1 /*
   2  * Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/macroAssembler.hpp"
  27 #include "interpreter/bytecodeHistogram.hpp"
  28 #include "interpreter/interpreter.hpp"
  29 #include "interpreter/interpreterRuntime.hpp"
  30 #include "interpreter/interp_masm.hpp"
  31 #include "interpreter/templateInterpreterGenerator.hpp"
  32 #include "interpreter/templateTable.hpp"
  33 #include "oops/arrayOop.hpp"
  34 #include "oops/methodData.hpp"
  35 #include "oops/method.hpp"
  36 #include "oops/oop.inline.hpp"
  37 #include "prims/jvmtiExport.hpp"
  38 #include "prims/jvmtiThreadState.hpp"
  39 #include "runtime/arguments.hpp"
  40 #include "runtime/deoptimization.hpp"
  41 #include "runtime/frame.inline.hpp"
  42 #include "runtime/sharedRuntime.hpp"
  43 #include "runtime/stubRoutines.hpp"
  44 #include "runtime/synchronizer.hpp"
  45 #include "runtime/timer.hpp"
  46 #include "runtime/vframeArray.hpp"
  47 #include "utilities/debug.hpp"
  48 #include "utilities/macros.hpp"
  49 
  50 #ifndef FAST_DISPATCH
  51 #define FAST_DISPATCH 1
  52 #endif
  53 #undef FAST_DISPATCH
  54 
  55 // Size of interpreter code.  Increase if too small.  Interpreter will
  56 // fail with a guarantee ("not enough space for interpreter generation");
  57 // if too small.
  58 // Run with +PrintInterpreter to get the VM to print out the size.
  59 // Max size with JVMTI
  60 #ifdef _LP64
  61   // The sethi() instruction generates lots more instructions when shell
  62   // stack limit is unlimited, so that's why this is much bigger.
  63 int TemplateInterpreter::InterpreterCodeSize = 260 * K;
  64 #else
  65 int TemplateInterpreter::InterpreterCodeSize = 230 * K;
  66 #endif
  67 
  68 // Generation of Interpreter
  69 //
  70 // The TemplateInterpreterGenerator generates the interpreter into Interpreter::_code.
  71 
  72 
  73 #define __ _masm->
  74 
  75 
  76 //----------------------------------------------------------------------------------------------------
  77 
  78 #ifndef _LP64
  79 address TemplateInterpreterGenerator::generate_slow_signature_handler() {
  80   address entry = __ pc();
  81   Argument argv(0, true);
  82 
  83   // We are in the jni transition frame. Save the last_java_frame corresponding to the
  84   // outer interpreter frame
  85   //
  86   __ set_last_Java_frame(FP, noreg);
  87   // make sure the interpreter frame we've pushed has a valid return pc
  88   __ mov(O7, I7);
  89   __ mov(Lmethod, G3_scratch);
  90   __ mov(Llocals, G4_scratch);
  91   __ save_frame(0);
  92   __ mov(G2_thread, L7_thread_cache);
  93   __ add(argv.address_in_frame(), O3);
  94   __ mov(G2_thread, O0);
  95   __ mov(G3_scratch, O1);
  96   __ call(CAST_FROM_FN_PTR(address, InterpreterRuntime::slow_signature_handler), relocInfo::runtime_call_type);
  97   __ delayed()->mov(G4_scratch, O2);
  98   __ mov(L7_thread_cache, G2_thread);
  99   __ reset_last_Java_frame();
 100 
 101   // load the register arguments (the C code packed them as varargs)
 102   for (Argument ldarg = argv.successor(); ldarg.is_register(); ldarg = ldarg.successor()) {
 103       __ ld_ptr(ldarg.address_in_frame(), ldarg.as_register());
 104   }
 105   __ ret();
 106   __ delayed()->
 107      restore(O0, 0, Lscratch);  // caller's Lscratch gets the result handler
 108   return entry;
 109 }
 110 
 111 
 112 #else
 113 // LP64 passes floating point arguments in F1, F3, F5, etc. instead of
 114 // O0, O1, O2 etc..
 115 // Doubles are passed in D0, D2, D4
 116 // We store the signature of the first 16 arguments in the first argument
 117 // slot because it will be overwritten prior to calling the native
 118 // function, with the pointer to the JNIEnv.
 119 // If LP64 there can be up to 16 floating point arguments in registers
 120 // or 6 integer registers.
 121 address TemplateInterpreterGenerator::generate_slow_signature_handler() {
 122 
 123   enum {
 124     non_float  = 0,
 125     float_sig  = 1,
 126     double_sig = 2,
 127     sig_mask   = 3
 128   };
 129 
 130   address entry = __ pc();
 131   Argument argv(0, true);
 132 
 133   // We are in the jni transition frame. Save the last_java_frame corresponding to the
 134   // outer interpreter frame
 135   //
 136   __ set_last_Java_frame(FP, noreg);
 137   // make sure the interpreter frame we've pushed has a valid return pc
 138   __ mov(O7, I7);
 139   __ mov(Lmethod, G3_scratch);
 140   __ mov(Llocals, G4_scratch);
 141   __ save_frame(0);
 142   __ mov(G2_thread, L7_thread_cache);
 143   __ add(argv.address_in_frame(), O3);
 144   __ mov(G2_thread, O0);
 145   __ mov(G3_scratch, O1);
 146   __ call(CAST_FROM_FN_PTR(address, InterpreterRuntime::slow_signature_handler), relocInfo::runtime_call_type);
 147   __ delayed()->mov(G4_scratch, O2);
 148   __ mov(L7_thread_cache, G2_thread);
 149   __ reset_last_Java_frame();
 150 
 151 
 152   // load the register arguments (the C code packed them as varargs)
 153   Address Sig = argv.address_in_frame();        // Argument 0 holds the signature
 154   __ ld_ptr( Sig, G3_scratch );                   // Get register argument signature word into G3_scratch
 155   __ mov( G3_scratch, G4_scratch);
 156   __ srl( G4_scratch, 2, G4_scratch);             // Skip Arg 0
 157   Label done;
 158   for (Argument ldarg = argv.successor(); ldarg.is_float_register(); ldarg = ldarg.successor()) {
 159     Label NonFloatArg;
 160     Label LoadFloatArg;
 161     Label LoadDoubleArg;
 162     Label NextArg;
 163     Address a = ldarg.address_in_frame();
 164     __ andcc(G4_scratch, sig_mask, G3_scratch);
 165     __ br(Assembler::zero, false, Assembler::pt, NonFloatArg);
 166     __ delayed()->nop();
 167 
 168     __ cmp(G3_scratch, float_sig );
 169     __ br(Assembler::equal, false, Assembler::pt, LoadFloatArg);
 170     __ delayed()->nop();
 171 
 172     __ cmp(G3_scratch, double_sig );
 173     __ br(Assembler::equal, false, Assembler::pt, LoadDoubleArg);
 174     __ delayed()->nop();
 175 
 176     __ bind(NonFloatArg);
 177     // There are only 6 integer register arguments!
 178     if ( ldarg.is_register() )
 179       __ ld_ptr(ldarg.address_in_frame(), ldarg.as_register());
 180     else {
 181     // Optimization, see if there are any more args and get out prior to checking
 182     // all 16 float registers.  My guess is that this is rare.
 183     // If is_register is false, then we are done the first six integer args.
 184       __ br_null_short(G4_scratch, Assembler::pt, done);
 185     }
 186     __ ba(NextArg);
 187     __ delayed()->srl( G4_scratch, 2, G4_scratch );
 188 
 189     __ bind(LoadFloatArg);
 190     __ ldf( FloatRegisterImpl::S, a, ldarg.as_float_register(), 4);
 191     __ ba(NextArg);
 192     __ delayed()->srl( G4_scratch, 2, G4_scratch );
 193 
 194     __ bind(LoadDoubleArg);
 195     __ ldf( FloatRegisterImpl::D, a, ldarg.as_double_register() );
 196     __ ba(NextArg);
 197     __ delayed()->srl( G4_scratch, 2, G4_scratch );
 198 
 199     __ bind(NextArg);
 200 
 201   }
 202 
 203   __ bind(done);
 204   __ ret();
 205   __ delayed()->
 206      restore(O0, 0, Lscratch);  // caller's Lscratch gets the result handler
 207   return entry;
 208 }
 209 #endif
 210 
 211 void TemplateInterpreterGenerator::generate_counter_overflow(Label& Lcontinue) {
 212 
 213   // Generate code to initiate compilation on the counter overflow.
 214 
 215   // InterpreterRuntime::frequency_counter_overflow takes two arguments,
 216   // the first indicates if the counter overflow occurs at a backwards branch (NULL bcp)
 217   // and the second is only used when the first is true.  We pass zero for both.
 218   // The call returns the address of the verified entry point for the method or NULL
 219   // if the compilation did not complete (either went background or bailed out).
 220   __ set((int)false, O2);
 221   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::frequency_counter_overflow), O2, O2, true);
 222   // returns verified_entry_point or NULL
 223   // we ignore it in any case
 224   __ ba_short(Lcontinue);
 225 
 226 }
 227 
 228 
 229 // End of helpers
 230 
 231 // Various method entries
 232 
 233 // Abstract method entry
 234 // Attempt to execute abstract method. Throw exception
 235 //
 236 address TemplateInterpreterGenerator::generate_abstract_entry(void) {
 237   address entry = __ pc();
 238   // abstract method entry
 239   // throw exception
 240   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_AbstractMethodError));
 241   // the call_VM checks for exception, so we should never return here.
 242   __ should_not_reach_here();
 243   return entry;
 244 
 245 }
 246 
 247 void TemplateInterpreterGenerator::save_native_result(void) {
 248   // result potentially in O0/O1: save it across calls
 249   const Address& l_tmp = InterpreterMacroAssembler::l_tmp;
 250 
 251   // result potentially in F0/F1: save it across calls
 252   const Address& d_tmp = InterpreterMacroAssembler::d_tmp;
 253 
 254   // save and restore any potential method result value around the unlocking operation
 255   __ stf(FloatRegisterImpl::D, F0, d_tmp);
 256 #ifdef _LP64
 257   __ stx(O0, l_tmp);
 258 #else
 259   __ std(O0, l_tmp);
 260 #endif
 261 }
 262 
 263 void TemplateInterpreterGenerator::restore_native_result(void) {
 264   const Address& l_tmp = InterpreterMacroAssembler::l_tmp;
 265   const Address& d_tmp = InterpreterMacroAssembler::d_tmp;
 266 
 267   // Restore any method result value
 268   __ ldf(FloatRegisterImpl::D, d_tmp, F0);
 269 #ifdef _LP64
 270   __ ldx(l_tmp, O0);
 271 #else
 272   __ ldd(l_tmp, O0);
 273 #endif
 274 }
 275 
 276 address TemplateInterpreterGenerator::generate_exception_handler_common(const char* name, const char* message, bool pass_oop) {
 277   assert(!pass_oop || message == NULL, "either oop or message but not both");
 278   address entry = __ pc();
 279   // expression stack must be empty before entering the VM if an exception happened
 280   __ empty_expression_stack();
 281   // load exception object
 282   __ set((intptr_t)name, G3_scratch);
 283   if (pass_oop) {
 284     __ call_VM(Oexception, CAST_FROM_FN_PTR(address, InterpreterRuntime::create_klass_exception), G3_scratch, Otos_i);
 285   } else {
 286     __ set((intptr_t)message, G4_scratch);
 287     __ call_VM(Oexception, CAST_FROM_FN_PTR(address, InterpreterRuntime::create_exception), G3_scratch, G4_scratch);
 288   }
 289   // throw exception
 290   assert(Interpreter::throw_exception_entry() != NULL, "generate it first");
 291   AddressLiteral thrower(Interpreter::throw_exception_entry());
 292   __ jump_to(thrower, G3_scratch);
 293   __ delayed()->nop();
 294   return entry;
 295 }
 296 
 297 address TemplateInterpreterGenerator::generate_ClassCastException_handler() {
 298   address entry = __ pc();
 299   // expression stack must be empty before entering the VM if an exception
 300   // happened
 301   __ empty_expression_stack();
 302   // load exception object
 303   __ call_VM(Oexception,
 304              CAST_FROM_FN_PTR(address,
 305                               InterpreterRuntime::throw_ClassCastException),
 306              Otos_i);
 307   __ should_not_reach_here();
 308   return entry;
 309 }
 310 
 311 
 312 address TemplateInterpreterGenerator::generate_ArrayIndexOutOfBounds_handler(const char* name) {
 313   address entry = __ pc();
 314   // expression stack must be empty before entering the VM if an exception happened
 315   __ empty_expression_stack();
 316   // convention: expect aberrant index in register G3_scratch, then shuffle the
 317   // index to G4_scratch for the VM call
 318   __ mov(G3_scratch, G4_scratch);
 319   __ set((intptr_t)name, G3_scratch);
 320   __ call_VM(Oexception, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_ArrayIndexOutOfBoundsException), G3_scratch, G4_scratch);
 321   __ should_not_reach_here();
 322   return entry;
 323 }
 324 
 325 
 326 address TemplateInterpreterGenerator::generate_StackOverflowError_handler() {
 327   address entry = __ pc();
 328   // expression stack must be empty before entering the VM if an exception happened
 329   __ empty_expression_stack();
 330   __ call_VM(Oexception, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_StackOverflowError));
 331   __ should_not_reach_here();
 332   return entry;
 333 }
 334 
 335 
 336 address TemplateInterpreterGenerator::generate_return_entry_for(TosState state, int step, size_t index_size) {
 337   address entry = __ pc();
 338 
 339   if (state == atos) {
 340     __ profile_return_type(O0, G3_scratch, G1_scratch);
 341   }
 342 
 343 #if !defined(_LP64) && defined(COMPILER2)
 344   // All return values are where we want them, except for Longs.  C2 returns
 345   // longs in G1 in the 32-bit build whereas the interpreter wants them in O0/O1.
 346   // Since the interpreter will return longs in G1 and O0/O1 in the 32bit
 347   // build even if we are returning from interpreted we just do a little
 348   // stupid shuffing.
 349   // Note: I tried to make c2 return longs in O0/O1 and G1 so we wouldn't have to
 350   // do this here. Unfortunately if we did a rethrow we'd see an machepilog node
 351   // first which would move g1 -> O0/O1 and destroy the exception we were throwing.
 352 
 353   if (state == ltos) {
 354     __ srl (G1,  0, O1);
 355     __ srlx(G1, 32, O0);
 356   }
 357 #endif // !_LP64 && COMPILER2
 358 
 359   // The callee returns with the stack possibly adjusted by adapter transition
 360   // We remove that possible adjustment here.
 361   // All interpreter local registers are untouched. Any result is passed back
 362   // in the O0/O1 or float registers. Before continuing, the arguments must be
 363   // popped from the java expression stack; i.e., Lesp must be adjusted.
 364 
 365   __ mov(Llast_SP, SP);   // Remove any adapter added stack space.
 366 
 367   const Register cache = G3_scratch;
 368   const Register index  = G1_scratch;
 369   __ get_cache_and_index_at_bcp(cache, index, 1, index_size);
 370 
 371   const Register flags = cache;
 372   __ ld_ptr(cache, ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::flags_offset(), flags);
 373   const Register parameter_size = flags;
 374   __ and3(flags, ConstantPoolCacheEntry::parameter_size_mask, parameter_size);  // argument size in words
 375   __ sll(parameter_size, Interpreter::logStackElementSize, parameter_size);     // each argument size in bytes
 376   __ add(Lesp, parameter_size, Lesp);                                           // pop arguments
 377   __ dispatch_next(state, step);
 378 
 379   return entry;
 380 }
 381 
 382 
 383 address TemplateInterpreterGenerator::generate_deopt_entry_for(TosState state, int step) {
 384   address entry = __ pc();
 385   __ get_constant_pool_cache(LcpoolCache); // load LcpoolCache
 386 #if INCLUDE_JVMCI
 387   // Check if we need to take lock at entry of synchronized method.  This can
 388   // only occur on method entry so emit it only for vtos with step 0.
 389   if (UseJVMCICompiler && state == vtos && step == 0) {
 390     Label L;
 391     Address pending_monitor_enter_addr(G2_thread, JavaThread::pending_monitorenter_offset());
 392     __ ldbool(pending_monitor_enter_addr, Gtemp);  // Load if pending monitor enter
 393     __ cmp_and_br_short(Gtemp, G0, Assembler::equal, Assembler::pn, L);
 394     // Clear flag.
 395     __ stbool(G0, pending_monitor_enter_addr);
 396     // Take lock.
 397     lock_method();
 398     __ bind(L);
 399   } else {
 400 #ifdef ASSERT
 401     if (UseJVMCICompiler) {
 402       Label L;
 403       Address pending_monitor_enter_addr(G2_thread, JavaThread::pending_monitorenter_offset());
 404       __ ldbool(pending_monitor_enter_addr, Gtemp);  // Load if pending monitor enter
 405       __ cmp_and_br_short(Gtemp, G0, Assembler::equal, Assembler::pn, L);
 406       __ stop("unexpected pending monitor in deopt entry");
 407       __ bind(L);
 408     }
 409 #endif
 410   }
 411 #endif
 412   { Label L;
 413     Address exception_addr(G2_thread, Thread::pending_exception_offset());
 414     __ ld_ptr(exception_addr, Gtemp);  // Load pending exception.
 415     __ br_null_short(Gtemp, Assembler::pt, L);
 416     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_pending_exception));
 417     __ should_not_reach_here();
 418     __ bind(L);
 419   }
 420   __ dispatch_next(state, step);
 421   return entry;
 422 }
 423 
 424 // A result handler converts/unboxes a native call result into
 425 // a java interpreter/compiler result. The current frame is an
 426 // interpreter frame. The activation frame unwind code must be
 427 // consistent with that of TemplateTable::_return(...). In the
 428 // case of native methods, the caller's SP was not modified.
 429 address TemplateInterpreterGenerator::generate_result_handler_for(BasicType type) {
 430   address entry = __ pc();
 431   Register Itos_i  = Otos_i ->after_save();
 432   Register Itos_l  = Otos_l ->after_save();
 433   Register Itos_l1 = Otos_l1->after_save();
 434   Register Itos_l2 = Otos_l2->after_save();
 435   switch (type) {
 436     case T_BOOLEAN: __ subcc(G0, O0, G0); __ addc(G0, 0, Itos_i); break; // !0 => true; 0 => false
 437     case T_CHAR   : __ sll(O0, 16, O0); __ srl(O0, 16, Itos_i);   break; // cannot use and3, 0xFFFF too big as immediate value!
 438     case T_BYTE   : __ sll(O0, 24, O0); __ sra(O0, 24, Itos_i);   break;
 439     case T_SHORT  : __ sll(O0, 16, O0); __ sra(O0, 16, Itos_i);   break;
 440     case T_LONG   :
 441 #ifndef _LP64
 442                     __ mov(O1, Itos_l2);  // move other half of long
 443 #endif              // ifdef or no ifdef, fall through to the T_INT case
 444     case T_INT    : __ mov(O0, Itos_i);                         break;
 445     case T_VOID   : /* nothing to do */                         break;
 446     case T_FLOAT  : assert(F0 == Ftos_f, "fix this code" );     break;
 447     case T_DOUBLE : assert(F0 == Ftos_d, "fix this code" );     break;
 448     case T_OBJECT :
 449       __ ld_ptr(FP, (frame::interpreter_frame_oop_temp_offset*wordSize) + STACK_BIAS, Itos_i);
 450       __ verify_oop(Itos_i);
 451       break;
 452     default       : ShouldNotReachHere();
 453   }
 454   __ ret();                           // return from interpreter activation
 455   __ delayed()->restore(I5_savedSP, G0, SP);  // remove interpreter frame
 456   NOT_PRODUCT(__ emit_int32(0);)       // marker for disassembly
 457   return entry;
 458 }
 459 
 460 address TemplateInterpreterGenerator::generate_safept_entry_for(TosState state, address runtime_entry) {
 461   address entry = __ pc();
 462   __ push(state);
 463   __ call_VM(noreg, runtime_entry);
 464   __ dispatch_via(vtos, Interpreter::normal_table(vtos));
 465   return entry;
 466 }
 467 
 468 
 469 //
 470 // Helpers for commoning out cases in the various type of method entries.
 471 //
 472 
 473 // increment invocation count & check for overflow
 474 //
 475 // Note: checking for negative value instead of overflow
 476 //       so we have a 'sticky' overflow test
 477 //
 478 // Lmethod: method
 479 // ??: invocation counter
 480 //
 481 void TemplateInterpreterGenerator::generate_counter_incr(Label* overflow, Label* profile_method, Label* profile_method_continue) {
 482   // Note: In tiered we increment either counters in MethodCounters* or in
 483   // MDO depending if we're profiling or not.
 484   const Register G3_method_counters = G3_scratch;
 485   Label done;
 486 
 487   if (TieredCompilation) {
 488     const int increment = InvocationCounter::count_increment;
 489     Label no_mdo;
 490     if (ProfileInterpreter) {
 491       // If no method data exists, go to profile_continue.
 492       __ ld_ptr(Lmethod, Method::method_data_offset(), G4_scratch);
 493       __ br_null_short(G4_scratch, Assembler::pn, no_mdo);
 494       // Increment counter
 495       Address mdo_invocation_counter(G4_scratch,
 496                                      in_bytes(MethodData::invocation_counter_offset()) +
 497                                      in_bytes(InvocationCounter::counter_offset()));
 498       Address mask(G4_scratch, in_bytes(MethodData::invoke_mask_offset()));
 499       __ increment_mask_and_jump(mdo_invocation_counter, increment, mask,
 500                                  G3_scratch, Lscratch,
 501                                  Assembler::zero, overflow);
 502       __ ba_short(done);
 503     }
 504 
 505     // Increment counter in MethodCounters*
 506     __ bind(no_mdo);
 507     Address invocation_counter(G3_method_counters,
 508             in_bytes(MethodCounters::invocation_counter_offset()) +
 509             in_bytes(InvocationCounter::counter_offset()));
 510     __ get_method_counters(Lmethod, G3_method_counters, done);
 511     Address mask(G3_method_counters, in_bytes(MethodCounters::invoke_mask_offset()));
 512     __ increment_mask_and_jump(invocation_counter, increment, mask,
 513                                G4_scratch, Lscratch,
 514                                Assembler::zero, overflow);
 515     __ bind(done);
 516   } else { // not TieredCompilation
 517     // Update standard invocation counters
 518     __ get_method_counters(Lmethod, G3_method_counters, done);
 519     __ increment_invocation_counter(G3_method_counters, O0, G4_scratch);
 520     if (ProfileInterpreter) {
 521       Address interpreter_invocation_counter(G3_method_counters,
 522             in_bytes(MethodCounters::interpreter_invocation_counter_offset()));
 523       __ ld(interpreter_invocation_counter, G4_scratch);
 524       __ inc(G4_scratch);
 525       __ st(G4_scratch, interpreter_invocation_counter);
 526     }
 527 
 528     if (ProfileInterpreter && profile_method != NULL) {
 529       // Test to see if we should create a method data oop
 530       Address profile_limit(G3_method_counters, in_bytes(MethodCounters::interpreter_profile_limit_offset()));
 531       __ ld(profile_limit, G1_scratch);
 532       __ cmp_and_br_short(O0, G1_scratch, Assembler::lessUnsigned, Assembler::pn, *profile_method_continue);
 533 
 534       // if no method data exists, go to profile_method
 535       __ test_method_data_pointer(*profile_method);
 536     }
 537 
 538     Address invocation_limit(G3_method_counters, in_bytes(MethodCounters::interpreter_invocation_limit_offset()));
 539     __ ld(invocation_limit, G3_scratch);
 540     __ cmp(O0, G3_scratch);
 541     __ br(Assembler::greaterEqualUnsigned, false, Assembler::pn, *overflow); // Far distance
 542     __ delayed()->nop();
 543     __ bind(done);
 544   }
 545 
 546 }
 547 
 548 // Allocate monitor and lock method (asm interpreter)
 549 // ebx - Method*
 550 //
 551 void TemplateInterpreterGenerator::lock_method() {
 552   __ ld(Lmethod, in_bytes(Method::access_flags_offset()), O0);  // Load access flags.
 553 
 554 #ifdef ASSERT
 555  { Label ok;
 556    __ btst(JVM_ACC_SYNCHRONIZED, O0);
 557    __ br( Assembler::notZero, false, Assembler::pt, ok);
 558    __ delayed()->nop();
 559    __ stop("method doesn't need synchronization");
 560    __ bind(ok);
 561   }
 562 #endif // ASSERT
 563 
 564   // get synchronization object to O0
 565   { Label done;
 566     __ btst(JVM_ACC_STATIC, O0);
 567     __ br( Assembler::zero, true, Assembler::pt, done);
 568     __ delayed()->ld_ptr(Llocals, Interpreter::local_offset_in_bytes(0), O0); // get receiver for not-static case
 569 
 570     // lock the mirror, not the Klass*
 571     __ load_mirror(O0, Lmethod);
 572 
 573 #ifdef ASSERT
 574     __ tst(O0);
 575     __ breakpoint_trap(Assembler::zero, Assembler::ptr_cc);
 576 #endif // ASSERT
 577 
 578     __ bind(done);
 579   }
 580 
 581   __ add_monitor_to_stack(true, noreg, noreg);  // allocate monitor elem
 582   __ st_ptr( O0, Lmonitors, BasicObjectLock::obj_offset_in_bytes());   // store object
 583   // __ untested("lock_object from method entry");
 584   __ lock_object(Lmonitors, O0);
 585 }
 586 
 587 // See if we've got enough room on the stack for locals plus overhead below
 588 // JavaThread::stack_overflow_limit(). If not, throw a StackOverflowError
 589 // without going through the signal handler, i.e., reserved and yellow zones
 590 // will not be made usable. The shadow zone must suffice to handle the
 591 // overflow.
 592 void TemplateInterpreterGenerator::generate_stack_overflow_check(Register Rframe_size,
 593                                                                  Register Rscratch) {
 594   const int page_size = os::vm_page_size();
 595   Label after_frame_check;
 596 
 597   assert_different_registers(Rframe_size, Rscratch);
 598 
 599   __ set(page_size, Rscratch);
 600   __ cmp_and_br_short(Rframe_size, Rscratch, Assembler::lessEqual, Assembler::pt, after_frame_check);
 601 
 602   // Get the stack overflow limit, and in debug, verify it is non-zero.
 603   __ ld_ptr(G2_thread, JavaThread::stack_overflow_limit_offset(), Rscratch);
 604 #ifdef ASSERT
 605   Label limit_ok;
 606   __ br_notnull_short(Rscratch, Assembler::pn, limit_ok);
 607   __ stop("stack overflow limit is zero in generate_stack_overflow_check");
 608   __ bind(limit_ok);
 609 #endif
 610 
 611   // Add in the size of the frame (which is the same as subtracting it from the
 612   // SP, which would take another register.
 613   __ add(Rscratch, Rframe_size, Rscratch);
 614 
 615   // The frame is greater than one page in size, so check against
 616   // the bottom of the stack.
 617   __ cmp_and_brx_short(SP, Rscratch, Assembler::greaterUnsigned, Assembler::pt, after_frame_check);
 618 
 619   // The stack will overflow, throw an exception.
 620 
 621   // Note that SP is restored to sender's sp (in the delay slot). This
 622   // is necessary if the sender's frame is an extended compiled frame
 623   // (see gen_c2i_adapter()) and safer anyway in case of JSR292
 624   // adaptations.
 625 
 626   // Note also that the restored frame is not necessarily interpreted.
 627   // Use the shared runtime version of the StackOverflowError.
 628   assert(StubRoutines::throw_StackOverflowError_entry() != NULL, "stub not yet generated");
 629   AddressLiteral stub(StubRoutines::throw_StackOverflowError_entry());
 630   __ jump_to(stub, Rscratch);
 631   __ delayed()->mov(O5_savedSP, SP);
 632 
 633   // If you get to here, then there is enough stack space.
 634   __ bind(after_frame_check);
 635 }
 636 
 637 
 638 //
 639 // Generate a fixed interpreter frame. This is identical setup for interpreted
 640 // methods and for native methods hence the shared code.
 641 
 642 
 643 //----------------------------------------------------------------------------------------------------
 644 // Stack frame layout
 645 //
 646 // When control flow reaches any of the entry types for the interpreter
 647 // the following holds ->
 648 //
 649 // C2 Calling Conventions:
 650 //
 651 // The entry code below assumes that the following registers are set
 652 // when coming in:
 653 //    G5_method: holds the Method* of the method to call
 654 //    Lesp:    points to the TOS of the callers expression stack
 655 //             after having pushed all the parameters
 656 //
 657 // The entry code does the following to setup an interpreter frame
 658 //   pop parameters from the callers stack by adjusting Lesp
 659 //   set O0 to Lesp
 660 //   compute X = (max_locals - num_parameters)
 661 //   bump SP up by X to accomadate the extra locals
 662 //   compute X = max_expression_stack
 663 //               + vm_local_words
 664 //               + 16 words of register save area
 665 //   save frame doing a save sp, -X, sp growing towards lower addresses
 666 //   set Lbcp, Lmethod, LcpoolCache
 667 //   set Llocals to i0
 668 //   set Lmonitors to FP - rounded_vm_local_words
 669 //   set Lesp to Lmonitors - 4
 670 //
 671 //  The frame has now been setup to do the rest of the entry code
 672 
 673 // Try this optimization:  Most method entries could live in a
 674 // "one size fits all" stack frame without all the dynamic size
 675 // calculations.  It might be profitable to do all this calculation
 676 // statically and approximately for "small enough" methods.
 677 
 678 //-----------------------------------------------------------------------------------------------
 679 
 680 // C1 Calling conventions
 681 //
 682 // Upon method entry, the following registers are setup:
 683 //
 684 // g2 G2_thread: current thread
 685 // g5 G5_method: method to activate
 686 // g4 Gargs  : pointer to last argument
 687 //
 688 //
 689 // Stack:
 690 //
 691 // +---------------+ <--- sp
 692 // |               |
 693 // : reg save area :
 694 // |               |
 695 // +---------------+ <--- sp + 0x40
 696 // |               |
 697 // : extra 7 slots :      note: these slots are not really needed for the interpreter (fix later)
 698 // |               |
 699 // +---------------+ <--- sp + 0x5c
 700 // |               |
 701 // :     free      :
 702 // |               |
 703 // +---------------+ <--- Gargs
 704 // |               |
 705 // :   arguments   :
 706 // |               |
 707 // +---------------+
 708 // |               |
 709 //
 710 //
 711 //
 712 // AFTER FRAME HAS BEEN SETUP for method interpretation the stack looks like:
 713 //
 714 // +---------------+ <--- sp
 715 // |               |
 716 // : reg save area :
 717 // |               |
 718 // +---------------+ <--- sp + 0x40
 719 // |               |
 720 // : extra 7 slots :      note: these slots are not really needed for the interpreter (fix later)
 721 // |               |
 722 // +---------------+ <--- sp + 0x5c
 723 // |               |
 724 // :               :
 725 // |               | <--- Lesp
 726 // +---------------+ <--- Lmonitors (fp - 0x18)
 727 // |   VM locals   |
 728 // +---------------+ <--- fp
 729 // |               |
 730 // : reg save area :
 731 // |               |
 732 // +---------------+ <--- fp + 0x40
 733 // |               |
 734 // : extra 7 slots :      note: these slots are not really needed for the interpreter (fix later)
 735 // |               |
 736 // +---------------+ <--- fp + 0x5c
 737 // |               |
 738 // :     free      :
 739 // |               |
 740 // +---------------+
 741 // |               |
 742 // : nonarg locals :
 743 // |               |
 744 // +---------------+
 745 // |               |
 746 // :   arguments   :
 747 // |               | <--- Llocals
 748 // +---------------+ <--- Gargs
 749 // |               |
 750 
 751 void TemplateInterpreterGenerator::generate_fixed_frame(bool native_call) {
 752   //
 753   //
 754   // The entry code sets up a new interpreter frame in 4 steps:
 755   //
 756   // 1) Increase caller's SP by for the extra local space needed:
 757   //    (check for overflow)
 758   //    Efficient implementation of xload/xstore bytecodes requires
 759   //    that arguments and non-argument locals are in a contigously
 760   //    addressable memory block => non-argument locals must be
 761   //    allocated in the caller's frame.
 762   //
 763   // 2) Create a new stack frame and register window:
 764   //    The new stack frame must provide space for the standard
 765   //    register save area, the maximum java expression stack size,
 766   //    the monitor slots (0 slots initially), and some frame local
 767   //    scratch locations.
 768   //
 769   // 3) The following interpreter activation registers must be setup:
 770   //    Lesp       : expression stack pointer
 771   //    Lbcp       : bytecode pointer
 772   //    Lmethod    : method
 773   //    Llocals    : locals pointer
 774   //    Lmonitors  : monitor pointer
 775   //    LcpoolCache: constant pool cache
 776   //
 777   // 4) Initialize the non-argument locals if necessary:
 778   //    Non-argument locals may need to be initialized to NULL
 779   //    for GC to work. If the oop-map information is accurate
 780   //    (in the absence of the JSR problem), no initialization
 781   //    is necessary.
 782   //
 783   // (gri - 2/25/2000)
 784 
 785 
 786   int rounded_vm_local_words = round_to( frame::interpreter_frame_vm_local_words, WordsPerLong );
 787 
 788   const int extra_space =
 789     rounded_vm_local_words +                   // frame local scratch space
 790     Method::extra_stack_entries() +            // extra stack for jsr 292
 791     frame::memory_parameter_word_sp_offset +   // register save area
 792     (native_call ? frame::interpreter_frame_extra_outgoing_argument_words : 0);
 793 
 794   const Register Glocals_size = G3;
 795   const Register RconstMethod = Glocals_size;
 796   const Register Otmp1 = O3;
 797   const Register Otmp2 = O4;
 798   // Lscratch can't be used as a temporary because the call_stub uses
 799   // it to assert that the stack frame was setup correctly.
 800   const Address constMethod       (G5_method, Method::const_offset());
 801   const Address size_of_parameters(RconstMethod, ConstMethod::size_of_parameters_offset());
 802 
 803   __ ld_ptr( constMethod, RconstMethod );
 804   __ lduh( size_of_parameters, Glocals_size);
 805 
 806   // Gargs points to first local + BytesPerWord
 807   // Set the saved SP after the register window save
 808   //
 809   assert_different_registers(Gargs, Glocals_size, Gframe_size, O5_savedSP);
 810   __ sll(Glocals_size, Interpreter::logStackElementSize, Otmp1);
 811   __ add(Gargs, Otmp1, Gargs);
 812 
 813   if (native_call) {
 814     __ calc_mem_param_words( Glocals_size, Gframe_size );
 815     __ add( Gframe_size,  extra_space, Gframe_size);
 816     __ round_to( Gframe_size, WordsPerLong );
 817     __ sll( Gframe_size, LogBytesPerWord, Gframe_size );
 818 
 819     // Native calls don't need the stack size check since they have no
 820     // expression stack and the arguments are already on the stack and
 821     // we only add a handful of words to the stack.
 822   } else {
 823 
 824     //
 825     // Compute number of locals in method apart from incoming parameters
 826     //
 827     const Address size_of_locals(Otmp1, ConstMethod::size_of_locals_offset());
 828     __ ld_ptr(constMethod, Otmp1);
 829     __ lduh(size_of_locals, Otmp1);
 830     __ sub(Otmp1, Glocals_size, Glocals_size);
 831     __ round_to(Glocals_size, WordsPerLong);
 832     __ sll(Glocals_size, Interpreter::logStackElementSize, Glocals_size);
 833 
 834     // See if the frame is greater than one page in size. If so,
 835     // then we need to verify there is enough stack space remaining.
 836     // Frame_size = (max_stack + extra_space) * BytesPerWord;
 837     __ ld_ptr(constMethod, Gframe_size);
 838     __ lduh(Gframe_size, in_bytes(ConstMethod::max_stack_offset()), Gframe_size);
 839     __ add(Gframe_size, extra_space, Gframe_size);
 840     __ round_to(Gframe_size, WordsPerLong);
 841     __ sll(Gframe_size, Interpreter::logStackElementSize, Gframe_size);
 842 
 843     // Add in java locals size for stack overflow check only
 844     __ add(Gframe_size, Glocals_size, Gframe_size);
 845 
 846     const Register Otmp2 = O4;
 847     assert_different_registers(Otmp1, Otmp2, O5_savedSP);
 848     generate_stack_overflow_check(Gframe_size, Otmp1);
 849 
 850     __ sub(Gframe_size, Glocals_size, Gframe_size);
 851 
 852     //
 853     // bump SP to accomodate the extra locals
 854     //
 855     __ sub(SP, Glocals_size, SP);
 856   }
 857 
 858   //
 859   // now set up a stack frame with the size computed above
 860   //
 861   __ neg( Gframe_size );
 862   __ save( SP, Gframe_size, SP );
 863 
 864   //
 865   // now set up all the local cache registers
 866   //
 867   // NOTE: At this point, Lbyte_code/Lscratch has been modified. Note
 868   // that all present references to Lbyte_code initialize the register
 869   // immediately before use
 870   if (native_call) {
 871     __ mov(G0, Lbcp);
 872   } else {
 873     __ ld_ptr(G5_method, Method::const_offset(), Lbcp);
 874     __ add(Lbcp, in_bytes(ConstMethod::codes_offset()), Lbcp);
 875   }
 876   __ mov( G5_method, Lmethod);                 // set Lmethod
 877   // Get mirror and store it in the frame as GC root for this Method*
 878   Register mirror = LcpoolCache;
 879   __ load_mirror(mirror, Lmethod);
 880   __ st_ptr(mirror, FP, (frame::interpreter_frame_mirror_offset * wordSize) + STACK_BIAS);
 881   __ get_constant_pool_cache( LcpoolCache );   // set LcpoolCache
 882   __ sub(FP, rounded_vm_local_words * BytesPerWord, Lmonitors ); // set Lmonitors
 883 #ifdef _LP64
 884   __ add( Lmonitors, STACK_BIAS, Lmonitors );   // Account for 64 bit stack bias
 885 #endif
 886   __ sub(Lmonitors, BytesPerWord, Lesp);       // set Lesp
 887 
 888   // setup interpreter activation registers
 889   __ sub(Gargs, BytesPerWord, Llocals);        // set Llocals
 890 
 891   if (ProfileInterpreter) {
 892 #ifdef FAST_DISPATCH
 893     // FAST_DISPATCH and ProfileInterpreter are mutually exclusive since
 894     // they both use I2.
 895     assert(0, "FAST_DISPATCH and +ProfileInterpreter are mutually exclusive");
 896 #endif // FAST_DISPATCH
 897     __ set_method_data_pointer();
 898   }
 899 
 900 }
 901 
 902 // Method entry for java.lang.ref.Reference.get.
 903 address TemplateInterpreterGenerator::generate_Reference_get_entry(void) {
 904 #if INCLUDE_ALL_GCS
 905   // Code: _aload_0, _getfield, _areturn
 906   // parameter size = 1
 907   //
 908   // The code that gets generated by this routine is split into 2 parts:
 909   //    1. The "intrinsified" code for G1 (or any SATB based GC),
 910   //    2. The slow path - which is an expansion of the regular method entry.
 911   //
 912   // Notes:-
 913   // * In the G1 code we do not check whether we need to block for
 914   //   a safepoint. If G1 is enabled then we must execute the specialized
 915   //   code for Reference.get (except when the Reference object is null)
 916   //   so that we can log the value in the referent field with an SATB
 917   //   update buffer.
 918   //   If the code for the getfield template is modified so that the
 919   //   G1 pre-barrier code is executed when the current method is
 920   //   Reference.get() then going through the normal method entry
 921   //   will be fine.
 922   // * The G1 code can, however, check the receiver object (the instance
 923   //   of java.lang.Reference) and jump to the slow path if null. If the
 924   //   Reference object is null then we obviously cannot fetch the referent
 925   //   and so we don't need to call the G1 pre-barrier. Thus we can use the
 926   //   regular method entry code to generate the NPE.
 927   //
 928   // This code is based on generate_accessor_enty.
 929 
 930   address entry = __ pc();
 931 
 932   const int referent_offset = java_lang_ref_Reference::referent_offset;
 933   guarantee(referent_offset > 0, "referent offset not initialized");
 934 
 935   if (UseG1GC) {
 936      Label slow_path;
 937 
 938     // In the G1 code we don't check if we need to reach a safepoint. We
 939     // continue and the thread will safepoint at the next bytecode dispatch.
 940 
 941     // Check if local 0 != NULL
 942     // If the receiver is null then it is OK to jump to the slow path.
 943     __ ld_ptr(Gargs, G0, Otos_i ); // get local 0
 944     // check if local 0 == NULL and go the slow path
 945     __ cmp_and_brx_short(Otos_i, 0, Assembler::equal, Assembler::pn, slow_path);
 946 
 947 
 948     // Load the value of the referent field.
 949     if (Assembler::is_simm13(referent_offset)) {
 950       __ load_heap_oop(Otos_i, referent_offset, Otos_i);
 951     } else {
 952       __ set(referent_offset, G3_scratch);
 953       __ load_heap_oop(Otos_i, G3_scratch, Otos_i);
 954     }
 955 
 956     // Generate the G1 pre-barrier code to log the value of
 957     // the referent field in an SATB buffer. Note with
 958     // these parameters the pre-barrier does not generate
 959     // the load of the previous value
 960 
 961     __ g1_write_barrier_pre(noreg /* obj */, noreg /* index */, 0 /* offset */,
 962                             Otos_i /* pre_val */,
 963                             G3_scratch /* tmp */,
 964                             true /* preserve_o_regs */);
 965 
 966     // _areturn
 967     __ retl();                      // return from leaf routine
 968     __ delayed()->mov(O5_savedSP, SP);
 969 
 970     // Generate regular method entry
 971     __ bind(slow_path);
 972     __ jump_to_entry(Interpreter::entry_for_kind(Interpreter::zerolocals));
 973     return entry;
 974   }
 975 #endif // INCLUDE_ALL_GCS
 976 
 977   // If G1 is not enabled then attempt to go through the accessor entry point
 978   // Reference.get is an accessor
 979   return NULL;
 980 }
 981 
 982 /**
 983  * Method entry for static native methods:
 984  *   int java.util.zip.CRC32.update(int crc, int b)
 985  */
 986 address TemplateInterpreterGenerator::generate_CRC32_update_entry() {
 987 
 988   if (UseCRC32Intrinsics) {
 989     address entry = __ pc();
 990 
 991     Label L_slow_path;
 992     // If we need a safepoint check, generate full interpreter entry.
 993     ExternalAddress state(SafepointSynchronize::address_of_state());
 994     __ set(ExternalAddress(SafepointSynchronize::address_of_state()), O2);
 995     __ set(SafepointSynchronize::_not_synchronized, O3);
 996     __ cmp_and_br_short(O2, O3, Assembler::notEqual, Assembler::pt, L_slow_path);
 997 
 998     // Load parameters
 999     const Register crc   = O0; // initial crc
1000     const Register val   = O1; // byte to update with
1001     const Register table = O2; // address of 256-entry lookup table
1002 
1003     __ ldub(Gargs, 3, val);
1004     __ lduw(Gargs, 8, crc);
1005 
1006     __ set(ExternalAddress(StubRoutines::crc_table_addr()), table);
1007 
1008     __ not1(crc); // ~crc
1009     __ clruwu(crc);
1010     __ update_byte_crc32(crc, val, table);
1011     __ not1(crc); // ~crc
1012 
1013     // result in O0
1014     __ retl();
1015     __ delayed()->nop();
1016 
1017     // generate a vanilla native entry as the slow path
1018     __ bind(L_slow_path);
1019     __ jump_to_entry(Interpreter::entry_for_kind(Interpreter::native));
1020     return entry;
1021   }
1022   return NULL;
1023 }
1024 
1025 /**
1026  * Method entry for static native methods:
1027  *   int java.util.zip.CRC32.updateBytes(int crc, byte[] b, int off, int len)
1028  *   int java.util.zip.CRC32.updateByteBuffer(int crc, long buf, int off, int len)
1029  */
1030 address TemplateInterpreterGenerator::generate_CRC32_updateBytes_entry(AbstractInterpreter::MethodKind kind) {
1031 
1032   if (UseCRC32Intrinsics) {
1033     address entry = __ pc();
1034 
1035     Label L_slow_path;
1036     // If we need a safepoint check, generate full interpreter entry.
1037     ExternalAddress state(SafepointSynchronize::address_of_state());
1038     __ set(ExternalAddress(SafepointSynchronize::address_of_state()), O2);
1039     __ set(SafepointSynchronize::_not_synchronized, O3);
1040     __ cmp_and_br_short(O2, O3, Assembler::notEqual, Assembler::pt, L_slow_path);
1041 
1042     // Load parameters from the stack
1043     const Register crc    = O0; // initial crc
1044     const Register buf    = O1; // source java byte array address
1045     const Register len    = O2; // len
1046     const Register offset = O3; // offset
1047 
1048     // Arguments are reversed on java expression stack
1049     // Calculate address of start element
1050     if (kind == Interpreter::java_util_zip_CRC32_updateByteBuffer) {
1051       __ lduw(Gargs, 0,  len);
1052       __ lduw(Gargs, 8,  offset);
1053       __ ldx( Gargs, 16, buf);
1054       __ lduw(Gargs, 32, crc);
1055       __ add(buf, offset, buf);
1056     } else {
1057       __ lduw(Gargs, 0,  len);
1058       __ lduw(Gargs, 8,  offset);
1059       __ ldx( Gargs, 16, buf);
1060       __ lduw(Gargs, 24, crc);
1061       __ add(buf, arrayOopDesc::base_offset_in_bytes(T_BYTE), buf); // account for the header size
1062       __ add(buf ,offset, buf);
1063     }
1064 
1065     // Call the crc32 kernel
1066     __ MacroAssembler::save_thread(L7_thread_cache);
1067     __ kernel_crc32(crc, buf, len, O3);
1068     __ MacroAssembler::restore_thread(L7_thread_cache);
1069 
1070     // result in O0
1071     __ retl();
1072     __ delayed()->nop();
1073 
1074     // generate a vanilla native entry as the slow path
1075     __ bind(L_slow_path);
1076     __ jump_to_entry(Interpreter::entry_for_kind(Interpreter::native));
1077     return entry;
1078   }
1079   return NULL;
1080 }
1081 
1082 /**
1083  * Method entry for intrinsic-candidate (non-native) methods:
1084  *   int java.util.zip.CRC32C.updateBytes(int crc, byte[] b, int off, int end)
1085  *   int java.util.zip.CRC32C.updateDirectByteBuffer(int crc, long buf, int off, int end)
1086  * Unlike CRC32, CRC32C does not have any methods marked as native
1087  * CRC32C also uses an "end" variable instead of the length variable CRC32 uses
1088  */
1089 address TemplateInterpreterGenerator::generate_CRC32C_updateBytes_entry(AbstractInterpreter::MethodKind kind) {
1090 
1091   if (UseCRC32CIntrinsics) {
1092     address entry = __ pc();
1093 
1094     // Load parameters from the stack
1095     const Register crc    = O0; // initial crc
1096     const Register buf    = O1; // source java byte array address
1097     const Register offset = O2; // offset
1098     const Register end    = O3; // index of last element to process
1099     const Register len    = O2; // len argument to the kernel
1100     const Register table  = O3; // crc32c lookup table address
1101 
1102     // Arguments are reversed on java expression stack
1103     // Calculate address of start element
1104     if (kind == Interpreter::java_util_zip_CRC32C_updateDirectByteBuffer) {
1105       __ lduw(Gargs, 0,  end);
1106       __ lduw(Gargs, 8,  offset);
1107       __ ldx( Gargs, 16, buf);
1108       __ lduw(Gargs, 32, crc);
1109       __ add(buf, offset, buf);
1110       __ sub(end, offset, len);
1111     } else {
1112       __ lduw(Gargs, 0,  end);
1113       __ lduw(Gargs, 8,  offset);
1114       __ ldx( Gargs, 16, buf);
1115       __ lduw(Gargs, 24, crc);
1116       __ add(buf, arrayOopDesc::base_offset_in_bytes(T_BYTE), buf); // account for the header size
1117       __ add(buf, offset, buf);
1118       __ sub(end, offset, len);
1119     }
1120 
1121     // Call the crc32c kernel
1122     __ MacroAssembler::save_thread(L7_thread_cache);
1123     __ kernel_crc32c(crc, buf, len, table);
1124     __ MacroAssembler::restore_thread(L7_thread_cache);
1125 
1126     // result in O0
1127     __ retl();
1128     __ delayed()->nop();
1129 
1130     return entry;
1131   }
1132   return NULL;
1133 }
1134 
1135 // Not supported
1136 address TemplateInterpreterGenerator::generate_math_entry(AbstractInterpreter::MethodKind kind) {
1137   return NULL;
1138 }
1139 
1140 // TODO: rather than touching all pages, check against stack_overflow_limit and bang yellow page to
1141 // generate exception
1142 void TemplateInterpreterGenerator::bang_stack_shadow_pages(bool native_call) {
1143   // Quick & dirty stack overflow checking: bang the stack & handle trap.
1144   // Note that we do the banging after the frame is setup, since the exception
1145   // handling code expects to find a valid interpreter frame on the stack.
1146   // Doing the banging earlier fails if the caller frame is not an interpreter
1147   // frame.
1148   // (Also, the exception throwing code expects to unlock any synchronized
1149   // method receiever, so do the banging after locking the receiver.)
1150 
1151   // Bang each page in the shadow zone. We can't assume it's been done for
1152   // an interpreter frame with greater than a page of locals, so each page
1153   // needs to be checked.  Only true for non-native.
1154   if (UseStackBanging) {
1155     const int page_size = os::vm_page_size();
1156     const int n_shadow_pages = ((int)JavaThread::stack_shadow_zone_size()) / page_size;
1157     const int start_page = native_call ? n_shadow_pages : 1;
1158     for (int pages = start_page; pages <= n_shadow_pages; pages++) {
1159       __ bang_stack_with_offset(pages*page_size);
1160     }
1161   }
1162 }
1163 
1164 //
1165 // Interpreter stub for calling a native method. (asm interpreter)
1166 // This sets up a somewhat different looking stack for calling the native method
1167 // than the typical interpreter frame setup.
1168 //
1169 
1170 address TemplateInterpreterGenerator::generate_native_entry(bool synchronized) {
1171   address entry = __ pc();
1172 
1173   // the following temporary registers are used during frame creation
1174   const Register Gtmp1 = G3_scratch ;
1175   const Register Gtmp2 = G1_scratch;
1176   bool inc_counter  = UseCompiler || CountCompiledCalls || LogTouchedMethods;
1177 
1178   // make sure registers are different!
1179   assert_different_registers(G2_thread, G5_method, Gargs, Gtmp1, Gtmp2);
1180 
1181   const Address Laccess_flags(Lmethod, Method::access_flags_offset());
1182 
1183   const Register Glocals_size = G3;
1184   assert_different_registers(Glocals_size, G4_scratch, Gframe_size);
1185 
1186   // make sure method is native & not abstract
1187   // rethink these assertions - they can be simplified and shared (gri 2/25/2000)
1188 #ifdef ASSERT
1189   __ ld(G5_method, Method::access_flags_offset(), Gtmp1);
1190   {
1191     Label L;
1192     __ btst(JVM_ACC_NATIVE, Gtmp1);
1193     __ br(Assembler::notZero, false, Assembler::pt, L);
1194     __ delayed()->nop();
1195     __ stop("tried to execute non-native method as native");
1196     __ bind(L);
1197   }
1198   { Label L;
1199     __ btst(JVM_ACC_ABSTRACT, Gtmp1);
1200     __ br(Assembler::zero, false, Assembler::pt, L);
1201     __ delayed()->nop();
1202     __ stop("tried to execute abstract method as non-abstract");
1203     __ bind(L);
1204   }
1205 #endif // ASSERT
1206 
1207  // generate the code to allocate the interpreter stack frame
1208   generate_fixed_frame(true);
1209 
1210   //
1211   // No locals to initialize for native method
1212   //
1213 
1214   // this slot will be set later, we initialize it to null here just in
1215   // case we get a GC before the actual value is stored later
1216   __ st_ptr(G0, FP, (frame::interpreter_frame_oop_temp_offset * wordSize) + STACK_BIAS);
1217 
1218   const Address do_not_unlock_if_synchronized(G2_thread,
1219     JavaThread::do_not_unlock_if_synchronized_offset());
1220   // Since at this point in the method invocation the exception handler
1221   // would try to exit the monitor of synchronized methods which hasn't
1222   // been entered yet, we set the thread local variable
1223   // _do_not_unlock_if_synchronized to true. If any exception was thrown by
1224   // runtime, exception handling i.e. unlock_if_synchronized_method will
1225   // check this thread local flag.
1226   // This flag has two effects, one is to force an unwind in the topmost
1227   // interpreter frame and not perform an unlock while doing so.
1228 
1229   __ movbool(true, G3_scratch);
1230   __ stbool(G3_scratch, do_not_unlock_if_synchronized);
1231 
1232   // increment invocation counter and check for overflow
1233   //
1234   // Note: checking for negative value instead of overflow
1235   //       so we have a 'sticky' overflow test (may be of
1236   //       importance as soon as we have true MT/MP)
1237   Label invocation_counter_overflow;
1238   Label Lcontinue;
1239   if (inc_counter) {
1240     generate_counter_incr(&invocation_counter_overflow, NULL, NULL);
1241 
1242   }
1243   __ bind(Lcontinue);
1244 
1245   bang_stack_shadow_pages(true);
1246 
1247   // reset the _do_not_unlock_if_synchronized flag
1248   __ stbool(G0, do_not_unlock_if_synchronized);
1249 
1250   // check for synchronized methods
1251   // Must happen AFTER invocation_counter check and stack overflow check,
1252   // so method is not locked if overflows.
1253 
1254   if (synchronized) {
1255     lock_method();
1256   } else {
1257 #ifdef ASSERT
1258     { Label ok;
1259       __ ld(Laccess_flags, O0);
1260       __ btst(JVM_ACC_SYNCHRONIZED, O0);
1261       __ br( Assembler::zero, false, Assembler::pt, ok);
1262       __ delayed()->nop();
1263       __ stop("method needs synchronization");
1264       __ bind(ok);
1265     }
1266 #endif // ASSERT
1267   }
1268 
1269 
1270   // start execution
1271   __ verify_thread();
1272 
1273   // JVMTI support
1274   __ notify_method_entry();
1275 
1276   // native call
1277 
1278   // (note that O0 is never an oop--at most it is a handle)
1279   // It is important not to smash any handles created by this call,
1280   // until any oop handle in O0 is dereferenced.
1281 
1282   // (note that the space for outgoing params is preallocated)
1283 
1284   // get signature handler
1285   { Label L;
1286     Address signature_handler(Lmethod, Method::signature_handler_offset());
1287     __ ld_ptr(signature_handler, G3_scratch);
1288     __ br_notnull_short(G3_scratch, Assembler::pt, L);
1289     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::prepare_native_call), Lmethod);
1290     __ ld_ptr(signature_handler, G3_scratch);
1291     __ bind(L);
1292   }
1293 
1294   // Push a new frame so that the args will really be stored in
1295   // Copy a few locals across so the new frame has the variables
1296   // we need but these values will be dead at the jni call and
1297   // therefore not gc volatile like the values in the current
1298   // frame (Lmethod in particular)
1299 
1300   // Flush the method pointer to the register save area
1301   __ st_ptr(Lmethod, SP, (Lmethod->sp_offset_in_saved_window() * wordSize) + STACK_BIAS);
1302   __ mov(Llocals, O1);
1303 
1304   // calculate where the mirror handle body is allocated in the interpreter frame:
1305   __ add(FP, (frame::interpreter_frame_oop_temp_offset * wordSize) + STACK_BIAS, O2);
1306 
1307   // Calculate current frame size
1308   __ sub(SP, FP, O3);         // Calculate negative of current frame size
1309   __ save(SP, O3, SP);        // Allocate an identical sized frame
1310 
1311   // Note I7 has leftover trash. Slow signature handler will fill it in
1312   // should we get there. Normal jni call will set reasonable last_Java_pc
1313   // below (and fix I7 so the stack trace doesn't have a meaningless frame
1314   // in it).
1315 
1316   // Load interpreter frame's Lmethod into same register here
1317 
1318   __ ld_ptr(FP, (Lmethod->sp_offset_in_saved_window() * wordSize) + STACK_BIAS, Lmethod);
1319 
1320   __ mov(I1, Llocals);
1321   __ mov(I2, Lscratch2);     // save the address of the mirror
1322 
1323 
1324   // ONLY Lmethod and Llocals are valid here!
1325 
1326   // call signature handler, It will move the arg properly since Llocals in current frame
1327   // matches that in outer frame
1328 
1329   __ callr(G3_scratch, 0);
1330   __ delayed()->nop();
1331 
1332   // Result handler is in Lscratch
1333 
1334   // Reload interpreter frame's Lmethod since slow signature handler may block
1335   __ ld_ptr(FP, (Lmethod->sp_offset_in_saved_window() * wordSize) + STACK_BIAS, Lmethod);
1336 
1337   { Label not_static;
1338 
1339     __ ld(Laccess_flags, O0);
1340     __ btst(JVM_ACC_STATIC, O0);
1341     __ br( Assembler::zero, false, Assembler::pt, not_static);
1342     // get native function entry point(O0 is a good temp until the very end)
1343     __ delayed()->ld_ptr(Lmethod, in_bytes(Method::native_function_offset()), O0);
1344     // for static methods insert the mirror argument
1345     __ load_mirror(O1, Lmethod);
1346 #ifdef ASSERT
1347     if (!PrintSignatureHandlers)  // do not dirty the output with this
1348     { Label L;
1349       __ br_notnull_short(O1, Assembler::pt, L);
1350       __ stop("mirror is missing");
1351       __ bind(L);
1352     }
1353 #endif // ASSERT
1354     __ st_ptr(O1, Lscratch2, 0);
1355     __ mov(Lscratch2, O1);
1356     __ bind(not_static);
1357   }
1358 
1359   // At this point, arguments have been copied off of stack into
1360   // their JNI positions, which are O1..O5 and SP[68..].
1361   // Oops are boxed in-place on the stack, with handles copied to arguments.
1362   // The result handler is in Lscratch.  O0 will shortly hold the JNIEnv*.
1363 
1364 #ifdef ASSERT
1365   { Label L;
1366     __ br_notnull_short(O0, Assembler::pt, L);
1367     __ stop("native entry point is missing");
1368     __ bind(L);
1369   }
1370 #endif // ASSERT
1371 
1372   //
1373   // setup the frame anchor
1374   //
1375   // The scavenge function only needs to know that the PC of this frame is
1376   // in the interpreter method entry code, it doesn't need to know the exact
1377   // PC and hence we can use O7 which points to the return address from the
1378   // previous call in the code stream (signature handler function)
1379   //
1380   // The other trick is we set last_Java_sp to FP instead of the usual SP because
1381   // we have pushed the extra frame in order to protect the volatile register(s)
1382   // in that frame when we return from the jni call
1383   //
1384 
1385   __ set_last_Java_frame(FP, O7);
1386   __ mov(O7, I7);  // make dummy interpreter frame look like one above,
1387                    // not meaningless information that'll confuse me.
1388 
1389   // flush the windows now. We don't care about the current (protection) frame
1390   // only the outer frames
1391 
1392   __ flushw();
1393 
1394   // mark windows as flushed
1395   Address flags(G2_thread, JavaThread::frame_anchor_offset() + JavaFrameAnchor::flags_offset());
1396   __ set(JavaFrameAnchor::flushed, G3_scratch);
1397   __ st(G3_scratch, flags);
1398 
1399   // Transition from _thread_in_Java to _thread_in_native. We are already safepoint ready.
1400 
1401   Address thread_state(G2_thread, JavaThread::thread_state_offset());
1402 #ifdef ASSERT
1403   { Label L;
1404     __ ld(thread_state, G3_scratch);
1405     __ cmp_and_br_short(G3_scratch, _thread_in_Java, Assembler::equal, Assembler::pt, L);
1406     __ stop("Wrong thread state in native stub");
1407     __ bind(L);
1408   }
1409 #endif // ASSERT
1410   __ set(_thread_in_native, G3_scratch);
1411   __ st(G3_scratch, thread_state);
1412 
1413   // Call the jni method, using the delay slot to set the JNIEnv* argument.
1414   __ save_thread(L7_thread_cache); // save Gthread
1415   __ callr(O0, 0);
1416   __ delayed()->
1417      add(L7_thread_cache, in_bytes(JavaThread::jni_environment_offset()), O0);
1418 
1419   // Back from jni method Lmethod in this frame is DEAD, DEAD, DEAD
1420 
1421   __ restore_thread(L7_thread_cache); // restore G2_thread
1422   __ reinit_heapbase();
1423 
1424   // must we block?
1425 
1426   // Block, if necessary, before resuming in _thread_in_Java state.
1427   // In order for GC to work, don't clear the last_Java_sp until after blocking.
1428   { Label no_block;
1429     AddressLiteral sync_state(SafepointSynchronize::address_of_state());
1430 
1431     // Switch thread to "native transition" state before reading the synchronization state.
1432     // This additional state is necessary because reading and testing the synchronization
1433     // state is not atomic w.r.t. GC, as this scenario demonstrates:
1434     //     Java thread A, in _thread_in_native state, loads _not_synchronized and is preempted.
1435     //     VM thread changes sync state to synchronizing and suspends threads for GC.
1436     //     Thread A is resumed to finish this native method, but doesn't block here since it
1437     //     didn't see any synchronization is progress, and escapes.
1438     __ set(_thread_in_native_trans, G3_scratch);
1439     __ st(G3_scratch, thread_state);
1440     if(os::is_MP()) {
1441       if (UseMembar) {
1442         // Force this write out before the read below
1443         __ membar(Assembler::StoreLoad);
1444       } else {
1445         // Write serialization page so VM thread can do a pseudo remote membar.
1446         // We use the current thread pointer to calculate a thread specific
1447         // offset to write to within the page. This minimizes bus traffic
1448         // due to cache line collision.
1449         __ serialize_memory(G2_thread, G1_scratch, G3_scratch);
1450       }
1451     }
1452     __ load_contents(sync_state, G3_scratch);
1453     __ cmp(G3_scratch, SafepointSynchronize::_not_synchronized);
1454 
1455     Label L;
1456     __ br(Assembler::notEqual, false, Assembler::pn, L);
1457     __ delayed()->ld(G2_thread, JavaThread::suspend_flags_offset(), G3_scratch);
1458     __ cmp_and_br_short(G3_scratch, 0, Assembler::equal, Assembler::pt, no_block);
1459     __ bind(L);
1460 
1461     // Block.  Save any potential method result value before the operation and
1462     // use a leaf call to leave the last_Java_frame setup undisturbed.
1463     save_native_result();
1464     __ call_VM_leaf(L7_thread_cache,
1465                     CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans),
1466                     G2_thread);
1467 
1468     // Restore any method result value
1469     restore_native_result();
1470     __ bind(no_block);
1471   }
1472 
1473   // Clear the frame anchor now
1474 
1475   __ reset_last_Java_frame();
1476 
1477   // Move the result handler address
1478   __ mov(Lscratch, G3_scratch);
1479   // return possible result to the outer frame
1480 #ifndef __LP64
1481   __ mov(O0, I0);
1482   __ restore(O1, G0, O1);
1483 #else
1484   __ restore(O0, G0, O0);
1485 #endif /* __LP64 */
1486 
1487   // Move result handler to expected register
1488   __ mov(G3_scratch, Lscratch);
1489 
1490   // Back in normal (native) interpreter frame. State is thread_in_native_trans
1491   // switch to thread_in_Java.
1492 
1493   __ set(_thread_in_Java, G3_scratch);
1494   __ st(G3_scratch, thread_state);
1495 
1496   if (CheckJNICalls) {
1497     // clear_pending_jni_exception_check
1498     __ st_ptr(G0, G2_thread, JavaThread::pending_jni_exception_check_fn_offset());
1499   }
1500 
1501   // reset handle block
1502   __ ld_ptr(G2_thread, JavaThread::active_handles_offset(), G3_scratch);
1503   __ st(G0, G3_scratch, JNIHandleBlock::top_offset_in_bytes());
1504 
1505   // If we have an oop result store it where it will be safe for any further gc
1506   // until we return now that we've released the handle it might be protected by
1507 
1508   {
1509     Label no_oop, store_result;
1510 
1511     __ set((intptr_t)AbstractInterpreter::result_handler(T_OBJECT), G3_scratch);
1512     __ cmp_and_brx_short(G3_scratch, Lscratch, Assembler::notEqual, Assembler::pt, no_oop);
1513     __ addcc(G0, O0, O0);
1514     __ brx(Assembler::notZero, true, Assembler::pt, store_result);     // if result is not NULL:
1515     __ delayed()->ld_ptr(O0, 0, O0);                                   // unbox it
1516     __ mov(G0, O0);
1517 
1518     __ bind(store_result);
1519     // Store it where gc will look for it and result handler expects it.
1520     __ st_ptr(O0, FP, (frame::interpreter_frame_oop_temp_offset*wordSize) + STACK_BIAS);
1521 
1522     __ bind(no_oop);
1523 
1524   }
1525 
1526 
1527   // handle exceptions (exception handling will handle unlocking!)
1528   { Label L;
1529     Address exception_addr(G2_thread, Thread::pending_exception_offset());
1530     __ ld_ptr(exception_addr, Gtemp);
1531     __ br_null_short(Gtemp, Assembler::pt, L);
1532     // Note: This could be handled more efficiently since we know that the native
1533     //       method doesn't have an exception handler. We could directly return
1534     //       to the exception handler for the caller.
1535     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_pending_exception));
1536     __ should_not_reach_here();
1537     __ bind(L);
1538   }
1539 
1540   // JVMTI support (preserves thread register)
1541   __ notify_method_exit(true, ilgl, InterpreterMacroAssembler::NotifyJVMTI);
1542 
1543   if (synchronized) {
1544     // save and restore any potential method result value around the unlocking operation
1545     save_native_result();
1546 
1547     __ add( __ top_most_monitor(), O1);
1548     __ unlock_object(O1);
1549 
1550     restore_native_result();
1551   }
1552 
1553 #if defined(COMPILER2) && !defined(_LP64)
1554 
1555   // C2 expects long results in G1 we can't tell if we're returning to interpreted
1556   // or compiled so just be safe.
1557 
1558   __ sllx(O0, 32, G1);          // Shift bits into high G1
1559   __ srl (O1, 0, O1);           // Zero extend O1
1560   __ or3 (O1, G1, G1);          // OR 64 bits into G1
1561 
1562 #endif /* COMPILER2 && !_LP64 */
1563 
1564   // dispose of return address and remove activation
1565 #ifdef ASSERT
1566   {
1567     Label ok;
1568     __ cmp_and_brx_short(I5_savedSP, FP, Assembler::greaterEqualUnsigned, Assembler::pt, ok);
1569     __ stop("bad I5_savedSP value");
1570     __ should_not_reach_here();
1571     __ bind(ok);
1572   }
1573 #endif
1574   __ jmp(Lscratch, 0);
1575   __ delayed()->nop();
1576 
1577 
1578   if (inc_counter) {
1579     // handle invocation counter overflow
1580     __ bind(invocation_counter_overflow);
1581     generate_counter_overflow(Lcontinue);
1582   }
1583 
1584 
1585 
1586   return entry;
1587 }
1588 
1589 
1590 // Generic method entry to (asm) interpreter
1591 address TemplateInterpreterGenerator::generate_normal_entry(bool synchronized) {
1592   address entry = __ pc();
1593 
1594   bool inc_counter  = UseCompiler || CountCompiledCalls || LogTouchedMethods;
1595 
1596   // the following temporary registers are used during frame creation
1597   const Register Gtmp1 = G3_scratch ;
1598   const Register Gtmp2 = G1_scratch;
1599 
1600   // make sure registers are different!
1601   assert_different_registers(G2_thread, G5_method, Gargs, Gtmp1, Gtmp2);
1602 
1603   const Address constMethod       (G5_method, Method::const_offset());
1604   // Seems like G5_method is live at the point this is used. So we could make this look consistent
1605   // and use in the asserts.
1606   const Address access_flags      (Lmethod,   Method::access_flags_offset());
1607 
1608   const Register Glocals_size = G3;
1609   assert_different_registers(Glocals_size, G4_scratch, Gframe_size);
1610 
1611   // make sure method is not native & not abstract
1612   // rethink these assertions - they can be simplified and shared (gri 2/25/2000)
1613 #ifdef ASSERT
1614   __ ld(G5_method, Method::access_flags_offset(), Gtmp1);
1615   {
1616     Label L;
1617     __ btst(JVM_ACC_NATIVE, Gtmp1);
1618     __ br(Assembler::zero, false, Assembler::pt, L);
1619     __ delayed()->nop();
1620     __ stop("tried to execute native method as non-native");
1621     __ bind(L);
1622   }
1623   { Label L;
1624     __ btst(JVM_ACC_ABSTRACT, Gtmp1);
1625     __ br(Assembler::zero, false, Assembler::pt, L);
1626     __ delayed()->nop();
1627     __ stop("tried to execute abstract method as non-abstract");
1628     __ bind(L);
1629   }
1630 #endif // ASSERT
1631 
1632   // generate the code to allocate the interpreter stack frame
1633 
1634   generate_fixed_frame(false);
1635 
1636 #ifdef FAST_DISPATCH
1637   __ set((intptr_t)Interpreter::dispatch_table(), IdispatchTables);
1638                                           // set bytecode dispatch table base
1639 #endif
1640 
1641   //
1642   // Code to initialize the extra (i.e. non-parm) locals
1643   //
1644   Register init_value = noreg;    // will be G0 if we must clear locals
1645   // The way the code was setup before zerolocals was always true for vanilla java entries.
1646   // It could only be false for the specialized entries like accessor or empty which have
1647   // no extra locals so the testing was a waste of time and the extra locals were always
1648   // initialized. We removed this extra complication to already over complicated code.
1649 
1650   init_value = G0;
1651   Label clear_loop;
1652 
1653   const Register RconstMethod = O1;
1654   const Address size_of_parameters(RconstMethod, ConstMethod::size_of_parameters_offset());
1655   const Address size_of_locals    (RconstMethod, ConstMethod::size_of_locals_offset());
1656 
1657   // NOTE: If you change the frame layout, this code will need to
1658   // be updated!
1659   __ ld_ptr( constMethod, RconstMethod );
1660   __ lduh( size_of_locals, O2 );
1661   __ lduh( size_of_parameters, O1 );
1662   __ sll( O2, Interpreter::logStackElementSize, O2);
1663   __ sll( O1, Interpreter::logStackElementSize, O1 );
1664   __ sub( Llocals, O2, O2 );
1665   __ sub( Llocals, O1, O1 );
1666 
1667   __ bind( clear_loop );
1668   __ inc( O2, wordSize );
1669 
1670   __ cmp( O2, O1 );
1671   __ brx( Assembler::lessEqualUnsigned, true, Assembler::pt, clear_loop );
1672   __ delayed()->st_ptr( init_value, O2, 0 );
1673 
1674   const Address do_not_unlock_if_synchronized(G2_thread,
1675     JavaThread::do_not_unlock_if_synchronized_offset());
1676   // Since at this point in the method invocation the exception handler
1677   // would try to exit the monitor of synchronized methods which hasn't
1678   // been entered yet, we set the thread local variable
1679   // _do_not_unlock_if_synchronized to true. If any exception was thrown by
1680   // runtime, exception handling i.e. unlock_if_synchronized_method will
1681   // check this thread local flag.
1682   __ movbool(true, G3_scratch);
1683   __ stbool(G3_scratch, do_not_unlock_if_synchronized);
1684 
1685   __ profile_parameters_type(G1_scratch, G3_scratch, G4_scratch, Lscratch);
1686   // increment invocation counter and check for overflow
1687   //
1688   // Note: checking for negative value instead of overflow
1689   //       so we have a 'sticky' overflow test (may be of
1690   //       importance as soon as we have true MT/MP)
1691   Label invocation_counter_overflow;
1692   Label profile_method;
1693   Label profile_method_continue;
1694   Label Lcontinue;
1695   if (inc_counter) {
1696     generate_counter_incr(&invocation_counter_overflow, &profile_method, &profile_method_continue);
1697     if (ProfileInterpreter) {
1698       __ bind(profile_method_continue);
1699     }
1700   }
1701   __ bind(Lcontinue);
1702 
1703   bang_stack_shadow_pages(false);
1704 
1705   // reset the _do_not_unlock_if_synchronized flag
1706   __ stbool(G0, do_not_unlock_if_synchronized);
1707 
1708   // check for synchronized methods
1709   // Must happen AFTER invocation_counter check and stack overflow check,
1710   // so method is not locked if overflows.
1711 
1712   if (synchronized) {
1713     lock_method();
1714   } else {
1715 #ifdef ASSERT
1716     { Label ok;
1717       __ ld(access_flags, O0);
1718       __ btst(JVM_ACC_SYNCHRONIZED, O0);
1719       __ br( Assembler::zero, false, Assembler::pt, ok);
1720       __ delayed()->nop();
1721       __ stop("method needs synchronization");
1722       __ bind(ok);
1723     }
1724 #endif // ASSERT
1725   }
1726 
1727   // start execution
1728 
1729   __ verify_thread();
1730 
1731   // jvmti support
1732   __ notify_method_entry();
1733 
1734   // start executing instructions
1735   __ dispatch_next(vtos);
1736 
1737 
1738   if (inc_counter) {
1739     if (ProfileInterpreter) {
1740       // We have decided to profile this method in the interpreter
1741       __ bind(profile_method);
1742 
1743       __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method));
1744       __ set_method_data_pointer_for_bcp();
1745       __ ba_short(profile_method_continue);
1746     }
1747 
1748     // handle invocation counter overflow
1749     __ bind(invocation_counter_overflow);
1750     generate_counter_overflow(Lcontinue);
1751   }
1752 
1753 
1754   return entry;
1755 }
1756 
1757 //----------------------------------------------------------------------------------------------------
1758 // Exceptions
1759 void TemplateInterpreterGenerator::generate_throw_exception() {
1760 
1761   // Entry point in previous activation (i.e., if the caller was interpreted)
1762   Interpreter::_rethrow_exception_entry = __ pc();
1763   // O0: exception
1764 
1765   // entry point for exceptions thrown within interpreter code
1766   Interpreter::_throw_exception_entry = __ pc();
1767   __ verify_thread();
1768   // expression stack is undefined here
1769   // O0: exception, i.e. Oexception
1770   // Lbcp: exception bcp
1771   __ verify_oop(Oexception);
1772 
1773 
1774   // expression stack must be empty before entering the VM in case of an exception
1775   __ empty_expression_stack();
1776   // find exception handler address and preserve exception oop
1777   // call C routine to find handler and jump to it
1778   __ call_VM(O1, CAST_FROM_FN_PTR(address, InterpreterRuntime::exception_handler_for_exception), Oexception);
1779   __ push_ptr(O1); // push exception for exception handler bytecodes
1780 
1781   __ JMP(O0, 0); // jump to exception handler (may be remove activation entry!)
1782   __ delayed()->nop();
1783 
1784 
1785   // if the exception is not handled in the current frame
1786   // the frame is removed and the exception is rethrown
1787   // (i.e. exception continuation is _rethrow_exception)
1788   //
1789   // Note: At this point the bci is still the bxi for the instruction which caused
1790   //       the exception and the expression stack is empty. Thus, for any VM calls
1791   //       at this point, GC will find a legal oop map (with empty expression stack).
1792 
1793   // in current activation
1794   // tos: exception
1795   // Lbcp: exception bcp
1796 
1797   //
1798   // JVMTI PopFrame support
1799   //
1800 
1801   Interpreter::_remove_activation_preserving_args_entry = __ pc();
1802   Address popframe_condition_addr(G2_thread, JavaThread::popframe_condition_offset());
1803   // Set the popframe_processing bit in popframe_condition indicating that we are
1804   // currently handling popframe, so that call_VMs that may happen later do not trigger new
1805   // popframe handling cycles.
1806 
1807   __ ld(popframe_condition_addr, G3_scratch);
1808   __ or3(G3_scratch, JavaThread::popframe_processing_bit, G3_scratch);
1809   __ stw(G3_scratch, popframe_condition_addr);
1810 
1811   // Empty the expression stack, as in normal exception handling
1812   __ empty_expression_stack();
1813   __ unlock_if_synchronized_method(vtos, /* throw_monitor_exception */ false, /* install_monitor_exception */ false);
1814 
1815   {
1816     // Check to see whether we are returning to a deoptimized frame.
1817     // (The PopFrame call ensures that the caller of the popped frame is
1818     // either interpreted or compiled and deoptimizes it if compiled.)
1819     // In this case, we can't call dispatch_next() after the frame is
1820     // popped, but instead must save the incoming arguments and restore
1821     // them after deoptimization has occurred.
1822     //
1823     // Note that we don't compare the return PC against the
1824     // deoptimization blob's unpack entry because of the presence of
1825     // adapter frames in C2.
1826     Label caller_not_deoptimized;
1827     __ call_VM_leaf(L7_thread_cache, CAST_FROM_FN_PTR(address, InterpreterRuntime::interpreter_contains), I7);
1828     __ br_notnull_short(O0, Assembler::pt, caller_not_deoptimized);
1829 
1830     const Register Gtmp1 = G3_scratch;
1831     const Register Gtmp2 = G1_scratch;
1832     const Register RconstMethod = Gtmp1;
1833     const Address constMethod(Lmethod, Method::const_offset());
1834     const Address size_of_parameters(RconstMethod, ConstMethod::size_of_parameters_offset());
1835 
1836     // Compute size of arguments for saving when returning to deoptimized caller
1837     __ ld_ptr(constMethod, RconstMethod);
1838     __ lduh(size_of_parameters, Gtmp1);
1839     __ sll(Gtmp1, Interpreter::logStackElementSize, Gtmp1);
1840     __ sub(Llocals, Gtmp1, Gtmp2);
1841     __ add(Gtmp2, wordSize, Gtmp2);
1842     // Save these arguments
1843     __ call_VM_leaf(L7_thread_cache, CAST_FROM_FN_PTR(address, Deoptimization::popframe_preserve_args), G2_thread, Gtmp1, Gtmp2);
1844     // Inform deoptimization that it is responsible for restoring these arguments
1845     __ set(JavaThread::popframe_force_deopt_reexecution_bit, Gtmp1);
1846     Address popframe_condition_addr(G2_thread, JavaThread::popframe_condition_offset());
1847     __ st(Gtmp1, popframe_condition_addr);
1848 
1849     // Return from the current method
1850     // The caller's SP was adjusted upon method entry to accomodate
1851     // the callee's non-argument locals. Undo that adjustment.
1852     __ ret();
1853     __ delayed()->restore(I5_savedSP, G0, SP);
1854 
1855     __ bind(caller_not_deoptimized);
1856   }
1857 
1858   // Clear the popframe condition flag
1859   __ stw(G0 /* popframe_inactive */, popframe_condition_addr);
1860 
1861   // Get out of the current method (how this is done depends on the particular compiler calling
1862   // convention that the interpreter currently follows)
1863   // The caller's SP was adjusted upon method entry to accomodate
1864   // the callee's non-argument locals. Undo that adjustment.
1865   __ restore(I5_savedSP, G0, SP);
1866   // The method data pointer was incremented already during
1867   // call profiling. We have to restore the mdp for the current bcp.
1868   if (ProfileInterpreter) {
1869     __ set_method_data_pointer_for_bcp();
1870   }
1871 
1872 #if INCLUDE_JVMTI
1873   {
1874     Label L_done;
1875 
1876     __ ldub(Address(Lbcp, 0), G1_scratch);  // Load current bytecode
1877     __ cmp_and_br_short(G1_scratch, Bytecodes::_invokestatic, Assembler::notEqual, Assembler::pn, L_done);
1878 
1879     // The member name argument must be restored if _invokestatic is re-executed after a PopFrame call.
1880     // Detect such a case in the InterpreterRuntime function and return the member name argument, or NULL.
1881 
1882     __ call_VM(G1_scratch, CAST_FROM_FN_PTR(address, InterpreterRuntime::member_name_arg_or_null), I0, Lmethod, Lbcp);
1883 
1884     __ br_null(G1_scratch, false, Assembler::pn, L_done);
1885     __ delayed()->nop();
1886 
1887     __ st_ptr(G1_scratch, Lesp, wordSize);
1888     __ bind(L_done);
1889   }
1890 #endif // INCLUDE_JVMTI
1891 
1892   // Resume bytecode interpretation at the current bcp
1893   __ dispatch_next(vtos);
1894   // end of JVMTI PopFrame support
1895 
1896   Interpreter::_remove_activation_entry = __ pc();
1897 
1898   // preserve exception over this code sequence (remove activation calls the vm, but oopmaps are not correct here)
1899   __ pop_ptr(Oexception);                                  // get exception
1900 
1901   // Intel has the following comment:
1902   //// remove the activation (without doing throws on illegalMonitorExceptions)
1903   // They remove the activation without checking for bad monitor state.
1904   // %%% We should make sure this is the right semantics before implementing.
1905 
1906   __ set_vm_result(Oexception);
1907   __ unlock_if_synchronized_method(vtos, /* throw_monitor_exception */ false);
1908 
1909   __ notify_method_exit(false, vtos, InterpreterMacroAssembler::SkipNotifyJVMTI);
1910 
1911   __ get_vm_result(Oexception);
1912   __ verify_oop(Oexception);
1913 
1914     const int return_reg_adjustment = frame::pc_return_offset;
1915   Address issuing_pc_addr(I7, return_reg_adjustment);
1916 
1917   // We are done with this activation frame; find out where to go next.
1918   // The continuation point will be an exception handler, which expects
1919   // the following registers set up:
1920   //
1921   // Oexception: exception
1922   // Oissuing_pc: the local call that threw exception
1923   // Other On: garbage
1924   // In/Ln:  the contents of the caller's register window
1925   //
1926   // We do the required restore at the last possible moment, because we
1927   // need to preserve some state across a runtime call.
1928   // (Remember that the caller activation is unknown--it might not be
1929   // interpreted, so things like Lscratch are useless in the caller.)
1930 
1931   // Although the Intel version uses call_C, we can use the more
1932   // compact call_VM.  (The only real difference on SPARC is a
1933   // harmlessly ignored [re]set_last_Java_frame, compared with
1934   // the Intel code which lacks this.)
1935   __ mov(Oexception,      Oexception ->after_save());  // get exception in I0 so it will be on O0 after restore
1936   __ add(issuing_pc_addr, Oissuing_pc->after_save());  // likewise set I1 to a value local to the caller
1937   __ super_call_VM_leaf(L7_thread_cache,
1938                         CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address),
1939                         G2_thread, Oissuing_pc->after_save());
1940 
1941   // The caller's SP was adjusted upon method entry to accomodate
1942   // the callee's non-argument locals. Undo that adjustment.
1943   __ JMP(O0, 0);                         // return exception handler in caller
1944   __ delayed()->restore(I5_savedSP, G0, SP);
1945 
1946   // (same old exception object is already in Oexception; see above)
1947   // Note that an "issuing PC" is actually the next PC after the call
1948 }
1949 
1950 
1951 //
1952 // JVMTI ForceEarlyReturn support
1953 //
1954 
1955 address TemplateInterpreterGenerator::generate_earlyret_entry_for(TosState state) {
1956   address entry = __ pc();
1957 
1958   __ empty_expression_stack();
1959   __ load_earlyret_value(state);
1960 
1961   __ ld_ptr(G2_thread, JavaThread::jvmti_thread_state_offset(), G3_scratch);
1962   Address cond_addr(G3_scratch, JvmtiThreadState::earlyret_state_offset());
1963 
1964   // Clear the earlyret state
1965   __ stw(G0 /* JvmtiThreadState::earlyret_inactive */, cond_addr);
1966 
1967   __ remove_activation(state,
1968                        /* throw_monitor_exception */ false,
1969                        /* install_monitor_exception */ false);
1970 
1971   // The caller's SP was adjusted upon method entry to accomodate
1972   // the callee's non-argument locals. Undo that adjustment.
1973   __ ret();                             // return to caller
1974   __ delayed()->restore(I5_savedSP, G0, SP);
1975 
1976   return entry;
1977 } // end of JVMTI ForceEarlyReturn support
1978 
1979 
1980 //------------------------------------------------------------------------------------------------------------------------
1981 // Helper for vtos entry point generation
1982 
1983 void TemplateInterpreterGenerator::set_vtos_entry_points(Template* t, address& bep, address& cep, address& sep, address& aep, address& iep, address& lep, address& fep, address& dep, address& vep) {
1984   assert(t->is_valid() && t->tos_in() == vtos, "illegal template");
1985   Label L;
1986   aep = __ pc(); __ push_ptr(); __ ba_short(L);
1987   fep = __ pc(); __ push_f();   __ ba_short(L);
1988   dep = __ pc(); __ push_d();   __ ba_short(L);
1989   lep = __ pc(); __ push_l();   __ ba_short(L);
1990   iep = __ pc(); __ push_i();
1991   bep = cep = sep = iep;                        // there aren't any
1992   vep = __ pc(); __ bind(L);                    // fall through
1993   generate_and_dispatch(t);
1994 }
1995 
1996 // --------------------------------------------------------------------------------
1997 
1998 // Non-product code
1999 #ifndef PRODUCT
2000 address TemplateInterpreterGenerator::generate_trace_code(TosState state) {
2001   address entry = __ pc();
2002 
2003   __ push(state);
2004   __ mov(O7, Lscratch); // protect return address within interpreter
2005 
2006   // Pass a 0 (not used in sparc) and the top of stack to the bytecode tracer
2007   __ mov( Otos_l2, G3_scratch );
2008   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::trace_bytecode), G0, Otos_l1, G3_scratch);
2009   __ mov(Lscratch, O7); // restore return address
2010   __ pop(state);
2011   __ retl();
2012   __ delayed()->nop();
2013 
2014   return entry;
2015 }
2016 
2017 
2018 // helpers for generate_and_dispatch
2019 
2020 void TemplateInterpreterGenerator::count_bytecode() {
2021   __ inc_counter(&BytecodeCounter::_counter_value, G3_scratch, G4_scratch);
2022 }
2023 
2024 
2025 void TemplateInterpreterGenerator::histogram_bytecode(Template* t) {
2026   __ inc_counter(&BytecodeHistogram::_counters[t->bytecode()], G3_scratch, G4_scratch);
2027 }
2028 
2029 
2030 void TemplateInterpreterGenerator::histogram_bytecode_pair(Template* t) {
2031   AddressLiteral index   (&BytecodePairHistogram::_index);
2032   AddressLiteral counters((address) &BytecodePairHistogram::_counters);
2033 
2034   // get index, shift out old bytecode, bring in new bytecode, and store it
2035   // _index = (_index >> log2_number_of_codes) |
2036   //          (bytecode << log2_number_of_codes);
2037 
2038   __ load_contents(index, G4_scratch);
2039   __ srl( G4_scratch, BytecodePairHistogram::log2_number_of_codes, G4_scratch );
2040   __ set( ((int)t->bytecode()) << BytecodePairHistogram::log2_number_of_codes,  G3_scratch );
2041   __ or3( G3_scratch,  G4_scratch, G4_scratch );
2042   __ store_contents(G4_scratch, index, G3_scratch);
2043 
2044   // bump bucket contents
2045   // _counters[_index] ++;
2046 
2047   __ set(counters, G3_scratch);                       // loads into G3_scratch
2048   __ sll( G4_scratch, LogBytesPerWord, G4_scratch );  // Index is word address
2049   __ add (G3_scratch, G4_scratch, G3_scratch);        // Add in index
2050   __ ld (G3_scratch, 0, G4_scratch);
2051   __ inc (G4_scratch);
2052   __ st (G4_scratch, 0, G3_scratch);
2053 }
2054 
2055 
2056 void TemplateInterpreterGenerator::trace_bytecode(Template* t) {
2057   // Call a little run-time stub to avoid blow-up for each bytecode.
2058   // The run-time runtime saves the right registers, depending on
2059   // the tosca in-state for the given template.
2060   address entry = Interpreter::trace_code(t->tos_in());
2061   guarantee(entry != NULL, "entry must have been generated");
2062   __ call(entry, relocInfo::none);
2063   __ delayed()->nop();
2064 }
2065 
2066 
2067 void TemplateInterpreterGenerator::stop_interpreter_at() {
2068   AddressLiteral counter(&BytecodeCounter::_counter_value);
2069   __ load_contents(counter, G3_scratch);
2070   AddressLiteral stop_at(&StopInterpreterAt);
2071   __ load_ptr_contents(stop_at, G4_scratch);
2072   __ cmp(G3_scratch, G4_scratch);
2073   __ breakpoint_trap(Assembler::equal, Assembler::icc);
2074 }
2075 #endif // not PRODUCT