1 /*
   2  * Copyright (c) 2016, Oracle and/or its affiliates. All rights reserved.
   3  * Copyright (c) 2016 SAP SE. All rights reserved.
   4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5  *
   6  * This code is free software; you can redistribute it and/or modify it
   7  * under the terms of the GNU General Public License version 2 only, as
   8  * published by the Free Software Foundation.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  *
  24  */
  25 
  26 #include "precompiled.hpp"
  27 #include "asm/macroAssembler.inline.hpp"
  28 #include "interpreter/abstractInterpreter.hpp"
  29 #include "interpreter/bytecodeHistogram.hpp"
  30 #include "interpreter/interpreter.hpp"
  31 #include "interpreter/interpreterRuntime.hpp"
  32 #include "interpreter/interp_masm.hpp"
  33 #include "interpreter/templateInterpreterGenerator.hpp"
  34 #include "interpreter/templateTable.hpp"
  35 #include "oops/arrayOop.hpp"
  36 #include "oops/oop.inline.hpp"
  37 #include "prims/jvmtiExport.hpp"
  38 #include "prims/jvmtiThreadState.hpp"
  39 #include "runtime/arguments.hpp"
  40 #include "runtime/deoptimization.hpp"
  41 #include "runtime/frame.inline.hpp"
  42 #include "runtime/sharedRuntime.hpp"
  43 #include "runtime/stubRoutines.hpp"
  44 #include "runtime/synchronizer.hpp"
  45 #include "runtime/timer.hpp"
  46 #include "runtime/vframeArray.hpp"
  47 #include "utilities/debug.hpp"
  48 
  49 
  50 // Size of interpreter code.  Increase if too small.  Interpreter will
  51 // fail with a guarantee ("not enough space for interpreter generation");
  52 // if too small.
  53 // Run with +PrintInterpreter to get the VM to print out the size.
  54 // Max size with JVMTI
  55 int TemplateInterpreter::InterpreterCodeSize = 320*K;
  56 
  57 #undef  __
  58 #ifdef PRODUCT
  59   #define __ _masm->
  60 #else
  61   #define __ _masm->
  62 //  #define __ (Verbose ? (_masm->block_comment(FILE_AND_LINE),_masm):_masm)->
  63 #endif
  64 
  65 #define BLOCK_COMMENT(str) __ block_comment(str)
  66 #define BIND(label)        __ bind(label); BLOCK_COMMENT(#label ":")
  67 
  68 #define oop_tmp_offset     _z_ijava_state_neg(oop_tmp)
  69 
  70 //-----------------------------------------------------------------------------
  71 
  72 address TemplateInterpreterGenerator::generate_slow_signature_handler() {
  73   //
  74   // New slow_signature handler that respects the z/Architecture
  75   // C calling conventions.
  76   //
  77   // We get called by the native entry code with our output register
  78   // area == 8. First we call InterpreterRuntime::get_result_handler
  79   // to copy the pointer to the signature string temporarily to the
  80   // first C-argument and to return the result_handler in
  81   // Z_RET. Since native_entry will copy the jni-pointer to the
  82   // first C-argument slot later on, it's OK to occupy this slot
  83   // temporarily. Then we copy the argument list on the java
  84   // expression stack into native varargs format on the native stack
  85   // and load arguments into argument registers. Integer arguments in
  86   // the varargs vector will be sign-extended to 8 bytes.
  87   //
  88   // On entry:
  89   //   Z_ARG1  - intptr_t*       Address of java argument list in memory.
  90   //   Z_state - cppInterpreter* Address of interpreter state for
  91   //                               this method
  92   //   Z_method
  93   //
  94   // On exit (just before return instruction):
  95   //   Z_RET contains the address of the result_handler.
  96   //   Z_ARG2 is not updated for static methods and contains "this" otherwise.
  97   //   Z_ARG3-Z_ARG5 contain the first 3 arguments of types other than float and double.
  98   //   Z_FARG1-Z_FARG4 contain the first 4 arguments of type float or double.
  99 
 100   const int LogSizeOfCase = 3;
 101 
 102   const int max_fp_register_arguments   = Argument::n_float_register_parameters;
 103   const int max_int_register_arguments  = Argument::n_register_parameters - 2;  // First 2 are reserved.
 104 
 105   const Register arg_java       = Z_tmp_2;
 106   const Register arg_c          = Z_tmp_3;
 107   const Register signature      = Z_R1_scratch; // Is a string.
 108   const Register fpcnt          = Z_R0_scratch;
 109   const Register argcnt         = Z_tmp_4;
 110   const Register intSlot        = Z_tmp_1;
 111   const Register sig_end        = Z_tmp_1; // Assumed end of signature (only used in do_object).
 112   const Register target_sp      = Z_tmp_1;
 113   const FloatRegister floatSlot = Z_F1;
 114 
 115   const int d_signature         = _z_abi(gpr6); // Only spill space, register contents not affected.
 116   const int d_fpcnt             = _z_abi(gpr7); // Only spill space, register contents not affected.
 117 
 118   unsigned int entry_offset = __ offset();
 119 
 120   BLOCK_COMMENT("slow_signature_handler {");
 121 
 122   // We use target_sp for storing arguments in the C frame.
 123   __ save_return_pc();
 124 
 125   __ z_stmg(Z_R10,Z_R13,-32,Z_SP);
 126   __ push_frame_abi160(32);
 127 
 128   __ z_lgr(arg_java, Z_ARG1);
 129 
 130   Register   method = Z_ARG2; // Directly load into correct argument register.
 131 
 132   __ get_method(method);
 133   __ call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::get_signature), Z_thread, method);
 134 
 135   // Move signature to callee saved register.
 136   // Don't directly write to stack. Frame is used by VM call.
 137   __ z_lgr(Z_tmp_1, Z_RET);
 138 
 139   // Reload method. Register may have been altered by VM call.
 140   __ get_method(method);
 141 
 142   // Get address of result handler.
 143   __ call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::get_result_handler), Z_thread, method);
 144 
 145   // Save signature address to stack.
 146   __ z_stg(Z_tmp_1, d_signature, Z_SP);
 147 
 148   // Don't overwrite return value (Z_RET, Z_ARG1) in rest of the method !
 149 
 150   {
 151     Label   isStatic;
 152 
 153     // Test if static.
 154     // We can test the bit directly.
 155     // Path is Z_method->_access_flags._flags.
 156     // We only support flag bits in the least significant byte (assert !).
 157     // Therefore add 3 to address that byte within "_flags".
 158     // Reload method. VM call above may have destroyed register contents
 159     __ get_method(method);
 160     __ testbit(method2_(method, access_flags), JVM_ACC_STATIC_BIT);
 161     method = noreg;  // end of life
 162     __ z_btrue(isStatic);
 163 
 164     // For non-static functions, pass "this" in Z_ARG2 and copy it to 2nd C-arg slot.
 165     // Need to box the Java object here, so we use arg_java
 166     // (address of current Java stack slot) as argument and
 167     // don't dereference it as in case of ints, floats, etc..
 168     __ z_lgr(Z_ARG2, arg_java);
 169     __ add2reg(arg_java, -BytesPerWord);
 170     __ bind(isStatic);
 171   }
 172 
 173   // argcnt == 0 corresponds to 3rd C argument.
 174   //   arg #1 (result handler) and
 175   //   arg #2 (this, for non-statics), unused else
 176   // are reserved and pre-filled above.
 177   // arg_java points to the corresponding Java argument here. It
 178   // has been decremented by one argument (this) in case of non-static.
 179   __ clear_reg(argcnt, true, false);  // Don't set CC.
 180   __ z_lg(target_sp, 0, Z_SP);
 181   __ add2reg(arg_c, _z_abi(remaining_cargs), target_sp);
 182   // No floating-point args parsed so far.
 183   __ clear_mem(Address(Z_SP, d_fpcnt), 8);
 184 
 185   NearLabel   move_intSlot_to_ARG, move_floatSlot_to_FARG;
 186   NearLabel   loop_start, loop_start_restore, loop_end;
 187   NearLabel   do_int, do_long, do_float, do_double;
 188   NearLabel   do_dontreachhere, do_object, do_array, do_boxed;
 189 
 190 #ifdef ASSERT
 191   // Signature needs to point to '(' (== 0x28) at entry.
 192   __ z_lg(signature, d_signature, Z_SP);
 193   __ z_cli(0, signature, (int) '(');
 194   __ z_brne(do_dontreachhere);
 195 #endif
 196 
 197   __ bind(loop_start_restore);
 198   __ z_lg(signature, d_signature, Z_SP);  // Restore signature ptr, destroyed by move_XX_to_ARG.
 199 
 200   BIND(loop_start);
 201   // Advance to next argument type token from the signature.
 202   __ add2reg(signature, 1);
 203 
 204   // Use CLI, works well on all CPU versions.
 205     __ z_cli(0, signature, (int) ')');
 206     __ z_bre(loop_end);                // end of signature
 207     __ z_cli(0, signature, (int) 'L');
 208     __ z_bre(do_object);               // object     #9
 209     __ z_cli(0, signature, (int) 'F');
 210     __ z_bre(do_float);                // float      #7
 211     __ z_cli(0, signature, (int) 'J');
 212     __ z_bre(do_long);                 // long       #6
 213     __ z_cli(0, signature, (int) 'B');
 214     __ z_bre(do_int);                  // byte       #1
 215     __ z_cli(0, signature, (int) 'Z');
 216     __ z_bre(do_int);                  // boolean    #2
 217     __ z_cli(0, signature, (int) 'C');
 218     __ z_bre(do_int);                  // char       #3
 219     __ z_cli(0, signature, (int) 'S');
 220     __ z_bre(do_int);                  // short      #4
 221     __ z_cli(0, signature, (int) 'I');
 222     __ z_bre(do_int);                  // int        #5
 223     __ z_cli(0, signature, (int) 'D');
 224     __ z_bre(do_double);               // double     #8
 225     __ z_cli(0, signature, (int) '[');
 226     __ z_bre(do_array);                // array      #10
 227 
 228   __ bind(do_dontreachhere);
 229 
 230   __ unimplemented("ShouldNotReachHere in slow_signature_handler", 120);
 231 
 232   // Array argument
 233   BIND(do_array);
 234 
 235   {
 236     Label   start_skip, end_skip;
 237 
 238     __ bind(start_skip);
 239 
 240     // Advance to next type tag from signature.
 241     __ add2reg(signature, 1);
 242 
 243     // Use CLI, works well on all CPU versions.
 244     __ z_cli(0, signature, (int) '[');
 245     __ z_bre(start_skip);               // Skip further brackets.
 246 
 247     __ z_cli(0, signature, (int) '9');
 248     __ z_brh(end_skip);                 // no optional size
 249 
 250     __ z_cli(0, signature, (int) '0');
 251     __ z_brnl(start_skip);              // Skip optional size.
 252 
 253     __ bind(end_skip);
 254 
 255     __ z_cli(0, signature, (int) 'L');
 256     __ z_brne(do_boxed);                // If not array of objects: go directly to do_boxed.
 257   }
 258 
 259   //  OOP argument
 260   BIND(do_object);
 261   // Pass by an object's type name.
 262   {
 263     Label   L;
 264 
 265     __ add2reg(sig_end, 4095, signature);     // Assume object type name is shorter than 4k.
 266     __ load_const_optimized(Z_R0, (int) ';'); // Type name terminator (must be in Z_R0!).
 267     __ MacroAssembler::search_string(sig_end, signature);
 268     __ z_brl(L);
 269     __ z_illtrap();  // No semicolon found: internal error or object name too long.
 270     __ bind(L);
 271     __ z_lgr(signature, sig_end);
 272     // fallthru to do_boxed
 273   }
 274 
 275   // Need to box the Java object here, so we use arg_java
 276   // (address of current Java stack slot) as argument and
 277   // don't dereference it as in case of ints, floats, etc..
 278 
 279   // UNBOX argument
 280   // Load reference and check for NULL.
 281   Label  do_int_Entry4Boxed;
 282   __ bind(do_boxed);
 283   {
 284     __ load_and_test_long(intSlot, Address(arg_java));
 285     __ z_bre(do_int_Entry4Boxed);
 286     __ z_lgr(intSlot, arg_java);
 287     __ z_bru(do_int_Entry4Boxed);
 288   }
 289 
 290   // INT argument
 291 
 292   // (also for byte, boolean, char, short)
 293   // Use lgf for load (sign-extend) and stg for store.
 294   BIND(do_int);
 295   __ z_lgf(intSlot, 0, arg_java);
 296 
 297   __ bind(do_int_Entry4Boxed);
 298   __ add2reg(arg_java, -BytesPerWord);
 299   // If argument fits into argument register, go and handle it, otherwise continue.
 300   __ compare32_and_branch(argcnt, max_int_register_arguments,
 301                           Assembler::bcondLow, move_intSlot_to_ARG);
 302   __ z_stg(intSlot, 0, arg_c);
 303   __ add2reg(arg_c, BytesPerWord);
 304   __ z_bru(loop_start);
 305 
 306   // LONG argument
 307 
 308   BIND(do_long);
 309   __ add2reg(arg_java, -2*BytesPerWord);  // Decrement first to have positive displacement for lg.
 310   __ z_lg(intSlot, BytesPerWord, arg_java);
 311   // If argument fits into argument register, go and handle it, otherwise continue.
 312   __ compare32_and_branch(argcnt, max_int_register_arguments,
 313                           Assembler::bcondLow, move_intSlot_to_ARG);
 314   __ z_stg(intSlot, 0, arg_c);
 315   __ add2reg(arg_c, BytesPerWord);
 316   __ z_bru(loop_start);
 317 
 318   // FLOAT argumen
 319 
 320   BIND(do_float);
 321   __ z_le(floatSlot, 0, arg_java);
 322   __ add2reg(arg_java, -BytesPerWord);
 323   assert(max_fp_register_arguments <= 255, "always true");  // safety net
 324   __ z_cli(d_fpcnt+7, Z_SP, max_fp_register_arguments);
 325   __ z_brl(move_floatSlot_to_FARG);
 326   __ z_ste(floatSlot, 4, arg_c);
 327   __ add2reg(arg_c, BytesPerWord);
 328   __ z_bru(loop_start);
 329 
 330   // DOUBLE argument
 331 
 332   BIND(do_double);
 333   __ add2reg(arg_java, -2*BytesPerWord);  // Decrement first to have positive displacement for lg.
 334   __ z_ld(floatSlot, BytesPerWord, arg_java);
 335   assert(max_fp_register_arguments <= 255, "always true");  // safety net
 336   __ z_cli(d_fpcnt+7, Z_SP, max_fp_register_arguments);
 337   __ z_brl(move_floatSlot_to_FARG);
 338   __ z_std(floatSlot, 0, arg_c);
 339   __ add2reg(arg_c, BytesPerWord);
 340   __ z_bru(loop_start);
 341 
 342   // Method exit, all arguments proocessed.
 343   __ bind(loop_end);
 344   __ pop_frame();
 345   __ restore_return_pc();
 346   __ z_lmg(Z_R10,Z_R13,-32,Z_SP);
 347   __ z_br(Z_R14);
 348 
 349   // Copy int arguments.
 350 
 351   Label  iarg_caselist;   // Distance between each case has to be a power of 2
 352                           // (= 1 << LogSizeOfCase).
 353   __ align(16);
 354   BIND(iarg_caselist);
 355   __ z_lgr(Z_ARG3, intSlot);    // 4 bytes
 356   __ z_bru(loop_start_restore); // 4 bytes
 357 
 358   __ z_lgr(Z_ARG4, intSlot);
 359   __ z_bru(loop_start_restore);
 360 
 361   __ z_lgr(Z_ARG5, intSlot);
 362   __ z_bru(loop_start_restore);
 363 
 364   __ align(16);
 365   __ bind(move_intSlot_to_ARG);
 366   __ z_stg(signature, d_signature, Z_SP);       // Spill since signature == Z_R1_scratch.
 367   __ z_larl(Z_R1_scratch, iarg_caselist);
 368   __ z_sllg(Z_R0_scratch, argcnt, LogSizeOfCase);
 369   __ add2reg(argcnt, 1);
 370   __ z_agr(Z_R1_scratch, Z_R0_scratch);
 371   __ z_bcr(Assembler::bcondAlways, Z_R1_scratch);
 372 
 373   // Copy float arguments.
 374 
 375   Label  farg_caselist;   // Distance between each case has to be a power of 2
 376                           // (= 1 << logSizeOfCase, padded with nop.
 377   __ align(16);
 378   BIND(farg_caselist);
 379   __ z_ldr(Z_FARG1, floatSlot); // 2 bytes
 380   __ z_bru(loop_start_restore); // 4 bytes
 381   __ z_nop();                   // 2 bytes
 382 
 383   __ z_ldr(Z_FARG2, floatSlot);
 384   __ z_bru(loop_start_restore);
 385   __ z_nop();
 386 
 387   __ z_ldr(Z_FARG3, floatSlot);
 388   __ z_bru(loop_start_restore);
 389   __ z_nop();
 390 
 391   __ z_ldr(Z_FARG4, floatSlot);
 392   __ z_bru(loop_start_restore);
 393   __ z_nop();
 394 
 395   __ align(16);
 396   __ bind(move_floatSlot_to_FARG);
 397   __ z_stg(signature, d_signature, Z_SP);        // Spill since signature == Z_R1_scratch.
 398   __ z_lg(Z_R0_scratch, d_fpcnt, Z_SP);          // Need old value for indexing.
 399   __ add2mem_64(Address(Z_SP, d_fpcnt), 1, Z_R1_scratch); // Increment index.
 400   __ z_larl(Z_R1_scratch, farg_caselist);
 401   __ z_sllg(Z_R0_scratch, Z_R0_scratch, LogSizeOfCase);
 402   __ z_agr(Z_R1_scratch, Z_R0_scratch);
 403   __ z_bcr(Assembler::bcondAlways, Z_R1_scratch);
 404 
 405   BLOCK_COMMENT("} slow_signature_handler");
 406 
 407   return __ addr_at(entry_offset);
 408 }
 409 
 410 address TemplateInterpreterGenerator::generate_result_handler_for (BasicType type) {
 411   address entry = __ pc();
 412 
 413   assert(Z_tos == Z_RET, "Result handler: must move result!");
 414   assert(Z_ftos == Z_FRET, "Result handler: must move float result!");
 415 
 416   switch (type) {
 417     case T_BOOLEAN:
 418       __ c2bool(Z_tos);
 419       break;
 420     case T_CHAR:
 421       __ and_imm(Z_tos, 0xffff);
 422       break;
 423     case T_BYTE:
 424       __ z_lbr(Z_tos, Z_tos);
 425       break;
 426     case T_SHORT:
 427       __ z_lhr(Z_tos, Z_tos);
 428       break;
 429     case T_INT:
 430     case T_LONG:
 431     case T_VOID:
 432     case T_FLOAT:
 433     case T_DOUBLE:
 434       break;
 435     case T_OBJECT:
 436       // Retrieve result from frame...
 437       __ mem2reg_opt(Z_tos, Address(Z_fp, oop_tmp_offset));
 438       // and verify it.
 439       __ verify_oop(Z_tos);
 440       break;
 441     default:
 442       ShouldNotReachHere();
 443   }
 444   __ z_br(Z_R14);      // Return from result handler.
 445   return entry;
 446 }
 447 
 448 // Abstract method entry.
 449 // Attempt to execute abstract method. Throw exception.
 450 address TemplateInterpreterGenerator::generate_abstract_entry(void) {
 451   unsigned int entry_offset = __ offset();
 452 
 453   // Caller could be the call_stub or a compiled method (x86 version is wrong!).
 454 
 455   BLOCK_COMMENT("abstract_entry {");
 456 
 457   // Implement call of InterpreterRuntime::throw_AbstractMethodError.
 458   __ set_top_ijava_frame_at_SP_as_last_Java_frame(Z_SP, Z_R1);
 459   __ save_return_pc();       // Save Z_R14.
 460   __ push_frame_abi160(0);   // Without new frame the RT call could overwrite the saved Z_R14.
 461 
 462   __ call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_AbstractMethodError), Z_thread);
 463 
 464   __ pop_frame();
 465   __ restore_return_pc();    // Restore Z_R14.
 466   __ reset_last_Java_frame();
 467 
 468   // Restore caller sp for c2i case.
 469   __ resize_frame_absolute(Z_R10, Z_R0, true); // Cut the stack back to where the caller started.
 470 
 471   // branch to SharedRuntime::generate_forward_exception() which handles all possible callers,
 472   // i.e. call stub, compiled method, interpreted method.
 473   __ load_absolute_address(Z_tmp_1, StubRoutines::forward_exception_entry());
 474   __ z_br(Z_tmp_1);
 475 
 476   BLOCK_COMMENT("} abstract_entry");
 477 
 478   return __ addr_at(entry_offset);
 479 }
 480 
 481 address TemplateInterpreterGenerator::generate_Reference_get_entry(void) {
 482 #if INCLUDE_ALL_GCS
 483   if (UseG1GC) {
 484     // Inputs:
 485     //  Z_ARG1 - receiver
 486     //
 487     // What we do:
 488     //  - Load the referent field address.
 489     //  - Load the value in the referent field.
 490     //  - Pass that value to the pre-barrier.
 491     //
 492     // In the case of G1 this will record the value of the
 493     // referent in an SATB buffer if marking is active.
 494     // This will cause concurrent marking to mark the referent
 495     // field as live.
 496 
 497     Register  scratch1 = Z_tmp_2;
 498     Register  scratch2 = Z_tmp_3;
 499     Register  pre_val  = Z_RET;   // return value
 500     // Z_esp is callers operand stack pointer, i.e. it points to the parameters.
 501     Register  Rargp    = Z_esp;
 502 
 503     Label     slow_path;
 504     address   entry = __ pc();
 505 
 506     const int referent_offset = java_lang_ref_Reference::referent_offset;
 507     guarantee(referent_offset > 0, "referent offset not initialized");
 508 
 509     BLOCK_COMMENT("Reference_get {");
 510 
 511     //  If the receiver is null then it is OK to jump to the slow path.
 512     __ load_and_test_long(pre_val, Address(Rargp, Interpreter::stackElementSize)); // Get receiver.
 513     __ z_bre(slow_path);
 514 
 515     //  Load the value of the referent field.
 516     __ load_heap_oop(pre_val, referent_offset, pre_val);
 517 
 518     // Restore caller sp for c2i case.
 519     __ resize_frame_absolute(Z_R10, Z_R0, true); // Cut the stack back to where the caller started.
 520 
 521     // Generate the G1 pre-barrier code to log the value of
 522     // the referent field in an SATB buffer.
 523     // Note:
 524     //   With these parameters the write_barrier_pre does not
 525     //   generate instructions to load the previous value.
 526     __ g1_write_barrier_pre(noreg,      // obj
 527                             noreg,      // offset
 528                             pre_val,    // pre_val
 529                             noreg,      // no new val to preserve
 530                             scratch1,   // tmp
 531                             scratch2,   // tmp
 532                             true);      // pre_val_needed
 533 
 534     __ z_br(Z_R14);
 535 
 536     // Branch to previously generated regular method entry.
 537     __ bind(slow_path);
 538 
 539     address meth_entry = Interpreter::entry_for_kind(Interpreter::zerolocals);
 540     __ jump_to_entry(meth_entry, Z_R1);
 541 
 542     BLOCK_COMMENT("} Reference_get");
 543 
 544     return entry;
 545   }
 546 #endif // INCLUDE_ALL_GCS
 547 
 548   return NULL;
 549 }
 550 
 551 address TemplateInterpreterGenerator::generate_StackOverflowError_handler() {
 552   address entry = __ pc();
 553 
 554   DEBUG_ONLY(__ verify_esp(Z_esp, Z_ARG5));
 555 
 556   // Restore bcp under the assumption that the current frame is still
 557   // interpreted.
 558   __ restore_bcp();
 559 
 560   // Expression stack must be empty before entering the VM if an
 561   // exception happened.
 562   __ empty_expression_stack();
 563   // Throw exception.
 564   __ call_VM(noreg,
 565              CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_StackOverflowError));
 566   return entry;
 567 }
 568 
 569 //
 570 // Args:
 571 //   Z_ARG3: aberrant index
 572 //
 573 address TemplateInterpreterGenerator::generate_ArrayIndexOutOfBounds_handler(const char * name) {
 574   address entry = __ pc();
 575   address excp = CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_ArrayIndexOutOfBoundsException);
 576 
 577   // Expression stack must be empty before entering the VM if an
 578   // exception happened.
 579   __ empty_expression_stack();
 580 
 581   // Setup parameters.
 582   // Leave out the name and use register for array to create more detailed exceptions.
 583   __ load_absolute_address(Z_ARG2, (address) name);
 584   __ call_VM(noreg, excp, Z_ARG2, Z_ARG3);
 585   return entry;
 586 }
 587 
 588 address TemplateInterpreterGenerator::generate_ClassCastException_handler() {
 589   address entry = __ pc();
 590 
 591   // Object is at TOS.
 592   __ pop_ptr(Z_ARG2);
 593 
 594   // Expression stack must be empty before entering the VM if an
 595   // exception happened.
 596   __ empty_expression_stack();
 597 
 598   __ call_VM(Z_ARG1,
 599              CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_ClassCastException),
 600              Z_ARG2);
 601 
 602   DEBUG_ONLY(__ should_not_reach_here();)
 603 
 604   return entry;
 605 }
 606 
 607 address TemplateInterpreterGenerator::generate_exception_handler_common(const char* name, const char* message, bool pass_oop) {
 608   assert(!pass_oop || message == NULL, "either oop or message but not both");
 609   address entry = __ pc();
 610 
 611   BLOCK_COMMENT("exception_handler_common {");
 612 
 613   // Expression stack must be empty before entering the VM if an
 614   // exception happened.
 615   __ empty_expression_stack();
 616   if (name != NULL) {
 617     __ load_absolute_address(Z_ARG2, (address)name);
 618   } else {
 619     __ clear_reg(Z_ARG2, true, false);
 620   }
 621 
 622   if (pass_oop) {
 623     __ call_VM(Z_tos,
 624                CAST_FROM_FN_PTR(address, InterpreterRuntime::create_klass_exception),
 625                Z_ARG2, Z_tos /*object (see TT::aastore())*/);
 626   } else {
 627     if (message != NULL) {
 628       __ load_absolute_address(Z_ARG3, (address)message);
 629     } else {
 630       __ clear_reg(Z_ARG3, true, false);
 631     }
 632     __ call_VM(Z_tos,
 633                CAST_FROM_FN_PTR(address, InterpreterRuntime::create_exception),
 634                Z_ARG2, Z_ARG3);
 635   }
 636   // Throw exception.
 637   __ load_absolute_address(Z_R1_scratch, Interpreter::throw_exception_entry());
 638   __ z_br(Z_R1_scratch);
 639 
 640   BLOCK_COMMENT("} exception_handler_common");
 641 
 642   return entry;
 643 }
 644 
 645 address TemplateInterpreterGenerator::generate_return_entry_for (TosState state, int step, size_t index_size) {
 646   address entry = __ pc();
 647 
 648   BLOCK_COMMENT("return_entry {");
 649 
 650   // Pop i2c extension or revert top-2-parent-resize done by interpreted callees.
 651   Register sp_before_i2c_extension = Z_bcp;
 652   __ z_lg(Z_fp, _z_abi(callers_sp), Z_SP); // Restore frame pointer.
 653   __ z_lg(sp_before_i2c_extension, Address(Z_fp, _z_ijava_state_neg(top_frame_sp)));
 654   __ resize_frame_absolute(sp_before_i2c_extension, Z_locals/*tmp*/, true/*load_fp*/);
 655 
 656   // TODO(ZASM): necessary??
 657   //  // and NULL it as marker that esp is now tos until next java call
 658   //  __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD);
 659 
 660   __ restore_bcp();
 661   __ restore_locals();
 662   __ restore_esp();
 663 
 664   if (state == atos) {
 665     __ profile_return_type(Z_tmp_1, Z_tos, Z_tmp_2);
 666   }
 667 
 668   Register cache  = Z_tmp_1;
 669   Register size   = Z_tmp_1;
 670   Register offset = Z_tmp_2;
 671   const int flags_offset = in_bytes(ConstantPoolCache::base_offset() +
 672                                     ConstantPoolCacheEntry::flags_offset());
 673   __ get_cache_and_index_at_bcp(cache, offset, 1, index_size);
 674 
 675   // #args is in rightmost byte of the _flags field.
 676   __ z_llgc(size, Address(cache, offset, flags_offset+(sizeof(size_t)-1)));
 677   __ z_sllg(size, size, Interpreter::logStackElementSize); // Each argument size in bytes.
 678   __ z_agr(Z_esp, size);                                   // Pop arguments.
 679   __ dispatch_next(state, step);
 680 
 681   BLOCK_COMMENT("} return_entry");
 682 
 683   return entry;
 684 }
 685 
 686 address TemplateInterpreterGenerator::generate_deopt_entry_for (TosState state,
 687                                                                int step) {
 688   address entry = __ pc();
 689 
 690   BLOCK_COMMENT("deopt_entry {");
 691 
 692   // TODO(ZASM): necessary? NULL last_sp until next java call
 693   // __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD);
 694   __ z_lg(Z_fp, _z_abi(callers_sp), Z_SP); // Restore frame pointer.
 695   __ restore_bcp();
 696   __ restore_locals();
 697   __ restore_esp();
 698 
 699   // Handle exceptions.
 700   {
 701     Label L;
 702     __ load_and_test_long(Z_R0/*pending_exception*/, thread_(pending_exception));
 703     __ z_bre(L);
 704     __ call_VM(noreg,
 705                CAST_FROM_FN_PTR(address,
 706                                 InterpreterRuntime::throw_pending_exception));
 707     __ should_not_reach_here();
 708     __ bind(L);
 709   }
 710   __ dispatch_next(state, step);
 711 
 712   BLOCK_COMMENT("} deopt_entry");
 713 
 714   return entry;
 715 }
 716 
 717 address TemplateInterpreterGenerator::generate_safept_entry_for (TosState state,
 718                                                                 address runtime_entry) {
 719   address entry = __ pc();
 720   __ push(state);
 721   __ call_VM(noreg, runtime_entry);
 722   __ dispatch_via(vtos, Interpreter::_normal_table.table_for (vtos));
 723   return entry;
 724 }
 725 
 726 //
 727 // Helpers for commoning out cases in the various type of method entries.
 728 //
 729 
 730 // Increment invocation count & check for overflow.
 731 //
 732 // Note: checking for negative value instead of overflow
 733 // so we have a 'sticky' overflow test.
 734 //
 735 // Z_ARG2: method (see generate_fixed_frame())
 736 //
 737 void TemplateInterpreterGenerator::generate_counter_incr(Label* overflow, Label* profile_method, Label* profile_method_continue) {
 738   Label done;
 739   Register method = Z_ARG2; // Generate_fixed_frame() copies Z_method into Z_ARG2.
 740   Register m_counters = Z_ARG4;
 741 
 742   BLOCK_COMMENT("counter_incr {");
 743 
 744   // Note: In tiered we increment either counters in method or in MDO depending
 745   // if we are profiling or not.
 746   if (TieredCompilation) {
 747     int increment = InvocationCounter::count_increment;
 748     if (ProfileInterpreter) {
 749       NearLabel no_mdo;
 750       Register mdo = m_counters;
 751       // Are we profiling?
 752       __ load_and_test_long(mdo, method2_(method, method_data));
 753       __ branch_optimized(Assembler::bcondZero, no_mdo);
 754       // Increment counter in the MDO.
 755       const Address mdo_invocation_counter(mdo, MethodData::invocation_counter_offset() +
 756                                            InvocationCounter::counter_offset());
 757       const Address mask(mdo, MethodData::invoke_mask_offset());
 758       __ increment_mask_and_jump(mdo_invocation_counter, increment, mask,
 759                                  Z_R1_scratch, false, Assembler::bcondZero,
 760                                  overflow);
 761       __ z_bru(done);
 762       __ bind(no_mdo);
 763     }
 764 
 765     // Increment counter in MethodCounters.
 766     const Address invocation_counter(m_counters,
 767                                      MethodCounters::invocation_counter_offset() +
 768                                      InvocationCounter::counter_offset());
 769     // Get address of MethodCounters object.
 770     __ get_method_counters(method, m_counters, done);
 771     const Address mask(m_counters, MethodCounters::invoke_mask_offset());
 772     __ increment_mask_and_jump(invocation_counter,
 773                                increment, mask,
 774                                Z_R1_scratch, false, Assembler::bcondZero,
 775                                overflow);
 776   } else {
 777     Register counter_sum = Z_ARG3; // The result of this piece of code.
 778     Register tmp         = Z_R1_scratch;
 779 #ifdef ASSERT
 780     {
 781       NearLabel ok;
 782       __ get_method(tmp);
 783       __ compare64_and_branch(method, tmp, Assembler::bcondEqual, ok);
 784       __ z_illtrap(0x66);
 785       __ bind(ok);
 786     }
 787 #endif
 788 
 789     // Get address of MethodCounters object.
 790     __ get_method_counters(method, m_counters, done);
 791     // Update standard invocation counters.
 792     __ increment_invocation_counter(m_counters, counter_sum);
 793     if (ProfileInterpreter) {
 794       __ add2mem_32(Address(m_counters, MethodCounters::interpreter_invocation_counter_offset()), 1, tmp);
 795       if (profile_method != NULL) {
 796         const Address profile_limit(m_counters, MethodCounters::interpreter_profile_limit_offset());
 797         __ z_cl(counter_sum, profile_limit);
 798         __ branch_optimized(Assembler::bcondLow, *profile_method_continue);
 799         // If no method data exists, go to profile_method.
 800         __ test_method_data_pointer(tmp, *profile_method);
 801       }
 802     }
 803 
 804     const Address invocation_limit(m_counters, MethodCounters::interpreter_invocation_limit_offset());
 805     __ z_cl(counter_sum, invocation_limit);
 806     __ branch_optimized(Assembler::bcondNotLow, *overflow);
 807   }
 808 
 809   __ bind(done);
 810 
 811   BLOCK_COMMENT("} counter_incr");
 812 }
 813 
 814 void TemplateInterpreterGenerator::generate_counter_overflow(Label& do_continue) {
 815   // InterpreterRuntime::frequency_counter_overflow takes two
 816   // arguments, the first (thread) is passed by call_VM, the second
 817   // indicates if the counter overflow occurs at a backwards branch
 818   // (NULL bcp). We pass zero for it. The call returns the address
 819   // of the verified entry point for the method or NULL if the
 820   // compilation did not complete (either went background or bailed
 821   // out).
 822   __ clear_reg(Z_ARG2);
 823   __ call_VM(noreg,
 824              CAST_FROM_FN_PTR(address, InterpreterRuntime::frequency_counter_overflow),
 825              Z_ARG2);
 826   __ z_bru(do_continue);
 827 }
 828 
 829 void TemplateInterpreterGenerator::generate_stack_overflow_check(Register frame_size, Register tmp1) {
 830   Register tmp2 = Z_R1_scratch;
 831   const int page_size = os::vm_page_size();
 832   NearLabel after_frame_check;
 833 
 834   BLOCK_COMMENT("counter_overflow {");
 835 
 836   assert_different_registers(frame_size, tmp1);
 837 
 838   // Stack banging is sufficient overflow check if frame_size < page_size.
 839   if (Immediate::is_uimm(page_size, 15)) {
 840     __ z_chi(frame_size, page_size);
 841     __ z_brl(after_frame_check);
 842   } else {
 843     __ load_const_optimized(tmp1, page_size);
 844     __ compareU32_and_branch(frame_size, tmp1, Assembler::bcondLow, after_frame_check);
 845   }
 846 
 847   // Get the stack base, and in debug, verify it is non-zero.
 848   __ z_lg(tmp1, thread_(stack_base));
 849 #ifdef ASSERT
 850   address reentry = NULL;
 851   NearLabel base_not_zero;
 852   __ compareU64_and_branch(tmp1, (intptr_t)0L, Assembler::bcondNotEqual, base_not_zero);
 853   reentry = __ stop_chain_static(reentry, "stack base is zero in generate_stack_overflow_check");
 854   __ bind(base_not_zero);
 855 #endif
 856 
 857   // Get the stack size, and in debug, verify it is non-zero.
 858   assert(sizeof(size_t) == sizeof(intptr_t), "wrong load size");
 859   __ z_lg(tmp2, thread_(stack_size));
 860 #ifdef ASSERT
 861   NearLabel size_not_zero;
 862   __ compareU64_and_branch(tmp2, (intptr_t)0L, Assembler::bcondNotEqual, size_not_zero);
 863   reentry = __ stop_chain_static(reentry, "stack size is zero in generate_stack_overflow_check");
 864   __ bind(size_not_zero);
 865 #endif
 866 
 867   // Compute the beginning of the protected zone minus the requested frame size.
 868   __ z_sgr(tmp1, tmp2);
 869   __ add2reg(tmp1, JavaThread::stack_guard_zone_size());
 870 
 871   // Add in the size of the frame (which is the same as subtracting it from the
 872   // SP, which would take another register.
 873   __ z_agr(tmp1, frame_size);
 874 
 875   // The frame is greater than one page in size, so check against
 876   // the bottom of the stack.
 877   __ compareU64_and_branch(Z_SP, tmp1, Assembler::bcondHigh, after_frame_check);
 878 
 879   // The stack will overflow, throw an exception.
 880 
 881   // Restore SP to sender's sp. This is necessary if the sender's frame is an
 882   // extended compiled frame (see gen_c2i_adapter()) and safer anyway in case of
 883   // JSR292 adaptations.
 884   __ resize_frame_absolute(Z_R10, tmp1, true/*load_fp*/);
 885 
 886   // Note also that the restored frame is not necessarily interpreted.
 887   // Use the shared runtime version of the StackOverflowError.
 888   assert(StubRoutines::throw_StackOverflowError_entry() != NULL, "stub not yet generated");
 889   AddressLiteral stub(StubRoutines::throw_StackOverflowError_entry());
 890   __ load_absolute_address(tmp1, StubRoutines::throw_StackOverflowError_entry());
 891   __ z_br(tmp1);
 892 
 893   // If you get to here, then there is enough stack space.
 894   __ bind(after_frame_check);
 895 
 896   BLOCK_COMMENT("} counter_overflow");
 897 }
 898 
 899 // Allocate monitor and lock method (asm interpreter).
 900 //
 901 // Args:
 902 //   Z_locals: locals
 903 
 904 void TemplateInterpreterGenerator::lock_method(void) {
 905 
 906   BLOCK_COMMENT("lock_method {");
 907 
 908   // Synchronize method.
 909   const Register method = Z_tmp_2;
 910   __ get_method(method);
 911 
 912 #ifdef ASSERT
 913   address reentry = NULL;
 914   {
 915     Label L;
 916     __ testbit(method2_(method, access_flags), JVM_ACC_SYNCHRONIZED_BIT);
 917     __ z_btrue(L);
 918     reentry = __ stop_chain_static(reentry, "method doesn't need synchronization");
 919     __ bind(L);
 920   }
 921 #endif // ASSERT
 922 
 923   // Get synchronization object.
 924   const Register object = Z_tmp_2;
 925 
 926   {
 927     Label     done;
 928     Label     static_method;
 929 
 930     __ testbit(method2_(method, access_flags), JVM_ACC_STATIC_BIT);
 931     __ z_btrue(static_method);
 932 
 933     // non-static method: Load receiver obj from stack.
 934     __ mem2reg_opt(object, Address(Z_locals, Interpreter::local_offset_in_bytes(0)));
 935     __ z_bru(done);
 936 
 937     __ bind(static_method);
 938 
 939     // Lock the java mirror.
 940     __ load_mirror(object, method);
 941 #ifdef ASSERT
 942     {
 943       NearLabel L;
 944       __ compare64_and_branch(object, (intptr_t) 0, Assembler::bcondNotEqual, L);
 945       reentry = __ stop_chain_static(reentry, "synchronization object is NULL");
 946       __ bind(L);
 947     }
 948 #endif // ASSERT
 949 
 950     __ bind(done);
 951   }
 952 
 953   __ add_monitor_to_stack(true, Z_ARG3, Z_ARG4, Z_ARG5); // Allocate monitor elem.
 954   // Store object and lock it.
 955   __ get_monitors(Z_tmp_1);
 956   __ reg2mem_opt(object, Address(Z_tmp_1, BasicObjectLock::obj_offset_in_bytes()));
 957   __ lock_object(Z_tmp_1, object);
 958 
 959   BLOCK_COMMENT("} lock_method");
 960 }
 961 
 962 // Generate a fixed interpreter frame. This is identical setup for
 963 // interpreted methods and for native methods hence the shared code.
 964 //
 965 // Registers alive
 966 //   Z_thread   - JavaThread*
 967 //   Z_SP       - old stack pointer
 968 //   Z_method   - callee's method
 969 //   Z_esp      - parameter list (slot 'above' last param)
 970 //   Z_R14      - return pc, to be stored in caller's frame
 971 //   Z_R10      - sender sp, note: Z_tmp_1 is Z_R10!
 972 //
 973 // Registers updated
 974 //   Z_SP       - new stack pointer
 975 //   Z_esp      - callee's operand stack pointer
 976 //                points to the slot above the value on top
 977 //   Z_locals   - used to access locals: locals[i] := *(Z_locals - i*BytesPerWord)
 978 //   Z_bcp      - the bytecode pointer
 979 //   Z_fp       - the frame pointer, thereby killing Z_method
 980 //   Z_ARG2     - copy of Z_method
 981 //
 982 void TemplateInterpreterGenerator::generate_fixed_frame(bool native_call) {
 983 
 984   //  stack layout
 985   //
 986   //   F1 [TOP_IJAVA_FRAME_ABI]              <-- Z_SP, Z_R10 (see note below)
 987   //      [F1's operand stack (unused)]
 988   //      [F1's outgoing Java arguments]     <-- Z_esp
 989   //      [F1's operand stack (non args)]
 990   //      [monitors]      (optional)
 991   //      [IJAVA_STATE]
 992   //
 993   //   F2 [PARENT_IJAVA_FRAME_ABI]
 994   //      ...
 995   //
 996   //  0x000
 997   //
 998   // Note: Z_R10, the sender sp, will be below Z_SP if F1 was extended by a c2i adapter.
 999 
1000   //=============================================================================
1001   // Allocate space for locals other than the parameters, the
1002   // interpreter state, monitors, and the expression stack.
1003 
1004   const Register local_count     = Z_ARG5;
1005   const Register fp              = Z_tmp_2;
1006 
1007   BLOCK_COMMENT("generate_fixed_frame {");
1008 
1009   {
1010   // local registers
1011   const Register top_frame_size  = Z_ARG2;
1012   const Register sp_after_resize = Z_ARG3;
1013   const Register max_stack       = Z_ARG4;
1014 
1015   // local_count = method->constMethod->max_locals();
1016   __ z_lg(Z_R1_scratch, Address(Z_method, Method::const_offset()));
1017   __ z_llgh(local_count, Address(Z_R1_scratch, ConstMethod::size_of_locals_offset()));
1018 
1019   if (native_call) {
1020     // If we're calling a native method, we replace max_stack (which is
1021     // zero) with space for the worst-case signature handler varargs
1022     // vector, which is:
1023     //   max_stack = max(Argument::n_register_parameters, parameter_count+2);
1024     //
1025     // We add two slots to the parameter_count, one for the jni
1026     // environment and one for a possible native mirror. We allocate
1027     // space for at least the number of ABI registers, even though
1028     // InterpreterRuntime::slow_signature_handler won't write more than
1029     // parameter_count+2 words when it creates the varargs vector at the
1030     // top of the stack. The generated slow signature handler will just
1031     // load trash into registers beyond the necessary number. We're
1032     // still going to cut the stack back by the ABI register parameter
1033     // count so as to get SP+16 pointing at the ABI outgoing parameter
1034     // area, so we need to allocate at least that much even though we're
1035     // going to throw it away.
1036     //
1037 
1038     __ z_lg(Z_R1_scratch, Address(Z_method, Method::const_offset()));
1039     __ z_llgh(max_stack,  Address(Z_R1_scratch, ConstMethod::size_of_parameters_offset()));
1040     __ add2reg(max_stack, 2);
1041 
1042     NearLabel passing_args_on_stack;
1043 
1044     // max_stack in bytes
1045     __ z_sllg(max_stack, max_stack, LogBytesPerWord);
1046 
1047     int argument_registers_in_bytes = Argument::n_register_parameters << LogBytesPerWord;
1048     __ compare64_and_branch(max_stack, argument_registers_in_bytes, Assembler::bcondNotLow, passing_args_on_stack);
1049 
1050     __ load_const_optimized(max_stack, argument_registers_in_bytes);
1051 
1052     __ bind(passing_args_on_stack);
1053   } else {
1054     // !native_call
1055     __ z_lg(max_stack, method_(const));
1056 
1057     // Calculate number of non-parameter locals (in slots):
1058     __ z_lg(Z_R1_scratch, Address(Z_method, Method::const_offset()));
1059     __ z_sh(local_count, Address(Z_R1_scratch, ConstMethod::size_of_parameters_offset()));
1060 
1061     // max_stack = method->max_stack();
1062     __ z_llgh(max_stack, Address(max_stack, ConstMethod::max_stack_offset()));
1063     // max_stack in bytes
1064     __ z_sllg(max_stack, max_stack, LogBytesPerWord);
1065   }
1066 
1067   // Resize (i.e. normally shrink) the top frame F1 ...
1068   //   F1      [TOP_IJAVA_FRAME_ABI]          <-- Z_SP, Z_R10
1069   //           F1's operand stack (free)
1070   //           ...
1071   //           F1's operand stack (free)      <-- Z_esp
1072   //           F1's outgoing Java arg m
1073   //           ...
1074   //           F1's outgoing Java arg 0
1075   //           ...
1076   //
1077   //  ... into a parent frame (Z_R10 holds F1's SP before any modification, see also above)
1078   //
1079   //           +......................+
1080   //           :                      :        <-- Z_R10, saved below as F0's z_ijava_state.sender_sp
1081   //           :                      :
1082   //   F1      [PARENT_IJAVA_FRAME_ABI]        <-- Z_SP       \
1083   //           F0's non arg local                             | = delta
1084   //           ...                                            |
1085   //           F0's non arg local              <-- Z_esp      /
1086   //           F1's outgoing Java arg m
1087   //           ...
1088   //           F1's outgoing Java arg 0
1089   //           ...
1090   //
1091   // then push the new top frame F0.
1092   //
1093   //   F0      [TOP_IJAVA_FRAME_ABI]    = frame::z_top_ijava_frame_abi_size \
1094   //           [operand stack]          = max_stack                          | = top_frame_size
1095   //           [IJAVA_STATE]            = frame::z_ijava_state_size         /
1096 
1097   // sp_after_resize = Z_esp - delta
1098   //
1099   // delta = PARENT_IJAVA_FRAME_ABI + (locals_count - params_count)
1100 
1101   __ add2reg(sp_after_resize, (Interpreter::stackElementSize) - (frame::z_parent_ijava_frame_abi_size), Z_esp);
1102   __ z_sllg(Z_R0_scratch, local_count, LogBytesPerWord); // Params have already been subtracted from local_count.
1103   __ z_slgr(sp_after_resize, Z_R0_scratch);
1104 
1105   // top_frame_size = TOP_IJAVA_FRAME_ABI + max_stack + size of interpreter state
1106   __ add2reg(top_frame_size,
1107              frame::z_top_ijava_frame_abi_size +
1108                frame::z_ijava_state_size +
1109                frame::interpreter_frame_monitor_size() * wordSize,
1110              max_stack);
1111 
1112   // Check if there's room for the new frame...
1113   Register frame_size = max_stack; // Reuse the regiser for max_stack.
1114   __ z_lgr(frame_size, Z_SP);
1115   __ z_sgr(frame_size, sp_after_resize);
1116   __ z_agr(frame_size, top_frame_size);
1117   generate_stack_overflow_check(frame_size, fp/*tmp1*/);
1118 
1119   DEBUG_ONLY(__ z_cg(Z_R14, _z_abi16(return_pc), Z_SP));
1120   __ asm_assert_eq("killed Z_R14", 0);
1121   __ resize_frame_absolute(sp_after_resize, fp, true);
1122   __ save_return_pc(Z_R14);
1123 
1124   // ... and push the new frame F0.
1125   __ push_frame(top_frame_size, fp, true /*copy_sp*/, false);
1126   }
1127 
1128   //=============================================================================
1129   // Initialize the new frame F0: initialize interpreter state.
1130 
1131   {
1132   // locals
1133   const Register local_addr = Z_ARG4;
1134 
1135   BLOCK_COMMENT("generate_fixed_frame: initialize interpreter state {");
1136 
1137 #ifdef ASSERT
1138   // Set the magic number (using local_addr as tmp register).
1139   __ load_const_optimized(local_addr, frame::z_istate_magic_number);
1140   __ z_stg(local_addr, _z_ijava_state_neg(magic), fp);
1141 #endif
1142 
1143   // Save sender SP from F1 (i.e. before it was potentially modified by an
1144   // adapter) into F0's interpreter state. We us it as well to revert
1145   // resizing the frame above.
1146   __ z_stg(Z_R10, _z_ijava_state_neg(sender_sp), fp);
1147 
1148   // Load cp cache and save it at the and of this block.
1149   __ z_lg(Z_R1_scratch, Address(Z_method,    Method::const_offset()));
1150   __ z_lg(Z_R1_scratch, Address(Z_R1_scratch, ConstMethod::constants_offset()));
1151   __ z_lg(Z_R1_scratch, Address(Z_R1_scratch, ConstantPool::cache_offset_in_bytes()));
1152 
1153   // z_ijava_state->method = method;
1154   __ z_stg(Z_method, _z_ijava_state_neg(method), fp);
1155 
1156   // Point locals at the first argument. Method's locals are the
1157   // parameters on top of caller's expression stack.
1158   // Tos points past last Java argument.
1159 
1160   __ z_lg(Z_locals, Address(Z_method, Method::const_offset()));
1161   __ z_llgh(Z_locals /*parameter_count words*/,
1162             Address(Z_locals, ConstMethod::size_of_parameters_offset()));
1163   __ z_sllg(Z_locals /*parameter_count bytes*/, Z_locals /*parameter_count*/, LogBytesPerWord);
1164   __ z_agr(Z_locals, Z_esp);
1165   // z_ijava_state->locals - i*BytesPerWord points to i-th Java local (i starts at 0)
1166   // z_ijava_state->locals = Z_esp + parameter_count bytes
1167   __ z_stg(Z_locals, _z_ijava_state_neg(locals), fp);
1168 
1169   // z_ijava_state->oop_temp = NULL;
1170   __ store_const(Address(fp, oop_tmp_offset), 0);
1171 
1172   // Initialize z_ijava_state->mdx.
1173   Register Rmdp = Z_bcp;
1174   // native_call: assert that mdo == NULL
1175   const bool check_for_mdo = !native_call DEBUG_ONLY(|| native_call);
1176   if (ProfileInterpreter && check_for_mdo) {
1177 #ifdef FAST_DISPATCH
1178     // FAST_DISPATCH and ProfileInterpreter are mutually exclusive since
1179     // they both use I2.
1180     assert(0, "FAST_DISPATCH and +ProfileInterpreter are mutually exclusive");
1181 #endif // FAST_DISPATCH
1182     Label get_continue;
1183 
1184     __ load_and_test_long(Rmdp, method_(method_data));
1185     __ z_brz(get_continue);
1186     DEBUG_ONLY(if (native_call) __ stop("native methods don't have a mdo"));
1187     __ add2reg(Rmdp, in_bytes(MethodData::data_offset()));
1188     __ bind(get_continue);
1189   }
1190   __ z_stg(Rmdp, _z_ijava_state_neg(mdx), fp);
1191 
1192   // Initialize z_ijava_state->bcp and Z_bcp.
1193   if (native_call) {
1194     __ clear_reg(Z_bcp); // Must initialize. Will get written into frame where GC reads it.
1195   } else {
1196     __ z_lg(Z_bcp, method_(const));
1197     __ add2reg(Z_bcp, in_bytes(ConstMethod::codes_offset()));
1198   }
1199   __ z_stg(Z_bcp, _z_ijava_state_neg(bcp), fp);
1200 
1201   // no monitors and empty operand stack
1202   // => z_ijava_state->monitors points to the top slot in IJAVA_STATE.
1203   // => Z_ijava_state->esp points one slot above into the operand stack.
1204   // z_ijava_state->monitors = fp - frame::z_ijava_state_size - Interpreter::stackElementSize;
1205   // z_ijava_state->esp = Z_esp = z_ijava_state->monitors;
1206   __ add2reg(Z_esp, -frame::z_ijava_state_size, fp);
1207   __ z_stg(Z_esp, _z_ijava_state_neg(monitors), fp);
1208   __ add2reg(Z_esp, -Interpreter::stackElementSize);
1209   __ z_stg(Z_esp, _z_ijava_state_neg(esp), fp);
1210 
1211   // z_ijava_state->cpoolCache = Z_R1_scratch (see load above);
1212   __ z_stg(Z_R1_scratch, _z_ijava_state_neg(cpoolCache), fp);
1213 
1214   // Get mirror and store it in the frame as GC root for this Method*.
1215   __ load_mirror(Z_R1_scratch, Z_method);
1216   __ z_stg(Z_R1_scratch, _z_ijava_state_neg(mirror), fp);
1217 
1218   BLOCK_COMMENT("} generate_fixed_frame: initialize interpreter state");
1219 
1220   //=============================================================================
1221   if (!native_call) {
1222     // Fill locals with 0x0s.
1223     NearLabel locals_zeroed;
1224     NearLabel doXC;
1225 
1226     // Local_count is already num_locals_slots - num_param_slots.
1227     __ compare64_and_branch(local_count, (intptr_t)0L, Assembler::bcondNotHigh, locals_zeroed);
1228 
1229     // Advance local_addr to point behind locals (creates positive incr. in loop).
1230     __ z_lg(Z_R1_scratch, Address(Z_method, Method::const_offset()));
1231     __ z_llgh(Z_R0_scratch,
1232               Address(Z_R1_scratch, ConstMethod::size_of_locals_offset()));
1233     if (Z_R0_scratch == Z_R0) {
1234       __ z_aghi(Z_R0_scratch, -1);
1235     } else {
1236       __ add2reg(Z_R0_scratch, -1);
1237     }
1238     __ z_lgr(local_addr/*locals*/, Z_locals);
1239     __ z_sllg(Z_R0_scratch, Z_R0_scratch, LogBytesPerWord);
1240     __ z_sllg(local_count, local_count, LogBytesPerWord); // Local_count are non param locals.
1241     __ z_sgr(local_addr, Z_R0_scratch);
1242 
1243     if (VM_Version::has_Prefetch()) {
1244       __ z_pfd(0x02, 0, Z_R0, local_addr);
1245       __ z_pfd(0x02, 256, Z_R0, local_addr);
1246     }
1247 
1248     // Can't optimise for Z10 using "compare and branch" (immediate value is too big).
1249     __ z_cghi(local_count, 256);
1250     __ z_brnh(doXC);
1251 
1252     // MVCLE: Initialize if quite a lot locals.
1253     //  __ bind(doMVCLE);
1254     __ z_lgr(Z_R0_scratch, local_addr);
1255     __ z_lgr(Z_R1_scratch, local_count);
1256     __ clear_reg(Z_ARG2);        // Src len of MVCLE is zero.
1257 
1258     __ MacroAssembler::move_long_ext(Z_R0_scratch, Z_ARG1, 0);
1259     __ z_bru(locals_zeroed);
1260 
1261     Label  XC_template;
1262     __ bind(XC_template);
1263     __ z_xc(0, 0, local_addr, 0, local_addr);
1264 
1265     __ bind(doXC);
1266     __ z_bctgr(local_count, Z_R0);                  // Get #bytes-1 for EXECUTE.
1267     if (VM_Version::has_ExecuteExtensions()) {
1268       __ z_exrl(local_count, XC_template);          // Execute XC with variable length.
1269     } else {
1270       __ z_larl(Z_R1_scratch, XC_template);
1271       __ z_ex(local_count, 0, Z_R0, Z_R1_scratch);  // Execute XC with variable length.
1272     }
1273 
1274     __ bind(locals_zeroed);
1275   }
1276 
1277   }
1278   // Finally set the frame pointer, destroying Z_method.
1279   assert(Z_fp == Z_method, "maybe set Z_fp earlier if other register than Z_method");
1280   // Oprofile analysis suggests to keep a copy in a register to be used by
1281   // generate_counter_incr().
1282   __ z_lgr(Z_ARG2, Z_method);
1283   __ z_lgr(Z_fp, fp);
1284 
1285   BLOCK_COMMENT("} generate_fixed_frame");
1286 }
1287 
1288 // Various method entries
1289 
1290 // Math function, frame manager must set up an interpreter state, etc.
1291 address TemplateInterpreterGenerator::generate_math_entry(AbstractInterpreter::MethodKind kind) {
1292 
1293   if (!InlineIntrinsics) { return NULL; } // Generate a vanilla entry.
1294 
1295   // Only support absolute value and square root.
1296   if (kind != Interpreter::java_lang_math_abs && kind != Interpreter::java_lang_math_sqrt) {
1297     return NULL;
1298   }
1299 
1300   BLOCK_COMMENT("math_entry {");
1301 
1302   address math_entry = __ pc();
1303 
1304   if (kind == Interpreter::java_lang_math_abs) {
1305     // Load operand from stack.
1306     __ mem2freg_opt(Z_FRET, Address(Z_esp, Interpreter::stackElementSize));
1307     __ z_lpdbr(Z_FRET);
1308   } else {
1309     // sqrt
1310     // Can use memory operand directly.
1311     __ z_sqdb(Z_FRET, Interpreter::stackElementSize, Z_esp);
1312   }
1313 
1314   // Restore caller sp for c2i case.
1315   __ resize_frame_absolute(Z_R10, Z_R0, true); // Cut the stack back to where the caller started.
1316 
1317   // We are done, return.
1318   __ z_br(Z_R14);
1319 
1320   BLOCK_COMMENT("} math_entry");
1321 
1322   return math_entry;
1323 }
1324 
1325 // Interpreter stub for calling a native method. (asm interpreter).
1326 // This sets up a somewhat different looking stack for calling the
1327 // native method than the typical interpreter frame setup.
1328 address TemplateInterpreterGenerator::generate_native_entry(bool synchronized) {
1329   // Determine code generation flags.
1330   bool inc_counter = UseCompiler || CountCompiledCalls || LogTouchedMethods;
1331 
1332   // Interpreter entry for ordinary Java methods.
1333   //
1334   // Registers alive
1335   //   Z_SP          - stack pointer
1336   //   Z_thread      - JavaThread*
1337   //   Z_method      - callee's method (method to be invoked)
1338   //   Z_esp         - operand (or expression) stack pointer of caller. one slot above last arg.
1339   //   Z_R10         - sender sp (before modifications, e.g. by c2i adapter
1340   //                   and as well by generate_fixed_frame below)
1341   //   Z_R14         - return address to caller (call_stub or c2i_adapter)
1342   //
1343   // Registers updated
1344   //   Z_SP          - stack pointer
1345   //   Z_fp          - callee's framepointer
1346   //   Z_esp         - callee's operand stack pointer
1347   //                   points to the slot above the value on top
1348   //   Z_locals      - used to access locals: locals[i] := *(Z_locals - i*BytesPerWord)
1349   //   Z_tos         - integer result, if any
1350   //   z_ftos        - floating point result, if any
1351   //
1352   // Stack layout at this point:
1353   //
1354   //   F1      [TOP_IJAVA_FRAME_ABI]         <-- Z_SP, Z_R10 (Z_R10 will be below Z_SP if
1355   //                                                          frame was extended by c2i adapter)
1356   //           [outgoing Java arguments]     <-- Z_esp
1357   //           ...
1358   //   PARENT  [PARENT_IJAVA_FRAME_ABI]
1359   //           ...
1360   //
1361 
1362   address entry_point = __ pc();
1363 
1364   // Make sure registers are different!
1365   assert_different_registers(Z_thread, Z_method, Z_esp);
1366 
1367   BLOCK_COMMENT("native_entry {");
1368 
1369   // Make sure method is native and not abstract.
1370 #ifdef ASSERT
1371   address reentry = NULL;
1372   { Label L;
1373     __ testbit(method_(access_flags), JVM_ACC_NATIVE_BIT);
1374     __ z_btrue(L);
1375     reentry = __ stop_chain_static(reentry, "tried to execute non-native method as native");
1376     __ bind(L);
1377   }
1378   { Label L;
1379     __ testbit(method_(access_flags), JVM_ACC_ABSTRACT_BIT);
1380     __ z_bfalse(L);
1381     reentry = __ stop_chain_static(reentry, "tried to execute abstract method as non-abstract");
1382     __ bind(L);
1383   }
1384 #endif // ASSERT
1385 
1386 #ifdef ASSERT
1387   // Save the return PC into the callers frame for assertion in generate_fixed_frame.
1388   __ save_return_pc(Z_R14);
1389 #endif
1390 
1391   // Generate the code to allocate the interpreter stack frame.
1392   generate_fixed_frame(true);
1393 
1394   const Address do_not_unlock_if_synchronized(Z_thread, JavaThread::do_not_unlock_if_synchronized_offset());
1395   // Since at this point in the method invocation the exception handler
1396   // would try to exit the monitor of synchronized methods which hasn't
1397   // been entered yet, we set the thread local variable
1398   // _do_not_unlock_if_synchronized to true. If any exception was thrown by
1399   // runtime, exception handling i.e. unlock_if_synchronized_method will
1400   // check this thread local flag.
1401   __ z_mvi(do_not_unlock_if_synchronized, true);
1402 
1403   // Increment invocation count and check for overflow.
1404   NearLabel invocation_counter_overflow;
1405   if (inc_counter) {
1406     generate_counter_incr(&invocation_counter_overflow, NULL, NULL);
1407   }
1408 
1409   Label continue_after_compile;
1410   __ bind(continue_after_compile);
1411 
1412   bang_stack_shadow_pages(true);
1413 
1414   // Reset the _do_not_unlock_if_synchronized flag.
1415   __ z_mvi(do_not_unlock_if_synchronized, false);
1416 
1417   // Check for synchronized methods.
1418   // This mst happen AFTER invocation_counter check and stack overflow check,
1419   // so method is not locked if overflows.
1420   if (synchronized) {
1421     lock_method();
1422   } else {
1423     // No synchronization necessary.
1424 #ifdef ASSERT
1425     { Label L;
1426       __ get_method(Z_R1_scratch);
1427       __ testbit(method2_(Z_R1_scratch, access_flags), JVM_ACC_SYNCHRONIZED_BIT);
1428       __ z_bfalse(L);
1429       reentry = __ stop_chain_static(reentry, "method needs synchronization");
1430       __ bind(L);
1431     }
1432 #endif // ASSERT
1433   }
1434 
1435   // start execution
1436 
1437   // jvmti support
1438   __ notify_method_entry();
1439 
1440   //=============================================================================
1441   // Get and call the signature handler.
1442   const Register Rmethod                 = Z_tmp_2;
1443   const Register signature_handler_entry = Z_tmp_1;
1444   const Register Rresult_handler         = Z_tmp_3;
1445   Label call_signature_handler;
1446 
1447   assert_different_registers(Z_fp, Rmethod, signature_handler_entry, Rresult_handler);
1448   assert(Rresult_handler->is_nonvolatile(), "Rresult_handler must be in a non-volatile register");
1449 
1450   // Reload method.
1451   __ get_method(Rmethod);
1452 
1453   // Check for signature handler.
1454   __ load_and_test_long(signature_handler_entry, method2_(Rmethod, signature_handler));
1455   __ z_brne(call_signature_handler);
1456 
1457   // Method has never been called. Either generate a specialized
1458   // handler or point to the slow one.
1459   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::prepare_native_call),
1460              Rmethod);
1461 
1462   // Reload method.
1463   __ get_method(Rmethod);
1464 
1465   // Reload signature handler, it must have been created/assigned in the meantime.
1466   __ z_lg(signature_handler_entry, method2_(Rmethod, signature_handler));
1467 
1468   __ bind(call_signature_handler);
1469 
1470   // We have a TOP_IJAVA_FRAME here, which belongs to us.
1471   __ set_top_ijava_frame_at_SP_as_last_Java_frame(Z_SP, Z_R1/*tmp*/);
1472 
1473   // Call signature handler and pass locals address in Z_ARG1.
1474   __ z_lgr(Z_ARG1, Z_locals);
1475   __ call_stub(signature_handler_entry);
1476   // Save result handler returned by signature handler.
1477   __ z_lgr(Rresult_handler, Z_RET);
1478 
1479   // Reload method (the slow signature handler may block for GC).
1480   __ get_method(Rmethod);
1481 
1482   // Pass mirror handle if static call.
1483   {
1484     Label method_is_not_static;
1485     __ testbit(method2_(Rmethod, access_flags), JVM_ACC_STATIC_BIT);
1486     __ z_bfalse(method_is_not_static);
1487     // Get mirror.
1488     __ load_mirror(Z_R1, Rmethod);
1489     // z_ijava_state.oop_temp = pool_holder->klass_part()->java_mirror();
1490     __ z_stg(Z_R1, oop_tmp_offset, Z_fp);
1491     // Pass handle to mirror as 2nd argument to JNI method.
1492     __ add2reg(Z_ARG2, oop_tmp_offset, Z_fp);
1493     __ bind(method_is_not_static);
1494   }
1495 
1496   // Pass JNIEnv address as first parameter.
1497   __ add2reg(Z_ARG1, in_bytes(JavaThread::jni_environment_offset()), Z_thread);
1498 
1499   // Note: last java frame has been set above already. The pc from there
1500   // is precise enough.
1501 
1502   // Get native function entry point before we change the thread state.
1503   __ z_lg(Z_R1/*native_method_entry*/, method2_(Rmethod, native_function));
1504 
1505   //=============================================================================
1506   // Transition from _thread_in_Java to _thread_in_native. As soon as
1507   // we make this change the safepoint code needs to be certain that
1508   // the last Java frame we established is good. The pc in that frame
1509   // just need to be near here not an actual return address.
1510 #ifdef ASSERT
1511   {
1512     NearLabel L;
1513     __ mem2reg_opt(Z_R14, Address(Z_thread, JavaThread::thread_state_offset()), false /*32 bits*/);
1514     __ compareU32_and_branch(Z_R14, _thread_in_Java, Assembler::bcondEqual, L);
1515     reentry = __ stop_chain_static(reentry, "Wrong thread state in native stub");
1516     __ bind(L);
1517   }
1518 #endif
1519 
1520   // Memory ordering: Z does not reorder store/load with subsequent load. That's strong enough.
1521   __ set_thread_state(_thread_in_native);
1522 
1523   //=============================================================================
1524   // Call the native method. Argument registers must not have been
1525   // overwritten since "__ call_stub(signature_handler);" (except for
1526   // ARG1 and ARG2 for static methods).
1527 
1528   __ call_c(Z_R1/*native_method_entry*/);
1529 
1530   // NOTE: frame::interpreter_frame_result() depends on these stores.
1531   __ z_stg(Z_RET, _z_ijava_state_neg(lresult), Z_fp);
1532   __ freg2mem_opt(Z_FRET, Address(Z_fp, _z_ijava_state_neg(fresult)));
1533   const Register Rlresult = signature_handler_entry;
1534   assert(Rlresult->is_nonvolatile(), "Rlresult must be in a non-volatile register");
1535   __ z_lgr(Rlresult, Z_RET);
1536 
1537   // Z_method may no longer be valid, because of GC.
1538 
1539   // Block, if necessary, before resuming in _thread_in_Java state.
1540   // In order for GC to work, don't clear the last_Java_sp until after
1541   // blocking.
1542 
1543   //=============================================================================
1544   // Switch thread to "native transition" state before reading the
1545   // synchronization state. This additional state is necessary
1546   // because reading and testing the synchronization state is not
1547   // atomic w.r.t. GC, as this scenario demonstrates: Java thread A,
1548   // in _thread_in_native state, loads _not_synchronized and is
1549   // preempted. VM thread changes sync state to synchronizing and
1550   // suspends threads for GC. Thread A is resumed to finish this
1551   // native method, but doesn't block here since it didn't see any
1552   // synchronization is progress, and escapes.
1553 
1554   __ set_thread_state(_thread_in_native_trans);
1555   if (UseMembar) {
1556     __ z_fence();
1557   } else {
1558     // Write serialization page so VM thread can do a pseudo remote
1559     // membar. We use the current thread pointer to calculate a thread
1560     // specific offset to write to within the page. This minimizes bus
1561     // traffic due to cache line collision.
1562     __ serialize_memory(Z_thread, Z_R1, Z_R0);
1563   }
1564   // Now before we return to java we must look for a current safepoint
1565   // (a new safepoint can not start since we entered native_trans).
1566   // We must check here because a current safepoint could be modifying
1567   // the callers registers right this moment.
1568 
1569   // Check for safepoint operation in progress and/or pending suspend requests.
1570   {
1571     Label Continue, do_safepoint;
1572     __ generate_safepoint_check(do_safepoint, Z_R1, true);
1573     // Check for suspend.
1574     __ load_and_test_int(Z_R0/*suspend_flags*/, thread_(suspend_flags));
1575     __ z_bre(Continue); // 0 -> no flag set -> not suspended
1576     __ bind(do_safepoint);
1577     __ z_lgr(Z_ARG1, Z_thread);
1578     __ call_c(CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans));
1579     __ bind(Continue);
1580   }
1581 
1582   //=============================================================================
1583   // Back in Interpreter Frame.
1584 
1585   // We are in thread_in_native_trans here and back in the normal
1586   // interpreter frame. We don't have to do anything special about
1587   // safepoints and we can switch to Java mode anytime we are ready.
1588 
1589   // Note: frame::interpreter_frame_result has a dependency on how the
1590   // method result is saved across the call to post_method_exit. For
1591   // native methods it assumes that the non-FPU/non-void result is
1592   // saved in z_ijava_state.lresult and a FPU result in z_ijava_state.fresult. If
1593   // this changes then the interpreter_frame_result implementation
1594   // will need to be updated too.
1595 
1596   //=============================================================================
1597   // Back in Java.
1598 
1599   // Memory ordering: Z does not reorder store/load with subsequent
1600   // load. That's strong enough.
1601   __ set_thread_state(_thread_in_Java);
1602 
1603   __ reset_last_Java_frame();
1604 
1605   // We reset the JNI handle block only after unboxing the result; see below.
1606 
1607   // The method register is junk from after the thread_in_native transition
1608   // until here. Also can't call_VM until the bcp has been
1609   // restored. Need bcp for throwing exception below so get it now.
1610   __ get_method(Rmethod);
1611 
1612   // Restore Z_bcp to have legal interpreter frame,
1613   // i.e., bci == 0 <=> Z_bcp == code_base().
1614   __ z_lg(Z_bcp, Address(Rmethod, Method::const_offset())); // get constMethod
1615   __ add2reg(Z_bcp, in_bytes(ConstMethod::codes_offset())); // get codebase
1616 
1617   if (CheckJNICalls) {
1618     // clear_pending_jni_exception_check
1619     __ clear_mem(Address(Z_thread, JavaThread::pending_jni_exception_check_fn_offset()), sizeof(oop));
1620   }
1621 
1622   // Check if the native method returns an oop, and if so, move it
1623   // from the jni handle to z_ijava_state.oop_temp. This is
1624   // necessary, because we reset the jni handle block below.
1625   // NOTE: frame::interpreter_frame_result() depends on this, too.
1626   { NearLabel no_oop_result, store_oop_result;
1627   __ load_absolute_address(Z_R1, AbstractInterpreter::result_handler(T_OBJECT));
1628   __ compareU64_and_branch(Z_R1, Rresult_handler, Assembler::bcondNotEqual, no_oop_result);
1629   __ compareU64_and_branch(Rlresult, (intptr_t)0L, Assembler::bcondEqual, store_oop_result);
1630   __ z_lg(Rlresult, 0, Rlresult);  // unbox
1631   __ bind(store_oop_result);
1632   __ z_stg(Rlresult, oop_tmp_offset, Z_fp);
1633   __ verify_oop(Rlresult);
1634   __ bind(no_oop_result);
1635   }
1636 
1637   // Reset handle block.
1638   __ z_lg(Z_R1/*active_handles*/, thread_(active_handles));
1639   __ clear_mem(Address(Z_R1, JNIHandleBlock::top_offset_in_bytes()), 4);
1640 
1641   // Bandle exceptions (exception handling will handle unlocking!).
1642   {
1643     Label L;
1644     __ load_and_test_long(Z_R0/*pending_exception*/, thread_(pending_exception));
1645     __ z_bre(L);
1646     __ MacroAssembler::call_VM(noreg,
1647                                CAST_FROM_FN_PTR(address,
1648                                InterpreterRuntime::throw_pending_exception));
1649     __ should_not_reach_here();
1650     __ bind(L);
1651   }
1652 
1653   if (synchronized) {
1654     Register Rfirst_monitor = Z_ARG2;
1655     __ add2reg(Rfirst_monitor, -(frame::z_ijava_state_size + (int)sizeof(BasicObjectLock)), Z_fp);
1656 #ifdef ASSERT
1657     NearLabel ok;
1658     __ z_lg(Z_R1, _z_ijava_state_neg(monitors), Z_fp);
1659     __ compareU64_and_branch(Rfirst_monitor, Z_R1, Assembler::bcondEqual, ok);
1660     reentry = __ stop_chain_static(reentry, "native_entry:unlock: inconsistent z_ijava_state.monitors");
1661     __ bind(ok);
1662 #endif
1663     __ unlock_object(Rfirst_monitor);
1664   }
1665 
1666   // JVMTI support. Result has already been saved above to the frame.
1667   __ notify_method_exit(true/*native_method*/, ilgl, InterpreterMacroAssembler::NotifyJVMTI);
1668 
1669   // Move native method result back into proper registers and return.
1670   // C++ interpreter does not use result handler. So do we need to here? TODO(ZASM): check if correct.
1671   { NearLabel no_oop_or_null;
1672   __ mem2freg_opt(Z_FRET, Address(Z_fp, _z_ijava_state_neg(fresult)));
1673   __ load_and_test_long(Z_RET, Address(Z_fp, _z_ijava_state_neg(lresult)));
1674   __ z_bre(no_oop_or_null); // No unboxing if the result is NULL.
1675   __ load_absolute_address(Z_R1, AbstractInterpreter::result_handler(T_OBJECT));
1676   __ compareU64_and_branch(Z_R1, Rresult_handler, Assembler::bcondNotEqual, no_oop_or_null);
1677   __ z_lg(Z_RET, oop_tmp_offset, Z_fp);
1678   __ verify_oop(Z_RET);
1679   __ bind(no_oop_or_null);
1680   }
1681 
1682   // Pop the native method's interpreter frame.
1683   __ pop_interpreter_frame(Z_R14 /*return_pc*/, Z_ARG2/*tmp1*/, Z_ARG3/*tmp2*/);
1684 
1685   // Return to caller.
1686   __ z_br(Z_R14);
1687 
1688   if (inc_counter) {
1689     // Handle overflow of counter and compile method.
1690     __ bind(invocation_counter_overflow);
1691     generate_counter_overflow(continue_after_compile);
1692   }
1693 
1694   BLOCK_COMMENT("} native_entry");
1695 
1696   return entry_point;
1697 }
1698 
1699 //
1700 // Generic interpreted method entry to template interpreter.
1701 //
1702 address TemplateInterpreterGenerator::generate_normal_entry(bool synchronized) {
1703   address entry_point = __ pc();
1704 
1705   bool inc_counter = UseCompiler || CountCompiledCalls || LogTouchedMethods;
1706 
1707   // Interpreter entry for ordinary Java methods.
1708   //
1709   // Registers alive
1710   //   Z_SP       - stack pointer
1711   //   Z_thread   - JavaThread*
1712   //   Z_method   - callee's method (method to be invoked)
1713   //   Z_esp      - operand (or expression) stack pointer of caller. one slot above last arg.
1714   //   Z_R10      - sender sp (before modifications, e.g. by c2i adapter
1715   //                           and as well by generate_fixed_frame below)
1716   //   Z_R14      - return address to caller (call_stub or c2i_adapter)
1717   //
1718   // Registers updated
1719   //   Z_SP       - stack pointer
1720   //   Z_fp       - callee's framepointer
1721   //   Z_esp      - callee's operand stack pointer
1722   //                points to the slot above the value on top
1723   //   Z_locals   - used to access locals: locals[i] := *(Z_locals - i*BytesPerWord)
1724   //   Z_tos      - integer result, if any
1725   //   z_ftos     - floating point result, if any
1726   //
1727   //
1728   // stack layout at this point:
1729   //
1730   //   F1      [TOP_IJAVA_FRAME_ABI]         <-- Z_SP, Z_R10 (Z_R10 will be below Z_SP if
1731   //                                                          frame was extended by c2i adapter)
1732   //           [outgoing Java arguments]     <-- Z_esp
1733   //           ...
1734   //   PARENT  [PARENT_IJAVA_FRAME_ABI]
1735   //           ...
1736   //
1737   // stack layout before dispatching the first bytecode:
1738   //
1739   //   F0      [TOP_IJAVA_FRAME_ABI]         <-- Z_SP
1740   //           [operand stack]               <-- Z_esp
1741   //           monitor (optional, can grow)
1742   //           [IJAVA_STATE]
1743   //   F1      [PARENT_IJAVA_FRAME_ABI]      <-- Z_fp (== *Z_SP)
1744   //           [F0's locals]                 <-- Z_locals
1745   //           [F1's operand stack]
1746   //           [F1's monitors] (optional)
1747   //           [IJAVA_STATE]
1748 
1749   // Make sure registers are different!
1750   assert_different_registers(Z_thread, Z_method, Z_esp);
1751 
1752   BLOCK_COMMENT("normal_entry {");
1753 
1754   // Make sure method is not native and not abstract.
1755   // Rethink these assertions - they can be simplified and shared.
1756 #ifdef ASSERT
1757   address reentry = NULL;
1758   { Label L;
1759     __ testbit(method_(access_flags), JVM_ACC_NATIVE_BIT);
1760     __ z_bfalse(L);
1761     reentry = __ stop_chain_static(reentry, "tried to execute native method as non-native");
1762     __ bind(L);
1763   }
1764   { Label L;
1765     __ testbit(method_(access_flags), JVM_ACC_ABSTRACT_BIT);
1766     __ z_bfalse(L);
1767     reentry = __ stop_chain_static(reentry, "tried to execute abstract method as non-abstract");
1768     __ bind(L);
1769   }
1770 #endif // ASSERT
1771 
1772 #ifdef ASSERT
1773   // Save the return PC into the callers frame for assertion in generate_fixed_frame.
1774   __ save_return_pc(Z_R14);
1775 #endif
1776 
1777   // Generate the code to allocate the interpreter stack frame.
1778   generate_fixed_frame(false);
1779 
1780   const Address do_not_unlock_if_synchronized(Z_thread, JavaThread::do_not_unlock_if_synchronized_offset());
1781   // Since at this point in the method invocation the exception handler
1782   // would try to exit the monitor of synchronized methods which hasn't
1783   // been entered yet, we set the thread local variable
1784   // _do_not_unlock_if_synchronized to true. If any exception was thrown by
1785   // runtime, exception handling i.e. unlock_if_synchronized_method will
1786   // check this thread local flag.
1787   __ z_mvi(do_not_unlock_if_synchronized, true);
1788 
1789   __ profile_parameters_type(Z_tmp_2, Z_ARG3, Z_ARG4);
1790 
1791   // Increment invocation counter and check for overflow.
1792   //
1793   // Note: checking for negative value instead of overflow so we have a 'sticky'
1794   // overflow test (may be of importance as soon as we have true MT/MP).
1795   NearLabel invocation_counter_overflow;
1796   NearLabel profile_method;
1797   NearLabel profile_method_continue;
1798   NearLabel Lcontinue;
1799   if (inc_counter) {
1800     generate_counter_incr(&invocation_counter_overflow, &profile_method, &profile_method_continue);
1801     if (ProfileInterpreter) {
1802       __ bind(profile_method_continue);
1803     }
1804   }
1805   __ bind(Lcontinue);
1806 
1807   bang_stack_shadow_pages(false);
1808 
1809   // Reset the _do_not_unlock_if_synchronized flag.
1810   __ z_mvi(do_not_unlock_if_synchronized, false);
1811 
1812   // Check for synchronized methods.
1813   // Must happen AFTER invocation_counter check and stack overflow check,
1814   // so method is not locked if overflows.
1815   if (synchronized) {
1816     // Allocate monitor and lock method.
1817     lock_method();
1818   } else {
1819 #ifdef ASSERT
1820     { Label L;
1821       __ get_method(Z_R1_scratch);
1822       __ testbit(method2_(Z_R1_scratch, access_flags), JVM_ACC_SYNCHRONIZED_BIT);
1823       __ z_bfalse(L);
1824       reentry = __ stop_chain_static(reentry, "method needs synchronization");
1825       __ bind(L);
1826     }
1827 #endif // ASSERT
1828   }
1829 
1830   // start execution
1831 
1832 #ifdef ASSERT
1833   __ verify_esp(Z_esp, Z_R1_scratch);
1834 
1835   __ verify_thread();
1836 #endif
1837 
1838   // jvmti support
1839   __ notify_method_entry();
1840 
1841   // Start executing instructions.
1842   __ dispatch_next(vtos);
1843   // Dispatch_next does not return.
1844   DEBUG_ONLY(__ should_not_reach_here());
1845 
1846   // Invocation counter overflow.
1847   if (inc_counter) {
1848     if (ProfileInterpreter) {
1849       // We have decided to profile this method in the interpreter.
1850       __ bind(profile_method);
1851 
1852       __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method));
1853       __ set_method_data_pointer_for_bcp();
1854       __ z_bru(profile_method_continue);
1855     }
1856 
1857     // Handle invocation counter overflow.
1858     __ bind(invocation_counter_overflow);
1859     generate_counter_overflow(Lcontinue);
1860   }
1861 
1862   BLOCK_COMMENT("} normal_entry");
1863 
1864   return entry_point;
1865 }
1866 
1867 // Method entry for static native methods:
1868 //   int java.util.zip.CRC32.update(int crc, int b)
1869 address TemplateInterpreterGenerator::generate_CRC32_update_entry() {
1870 
1871   if (UseCRC32Intrinsics) {
1872     uint64_t entry_off = __ offset();
1873     Label    slow_path;
1874 
1875     // If we need a safepoint check, generate full interpreter entry.
1876     __ generate_safepoint_check(slow_path, Z_R1, false);
1877 
1878     BLOCK_COMMENT("CRC32_update {");
1879 
1880     // We don't generate local frame and don't align stack because
1881     // we not even call stub code (we generate the code inline)
1882     // and there is no safepoint on this path.
1883 
1884     // Load java parameters.
1885     // Z_esp is callers operand stack pointer, i.e. it points to the parameters.
1886     const Register argP    = Z_esp;
1887     const Register crc     = Z_ARG1;  // crc value
1888     const Register data    = Z_ARG2;  // address of java byte value (kernel_crc32 needs address)
1889     const Register dataLen = Z_ARG3;  // source data len (1 byte). Not used because calling the single-byte emitter.
1890     const Register table   = Z_ARG4;  // address of crc32 table
1891 
1892     // Arguments are reversed on java expression stack.
1893     __ z_la(data, 3+1*wordSize, argP);  // byte value (stack address).
1894                                         // Being passed as an int, the single byte is at offset +3.
1895     __ z_llgf(crc, 2 * wordSize, argP); // Current crc state, zero extend to 64 bit to have a clean register.
1896 
1897     StubRoutines::zarch::generate_load_crc_table_addr(_masm, table);
1898     __ kernel_crc32_singleByte(crc, data, dataLen, table, Z_R1);
1899 
1900     // Restore caller sp for c2i case.
1901     __ resize_frame_absolute(Z_R10, Z_R0, true); // Cut the stack back to where the caller started.
1902 
1903     __ z_br(Z_R14);
1904 
1905     BLOCK_COMMENT("} CRC32_update");
1906 
1907     // Use a previously generated vanilla native entry as the slow path.
1908     BIND(slow_path);
1909     __ jump_to_entry(Interpreter::entry_for_kind(Interpreter::native), Z_R1);
1910     return __ addr_at(entry_off);
1911   }
1912 
1913   return NULL;
1914 }
1915 
1916 
1917 // Method entry for static native methods:
1918 //   int java.util.zip.CRC32.updateBytes(int crc, byte[] b, int off, int len)
1919 //   int java.util.zip.CRC32.updateByteBuffer(int crc, long buf, int off, int len)
1920 address TemplateInterpreterGenerator::generate_CRC32_updateBytes_entry(AbstractInterpreter::MethodKind kind) {
1921 
1922   if (UseCRC32Intrinsics) {
1923     uint64_t entry_off = __ offset();
1924     Label    slow_path;
1925 
1926     // If we need a safepoint check, generate full interpreter entry.
1927     __ generate_safepoint_check(slow_path, Z_R1, false);
1928 
1929     // We don't generate local frame and don't align stack because
1930     // we call stub code and there is no safepoint on this path.
1931 
1932     // Load parameters.
1933     // Z_esp is callers operand stack pointer, i.e. it points to the parameters.
1934     const Register argP    = Z_esp;
1935     const Register crc     = Z_ARG1;  // crc value
1936     const Register data    = Z_ARG2;  // address of java byte array
1937     const Register dataLen = Z_ARG3;  // source data len
1938     const Register table   = Z_ARG4;  // address of crc32 table
1939     const Register t0      = Z_R10;   // work reg for kernel* emitters
1940     const Register t1      = Z_R11;   // work reg for kernel* emitters
1941     const Register t2      = Z_R12;   // work reg for kernel* emitters
1942     const Register t3      = Z_R13;   // work reg for kernel* emitters
1943 
1944     // Arguments are reversed on java expression stack.
1945     // Calculate address of start element.
1946     if (kind == Interpreter::java_util_zip_CRC32_updateByteBuffer) { // Used for "updateByteBuffer direct".
1947       // crc     @ (SP + 5W) (32bit)
1948       // buf     @ (SP + 3W) (64bit ptr to long array)
1949       // off     @ (SP + 2W) (32bit)
1950       // dataLen @ (SP + 1W) (32bit)
1951       // data = buf + off
1952       BLOCK_COMMENT("CRC32_updateByteBuffer {");
1953       __ z_llgf(crc,    5*wordSize, argP);  // current crc state
1954       __ z_lg(data,    3*wordSize, argP);   // start of byte buffer
1955       __ z_agf(data,    2*wordSize, argP);  // Add byte buffer offset.
1956       __ z_lgf(dataLen, 1*wordSize, argP);  // #bytes to process
1957     } else {                         // Used for "updateBytes update".
1958       // crc     @ (SP + 4W) (32bit)
1959       // buf     @ (SP + 3W) (64bit ptr to byte array)
1960       // off     @ (SP + 2W) (32bit)
1961       // dataLen @ (SP + 1W) (32bit)
1962       // data = buf + off + base_offset
1963       BLOCK_COMMENT("CRC32_updateBytes {");
1964       __ z_llgf(crc,    4*wordSize, argP);  // current crc state
1965       __ z_lg(data,    3*wordSize, argP);   // start of byte buffer
1966       __ z_agf(data,    2*wordSize, argP);  // Add byte buffer offset.
1967       __ z_lgf(dataLen, 1*wordSize, argP);  // #bytes to process
1968       __ z_aghi(data, arrayOopDesc::base_offset_in_bytes(T_BYTE));
1969     }
1970 
1971     StubRoutines::zarch::generate_load_crc_table_addr(_masm, table);
1972 
1973     __ resize_frame(-(6*8), Z_R0, true); // Resize frame to provide add'l space to spill 5 registers.
1974     __ z_stmg(t0, t3, 1*8, Z_SP);        // Spill regs 10..13 to make them available as work registers.
1975     __ kernel_crc32_1word(crc, data, dataLen, table, t0, t1, t2, t3);
1976     __ z_lmg(t0, t3, 1*8, Z_SP);         // Spill regs 10..13 back from stack.
1977 
1978     // Restore caller sp for c2i case.
1979     __ resize_frame_absolute(Z_R10, Z_R0, true); // Cut the stack back to where the caller started.
1980 
1981     __ z_br(Z_R14);
1982 
1983     BLOCK_COMMENT("} CRC32_update{Bytes|ByteBuffer}");
1984 
1985     // Use a previously generated vanilla native entry as the slow path.
1986     BIND(slow_path);
1987     __ jump_to_entry(Interpreter::entry_for_kind(Interpreter::native), Z_R1);
1988     return __ addr_at(entry_off);
1989   }
1990 
1991   return NULL;
1992 }
1993 
1994 // Not supported
1995 address TemplateInterpreterGenerator::generate_CRC32C_updateBytes_entry(AbstractInterpreter::MethodKind kind) {
1996   return NULL;
1997 }
1998 
1999 void TemplateInterpreterGenerator::bang_stack_shadow_pages(bool native_call) {
2000   // Quick & dirty stack overflow checking: bang the stack & handle trap.
2001   // Note that we do the banging after the frame is setup, since the exception
2002   // handling code expects to find a valid interpreter frame on the stack.
2003   // Doing the banging earlier fails if the caller frame is not an interpreter
2004   // frame.
2005   // (Also, the exception throwing code expects to unlock any synchronized
2006   // method receiver, so do the banging after locking the receiver.)
2007 
2008   // Bang each page in the shadow zone. We can't assume it's been done for
2009   // an interpreter frame with greater than a page of locals, so each page
2010   // needs to be checked. Only true for non-native. For native, we only bang the last page.
2011   if (UseStackBanging) {
2012     const int page_size      = os::vm_page_size();
2013     const int n_shadow_pages = (int)(JavaThread::stack_shadow_zone_size()/page_size);
2014     const int start_page_num = native_call ? n_shadow_pages : 1;
2015     for (int pages = start_page_num; pages <= n_shadow_pages; pages++) {
2016       __ bang_stack_with_offset(pages*page_size);
2017     }
2018   }
2019 }
2020 
2021 //-----------------------------------------------------------------------------
2022 // Exceptions
2023 
2024 void TemplateInterpreterGenerator::generate_throw_exception() {
2025 
2026   BLOCK_COMMENT("throw_exception {");
2027 
2028   // Entry point in previous activation (i.e., if the caller was interpreted).
2029   Interpreter::_rethrow_exception_entry = __ pc();
2030   __ z_lg(Z_fp, _z_abi(callers_sp), Z_SP); // Frame accessors use Z_fp.
2031   // Z_ARG1 (==Z_tos): exception
2032   // Z_ARG2          : Return address/pc that threw exception.
2033   __ restore_bcp();    // R13 points to call/send.
2034   __ restore_locals();
2035 
2036   // Fallthrough, no need to restore Z_esp.
2037 
2038   // Entry point for exceptions thrown within interpreter code.
2039   Interpreter::_throw_exception_entry = __ pc();
2040   // Expression stack is undefined here.
2041   // Z_ARG1 (==Z_tos): exception
2042   // Z_bcp: exception bcp
2043   __ verify_oop(Z_ARG1);
2044   __ z_lgr(Z_ARG2, Z_ARG1);
2045 
2046   // Expression stack must be empty before entering the VM in case of
2047   // an exception.
2048   __ empty_expression_stack();
2049   // Find exception handler address and preserve exception oop.
2050   const Register Rpreserved_exc_oop = Z_tmp_1;
2051   __ call_VM(Rpreserved_exc_oop,
2052              CAST_FROM_FN_PTR(address, InterpreterRuntime::exception_handler_for_exception),
2053              Z_ARG2);
2054   // Z_RET: exception handler entry point
2055   // Z_bcp: bcp for exception handler
2056   __ push_ptr(Rpreserved_exc_oop); // Push exception which is now the only value on the stack.
2057   __ z_br(Z_RET); // Jump to exception handler (may be _remove_activation_entry!).
2058 
2059   // If the exception is not handled in the current frame the frame is
2060   // removed and the exception is rethrown (i.e. exception
2061   // continuation is _rethrow_exception).
2062   //
2063   // Note: At this point the bci is still the bci for the instruction
2064   // which caused the exception and the expression stack is
2065   // empty. Thus, for any VM calls at this point, GC will find a legal
2066   // oop map (with empty expression stack).
2067 
2068   //
2069   // JVMTI PopFrame support
2070   //
2071 
2072   Interpreter::_remove_activation_preserving_args_entry = __ pc();
2073   __ z_lg(Z_fp, _z_parent_ijava_frame_abi(callers_sp), Z_SP);
2074   __ empty_expression_stack();
2075   // Set the popframe_processing bit in pending_popframe_condition
2076   // indicating that we are currently handling popframe, so that
2077   // call_VMs that may happen later do not trigger new popframe
2078   // handling cycles.
2079   __ load_sized_value(Z_tmp_1, Address(Z_thread, JavaThread::popframe_condition_offset()), 4, false /*signed*/);
2080   __ z_oill(Z_tmp_1, JavaThread::popframe_processing_bit);
2081   __ z_sty(Z_tmp_1, thread_(popframe_condition));
2082 
2083   {
2084     // Check to see whether we are returning to a deoptimized frame.
2085     // (The PopFrame call ensures that the caller of the popped frame is
2086     // either interpreted or compiled and deoptimizes it if compiled.)
2087     // In this case, we can't call dispatch_next() after the frame is
2088     // popped, but instead must save the incoming arguments and restore
2089     // them after deoptimization has occurred.
2090     //
2091     // Note that we don't compare the return PC against the
2092     // deoptimization blob's unpack entry because of the presence of
2093     // adapter frames in C2.
2094     NearLabel caller_not_deoptimized;
2095     __ z_lg(Z_ARG1, _z_parent_ijava_frame_abi(return_pc), Z_fp);
2096     __ call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::interpreter_contains), Z_ARG1);
2097     __ compareU64_and_branch(Z_RET, (intptr_t)0, Assembler::bcondNotEqual, caller_not_deoptimized);
2098 
2099     // Compute size of arguments for saving when returning to
2100     // deoptimized caller.
2101     __ get_method(Z_ARG2);
2102     __ z_lg(Z_ARG2, Address(Z_ARG2, Method::const_offset()));
2103     __ z_llgh(Z_ARG2, Address(Z_ARG2, ConstMethod::size_of_parameters_offset()));
2104     __ z_sllg(Z_ARG2, Z_ARG2, Interpreter::logStackElementSize); // slots 2 bytes
2105     __ restore_locals();
2106     // Compute address of args to be saved.
2107     __ z_lgr(Z_ARG3, Z_locals);
2108     __ z_slgr(Z_ARG3, Z_ARG2);
2109     __ add2reg(Z_ARG3, wordSize);
2110     // Save these arguments.
2111     __ call_VM_leaf(CAST_FROM_FN_PTR(address, Deoptimization::popframe_preserve_args),
2112                     Z_thread, Z_ARG2, Z_ARG3);
2113 
2114     __ remove_activation(vtos, Z_R14,
2115                          /* throw_monitor_exception */ false,
2116                          /* install_monitor_exception */ false,
2117                          /* notify_jvmdi */ false);
2118 
2119     // Inform deoptimization that it is responsible for restoring
2120     // these arguments.
2121     __ store_const(thread_(popframe_condition),
2122                    JavaThread::popframe_force_deopt_reexecution_bit,
2123                    Z_tmp_1, false);
2124 
2125     // Continue in deoptimization handler.
2126     __ z_br(Z_R14);
2127 
2128     __ bind(caller_not_deoptimized);
2129   }
2130 
2131   // Clear the popframe condition flag.
2132   __ clear_mem(thread_(popframe_condition), sizeof(int));
2133 
2134   __ remove_activation(vtos,
2135                        noreg,  // Retaddr is not used.
2136                        false,  // throw_monitor_exception
2137                        false,  // install_monitor_exception
2138                        false); // notify_jvmdi
2139   __ z_lg(Z_fp, _z_abi(callers_sp), Z_SP); // Restore frame pointer.
2140   __ restore_bcp();
2141   __ restore_locals();
2142   __ restore_esp();
2143   // The method data pointer was incremented already during
2144   // call profiling. We have to restore the mdp for the current bcp.
2145   if (ProfileInterpreter) {
2146     __ set_method_data_pointer_for_bcp();
2147   }
2148 #if INCLUDE_JVMTI
2149   {
2150     Label L_done;
2151 
2152     __ z_cli(0, Z_bcp, Bytecodes::_invokestatic);
2153     __ z_brc(Assembler::bcondNotEqual, L_done);
2154 
2155     // The member name argument must be restored if _invokestatic is
2156     // re-executed after a PopFrame call.  Detect such a case in the
2157     // InterpreterRuntime function and return the member name
2158     // argument, or NULL.
2159     __ z_lg(Z_ARG2, Address(Z_locals));
2160     __ get_method(Z_ARG3);
2161     __ call_VM(Z_tmp_1,
2162                CAST_FROM_FN_PTR(address, InterpreterRuntime::member_name_arg_or_null),
2163                Z_ARG2, Z_ARG3, Z_bcp);
2164 
2165     __ z_ltgr(Z_tmp_1, Z_tmp_1);
2166     __ z_brc(Assembler::bcondEqual, L_done);
2167 
2168     __ z_stg(Z_tmp_1, Address(Z_esp, wordSize));
2169     __ bind(L_done);
2170   }
2171 #endif // INCLUDE_JVMTI
2172   __ dispatch_next(vtos);
2173   // End of PopFrame support.
2174   Interpreter::_remove_activation_entry = __ pc();
2175 
2176   // In between activations - previous activation type unknown yet
2177   // compute continuation point - the continuation point expects the
2178   // following registers set up:
2179   //
2180   // Z_ARG1 (==Z_tos): exception
2181   // Z_ARG2          : return address/pc that threw exception
2182 
2183   Register return_pc = Z_tmp_1;
2184   Register handler   = Z_tmp_2;
2185    assert(return_pc->is_nonvolatile(), "use non-volatile reg. to preserve exception pc");
2186    assert(handler->is_nonvolatile(),   "use non-volatile reg. to handler pc");
2187   __ asm_assert_ijava_state_magic(return_pc/*tmp*/); // The top frame should be an interpreter frame.
2188   __ z_lg(return_pc, _z_parent_ijava_frame_abi(return_pc), Z_fp);
2189 
2190   // Moved removing the activation after VM call, because the new top
2191   // frame does not necessarily have the z_abi_160 required for a VM
2192   // call (e.g. if it is compiled).
2193 
2194   __ super_call_VM_leaf(CAST_FROM_FN_PTR(address,
2195                                          SharedRuntime::exception_handler_for_return_address),
2196                         Z_thread, return_pc);
2197   __ z_lgr(handler, Z_RET); // Save exception handler.
2198 
2199   // Preserve exception over this code sequence.
2200   __ pop_ptr(Z_ARG1);
2201   __ set_vm_result(Z_ARG1);
2202   // Remove the activation (without doing throws on illegalMonitorExceptions).
2203   __ remove_activation(vtos, noreg/*ret.pc already loaded*/, false/*throw exc*/, true/*install exc*/, false/*notify jvmti*/);
2204   __ z_lg(Z_fp, _z_abi(callers_sp), Z_SP); // Restore frame pointer.
2205 
2206   __ get_vm_result(Z_ARG1);     // Restore exception.
2207   __ verify_oop(Z_ARG1);
2208   __ z_lgr(Z_ARG2, return_pc);  // Restore return address.
2209 
2210 #ifdef ASSERT
2211   // The return_pc in the new top frame is dead... at least that's my
2212   // current understanding. To assert this I overwrite it.
2213   // Note: for compiled frames the handler is the deopt blob
2214   // which writes Z_ARG2 into the return_pc slot.
2215   __ load_const_optimized(return_pc, 0xb00b1);
2216   __ z_stg(return_pc, _z_parent_ijava_frame_abi(return_pc), Z_SP);
2217 #endif
2218 
2219   // Z_ARG1 (==Z_tos): exception
2220   // Z_ARG2          : return address/pc that threw exception
2221 
2222   // Note that an "issuing PC" is actually the next PC after the call.
2223   __ z_br(handler);         // Jump to exception handler of caller.
2224 
2225   BLOCK_COMMENT("} throw_exception");
2226 }
2227 
2228 //
2229 // JVMTI ForceEarlyReturn support
2230 //
2231 address TemplateInterpreterGenerator::generate_earlyret_entry_for (TosState state) {
2232   address entry = __ pc();
2233 
2234   BLOCK_COMMENT("earlyret_entry {");
2235 
2236   __ z_lg(Z_fp, _z_parent_ijava_frame_abi(callers_sp), Z_SP);
2237   __ restore_bcp();
2238   __ restore_locals();
2239   __ restore_esp();
2240   __ empty_expression_stack();
2241   __ load_earlyret_value(state);
2242 
2243   Register RjvmtiState = Z_tmp_1;
2244   __ z_lg(RjvmtiState, thread_(jvmti_thread_state));
2245   __ store_const(Address(RjvmtiState, JvmtiThreadState::earlyret_state_offset()),
2246                  JvmtiThreadState::earlyret_inactive, 4, 4, Z_R0_scratch);
2247 
2248   __ remove_activation(state,
2249                        Z_tmp_1, // retaddr
2250                        false,   // throw_monitor_exception
2251                        false,   // install_monitor_exception
2252                        true);   // notify_jvmdi
2253   __ z_br(Z_tmp_1);
2254 
2255   BLOCK_COMMENT("} earlyret_entry");
2256 
2257   return entry;
2258 }
2259 
2260 //-----------------------------------------------------------------------------
2261 // Helper for vtos entry point generation.
2262 
2263 void TemplateInterpreterGenerator::set_vtos_entry_points(Template* t,
2264                                                          address& bep,
2265                                                          address& cep,
2266                                                          address& sep,
2267                                                          address& aep,
2268                                                          address& iep,
2269                                                          address& lep,
2270                                                          address& fep,
2271                                                          address& dep,
2272                                                          address& vep) {
2273   assert(t->is_valid() && t->tos_in() == vtos, "illegal template");
2274   Label L;
2275   aep = __ pc(); __ push_ptr(); __ z_bru(L);
2276   fep = __ pc(); __ push_f();   __ z_bru(L);
2277   dep = __ pc(); __ push_d();   __ z_bru(L);
2278   lep = __ pc(); __ push_l();   __ z_bru(L);
2279   bep = cep = sep =
2280   iep = __ pc(); __ push_i();
2281   vep = __ pc();
2282   __ bind(L);
2283   generate_and_dispatch(t);
2284 }
2285 
2286 //-----------------------------------------------------------------------------
2287 
2288 #ifndef PRODUCT
2289 address TemplateInterpreterGenerator::generate_trace_code(TosState state) {
2290   address entry = __ pc();
2291   NearLabel counter_below_trace_threshold;
2292 
2293   if (TraceBytecodesAt > 0) {
2294     // Skip runtime call, if the trace threshold is not yet reached.
2295     __ load_absolute_address(Z_tmp_1, (address)&BytecodeCounter::_counter_value);
2296     __ load_absolute_address(Z_tmp_2, (address)&TraceBytecodesAt);
2297     __ load_sized_value(Z_tmp_1, Address(Z_tmp_1), 4, false /*signed*/);
2298     __ load_sized_value(Z_tmp_2, Address(Z_tmp_2), 8, false /*signed*/);
2299     __ compareU64_and_branch(Z_tmp_1, Z_tmp_2, Assembler::bcondLow, counter_below_trace_threshold);
2300   }
2301 
2302   int offset2 = state == ltos || state == dtos ? 2 : 1;
2303 
2304   __ push(state);
2305   // Preserved return pointer is in Z_R14.
2306   // InterpreterRuntime::trace_bytecode() preserved and returns the value passed as second argument.
2307   __ z_lgr(Z_ARG2, Z_R14);
2308   __ z_lg(Z_ARG3, Address(Z_esp, Interpreter::expr_offset_in_bytes(0)));
2309   if (WizardMode) {
2310     __ z_lgr(Z_ARG4, Z_esp); // Trace Z_esp in WizardMode.
2311   } else {
2312     __ z_lg(Z_ARG4, Address(Z_esp, Interpreter::expr_offset_in_bytes(offset2)));
2313   }
2314   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::trace_bytecode), Z_ARG2, Z_ARG3, Z_ARG4);
2315   __ z_lgr(Z_R14, Z_RET); // Estore return address (see above).
2316   __ pop(state);
2317 
2318   __ bind(counter_below_trace_threshold);
2319   __ z_br(Z_R14); // return
2320 
2321   return entry;
2322 }
2323 
2324 // Make feasible for old CPUs.
2325 void TemplateInterpreterGenerator::count_bytecode() {
2326   __ load_absolute_address(Z_R1_scratch, (address) &BytecodeCounter::_counter_value);
2327   __ add2mem_32(Address(Z_R1_scratch), 1, Z_R0_scratch);
2328 }
2329 
2330 void TemplateInterpreterGenerator::histogram_bytecode(Template * t) {
2331   __ load_absolute_address(Z_R1_scratch, (address)&BytecodeHistogram::_counters[ t->bytecode() ]);
2332   __ add2mem_32(Address(Z_R1_scratch), 1, Z_tmp_1);
2333 }
2334 
2335 void TemplateInterpreterGenerator::histogram_bytecode_pair(Template * t) {
2336   Address  index_addr(Z_tmp_1, (intptr_t) 0);
2337   Register index = Z_tmp_2;
2338 
2339   // Load previous index.
2340   __ load_absolute_address(Z_tmp_1, (address) &BytecodePairHistogram::_index);
2341   __ mem2reg_opt(index, index_addr, false);
2342 
2343   // Mask with current bytecode and store as new previous index.
2344   __ z_srl(index, BytecodePairHistogram::log2_number_of_codes);
2345   __ load_const_optimized(Z_R0_scratch,
2346                           (int)t->bytecode() << BytecodePairHistogram::log2_number_of_codes);
2347   __ z_or(index, Z_R0_scratch);
2348   __ reg2mem_opt(index, index_addr, false);
2349 
2350   // Load counter array's address.
2351   __ z_lgfr(index, index);   // Sign extend for addressing.
2352   __ z_sllg(index, index, LogBytesPerInt);  // index2bytes
2353   __ load_absolute_address(Z_R1_scratch,
2354                            (address) &BytecodePairHistogram::_counters);
2355   // Add index and increment counter.
2356   __ z_agr(Z_R1_scratch, index);
2357   __ add2mem_32(Address(Z_R1_scratch), 1, Z_tmp_1);
2358 }
2359 
2360 void TemplateInterpreterGenerator::trace_bytecode(Template* t) {
2361   // Call a little run-time stub to avoid blow-up for each bytecode.
2362   // The run-time runtime saves the right registers, depending on
2363   // the tosca in-state for the given template.
2364   address entry = Interpreter::trace_code(t->tos_in());
2365   guarantee(entry != NULL, "entry must have been generated");
2366   __ call_stub(entry);
2367 }
2368 
2369 void TemplateInterpreterGenerator::stop_interpreter_at() {
2370   NearLabel L;
2371 
2372   __ load_absolute_address(Z_tmp_1, (address)&BytecodeCounter::_counter_value);
2373   __ load_absolute_address(Z_tmp_2, (address)&StopInterpreterAt);
2374   __ load_sized_value(Z_tmp_1, Address(Z_tmp_1), 4, false /*signed*/);
2375   __ load_sized_value(Z_tmp_2, Address(Z_tmp_2), 8, false /*signed*/);
2376   __ compareU64_and_branch(Z_tmp_1, Z_tmp_2, Assembler::bcondLow, L);
2377   assert(Z_tmp_1->is_nonvolatile(), "must be nonvolatile to preserve Z_tos");
2378   assert(Z_F8->is_nonvolatile(), "must be nonvolatile to preserve Z_ftos");
2379   __ z_lgr(Z_tmp_1, Z_tos);      // Save tos.
2380   __ z_lgr(Z_tmp_2, Z_bytecode); // Save Z_bytecode.
2381   __ z_ldr(Z_F8, Z_ftos);        // Save ftos.
2382   // Use -XX:StopInterpreterAt=<num> to set the limit
2383   // and break at breakpoint().
2384   __ call_VM(noreg, CAST_FROM_FN_PTR(address, breakpoint), false);
2385   __ z_lgr(Z_tos, Z_tmp_1);      // Restore tos.
2386   __ z_lgr(Z_bytecode, Z_tmp_2); // Save Z_bytecode.
2387   __ z_ldr(Z_ftos, Z_F8);        // Restore ftos.
2388   __ bind(L);
2389 }
2390 
2391 #endif // !PRODUCT