 988 //
 989 void TemplateInterpreterGenerator::generate_fixed_frame(bool native_call) {
 990 
 991   //  stack layout
 992   //
 993   //   F1 [TOP_IJAVA_FRAME_ABI]              <-- Z_SP, Z_R10 (see note below)
 994   //      [F1's operand stack (unused)]
 995   //      [F1's outgoing Java arguments]     <-- Z_esp
 996   //      [F1's operand stack (non args)]
 997   //      [monitors]      (optional)
 998   //      [IJAVA_STATE]
 999   //
1000   //   F2 [PARENT_IJAVA_FRAME_ABI]
1001   //      ...
1002   //
1003   //  0x000
1004   //
1005   // Note: Z_R10, the sender sp, will be below Z_SP if F1 was extended by a c2i adapter.
1006 
1007   //=============================================================================
1008   // Allocate space for locals other than the parameters, the
1009   // interpreter state, monitors, and the expression stack.
1010 
1011   const Register local_count     = Z_ARG5;
1012   const Register fp              = Z_tmp_2;
1013 
1014   BLOCK_COMMENT("generate_fixed_frame {");
1015 
1016   {
1017   // local registers
1018   const Register top_frame_size  = Z_ARG2;
1019   const Register sp_after_resize = Z_ARG3;
1020   const Register max_stack       = Z_ARG4;
1021 
1022   // local_count = method->constMethod->max_locals();
1023   __ z_lg(Z_R1_scratch, Address(Z_method, Method::const_offset()));
1024   __ z_llgh(local_count, Address(Z_R1_scratch, ConstMethod::size_of_locals_offset()));
1025 
1026   if (native_call) {
1027     // If we're calling a native method, we replace max_stack (which is
1028     // zero) with space for the worst-case signature handler varargs
1029     // vector, which is:
1030     //   max_stack = max(Argument::n_register_parameters, parameter_count+2);
1031     //
1032     // We add two slots to the parameter_count, one for the jni
1033     // environment and one for a possible native mirror. We allocate
1034     // space for at least the number of ABI registers, even though
1035     // InterpreterRuntime::slow_signature_handler won't write more than
1036     // parameter_count+2 words when it creates the varargs vector at the
1037     // top of the stack. The generated slow signature handler will just
1038     // load trash into registers beyond the necessary number. We're
1039     // still going to cut the stack back by the ABI register parameter
1040     // count so as to get SP+16 pointing at the ABI outgoing parameter
1041     // area, so we need to allocate at least that much even though we're
1042     // going to throw it away.
1043     //
1044 
1045     __ z_lg(Z_R1_scratch, Address(Z_method, Method::const_offset()));
1046     __ z_llgh(max_stack,  Address(Z_R1_scratch, ConstMethod::size_of_parameters_offset()));
1047     __ add2reg(max_stack, 2);
1048 
1049     NearLabel passing_args_on_stack;
1050 
1051     // max_stack in bytes
1052     __ z_sllg(max_stack, max_stack, LogBytesPerWord);
1053 
1054     int argument_registers_in_bytes = Argument::n_register_parameters << LogBytesPerWord;
1055     __ compare64_and_branch(max_stack, argument_registers_in_bytes, Assembler::bcondNotLow, passing_args_on_stack);
1056 
1057     __ load_const_optimized(max_stack, argument_registers_in_bytes);
1058 
1059     __ bind(passing_args_on_stack);
1060   } else {
1061     // !native_call
1062     __ z_lg(max_stack, method_(const));
1063 
1064     // Calculate number of non-parameter locals (in slots):
1065     __ z_lg(Z_R1_scratch, Address(Z_method, Method::const_offset()));
1066     __ z_sh(local_count, Address(Z_R1_scratch, ConstMethod::size_of_parameters_offset()));
1067 
1068     // max_stack = method->max_stack();
1069     __ z_llgh(max_stack, Address(max_stack, ConstMethod::max_stack_offset()));
1070     // max_stack in bytes
1071     __ z_sllg(max_stack, max_stack, LogBytesPerWord);
1072   }
1073 
1074   // Resize (i.e. normally shrink) the top frame F1 ...
1075   //   F1      [TOP_IJAVA_FRAME_ABI]          <-- Z_SP, Z_R10
1076   //           F1's operand stack (free)
1077   //           ...
1078   //           F1's operand stack (free)      <-- Z_esp
1079   //           F1's outgoing Java arg m
1080   //           ...
1081   //           F1's outgoing Java arg 0
1082   //           ...
1083   //
1084   //  ... into a parent frame (Z_R10 holds F1's SP before any modification, see also above)
1085   //
1086   //           +......................+
1087   //           :                      :        <-- Z_R10, saved below as F0's z_ijava_state.sender_sp
1088   //           :                      :
1089   //   F1      [PARENT_IJAVA_FRAME_ABI]        <-- Z_SP       \
1090   //           F0's non arg local                             | = delta
1091   //           ...                                            |
1092   //           F0's non arg local              <-- Z_esp      /
1093   //           F1's outgoing Java arg m
1094   //           ...
1095   //           F1's outgoing Java arg 0
1096   //           ...
1097   //
1098   // then push the new top frame F0.
1099   //
1100   //   F0      [TOP_IJAVA_FRAME_ABI]    = frame::z_top_ijava_frame_abi_size \
1101   //           [operand stack]          = max_stack                          | = top_frame_size
1102   //           [IJAVA_STATE]            = frame::z_ijava_state_size         /
1103 
1104   // sp_after_resize = Z_esp - delta
1105   //
1106   // delta = PARENT_IJAVA_FRAME_ABI + (locals_count - params_count)
1107 
1108   __ add2reg(sp_after_resize, (Interpreter::stackElementSize) - (frame::z_parent_ijava_frame_abi_size), Z_esp);
1109   __ z_sllg(Z_R0_scratch, local_count, LogBytesPerWord); // Params have already been subtracted from local_count.
1110   __ z_slgr(sp_after_resize, Z_R0_scratch);
1111 
1112   // top_frame_size = TOP_IJAVA_FRAME_ABI + max_stack + size of interpreter state
1113   __ add2reg(top_frame_size,
1114              frame::z_top_ijava_frame_abi_size +
1115                frame::z_ijava_state_size +
1116                frame::interpreter_frame_monitor_size() * wordSize,
1117              max_stack);
1118 
1119   // Check if there's room for the new frame...
1120   Register frame_size = max_stack; // Reuse the regiser for max_stack.
1121   __ z_lgr(frame_size, Z_SP);
1122   __ z_sgr(frame_size, sp_after_resize);
1123   __ z_agr(frame_size, top_frame_size);
1124   generate_stack_overflow_check(frame_size, fp/*tmp1*/);
1125 
1126   DEBUG_ONLY(__ z_cg(Z_R14, _z_abi16(return_pc), Z_SP));
1127   __ asm_assert_eq("killed Z_R14", 0);
1128   __ resize_frame_absolute(sp_after_resize, fp, true);
1129   __ save_return_pc(Z_R14);
1130 
1131   // ... and push the new frame F0.
1132   __ push_frame(top_frame_size, fp, true /*copy_sp*/, false);
1133   }
1134 
1135   //=============================================================================
1136   // Initialize the new frame F0: initialize interpreter state.
1137 
1138   {
1139   // locals
1140   const Register local_addr = Z_ARG4;
1141 
1142   BLOCK_COMMENT("generate_fixed_frame: initialize interpreter state {");
1143 
1144 #ifdef ASSERT
1145   // Set the magic number (using local_addr as tmp register).
1146   __ load_const_optimized(local_addr, frame::z_istate_magic_number);
1147   __ z_stg(local_addr, _z_ijava_state_neg(magic), fp);
1148 #endif
1149 
1150   // Save sender SP from F1 (i.e. before it was potentially modified by an
1151   // adapter) into F0's interpreter state. We us it as well to revert
1152   // resizing the frame above.
1153   __ z_stg(Z_R10, _z_ijava_state_neg(sender_sp), fp);
1154 
1155   // Load cp cache and save it at the and of this block.
1156   __ z_lg(Z_R1_scratch, Address(Z_method,    Method::const_offset()));
1157   __ z_lg(Z_R1_scratch, Address(Z_R1_scratch, ConstMethod::constants_offset()));
1158   __ z_lg(Z_R1_scratch, Address(Z_R1_scratch, ConstantPool::cache_offset_in_bytes()));
1159 
1160   // z_ijava_state->method = method;
1161   __ z_stg(Z_method, _z_ijava_state_neg(method), fp);
1162 
1163   // Point locals at the first argument. Method's locals are the
1164   // parameters on top of caller's expression stack.
1165   // Tos points past last Java argument.
1166 
1167   __ z_lg(Z_locals, Address(Z_method, Method::const_offset()));
1168   __ z_llgh(Z_locals /*parameter_count words*/,
1169             Address(Z_locals, ConstMethod::size_of_parameters_offset()));
1170   __ z_sllg(Z_locals /*parameter_count bytes*/, Z_locals /*parameter_count*/, LogBytesPerWord);
1171   __ z_agr(Z_locals, Z_esp);
1172   // z_ijava_state->locals - i*BytesPerWord points to i-th Java local (i starts at 0)
1173   // z_ijava_state->locals = Z_esp + parameter_count bytes
1174   __ z_stg(Z_locals, _z_ijava_state_neg(locals), fp);
1175 
1176   // z_ijava_state->oop_temp = NULL;
1177   __ store_const(Address(fp, oop_tmp_offset), 0);
1178 
1179   // Initialize z_ijava_state->mdx.
1180   Register Rmdp = Z_bcp;
1181   // native_call: assert that mdo == NULL
1182   const bool check_for_mdo = !native_call DEBUG_ONLY(|| native_call);
1183   if (ProfileInterpreter && check_for_mdo) {
1184 #ifdef FAST_DISPATCH
1185     // FAST_DISPATCH and ProfileInterpreter are mutually exclusive since
1186     // they both use I2.
1187     assert(0, "FAST_DISPATCH and +ProfileInterpreter are mutually exclusive");
1188 #endif // FAST_DISPATCH
1189     Label get_continue;
1190 
1191     __ load_and_test_long(Rmdp, method_(method_data));
1192     __ z_brz(get_continue);
1193     DEBUG_ONLY(if (native_call) __ stop("native methods don't have a mdo"));
1194     __ add2reg(Rmdp, in_bytes(MethodData::data_offset()));
1195     __ bind(get_continue);
1196   }
1197   __ z_stg(Rmdp, _z_ijava_state_neg(mdx), fp);
1198 
1199   // Initialize z_ijava_state->bcp and Z_bcp.
1200   if (native_call) {
1201     __ clear_reg(Z_bcp); // Must initialize. Will get written into frame where GC reads it.
1202   } else {
1203     __ z_lg(Z_bcp, method_(const));
1204     __ add2reg(Z_bcp, in_bytes(ConstMethod::codes_offset()));
1205   }
1206   __ z_stg(Z_bcp, _z_ijava_state_neg(bcp), fp);
1207 
1208   // no monitors and empty operand stack
1209   // => z_ijava_state->monitors points to the top slot in IJAVA_STATE.
1210   // => Z_ijava_state->esp points one slot above into the operand stack.
1211   // z_ijava_state->monitors = fp - frame::z_ijava_state_size - Interpreter::stackElementSize;
1212   // z_ijava_state->esp = Z_esp = z_ijava_state->monitors;
1213   __ add2reg(Z_esp, -frame::z_ijava_state_size, fp);
1214   __ z_stg(Z_esp, _z_ijava_state_neg(monitors), fp);
1215   __ add2reg(Z_esp, -Interpreter::stackElementSize);
1216   __ z_stg(Z_esp, _z_ijava_state_neg(esp), fp);
1217 
1218   // z_ijava_state->cpoolCache = Z_R1_scratch (see load above);
1219   __ z_stg(Z_R1_scratch, _z_ijava_state_neg(cpoolCache), fp);
1220 
1221   // Get mirror and store it in the frame as GC root for this Method*.
1222   __ load_mirror(Z_R1_scratch, Z_method);
1223   __ z_stg(Z_R1_scratch, _z_ijava_state_neg(mirror), fp);
1224 
1225   BLOCK_COMMENT("} generate_fixed_frame: initialize interpreter state");
1226 
1227   //=============================================================================
1228   if (!native_call) {
1229     // Fill locals with 0x0s.
1230     NearLabel locals_zeroed;
1231     NearLabel doXC;
1232 
1233     // Local_count is already num_locals_slots - num_param_slots.
1234     __ compare64_and_branch(local_count, (intptr_t)0L, Assembler::bcondNotHigh, locals_zeroed);
1235 
1236     // Advance local_addr to point behind locals (creates positive incr. in loop).
1237     __ z_lg(Z_R1_scratch, Address(Z_method, Method::const_offset()));
1238     __ z_llgh(Z_R0_scratch,
1239               Address(Z_R1_scratch, ConstMethod::size_of_locals_offset()));
1240     if (Z_R0_scratch == Z_R0) {
1241       __ z_aghi(Z_R0_scratch, -1);
1242     } else {
1243       __ add2reg(Z_R0_scratch, -1);
1244     }
1245     __ z_lgr(local_addr/*locals*/, Z_locals);
1246     __ z_sllg(Z_R0_scratch, Z_R0_scratch, LogBytesPerWord);
1247     __ z_sllg(local_count, local_count, LogBytesPerWord); // Local_count are non param locals.
1248     __ z_sgr(local_addr, Z_R0_scratch);
1249 
1250     if (VM_Version::has_Prefetch()) {
1251       __ z_pfd(0x02, 0, Z_R0, local_addr);
1252       __ z_pfd(0x02, 256, Z_R0, local_addr);
1253     }
1254 
1255     // Can't optimise for Z10 using "compare and branch" (immediate value is too big).
1256     __ z_cghi(local_count, 256);
1257     __ z_brnh(doXC);
1258 
1259     // MVCLE: Initialize if quite a lot locals.
1260     //  __ bind(doMVCLE);
1261     __ z_lgr(Z_R0_scratch, local_addr);
1262     __ z_lgr(Z_R1_scratch, local_count);
1263     __ clear_reg(Z_ARG2);        // Src len of MVCLE is zero.
1264 
1265     __ MacroAssembler::move_long_ext(Z_R0_scratch, Z_ARG1, 0);
1266     __ z_bru(locals_zeroed);
1267 
1268     Label  XC_template;
1269     __ bind(XC_template);
1270     __ z_xc(0, 0, local_addr, 0, local_addr);
1271 
1272     __ bind(doXC);
1273     __ z_bctgr(local_count, Z_R0);                  // Get #bytes-1 for EXECUTE.
1274     if (VM_Version::has_ExecuteExtensions()) {
1275       __ z_exrl(local_count, XC_template);          // Execute XC with variable length.
1276     } else {
1277       __ z_larl(Z_R1_scratch, XC_template);
1278       __ z_ex(local_count, 0, Z_R0, Z_R1_scratch);  // Execute XC with variable length.
1279     }
1280 
1281     __ bind(locals_zeroed);
1282   }
1283 
1284   }
1285   // Finally set the frame pointer, destroying Z_method.
1286   assert(Z_fp == Z_method, "maybe set Z_fp earlier if other register than Z_method");
1287   // Oprofile analysis suggests to keep a copy in a register to be used by
1288   // generate_counter_incr().
1289   __ z_lgr(Z_ARG2, Z_method);
1290   __ z_lgr(Z_fp, fp);
1291 
1292   BLOCK_COMMENT("} generate_fixed_frame");
1293 }
1294 
1295 // Various method entries
1296 
1297 // Math function, frame manager must set up an interpreter state, etc.
1298 address TemplateInterpreterGenerator::generate_math_entry(AbstractInterpreter::MethodKind kind) {
1299 
1300   if (!InlineIntrinsics) { return NULL; } // Generate a vanilla entry.
1301 
1302   // Only support absolute value and square root.
1303   if (kind != Interpreter::java_lang_math_abs && kind != Interpreter::java_lang_math_sqrt) {
1304     return NULL;
1305   }
1306 
1307   BLOCK_COMMENT("math_entry {");
1308 
1309   address math_entry = __ pc();
1310 
1311   if (kind == Interpreter::java_lang_math_abs) {
1312     // Load operand from stack.
1313     __ mem2freg_opt(Z_FRET, Address(Z_esp, Interpreter::stackElementSize));
1314     __ z_lpdbr(Z_FRET);
1315   } else {
1316     // sqrt
1317     // Can use memory operand directly.
1318     __ z_sqdb(Z_FRET, Interpreter::stackElementSize, Z_esp);
1319   }
1320 
1321   // Restore caller sp for c2i case.
1322   __ resize_frame_absolute(Z_R10, Z_R0, true); // Cut the stack back to where the caller started.
1323 
1324   // We are done, return.
1325   __ z_br(Z_R14);
1326 
1327   BLOCK_COMMENT("} math_entry");
1328 
1329   return math_entry;
1330 }
1331 
1332 // Interpreter stub for calling a native method. (asm interpreter).
1333 // This sets up a somewhat different looking stack for calling the
1334 // native method than the typical interpreter frame setup.
1335 address TemplateInterpreterGenerator::generate_native_entry(bool synchronized) {
1336   // Determine code generation flags.
1337   bool inc_counter = UseCompiler || CountCompiledCalls || LogTouchedMethods;
1338 
1339   // Interpreter entry for ordinary Java methods.
1340   //
1341   // Registers alive
1342   //   Z_SP          - stack pointer
1343   //   Z_thread      - JavaThread*
1344   //   Z_method      - callee's method (method to be invoked)
1345   //   Z_esp         - operand (or expression) stack pointer of caller. one slot above last arg.
1346   //   Z_R10         - sender sp (before modifications, e.g. by c2i adapter
1347   //                   and as well by generate_fixed_frame below)
1348   //   Z_R14         - return address to caller (call_stub or c2i_adapter)
1349   //
1350   // Registers updated
1351   //   Z_SP          - stack pointer
1352   //   Z_fp          - callee's framepointer
1353   //   Z_esp         - callee's operand stack pointer
1354   //                   points to the slot above the value on top
1355   //   Z_locals      - used to access locals: locals[i] := *(Z_locals - i*BytesPerWord)
1356   //   Z_tos         - integer result, if any
1357   //   z_ftos        - floating point result, if any
1358   //
1359   // Stack layout at this point:
1360   //
1361   //   F1      [TOP_IJAVA_FRAME_ABI]         <-- Z_SP, Z_R10 (Z_R10 will be below Z_SP if
1362   //                                                          frame was extended by c2i adapter)
1363   //           [outgoing Java arguments]     <-- Z_esp
1364   //           ...
1365   //   PARENT  [PARENT_IJAVA_FRAME_ABI]
1366   //           ...
1367   //
1368 
1369   address entry_point = __ pc();
1370 
1371   // Make sure registers are different!
1372   assert_different_registers(Z_thread, Z_method, Z_esp);
1373 
1374   BLOCK_COMMENT("native_entry {");
1375 
1376   // Make sure method is native and not abstract.
1377 #ifdef ASSERT
1378   address reentry = NULL;
1379   { Label L;
1380     __ testbit(method_(access_flags), JVM_ACC_NATIVE_BIT);
1381     __ z_btrue(L);
1382     reentry = __ stop_chain_static(reentry, "tried to execute non-native method as native");
1383     __ bind(L);
1384   }
1385   { Label L;
1386     __ testbit(method_(access_flags), JVM_ACC_ABSTRACT_BIT);
1387     __ z_bfalse(L);
1388     reentry = __ stop_chain_static(reentry, "tried to execute abstract method as non-abstract");
1389     __ bind(L);
1390   }
1391 #endif // ASSERT
1392 
1393 #ifdef ASSERT
1394   // Save the return PC into the callers frame for assertion in generate_fixed_frame.
1395   __ save_return_pc(Z_R14);
1396 #endif
1397 
1398   // Generate the code to allocate the interpreter stack frame.
1399   generate_fixed_frame(true);
1400 
1401   const Address do_not_unlock_if_synchronized(Z_thread, JavaThread::do_not_unlock_if_synchronized_offset());
1402   // Since at this point in the method invocation the exception handler
1403   // would try to exit the monitor of synchronized methods which hasn't
1404   // been entered yet, we set the thread local variable
1405   // _do_not_unlock_if_synchronized to true. If any exception was thrown by
1406   // runtime, exception handling i.e. unlock_if_synchronized_method will
1407   // check this thread local flag.
1408   __ z_mvi(do_not_unlock_if_synchronized, true);
1409 
1410   // Increment invocation count and check for overflow.
1411   NearLabel invocation_counter_overflow;
1412   if (inc_counter) {
1413     generate_counter_incr(&invocation_counter_overflow, NULL, NULL);
1414   }
1415 
1416   Label continue_after_compile;
1417   __ bind(continue_after_compile);
1418 
1419   bang_stack_shadow_pages(true);
1420 
1421   // Reset the _do_not_unlock_if_synchronized flag.
1422   __ z_mvi(do_not_unlock_if_synchronized, false);
1423 
1424   // Check for synchronized methods.
1425   // This mst happen AFTER invocation_counter check and stack overflow check,
1426   // so method is not locked if overflows.
1427   if (synchronized) {
1428     lock_method();
1429   } else {
1430     // No synchronization necessary.
1431 #ifdef ASSERT
1432     { Label L;
1433       __ get_method(Z_R1_scratch);
1434       __ testbit(method2_(Z_R1_scratch, access_flags), JVM_ACC_SYNCHRONIZED_BIT);
1435       __ z_bfalse(L);
1436       reentry = __ stop_chain_static(reentry, "method needs synchronization");
1437       __ bind(L);
1438     }
1439 #endif // ASSERT
1440   }
1441 
1442   // start execution
1443 
1444   // jvmti support
1445   __ notify_method_entry();
1446 
1447   //=============================================================================
1448   // Get and call the signature handler.
1449   const Register Rmethod                 = Z_tmp_2;
1450   const Register signature_handler_entry = Z_tmp_1;
1451   const Register Rresult_handler         = Z_tmp_3;
1452   Label call_signature_handler;
1453 
1454   assert_different_registers(Z_fp, Rmethod, signature_handler_entry, Rresult_handler);
1455   assert(Rresult_handler->is_nonvolatile(), "Rresult_handler must be in a non-volatile register");
1456 
1457   // Reload method.
1458   __ get_method(Rmethod);
1459 
1460   // Check for signature handler.
1461   __ load_and_test_long(signature_handler_entry, method2_(Rmethod, signature_handler));
1462   __ z_brne(call_signature_handler);
1463 
1464   // Method has never been called. Either generate a specialized
1465   // handler or point to the slow one.
1466   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::prepare_native_call),
1467              Rmethod);
1468 
1469   // Reload method.
1470   __ get_method(Rmethod);
1471 
1472   // Reload signature handler, it must have been created/assigned in the meantime.
1473   __ z_lg(signature_handler_entry, method2_(Rmethod, signature_handler));
1474 
1475   __ bind(call_signature_handler);
1476 
1477   // We have a TOP_IJAVA_FRAME here, which belongs to us.
1478   __ set_top_ijava_frame_at_SP_as_last_Java_frame(Z_SP, Z_R1/*tmp*/);
1479 
1480   // Call signature handler and pass locals address in Z_ARG1.
1481   __ z_lgr(Z_ARG1, Z_locals);
1482   __ call_stub(signature_handler_entry);
1483   // Save result handler returned by signature handler.
1484   __ z_lgr(Rresult_handler, Z_RET);
1485 
1486   // Reload method (the slow signature handler may block for GC).
1487   __ get_method(Rmethod);
1488 
1489   // Pass mirror handle if static call.
1490   {
1491     Label method_is_not_static;
1492     __ testbit(method2_(Rmethod, access_flags), JVM_ACC_STATIC_BIT);
1493     __ z_bfalse(method_is_not_static);
1494     // Get mirror.
1495     __ load_mirror(Z_R1, Rmethod);
1496     // z_ijava_state.oop_temp = pool_holder->klass_part()->java_mirror();
1497     __ z_stg(Z_R1, oop_tmp_offset, Z_fp);
1498     // Pass handle to mirror as 2nd argument to JNI method.
1499     __ add2reg(Z_ARG2, oop_tmp_offset, Z_fp);
1500     __ bind(method_is_not_static);
1501   }
1502 
1503   // Pass JNIEnv address as first parameter.
1504   __ add2reg(Z_ARG1, in_bytes(JavaThread::jni_environment_offset()), Z_thread);
1505 
1506   // Note: last java frame has been set above already. The pc from there
1507   // is precise enough.
1508 
1509   // Get native function entry point before we change the thread state.
1510   __ z_lg(Z_R1/*native_method_entry*/, method2_(Rmethod, native_function));
1511 
1512   //=============================================================================
1513   // Transition from _thread_in_Java to _thread_in_native. As soon as
1514   // we make this change the safepoint code needs to be certain that
1515   // the last Java frame we established is good. The pc in that frame
1516   // just need to be near here not an actual return address.
1517 #ifdef ASSERT
1518   {
1519     NearLabel L;
1520     __ mem2reg_opt(Z_R14, Address(Z_thread, JavaThread::thread_state_offset()), false /*32 bits*/);
1521     __ compareU32_and_branch(Z_R14, _thread_in_Java, Assembler::bcondEqual, L);
1522     reentry = __ stop_chain_static(reentry, "Wrong thread state in native stub");
1523     __ bind(L);
1524   }
1525 #endif
1526 
1527   // Memory ordering: Z does not reorder store/load with subsequent load. That's strong enough.
1528   __ set_thread_state(_thread_in_native);
1529 
1530   //=============================================================================
1531   // Call the native method. Argument registers must not have been
1532   // overwritten since "__ call_stub(signature_handler);" (except for
1533   // ARG1 and ARG2 for static methods).
1534 
1535   __ call_c(Z_R1/*native_method_entry*/);
1536 
1537   // NOTE: frame::interpreter_frame_result() depends on these stores.
1538   __ z_stg(Z_RET, _z_ijava_state_neg(lresult), Z_fp);
1539   __ freg2mem_opt(Z_FRET, Address(Z_fp, _z_ijava_state_neg(fresult)));
1540   const Register Rlresult = signature_handler_entry;
1541   assert(Rlresult->is_nonvolatile(), "Rlresult must be in a non-volatile register");
1542   __ z_lgr(Rlresult, Z_RET);
1543 
1544   // Z_method may no longer be valid, because of GC.
1545 
1546   // Block, if necessary, before resuming in _thread_in_Java state.
1547   // In order for GC to work, don't clear the last_Java_sp until after
1548   // blocking.
1549 
1550   //=============================================================================
1551   // Switch thread to "native transition" state before reading the
1552   // synchronization state. This additional state is necessary
1553   // because reading and testing the synchronization state is not
1554   // atomic w.r.t. GC, as this scenario demonstrates: Java thread A,
1555   // in _thread_in_native state, loads _not_synchronized and is
1556   // preempted. VM thread changes sync state to synchronizing and
1557   // suspends threads for GC. Thread A is resumed to finish this
1558   // native method, but doesn't block here since it didn't see any
1559   // synchronization is progress, and escapes.
1560 
1561   __ set_thread_state(_thread_in_native_trans);
1562   if (UseMembar) {
1563     __ z_fence();
1564   } else {
1565     // Write serialization page so VM thread can do a pseudo remote
1566     // membar. We use the current thread pointer to calculate a thread
1567     // specific offset to write to within the page. This minimizes bus
1568     // traffic due to cache line collision.
1569     __ serialize_memory(Z_thread, Z_R1, Z_R0);
1570   }
1571   // Now before we return to java we must look for a current safepoint
1572   // (a new safepoint can not start since we entered native_trans).
1573   // We must check here because a current safepoint could be modifying
1574   // the callers registers right this moment.
1575 
1576   // Check for safepoint operation in progress and/or pending suspend requests.
1577   {
1578     Label Continue, do_safepoint;
1579     __ generate_safepoint_check(do_safepoint, Z_R1, true);
1580     // Check for suspend.
1581     __ load_and_test_int(Z_R0/*suspend_flags*/, thread_(suspend_flags));
1582     __ z_bre(Continue); // 0 -> no flag set -> not suspended
1583     __ bind(do_safepoint);
1584     __ z_lgr(Z_ARG1, Z_thread);
1585     __ call_c(CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans));
1586     __ bind(Continue);
1587   }
1588 
1589   //=============================================================================
1590   // Back in Interpreter Frame.
1591 
1592   // We are in thread_in_native_trans here and back in the normal
1593   // interpreter frame. We don't have to do anything special about
1594   // safepoints and we can switch to Java mode anytime we are ready.
1595 
1596   // Note: frame::interpreter_frame_result has a dependency on how the
1597   // method result is saved across the call to post_method_exit. For
1598   // native methods it assumes that the non-FPU/non-void result is
1599   // saved in z_ijava_state.lresult and a FPU result in z_ijava_state.fresult. If
1600   // this changes then the interpreter_frame_result implementation
1601   // will need to be updated too.
1602 
1603   //=============================================================================
1604   // Back in Java.
1605 
1606   // Memory ordering: Z does not reorder store/load with subsequent
1607   // load. That's strong enough.
1608   __ set_thread_state(_thread_in_Java);
1609 
1610   __ reset_last_Java_frame();
1611 
1612   // We reset the JNI handle block only after unboxing the result; see below.
1613 
1614   // The method register is junk from after the thread_in_native transition
1615   // until here. Also can't call_VM until the bcp has been
1616   // restored. Need bcp for throwing exception below so get it now.
1617   __ get_method(Rmethod);
1618 
1619   // Restore Z_bcp to have legal interpreter frame,
1620   // i.e., bci == 0 <=> Z_bcp == code_base().
1621   __ z_lg(Z_bcp, Address(Rmethod, Method::const_offset())); // get constMethod
1622   __ add2reg(Z_bcp, in_bytes(ConstMethod::codes_offset())); // get codebase
1623 
1624   if (CheckJNICalls) {
1625     // clear_pending_jni_exception_check
1626     __ clear_mem(Address(Z_thread, JavaThread::pending_jni_exception_check_fn_offset()), sizeof(oop));
1627   }
1628 
1629   // Check if the native method returns an oop, and if so, move it
1630   // from the jni handle to z_ijava_state.oop_temp. This is
1631   // necessary, because we reset the jni handle block below.
1632   // NOTE: frame::interpreter_frame_result() depends on this, too.
1633   { NearLabel no_oop_result, store_oop_result;
1634   __ load_absolute_address(Z_R1, AbstractInterpreter::result_handler(T_OBJECT));
1635   __ compareU64_and_branch(Z_R1, Rresult_handler, Assembler::bcondNotEqual, no_oop_result);
1636   __ compareU64_and_branch(Rlresult, (intptr_t)0L, Assembler::bcondEqual, store_oop_result);
1637   __ z_lg(Rlresult, 0, Rlresult);  // unbox
1638   __ bind(store_oop_result);
1639   __ z_stg(Rlresult, oop_tmp_offset, Z_fp);
1640   __ verify_oop(Rlresult);
1641   __ bind(no_oop_result);
1642   }
1643 
1644   // Reset handle block.
1645   __ z_lg(Z_R1/*active_handles*/, thread_(active_handles));
1646   __ clear_mem(Address(Z_R1, JNIHandleBlock::top_offset_in_bytes()), 4);
1647 
1648   // Bandle exceptions (exception handling will handle unlocking!).
1649   {
1650     Label L;
1651     __ load_and_test_long(Z_R0/*pending_exception*/, thread_(pending_exception));
1652     __ z_bre(L);
1653     __ MacroAssembler::call_VM(noreg,
1654                                CAST_FROM_FN_PTR(address,
1655                                InterpreterRuntime::throw_pending_exception));
1656     __ should_not_reach_here();
1657     __ bind(L);
1658   }
1659 
1660   if (synchronized) {
1661     Register Rfirst_monitor = Z_ARG2;
1662     __ add2reg(Rfirst_monitor, -(frame::z_ijava_state_size + (int)sizeof(BasicObjectLock)), Z_fp);
1663 #ifdef ASSERT
1664     NearLabel ok;
1665     __ z_lg(Z_R1, _z_ijava_state_neg(monitors), Z_fp);
1666     __ compareU64_and_branch(Rfirst_monitor, Z_R1, Assembler::bcondEqual, ok);
1667     reentry = __ stop_chain_static(reentry, "native_entry:unlock: inconsistent z_ijava_state.monitors");
1668     __ bind(ok);
1669 #endif
1670     __ unlock_object(Rfirst_monitor);
1671   }
1672 
1673   // JVMTI support. Result has already been saved above to the frame.
1674   __ notify_method_exit(true/*native_method*/, ilgl, InterpreterMacroAssembler::NotifyJVMTI);
1675 
1676   // Move native method result back into proper registers and return.
1677   // C++ interpreter does not use result handler. So do we need to here? TODO(ZASM): check if correct.
1678   { NearLabel no_oop_or_null;
1679   __ mem2freg_opt(Z_FRET, Address(Z_fp, _z_ijava_state_neg(fresult)));
1680   __ load_and_test_long(Z_RET, Address(Z_fp, _z_ijava_state_neg(lresult)));
1681   __ z_bre(no_oop_or_null); // No unboxing if the result is NULL.
1682   __ load_absolute_address(Z_R1, AbstractInterpreter::result_handler(T_OBJECT));
1683   __ compareU64_and_branch(Z_R1, Rresult_handler, Assembler::bcondNotEqual, no_oop_or_null);
1684   __ z_lg(Z_RET, oop_tmp_offset, Z_fp);
1685   __ verify_oop(Z_RET);
1686   __ bind(no_oop_or_null);
1687   }
1688 
1689   // Pop the native method's interpreter frame.
1690   __ pop_interpreter_frame(Z_R14 /*return_pc*/, Z_ARG2/*tmp1*/, Z_ARG3/*tmp2*/);
1691 
1692   // Return to caller.
1693   __ z_br(Z_R14);
1694 
1695   if (inc_counter) {
1696     // Handle overflow of counter and compile method.
1697     __ bind(invocation_counter_overflow);
1698     generate_counter_overflow(continue_after_compile);
1699   }
1700 
1701   BLOCK_COMMENT("} native_entry");
1702 
1703   return entry_point;
1704 }
1705 
1706 //
1707 // Generic interpreted method entry to template interpreter.
1708 //
1709 address TemplateInterpreterGenerator::generate_normal_entry(bool synchronized) {
1710   address entry_point = __ pc();
1711 
1712   bool inc_counter = UseCompiler || CountCompiledCalls || LogTouchedMethods;
1713 
1714   // Interpreter entry for ordinary Java methods.
1715   //
1716   // Registers alive
1717   //   Z_SP       - stack pointer
1718   //   Z_thread   - JavaThread*
1719   //   Z_method   - callee's method (method to be invoked)
1720   //   Z_esp      - operand (or expression) stack pointer of caller. one slot above last arg.
1721   //   Z_R10      - sender sp (before modifications, e.g. by c2i adapter
1722   //                           and as well by generate_fixed_frame below)
1723   //   Z_R14      - return address to caller (call_stub or c2i_adapter)
1724   //
1725   // Registers updated
1726   //   Z_SP       - stack pointer
1727   //   Z_fp       - callee's framepointer
1728   //   Z_esp      - callee's operand stack pointer
1729   //                points to the slot above the value on top
1730   //   Z_locals   - used to access locals: locals[i] := *(Z_locals - i*BytesPerWord)
1731   //   Z_tos      - integer result, if any
1732   //   z_ftos     - floating point result, if any
1733   //
1734   //
1735   // stack layout at this point:
1736   //
1737   //   F1      [TOP_IJAVA_FRAME_ABI]         <-- Z_SP, Z_R10 (Z_R10 will be below Z_SP if
1738   //                                                          frame was extended by c2i adapter)
1739   //           [outgoing Java arguments]     <-- Z_esp
1740   //           ...
1741   //   PARENT  [PARENT_IJAVA_FRAME_ABI]
1742   //           ...
1743   //
1744   // stack layout before dispatching the first bytecode:
1745   //
1746   //   F0      [TOP_IJAVA_FRAME_ABI]         <-- Z_SP
1747   //           [operand stack]               <-- Z_esp
1748   //           monitor (optional, can grow)
1749   //           [IJAVA_STATE]
1750   //   F1      [PARENT_IJAVA_FRAME_ABI]      <-- Z_fp (== *Z_SP)
1751   //           [F0's locals]                 <-- Z_locals
1752   //           [F1's operand stack]
1753   //           [F1's monitors] (optional)
1754   //           [IJAVA_STATE]
1755 
1756   // Make sure registers are different!
1757   assert_different_registers(Z_thread, Z_method, Z_esp);
1758 
1759   BLOCK_COMMENT("normal_entry {");
1760 
1761   // Make sure method is not native and not abstract.
1762   // Rethink these assertions - they can be simplified and shared.
1763 #ifdef ASSERT
1764   address reentry = NULL;
1765   { Label L;
1766     __ testbit(method_(access_flags), JVM_ACC_NATIVE_BIT);
1767     __ z_bfalse(L);
1768     reentry = __ stop_chain_static(reentry, "tried to execute native method as non-native");
1769     __ bind(L);
1770   }
1771   { Label L;
1772     __ testbit(method_(access_flags), JVM_ACC_ABSTRACT_BIT);
1773     __ z_bfalse(L);
1774     reentry = __ stop_chain_static(reentry, "tried to execute abstract method as non-abstract");
1775     __ bind(L);
1776   }
1777 #endif // ASSERT
1778 
1779 #ifdef ASSERT
1780   // Save the return PC into the callers frame for assertion in generate_fixed_frame.
1781   __ save_return_pc(Z_R14);
1782 #endif
1783 
1784   // Generate the code to allocate the interpreter stack frame.
1785   generate_fixed_frame(false);
1786 
1787   const Address do_not_unlock_if_synchronized(Z_thread, JavaThread::do_not_unlock_if_synchronized_offset());
1788   // Since at this point in the method invocation the exception handler
1789   // would try to exit the monitor of synchronized methods which hasn't
1790   // been entered yet, we set the thread local variable
1791   // _do_not_unlock_if_synchronized to true. If any exception was thrown by
1792   // runtime, exception handling i.e. unlock_if_synchronized_method will
1793   // check this thread local flag.
1794   __ z_mvi(do_not_unlock_if_synchronized, true);
1795 
1796   __ profile_parameters_type(Z_tmp_2, Z_ARG3, Z_ARG4);
1797 
1798   // Increment invocation counter and check for overflow.
1799   //
1800   // Note: checking for negative value instead of overflow so we have a 'sticky'
1801   // overflow test (may be of importance as soon as we have true MT/MP).
1802   NearLabel invocation_counter_overflow;
1803   NearLabel profile_method;
1804   NearLabel profile_method_continue;
1805   NearLabel Lcontinue;
1806   if (inc_counter) {
1807     generate_counter_incr(&invocation_counter_overflow, &profile_method, &profile_method_continue);
1808     if (ProfileInterpreter) {
1809       __ bind(profile_method_continue);
1810     }
1811   }
1812   __ bind(Lcontinue);
1813 
1814   bang_stack_shadow_pages(false);
1815 
1816   // Reset the _do_not_unlock_if_synchronized flag.
1817   __ z_mvi(do_not_unlock_if_synchronized, false);
1818 
1819   // Check for synchronized methods.
1820   // Must happen AFTER invocation_counter check and stack overflow check,
1821   // so method is not locked if overflows.
1822   if (synchronized) {
1823     // Allocate monitor and lock method.
1824     lock_method();
1825   } else {
1826 #ifdef ASSERT
1827     { Label L;
1828       __ get_method(Z_R1_scratch);
1829       __ testbit(method2_(Z_R1_scratch, access_flags), JVM_ACC_SYNCHRONIZED_BIT);
1830       __ z_bfalse(L);
1831       reentry = __ stop_chain_static(reentry, "method needs synchronization");
1832       __ bind(L);
1833     }
1834 #endif // ASSERT
1835   }
1836 
1837   // start execution
1838 
1839 #ifdef ASSERT
1840   __ verify_esp(Z_esp, Z_R1_scratch);
1841 
1842   __ verify_thread();
1843 #endif
1844 
1845   // jvmti support
1846   __ notify_method_entry();
1847 
1848   // Start executing instructions.
1849   __ dispatch_next(vtos);
1850   // Dispatch_next does not return.
1851   DEBUG_ONLY(__ should_not_reach_here());
1852 
1853   // Invocation counter overflow.
1854   if (inc_counter) {
1855     if (ProfileInterpreter) {
1856       // We have decided to profile this method in the interpreter.
1857       __ bind(profile_method);
1858 
1859       __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method));
1860       __ set_method_data_pointer_for_bcp();
1861       __ z_bru(profile_method_continue);
1862     }
1863 
1864     // Handle invocation counter overflow.
1865     __ bind(invocation_counter_overflow);
1866     generate_counter_overflow(Lcontinue);
1867   }
1868 
1869   BLOCK_COMMENT("} normal_entry");
1870 
1871   return entry_point;
1872 }
1873 
1874 // Method entry for static native methods:
1875 //   int java.util.zip.CRC32.update(int crc, int b)
1876 address TemplateInterpreterGenerator::generate_CRC32_update_entry() {
1877 
1878   if (UseCRC32Intrinsics) {
1879     uint64_t entry_off = __ offset();
1880     Label    slow_path;
1881 
1882     // If we need a safepoint check, generate full interpreter entry.
1883     __ generate_safepoint_check(slow_path, Z_R1, false);
1884 
1885     BLOCK_COMMENT("CRC32_update {");
1886 
1887     // We don't generate local frame and don't align stack because
1888     // we not even call stub code (we generate the code inline)
1889     // and there is no safepoint on this path.
1890 
1891     // Load java parameters.
1892     // Z_esp is callers operand stack pointer, i.e. it points to the parameters.
1893     const Register argP    = Z_esp;
1894     const Register crc     = Z_ARG1;  // crc value
1895     const Register data    = Z_ARG2;  // address of java byte value (kernel_crc32 needs address)
1896     const Register dataLen = Z_ARG3;  // source data len (1 byte). Not used because calling the single-byte emitter.
1897     const Register table   = Z_ARG4;  // address of crc32 table
1898 
1899     // Arguments are reversed on java expression stack.
1900     __ z_la(data, 3+1*wordSize, argP);  // byte value (stack address).
1901                                         // Being passed as an int, the single byte is at offset +3.
1902     __ z_llgf(crc, 2 * wordSize, argP); // Current crc state, zero extend to 64 bit to have a clean register.
1903 
1904     StubRoutines::zarch::generate_load_crc_table_addr(_masm, table);
1905     __ kernel_crc32_singleByte(crc, data, dataLen, table, Z_R1);
1906 
1907     // Restore caller sp for c2i case.
1908     __ resize_frame_absolute(Z_R10, Z_R0, true); // Cut the stack back to where the caller started.
1909 
1910     __ z_br(Z_R14);
1911 
1912     BLOCK_COMMENT("} CRC32_update");
1913 
1914     // Use a previously generated vanilla native entry as the slow path.
1915     BIND(slow_path);
1916     __ jump_to_entry(Interpreter::entry_for_kind(Interpreter::native), Z_R1);
1917     return __ addr_at(entry_off);
1918   }
1919 
1920   return NULL;
1921 }
1922 
1923 
1924 // Method entry for static native methods:
1925 //   int java.util.zip.CRC32.updateBytes(int crc, byte[] b, int off, int len)
1926 //   int java.util.zip.CRC32.updateByteBuffer(int crc, long buf, int off, int len)
1927 address TemplateInterpreterGenerator::generate_CRC32_updateBytes_entry(AbstractInterpreter::MethodKind kind) {
1928 
1929   if (UseCRC32Intrinsics) {
1930     uint64_t entry_off = __ offset();
1931     Label    slow_path;
1932 
1933     // If we need a safepoint check, generate full interpreter entry.
1934     __ generate_safepoint_check(slow_path, Z_R1, false);
1935 
1936     // We don't generate local frame and don't align stack because
1937     // we call stub code and there is no safepoint on this path.
1938 
1939     // Load parameters.
1940     // Z_esp is callers operand stack pointer, i.e. it points to the parameters.
1941     const Register argP    = Z_esp;
1942     const Register crc     = Z_ARG1;  // crc value
1943     const Register data    = Z_ARG2;  // address of java byte array
1944     const Register dataLen = Z_ARG3;  // source data len
1945     const Register table   = Z_ARG4;  // address of crc32 table
1946     const Register t0      = Z_R10;   // work reg for kernel* emitters
1947     const Register t1      = Z_R11;   // work reg for kernel* emitters
1948     const Register t2      = Z_R12;   // work reg for kernel* emitters
1949     const Register t3      = Z_R13;   // work reg for kernel* emitters
1950 
1951     // Arguments are reversed on java expression stack.
1952     // Calculate address of start element.
1953     if (kind == Interpreter::java_util_zip_CRC32_updateByteBuffer) { // Used for "updateByteBuffer direct".
1954       // crc     @ (SP + 5W) (32bit)
1955       // buf     @ (SP + 3W) (64bit ptr to long array)
1956       // off     @ (SP + 2W) (32bit)
1957       // dataLen @ (SP + 1W) (32bit)
1958       // data = buf + off
1959       BLOCK_COMMENT("CRC32_updateByteBuffer {");
1960       __ z_llgf(crc,    5*wordSize, argP);  // current crc state
1961       __ z_lg(data,    3*wordSize, argP);   // start of byte buffer
1962       __ z_agf(data,    2*wordSize, argP);  // Add byte buffer offset.
1963       __ z_lgf(dataLen, 1*wordSize, argP);  // #bytes to process
1964     } else {                         // Used for "updateBytes update".
1965       // crc     @ (SP + 4W) (32bit)
1966       // buf     @ (SP + 3W) (64bit ptr to byte array)
1967       // off     @ (SP + 2W) (32bit)
1968       // dataLen @ (SP + 1W) (32bit)
1969       // data = buf + off + base_offset
1970       BLOCK_COMMENT("CRC32_updateBytes {");
1971       __ z_llgf(crc,    4*wordSize, argP);  // current crc state
1972       __ z_lg(data,    3*wordSize, argP);   // start of byte buffer
1973       __ z_agf(data,    2*wordSize, argP);  // Add byte buffer offset.
1974       __ z_lgf(dataLen, 1*wordSize, argP);  // #bytes to process
1975       __ z_aghi(data, arrayOopDesc::base_offset_in_bytes(T_BYTE));
1976     }
1977 
1978     StubRoutines::zarch::generate_load_crc_table_addr(_masm, table);
1979 
1980     __ resize_frame(-(6*8), Z_R0, true); // Resize frame to provide add'l space to spill 5 registers.
1981     __ z_stmg(t0, t3, 1*8, Z_SP);        // Spill regs 10..13 to make them available as work registers.
1982     __ kernel_crc32_1word(crc, data, dataLen, table, t0, t1, t2, t3);
1983     __ z_lmg(t0, t3, 1*8, Z_SP);         // Spill regs 10..13 back from stack.
1984 
1985     // Restore caller sp for c2i case.
1986     __ resize_frame_absolute(Z_R10, Z_R0, true); // Cut the stack back to where the caller started.
1987 
1988     __ z_br(Z_R14);
1989 
1990     BLOCK_COMMENT("} CRC32_update{Bytes|ByteBuffer}");
1991 
1992     // Use a previously generated vanilla native entry as the slow path.
1993     BIND(slow_path);
1994     __ jump_to_entry(Interpreter::entry_for_kind(Interpreter::native), Z_R1);
1995     return __ addr_at(entry_off);
1996   }
1997 
1998   return NULL;
1999 }
2000 
2001 // Not supported
2002 address TemplateInterpreterGenerator::generate_CRC32C_updateBytes_entry(AbstractInterpreter::MethodKind kind) {
2003   return NULL;
2004 }
2005 
2006 void TemplateInterpreterGenerator::bang_stack_shadow_pages(bool native_call) {
2007   // Quick & dirty stack overflow checking: bang the stack & handle trap.
2008   // Note that we do the banging after the frame is setup, since the exception
2009   // handling code expects to find a valid interpreter frame on the stack.
2010   // Doing the banging earlier fails if the caller frame is not an interpreter
2011   // frame.
2012   // (Also, the exception throwing code expects to unlock any synchronized
2013   // method receiver, so do the banging after locking the receiver.)
2014 
2015   // Bang each page in the shadow zone. We can't assume it's been done for
2016   // an interpreter frame with greater than a page of locals, so each page
2017   // needs to be checked. Only true for non-native. For native, we only bang the last page.
2018   if (UseStackBanging) {
2019     const int page_size      = os::vm_page_size();
2020     const int n_shadow_pages = (int)(JavaThread::stack_shadow_zone_size()/page_size);
2021     const int start_page_num = native_call ? n_shadow_pages : 1;
2022     for (int pages = start_page_num; pages <= n_shadow_pages; pages++) {
2023       __ bang_stack_with_offset(pages*page_size);
2024     }
2025   }
2026 }
2027 
2028 //-----------------------------------------------------------------------------
2029 // Exceptions
2030 
2031 void TemplateInterpreterGenerator::generate_throw_exception() {
2032 
2033   BLOCK_COMMENT("throw_exception {");
2034 
2035   // Entry point in previous activation (i.e., if the caller was interpreted).
2036   Interpreter::_rethrow_exception_entry = __ pc();
2037   __ z_lg(Z_fp, _z_abi(callers_sp), Z_SP); // Frame accessors use Z_fp.
2038   // Z_ARG1 (==Z_tos): exception
2039   // Z_ARG2          : Return address/pc that threw exception.
2040   __ restore_bcp();    // R13 points to call/send.
2041   __ restore_locals();
2042 
2043   // Fallthrough, no need to restore Z_esp.
2044 
2045   // Entry point for exceptions thrown within interpreter code.
2046   Interpreter::_throw_exception_entry = __ pc();
2047   // Expression stack is undefined here.
2048   // Z_ARG1 (==Z_tos): exception
2049   // Z_bcp: exception bcp
2050   __ verify_oop(Z_ARG1);
2051   __ z_lgr(Z_ARG2, Z_ARG1);
2052 
2053   // Expression stack must be empty before entering the VM in case of
2054   // an exception.
2055   __ empty_expression_stack();
2056   // Find exception handler address and preserve exception oop.
2057   const Register Rpreserved_exc_oop = Z_tmp_1;
2058   __ call_VM(Rpreserved_exc_oop,
2059              CAST_FROM_FN_PTR(address, InterpreterRuntime::exception_handler_for_exception),
2060              Z_ARG2);
2061   // Z_RET: exception handler entry point
2062   // Z_bcp: bcp for exception handler
2063   __ push_ptr(Rpreserved_exc_oop); // Push exception which is now the only value on the stack.
2064   __ z_br(Z_RET); // Jump to exception handler (may be _remove_activation_entry!).
2065 
2066   // If the exception is not handled in the current frame the frame is
2067   // removed and the exception is rethrown (i.e. exception
2068   // continuation is _rethrow_exception).
2069   //
2070   // Note: At this point the bci is still the bci for the instruction
2071   // which caused the exception and the expression stack is
2072   // empty. Thus, for any VM calls at this point, GC will find a legal
2073   // oop map (with empty expression stack).
2074 
2075   //
2076   // JVMTI PopFrame support
2077   //
2078 
2079   Interpreter::_remove_activation_preserving_args_entry = __ pc();
2080   __ z_lg(Z_fp, _z_parent_ijava_frame_abi(callers_sp), Z_SP);
2081   __ empty_expression_stack();
2082   // Set the popframe_processing bit in pending_popframe_condition
2083   // indicating that we are currently handling popframe, so that
2084   // call_VMs that may happen later do not trigger new popframe
2085   // handling cycles.
2086   __ load_sized_value(Z_tmp_1, Address(Z_thread, JavaThread::popframe_condition_offset()), 4, false /*signed*/);
2087   __ z_oill(Z_tmp_1, JavaThread::popframe_processing_bit);
2088   __ z_sty(Z_tmp_1, thread_(popframe_condition));
2089 
2090   {
2091     // Check to see whether we are returning to a deoptimized frame.
2092     // (The PopFrame call ensures that the caller of the popped frame is
2093     // either interpreted or compiled and deoptimizes it if compiled.)
2094     // In this case, we can't call dispatch_next() after the frame is
2095     // popped, but instead must save the incoming arguments and restore
2096     // them after deoptimization has occurred.
2097     //
2098     // Note that we don't compare the return PC against the
2099     // deoptimization blob's unpack entry because of the presence of
2100     // adapter frames in C2.
2101     NearLabel caller_not_deoptimized;
2102     __ z_lg(Z_ARG1, _z_parent_ijava_frame_abi(return_pc), Z_fp);
2103     __ call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::interpreter_contains), Z_ARG1);
2104     __ compareU64_and_branch(Z_RET, (intptr_t)0, Assembler::bcondNotEqual, caller_not_deoptimized);
2105 
2106     // Compute size of arguments for saving when returning to
2107     // deoptimized caller.
2108     __ get_method(Z_ARG2);
2109     __ z_lg(Z_ARG2, Address(Z_ARG2, Method::const_offset()));
2110     __ z_llgh(Z_ARG2, Address(Z_ARG2, ConstMethod::size_of_parameters_offset()));
2111     __ z_sllg(Z_ARG2, Z_ARG2, Interpreter::logStackElementSize); // slots 2 bytes
2112     __ restore_locals();
2113     // Compute address of args to be saved.
2114     __ z_lgr(Z_ARG3, Z_locals);
2115     __ z_slgr(Z_ARG3, Z_ARG2);
2116     __ add2reg(Z_ARG3, wordSize);
2117     // Save these arguments.
2118     __ call_VM_leaf(CAST_FROM_FN_PTR(address, Deoptimization::popframe_preserve_args),
2119                     Z_thread, Z_ARG2, Z_ARG3);
2120 
2121     __ remove_activation(vtos, Z_R14,
2122                          /* throw_monitor_exception */ false,
2123                          /* install_monitor_exception */ false,
2124                          /* notify_jvmdi */ false);
2125 
2126     // Inform deoptimization that it is responsible for restoring
2127     // these arguments.
2128     __ store_const(thread_(popframe_condition),
2129                    JavaThread::popframe_force_deopt_reexecution_bit,
2130                    Z_tmp_1, false);
2131 
2132     // Continue in deoptimization handler.
2133     __ z_br(Z_R14);
2134 
2135     __ bind(caller_not_deoptimized);
2136   }
2137 
2138   // Clear the popframe condition flag.
2139   __ clear_mem(thread_(popframe_condition), sizeof(int));
2140 
2141   __ remove_activation(vtos,
2142                        noreg,  // Retaddr is not used.
2143                        false,  // throw_monitor_exception
2144                        false,  // install_monitor_exception
2145                        false); // notify_jvmdi
2146   __ z_lg(Z_fp, _z_abi(callers_sp), Z_SP); // Restore frame pointer.
2147   __ restore_bcp();
2148   __ restore_locals();
2149   __ restore_esp();
2150   // The method data pointer was incremented already during
2151   // call profiling. We have to restore the mdp for the current bcp.
2152   if (ProfileInterpreter) {
2153     __ set_method_data_pointer_for_bcp();
2154   }
2155 #if INCLUDE_JVMTI
2156   {
2157     Label L_done;
2158 
2159     __ z_cli(0, Z_bcp, Bytecodes::_invokestatic);
2160     __ z_brc(Assembler::bcondNotEqual, L_done);
2161 
2162     // The member name argument must be restored if _invokestatic is
2163     // re-executed after a PopFrame call.  Detect such a case in the
2164     // InterpreterRuntime function and return the member name
2165     // argument, or NULL.
2166     __ z_lg(Z_ARG2, Address(Z_locals));
2167     __ get_method(Z_ARG3);
2168     __ call_VM(Z_tmp_1,
2169                CAST_FROM_FN_PTR(address, InterpreterRuntime::member_name_arg_or_null),
2170                Z_ARG2, Z_ARG3, Z_bcp);
2171 
2172     __ z_ltgr(Z_tmp_1, Z_tmp_1);
2173     __ z_brc(Assembler::bcondEqual, L_done);
2174 
2175     __ z_stg(Z_tmp_1, Address(Z_esp, wordSize));
2176     __ bind(L_done);
2177   }
2178 #endif // INCLUDE_JVMTI
2179   __ dispatch_next(vtos);
2180   // End of PopFrame support.
2181   Interpreter::_remove_activation_entry = __ pc();
2182 
2183   // In between activations - previous activation type unknown yet
2184   // compute continuation point - the continuation point expects the
2185   // following registers set up:
2186   //
2187   // Z_ARG1 (==Z_tos): exception
2188   // Z_ARG2          : return address/pc that threw exception
2189 
2190   Register return_pc = Z_tmp_1;
2191   Register handler   = Z_tmp_2;
2192    assert(return_pc->is_nonvolatile(), "use non-volatile reg. to preserve exception pc");
2193    assert(handler->is_nonvolatile(),   "use non-volatile reg. to handler pc");
2194   __ asm_assert_ijava_state_magic(return_pc/*tmp*/); // The top frame should be an interpreter frame.
2195   __ z_lg(return_pc, _z_parent_ijava_frame_abi(return_pc), Z_fp);
2196 
2197   // Moved removing the activation after VM call, because the new top
2198   // frame does not necessarily have the z_abi_160 required for a VM
2199   // call (e.g. if it is compiled).
2200 
2201   __ super_call_VM_leaf(CAST_FROM_FN_PTR(address,
2202                                          SharedRuntime::exception_handler_for_return_address),
2203                         Z_thread, return_pc);
2204   __ z_lgr(handler, Z_RET); // Save exception handler.
2205 
2206   // Preserve exception over this code sequence.
2207   __ pop_ptr(Z_ARG1);
2208   __ set_vm_result(Z_ARG1);
2209   // Remove the activation (without doing throws on illegalMonitorExceptions).
2210   __ remove_activation(vtos, noreg/*ret.pc already loaded*/, false/*throw exc*/, true/*install exc*/, false/*notify jvmti*/);
2211   __ z_lg(Z_fp, _z_abi(callers_sp), Z_SP); // Restore frame pointer.
2212 
2213   __ get_vm_result(Z_ARG1);     // Restore exception.
2214   __ verify_oop(Z_ARG1);
2215   __ z_lgr(Z_ARG2, return_pc);  // Restore return address.
2216 
2217 #ifdef ASSERT
2218   // The return_pc in the new top frame is dead... at least that's my
2219   // current understanding. To assert this I overwrite it.
2220   // Note: for compiled frames the handler is the deopt blob
2221   // which writes Z_ARG2 into the return_pc slot.
2222   __ load_const_optimized(return_pc, 0xb00b1);
2223   __ z_stg(return_pc, _z_parent_ijava_frame_abi(return_pc), Z_SP);
2224 #endif
2225 
2226   // Z_ARG1 (==Z_tos): exception
2227   // Z_ARG2          : return address/pc that threw exception
2228 
2229   // Note that an "issuing PC" is actually the next PC after the call.
2230   __ z_br(handler);         // Jump to exception handler of caller.
2231 
2232   BLOCK_COMMENT("} throw_exception");
2233 }
2234 
2235 //
2236 // JVMTI ForceEarlyReturn support
2237 //
2238 address TemplateInterpreterGenerator::generate_earlyret_entry_for (TosState state) {
2239   address entry = __ pc();
2240 
2241   BLOCK_COMMENT("earlyret_entry {");
2242 
2243   __ z_lg(Z_fp, _z_parent_ijava_frame_abi(callers_sp), Z_SP);
2244   __ restore_bcp();
2245   __ restore_locals();
2246   __ restore_esp();
2247   __ empty_expression_stack();
2248   __ load_earlyret_value(state);
2249 
2250   Register RjvmtiState = Z_tmp_1;
2251   __ z_lg(RjvmtiState, thread_(jvmti_thread_state));
2252   __ store_const(Address(RjvmtiState, JvmtiThreadState::earlyret_state_offset()),
2253                  JvmtiThreadState::earlyret_inactive, 4, 4, Z_R0_scratch);
2254 
2255   __ remove_activation(state,
2256                        Z_tmp_1, // retaddr
2257                        false,   // throw_monitor_exception
2258                        false,   // install_monitor_exception
2259                        true);   // notify_jvmdi
2260   __ z_br(Z_tmp_1);
2261 
2262   BLOCK_COMMENT("} earlyret_entry");
2263 
2264   return entry;
2265 }
2266 
2267 //-----------------------------------------------------------------------------
2268 // Helper for vtos entry point generation.
2269 
2270 void TemplateInterpreterGenerator::set_vtos_entry_points(Template* t,
2271                                                          address& bep,
2272                                                          address& cep,
2273                                                          address& sep,
2274                                                          address& aep,
2275                                                          address& iep,
2276                                                          address& lep,
2277                                                          address& fep,
2278                                                          address& dep,
2279                                                          address& vep) {
2280   assert(t->is_valid() && t->tos_in() == vtos, "illegal template");
2281   Label L;
2282   aep = __ pc(); __ push_ptr(); __ z_bru(L);
2283   fep = __ pc(); __ push_f();   __ z_bru(L);
2284   dep = __ pc(); __ push_d();   __ z_bru(L);
2285   lep = __ pc(); __ push_l();   __ z_bru(L);
2286   bep = cep = sep =
2287   iep = __ pc(); __ push_i();
2288   vep = __ pc();
2289   __ bind(L);
2290   generate_and_dispatch(t);
2291 }
2292 
2293 //-----------------------------------------------------------------------------
2294 
2295 #ifndef PRODUCT
2296 address TemplateInterpreterGenerator::generate_trace_code(TosState state) {
2297   address entry = __ pc();
2298   NearLabel counter_below_trace_threshold;
2299 
2300   if (TraceBytecodesAt > 0) {
2301     // Skip runtime call, if the trace threshold is not yet reached.
2302     __ load_absolute_address(Z_tmp_1, (address)&BytecodeCounter::_counter_value);
2303     __ load_absolute_address(Z_tmp_2, (address)&TraceBytecodesAt);
2304     __ load_sized_value(Z_tmp_1, Address(Z_tmp_1), 4, false /*signed*/);
2305     __ load_sized_value(Z_tmp_2, Address(Z_tmp_2), 8, false /*signed*/);
2306     __ compareU64_and_branch(Z_tmp_1, Z_tmp_2, Assembler::bcondLow, counter_below_trace_threshold);
2307   }
2308 
2309   int offset2 = state == ltos || state == dtos ? 2 : 1;
2310 
2311   __ push(state);
2312   // Preserved return pointer is in Z_R14.
2313   // InterpreterRuntime::trace_bytecode() preserved and returns the value passed as second argument.
2314   __ z_lgr(Z_ARG2, Z_R14);
2315   __ z_lg(Z_ARG3, Address(Z_esp, Interpreter::expr_offset_in_bytes(0)));
2316   if (WizardMode) {
2317     __ z_lgr(Z_ARG4, Z_esp); // Trace Z_esp in WizardMode.
2318   } else {
2319     __ z_lg(Z_ARG4, Address(Z_esp, Interpreter::expr_offset_in_bytes(offset2)));
2320   }
2321   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::trace_bytecode), Z_ARG2, Z_ARG3, Z_ARG4);
2322   __ z_lgr(Z_R14, Z_RET); // Estore return address (see above).
2323   __ pop(state);
2324 
2325   __ bind(counter_below_trace_threshold);
2326   __ z_br(Z_R14); // return
2327 
2328   return entry;
2329 }
2330 
2331 // Make feasible for old CPUs.
2332 void TemplateInterpreterGenerator::count_bytecode() {
2333   __ load_absolute_address(Z_R1_scratch, (address) &BytecodeCounter::_counter_value);
2334   __ add2mem_32(Address(Z_R1_scratch), 1, Z_R0_scratch);
2335 }
2336 
2337 void TemplateInterpreterGenerator::histogram_bytecode(Template * t) {
2338   __ load_absolute_address(Z_R1_scratch, (address)&BytecodeHistogram::_counters[ t->bytecode() ]);
2339   __ add2mem_32(Address(Z_R1_scratch), 1, Z_tmp_1);
2340 }
2341 
2342 void TemplateInterpreterGenerator::histogram_bytecode_pair(Template * t) {
2343   Address  index_addr(Z_tmp_1, (intptr_t) 0);
2344   Register index = Z_tmp_2;
2345 
2346   // Load previous index.
2347   __ load_absolute_address(Z_tmp_1, (address) &BytecodePairHistogram::_index);
2348   __ mem2reg_opt(index, index_addr, false);
2349 
2350   // Mask with current bytecode and store as new previous index.
2351   __ z_srl(index, BytecodePairHistogram::log2_number_of_codes);
2352   __ load_const_optimized(Z_R0_scratch,
2353                           (int)t->bytecode() << BytecodePairHistogram::log2_number_of_codes);
2354   __ z_or(index, Z_R0_scratch);
2355   __ reg2mem_opt(index, index_addr, false);
2356 
2357   // Load counter array's address.
2358   __ z_lgfr(index, index);   // Sign extend for addressing.
2359   __ z_sllg(index, index, LogBytesPerInt);  // index2bytes
2360   __ load_absolute_address(Z_R1_scratch,
2361                            (address) &BytecodePairHistogram::_counters);
2362   // Add index and increment counter.
2363   __ z_agr(Z_R1_scratch, index);
2364   __ add2mem_32(Address(Z_R1_scratch), 1, Z_tmp_1);
2365 }
2366 
2367 void TemplateInterpreterGenerator::trace_bytecode(Template* t) {
2368   // Call a little run-time stub to avoid blow-up for each bytecode.
2369   // The run-time runtime saves the right registers, depending on
2370   // the tosca in-state for the given template.
2371   address entry = Interpreter::trace_code(t->tos_in());
2372   guarantee(entry != NULL, "entry must have been generated");
2373   __ call_stub(entry);
2374 }
2375 
2376 void TemplateInterpreterGenerator::stop_interpreter_at() {
2377   NearLabel L;
2378 
2379   __ load_absolute_address(Z_tmp_1, (address)&BytecodeCounter::_counter_value);
2380   __ load_absolute_address(Z_tmp_2, (address)&StopInterpreterAt);
2381   __ load_sized_value(Z_tmp_1, Address(Z_tmp_1), 4, false /*signed*/);
2382   __ load_sized_value(Z_tmp_2, Address(Z_tmp_2), 8, false /*signed*/);
2383   __ compareU64_and_branch(Z_tmp_1, Z_tmp_2, Assembler::bcondLow, L);
2384   assert(Z_tmp_1->is_nonvolatile(), "must be nonvolatile to preserve Z_tos");
2385   assert(Z_F8->is_nonvolatile(), "must be nonvolatile to preserve Z_ftos");
2386   __ z_lgr(Z_tmp_1, Z_tos);      // Save tos.
2387   __ z_lgr(Z_tmp_2, Z_bytecode); // Save Z_bytecode.
2388   __ z_ldr(Z_F8, Z_ftos);        // Save ftos.
2389   // Use -XX:StopInterpreterAt=<num> to set the limit
2390   // and break at breakpoint().
2391   __ call_VM(noreg, CAST_FROM_FN_PTR(address, breakpoint), false);
2392   __ z_lgr(Z_tos, Z_tmp_1);      // Restore tos.
2393   __ z_lgr(Z_bytecode, Z_tmp_2); // Save Z_bytecode.
2394   __ z_ldr(Z_ftos, Z_F8);        // Restore ftos.
2395   __ bind(L);
2396 }
2397 
2398 #endif // !PRODUCT