1 /*
   2  * Copyright (c) 2001, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "compiler/compileLog.hpp"
  27 #include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp"
  28 #include "gc_implementation/g1/heapRegion.hpp"
  29 #include "gc_interface/collectedHeap.hpp"
  30 #include "memory/barrierSet.hpp"
  31 #include "memory/cardTableModRefBS.hpp"
  32 #include "opto/addnode.hpp"
  33 #include "opto/castnode.hpp"
  34 #include "opto/convertnode.hpp"
  35 #include "opto/graphKit.hpp"
  36 #include "opto/idealKit.hpp"
  37 #include "opto/locknode.hpp"
  38 #include "opto/machnode.hpp"
  39 #include "opto/optonode.hpp"
  40 #include "opto/parse.hpp"
  41 #include "opto/rootnode.hpp"
  42 #include "opto/runtime.hpp"
  43 #include "opto/threadnode.hpp"
  44 #include "runtime/deoptimization.hpp"
  45 #include "runtime/sharedRuntime.hpp"
  46 
  47 //----------------------------GraphKit-----------------------------------------
  48 // Main utility constructor.
  49 GraphKit::GraphKit(JVMState* jvms)
  50   : Phase(Phase::Parser),
  51     _env(C->env()),
  52     _gvn(*C->initial_gvn())
  53 {
  54   _exceptions = jvms->map()->next_exception();
  55   if (_exceptions != NULL)  jvms->map()->set_next_exception(NULL);
  56   set_jvms(jvms);
  57 }
  58 
  59 // Private constructor for parser.
  60 GraphKit::GraphKit()
  61   : Phase(Phase::Parser),
  62     _env(C->env()),
  63     _gvn(*C->initial_gvn())
  64 {
  65   _exceptions = NULL;
  66   set_map(NULL);
  67   debug_only(_sp = -99);
  68   debug_only(set_bci(-99));
  69 }
  70 
  71 
  72 
  73 //---------------------------clean_stack---------------------------------------
  74 // Clear away rubbish from the stack area of the JVM state.
  75 // This destroys any arguments that may be waiting on the stack.
  76 void GraphKit::clean_stack(int from_sp) {
  77   SafePointNode* map      = this->map();
  78   JVMState*      jvms     = this->jvms();
  79   int            stk_size = jvms->stk_size();
  80   int            stkoff   = jvms->stkoff();
  81   Node*          top      = this->top();
  82   for (int i = from_sp; i < stk_size; i++) {
  83     if (map->in(stkoff + i) != top) {
  84       map->set_req(stkoff + i, top);
  85     }
  86   }
  87 }
  88 
  89 
  90 //--------------------------------sync_jvms-----------------------------------
  91 // Make sure our current jvms agrees with our parse state.
  92 JVMState* GraphKit::sync_jvms() const {
  93   JVMState* jvms = this->jvms();
  94   jvms->set_bci(bci());       // Record the new bci in the JVMState
  95   jvms->set_sp(sp());         // Record the new sp in the JVMState
  96   assert(jvms_in_sync(), "jvms is now in sync");
  97   return jvms;
  98 }
  99 
 100 //--------------------------------sync_jvms_for_reexecute---------------------
 101 // Make sure our current jvms agrees with our parse state.  This version
 102 // uses the reexecute_sp for reexecuting bytecodes.
 103 JVMState* GraphKit::sync_jvms_for_reexecute() {
 104   JVMState* jvms = this->jvms();
 105   jvms->set_bci(bci());          // Record the new bci in the JVMState
 106   jvms->set_sp(reexecute_sp());  // Record the new sp in the JVMState
 107   return jvms;
 108 }
 109 
 110 #ifdef ASSERT
 111 bool GraphKit::jvms_in_sync() const {
 112   Parse* parse = is_Parse();
 113   if (parse == NULL) {
 114     if (bci() !=      jvms()->bci())          return false;
 115     if (sp()  != (int)jvms()->sp())           return false;
 116     return true;
 117   }
 118   if (jvms()->method() != parse->method())    return false;
 119   if (jvms()->bci()    != parse->bci())       return false;
 120   int jvms_sp = jvms()->sp();
 121   if (jvms_sp          != parse->sp())        return false;
 122   int jvms_depth = jvms()->depth();
 123   if (jvms_depth       != parse->depth())     return false;
 124   return true;
 125 }
 126 
 127 // Local helper checks for special internal merge points
 128 // used to accumulate and merge exception states.
 129 // They are marked by the region's in(0) edge being the map itself.
 130 // Such merge points must never "escape" into the parser at large,
 131 // until they have been handed to gvn.transform.
 132 static bool is_hidden_merge(Node* reg) {
 133   if (reg == NULL)  return false;
 134   if (reg->is_Phi()) {
 135     reg = reg->in(0);
 136     if (reg == NULL)  return false;
 137   }
 138   return reg->is_Region() && reg->in(0) != NULL && reg->in(0)->is_Root();
 139 }
 140 
 141 void GraphKit::verify_map() const {
 142   if (map() == NULL)  return;  // null map is OK
 143   assert(map()->req() <= jvms()->endoff(), "no extra garbage on map");
 144   assert(!map()->has_exceptions(),    "call add_exception_states_from 1st");
 145   assert(!is_hidden_merge(control()), "call use_exception_state, not set_map");
 146 }
 147 
 148 void GraphKit::verify_exception_state(SafePointNode* ex_map) {
 149   assert(ex_map->next_exception() == NULL, "not already part of a chain");
 150   assert(has_saved_ex_oop(ex_map), "every exception state has an ex_oop");
 151 }
 152 #endif
 153 
 154 //---------------------------stop_and_kill_map---------------------------------
 155 // Set _map to NULL, signalling a stop to further bytecode execution.
 156 // First smash the current map's control to a constant, to mark it dead.
 157 void GraphKit::stop_and_kill_map() {
 158   SafePointNode* dead_map = stop();
 159   if (dead_map != NULL) {
 160     dead_map->disconnect_inputs(NULL, C); // Mark the map as killed.
 161     assert(dead_map->is_killed(), "must be so marked");
 162   }
 163 }
 164 
 165 
 166 //--------------------------------stopped--------------------------------------
 167 // Tell if _map is NULL, or control is top.
 168 bool GraphKit::stopped() {
 169   if (map() == NULL)           return true;
 170   else if (control() == top()) return true;
 171   else                         return false;
 172 }
 173 
 174 
 175 //-----------------------------has_ex_handler----------------------------------
 176 // Tell if this method or any caller method has exception handlers.
 177 bool GraphKit::has_ex_handler() {
 178   for (JVMState* jvmsp = jvms(); jvmsp != NULL; jvmsp = jvmsp->caller()) {
 179     if (jvmsp->has_method() && jvmsp->method()->has_exception_handlers()) {
 180       return true;
 181     }
 182   }
 183   return false;
 184 }
 185 
 186 //------------------------------save_ex_oop------------------------------------
 187 // Save an exception without blowing stack contents or other JVM state.
 188 void GraphKit::set_saved_ex_oop(SafePointNode* ex_map, Node* ex_oop) {
 189   assert(!has_saved_ex_oop(ex_map), "clear ex-oop before setting again");
 190   ex_map->add_req(ex_oop);
 191   debug_only(verify_exception_state(ex_map));
 192 }
 193 
 194 inline static Node* common_saved_ex_oop(SafePointNode* ex_map, bool clear_it) {
 195   assert(GraphKit::has_saved_ex_oop(ex_map), "ex_oop must be there");
 196   Node* ex_oop = ex_map->in(ex_map->req()-1);
 197   if (clear_it)  ex_map->del_req(ex_map->req()-1);
 198   return ex_oop;
 199 }
 200 
 201 //-----------------------------saved_ex_oop------------------------------------
 202 // Recover a saved exception from its map.
 203 Node* GraphKit::saved_ex_oop(SafePointNode* ex_map) {
 204   return common_saved_ex_oop(ex_map, false);
 205 }
 206 
 207 //--------------------------clear_saved_ex_oop---------------------------------
 208 // Erase a previously saved exception from its map.
 209 Node* GraphKit::clear_saved_ex_oop(SafePointNode* ex_map) {
 210   return common_saved_ex_oop(ex_map, true);
 211 }
 212 
 213 #ifdef ASSERT
 214 //---------------------------has_saved_ex_oop----------------------------------
 215 // Erase a previously saved exception from its map.
 216 bool GraphKit::has_saved_ex_oop(SafePointNode* ex_map) {
 217   return ex_map->req() == ex_map->jvms()->endoff()+1;
 218 }
 219 #endif
 220 
 221 //-------------------------make_exception_state--------------------------------
 222 // Turn the current JVM state into an exception state, appending the ex_oop.
 223 SafePointNode* GraphKit::make_exception_state(Node* ex_oop) {
 224   sync_jvms();
 225   SafePointNode* ex_map = stop();  // do not manipulate this map any more
 226   set_saved_ex_oop(ex_map, ex_oop);
 227   return ex_map;
 228 }
 229 
 230 
 231 //--------------------------add_exception_state--------------------------------
 232 // Add an exception to my list of exceptions.
 233 void GraphKit::add_exception_state(SafePointNode* ex_map) {
 234   if (ex_map == NULL || ex_map->control() == top()) {
 235     return;
 236   }
 237 #ifdef ASSERT
 238   verify_exception_state(ex_map);
 239   if (has_exceptions()) {
 240     assert(ex_map->jvms()->same_calls_as(_exceptions->jvms()), "all collected exceptions must come from the same place");
 241   }
 242 #endif
 243 
 244   // If there is already an exception of exactly this type, merge with it.
 245   // In particular, null-checks and other low-level exceptions common up here.
 246   Node*       ex_oop  = saved_ex_oop(ex_map);
 247   const Type* ex_type = _gvn.type(ex_oop);
 248   if (ex_oop == top()) {
 249     // No action needed.
 250     return;
 251   }
 252   assert(ex_type->isa_instptr(), "exception must be an instance");
 253   for (SafePointNode* e2 = _exceptions; e2 != NULL; e2 = e2->next_exception()) {
 254     const Type* ex_type2 = _gvn.type(saved_ex_oop(e2));
 255     // We check sp also because call bytecodes can generate exceptions
 256     // both before and after arguments are popped!
 257     if (ex_type2 == ex_type
 258         && e2->_jvms->sp() == ex_map->_jvms->sp()) {
 259       combine_exception_states(ex_map, e2);
 260       return;
 261     }
 262   }
 263 
 264   // No pre-existing exception of the same type.  Chain it on the list.
 265   push_exception_state(ex_map);
 266 }
 267 
 268 //-----------------------add_exception_states_from-----------------------------
 269 void GraphKit::add_exception_states_from(JVMState* jvms) {
 270   SafePointNode* ex_map = jvms->map()->next_exception();
 271   if (ex_map != NULL) {
 272     jvms->map()->set_next_exception(NULL);
 273     for (SafePointNode* next_map; ex_map != NULL; ex_map = next_map) {
 274       next_map = ex_map->next_exception();
 275       ex_map->set_next_exception(NULL);
 276       add_exception_state(ex_map);
 277     }
 278   }
 279 }
 280 
 281 //-----------------------transfer_exceptions_into_jvms-------------------------
 282 JVMState* GraphKit::transfer_exceptions_into_jvms() {
 283   if (map() == NULL) {
 284     // We need a JVMS to carry the exceptions, but the map has gone away.
 285     // Create a scratch JVMS, cloned from any of the exception states...
 286     if (has_exceptions()) {
 287       _map = _exceptions;
 288       _map = clone_map();
 289       _map->set_next_exception(NULL);
 290       clear_saved_ex_oop(_map);
 291       debug_only(verify_map());
 292     } else {
 293       // ...or created from scratch
 294       JVMState* jvms = new (C) JVMState(_method, NULL);
 295       jvms->set_bci(_bci);
 296       jvms->set_sp(_sp);
 297       jvms->set_map(new (C) SafePointNode(TypeFunc::Parms, jvms));
 298       set_jvms(jvms);
 299       for (uint i = 0; i < map()->req(); i++)  map()->init_req(i, top());
 300       set_all_memory(top());
 301       while (map()->req() < jvms->endoff())  map()->add_req(top());
 302     }
 303     // (This is a kludge, in case you didn't notice.)
 304     set_control(top());
 305   }
 306   JVMState* jvms = sync_jvms();
 307   assert(!jvms->map()->has_exceptions(), "no exceptions on this map yet");
 308   jvms->map()->set_next_exception(_exceptions);
 309   _exceptions = NULL;   // done with this set of exceptions
 310   return jvms;
 311 }
 312 
 313 static inline void add_n_reqs(Node* dstphi, Node* srcphi) {
 314   assert(is_hidden_merge(dstphi), "must be a special merge node");
 315   assert(is_hidden_merge(srcphi), "must be a special merge node");
 316   uint limit = srcphi->req();
 317   for (uint i = PhiNode::Input; i < limit; i++) {
 318     dstphi->add_req(srcphi->in(i));
 319   }
 320 }
 321 static inline void add_one_req(Node* dstphi, Node* src) {
 322   assert(is_hidden_merge(dstphi), "must be a special merge node");
 323   assert(!is_hidden_merge(src), "must not be a special merge node");
 324   dstphi->add_req(src);
 325 }
 326 
 327 //-----------------------combine_exception_states------------------------------
 328 // This helper function combines exception states by building phis on a
 329 // specially marked state-merging region.  These regions and phis are
 330 // untransformed, and can build up gradually.  The region is marked by
 331 // having a control input of its exception map, rather than NULL.  Such
 332 // regions do not appear except in this function, and in use_exception_state.
 333 void GraphKit::combine_exception_states(SafePointNode* ex_map, SafePointNode* phi_map) {
 334   if (failing())  return;  // dying anyway...
 335   JVMState* ex_jvms = ex_map->_jvms;
 336   assert(ex_jvms->same_calls_as(phi_map->_jvms), "consistent call chains");
 337   assert(ex_jvms->stkoff() == phi_map->_jvms->stkoff(), "matching locals");
 338   assert(ex_jvms->sp() == phi_map->_jvms->sp(), "matching stack sizes");
 339   assert(ex_jvms->monoff() == phi_map->_jvms->monoff(), "matching JVMS");
 340   assert(ex_jvms->scloff() == phi_map->_jvms->scloff(), "matching scalar replaced objects");
 341   assert(ex_map->req() == phi_map->req(), "matching maps");
 342   uint tos = ex_jvms->stkoff() + ex_jvms->sp();
 343   Node*         hidden_merge_mark = root();
 344   Node*         region  = phi_map->control();
 345   MergeMemNode* phi_mem = phi_map->merged_memory();
 346   MergeMemNode* ex_mem  = ex_map->merged_memory();
 347   if (region->in(0) != hidden_merge_mark) {
 348     // The control input is not (yet) a specially-marked region in phi_map.
 349     // Make it so, and build some phis.
 350     region = new (C) RegionNode(2);
 351     _gvn.set_type(region, Type::CONTROL);
 352     region->set_req(0, hidden_merge_mark);  // marks an internal ex-state
 353     region->init_req(1, phi_map->control());
 354     phi_map->set_control(region);
 355     Node* io_phi = PhiNode::make(region, phi_map->i_o(), Type::ABIO);
 356     record_for_igvn(io_phi);
 357     _gvn.set_type(io_phi, Type::ABIO);
 358     phi_map->set_i_o(io_phi);
 359     for (MergeMemStream mms(phi_mem); mms.next_non_empty(); ) {
 360       Node* m = mms.memory();
 361       Node* m_phi = PhiNode::make(region, m, Type::MEMORY, mms.adr_type(C));
 362       record_for_igvn(m_phi);
 363       _gvn.set_type(m_phi, Type::MEMORY);
 364       mms.set_memory(m_phi);
 365     }
 366   }
 367 
 368   // Either or both of phi_map and ex_map might already be converted into phis.
 369   Node* ex_control = ex_map->control();
 370   // if there is special marking on ex_map also, we add multiple edges from src
 371   bool add_multiple = (ex_control->in(0) == hidden_merge_mark);
 372   // how wide was the destination phi_map, originally?
 373   uint orig_width = region->req();
 374 
 375   if (add_multiple) {
 376     add_n_reqs(region, ex_control);
 377     add_n_reqs(phi_map->i_o(), ex_map->i_o());
 378   } else {
 379     // ex_map has no merges, so we just add single edges everywhere
 380     add_one_req(region, ex_control);
 381     add_one_req(phi_map->i_o(), ex_map->i_o());
 382   }
 383   for (MergeMemStream mms(phi_mem, ex_mem); mms.next_non_empty2(); ) {
 384     if (mms.is_empty()) {
 385       // get a copy of the base memory, and patch some inputs into it
 386       const TypePtr* adr_type = mms.adr_type(C);
 387       Node* phi = mms.force_memory()->as_Phi()->slice_memory(adr_type);
 388       assert(phi->as_Phi()->region() == mms.base_memory()->in(0), "");
 389       mms.set_memory(phi);
 390       // Prepare to append interesting stuff onto the newly sliced phi:
 391       while (phi->req() > orig_width)  phi->del_req(phi->req()-1);
 392     }
 393     // Append stuff from ex_map:
 394     if (add_multiple) {
 395       add_n_reqs(mms.memory(), mms.memory2());
 396     } else {
 397       add_one_req(mms.memory(), mms.memory2());
 398     }
 399   }
 400   uint limit = ex_map->req();
 401   for (uint i = TypeFunc::Parms; i < limit; i++) {
 402     // Skip everything in the JVMS after tos.  (The ex_oop follows.)
 403     if (i == tos)  i = ex_jvms->monoff();
 404     Node* src = ex_map->in(i);
 405     Node* dst = phi_map->in(i);
 406     if (src != dst) {
 407       PhiNode* phi;
 408       if (dst->in(0) != region) {
 409         dst = phi = PhiNode::make(region, dst, _gvn.type(dst));
 410         record_for_igvn(phi);
 411         _gvn.set_type(phi, phi->type());
 412         phi_map->set_req(i, dst);
 413         // Prepare to append interesting stuff onto the new phi:
 414         while (dst->req() > orig_width)  dst->del_req(dst->req()-1);
 415       } else {
 416         assert(dst->is_Phi(), "nobody else uses a hidden region");
 417         phi = dst->as_Phi();
 418       }
 419       if (add_multiple && src->in(0) == ex_control) {
 420         // Both are phis.
 421         add_n_reqs(dst, src);
 422       } else {
 423         while (dst->req() < region->req())  add_one_req(dst, src);
 424       }
 425       const Type* srctype = _gvn.type(src);
 426       if (phi->type() != srctype) {
 427         const Type* dsttype = phi->type()->meet_speculative(srctype);
 428         if (phi->type() != dsttype) {
 429           phi->set_type(dsttype);
 430           _gvn.set_type(phi, dsttype);
 431         }
 432       }
 433     }
 434   }
 435 }
 436 
 437 //--------------------------use_exception_state--------------------------------
 438 Node* GraphKit::use_exception_state(SafePointNode* phi_map) {
 439   if (failing()) { stop(); return top(); }
 440   Node* region = phi_map->control();
 441   Node* hidden_merge_mark = root();
 442   assert(phi_map->jvms()->map() == phi_map, "sanity: 1-1 relation");
 443   Node* ex_oop = clear_saved_ex_oop(phi_map);
 444   if (region->in(0) == hidden_merge_mark) {
 445     // Special marking for internal ex-states.  Process the phis now.
 446     region->set_req(0, region);  // now it's an ordinary region
 447     set_jvms(phi_map->jvms());   // ...so now we can use it as a map
 448     // Note: Setting the jvms also sets the bci and sp.
 449     set_control(_gvn.transform(region));
 450     uint tos = jvms()->stkoff() + sp();
 451     for (uint i = 1; i < tos; i++) {
 452       Node* x = phi_map->in(i);
 453       if (x->in(0) == region) {
 454         assert(x->is_Phi(), "expected a special phi");
 455         phi_map->set_req(i, _gvn.transform(x));
 456       }
 457     }
 458     for (MergeMemStream mms(merged_memory()); mms.next_non_empty(); ) {
 459       Node* x = mms.memory();
 460       if (x->in(0) == region) {
 461         assert(x->is_Phi(), "nobody else uses a hidden region");
 462         mms.set_memory(_gvn.transform(x));
 463       }
 464     }
 465     if (ex_oop->in(0) == region) {
 466       assert(ex_oop->is_Phi(), "expected a special phi");
 467       ex_oop = _gvn.transform(ex_oop);
 468     }
 469   } else {
 470     set_jvms(phi_map->jvms());
 471   }
 472 
 473   assert(!is_hidden_merge(phi_map->control()), "hidden ex. states cleared");
 474   assert(!is_hidden_merge(phi_map->i_o()), "hidden ex. states cleared");
 475   return ex_oop;
 476 }
 477 
 478 //---------------------------------java_bc-------------------------------------
 479 Bytecodes::Code GraphKit::java_bc() const {
 480   ciMethod* method = this->method();
 481   int       bci    = this->bci();
 482   if (method != NULL && bci != InvocationEntryBci)
 483     return method->java_code_at_bci(bci);
 484   else
 485     return Bytecodes::_illegal;
 486 }
 487 
 488 void GraphKit::uncommon_trap_if_should_post_on_exceptions(Deoptimization::DeoptReason reason,
 489                                                           bool must_throw) {
 490     // if the exception capability is set, then we will generate code
 491     // to check the JavaThread.should_post_on_exceptions flag to see
 492     // if we actually need to report exception events (for this
 493     // thread).  If we don't need to report exception events, we will
 494     // take the normal fast path provided by add_exception_events.  If
 495     // exception event reporting is enabled for this thread, we will
 496     // take the uncommon_trap in the BuildCutout below.
 497 
 498     // first must access the should_post_on_exceptions_flag in this thread's JavaThread
 499     Node* jthread = _gvn.transform(new (C) ThreadLocalNode());
 500     Node* adr = basic_plus_adr(top(), jthread, in_bytes(JavaThread::should_post_on_exceptions_flag_offset()));
 501     Node* should_post_flag = make_load(control(), adr, TypeInt::INT, T_INT, Compile::AliasIdxRaw, MemNode::unordered);
 502 
 503     // Test the should_post_on_exceptions_flag vs. 0
 504     Node* chk = _gvn.transform( new (C) CmpINode(should_post_flag, intcon(0)) );
 505     Node* tst = _gvn.transform( new (C) BoolNode(chk, BoolTest::eq) );
 506 
 507     // Branch to slow_path if should_post_on_exceptions_flag was true
 508     { BuildCutout unless(this, tst, PROB_MAX);
 509       // Do not try anything fancy if we're notifying the VM on every throw.
 510       // Cf. case Bytecodes::_athrow in parse2.cpp.
 511       uncommon_trap(reason, Deoptimization::Action_none,
 512                     (ciKlass*)NULL, (char*)NULL, must_throw);
 513     }
 514 
 515 }
 516 
 517 //------------------------------builtin_throw----------------------------------
 518 void GraphKit::builtin_throw(Deoptimization::DeoptReason reason, Node* arg) {
 519   bool must_throw = true;
 520 
 521   if (env()->jvmti_can_post_on_exceptions()) {
 522     // check if we must post exception events, take uncommon trap if so
 523     uncommon_trap_if_should_post_on_exceptions(reason, must_throw);
 524     // here if should_post_on_exceptions is false
 525     // continue on with the normal codegen
 526   }
 527 
 528   // If this particular condition has not yet happened at this
 529   // bytecode, then use the uncommon trap mechanism, and allow for
 530   // a future recompilation if several traps occur here.
 531   // If the throw is hot, try to use a more complicated inline mechanism
 532   // which keeps execution inside the compiled code.
 533   bool treat_throw_as_hot = false;
 534   ciMethodData* md = method()->method_data();
 535 
 536   if (ProfileTraps) {
 537     if (too_many_traps(reason)) {
 538       treat_throw_as_hot = true;
 539     }
 540     // (If there is no MDO at all, assume it is early in
 541     // execution, and that any deopts are part of the
 542     // startup transient, and don't need to be remembered.)
 543 
 544     // Also, if there is a local exception handler, treat all throws
 545     // as hot if there has been at least one in this method.
 546     if (C->trap_count(reason) != 0
 547         && method()->method_data()->trap_count(reason) != 0
 548         && has_ex_handler()) {
 549         treat_throw_as_hot = true;
 550     }
 551   }
 552 
 553   // If this throw happens frequently, an uncommon trap might cause
 554   // a performance pothole.  If there is a local exception handler,
 555   // and if this particular bytecode appears to be deoptimizing often,
 556   // let us handle the throw inline, with a preconstructed instance.
 557   // Note:   If the deopt count has blown up, the uncommon trap
 558   // runtime is going to flush this nmethod, not matter what.
 559   if (treat_throw_as_hot
 560       && (!StackTraceInThrowable || OmitStackTraceInFastThrow)) {
 561     // If the throw is local, we use a pre-existing instance and
 562     // punt on the backtrace.  This would lead to a missing backtrace
 563     // (a repeat of 4292742) if the backtrace object is ever asked
 564     // for its backtrace.
 565     // Fixing this remaining case of 4292742 requires some flavor of
 566     // escape analysis.  Leave that for the future.
 567     ciInstance* ex_obj = NULL;
 568     switch (reason) {
 569     case Deoptimization::Reason_null_check:
 570       ex_obj = env()->NullPointerException_instance();
 571       break;
 572     case Deoptimization::Reason_div0_check:
 573       ex_obj = env()->ArithmeticException_instance();
 574       break;
 575     case Deoptimization::Reason_range_check:
 576       ex_obj = env()->ArrayIndexOutOfBoundsException_instance();
 577       break;
 578     case Deoptimization::Reason_class_check:
 579       if (java_bc() == Bytecodes::_aastore) {
 580         ex_obj = env()->ArrayStoreException_instance();
 581       } else {
 582         ex_obj = env()->ClassCastException_instance();
 583       }
 584       break;
 585     }
 586     if (failing()) { stop(); return; }  // exception allocation might fail
 587     if (ex_obj != NULL) {
 588       // Cheat with a preallocated exception object.
 589       if (C->log() != NULL)
 590         C->log()->elem("hot_throw preallocated='1' reason='%s'",
 591                        Deoptimization::trap_reason_name(reason));
 592       const TypeInstPtr* ex_con  = TypeInstPtr::make(ex_obj);
 593       Node*              ex_node = _gvn.transform( ConNode::make(C, ex_con) );
 594 
 595       // Clear the detail message of the preallocated exception object.
 596       // Weblogic sometimes mutates the detail message of exceptions
 597       // using reflection.
 598       int offset = java_lang_Throwable::get_detailMessage_offset();
 599       const TypePtr* adr_typ = ex_con->add_offset(offset);
 600 
 601       Node *adr = basic_plus_adr(ex_node, ex_node, offset);
 602       const TypeOopPtr* val_type = TypeOopPtr::make_from_klass(env()->String_klass());
 603       // Conservatively release stores of object references.
 604       Node *store = store_oop_to_object(control(), ex_node, adr, adr_typ, null(), val_type, T_OBJECT, MemNode::release);
 605 
 606       add_exception_state(make_exception_state(ex_node));
 607       return;
 608     }
 609   }
 610 
 611   // %%% Maybe add entry to OptoRuntime which directly throws the exc.?
 612   // It won't be much cheaper than bailing to the interp., since we'll
 613   // have to pass up all the debug-info, and the runtime will have to
 614   // create the stack trace.
 615 
 616   // Usual case:  Bail to interpreter.
 617   // Reserve the right to recompile if we haven't seen anything yet.
 618 
 619   assert(!Deoptimization::reason_is_speculate(reason), "unsupported");
 620   Deoptimization::DeoptAction action = Deoptimization::Action_maybe_recompile;
 621   if (treat_throw_as_hot
 622       && (method()->method_data()->trap_recompiled_at(bci(), NULL)
 623           || C->too_many_traps(reason))) {
 624     // We cannot afford to take more traps here.  Suffer in the interpreter.
 625     if (C->log() != NULL)
 626       C->log()->elem("hot_throw preallocated='0' reason='%s' mcount='%d'",
 627                      Deoptimization::trap_reason_name(reason),
 628                      C->trap_count(reason));
 629     action = Deoptimization::Action_none;
 630   }
 631 
 632   // "must_throw" prunes the JVM state to include only the stack, if there
 633   // are no local exception handlers.  This should cut down on register
 634   // allocation time and code size, by drastically reducing the number
 635   // of in-edges on the call to the uncommon trap.
 636 
 637   uncommon_trap(reason, action, (ciKlass*)NULL, (char*)NULL, must_throw);
 638 }
 639 
 640 
 641 //----------------------------PreserveJVMState---------------------------------
 642 PreserveJVMState::PreserveJVMState(GraphKit* kit, bool clone_map) {
 643   debug_only(kit->verify_map());
 644   _kit    = kit;
 645   _map    = kit->map();   // preserve the map
 646   _sp     = kit->sp();
 647   kit->set_map(clone_map ? kit->clone_map() : NULL);
 648   Compile::current()->inc_preserve_jvm_state();
 649 #ifdef ASSERT
 650   _bci    = kit->bci();
 651   Parse* parser = kit->is_Parse();
 652   int block = (parser == NULL || parser->block() == NULL) ? -1 : parser->block()->rpo();
 653   _block  = block;
 654 #endif
 655 }
 656 PreserveJVMState::~PreserveJVMState() {
 657   GraphKit* kit = _kit;
 658 #ifdef ASSERT
 659   assert(kit->bci() == _bci, "bci must not shift");
 660   Parse* parser = kit->is_Parse();
 661   int block = (parser == NULL || parser->block() == NULL) ? -1 : parser->block()->rpo();
 662   assert(block == _block,    "block must not shift");
 663 #endif
 664   kit->set_map(_map);
 665   kit->set_sp(_sp);
 666   Compile::current()->dec_preserve_jvm_state();
 667 }
 668 
 669 
 670 //-----------------------------BuildCutout-------------------------------------
 671 BuildCutout::BuildCutout(GraphKit* kit, Node* p, float prob, float cnt)
 672   : PreserveJVMState(kit)
 673 {
 674   assert(p->is_Con() || p->is_Bool(), "test must be a bool");
 675   SafePointNode* outer_map = _map;   // preserved map is caller's
 676   SafePointNode* inner_map = kit->map();
 677   IfNode* iff = kit->create_and_map_if(outer_map->control(), p, prob, cnt);
 678   outer_map->set_control(kit->gvn().transform( new (kit->C) IfTrueNode(iff) ));
 679   inner_map->set_control(kit->gvn().transform( new (kit->C) IfFalseNode(iff) ));
 680 }
 681 BuildCutout::~BuildCutout() {
 682   GraphKit* kit = _kit;
 683   assert(kit->stopped(), "cutout code must stop, throw, return, etc.");
 684 }
 685 
 686 //---------------------------PreserveReexecuteState----------------------------
 687 PreserveReexecuteState::PreserveReexecuteState(GraphKit* kit) {
 688   assert(!kit->stopped(), "must call stopped() before");
 689   _kit    =    kit;
 690   _sp     =    kit->sp();
 691   _reexecute = kit->jvms()->_reexecute;
 692 }
 693 PreserveReexecuteState::~PreserveReexecuteState() {
 694   if (_kit->stopped()) return;
 695   _kit->jvms()->_reexecute = _reexecute;
 696   _kit->set_sp(_sp);
 697 }
 698 
 699 //------------------------------clone_map--------------------------------------
 700 // Implementation of PreserveJVMState
 701 //
 702 // Only clone_map(...) here. If this function is only used in the
 703 // PreserveJVMState class we may want to get rid of this extra
 704 // function eventually and do it all there.
 705 
 706 SafePointNode* GraphKit::clone_map() {
 707   if (map() == NULL)  return NULL;
 708 
 709   // Clone the memory edge first
 710   Node* mem = MergeMemNode::make(C, map()->memory());
 711   gvn().set_type_bottom(mem);
 712 
 713   SafePointNode *clonemap = (SafePointNode*)map()->clone();
 714   JVMState* jvms = this->jvms();
 715   JVMState* clonejvms = jvms->clone_shallow(C);
 716   clonemap->set_memory(mem);
 717   clonemap->set_jvms(clonejvms);
 718   clonejvms->set_map(clonemap);
 719   record_for_igvn(clonemap);
 720   gvn().set_type_bottom(clonemap);
 721   return clonemap;
 722 }
 723 
 724 
 725 //-----------------------------set_map_clone-----------------------------------
 726 void GraphKit::set_map_clone(SafePointNode* m) {
 727   _map = m;
 728   _map = clone_map();
 729   _map->set_next_exception(NULL);
 730   debug_only(verify_map());
 731 }
 732 
 733 
 734 //----------------------------kill_dead_locals---------------------------------
 735 // Detect any locals which are known to be dead, and force them to top.
 736 void GraphKit::kill_dead_locals() {
 737   // Consult the liveness information for the locals.  If any
 738   // of them are unused, then they can be replaced by top().  This
 739   // should help register allocation time and cut down on the size
 740   // of the deoptimization information.
 741 
 742   // This call is made from many of the bytecode handling
 743   // subroutines called from the Big Switch in do_one_bytecode.
 744   // Every bytecode which might include a slow path is responsible
 745   // for killing its dead locals.  The more consistent we
 746   // are about killing deads, the fewer useless phis will be
 747   // constructed for them at various merge points.
 748 
 749   // bci can be -1 (InvocationEntryBci).  We return the entry
 750   // liveness for the method.
 751 
 752   if (method() == NULL || method()->code_size() == 0) {
 753     // We are building a graph for a call to a native method.
 754     // All locals are live.
 755     return;
 756   }
 757 
 758   ResourceMark rm;
 759 
 760   // Consult the liveness information for the locals.  If any
 761   // of them are unused, then they can be replaced by top().  This
 762   // should help register allocation time and cut down on the size
 763   // of the deoptimization information.
 764   MethodLivenessResult live_locals = method()->liveness_at_bci(bci());
 765 
 766   int len = (int)live_locals.size();
 767   assert(len <= jvms()->loc_size(), "too many live locals");
 768   for (int local = 0; local < len; local++) {
 769     if (!live_locals.at(local)) {
 770       set_local(local, top());
 771     }
 772   }
 773 }
 774 
 775 #ifdef ASSERT
 776 //-------------------------dead_locals_are_killed------------------------------
 777 // Return true if all dead locals are set to top in the map.
 778 // Used to assert "clean" debug info at various points.
 779 bool GraphKit::dead_locals_are_killed() {
 780   if (method() == NULL || method()->code_size() == 0) {
 781     // No locals need to be dead, so all is as it should be.
 782     return true;
 783   }
 784 
 785   // Make sure somebody called kill_dead_locals upstream.
 786   ResourceMark rm;
 787   for (JVMState* jvms = this->jvms(); jvms != NULL; jvms = jvms->caller()) {
 788     if (jvms->loc_size() == 0)  continue;  // no locals to consult
 789     SafePointNode* map = jvms->map();
 790     ciMethod* method = jvms->method();
 791     int       bci    = jvms->bci();
 792     if (jvms == this->jvms()) {
 793       bci = this->bci();  // it might not yet be synched
 794     }
 795     MethodLivenessResult live_locals = method->liveness_at_bci(bci);
 796     int len = (int)live_locals.size();
 797     if (!live_locals.is_valid() || len == 0)
 798       // This method is trivial, or is poisoned by a breakpoint.
 799       return true;
 800     assert(len == jvms->loc_size(), "live map consistent with locals map");
 801     for (int local = 0; local < len; local++) {
 802       if (!live_locals.at(local) && map->local(jvms, local) != top()) {
 803         if (PrintMiscellaneous && (Verbose || WizardMode)) {
 804           tty->print_cr("Zombie local %d: ", local);
 805           jvms->dump();
 806         }
 807         return false;
 808       }
 809     }
 810   }
 811   return true;
 812 }
 813 
 814 #endif //ASSERT
 815 
 816 // Helper function for enforcing certain bytecodes to reexecute if
 817 // deoptimization happens
 818 static bool should_reexecute_implied_by_bytecode(JVMState *jvms, bool is_anewarray) {
 819   ciMethod* cur_method = jvms->method();
 820   int       cur_bci   = jvms->bci();
 821   if (cur_method != NULL && cur_bci != InvocationEntryBci) {
 822     Bytecodes::Code code = cur_method->java_code_at_bci(cur_bci);
 823     return Interpreter::bytecode_should_reexecute(code) ||
 824            is_anewarray && code == Bytecodes::_multianewarray;
 825     // Reexecute _multianewarray bytecode which was replaced with
 826     // sequence of [a]newarray. See Parse::do_multianewarray().
 827     //
 828     // Note: interpreter should not have it set since this optimization
 829     // is limited by dimensions and guarded by flag so in some cases
 830     // multianewarray() runtime calls will be generated and
 831     // the bytecode should not be reexecutes (stack will not be reset).
 832   } else
 833     return false;
 834 }
 835 
 836 // Helper function for adding JVMState and debug information to node
 837 void GraphKit::add_safepoint_edges(SafePointNode* call, bool must_throw) {
 838   // Add the safepoint edges to the call (or other safepoint).
 839 
 840   // Make sure dead locals are set to top.  This
 841   // should help register allocation time and cut down on the size
 842   // of the deoptimization information.
 843   assert(dead_locals_are_killed(), "garbage in debug info before safepoint");
 844 
 845   // Walk the inline list to fill in the correct set of JVMState's
 846   // Also fill in the associated edges for each JVMState.
 847 
 848   // If the bytecode needs to be reexecuted we need to put
 849   // the arguments back on the stack.
 850   const bool should_reexecute = jvms()->should_reexecute();
 851   JVMState* youngest_jvms = should_reexecute ? sync_jvms_for_reexecute() : sync_jvms();
 852 
 853   // NOTE: set_bci (called from sync_jvms) might reset the reexecute bit to
 854   // undefined if the bci is different.  This is normal for Parse but it
 855   // should not happen for LibraryCallKit because only one bci is processed.
 856   assert(!is_LibraryCallKit() || (jvms()->should_reexecute() == should_reexecute),
 857          "in LibraryCallKit the reexecute bit should not change");
 858 
 859   // If we are guaranteed to throw, we can prune everything but the
 860   // input to the current bytecode.
 861   bool can_prune_locals = false;
 862   uint stack_slots_not_pruned = 0;
 863   int inputs = 0, depth = 0;
 864   if (must_throw) {
 865     assert(method() == youngest_jvms->method(), "sanity");
 866     if (compute_stack_effects(inputs, depth)) {
 867       can_prune_locals = true;
 868       stack_slots_not_pruned = inputs;
 869     }
 870   }
 871 
 872   if (env()->should_retain_local_variables()) {
 873     // At any safepoint, this method can get breakpointed, which would
 874     // then require an immediate deoptimization.
 875     can_prune_locals = false;  // do not prune locals
 876     stack_slots_not_pruned = 0;
 877   }
 878 
 879   // do not scribble on the input jvms
 880   JVMState* out_jvms = youngest_jvms->clone_deep(C);
 881   call->set_jvms(out_jvms); // Start jvms list for call node
 882 
 883   // For a known set of bytecodes, the interpreter should reexecute them if
 884   // deoptimization happens. We set the reexecute state for them here
 885   if (out_jvms->is_reexecute_undefined() && //don't change if already specified
 886       should_reexecute_implied_by_bytecode(out_jvms, call->is_AllocateArray())) {
 887     out_jvms->set_should_reexecute(true); //NOTE: youngest_jvms not changed
 888   }
 889 
 890   // Presize the call:
 891   DEBUG_ONLY(uint non_debug_edges = call->req());
 892   call->add_req_batch(top(), youngest_jvms->debug_depth());
 893   assert(call->req() == non_debug_edges + youngest_jvms->debug_depth(), "");
 894 
 895   // Set up edges so that the call looks like this:
 896   //  Call [state:] ctl io mem fptr retadr
 897   //       [parms:] parm0 ... parmN
 898   //       [root:]  loc0 ... locN stk0 ... stkSP mon0 obj0 ... monN objN
 899   //    [...mid:]   loc0 ... locN stk0 ... stkSP mon0 obj0 ... monN objN [...]
 900   //       [young:] loc0 ... locN stk0 ... stkSP mon0 obj0 ... monN objN
 901   // Note that caller debug info precedes callee debug info.
 902 
 903   // Fill pointer walks backwards from "young:" to "root:" in the diagram above:
 904   uint debug_ptr = call->req();
 905 
 906   // Loop over the map input edges associated with jvms, add them
 907   // to the call node, & reset all offsets to match call node array.
 908   for (JVMState* in_jvms = youngest_jvms; in_jvms != NULL; ) {
 909     uint debug_end   = debug_ptr;
 910     uint debug_start = debug_ptr - in_jvms->debug_size();
 911     debug_ptr = debug_start;  // back up the ptr
 912 
 913     uint p = debug_start;  // walks forward in [debug_start, debug_end)
 914     uint j, k, l;
 915     SafePointNode* in_map = in_jvms->map();
 916     out_jvms->set_map(call);
 917 
 918     if (can_prune_locals) {
 919       assert(in_jvms->method() == out_jvms->method(), "sanity");
 920       // If the current throw can reach an exception handler in this JVMS,
 921       // then we must keep everything live that can reach that handler.
 922       // As a quick and dirty approximation, we look for any handlers at all.
 923       if (in_jvms->method()->has_exception_handlers()) {
 924         can_prune_locals = false;
 925       }
 926     }
 927 
 928     // Add the Locals
 929     k = in_jvms->locoff();
 930     l = in_jvms->loc_size();
 931     out_jvms->set_locoff(p);
 932     if (!can_prune_locals) {
 933       for (j = 0; j < l; j++)
 934         call->set_req(p++, in_map->in(k+j));
 935     } else {
 936       p += l;  // already set to top above by add_req_batch
 937     }
 938 
 939     // Add the Expression Stack
 940     k = in_jvms->stkoff();
 941     l = in_jvms->sp();
 942     out_jvms->set_stkoff(p);
 943     if (!can_prune_locals) {
 944       for (j = 0; j < l; j++)
 945         call->set_req(p++, in_map->in(k+j));
 946     } else if (can_prune_locals && stack_slots_not_pruned != 0) {
 947       // Divide stack into {S0,...,S1}, where S0 is set to top.
 948       uint s1 = stack_slots_not_pruned;
 949       stack_slots_not_pruned = 0;  // for next iteration
 950       if (s1 > l)  s1 = l;
 951       uint s0 = l - s1;
 952       p += s0;  // skip the tops preinstalled by add_req_batch
 953       for (j = s0; j < l; j++)
 954         call->set_req(p++, in_map->in(k+j));
 955     } else {
 956       p += l;  // already set to top above by add_req_batch
 957     }
 958 
 959     // Add the Monitors
 960     k = in_jvms->monoff();
 961     l = in_jvms->mon_size();
 962     out_jvms->set_monoff(p);
 963     for (j = 0; j < l; j++)
 964       call->set_req(p++, in_map->in(k+j));
 965 
 966     // Copy any scalar object fields.
 967     k = in_jvms->scloff();
 968     l = in_jvms->scl_size();
 969     out_jvms->set_scloff(p);
 970     for (j = 0; j < l; j++)
 971       call->set_req(p++, in_map->in(k+j));
 972 
 973     // Finish the new jvms.
 974     out_jvms->set_endoff(p);
 975 
 976     assert(out_jvms->endoff()     == debug_end,             "fill ptr must match");
 977     assert(out_jvms->depth()      == in_jvms->depth(),      "depth must match");
 978     assert(out_jvms->loc_size()   == in_jvms->loc_size(),   "size must match");
 979     assert(out_jvms->mon_size()   == in_jvms->mon_size(),   "size must match");
 980     assert(out_jvms->scl_size()   == in_jvms->scl_size(),   "size must match");
 981     assert(out_jvms->debug_size() == in_jvms->debug_size(), "size must match");
 982 
 983     // Update the two tail pointers in parallel.
 984     out_jvms = out_jvms->caller();
 985     in_jvms  = in_jvms->caller();
 986   }
 987 
 988   assert(debug_ptr == non_debug_edges, "debug info must fit exactly");
 989 
 990   // Test the correctness of JVMState::debug_xxx accessors:
 991   assert(call->jvms()->debug_start() == non_debug_edges, "");
 992   assert(call->jvms()->debug_end()   == call->req(), "");
 993   assert(call->jvms()->debug_depth() == call->req() - non_debug_edges, "");
 994 }
 995 
 996 bool GraphKit::compute_stack_effects(int& inputs, int& depth) {
 997   Bytecodes::Code code = java_bc();
 998   if (code == Bytecodes::_wide) {
 999     code = method()->java_code_at_bci(bci() + 1);
1000   }
1001 
1002   BasicType rtype = T_ILLEGAL;
1003   int       rsize = 0;
1004 
1005   if (code != Bytecodes::_illegal) {
1006     depth = Bytecodes::depth(code); // checkcast=0, athrow=-1
1007     rtype = Bytecodes::result_type(code); // checkcast=P, athrow=V
1008     if (rtype < T_CONFLICT)
1009       rsize = type2size[rtype];
1010   }
1011 
1012   switch (code) {
1013   case Bytecodes::_illegal:
1014     return false;
1015 
1016   case Bytecodes::_ldc:
1017   case Bytecodes::_ldc_w:
1018   case Bytecodes::_ldc2_w:
1019     inputs = 0;
1020     break;
1021 
1022   case Bytecodes::_dup:         inputs = 1;  break;
1023   case Bytecodes::_dup_x1:      inputs = 2;  break;
1024   case Bytecodes::_dup_x2:      inputs = 3;  break;
1025   case Bytecodes::_dup2:        inputs = 2;  break;
1026   case Bytecodes::_dup2_x1:     inputs = 3;  break;
1027   case Bytecodes::_dup2_x2:     inputs = 4;  break;
1028   case Bytecodes::_swap:        inputs = 2;  break;
1029   case Bytecodes::_arraylength: inputs = 1;  break;
1030 
1031   case Bytecodes::_getstatic:
1032   case Bytecodes::_putstatic:
1033   case Bytecodes::_getfield:
1034   case Bytecodes::_putfield:
1035     {
1036       bool ignored_will_link;
1037       ciField* field = method()->get_field_at_bci(bci(), ignored_will_link);
1038       int      size  = field->type()->size();
1039       bool is_get = (depth >= 0), is_static = (depth & 1);
1040       inputs = (is_static ? 0 : 1);
1041       if (is_get) {
1042         depth = size - inputs;
1043       } else {
1044         inputs += size;        // putxxx pops the value from the stack
1045         depth = - inputs;
1046       }
1047     }
1048     break;
1049 
1050   case Bytecodes::_invokevirtual:
1051   case Bytecodes::_invokespecial:
1052   case Bytecodes::_invokestatic:
1053   case Bytecodes::_invokedynamic:
1054   case Bytecodes::_invokeinterface:
1055     {
1056       bool ignored_will_link;
1057       ciSignature* declared_signature = NULL;
1058       ciMethod* ignored_callee = method()->get_method_at_bci(bci(), ignored_will_link, &declared_signature);
1059       assert(declared_signature != NULL, "cannot be null");
1060       inputs   = declared_signature->arg_size_for_bc(code);
1061       int size = declared_signature->return_type()->size();
1062       depth = size - inputs;
1063     }
1064     break;
1065 
1066   case Bytecodes::_multianewarray:
1067     {
1068       ciBytecodeStream iter(method());
1069       iter.reset_to_bci(bci());
1070       iter.next();
1071       inputs = iter.get_dimensions();
1072       assert(rsize == 1, "");
1073       depth = rsize - inputs;
1074     }
1075     break;
1076 
1077   case Bytecodes::_ireturn:
1078   case Bytecodes::_lreturn:
1079   case Bytecodes::_freturn:
1080   case Bytecodes::_dreturn:
1081   case Bytecodes::_areturn:
1082     assert(rsize = -depth, "");
1083     inputs = rsize;
1084     break;
1085 
1086   case Bytecodes::_jsr:
1087   case Bytecodes::_jsr_w:
1088     inputs = 0;
1089     depth  = 1;                  // S.B. depth=1, not zero
1090     break;
1091 
1092   default:
1093     // bytecode produces a typed result
1094     inputs = rsize - depth;
1095     assert(inputs >= 0, "");
1096     break;
1097   }
1098 
1099 #ifdef ASSERT
1100   // spot check
1101   int outputs = depth + inputs;
1102   assert(outputs >= 0, "sanity");
1103   switch (code) {
1104   case Bytecodes::_checkcast: assert(inputs == 1 && outputs == 1, ""); break;
1105   case Bytecodes::_athrow:    assert(inputs == 1 && outputs == 0, ""); break;
1106   case Bytecodes::_aload_0:   assert(inputs == 0 && outputs == 1, ""); break;
1107   case Bytecodes::_return:    assert(inputs == 0 && outputs == 0, ""); break;
1108   case Bytecodes::_drem:      assert(inputs == 4 && outputs == 2, ""); break;
1109   }
1110 #endif //ASSERT
1111 
1112   return true;
1113 }
1114 
1115 
1116 
1117 //------------------------------basic_plus_adr---------------------------------
1118 Node* GraphKit::basic_plus_adr(Node* base, Node* ptr, Node* offset) {
1119   // short-circuit a common case
1120   if (offset == intcon(0))  return ptr;
1121   return _gvn.transform( new (C) AddPNode(base, ptr, offset) );
1122 }
1123 
1124 Node* GraphKit::ConvI2L(Node* offset) {
1125   // short-circuit a common case
1126   jint offset_con = find_int_con(offset, Type::OffsetBot);
1127   if (offset_con != Type::OffsetBot) {
1128     return longcon((jlong) offset_con);
1129   }
1130   return _gvn.transform( new (C) ConvI2LNode(offset));
1131 }
1132 Node* GraphKit::ConvL2I(Node* offset) {
1133   // short-circuit a common case
1134   jlong offset_con = find_long_con(offset, (jlong)Type::OffsetBot);
1135   if (offset_con != (jlong)Type::OffsetBot) {
1136     return intcon((int) offset_con);
1137   }
1138   return _gvn.transform( new (C) ConvL2INode(offset));
1139 }
1140 
1141 //-------------------------load_object_klass-----------------------------------
1142 Node* GraphKit::load_object_klass(Node* obj) {
1143   // Special-case a fresh allocation to avoid building nodes:
1144   Node* akls = AllocateNode::Ideal_klass(obj, &_gvn);
1145   if (akls != NULL)  return akls;
1146   Node* k_adr = basic_plus_adr(obj, oopDesc::klass_offset_in_bytes());
1147   return _gvn.transform( LoadKlassNode::make(_gvn, immutable_memory(), k_adr, TypeInstPtr::KLASS) );
1148 }
1149 
1150 //-------------------------load_array_length-----------------------------------
1151 Node* GraphKit::load_array_length(Node* array) {
1152   // Special-case a fresh allocation to avoid building nodes:
1153   AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(array, &_gvn);
1154   Node *alen;
1155   if (alloc == NULL) {
1156     Node *r_adr = basic_plus_adr(array, arrayOopDesc::length_offset_in_bytes());
1157     alen = _gvn.transform( new (C) LoadRangeNode(0, immutable_memory(), r_adr, TypeInt::POS));
1158   } else {
1159     alen = alloc->Ideal_length();
1160     Node* ccast = alloc->make_ideal_length(_gvn.type(array)->is_oopptr(), &_gvn);
1161     if (ccast != alen) {
1162       alen = _gvn.transform(ccast);
1163     }
1164   }
1165   return alen;
1166 }
1167 
1168 //------------------------------do_null_check----------------------------------
1169 // Helper function to do a NULL pointer check.  Returned value is
1170 // the incoming address with NULL casted away.  You are allowed to use the
1171 // not-null value only if you are control dependent on the test.
1172 extern int explicit_null_checks_inserted,
1173            explicit_null_checks_elided;
1174 Node* GraphKit::null_check_common(Node* value, BasicType type,
1175                                   // optional arguments for variations:
1176                                   bool assert_null,
1177                                   Node* *null_control) {
1178   assert(!assert_null || null_control == NULL, "not both at once");
1179   if (stopped())  return top();
1180   if (!GenerateCompilerNullChecks && !assert_null && null_control == NULL) {
1181     // For some performance testing, we may wish to suppress null checking.
1182     value = cast_not_null(value);   // Make it appear to be non-null (4962416).
1183     return value;
1184   }
1185   explicit_null_checks_inserted++;
1186 
1187   // Construct NULL check
1188   Node *chk = NULL;
1189   switch(type) {
1190     case T_LONG   : chk = new (C) CmpLNode(value, _gvn.zerocon(T_LONG)); break;
1191     case T_INT    : chk = new (C) CmpINode(value, _gvn.intcon(0)); break;
1192     case T_ARRAY  : // fall through
1193       type = T_OBJECT;  // simplify further tests
1194     case T_OBJECT : {
1195       const Type *t = _gvn.type( value );
1196 
1197       const TypeOopPtr* tp = t->isa_oopptr();
1198       if (tp != NULL && tp->klass() != NULL && !tp->klass()->is_loaded()
1199           // Only for do_null_check, not any of its siblings:
1200           && !assert_null && null_control == NULL) {
1201         // Usually, any field access or invocation on an unloaded oop type
1202         // will simply fail to link, since the statically linked class is
1203         // likely also to be unloaded.  However, in -Xcomp mode, sometimes
1204         // the static class is loaded but the sharper oop type is not.
1205         // Rather than checking for this obscure case in lots of places,
1206         // we simply observe that a null check on an unloaded class
1207         // will always be followed by a nonsense operation, so we
1208         // can just issue the uncommon trap here.
1209         // Our access to the unloaded class will only be correct
1210         // after it has been loaded and initialized, which requires
1211         // a trip through the interpreter.
1212 #ifndef PRODUCT
1213         if (WizardMode) { tty->print("Null check of unloaded "); tp->klass()->print(); tty->cr(); }
1214 #endif
1215         uncommon_trap(Deoptimization::Reason_unloaded,
1216                       Deoptimization::Action_reinterpret,
1217                       tp->klass(), "!loaded");
1218         return top();
1219       }
1220 
1221       if (assert_null) {
1222         // See if the type is contained in NULL_PTR.
1223         // If so, then the value is already null.
1224         if (t->higher_equal(TypePtr::NULL_PTR)) {
1225           explicit_null_checks_elided++;
1226           return value;           // Elided null assert quickly!
1227         }
1228       } else {
1229         // See if mixing in the NULL pointer changes type.
1230         // If so, then the NULL pointer was not allowed in the original
1231         // type.  In other words, "value" was not-null.
1232         if (t->meet(TypePtr::NULL_PTR) != t->remove_speculative()) {
1233           // same as: if (!TypePtr::NULL_PTR->higher_equal(t)) ...
1234           explicit_null_checks_elided++;
1235           return value;           // Elided null check quickly!
1236         }
1237       }
1238       chk = new (C) CmpPNode( value, null() );
1239       break;
1240     }
1241 
1242     default:
1243       fatal(err_msg_res("unexpected type: %s", type2name(type)));
1244   }
1245   assert(chk != NULL, "sanity check");
1246   chk = _gvn.transform(chk);
1247 
1248   BoolTest::mask btest = assert_null ? BoolTest::eq : BoolTest::ne;
1249   BoolNode *btst = new (C) BoolNode( chk, btest);
1250   Node   *tst = _gvn.transform( btst );
1251 
1252   //-----------
1253   // if peephole optimizations occurred, a prior test existed.
1254   // If a prior test existed, maybe it dominates as we can avoid this test.
1255   if (tst != btst && type == T_OBJECT) {
1256     // At this point we want to scan up the CFG to see if we can
1257     // find an identical test (and so avoid this test altogether).
1258     Node *cfg = control();
1259     int depth = 0;
1260     while( depth < 16 ) {       // Limit search depth for speed
1261       if( cfg->Opcode() == Op_IfTrue &&
1262           cfg->in(0)->in(1) == tst ) {
1263         // Found prior test.  Use "cast_not_null" to construct an identical
1264         // CastPP (and hence hash to) as already exists for the prior test.
1265         // Return that casted value.
1266         if (assert_null) {
1267           replace_in_map(value, null());
1268           return null();  // do not issue the redundant test
1269         }
1270         Node *oldcontrol = control();
1271         set_control(cfg);
1272         Node *res = cast_not_null(value);
1273         set_control(oldcontrol);
1274         explicit_null_checks_elided++;
1275         return res;
1276       }
1277       cfg = IfNode::up_one_dom(cfg, /*linear_only=*/ true);
1278       if (cfg == NULL)  break;  // Quit at region nodes
1279       depth++;
1280     }
1281   }
1282 
1283   //-----------
1284   // Branch to failure if null
1285   float ok_prob = PROB_MAX;  // a priori estimate:  nulls never happen
1286   Deoptimization::DeoptReason reason;
1287   if (assert_null)
1288     reason = Deoptimization::Reason_null_assert;
1289   else if (type == T_OBJECT)
1290     reason = Deoptimization::Reason_null_check;
1291   else
1292     reason = Deoptimization::Reason_div0_check;
1293 
1294   // %%% Since Reason_unhandled is not recorded on a per-bytecode basis,
1295   // ciMethodData::has_trap_at will return a conservative -1 if any
1296   // must-be-null assertion has failed.  This could cause performance
1297   // problems for a method after its first do_null_assert failure.
1298   // Consider using 'Reason_class_check' instead?
1299 
1300   // To cause an implicit null check, we set the not-null probability
1301   // to the maximum (PROB_MAX).  For an explicit check the probability
1302   // is set to a smaller value.
1303   if (null_control != NULL || too_many_traps(reason)) {
1304     // probability is less likely
1305     ok_prob =  PROB_LIKELY_MAG(3);
1306   } else if (!assert_null &&
1307              (ImplicitNullCheckThreshold > 0) &&
1308              method() != NULL &&
1309              (method()->method_data()->trap_count(reason)
1310               >= (uint)ImplicitNullCheckThreshold)) {
1311     ok_prob =  PROB_LIKELY_MAG(3);
1312   }
1313 
1314   if (null_control != NULL) {
1315     IfNode* iff = create_and_map_if(control(), tst, ok_prob, COUNT_UNKNOWN);
1316     Node* null_true = _gvn.transform( new (C) IfFalseNode(iff));
1317     set_control(      _gvn.transform( new (C) IfTrueNode(iff)));
1318     if (null_true == top())
1319       explicit_null_checks_elided++;
1320     (*null_control) = null_true;
1321   } else {
1322     BuildCutout unless(this, tst, ok_prob);
1323     // Check for optimizer eliding test at parse time
1324     if (stopped()) {
1325       // Failure not possible; do not bother making uncommon trap.
1326       explicit_null_checks_elided++;
1327     } else if (assert_null) {
1328       uncommon_trap(reason,
1329                     Deoptimization::Action_make_not_entrant,
1330                     NULL, "assert_null");
1331     } else {
1332       replace_in_map(value, zerocon(type));
1333       builtin_throw(reason);
1334     }
1335   }
1336 
1337   // Must throw exception, fall-thru not possible?
1338   if (stopped()) {
1339     return top();               // No result
1340   }
1341 
1342   if (assert_null) {
1343     // Cast obj to null on this path.
1344     replace_in_map(value, zerocon(type));
1345     return zerocon(type);
1346   }
1347 
1348   // Cast obj to not-null on this path, if there is no null_control.
1349   // (If there is a null_control, a non-null value may come back to haunt us.)
1350   if (type == T_OBJECT) {
1351     Node* cast = cast_not_null(value, false);
1352     if (null_control == NULL || (*null_control) == top())
1353       replace_in_map(value, cast);
1354     value = cast;
1355   }
1356 
1357   return value;
1358 }
1359 
1360 
1361 //------------------------------cast_not_null----------------------------------
1362 // Cast obj to not-null on this path
1363 Node* GraphKit::cast_not_null(Node* obj, bool do_replace_in_map) {
1364   const Type *t = _gvn.type(obj);
1365   const Type *t_not_null = t->join_speculative(TypePtr::NOTNULL);
1366   // Object is already not-null?
1367   if( t == t_not_null ) return obj;
1368 
1369   Node *cast = new (C) CastPPNode(obj,t_not_null);
1370   cast->init_req(0, control());
1371   cast = _gvn.transform( cast );
1372 
1373   // Scan for instances of 'obj' in the current JVM mapping.
1374   // These instances are known to be not-null after the test.
1375   if (do_replace_in_map)
1376     replace_in_map(obj, cast);
1377 
1378   return cast;                  // Return casted value
1379 }
1380 
1381 
1382 //--------------------------replace_in_map-------------------------------------
1383 void GraphKit::replace_in_map(Node* old, Node* neww) {
1384   if (old == neww) {
1385     return;
1386   }
1387 
1388   map()->replace_edge(old, neww);
1389 
1390   // Note: This operation potentially replaces any edge
1391   // on the map.  This includes locals, stack, and monitors
1392   // of the current (innermost) JVM state.
1393 
1394   if (!ReplaceInParentMaps) {
1395     return;
1396   }
1397 
1398   // PreserveJVMState doesn't do a deep copy so we can't modify
1399   // parents
1400   if (Compile::current()->has_preserve_jvm_state()) {
1401     return;
1402   }
1403 
1404   Parse* parser = is_Parse();
1405   bool progress = true;
1406   Node* ctrl = map()->in(0);
1407   // Follow the chain of parsers and see whether the update can be
1408   // done in the map of callers. We can do the replace for a caller if
1409   // the current control post dominates the control of a caller.
1410   while (parser != NULL && parser->caller() != NULL && progress) {
1411     progress = false;
1412     Node* parent_map = parser->caller()->map();
1413     assert(parser->exits().map()->jvms()->depth() == parser->caller()->depth(), "map mismatch");
1414 
1415     Node* parent_ctrl = parent_map->in(0);
1416 
1417     while (parent_ctrl->is_Region()) {
1418       Node* n = parent_ctrl->as_Region()->is_copy();
1419       if (n == NULL) {
1420         break;
1421       }
1422       parent_ctrl = n;
1423     }
1424 
1425     for (;;) {
1426       if (ctrl == parent_ctrl) {
1427         // update the map of the exits which is the one that will be
1428         // used when compilation resume after inlining
1429         parser->exits().map()->replace_edge(old, neww);
1430         progress = true;
1431         break;
1432       }
1433       if (ctrl->is_Proj() && ctrl->as_Proj()->is_uncommon_trap_if_pattern(Deoptimization::Reason_none)) {
1434         ctrl = ctrl->in(0)->in(0);
1435       } else if (ctrl->is_Region()) {
1436         Node* n = ctrl->as_Region()->is_copy();
1437         if (n == NULL) {
1438           break;
1439         }
1440         ctrl = n;
1441       } else {
1442         break;
1443       }
1444     }
1445 
1446     parser = parser->parent_parser();
1447   }
1448 }
1449 
1450 
1451 //=============================================================================
1452 //--------------------------------memory---------------------------------------
1453 Node* GraphKit::memory(uint alias_idx) {
1454   MergeMemNode* mem = merged_memory();
1455   Node* p = mem->memory_at(alias_idx);
1456   _gvn.set_type(p, Type::MEMORY);  // must be mapped
1457   return p;
1458 }
1459 
1460 //-----------------------------reset_memory------------------------------------
1461 Node* GraphKit::reset_memory() {
1462   Node* mem = map()->memory();
1463   // do not use this node for any more parsing!
1464   debug_only( map()->set_memory((Node*)NULL) );
1465   return _gvn.transform( mem );
1466 }
1467 
1468 //------------------------------set_all_memory---------------------------------
1469 void GraphKit::set_all_memory(Node* newmem) {
1470   Node* mergemem = MergeMemNode::make(C, newmem);
1471   gvn().set_type_bottom(mergemem);
1472   map()->set_memory(mergemem);
1473 }
1474 
1475 //------------------------------set_all_memory_call----------------------------
1476 void GraphKit::set_all_memory_call(Node* call, bool separate_io_proj) {
1477   Node* newmem = _gvn.transform( new (C) ProjNode(call, TypeFunc::Memory, separate_io_proj) );
1478   set_all_memory(newmem);
1479 }
1480 
1481 //=============================================================================
1482 //
1483 // parser factory methods for MemNodes
1484 //
1485 // These are layered on top of the factory methods in LoadNode and StoreNode,
1486 // and integrate with the parser's memory state and _gvn engine.
1487 //
1488 
1489 // factory methods in "int adr_idx"
1490 Node* GraphKit::make_load(Node* ctl, Node* adr, const Type* t, BasicType bt,
1491                           int adr_idx,
1492                           MemNode::MemOrd mo, bool require_atomic_access) {
1493   assert(adr_idx != Compile::AliasIdxTop, "use other make_load factory" );
1494   const TypePtr* adr_type = NULL; // debug-mode-only argument
1495   debug_only(adr_type = C->get_adr_type(adr_idx));
1496   Node* mem = memory(adr_idx);
1497   Node* ld;
1498   if (require_atomic_access && bt == T_LONG) {
1499     ld = LoadLNode::make_atomic(C, ctl, mem, adr, adr_type, t, mo);
1500   } else {
1501     ld = LoadNode::make(_gvn, ctl, mem, adr, adr_type, t, bt, mo);
1502   }
1503   ld = _gvn.transform(ld);
1504   if ((bt == T_OBJECT) && C->do_escape_analysis() || C->eliminate_boxing()) {
1505     // Improve graph before escape analysis and boxing elimination.
1506     record_for_igvn(ld);
1507   }
1508   return ld;
1509 }
1510 
1511 Node* GraphKit::store_to_memory(Node* ctl, Node* adr, Node *val, BasicType bt,
1512                                 int adr_idx,
1513                                 MemNode::MemOrd mo,
1514                                 bool require_atomic_access) {
1515   assert(adr_idx != Compile::AliasIdxTop, "use other store_to_memory factory" );
1516   const TypePtr* adr_type = NULL;
1517   debug_only(adr_type = C->get_adr_type(adr_idx));
1518   Node *mem = memory(adr_idx);
1519   Node* st;
1520   if (require_atomic_access && bt == T_LONG) {
1521     st = StoreLNode::make_atomic(C, ctl, mem, adr, adr_type, val, mo);
1522   } else {
1523     st = StoreNode::make(_gvn, ctl, mem, adr, adr_type, val, bt, mo);
1524   }
1525   st = _gvn.transform(st);
1526   set_memory(st, adr_idx);
1527   // Back-to-back stores can only remove intermediate store with DU info
1528   // so push on worklist for optimizer.
1529   if (mem->req() > MemNode::Address && adr == mem->in(MemNode::Address))
1530     record_for_igvn(st);
1531 
1532   return st;
1533 }
1534 
1535 
1536 void GraphKit::pre_barrier(bool do_load,
1537                            Node* ctl,
1538                            Node* obj,
1539                            Node* adr,
1540                            uint  adr_idx,
1541                            Node* val,
1542                            const TypeOopPtr* val_type,
1543                            Node* pre_val,
1544                            BasicType bt) {
1545 
1546   BarrierSet* bs = Universe::heap()->barrier_set();
1547   set_control(ctl);
1548   switch (bs->kind()) {
1549     case BarrierSet::G1SATBCT:
1550     case BarrierSet::G1SATBCTLogging:
1551       g1_write_barrier_pre(do_load, obj, adr, adr_idx, val, val_type, pre_val, bt);
1552       break;
1553 
1554     case BarrierSet::CardTableModRef:
1555     case BarrierSet::CardTableExtension:
1556     case BarrierSet::ModRef:
1557       break;
1558 
1559     case BarrierSet::Other:
1560     default      :
1561       ShouldNotReachHere();
1562 
1563   }
1564 }
1565 
1566 bool GraphKit::can_move_pre_barrier() const {
1567   BarrierSet* bs = Universe::heap()->barrier_set();
1568   switch (bs->kind()) {
1569     case BarrierSet::G1SATBCT:
1570     case BarrierSet::G1SATBCTLogging:
1571       return true; // Can move it if no safepoint
1572 
1573     case BarrierSet::CardTableModRef:
1574     case BarrierSet::CardTableExtension:
1575     case BarrierSet::ModRef:
1576       return true; // There is no pre-barrier
1577 
1578     case BarrierSet::Other:
1579     default      :
1580       ShouldNotReachHere();
1581   }
1582   return false;
1583 }
1584 
1585 void GraphKit::post_barrier(Node* ctl,
1586                             Node* store,
1587                             Node* obj,
1588                             Node* adr,
1589                             uint  adr_idx,
1590                             Node* val,
1591                             BasicType bt,
1592                             bool use_precise) {
1593   BarrierSet* bs = Universe::heap()->barrier_set();
1594   set_control(ctl);
1595   switch (bs->kind()) {
1596     case BarrierSet::G1SATBCT:
1597     case BarrierSet::G1SATBCTLogging:
1598       g1_write_barrier_post(store, obj, adr, adr_idx, val, bt, use_precise);
1599       break;
1600 
1601     case BarrierSet::CardTableModRef:
1602     case BarrierSet::CardTableExtension:
1603       write_barrier_post(store, obj, adr, adr_idx, val, use_precise);
1604       break;
1605 
1606     case BarrierSet::ModRef:
1607       break;
1608 
1609     case BarrierSet::Other:
1610     default      :
1611       ShouldNotReachHere();
1612 
1613   }
1614 }
1615 
1616 Node* GraphKit::store_oop(Node* ctl,
1617                           Node* obj,
1618                           Node* adr,
1619                           const TypePtr* adr_type,
1620                           Node* val,
1621                           const TypeOopPtr* val_type,
1622                           BasicType bt,
1623                           bool use_precise,
1624                           MemNode::MemOrd mo) {
1625   // Transformation of a value which could be NULL pointer (CastPP #NULL)
1626   // could be delayed during Parse (for example, in adjust_map_after_if()).
1627   // Execute transformation here to avoid barrier generation in such case.
1628   if (_gvn.type(val) == TypePtr::NULL_PTR)
1629     val = _gvn.makecon(TypePtr::NULL_PTR);
1630 
1631   set_control(ctl);
1632   if (stopped()) return top(); // Dead path ?
1633 
1634   assert(bt == T_OBJECT, "sanity");
1635   assert(val != NULL, "not dead path");
1636   uint adr_idx = C->get_alias_index(adr_type);
1637   assert(adr_idx != Compile::AliasIdxTop, "use other store_to_memory factory" );
1638 
1639   pre_barrier(true /* do_load */,
1640               control(), obj, adr, adr_idx, val, val_type,
1641               NULL /* pre_val */,
1642               bt);
1643 
1644   Node* store = store_to_memory(control(), adr, val, bt, adr_idx, mo);
1645   post_barrier(control(), store, obj, adr, adr_idx, val, bt, use_precise);
1646   return store;
1647 }
1648 
1649 // Could be an array or object we don't know at compile time (unsafe ref.)
1650 Node* GraphKit::store_oop_to_unknown(Node* ctl,
1651                              Node* obj,   // containing obj
1652                              Node* adr,  // actual adress to store val at
1653                              const TypePtr* adr_type,
1654                              Node* val,
1655                              BasicType bt,
1656                              MemNode::MemOrd mo) {
1657   Compile::AliasType* at = C->alias_type(adr_type);
1658   const TypeOopPtr* val_type = NULL;
1659   if (adr_type->isa_instptr()) {
1660     if (at->field() != NULL) {
1661       // known field.  This code is a copy of the do_put_xxx logic.
1662       ciField* field = at->field();
1663       if (!field->type()->is_loaded()) {
1664         val_type = TypeInstPtr::BOTTOM;
1665       } else {
1666         val_type = TypeOopPtr::make_from_klass(field->type()->as_klass());
1667       }
1668     }
1669   } else if (adr_type->isa_aryptr()) {
1670     val_type = adr_type->is_aryptr()->elem()->make_oopptr();
1671   }
1672   if (val_type == NULL) {
1673     val_type = TypeInstPtr::BOTTOM;
1674   }
1675   return store_oop(ctl, obj, adr, adr_type, val, val_type, bt, true, mo);
1676 }
1677 
1678 
1679 //-------------------------array_element_address-------------------------
1680 Node* GraphKit::array_element_address(Node* ary, Node* idx, BasicType elembt,
1681                                       const TypeInt* sizetype) {
1682   uint shift  = exact_log2(type2aelembytes(elembt));
1683   uint header = arrayOopDesc::base_offset_in_bytes(elembt);
1684 
1685   // short-circuit a common case (saves lots of confusing waste motion)
1686   jint idx_con = find_int_con(idx, -1);
1687   if (idx_con >= 0) {
1688     intptr_t offset = header + ((intptr_t)idx_con << shift);
1689     return basic_plus_adr(ary, offset);
1690   }
1691 
1692   // must be correct type for alignment purposes
1693   Node* base  = basic_plus_adr(ary, header);
1694 #ifdef _LP64
1695   // The scaled index operand to AddP must be a clean 64-bit value.
1696   // Java allows a 32-bit int to be incremented to a negative
1697   // value, which appears in a 64-bit register as a large
1698   // positive number.  Using that large positive number as an
1699   // operand in pointer arithmetic has bad consequences.
1700   // On the other hand, 32-bit overflow is rare, and the possibility
1701   // can often be excluded, if we annotate the ConvI2L node with
1702   // a type assertion that its value is known to be a small positive
1703   // number.  (The prior range check has ensured this.)
1704   // This assertion is used by ConvI2LNode::Ideal.
1705   int index_max = max_jint - 1;  // array size is max_jint, index is one less
1706   if (sizetype != NULL)  index_max = sizetype->_hi - 1;
1707   const TypeLong* lidxtype = TypeLong::make(CONST64(0), index_max, Type::WidenMax);
1708   idx = _gvn.transform( new (C) ConvI2LNode(idx, lidxtype) );
1709 #endif
1710   Node* scale = _gvn.transform( new (C) LShiftXNode(idx, intcon(shift)) );
1711   return basic_plus_adr(ary, base, scale);
1712 }
1713 
1714 //-------------------------load_array_element-------------------------
1715 Node* GraphKit::load_array_element(Node* ctl, Node* ary, Node* idx, const TypeAryPtr* arytype) {
1716   const Type* elemtype = arytype->elem();
1717   BasicType elembt = elemtype->array_element_basic_type();
1718   Node* adr = array_element_address(ary, idx, elembt, arytype->size());
1719   Node* ld = make_load(ctl, adr, elemtype, elembt, arytype, MemNode::unordered);
1720   return ld;
1721 }
1722 
1723 //-------------------------set_arguments_for_java_call-------------------------
1724 // Arguments (pre-popped from the stack) are taken from the JVMS.
1725 void GraphKit::set_arguments_for_java_call(CallJavaNode* call) {
1726   // Add the call arguments:
1727   uint nargs = call->method()->arg_size();
1728   for (uint i = 0; i < nargs; i++) {
1729     Node* arg = argument(i);
1730     call->init_req(i + TypeFunc::Parms, arg);
1731   }
1732 }
1733 
1734 //---------------------------set_edges_for_java_call---------------------------
1735 // Connect a newly created call into the current JVMS.
1736 // A return value node (if any) is returned from set_edges_for_java_call.
1737 void GraphKit::set_edges_for_java_call(CallJavaNode* call, bool must_throw, bool separate_io_proj) {
1738 
1739   // Add the predefined inputs:
1740   call->init_req( TypeFunc::Control, control() );
1741   call->init_req( TypeFunc::I_O    , i_o() );
1742   call->init_req( TypeFunc::Memory , reset_memory() );
1743   call->init_req( TypeFunc::FramePtr, frameptr() );
1744   call->init_req( TypeFunc::ReturnAdr, top() );
1745 
1746   add_safepoint_edges(call, must_throw);
1747 
1748   Node* xcall = _gvn.transform(call);
1749 
1750   if (xcall == top()) {
1751     set_control(top());
1752     return;
1753   }
1754   assert(xcall == call, "call identity is stable");
1755 
1756   // Re-use the current map to produce the result.
1757 
1758   set_control(_gvn.transform(new (C) ProjNode(call, TypeFunc::Control)));
1759   set_i_o(    _gvn.transform(new (C) ProjNode(call, TypeFunc::I_O    , separate_io_proj)));
1760   set_all_memory_call(xcall, separate_io_proj);
1761 
1762   //return xcall;   // no need, caller already has it
1763 }
1764 
1765 Node* GraphKit::set_results_for_java_call(CallJavaNode* call, bool separate_io_proj) {
1766   if (stopped())  return top();  // maybe the call folded up?
1767 
1768   // Capture the return value, if any.
1769   Node* ret;
1770   if (call->method() == NULL ||
1771       call->method()->return_type()->basic_type() == T_VOID)
1772         ret = top();
1773   else  ret = _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
1774 
1775   // Note:  Since any out-of-line call can produce an exception,
1776   // we always insert an I_O projection from the call into the result.
1777 
1778   make_slow_call_ex(call, env()->Throwable_klass(), separate_io_proj);
1779 
1780   if (separate_io_proj) {
1781     // The caller requested separate projections be used by the fall
1782     // through and exceptional paths, so replace the projections for
1783     // the fall through path.
1784     set_i_o(_gvn.transform( new (C) ProjNode(call, TypeFunc::I_O) ));
1785     set_all_memory(_gvn.transform( new (C) ProjNode(call, TypeFunc::Memory) ));
1786   }
1787   return ret;
1788 }
1789 
1790 //--------------------set_predefined_input_for_runtime_call--------------------
1791 // Reading and setting the memory state is way conservative here.
1792 // The real problem is that I am not doing real Type analysis on memory,
1793 // so I cannot distinguish card mark stores from other stores.  Across a GC
1794 // point the Store Barrier and the card mark memory has to agree.  I cannot
1795 // have a card mark store and its barrier split across the GC point from
1796 // either above or below.  Here I get that to happen by reading ALL of memory.
1797 // A better answer would be to separate out card marks from other memory.
1798 // For now, return the input memory state, so that it can be reused
1799 // after the call, if this call has restricted memory effects.
1800 Node* GraphKit::set_predefined_input_for_runtime_call(SafePointNode* call) {
1801   // Set fixed predefined input arguments
1802   Node* memory = reset_memory();
1803   call->init_req( TypeFunc::Control,   control()  );
1804   call->init_req( TypeFunc::I_O,       top()      ); // does no i/o
1805   call->init_req( TypeFunc::Memory,    memory     ); // may gc ptrs
1806   call->init_req( TypeFunc::FramePtr,  frameptr() );
1807   call->init_req( TypeFunc::ReturnAdr, top()      );
1808   return memory;
1809 }
1810 
1811 //-------------------set_predefined_output_for_runtime_call--------------------
1812 // Set control and memory (not i_o) from the call.
1813 // If keep_mem is not NULL, use it for the output state,
1814 // except for the RawPtr output of the call, if hook_mem is TypeRawPtr::BOTTOM.
1815 // If hook_mem is NULL, this call produces no memory effects at all.
1816 // If hook_mem is a Java-visible memory slice (such as arraycopy operands),
1817 // then only that memory slice is taken from the call.
1818 // In the last case, we must put an appropriate memory barrier before
1819 // the call, so as to create the correct anti-dependencies on loads
1820 // preceding the call.
1821 void GraphKit::set_predefined_output_for_runtime_call(Node* call,
1822                                                       Node* keep_mem,
1823                                                       const TypePtr* hook_mem) {
1824   // no i/o
1825   set_control(_gvn.transform( new (C) ProjNode(call,TypeFunc::Control) ));
1826   if (keep_mem) {
1827     // First clone the existing memory state
1828     set_all_memory(keep_mem);
1829     if (hook_mem != NULL) {
1830       // Make memory for the call
1831       Node* mem = _gvn.transform( new (C) ProjNode(call, TypeFunc::Memory) );
1832       // Set the RawPtr memory state only.  This covers all the heap top/GC stuff
1833       // We also use hook_mem to extract specific effects from arraycopy stubs.
1834       set_memory(mem, hook_mem);
1835     }
1836     // ...else the call has NO memory effects.
1837 
1838     // Make sure the call advertises its memory effects precisely.
1839     // This lets us build accurate anti-dependences in gcm.cpp.
1840     assert(C->alias_type(call->adr_type()) == C->alias_type(hook_mem),
1841            "call node must be constructed correctly");
1842   } else {
1843     assert(hook_mem == NULL, "");
1844     // This is not a "slow path" call; all memory comes from the call.
1845     set_all_memory_call(call);
1846   }
1847 }
1848 
1849 
1850 // Replace the call with the current state of the kit.
1851 void GraphKit::replace_call(CallNode* call, Node* result) {
1852   JVMState* ejvms = NULL;
1853   if (has_exceptions()) {
1854     ejvms = transfer_exceptions_into_jvms();
1855   }
1856 
1857   SafePointNode* final_state = stop();
1858 
1859   // Find all the needed outputs of this call
1860   CallProjections callprojs;
1861   call->extract_projections(&callprojs, true);
1862 
1863   Node* init_mem = call->in(TypeFunc::Memory);
1864   Node* final_mem = final_state->in(TypeFunc::Memory);
1865   Node* final_ctl = final_state->in(TypeFunc::Control);
1866   Node* final_io = final_state->in(TypeFunc::I_O);
1867 
1868   // Replace all the old call edges with the edges from the inlining result
1869   if (callprojs.fallthrough_catchproj != NULL) {
1870     C->gvn_replace_by(callprojs.fallthrough_catchproj, final_ctl);
1871   }
1872   if (callprojs.fallthrough_memproj != NULL) {
1873     C->gvn_replace_by(callprojs.fallthrough_memproj,   final_mem);
1874   }
1875   if (callprojs.fallthrough_ioproj != NULL) {
1876     C->gvn_replace_by(callprojs.fallthrough_ioproj,    final_io);
1877   }
1878 
1879   // Replace the result with the new result if it exists and is used
1880   if (callprojs.resproj != NULL && result != NULL) {
1881     C->gvn_replace_by(callprojs.resproj, result);
1882   }
1883 
1884   if (ejvms == NULL) {
1885     // No exception edges to simply kill off those paths
1886     if (callprojs.catchall_catchproj != NULL) {
1887       C->gvn_replace_by(callprojs.catchall_catchproj, C->top());
1888     }
1889     if (callprojs.catchall_memproj != NULL) {
1890       C->gvn_replace_by(callprojs.catchall_memproj,   C->top());
1891     }
1892     if (callprojs.catchall_ioproj != NULL) {
1893       C->gvn_replace_by(callprojs.catchall_ioproj,    C->top());
1894     }
1895     // Replace the old exception object with top
1896     if (callprojs.exobj != NULL) {
1897       C->gvn_replace_by(callprojs.exobj, C->top());
1898     }
1899   } else {
1900     GraphKit ekit(ejvms);
1901 
1902     // Load my combined exception state into the kit, with all phis transformed:
1903     SafePointNode* ex_map = ekit.combine_and_pop_all_exception_states();
1904 
1905     Node* ex_oop = ekit.use_exception_state(ex_map);
1906     if (callprojs.catchall_catchproj != NULL) {
1907       C->gvn_replace_by(callprojs.catchall_catchproj, ekit.control());
1908     }
1909     if (callprojs.catchall_memproj != NULL) {
1910       C->gvn_replace_by(callprojs.catchall_memproj,   ekit.reset_memory());
1911     }
1912     if (callprojs.catchall_ioproj != NULL) {
1913       C->gvn_replace_by(callprojs.catchall_ioproj,    ekit.i_o());
1914     }
1915 
1916     // Replace the old exception object with the newly created one
1917     if (callprojs.exobj != NULL) {
1918       C->gvn_replace_by(callprojs.exobj, ex_oop);
1919     }
1920   }
1921 
1922   // Disconnect the call from the graph
1923   call->disconnect_inputs(NULL, C);
1924   C->gvn_replace_by(call, C->top());
1925 
1926   // Clean up any MergeMems that feed other MergeMems since the
1927   // optimizer doesn't like that.
1928   if (final_mem->is_MergeMem()) {
1929     Node_List wl;
1930     for (SimpleDUIterator i(final_mem); i.has_next(); i.next()) {
1931       Node* m = i.get();
1932       if (m->is_MergeMem() && !wl.contains(m)) {
1933         wl.push(m);
1934       }
1935     }
1936     while (wl.size()  > 0) {
1937       _gvn.transform(wl.pop());
1938     }
1939   }
1940 }
1941 
1942 
1943 //------------------------------increment_counter------------------------------
1944 // for statistics: increment a VM counter by 1
1945 
1946 void GraphKit::increment_counter(address counter_addr) {
1947   Node* adr1 = makecon(TypeRawPtr::make(counter_addr));
1948   increment_counter(adr1);
1949 }
1950 
1951 void GraphKit::increment_counter(Node* counter_addr) {
1952   int adr_type = Compile::AliasIdxRaw;
1953   Node* ctrl = control();
1954   Node* cnt  = make_load(ctrl, counter_addr, TypeInt::INT, T_INT, adr_type, MemNode::unordered);
1955   Node* incr = _gvn.transform(new (C) AddINode(cnt, _gvn.intcon(1)));
1956   store_to_memory(ctrl, counter_addr, incr, T_INT, adr_type, MemNode::unordered);
1957 }
1958 
1959 
1960 //------------------------------uncommon_trap----------------------------------
1961 // Bail out to the interpreter in mid-method.  Implemented by calling the
1962 // uncommon_trap blob.  This helper function inserts a runtime call with the
1963 // right debug info.
1964 void GraphKit::uncommon_trap(int trap_request,
1965                              ciKlass* klass, const char* comment,
1966                              bool must_throw,
1967                              bool keep_exact_action) {
1968   if (failing())  stop();
1969   if (stopped())  return; // trap reachable?
1970 
1971   // Note:  If ProfileTraps is true, and if a deopt. actually
1972   // occurs here, the runtime will make sure an MDO exists.  There is
1973   // no need to call method()->ensure_method_data() at this point.
1974 
1975   // Set the stack pointer to the right value for reexecution:
1976   set_sp(reexecute_sp());
1977 
1978 #ifdef ASSERT
1979   if (!must_throw) {
1980     // Make sure the stack has at least enough depth to execute
1981     // the current bytecode.
1982     int inputs, ignored_depth;
1983     if (compute_stack_effects(inputs, ignored_depth)) {
1984       assert(sp() >= inputs, err_msg_res("must have enough JVMS stack to execute %s: sp=%d, inputs=%d",
1985              Bytecodes::name(java_bc()), sp(), inputs));
1986     }
1987   }
1988 #endif
1989 
1990   Deoptimization::DeoptReason reason = Deoptimization::trap_request_reason(trap_request);
1991   Deoptimization::DeoptAction action = Deoptimization::trap_request_action(trap_request);
1992 
1993   switch (action) {
1994   case Deoptimization::Action_maybe_recompile:
1995   case Deoptimization::Action_reinterpret:
1996     // Temporary fix for 6529811 to allow virtual calls to be sure they
1997     // get the chance to go from mono->bi->mega
1998     if (!keep_exact_action &&
1999         Deoptimization::trap_request_index(trap_request) < 0 &&
2000         too_many_recompiles(reason)) {
2001       // This BCI is causing too many recompilations.
2002       action = Deoptimization::Action_none;
2003       trap_request = Deoptimization::make_trap_request(reason, action);
2004     } else {
2005       C->set_trap_can_recompile(true);
2006     }
2007     break;
2008   case Deoptimization::Action_make_not_entrant:
2009     C->set_trap_can_recompile(true);
2010     break;
2011 #ifdef ASSERT
2012   case Deoptimization::Action_none:
2013   case Deoptimization::Action_make_not_compilable:
2014     break;
2015   default:
2016     fatal(err_msg_res("unknown action %d: %s", action, Deoptimization::trap_action_name(action)));
2017     break;
2018 #endif
2019   }
2020 
2021   if (TraceOptoParse) {
2022     char buf[100];
2023     tty->print_cr("Uncommon trap %s at bci:%d",
2024                   Deoptimization::format_trap_request(buf, sizeof(buf),
2025                                                       trap_request), bci());
2026   }
2027 
2028   CompileLog* log = C->log();
2029   if (log != NULL) {
2030     int kid = (klass == NULL)? -1: log->identify(klass);
2031     log->begin_elem("uncommon_trap bci='%d'", bci());
2032     char buf[100];
2033     log->print(" %s", Deoptimization::format_trap_request(buf, sizeof(buf),
2034                                                           trap_request));
2035     if (kid >= 0)         log->print(" klass='%d'", kid);
2036     if (comment != NULL)  log->print(" comment='%s'", comment);
2037     log->end_elem();
2038   }
2039 
2040   // Make sure any guarding test views this path as very unlikely
2041   Node *i0 = control()->in(0);
2042   if (i0 != NULL && i0->is_If()) {        // Found a guarding if test?
2043     IfNode *iff = i0->as_If();
2044     float f = iff->_prob;   // Get prob
2045     if (control()->Opcode() == Op_IfTrue) {
2046       if (f > PROB_UNLIKELY_MAG(4))
2047         iff->_prob = PROB_MIN;
2048     } else {
2049       if (f < PROB_LIKELY_MAG(4))
2050         iff->_prob = PROB_MAX;
2051     }
2052   }
2053 
2054   // Clear out dead values from the debug info.
2055   kill_dead_locals();
2056 
2057   // Now insert the uncommon trap subroutine call
2058   address call_addr = SharedRuntime::uncommon_trap_blob()->entry_point();
2059   const TypePtr* no_memory_effects = NULL;
2060   // Pass the index of the class to be loaded
2061   Node* call = make_runtime_call(RC_NO_LEAF | RC_UNCOMMON |
2062                                  (must_throw ? RC_MUST_THROW : 0),
2063                                  OptoRuntime::uncommon_trap_Type(),
2064                                  call_addr, "uncommon_trap", no_memory_effects,
2065                                  intcon(trap_request));
2066   assert(call->as_CallStaticJava()->uncommon_trap_request() == trap_request,
2067          "must extract request correctly from the graph");
2068   assert(trap_request != 0, "zero value reserved by uncommon_trap_request");
2069 
2070   call->set_req(TypeFunc::ReturnAdr, returnadr());
2071   // The debug info is the only real input to this call.
2072 
2073   // Halt-and-catch fire here.  The above call should never return!
2074   HaltNode* halt = new(C) HaltNode(control(), frameptr());
2075   _gvn.set_type_bottom(halt);
2076   root()->add_req(halt);
2077 
2078   stop_and_kill_map();
2079 }
2080 
2081 
2082 //--------------------------just_allocated_object------------------------------
2083 // Report the object that was just allocated.
2084 // It must be the case that there are no intervening safepoints.
2085 // We use this to determine if an object is so "fresh" that
2086 // it does not require card marks.
2087 Node* GraphKit::just_allocated_object(Node* current_control) {
2088   if (C->recent_alloc_ctl() == current_control)
2089     return C->recent_alloc_obj();
2090   return NULL;
2091 }
2092 
2093 
2094 void GraphKit::round_double_arguments(ciMethod* dest_method) {
2095   // (Note:  TypeFunc::make has a cache that makes this fast.)
2096   const TypeFunc* tf    = TypeFunc::make(dest_method);
2097   int             nargs = tf->_domain->_cnt - TypeFunc::Parms;
2098   for (int j = 0; j < nargs; j++) {
2099     const Type *targ = tf->_domain->field_at(j + TypeFunc::Parms);
2100     if( targ->basic_type() == T_DOUBLE ) {
2101       // If any parameters are doubles, they must be rounded before
2102       // the call, dstore_rounding does gvn.transform
2103       Node *arg = argument(j);
2104       arg = dstore_rounding(arg);
2105       set_argument(j, arg);
2106     }
2107   }
2108 }
2109 
2110 /**
2111  * Record profiling data exact_kls for Node n with the type system so
2112  * that it can propagate it (speculation)
2113  *
2114  * @param n          node that the type applies to
2115  * @param exact_kls  type from profiling
2116  *
2117  * @return           node with improved type
2118  */
2119 Node* GraphKit::record_profile_for_speculation(Node* n, ciKlass* exact_kls) {
2120   const Type* current_type = _gvn.type(n);
2121   assert(UseTypeSpeculation, "type speculation must be on");
2122 
2123   const TypeOopPtr* speculative = current_type->speculative();
2124 
2125   if (current_type->would_improve_type(exact_kls, jvms()->depth())) {
2126     const TypeKlassPtr* tklass = TypeKlassPtr::make(exact_kls);
2127     const TypeOopPtr* xtype = tklass->as_instance_type();
2128     assert(xtype->klass_is_exact(), "Should be exact");
2129     // record the new speculative type's depth
2130     speculative = xtype->with_inline_depth(jvms()->depth());
2131   }
2132 
2133   if (speculative != current_type->speculative()) {
2134     // Build a type with a speculative type (what we think we know
2135     // about the type but will need a guard when we use it)
2136     const TypeOopPtr* spec_type = TypeOopPtr::make(TypePtr::BotPTR, Type::OffsetBot, TypeOopPtr::InstanceBot, speculative);
2137     // We're changing the type, we need a new CheckCast node to carry
2138     // the new type. The new type depends on the control: what
2139     // profiling tells us is only valid from here as far as we can
2140     // tell.
2141     Node* cast = new(C) CheckCastPPNode(control(), n, current_type->remove_speculative()->join_speculative(spec_type));
2142     cast = _gvn.transform(cast);
2143     replace_in_map(n, cast);
2144     n = cast;
2145   }
2146 
2147   return n;
2148 }
2149 
2150 /**
2151  * Record profiling data from receiver profiling at an invoke with the
2152  * type system so that it can propagate it (speculation)
2153  *
2154  * @param n  receiver node
2155  *
2156  * @return   node with improved type
2157  */
2158 Node* GraphKit::record_profiled_receiver_for_speculation(Node* n) {
2159   if (!UseTypeSpeculation) {
2160     return n;
2161   }
2162   ciKlass* exact_kls = profile_has_unique_klass();
2163   return record_profile_for_speculation(n, exact_kls);
2164 }
2165 
2166 /**
2167  * Record profiling data from argument profiling at an invoke with the
2168  * type system so that it can propagate it (speculation)
2169  *
2170  * @param dest_method  target method for the call
2171  * @param bc           what invoke bytecode is this?
2172  */
2173 void GraphKit::record_profiled_arguments_for_speculation(ciMethod* dest_method, Bytecodes::Code bc) {
2174   if (!UseTypeSpeculation) {
2175     return;
2176   }
2177   const TypeFunc* tf    = TypeFunc::make(dest_method);
2178   int             nargs = tf->_domain->_cnt - TypeFunc::Parms;
2179   int skip = Bytecodes::has_receiver(bc) ? 1 : 0;
2180   for (int j = skip, i = 0; j < nargs && i < TypeProfileArgsLimit; j++) {
2181     const Type *targ = tf->_domain->field_at(j + TypeFunc::Parms);
2182     if (targ->basic_type() == T_OBJECT || targ->basic_type() == T_ARRAY) {
2183       ciKlass* better_type = method()->argument_profiled_type(bci(), i);
2184       if (better_type != NULL) {
2185         record_profile_for_speculation(argument(j), better_type);
2186       }
2187       i++;
2188     }
2189   }
2190 }
2191 
2192 /**
2193  * Record profiling data from parameter profiling at an invoke with
2194  * the type system so that it can propagate it (speculation)
2195  */
2196 void GraphKit::record_profiled_parameters_for_speculation() {
2197   if (!UseTypeSpeculation) {
2198     return;
2199   }
2200   for (int i = 0, j = 0; i < method()->arg_size() ; i++) {
2201     if (_gvn.type(local(i))->isa_oopptr()) {
2202       ciKlass* better_type = method()->parameter_profiled_type(j);
2203       if (better_type != NULL) {
2204         record_profile_for_speculation(local(i), better_type);
2205       }
2206       j++;
2207     }
2208   }
2209 }
2210 
2211 void GraphKit::round_double_result(ciMethod* dest_method) {
2212   // A non-strict method may return a double value which has an extended
2213   // exponent, but this must not be visible in a caller which is 'strict'
2214   // If a strict caller invokes a non-strict callee, round a double result
2215 
2216   BasicType result_type = dest_method->return_type()->basic_type();
2217   assert( method() != NULL, "must have caller context");
2218   if( result_type == T_DOUBLE && method()->is_strict() && !dest_method->is_strict() ) {
2219     // Destination method's return value is on top of stack
2220     // dstore_rounding() does gvn.transform
2221     Node *result = pop_pair();
2222     result = dstore_rounding(result);
2223     push_pair(result);
2224   }
2225 }
2226 
2227 // rounding for strict float precision conformance
2228 Node* GraphKit::precision_rounding(Node* n) {
2229   return UseStrictFP && _method->flags().is_strict()
2230     && UseSSE == 0 && Matcher::strict_fp_requires_explicit_rounding
2231     ? _gvn.transform( new (C) RoundFloatNode(0, n) )
2232     : n;
2233 }
2234 
2235 // rounding for strict double precision conformance
2236 Node* GraphKit::dprecision_rounding(Node *n) {
2237   return UseStrictFP && _method->flags().is_strict()
2238     && UseSSE <= 1 && Matcher::strict_fp_requires_explicit_rounding
2239     ? _gvn.transform( new (C) RoundDoubleNode(0, n) )
2240     : n;
2241 }
2242 
2243 // rounding for non-strict double stores
2244 Node* GraphKit::dstore_rounding(Node* n) {
2245   return Matcher::strict_fp_requires_explicit_rounding
2246     && UseSSE <= 1
2247     ? _gvn.transform( new (C) RoundDoubleNode(0, n) )
2248     : n;
2249 }
2250 
2251 //=============================================================================
2252 // Generate a fast path/slow path idiom.  Graph looks like:
2253 // [foo] indicates that 'foo' is a parameter
2254 //
2255 //              [in]     NULL
2256 //                 \    /
2257 //                  CmpP
2258 //                  Bool ne
2259 //                   If
2260 //                  /  \
2261 //              True    False-<2>
2262 //              / |
2263 //             /  cast_not_null
2264 //           Load  |    |   ^
2265 //        [fast_test]   |   |
2266 // gvn to   opt_test    |   |
2267 //          /    \      |  <1>
2268 //      True     False  |
2269 //        |         \\  |
2270 //   [slow_call]     \[fast_result]
2271 //    Ctl   Val       \      \
2272 //     |               \      \
2273 //    Catch       <1>   \      \
2274 //   /    \        ^     \      \
2275 //  Ex    No_Ex    |      \      \
2276 //  |       \   \  |       \ <2>  \
2277 //  ...      \  [slow_res] |  |    \   [null_result]
2278 //            \         \--+--+---  |  |
2279 //             \           | /    \ | /
2280 //              --------Region     Phi
2281 //
2282 //=============================================================================
2283 // Code is structured as a series of driver functions all called 'do_XXX' that
2284 // call a set of helper functions.  Helper functions first, then drivers.
2285 
2286 //------------------------------null_check_oop---------------------------------
2287 // Null check oop.  Set null-path control into Region in slot 3.
2288 // Make a cast-not-nullness use the other not-null control.  Return cast.
2289 Node* GraphKit::null_check_oop(Node* value, Node* *null_control,
2290                                bool never_see_null, bool safe_for_replace) {
2291   // Initial NULL check taken path
2292   (*null_control) = top();
2293   Node* cast = null_check_common(value, T_OBJECT, false, null_control);
2294 
2295   // Generate uncommon_trap:
2296   if (never_see_null && (*null_control) != top()) {
2297     // If we see an unexpected null at a check-cast we record it and force a
2298     // recompile; the offending check-cast will be compiled to handle NULLs.
2299     // If we see more than one offending BCI, then all checkcasts in the
2300     // method will be compiled to handle NULLs.
2301     PreserveJVMState pjvms(this);
2302     set_control(*null_control);
2303     replace_in_map(value, null());
2304     uncommon_trap(Deoptimization::Reason_null_check,
2305                   Deoptimization::Action_make_not_entrant);
2306     (*null_control) = top();    // NULL path is dead
2307   }
2308   if ((*null_control) == top() && safe_for_replace) {
2309     replace_in_map(value, cast);
2310   }
2311 
2312   // Cast away null-ness on the result
2313   return cast;
2314 }
2315 
2316 //------------------------------opt_iff----------------------------------------
2317 // Optimize the fast-check IfNode.  Set the fast-path region slot 2.
2318 // Return slow-path control.
2319 Node* GraphKit::opt_iff(Node* region, Node* iff) {
2320   IfNode *opt_iff = _gvn.transform(iff)->as_If();
2321 
2322   // Fast path taken; set region slot 2
2323   Node *fast_taken = _gvn.transform( new (C) IfFalseNode(opt_iff) );
2324   region->init_req(2,fast_taken); // Capture fast-control
2325 
2326   // Fast path not-taken, i.e. slow path
2327   Node *slow_taken = _gvn.transform( new (C) IfTrueNode(opt_iff) );
2328   return slow_taken;
2329 }
2330 
2331 //-----------------------------make_runtime_call-------------------------------
2332 Node* GraphKit::make_runtime_call(int flags,
2333                                   const TypeFunc* call_type, address call_addr,
2334                                   const char* call_name,
2335                                   const TypePtr* adr_type,
2336                                   // The following parms are all optional.
2337                                   // The first NULL ends the list.
2338                                   Node* parm0, Node* parm1,
2339                                   Node* parm2, Node* parm3,
2340                                   Node* parm4, Node* parm5,
2341                                   Node* parm6, Node* parm7) {
2342   // Slow-path call
2343   bool is_leaf = !(flags & RC_NO_LEAF);
2344   bool has_io  = (!is_leaf && !(flags & RC_NO_IO));
2345   if (call_name == NULL) {
2346     assert(!is_leaf, "must supply name for leaf");
2347     call_name = OptoRuntime::stub_name(call_addr);
2348   }
2349   CallNode* call;
2350   if (!is_leaf) {
2351     call = new(C) CallStaticJavaNode(call_type, call_addr, call_name,
2352                                            bci(), adr_type);
2353   } else if (flags & RC_NO_FP) {
2354     call = new(C) CallLeafNoFPNode(call_type, call_addr, call_name, adr_type);
2355   } else {
2356     call = new(C) CallLeafNode(call_type, call_addr, call_name, adr_type);
2357   }
2358 
2359   // The following is similar to set_edges_for_java_call,
2360   // except that the memory effects of the call are restricted to AliasIdxRaw.
2361 
2362   // Slow path call has no side-effects, uses few values
2363   bool wide_in  = !(flags & RC_NARROW_MEM);
2364   bool wide_out = (C->get_alias_index(adr_type) == Compile::AliasIdxBot);
2365 
2366   Node* prev_mem = NULL;
2367   if (wide_in) {
2368     prev_mem = set_predefined_input_for_runtime_call(call);
2369   } else {
2370     assert(!wide_out, "narrow in => narrow out");
2371     Node* narrow_mem = memory(adr_type);
2372     prev_mem = reset_memory();
2373     map()->set_memory(narrow_mem);
2374     set_predefined_input_for_runtime_call(call);
2375   }
2376 
2377   // Hook each parm in order.  Stop looking at the first NULL.
2378   if (parm0 != NULL) { call->init_req(TypeFunc::Parms+0, parm0);
2379   if (parm1 != NULL) { call->init_req(TypeFunc::Parms+1, parm1);
2380   if (parm2 != NULL) { call->init_req(TypeFunc::Parms+2, parm2);
2381   if (parm3 != NULL) { call->init_req(TypeFunc::Parms+3, parm3);
2382   if (parm4 != NULL) { call->init_req(TypeFunc::Parms+4, parm4);
2383   if (parm5 != NULL) { call->init_req(TypeFunc::Parms+5, parm5);
2384   if (parm6 != NULL) { call->init_req(TypeFunc::Parms+6, parm6);
2385   if (parm7 != NULL) { call->init_req(TypeFunc::Parms+7, parm7);
2386     /* close each nested if ===> */  } } } } } } } }
2387   assert(call->in(call->req()-1) != NULL, "must initialize all parms");
2388 
2389   if (!is_leaf) {
2390     // Non-leaves can block and take safepoints:
2391     add_safepoint_edges(call, ((flags & RC_MUST_THROW) != 0));
2392   }
2393   // Non-leaves can throw exceptions:
2394   if (has_io) {
2395     call->set_req(TypeFunc::I_O, i_o());
2396   }
2397 
2398   if (flags & RC_UNCOMMON) {
2399     // Set the count to a tiny probability.  Cf. Estimate_Block_Frequency.
2400     // (An "if" probability corresponds roughly to an unconditional count.
2401     // Sort of.)
2402     call->set_cnt(PROB_UNLIKELY_MAG(4));
2403   }
2404 
2405   Node* c = _gvn.transform(call);
2406   assert(c == call, "cannot disappear");
2407 
2408   if (wide_out) {
2409     // Slow path call has full side-effects.
2410     set_predefined_output_for_runtime_call(call);
2411   } else {
2412     // Slow path call has few side-effects, and/or sets few values.
2413     set_predefined_output_for_runtime_call(call, prev_mem, adr_type);
2414   }
2415 
2416   if (has_io) {
2417     set_i_o(_gvn.transform(new (C) ProjNode(call, TypeFunc::I_O)));
2418   }
2419   return call;
2420 
2421 }
2422 
2423 //------------------------------merge_memory-----------------------------------
2424 // Merge memory from one path into the current memory state.
2425 void GraphKit::merge_memory(Node* new_mem, Node* region, int new_path) {
2426   for (MergeMemStream mms(merged_memory(), new_mem->as_MergeMem()); mms.next_non_empty2(); ) {
2427     Node* old_slice = mms.force_memory();
2428     Node* new_slice = mms.memory2();
2429     if (old_slice != new_slice) {
2430       PhiNode* phi;
2431       if (new_slice->is_Phi() && new_slice->as_Phi()->region() == region) {
2432         phi = new_slice->as_Phi();
2433         #ifdef ASSERT
2434         if (old_slice->is_Phi() && old_slice->as_Phi()->region() == region)
2435           old_slice = old_slice->in(new_path);
2436         // Caller is responsible for ensuring that any pre-existing
2437         // phis are already aware of old memory.
2438         int old_path = (new_path > 1) ? 1 : 2;  // choose old_path != new_path
2439         assert(phi->in(old_path) == old_slice, "pre-existing phis OK");
2440         #endif
2441         mms.set_memory(phi);
2442       } else {
2443         phi = PhiNode::make(region, old_slice, Type::MEMORY, mms.adr_type(C));
2444         _gvn.set_type(phi, Type::MEMORY);
2445         phi->set_req(new_path, new_slice);
2446         mms.set_memory(_gvn.transform(phi));  // assume it is complete
2447       }
2448     }
2449   }
2450 }
2451 
2452 //------------------------------make_slow_call_ex------------------------------
2453 // Make the exception handler hookups for the slow call
2454 void GraphKit::make_slow_call_ex(Node* call, ciInstanceKlass* ex_klass, bool separate_io_proj) {
2455   if (stopped())  return;
2456 
2457   // Make a catch node with just two handlers:  fall-through and catch-all
2458   Node* i_o  = _gvn.transform( new (C) ProjNode(call, TypeFunc::I_O, separate_io_proj) );
2459   Node* catc = _gvn.transform( new (C) CatchNode(control(), i_o, 2) );
2460   Node* norm = _gvn.transform( new (C) CatchProjNode(catc, CatchProjNode::fall_through_index, CatchProjNode::no_handler_bci) );
2461   Node* excp = _gvn.transform( new (C) CatchProjNode(catc, CatchProjNode::catch_all_index,    CatchProjNode::no_handler_bci) );
2462 
2463   { PreserveJVMState pjvms(this);
2464     set_control(excp);
2465     set_i_o(i_o);
2466 
2467     if (excp != top()) {
2468       // Create an exception state also.
2469       // Use an exact type if the caller has specified a specific exception.
2470       const Type* ex_type = TypeOopPtr::make_from_klass_unique(ex_klass)->cast_to_ptr_type(TypePtr::NotNull);
2471       Node*       ex_oop  = new (C) CreateExNode(ex_type, control(), i_o);
2472       add_exception_state(make_exception_state(_gvn.transform(ex_oop)));
2473     }
2474   }
2475 
2476   // Get the no-exception control from the CatchNode.
2477   set_control(norm);
2478 }
2479 
2480 
2481 //-------------------------------gen_subtype_check-----------------------------
2482 // Generate a subtyping check.  Takes as input the subtype and supertype.
2483 // Returns 2 values: sets the default control() to the true path and returns
2484 // the false path.  Only reads invariant memory; sets no (visible) memory.
2485 // The PartialSubtypeCheckNode sets the hidden 1-word cache in the encoding
2486 // but that's not exposed to the optimizer.  This call also doesn't take in an
2487 // Object; if you wish to check an Object you need to load the Object's class
2488 // prior to coming here.
2489 Node* GraphKit::gen_subtype_check(Node* subklass, Node* superklass) {
2490   // Fast check for identical types, perhaps identical constants.
2491   // The types can even be identical non-constants, in cases
2492   // involving Array.newInstance, Object.clone, etc.
2493   if (subklass == superklass)
2494     return top();             // false path is dead; no test needed.
2495 
2496   if (_gvn.type(superklass)->singleton()) {
2497     ciKlass* superk = _gvn.type(superklass)->is_klassptr()->klass();
2498     ciKlass* subk   = _gvn.type(subklass)->is_klassptr()->klass();
2499 
2500     // In the common case of an exact superklass, try to fold up the
2501     // test before generating code.  You may ask, why not just generate
2502     // the code and then let it fold up?  The answer is that the generated
2503     // code will necessarily include null checks, which do not always
2504     // completely fold away.  If they are also needless, then they turn
2505     // into a performance loss.  Example:
2506     //    Foo[] fa = blah(); Foo x = fa[0]; fa[1] = x;
2507     // Here, the type of 'fa' is often exact, so the store check
2508     // of fa[1]=x will fold up, without testing the nullness of x.
2509     switch (static_subtype_check(superk, subk)) {
2510     case SSC_always_false:
2511       {
2512         Node* always_fail = control();
2513         set_control(top());
2514         return always_fail;
2515       }
2516     case SSC_always_true:
2517       return top();
2518     case SSC_easy_test:
2519       {
2520         // Just do a direct pointer compare and be done.
2521         Node* cmp = _gvn.transform( new(C) CmpPNode(subklass, superklass) );
2522         Node* bol = _gvn.transform( new(C) BoolNode(cmp, BoolTest::eq) );
2523         IfNode* iff = create_and_xform_if(control(), bol, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
2524         set_control( _gvn.transform( new(C) IfTrueNode (iff) ) );
2525         return       _gvn.transform( new(C) IfFalseNode(iff) );
2526       }
2527     case SSC_full_test:
2528       break;
2529     default:
2530       ShouldNotReachHere();
2531     }
2532   }
2533 
2534   // %%% Possible further optimization:  Even if the superklass is not exact,
2535   // if the subklass is the unique subtype of the superklass, the check
2536   // will always succeed.  We could leave a dependency behind to ensure this.
2537 
2538   // First load the super-klass's check-offset
2539   Node *p1 = basic_plus_adr( superklass, superklass, in_bytes(Klass::super_check_offset_offset()) );
2540   Node *chk_off = _gvn.transform(new (C) LoadINode(NULL, memory(p1), p1, _gvn.type(p1)->is_ptr(),
2541                                                    TypeInt::INT, MemNode::unordered));
2542   int cacheoff_con = in_bytes(Klass::secondary_super_cache_offset());
2543   bool might_be_cache = (find_int_con(chk_off, cacheoff_con) == cacheoff_con);
2544 
2545   // Load from the sub-klass's super-class display list, or a 1-word cache of
2546   // the secondary superclass list, or a failing value with a sentinel offset
2547   // if the super-klass is an interface or exceptionally deep in the Java
2548   // hierarchy and we have to scan the secondary superclass list the hard way.
2549   // Worst-case type is a little odd: NULL is allowed as a result (usually
2550   // klass loads can never produce a NULL).
2551   Node *chk_off_X = ConvI2X(chk_off);
2552   Node *p2 = _gvn.transform( new (C) AddPNode(subklass,subklass,chk_off_X) );
2553   // For some types like interfaces the following loadKlass is from a 1-word
2554   // cache which is mutable so can't use immutable memory.  Other
2555   // types load from the super-class display table which is immutable.
2556   Node *kmem = might_be_cache ? memory(p2) : immutable_memory();
2557   Node *nkls = _gvn.transform( LoadKlassNode::make( _gvn, kmem, p2, _gvn.type(p2)->is_ptr(), TypeKlassPtr::OBJECT_OR_NULL ) );
2558 
2559   // Compile speed common case: ARE a subtype and we canNOT fail
2560   if( superklass == nkls )
2561     return top();             // false path is dead; no test needed.
2562 
2563   // See if we get an immediate positive hit.  Happens roughly 83% of the
2564   // time.  Test to see if the value loaded just previously from the subklass
2565   // is exactly the superklass.
2566   Node *cmp1 = _gvn.transform( new (C) CmpPNode( superklass, nkls ) );
2567   Node *bol1 = _gvn.transform( new (C) BoolNode( cmp1, BoolTest::eq ) );
2568   IfNode *iff1 = create_and_xform_if( control(), bol1, PROB_LIKELY(0.83f), COUNT_UNKNOWN );
2569   Node *iftrue1 = _gvn.transform( new (C) IfTrueNode ( iff1 ) );
2570   set_control(    _gvn.transform( new (C) IfFalseNode( iff1 ) ) );
2571 
2572   // Compile speed common case: Check for being deterministic right now.  If
2573   // chk_off is a constant and not equal to cacheoff then we are NOT a
2574   // subklass.  In this case we need exactly the 1 test above and we can
2575   // return those results immediately.
2576   if (!might_be_cache) {
2577     Node* not_subtype_ctrl = control();
2578     set_control(iftrue1); // We need exactly the 1 test above
2579     return not_subtype_ctrl;
2580   }
2581 
2582   // Gather the various success & failures here
2583   RegionNode *r_ok_subtype = new (C) RegionNode(4);
2584   record_for_igvn(r_ok_subtype);
2585   RegionNode *r_not_subtype = new (C) RegionNode(3);
2586   record_for_igvn(r_not_subtype);
2587 
2588   r_ok_subtype->init_req(1, iftrue1);
2589 
2590   // Check for immediate negative hit.  Happens roughly 11% of the time (which
2591   // is roughly 63% of the remaining cases).  Test to see if the loaded
2592   // check-offset points into the subklass display list or the 1-element
2593   // cache.  If it points to the display (and NOT the cache) and the display
2594   // missed then it's not a subtype.
2595   Node *cacheoff = _gvn.intcon(cacheoff_con);
2596   Node *cmp2 = _gvn.transform( new (C) CmpINode( chk_off, cacheoff ) );
2597   Node *bol2 = _gvn.transform( new (C) BoolNode( cmp2, BoolTest::ne ) );
2598   IfNode *iff2 = create_and_xform_if( control(), bol2, PROB_LIKELY(0.63f), COUNT_UNKNOWN );
2599   r_not_subtype->init_req(1, _gvn.transform( new (C) IfTrueNode (iff2) ) );
2600   set_control(                _gvn.transform( new (C) IfFalseNode(iff2) ) );
2601 
2602   // Check for self.  Very rare to get here, but it is taken 1/3 the time.
2603   // No performance impact (too rare) but allows sharing of secondary arrays
2604   // which has some footprint reduction.
2605   Node *cmp3 = _gvn.transform( new (C) CmpPNode( subklass, superklass ) );
2606   Node *bol3 = _gvn.transform( new (C) BoolNode( cmp3, BoolTest::eq ) );
2607   IfNode *iff3 = create_and_xform_if( control(), bol3, PROB_LIKELY(0.36f), COUNT_UNKNOWN );
2608   r_ok_subtype->init_req(2, _gvn.transform( new (C) IfTrueNode ( iff3 ) ) );
2609   set_control(               _gvn.transform( new (C) IfFalseNode( iff3 ) ) );
2610 
2611   // -- Roads not taken here: --
2612   // We could also have chosen to perform the self-check at the beginning
2613   // of this code sequence, as the assembler does.  This would not pay off
2614   // the same way, since the optimizer, unlike the assembler, can perform
2615   // static type analysis to fold away many successful self-checks.
2616   // Non-foldable self checks work better here in second position, because
2617   // the initial primary superclass check subsumes a self-check for most
2618   // types.  An exception would be a secondary type like array-of-interface,
2619   // which does not appear in its own primary supertype display.
2620   // Finally, we could have chosen to move the self-check into the
2621   // PartialSubtypeCheckNode, and from there out-of-line in a platform
2622   // dependent manner.  But it is worthwhile to have the check here,
2623   // where it can be perhaps be optimized.  The cost in code space is
2624   // small (register compare, branch).
2625 
2626   // Now do a linear scan of the secondary super-klass array.  Again, no real
2627   // performance impact (too rare) but it's gotta be done.
2628   // Since the code is rarely used, there is no penalty for moving it
2629   // out of line, and it can only improve I-cache density.
2630   // The decision to inline or out-of-line this final check is platform
2631   // dependent, and is found in the AD file definition of PartialSubtypeCheck.
2632   Node* psc = _gvn.transform(
2633     new (C) PartialSubtypeCheckNode(control(), subklass, superklass) );
2634 
2635   Node *cmp4 = _gvn.transform( new (C) CmpPNode( psc, null() ) );
2636   Node *bol4 = _gvn.transform( new (C) BoolNode( cmp4, BoolTest::ne ) );
2637   IfNode *iff4 = create_and_xform_if( control(), bol4, PROB_FAIR, COUNT_UNKNOWN );
2638   r_not_subtype->init_req(2, _gvn.transform( new (C) IfTrueNode (iff4) ) );
2639   r_ok_subtype ->init_req(3, _gvn.transform( new (C) IfFalseNode(iff4) ) );
2640 
2641   // Return false path; set default control to true path.
2642   set_control( _gvn.transform(r_ok_subtype) );
2643   return _gvn.transform(r_not_subtype);
2644 }
2645 
2646 //----------------------------static_subtype_check-----------------------------
2647 // Shortcut important common cases when superklass is exact:
2648 // (0) superklass is java.lang.Object (can occur in reflective code)
2649 // (1) subklass is already limited to a subtype of superklass => always ok
2650 // (2) subklass does not overlap with superklass => always fail
2651 // (3) superklass has NO subtypes and we can check with a simple compare.
2652 int GraphKit::static_subtype_check(ciKlass* superk, ciKlass* subk) {
2653   if (StressReflectiveCode) {
2654     return SSC_full_test;       // Let caller generate the general case.
2655   }
2656 
2657   if (superk == env()->Object_klass()) {
2658     return SSC_always_true;     // (0) this test cannot fail
2659   }
2660 
2661   ciType* superelem = superk;
2662   if (superelem->is_array_klass())
2663     superelem = superelem->as_array_klass()->base_element_type();
2664 
2665   if (!subk->is_interface()) {  // cannot trust static interface types yet
2666     if (subk->is_subtype_of(superk)) {
2667       return SSC_always_true;   // (1) false path dead; no dynamic test needed
2668     }
2669     if (!(superelem->is_klass() && superelem->as_klass()->is_interface()) &&
2670         !superk->is_subtype_of(subk)) {
2671       return SSC_always_false;
2672     }
2673   }
2674 
2675   // If casting to an instance klass, it must have no subtypes
2676   if (superk->is_interface()) {
2677     // Cannot trust interfaces yet.
2678     // %%% S.B. superk->nof_implementors() == 1
2679   } else if (superelem->is_instance_klass()) {
2680     ciInstanceKlass* ik = superelem->as_instance_klass();
2681     if (!ik->has_subklass() && !ik->is_interface()) {
2682       if (!ik->is_final()) {
2683         // Add a dependency if there is a chance of a later subclass.
2684         C->dependencies()->assert_leaf_type(ik);
2685       }
2686       return SSC_easy_test;     // (3) caller can do a simple ptr comparison
2687     }
2688   } else {
2689     // A primitive array type has no subtypes.
2690     return SSC_easy_test;       // (3) caller can do a simple ptr comparison
2691   }
2692 
2693   return SSC_full_test;
2694 }
2695 
2696 // Profile-driven exact type check:
2697 Node* GraphKit::type_check_receiver(Node* receiver, ciKlass* klass,
2698                                     float prob,
2699                                     Node* *casted_receiver) {
2700   const TypeKlassPtr* tklass = TypeKlassPtr::make(klass);
2701   Node* recv_klass = load_object_klass(receiver);
2702   Node* want_klass = makecon(tklass);
2703   Node* cmp = _gvn.transform( new(C) CmpPNode(recv_klass, want_klass) );
2704   Node* bol = _gvn.transform( new(C) BoolNode(cmp, BoolTest::eq) );
2705   IfNode* iff = create_and_xform_if(control(), bol, prob, COUNT_UNKNOWN);
2706   set_control( _gvn.transform( new(C) IfTrueNode (iff) ));
2707   Node* fail = _gvn.transform( new(C) IfFalseNode(iff) );
2708 
2709   const TypeOopPtr* recv_xtype = tklass->as_instance_type();
2710   assert(recv_xtype->klass_is_exact(), "");
2711 
2712   // Subsume downstream occurrences of receiver with a cast to
2713   // recv_xtype, since now we know what the type will be.
2714   Node* cast = new(C) CheckCastPPNode(control(), receiver, recv_xtype);
2715   (*casted_receiver) = _gvn.transform(cast);
2716   // (User must make the replace_in_map call.)
2717 
2718   return fail;
2719 }
2720 
2721 
2722 //------------------------------seems_never_null-------------------------------
2723 // Use null_seen information if it is available from the profile.
2724 // If we see an unexpected null at a type check we record it and force a
2725 // recompile; the offending check will be recompiled to handle NULLs.
2726 // If we see several offending BCIs, then all checks in the
2727 // method will be recompiled.
2728 bool GraphKit::seems_never_null(Node* obj, ciProfileData* data) {
2729   if (UncommonNullCast               // Cutout for this technique
2730       && obj != null()               // And not the -Xcomp stupid case?
2731       && !too_many_traps(Deoptimization::Reason_null_check)
2732       ) {
2733     if (data == NULL)
2734       // Edge case:  no mature data.  Be optimistic here.
2735       return true;
2736     // If the profile has not seen a null, assume it won't happen.
2737     assert(java_bc() == Bytecodes::_checkcast ||
2738            java_bc() == Bytecodes::_instanceof ||
2739            java_bc() == Bytecodes::_aastore, "MDO must collect null_seen bit here");
2740     return !data->as_BitData()->null_seen();
2741   }
2742   return false;
2743 }
2744 
2745 //------------------------maybe_cast_profiled_receiver-------------------------
2746 // If the profile has seen exactly one type, narrow to exactly that type.
2747 // Subsequent type checks will always fold up.
2748 Node* GraphKit::maybe_cast_profiled_receiver(Node* not_null_obj,
2749                                              ciKlass* require_klass,
2750                                              ciKlass* spec_klass,
2751                                              bool safe_for_replace) {
2752   if (!UseTypeProfile || !TypeProfileCasts) return NULL;
2753 
2754   Deoptimization::DeoptReason reason = spec_klass == NULL ? Deoptimization::Reason_class_check : Deoptimization::Reason_speculate_class_check;
2755 
2756   // Make sure we haven't already deoptimized from this tactic.
2757   if (too_many_traps(reason))
2758     return NULL;
2759 
2760   // (No, this isn't a call, but it's enough like a virtual call
2761   // to use the same ciMethod accessor to get the profile info...)
2762   // If we have a speculative type use it instead of profiling (which
2763   // may not help us)
2764   ciKlass* exact_kls = spec_klass == NULL ? profile_has_unique_klass() : spec_klass;
2765   if (exact_kls != NULL) {// no cast failures here
2766     if (require_klass == NULL ||
2767         static_subtype_check(require_klass, exact_kls) == SSC_always_true) {
2768       // If we narrow the type to match what the type profile sees or
2769       // the speculative type, we can then remove the rest of the
2770       // cast.
2771       // This is a win, even if the exact_kls is very specific,
2772       // because downstream operations, such as method calls,
2773       // will often benefit from the sharper type.
2774       Node* exact_obj = not_null_obj; // will get updated in place...
2775       Node* slow_ctl  = type_check_receiver(exact_obj, exact_kls, 1.0,
2776                                             &exact_obj);
2777       { PreserveJVMState pjvms(this);
2778         set_control(slow_ctl);
2779         uncommon_trap(reason,
2780                       Deoptimization::Action_maybe_recompile);
2781       }
2782       if (safe_for_replace) {
2783         replace_in_map(not_null_obj, exact_obj);
2784       }
2785       return exact_obj;
2786     }
2787     // assert(ssc == SSC_always_true)... except maybe the profile lied to us.
2788   }
2789 
2790   return NULL;
2791 }
2792 
2793 /**
2794  * Cast obj to type and emit guard unless we had too many traps here
2795  * already
2796  *
2797  * @param obj       node being casted
2798  * @param type      type to cast the node to
2799  * @param not_null  true if we know node cannot be null
2800  */
2801 Node* GraphKit::maybe_cast_profiled_obj(Node* obj,
2802                                         ciKlass* type,
2803                                         bool not_null) {
2804   // type == NULL if profiling tells us this object is always null
2805   if (type != NULL) {
2806     Deoptimization::DeoptReason class_reason = Deoptimization::Reason_speculate_class_check;
2807     Deoptimization::DeoptReason null_reason = Deoptimization::Reason_null_check;
2808     if (!too_many_traps(null_reason) &&
2809         !too_many_traps(class_reason)) {
2810       Node* not_null_obj = NULL;
2811       // not_null is true if we know the object is not null and
2812       // there's no need for a null check
2813       if (!not_null) {
2814         Node* null_ctl = top();
2815         not_null_obj = null_check_oop(obj, &null_ctl, true, true);
2816         assert(null_ctl->is_top(), "no null control here");
2817       } else {
2818         not_null_obj = obj;
2819       }
2820 
2821       Node* exact_obj = not_null_obj;
2822       ciKlass* exact_kls = type;
2823       Node* slow_ctl  = type_check_receiver(exact_obj, exact_kls, 1.0,
2824                                             &exact_obj);
2825       {
2826         PreserveJVMState pjvms(this);
2827         set_control(slow_ctl);
2828         uncommon_trap(class_reason,
2829                       Deoptimization::Action_maybe_recompile);
2830       }
2831       replace_in_map(not_null_obj, exact_obj);
2832       obj = exact_obj;
2833     }
2834   } else {
2835     if (!too_many_traps(Deoptimization::Reason_null_assert)) {
2836       Node* exact_obj = null_assert(obj);
2837       replace_in_map(obj, exact_obj);
2838       obj = exact_obj;
2839     }
2840   }
2841   return obj;
2842 }
2843 
2844 //-------------------------------gen_instanceof--------------------------------
2845 // Generate an instance-of idiom.  Used by both the instance-of bytecode
2846 // and the reflective instance-of call.
2847 Node* GraphKit::gen_instanceof(Node* obj, Node* superklass, bool safe_for_replace) {
2848   kill_dead_locals();           // Benefit all the uncommon traps
2849   assert( !stopped(), "dead parse path should be checked in callers" );
2850   assert(!TypePtr::NULL_PTR->higher_equal(_gvn.type(superklass)->is_klassptr()),
2851          "must check for not-null not-dead klass in callers");
2852 
2853   // Make the merge point
2854   enum { _obj_path = 1, _fail_path, _null_path, PATH_LIMIT };
2855   RegionNode* region = new(C) RegionNode(PATH_LIMIT);
2856   Node*       phi    = new(C) PhiNode(region, TypeInt::BOOL);
2857   C->set_has_split_ifs(true); // Has chance for split-if optimization
2858 
2859   ciProfileData* data = NULL;
2860   if (java_bc() == Bytecodes::_instanceof) {  // Only for the bytecode
2861     data = method()->method_data()->bci_to_data(bci());
2862   }
2863   bool never_see_null = (ProfileDynamicTypes  // aggressive use of profile
2864                          && seems_never_null(obj, data));
2865 
2866   // Null check; get casted pointer; set region slot 3
2867   Node* null_ctl = top();
2868   Node* not_null_obj = null_check_oop(obj, &null_ctl, never_see_null, safe_for_replace);
2869 
2870   // If not_null_obj is dead, only null-path is taken
2871   if (stopped()) {              // Doing instance-of on a NULL?
2872     set_control(null_ctl);
2873     return intcon(0);
2874   }
2875   region->init_req(_null_path, null_ctl);
2876   phi   ->init_req(_null_path, intcon(0)); // Set null path value
2877   if (null_ctl == top()) {
2878     // Do this eagerly, so that pattern matches like is_diamond_phi
2879     // will work even during parsing.
2880     assert(_null_path == PATH_LIMIT-1, "delete last");
2881     region->del_req(_null_path);
2882     phi   ->del_req(_null_path);
2883   }
2884 
2885   // Do we know the type check always succeed?
2886   bool known_statically = false;
2887   if (_gvn.type(superklass)->singleton()) {
2888     ciKlass* superk = _gvn.type(superklass)->is_klassptr()->klass();
2889     ciKlass* subk = _gvn.type(obj)->is_oopptr()->klass();
2890     if (subk != NULL && subk->is_loaded()) {
2891       int static_res = static_subtype_check(superk, subk);
2892       known_statically = (static_res == SSC_always_true || static_res == SSC_always_false);
2893     }
2894   }
2895 
2896   if (known_statically && UseTypeSpeculation) {
2897     // If we know the type check always succeeds then we don't use the
2898     // profiling data at this bytecode. Don't lose it, feed it to the
2899     // type system as a speculative type.
2900     not_null_obj = record_profiled_receiver_for_speculation(not_null_obj);
2901   } else {
2902     const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr();
2903     // We may not have profiling here or it may not help us. If we
2904     // have a speculative type use it to perform an exact cast.
2905     ciKlass* spec_obj_type = obj_type->speculative_type();
2906     if (spec_obj_type != NULL || (ProfileDynamicTypes && data != NULL)) {
2907       Node* cast_obj = maybe_cast_profiled_receiver(not_null_obj, NULL, spec_obj_type, safe_for_replace);
2908       if (stopped()) {            // Profile disagrees with this path.
2909         set_control(null_ctl);    // Null is the only remaining possibility.
2910         return intcon(0);
2911       }
2912       if (cast_obj != NULL) {
2913         not_null_obj = cast_obj;
2914       }
2915     }
2916   }
2917 
2918   // Load the object's klass
2919   Node* obj_klass = load_object_klass(not_null_obj);
2920 
2921   // Generate the subtype check
2922   Node* not_subtype_ctrl = gen_subtype_check(obj_klass, superklass);
2923 
2924   // Plug in the success path to the general merge in slot 1.
2925   region->init_req(_obj_path, control());
2926   phi   ->init_req(_obj_path, intcon(1));
2927 
2928   // Plug in the failing path to the general merge in slot 2.
2929   region->init_req(_fail_path, not_subtype_ctrl);
2930   phi   ->init_req(_fail_path, intcon(0));
2931 
2932   // Return final merged results
2933   set_control( _gvn.transform(region) );
2934   record_for_igvn(region);
2935   return _gvn.transform(phi);
2936 }
2937 
2938 //-------------------------------gen_checkcast---------------------------------
2939 // Generate a checkcast idiom.  Used by both the checkcast bytecode and the
2940 // array store bytecode.  Stack must be as-if BEFORE doing the bytecode so the
2941 // uncommon-trap paths work.  Adjust stack after this call.
2942 // If failure_control is supplied and not null, it is filled in with
2943 // the control edge for the cast failure.  Otherwise, an appropriate
2944 // uncommon trap or exception is thrown.
2945 Node* GraphKit::gen_checkcast(Node *obj, Node* superklass,
2946                               Node* *failure_control) {
2947   kill_dead_locals();           // Benefit all the uncommon traps
2948   const TypeKlassPtr *tk = _gvn.type(superklass)->is_klassptr();
2949   const Type *toop = TypeOopPtr::make_from_klass(tk->klass());
2950 
2951   // Fast cutout:  Check the case that the cast is vacuously true.
2952   // This detects the common cases where the test will short-circuit
2953   // away completely.  We do this before we perform the null check,
2954   // because if the test is going to turn into zero code, we don't
2955   // want a residual null check left around.  (Causes a slowdown,
2956   // for example, in some objArray manipulations, such as a[i]=a[j].)
2957   if (tk->singleton()) {
2958     const TypeOopPtr* objtp = _gvn.type(obj)->isa_oopptr();
2959     if (objtp != NULL && objtp->klass() != NULL) {
2960       switch (static_subtype_check(tk->klass(), objtp->klass())) {
2961       case SSC_always_true:
2962         // If we know the type check always succeed then we don't use
2963         // the profiling data at this bytecode. Don't lose it, feed it
2964         // to the type system as a speculative type.
2965         return record_profiled_receiver_for_speculation(obj);
2966       case SSC_always_false:
2967         // It needs a null check because a null will *pass* the cast check.
2968         // A non-null value will always produce an exception.
2969         return null_assert(obj);
2970       }
2971     }
2972   }
2973 
2974   ciProfileData* data = NULL;
2975   bool safe_for_replace = false;
2976   if (failure_control == NULL) {        // use MDO in regular case only
2977     assert(java_bc() == Bytecodes::_aastore ||
2978            java_bc() == Bytecodes::_checkcast,
2979            "interpreter profiles type checks only for these BCs");
2980     data = method()->method_data()->bci_to_data(bci());
2981     safe_for_replace = true;
2982   }
2983 
2984   // Make the merge point
2985   enum { _obj_path = 1, _null_path, PATH_LIMIT };
2986   RegionNode* region = new (C) RegionNode(PATH_LIMIT);
2987   Node*       phi    = new (C) PhiNode(region, toop);
2988   C->set_has_split_ifs(true); // Has chance for split-if optimization
2989 
2990   // Use null-cast information if it is available
2991   bool never_see_null = ((failure_control == NULL)  // regular case only
2992                          && seems_never_null(obj, data));
2993 
2994   // Null check; get casted pointer; set region slot 3
2995   Node* null_ctl = top();
2996   Node* not_null_obj = null_check_oop(obj, &null_ctl, never_see_null, safe_for_replace);
2997 
2998   // If not_null_obj is dead, only null-path is taken
2999   if (stopped()) {              // Doing instance-of on a NULL?
3000     set_control(null_ctl);
3001     return null();
3002   }
3003   region->init_req(_null_path, null_ctl);
3004   phi   ->init_req(_null_path, null());  // Set null path value
3005   if (null_ctl == top()) {
3006     // Do this eagerly, so that pattern matches like is_diamond_phi
3007     // will work even during parsing.
3008     assert(_null_path == PATH_LIMIT-1, "delete last");
3009     region->del_req(_null_path);
3010     phi   ->del_req(_null_path);
3011   }
3012 
3013   Node* cast_obj = NULL;
3014   if (tk->klass_is_exact()) {
3015     // The following optimization tries to statically cast the speculative type of the object
3016     // (for example obtained during profiling) to the type of the superklass and then do a
3017     // dynamic check that the type of the object is what we expect. To work correctly
3018     // for checkcast and aastore the type of superklass should be exact.
3019     const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr();
3020     // We may not have profiling here or it may not help us. If we have
3021     // a speculative type use it to perform an exact cast.
3022     ciKlass* spec_obj_type = obj_type->speculative_type();
3023     if (spec_obj_type != NULL ||
3024         (data != NULL &&
3025          // Counter has never been decremented (due to cast failure).
3026          // ...This is a reasonable thing to expect.  It is true of
3027          // all casts inserted by javac to implement generic types.
3028          data->as_CounterData()->count() >= 0)) {
3029       cast_obj = maybe_cast_profiled_receiver(not_null_obj, tk->klass(), spec_obj_type, safe_for_replace);
3030       if (cast_obj != NULL) {
3031         if (failure_control != NULL) // failure is now impossible
3032           (*failure_control) = top();
3033         // adjust the type of the phi to the exact klass:
3034         phi->raise_bottom_type(_gvn.type(cast_obj)->meet_speculative(TypePtr::NULL_PTR));
3035       }
3036     }
3037   }
3038 
3039   if (cast_obj == NULL) {
3040     // Load the object's klass
3041     Node* obj_klass = load_object_klass(not_null_obj);
3042 
3043     // Generate the subtype check
3044     Node* not_subtype_ctrl = gen_subtype_check( obj_klass, superklass );
3045 
3046     // Plug in success path into the merge
3047     cast_obj = _gvn.transform(new (C) CheckCastPPNode(control(),
3048                                                          not_null_obj, toop));
3049     // Failure path ends in uncommon trap (or may be dead - failure impossible)
3050     if (failure_control == NULL) {
3051       if (not_subtype_ctrl != top()) { // If failure is possible
3052         PreserveJVMState pjvms(this);
3053         set_control(not_subtype_ctrl);
3054         builtin_throw(Deoptimization::Reason_class_check, obj_klass);
3055       }
3056     } else {
3057       (*failure_control) = not_subtype_ctrl;
3058     }
3059   }
3060 
3061   region->init_req(_obj_path, control());
3062   phi   ->init_req(_obj_path, cast_obj);
3063 
3064   // A merge of NULL or Casted-NotNull obj
3065   Node* res = _gvn.transform(phi);
3066 
3067   // Note I do NOT always 'replace_in_map(obj,result)' here.
3068   //  if( tk->klass()->can_be_primary_super()  )
3069     // This means that if I successfully store an Object into an array-of-String
3070     // I 'forget' that the Object is really now known to be a String.  I have to
3071     // do this because we don't have true union types for interfaces - if I store
3072     // a Baz into an array-of-Interface and then tell the optimizer it's an
3073     // Interface, I forget that it's also a Baz and cannot do Baz-like field
3074     // references to it.  FIX THIS WHEN UNION TYPES APPEAR!
3075   //  replace_in_map( obj, res );
3076 
3077   // Return final merged results
3078   set_control( _gvn.transform(region) );
3079   record_for_igvn(region);
3080   return res;
3081 }
3082 
3083 //------------------------------next_monitor-----------------------------------
3084 // What number should be given to the next monitor?
3085 int GraphKit::next_monitor() {
3086   int current = jvms()->monitor_depth()* C->sync_stack_slots();
3087   int next = current + C->sync_stack_slots();
3088   // Keep the toplevel high water mark current:
3089   if (C->fixed_slots() < next)  C->set_fixed_slots(next);
3090   return current;
3091 }
3092 
3093 //------------------------------insert_mem_bar---------------------------------
3094 // Memory barrier to avoid floating things around
3095 // The membar serves as a pinch point between both control and all memory slices.
3096 Node* GraphKit::insert_mem_bar(int opcode, Node* precedent) {
3097   MemBarNode* mb = MemBarNode::make(C, opcode, Compile::AliasIdxBot, precedent);
3098   mb->init_req(TypeFunc::Control, control());
3099   mb->init_req(TypeFunc::Memory,  reset_memory());
3100   Node* membar = _gvn.transform(mb);
3101   set_control(_gvn.transform(new (C) ProjNode(membar, TypeFunc::Control)));
3102   set_all_memory_call(membar);
3103   return membar;
3104 }
3105 
3106 //-------------------------insert_mem_bar_volatile----------------------------
3107 // Memory barrier to avoid floating things around
3108 // The membar serves as a pinch point between both control and memory(alias_idx).
3109 // If you want to make a pinch point on all memory slices, do not use this
3110 // function (even with AliasIdxBot); use insert_mem_bar() instead.
3111 Node* GraphKit::insert_mem_bar_volatile(int opcode, int alias_idx, Node* precedent) {
3112   // When Parse::do_put_xxx updates a volatile field, it appends a series
3113   // of MemBarVolatile nodes, one for *each* volatile field alias category.
3114   // The first membar is on the same memory slice as the field store opcode.
3115   // This forces the membar to follow the store.  (Bug 6500685 broke this.)
3116   // All the other membars (for other volatile slices, including AliasIdxBot,
3117   // which stands for all unknown volatile slices) are control-dependent
3118   // on the first membar.  This prevents later volatile loads or stores
3119   // from sliding up past the just-emitted store.
3120 
3121   MemBarNode* mb = MemBarNode::make(C, opcode, alias_idx, precedent);
3122   mb->set_req(TypeFunc::Control,control());
3123   if (alias_idx == Compile::AliasIdxBot) {
3124     mb->set_req(TypeFunc::Memory, merged_memory()->base_memory());
3125   } else {
3126     assert(!(opcode == Op_Initialize && alias_idx != Compile::AliasIdxRaw), "fix caller");
3127     mb->set_req(TypeFunc::Memory, memory(alias_idx));
3128   }
3129   Node* membar = _gvn.transform(mb);
3130   set_control(_gvn.transform(new (C) ProjNode(membar, TypeFunc::Control)));
3131   if (alias_idx == Compile::AliasIdxBot) {
3132     merged_memory()->set_base_memory(_gvn.transform(new (C) ProjNode(membar, TypeFunc::Memory)));
3133   } else {
3134     set_memory(_gvn.transform(new (C) ProjNode(membar, TypeFunc::Memory)),alias_idx);
3135   }
3136   return membar;
3137 }
3138 
3139 //------------------------------shared_lock------------------------------------
3140 // Emit locking code.
3141 FastLockNode* GraphKit::shared_lock(Node* obj) {
3142   // bci is either a monitorenter bc or InvocationEntryBci
3143   // %%% SynchronizationEntryBCI is redundant; use InvocationEntryBci in interfaces
3144   assert(SynchronizationEntryBCI == InvocationEntryBci, "");
3145 
3146   if( !GenerateSynchronizationCode )
3147     return NULL;                // Not locking things?
3148   if (stopped())                // Dead monitor?
3149     return NULL;
3150 
3151   assert(dead_locals_are_killed(), "should kill locals before sync. point");
3152 
3153   // Box the stack location
3154   Node* box = _gvn.transform(new (C) BoxLockNode(next_monitor()));
3155   Node* mem = reset_memory();
3156 
3157   FastLockNode * flock = _gvn.transform(new (C) FastLockNode(0, obj, box) )->as_FastLock();
3158   if (PrintPreciseBiasedLockingStatistics) {
3159     // Create the counters for this fast lock.
3160     flock->create_lock_counter(sync_jvms()); // sync_jvms used to get current bci
3161   }
3162   // Add monitor to debug info for the slow path.  If we block inside the
3163   // slow path and de-opt, we need the monitor hanging around
3164   map()->push_monitor( flock );
3165 
3166   const TypeFunc *tf = LockNode::lock_type();
3167   LockNode *lock = new (C) LockNode(C, tf);
3168 
3169   lock->init_req( TypeFunc::Control, control() );
3170   lock->init_req( TypeFunc::Memory , mem );
3171   lock->init_req( TypeFunc::I_O    , top() )     ;   // does no i/o
3172   lock->init_req( TypeFunc::FramePtr, frameptr() );
3173   lock->init_req( TypeFunc::ReturnAdr, top() );
3174 
3175   lock->init_req(TypeFunc::Parms + 0, obj);
3176   lock->init_req(TypeFunc::Parms + 1, box);
3177   lock->init_req(TypeFunc::Parms + 2, flock);
3178   add_safepoint_edges(lock);
3179 
3180   lock = _gvn.transform( lock )->as_Lock();
3181 
3182   // lock has no side-effects, sets few values
3183   set_predefined_output_for_runtime_call(lock, mem, TypeRawPtr::BOTTOM);
3184 
3185   insert_mem_bar(Op_MemBarAcquireLock);
3186 
3187   // Add this to the worklist so that the lock can be eliminated
3188   record_for_igvn(lock);
3189 
3190 #ifndef PRODUCT
3191   if (PrintLockStatistics) {
3192     // Update the counter for this lock.  Don't bother using an atomic
3193     // operation since we don't require absolute accuracy.
3194     lock->create_lock_counter(map()->jvms());
3195     increment_counter(lock->counter()->addr());
3196   }
3197 #endif
3198 
3199   return flock;
3200 }
3201 
3202 
3203 //------------------------------shared_unlock----------------------------------
3204 // Emit unlocking code.
3205 void GraphKit::shared_unlock(Node* box, Node* obj) {
3206   // bci is either a monitorenter bc or InvocationEntryBci
3207   // %%% SynchronizationEntryBCI is redundant; use InvocationEntryBci in interfaces
3208   assert(SynchronizationEntryBCI == InvocationEntryBci, "");
3209 
3210   if( !GenerateSynchronizationCode )
3211     return;
3212   if (stopped()) {               // Dead monitor?
3213     map()->pop_monitor();        // Kill monitor from debug info
3214     return;
3215   }
3216 
3217   // Memory barrier to avoid floating things down past the locked region
3218   insert_mem_bar(Op_MemBarReleaseLock);
3219 
3220   const TypeFunc *tf = OptoRuntime::complete_monitor_exit_Type();
3221   UnlockNode *unlock = new (C) UnlockNode(C, tf);
3222   uint raw_idx = Compile::AliasIdxRaw;
3223   unlock->init_req( TypeFunc::Control, control() );
3224   unlock->init_req( TypeFunc::Memory , memory(raw_idx) );
3225   unlock->init_req( TypeFunc::I_O    , top() )     ;   // does no i/o
3226   unlock->init_req( TypeFunc::FramePtr, frameptr() );
3227   unlock->init_req( TypeFunc::ReturnAdr, top() );
3228 
3229   unlock->init_req(TypeFunc::Parms + 0, obj);
3230   unlock->init_req(TypeFunc::Parms + 1, box);
3231   unlock = _gvn.transform(unlock)->as_Unlock();
3232 
3233   Node* mem = reset_memory();
3234 
3235   // unlock has no side-effects, sets few values
3236   set_predefined_output_for_runtime_call(unlock, mem, TypeRawPtr::BOTTOM);
3237 
3238   // Kill monitor from debug info
3239   map()->pop_monitor( );
3240 }
3241 
3242 //-------------------------------get_layout_helper-----------------------------
3243 // If the given klass is a constant or known to be an array,
3244 // fetch the constant layout helper value into constant_value
3245 // and return (Node*)NULL.  Otherwise, load the non-constant
3246 // layout helper value, and return the node which represents it.
3247 // This two-faced routine is useful because allocation sites
3248 // almost always feature constant types.
3249 Node* GraphKit::get_layout_helper(Node* klass_node, jint& constant_value) {
3250   const TypeKlassPtr* inst_klass = _gvn.type(klass_node)->isa_klassptr();
3251   if (!StressReflectiveCode && inst_klass != NULL) {
3252     ciKlass* klass = inst_klass->klass();
3253     bool    xklass = inst_klass->klass_is_exact();
3254     if (xklass || klass->is_array_klass()) {
3255       jint lhelper = klass->layout_helper();
3256       if (lhelper != Klass::_lh_neutral_value) {
3257         constant_value = lhelper;
3258         return (Node*) NULL;
3259       }
3260     }
3261   }
3262   constant_value = Klass::_lh_neutral_value;  // put in a known value
3263   Node* lhp = basic_plus_adr(klass_node, klass_node, in_bytes(Klass::layout_helper_offset()));
3264   return make_load(NULL, lhp, TypeInt::INT, T_INT, MemNode::unordered);
3265 }
3266 
3267 // We just put in an allocate/initialize with a big raw-memory effect.
3268 // Hook selected additional alias categories on the initialization.
3269 static void hook_memory_on_init(GraphKit& kit, int alias_idx,
3270                                 MergeMemNode* init_in_merge,
3271                                 Node* init_out_raw) {
3272   DEBUG_ONLY(Node* init_in_raw = init_in_merge->base_memory());
3273   assert(init_in_merge->memory_at(alias_idx) == init_in_raw, "");
3274 
3275   Node* prevmem = kit.memory(alias_idx);
3276   init_in_merge->set_memory_at(alias_idx, prevmem);
3277   kit.set_memory(init_out_raw, alias_idx);
3278 }
3279 
3280 //---------------------------set_output_for_allocation-------------------------
3281 Node* GraphKit::set_output_for_allocation(AllocateNode* alloc,
3282                                           const TypeOopPtr* oop_type) {
3283   int rawidx = Compile::AliasIdxRaw;
3284   alloc->set_req( TypeFunc::FramePtr, frameptr() );
3285   add_safepoint_edges(alloc);
3286   Node* allocx = _gvn.transform(alloc);
3287   set_control( _gvn.transform(new (C) ProjNode(allocx, TypeFunc::Control) ) );
3288   // create memory projection for i_o
3289   set_memory ( _gvn.transform( new (C) ProjNode(allocx, TypeFunc::Memory, true) ), rawidx );
3290   make_slow_call_ex(allocx, env()->Throwable_klass(), true);
3291 
3292   // create a memory projection as for the normal control path
3293   Node* malloc = _gvn.transform(new (C) ProjNode(allocx, TypeFunc::Memory));
3294   set_memory(malloc, rawidx);
3295 
3296   // a normal slow-call doesn't change i_o, but an allocation does
3297   // we create a separate i_o projection for the normal control path
3298   set_i_o(_gvn.transform( new (C) ProjNode(allocx, TypeFunc::I_O, false) ) );
3299   Node* rawoop = _gvn.transform( new (C) ProjNode(allocx, TypeFunc::Parms) );
3300 
3301   // put in an initialization barrier
3302   InitializeNode* init = insert_mem_bar_volatile(Op_Initialize, rawidx,
3303                                                  rawoop)->as_Initialize();
3304   assert(alloc->initialization() == init,  "2-way macro link must work");
3305   assert(init ->allocation()     == alloc, "2-way macro link must work");
3306   {
3307     // Extract memory strands which may participate in the new object's
3308     // initialization, and source them from the new InitializeNode.
3309     // This will allow us to observe initializations when they occur,
3310     // and link them properly (as a group) to the InitializeNode.
3311     assert(init->in(InitializeNode::Memory) == malloc, "");
3312     MergeMemNode* minit_in = MergeMemNode::make(C, malloc);
3313     init->set_req(InitializeNode::Memory, minit_in);
3314     record_for_igvn(minit_in); // fold it up later, if possible
3315     Node* minit_out = memory(rawidx);
3316     assert(minit_out->is_Proj() && minit_out->in(0) == init, "");
3317     if (oop_type->isa_aryptr()) {
3318       const TypePtr* telemref = oop_type->add_offset(Type::OffsetBot);
3319       int            elemidx  = C->get_alias_index(telemref);
3320       hook_memory_on_init(*this, elemidx, minit_in, minit_out);
3321     } else if (oop_type->isa_instptr()) {
3322       ciInstanceKlass* ik = oop_type->klass()->as_instance_klass();
3323       for (int i = 0, len = ik->nof_nonstatic_fields(); i < len; i++) {
3324         ciField* field = ik->nonstatic_field_at(i);
3325         if (field->offset() >= TrackedInitializationLimit * HeapWordSize)
3326           continue;  // do not bother to track really large numbers of fields
3327         // Find (or create) the alias category for this field:
3328         int fieldidx = C->alias_type(field)->index();
3329         hook_memory_on_init(*this, fieldidx, minit_in, minit_out);
3330       }
3331     }
3332   }
3333 
3334   // Cast raw oop to the real thing...
3335   Node* javaoop = new (C) CheckCastPPNode(control(), rawoop, oop_type);
3336   javaoop = _gvn.transform(javaoop);
3337   C->set_recent_alloc(control(), javaoop);
3338   assert(just_allocated_object(control()) == javaoop, "just allocated");
3339 
3340 #ifdef ASSERT
3341   { // Verify that the AllocateNode::Ideal_allocation recognizers work:
3342     assert(AllocateNode::Ideal_allocation(rawoop, &_gvn) == alloc,
3343            "Ideal_allocation works");
3344     assert(AllocateNode::Ideal_allocation(javaoop, &_gvn) == alloc,
3345            "Ideal_allocation works");
3346     if (alloc->is_AllocateArray()) {
3347       assert(AllocateArrayNode::Ideal_array_allocation(rawoop, &_gvn) == alloc->as_AllocateArray(),
3348              "Ideal_allocation works");
3349       assert(AllocateArrayNode::Ideal_array_allocation(javaoop, &_gvn) == alloc->as_AllocateArray(),
3350              "Ideal_allocation works");
3351     } else {
3352       assert(alloc->in(AllocateNode::ALength)->is_top(), "no length, please");
3353     }
3354   }
3355 #endif //ASSERT
3356 
3357   return javaoop;
3358 }
3359 
3360 //---------------------------new_instance--------------------------------------
3361 // This routine takes a klass_node which may be constant (for a static type)
3362 // or may be non-constant (for reflective code).  It will work equally well
3363 // for either, and the graph will fold nicely if the optimizer later reduces
3364 // the type to a constant.
3365 // The optional arguments are for specialized use by intrinsics:
3366 //  - If 'extra_slow_test' if not null is an extra condition for the slow-path.
3367 //  - If 'return_size_val', report the the total object size to the caller.
3368 Node* GraphKit::new_instance(Node* klass_node,
3369                              Node* extra_slow_test,
3370                              Node* *return_size_val) {
3371   // Compute size in doublewords
3372   // The size is always an integral number of doublewords, represented
3373   // as a positive bytewise size stored in the klass's layout_helper.
3374   // The layout_helper also encodes (in a low bit) the need for a slow path.
3375   jint  layout_con = Klass::_lh_neutral_value;
3376   Node* layout_val = get_layout_helper(klass_node, layout_con);
3377   int   layout_is_con = (layout_val == NULL);
3378 
3379   if (extra_slow_test == NULL)  extra_slow_test = intcon(0);
3380   // Generate the initial go-slow test.  It's either ALWAYS (return a
3381   // Node for 1) or NEVER (return a NULL) or perhaps (in the reflective
3382   // case) a computed value derived from the layout_helper.
3383   Node* initial_slow_test = NULL;
3384   if (layout_is_con) {
3385     assert(!StressReflectiveCode, "stress mode does not use these paths");
3386     bool must_go_slow = Klass::layout_helper_needs_slow_path(layout_con);
3387     initial_slow_test = must_go_slow? intcon(1): extra_slow_test;
3388 
3389   } else {   // reflective case
3390     // This reflective path is used by Unsafe.allocateInstance.
3391     // (It may be stress-tested by specifying StressReflectiveCode.)
3392     // Basically, we want to get into the VM is there's an illegal argument.
3393     Node* bit = intcon(Klass::_lh_instance_slow_path_bit);
3394     initial_slow_test = _gvn.transform( new (C) AndINode(layout_val, bit) );
3395     if (extra_slow_test != intcon(0)) {
3396       initial_slow_test = _gvn.transform( new (C) OrINode(initial_slow_test, extra_slow_test) );
3397     }
3398     // (Macro-expander will further convert this to a Bool, if necessary.)
3399   }
3400 
3401   // Find the size in bytes.  This is easy; it's the layout_helper.
3402   // The size value must be valid even if the slow path is taken.
3403   Node* size = NULL;
3404   if (layout_is_con) {
3405     size = MakeConX(Klass::layout_helper_size_in_bytes(layout_con));
3406   } else {   // reflective case
3407     // This reflective path is used by clone and Unsafe.allocateInstance.
3408     size = ConvI2X(layout_val);
3409 
3410     // Clear the low bits to extract layout_helper_size_in_bytes:
3411     assert((int)Klass::_lh_instance_slow_path_bit < BytesPerLong, "clear bit");
3412     Node* mask = MakeConX(~ (intptr_t)right_n_bits(LogBytesPerLong));
3413     size = _gvn.transform( new (C) AndXNode(size, mask) );
3414   }
3415   if (return_size_val != NULL) {
3416     (*return_size_val) = size;
3417   }
3418 
3419   // This is a precise notnull oop of the klass.
3420   // (Actually, it need not be precise if this is a reflective allocation.)
3421   // It's what we cast the result to.
3422   const TypeKlassPtr* tklass = _gvn.type(klass_node)->isa_klassptr();
3423   if (!tklass)  tklass = TypeKlassPtr::OBJECT;
3424   const TypeOopPtr* oop_type = tklass->as_instance_type();
3425 
3426   // Now generate allocation code
3427 
3428   // The entire memory state is needed for slow path of the allocation
3429   // since GC and deoptimization can happened.
3430   Node *mem = reset_memory();
3431   set_all_memory(mem); // Create new memory state
3432 
3433   AllocateNode* alloc
3434     = new (C) AllocateNode(C, AllocateNode::alloc_type(Type::TOP),
3435                            control(), mem, i_o(),
3436                            size, klass_node,
3437                            initial_slow_test);
3438 
3439   return set_output_for_allocation(alloc, oop_type);
3440 }
3441 
3442 //-------------------------------new_array-------------------------------------
3443 // helper for both newarray and anewarray
3444 // The 'length' parameter is (obviously) the length of the array.
3445 // See comments on new_instance for the meaning of the other arguments.
3446 Node* GraphKit::new_array(Node* klass_node,     // array klass (maybe variable)
3447                           Node* length,         // number of array elements
3448                           int   nargs,          // number of arguments to push back for uncommon trap
3449                           Node* *return_size_val) {
3450   jint  layout_con = Klass::_lh_neutral_value;
3451   Node* layout_val = get_layout_helper(klass_node, layout_con);
3452   int   layout_is_con = (layout_val == NULL);
3453 
3454   if (!layout_is_con && !StressReflectiveCode &&
3455       !too_many_traps(Deoptimization::Reason_class_check)) {
3456     // This is a reflective array creation site.
3457     // Optimistically assume that it is a subtype of Object[],
3458     // so that we can fold up all the address arithmetic.
3459     layout_con = Klass::array_layout_helper(T_OBJECT);
3460     Node* cmp_lh = _gvn.transform( new(C) CmpINode(layout_val, intcon(layout_con)) );
3461     Node* bol_lh = _gvn.transform( new(C) BoolNode(cmp_lh, BoolTest::eq) );
3462     { BuildCutout unless(this, bol_lh, PROB_MAX);
3463       inc_sp(nargs);
3464       uncommon_trap(Deoptimization::Reason_class_check,
3465                     Deoptimization::Action_maybe_recompile);
3466     }
3467     layout_val = NULL;
3468     layout_is_con = true;
3469   }
3470 
3471   // Generate the initial go-slow test.  Make sure we do not overflow
3472   // if length is huge (near 2Gig) or negative!  We do not need
3473   // exact double-words here, just a close approximation of needed
3474   // double-words.  We can't add any offset or rounding bits, lest we
3475   // take a size -1 of bytes and make it positive.  Use an unsigned
3476   // compare, so negative sizes look hugely positive.
3477   int fast_size_limit = FastAllocateSizeLimit;
3478   if (layout_is_con) {
3479     assert(!StressReflectiveCode, "stress mode does not use these paths");
3480     // Increase the size limit if we have exact knowledge of array type.
3481     int log2_esize = Klass::layout_helper_log2_element_size(layout_con);
3482     fast_size_limit <<= (LogBytesPerLong - log2_esize);
3483   }
3484 
3485   Node* initial_slow_cmp  = _gvn.transform( new (C) CmpUNode( length, intcon( fast_size_limit ) ) );
3486   Node* initial_slow_test = _gvn.transform( new (C) BoolNode( initial_slow_cmp, BoolTest::gt ) );
3487   if (initial_slow_test->is_Bool()) {
3488     // Hide it behind a CMoveI, or else PhaseIdealLoop::split_up will get sick.
3489     initial_slow_test = initial_slow_test->as_Bool()->as_int_value(&_gvn);
3490   }
3491 
3492   // --- Size Computation ---
3493   // array_size = round_to_heap(array_header + (length << elem_shift));
3494   // where round_to_heap(x) == round_to(x, MinObjAlignmentInBytes)
3495   // and round_to(x, y) == ((x + y-1) & ~(y-1))
3496   // The rounding mask is strength-reduced, if possible.
3497   int round_mask = MinObjAlignmentInBytes - 1;
3498   Node* header_size = NULL;
3499   int   header_size_min  = arrayOopDesc::base_offset_in_bytes(T_BYTE);
3500   // (T_BYTE has the weakest alignment and size restrictions...)
3501   if (layout_is_con) {
3502     int       hsize  = Klass::layout_helper_header_size(layout_con);
3503     int       eshift = Klass::layout_helper_log2_element_size(layout_con);
3504     BasicType etype  = Klass::layout_helper_element_type(layout_con);
3505     if ((round_mask & ~right_n_bits(eshift)) == 0)
3506       round_mask = 0;  // strength-reduce it if it goes away completely
3507     assert((hsize & right_n_bits(eshift)) == 0, "hsize is pre-rounded");
3508     assert(header_size_min <= hsize, "generic minimum is smallest");
3509     header_size_min = hsize;
3510     header_size = intcon(hsize + round_mask);
3511   } else {
3512     Node* hss   = intcon(Klass::_lh_header_size_shift);
3513     Node* hsm   = intcon(Klass::_lh_header_size_mask);
3514     Node* hsize = _gvn.transform( new(C) URShiftINode(layout_val, hss) );
3515     hsize       = _gvn.transform( new(C) AndINode(hsize, hsm) );
3516     Node* mask  = intcon(round_mask);
3517     header_size = _gvn.transform( new(C) AddINode(hsize, mask) );
3518   }
3519 
3520   Node* elem_shift = NULL;
3521   if (layout_is_con) {
3522     int eshift = Klass::layout_helper_log2_element_size(layout_con);
3523     if (eshift != 0)
3524       elem_shift = intcon(eshift);
3525   } else {
3526     // There is no need to mask or shift this value.
3527     // The semantics of LShiftINode include an implicit mask to 0x1F.
3528     assert(Klass::_lh_log2_element_size_shift == 0, "use shift in place");
3529     elem_shift = layout_val;
3530   }
3531 
3532   // Transition to native address size for all offset calculations:
3533   Node* lengthx = ConvI2X(length);
3534   Node* headerx = ConvI2X(header_size);
3535 #ifdef _LP64
3536   { const TypeLong* tllen = _gvn.find_long_type(lengthx);
3537     if (tllen != NULL && tllen->_lo < 0) {
3538       // Add a manual constraint to a positive range.  Cf. array_element_address.
3539       jlong size_max = arrayOopDesc::max_array_length(T_BYTE);
3540       if (size_max > tllen->_hi)  size_max = tllen->_hi;
3541       const TypeLong* tlcon = TypeLong::make(CONST64(0), size_max, Type::WidenMin);
3542       lengthx = _gvn.transform( new (C) ConvI2LNode(length, tlcon));
3543     }
3544   }
3545 #endif
3546 
3547   // Combine header size (plus rounding) and body size.  Then round down.
3548   // This computation cannot overflow, because it is used only in two
3549   // places, one where the length is sharply limited, and the other
3550   // after a successful allocation.
3551   Node* abody = lengthx;
3552   if (elem_shift != NULL)
3553     abody     = _gvn.transform( new(C) LShiftXNode(lengthx, elem_shift) );
3554   Node* size  = _gvn.transform( new(C) AddXNode(headerx, abody) );
3555   if (round_mask != 0) {
3556     Node* mask = MakeConX(~round_mask);
3557     size       = _gvn.transform( new(C) AndXNode(size, mask) );
3558   }
3559   // else if round_mask == 0, the size computation is self-rounding
3560 
3561   if (return_size_val != NULL) {
3562     // This is the size
3563     (*return_size_val) = size;
3564   }
3565 
3566   // Now generate allocation code
3567 
3568   // The entire memory state is needed for slow path of the allocation
3569   // since GC and deoptimization can happened.
3570   Node *mem = reset_memory();
3571   set_all_memory(mem); // Create new memory state
3572 
3573   // Create the AllocateArrayNode and its result projections
3574   AllocateArrayNode* alloc
3575     = new (C) AllocateArrayNode(C, AllocateArrayNode::alloc_type(TypeInt::INT),
3576                                 control(), mem, i_o(),
3577                                 size, klass_node,
3578                                 initial_slow_test,
3579                                 length);
3580 
3581   // Cast to correct type.  Note that the klass_node may be constant or not,
3582   // and in the latter case the actual array type will be inexact also.
3583   // (This happens via a non-constant argument to inline_native_newArray.)
3584   // In any case, the value of klass_node provides the desired array type.
3585   const TypeInt* length_type = _gvn.find_int_type(length);
3586   const TypeOopPtr* ary_type = _gvn.type(klass_node)->is_klassptr()->as_instance_type();
3587   if (ary_type->isa_aryptr() && length_type != NULL) {
3588     // Try to get a better type than POS for the size
3589     ary_type = ary_type->is_aryptr()->cast_to_size(length_type);
3590   }
3591 
3592   Node* javaoop = set_output_for_allocation(alloc, ary_type);
3593 
3594   // Cast length on remaining path to be as narrow as possible
3595   if (map()->find_edge(length) >= 0) {
3596     Node* ccast = alloc->make_ideal_length(ary_type, &_gvn);
3597     if (ccast != length) {
3598       _gvn.set_type_bottom(ccast);
3599       record_for_igvn(ccast);
3600       replace_in_map(length, ccast);
3601     }
3602   }
3603 
3604   return javaoop;
3605 }
3606 
3607 // The following "Ideal_foo" functions are placed here because they recognize
3608 // the graph shapes created by the functions immediately above.
3609 
3610 //---------------------------Ideal_allocation----------------------------------
3611 // Given an oop pointer or raw pointer, see if it feeds from an AllocateNode.
3612 AllocateNode* AllocateNode::Ideal_allocation(Node* ptr, PhaseTransform* phase) {
3613   if (ptr == NULL) {     // reduce dumb test in callers
3614     return NULL;
3615   }
3616   if (ptr->is_CheckCastPP()) { // strip only one raw-to-oop cast
3617     ptr = ptr->in(1);
3618     if (ptr == NULL) return NULL;
3619   }
3620   // Return NULL for allocations with several casts:
3621   //   j.l.reflect.Array.newInstance(jobject, jint)
3622   //   Object.clone()
3623   // to keep more precise type from last cast.
3624   if (ptr->is_Proj()) {
3625     Node* allo = ptr->in(0);
3626     if (allo != NULL && allo->is_Allocate()) {
3627       return allo->as_Allocate();
3628     }
3629   }
3630   // Report failure to match.
3631   return NULL;
3632 }
3633 
3634 // Fancy version which also strips off an offset (and reports it to caller).
3635 AllocateNode* AllocateNode::Ideal_allocation(Node* ptr, PhaseTransform* phase,
3636                                              intptr_t& offset) {
3637   Node* base = AddPNode::Ideal_base_and_offset(ptr, phase, offset);
3638   if (base == NULL)  return NULL;
3639   return Ideal_allocation(base, phase);
3640 }
3641 
3642 // Trace Initialize <- Proj[Parm] <- Allocate
3643 AllocateNode* InitializeNode::allocation() {
3644   Node* rawoop = in(InitializeNode::RawAddress);
3645   if (rawoop->is_Proj()) {
3646     Node* alloc = rawoop->in(0);
3647     if (alloc->is_Allocate()) {
3648       return alloc->as_Allocate();
3649     }
3650   }
3651   return NULL;
3652 }
3653 
3654 // Trace Allocate -> Proj[Parm] -> Initialize
3655 InitializeNode* AllocateNode::initialization() {
3656   ProjNode* rawoop = proj_out(AllocateNode::RawAddress);
3657   if (rawoop == NULL)  return NULL;
3658   for (DUIterator_Fast imax, i = rawoop->fast_outs(imax); i < imax; i++) {
3659     Node* init = rawoop->fast_out(i);
3660     if (init->is_Initialize()) {
3661       assert(init->as_Initialize()->allocation() == this, "2-way link");
3662       return init->as_Initialize();
3663     }
3664   }
3665   return NULL;
3666 }
3667 
3668 //----------------------------- loop predicates ---------------------------
3669 
3670 //------------------------------add_predicate_impl----------------------------
3671 void GraphKit::add_predicate_impl(Deoptimization::DeoptReason reason, int nargs) {
3672   // Too many traps seen?
3673   if (too_many_traps(reason)) {
3674 #ifdef ASSERT
3675     if (TraceLoopPredicate) {
3676       int tc = C->trap_count(reason);
3677       tty->print("too many traps=%s tcount=%d in ",
3678                     Deoptimization::trap_reason_name(reason), tc);
3679       method()->print(); // which method has too many predicate traps
3680       tty->cr();
3681     }
3682 #endif
3683     // We cannot afford to take more traps here,
3684     // do not generate predicate.
3685     return;
3686   }
3687 
3688   Node *cont    = _gvn.intcon(1);
3689   Node* opq     = _gvn.transform(new (C) Opaque1Node(C, cont));
3690   Node *bol     = _gvn.transform(new (C) Conv2BNode(opq));
3691   IfNode* iff   = create_and_map_if(control(), bol, PROB_MAX, COUNT_UNKNOWN);
3692   Node* iffalse = _gvn.transform(new (C) IfFalseNode(iff));
3693   C->add_predicate_opaq(opq);
3694   {
3695     PreserveJVMState pjvms(this);
3696     set_control(iffalse);
3697     inc_sp(nargs);
3698     uncommon_trap(reason, Deoptimization::Action_maybe_recompile);
3699   }
3700   Node* iftrue = _gvn.transform(new (C) IfTrueNode(iff));
3701   set_control(iftrue);
3702 }
3703 
3704 //------------------------------add_predicate---------------------------------
3705 void GraphKit::add_predicate(int nargs) {
3706   if (UseLoopPredicate) {
3707     add_predicate_impl(Deoptimization::Reason_predicate, nargs);
3708   }
3709   // loop's limit check predicate should be near the loop.
3710   if (LoopLimitCheck) {
3711     add_predicate_impl(Deoptimization::Reason_loop_limit_check, nargs);
3712   }
3713 }
3714 
3715 //----------------------------- store barriers ----------------------------
3716 #define __ ideal.
3717 
3718 void GraphKit::sync_kit(IdealKit& ideal) {
3719   set_all_memory(__ merged_memory());
3720   set_i_o(__ i_o());
3721   set_control(__ ctrl());
3722 }
3723 
3724 void GraphKit::final_sync(IdealKit& ideal) {
3725   // Final sync IdealKit and graphKit.
3726   sync_kit(ideal);
3727 }
3728 
3729 // vanilla/CMS post barrier
3730 // Insert a write-barrier store.  This is to let generational GC work; we have
3731 // to flag all oop-stores before the next GC point.
3732 void GraphKit::write_barrier_post(Node* oop_store,
3733                                   Node* obj,
3734                                   Node* adr,
3735                                   uint  adr_idx,
3736                                   Node* val,
3737                                   bool use_precise) {
3738   // No store check needed if we're storing a NULL or an old object
3739   // (latter case is probably a string constant). The concurrent
3740   // mark sweep garbage collector, however, needs to have all nonNull
3741   // oop updates flagged via card-marks.
3742   if (val != NULL && val->is_Con()) {
3743     // must be either an oop or NULL
3744     const Type* t = val->bottom_type();
3745     if (t == TypePtr::NULL_PTR || t == Type::TOP)
3746       // stores of null never (?) need barriers
3747       return;
3748   }
3749 
3750   if (use_ReduceInitialCardMarks()
3751       && obj == just_allocated_object(control())) {
3752     // We can skip marks on a freshly-allocated object in Eden.
3753     // Keep this code in sync with new_store_pre_barrier() in runtime.cpp.
3754     // That routine informs GC to take appropriate compensating steps,
3755     // upon a slow-path allocation, so as to make this card-mark
3756     // elision safe.
3757     return;
3758   }
3759 
3760   if (!use_precise) {
3761     // All card marks for a (non-array) instance are in one place:
3762     adr = obj;
3763   }
3764   // (Else it's an array (or unknown), and we want more precise card marks.)
3765   assert(adr != NULL, "");
3766 
3767   IdealKit ideal(this, true);
3768 
3769   // Convert the pointer to an int prior to doing math on it
3770   Node* cast = __ CastPX(__ ctrl(), adr);
3771 
3772   // Divide by card size
3773   assert(Universe::heap()->barrier_set()->kind() == BarrierSet::CardTableModRef,
3774          "Only one we handle so far.");
3775   Node* card_offset = __ URShiftX( cast, __ ConI(CardTableModRefBS::card_shift) );
3776 
3777   // Combine card table base and card offset
3778   Node* card_adr = __ AddP(__ top(), byte_map_base_node(), card_offset );
3779 
3780   // Get the alias_index for raw card-mark memory
3781   int adr_type = Compile::AliasIdxRaw;
3782   Node*   zero = __ ConI(0); // Dirty card value
3783   BasicType bt = T_BYTE;
3784 
3785   if (UseCondCardMark) {
3786     // The classic GC reference write barrier is typically implemented
3787     // as a store into the global card mark table.  Unfortunately
3788     // unconditional stores can result in false sharing and excessive
3789     // coherence traffic as well as false transactional aborts.
3790     // UseCondCardMark enables MP "polite" conditional card mark
3791     // stores.  In theory we could relax the load from ctrl() to
3792     // no_ctrl, but that doesn't buy much latitude.
3793     Node* card_val = __ load( __ ctrl(), card_adr, TypeInt::BYTE, bt, adr_type);
3794     __ if_then(card_val, BoolTest::ne, zero);
3795   }
3796 
3797   // Smash zero into card
3798   if( !UseConcMarkSweepGC ) {
3799     __ store(__ ctrl(), card_adr, zero, bt, adr_type, MemNode::release);
3800   } else {
3801     // Specialized path for CM store barrier
3802     __ storeCM(__ ctrl(), card_adr, zero, oop_store, adr_idx, bt, adr_type);
3803   }
3804 
3805   if (UseCondCardMark) {
3806     __ end_if();
3807   }
3808 
3809   // Final sync IdealKit and GraphKit.
3810   final_sync(ideal);
3811 }
3812 
3813 // G1 pre/post barriers
3814 void GraphKit::g1_write_barrier_pre(bool do_load,
3815                                     Node* obj,
3816                                     Node* adr,
3817                                     uint alias_idx,
3818                                     Node* val,
3819                                     const TypeOopPtr* val_type,
3820                                     Node* pre_val,
3821                                     BasicType bt) {
3822 
3823   // Some sanity checks
3824   // Note: val is unused in this routine.
3825 
3826   if (do_load) {
3827     // We need to generate the load of the previous value
3828     assert(obj != NULL, "must have a base");
3829     assert(adr != NULL, "where are loading from?");
3830     assert(pre_val == NULL, "loaded already?");
3831     assert(val_type != NULL, "need a type");
3832   } else {
3833     // In this case both val_type and alias_idx are unused.
3834     assert(pre_val != NULL, "must be loaded already");
3835     // Nothing to be done if pre_val is null.
3836     if (pre_val->bottom_type() == TypePtr::NULL_PTR) return;
3837     assert(pre_val->bottom_type()->basic_type() == T_OBJECT, "or we shouldn't be here");
3838   }
3839   assert(bt == T_OBJECT, "or we shouldn't be here");
3840 
3841   IdealKit ideal(this, true);
3842 
3843   Node* tls = __ thread(); // ThreadLocalStorage
3844 
3845   Node* no_ctrl = NULL;
3846   Node* no_base = __ top();
3847   Node* zero  = __ ConI(0);
3848   Node* zeroX = __ ConX(0);
3849 
3850   float likely  = PROB_LIKELY(0.999);
3851   float unlikely  = PROB_UNLIKELY(0.999);
3852 
3853   BasicType active_type = in_bytes(PtrQueue::byte_width_of_active()) == 4 ? T_INT : T_BYTE;
3854   assert(in_bytes(PtrQueue::byte_width_of_active()) == 4 || in_bytes(PtrQueue::byte_width_of_active()) == 1, "flag width");
3855 
3856   // Offsets into the thread
3857   const int marking_offset = in_bytes(JavaThread::satb_mark_queue_offset() +  // 648
3858                                           PtrQueue::byte_offset_of_active());
3859   const int index_offset   = in_bytes(JavaThread::satb_mark_queue_offset() +  // 656
3860                                           PtrQueue::byte_offset_of_index());
3861   const int buffer_offset  = in_bytes(JavaThread::satb_mark_queue_offset() +  // 652
3862                                           PtrQueue::byte_offset_of_buf());
3863 
3864   // Now the actual pointers into the thread
3865   Node* marking_adr = __ AddP(no_base, tls, __ ConX(marking_offset));
3866   Node* buffer_adr  = __ AddP(no_base, tls, __ ConX(buffer_offset));
3867   Node* index_adr   = __ AddP(no_base, tls, __ ConX(index_offset));
3868 
3869   // Now some of the values
3870   Node* marking = __ load(__ ctrl(), marking_adr, TypeInt::INT, active_type, Compile::AliasIdxRaw);
3871 
3872   // if (!marking)
3873   __ if_then(marking, BoolTest::ne, zero, unlikely); {
3874     BasicType index_bt = TypeX_X->basic_type();
3875     assert(sizeof(size_t) == type2aelembytes(index_bt), "Loading G1 PtrQueue::_index with wrong size.");
3876     Node* index   = __ load(__ ctrl(), index_adr, TypeX_X, index_bt, Compile::AliasIdxRaw);
3877 
3878     if (do_load) {
3879       // load original value
3880       // alias_idx correct??
3881       pre_val = __ load(__ ctrl(), adr, val_type, bt, alias_idx);
3882     }
3883 
3884     // if (pre_val != NULL)
3885     __ if_then(pre_val, BoolTest::ne, null()); {
3886       Node* buffer  = __ load(__ ctrl(), buffer_adr, TypeRawPtr::NOTNULL, T_ADDRESS, Compile::AliasIdxRaw);
3887 
3888       // is the queue for this thread full?
3889       __ if_then(index, BoolTest::ne, zeroX, likely); {
3890 
3891         // decrement the index
3892         Node* next_index = _gvn.transform(new (C) SubXNode(index, __ ConX(sizeof(intptr_t))));
3893 
3894         // Now get the buffer location we will log the previous value into and store it
3895         Node *log_addr = __ AddP(no_base, buffer, next_index);
3896         __ store(__ ctrl(), log_addr, pre_val, T_OBJECT, Compile::AliasIdxRaw, MemNode::unordered);
3897         // update the index
3898         __ store(__ ctrl(), index_adr, next_index, index_bt, Compile::AliasIdxRaw, MemNode::unordered);
3899 
3900       } __ else_(); {
3901 
3902         // logging buffer is full, call the runtime
3903         const TypeFunc *tf = OptoRuntime::g1_wb_pre_Type();
3904         __ make_leaf_call(tf, CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), "g1_wb_pre", pre_val, tls);
3905       } __ end_if();  // (!index)
3906     } __ end_if();  // (pre_val != NULL)
3907   } __ end_if();  // (!marking)
3908 
3909   // Final sync IdealKit and GraphKit.
3910   final_sync(ideal);
3911 }
3912 
3913 //
3914 // Update the card table and add card address to the queue
3915 //
3916 void GraphKit::g1_mark_card(IdealKit& ideal,
3917                             Node* card_adr,
3918                             Node* oop_store,
3919                             uint oop_alias_idx,
3920                             Node* index,
3921                             Node* index_adr,
3922                             Node* buffer,
3923                             const TypeFunc* tf) {
3924 
3925   Node* zero  = __ ConI(0);
3926   Node* zeroX = __ ConX(0);
3927   Node* no_base = __ top();
3928   BasicType card_bt = T_BYTE;
3929   // Smash zero into card. MUST BE ORDERED WRT TO STORE
3930   __ storeCM(__ ctrl(), card_adr, zero, oop_store, oop_alias_idx, card_bt, Compile::AliasIdxRaw);
3931 
3932   //  Now do the queue work
3933   __ if_then(index, BoolTest::ne, zeroX); {
3934 
3935     Node* next_index = _gvn.transform(new (C) SubXNode(index, __ ConX(sizeof(intptr_t))));
3936     Node* log_addr = __ AddP(no_base, buffer, next_index);
3937 
3938     // Order, see storeCM.
3939     __ store(__ ctrl(), log_addr, card_adr, T_ADDRESS, Compile::AliasIdxRaw, MemNode::unordered);
3940     __ store(__ ctrl(), index_adr, next_index, TypeX_X->basic_type(), Compile::AliasIdxRaw, MemNode::unordered);
3941 
3942   } __ else_(); {
3943     __ make_leaf_call(tf, CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_post), "g1_wb_post", card_adr, __ thread());
3944   } __ end_if();
3945 
3946 }
3947 
3948 void GraphKit::g1_write_barrier_post(Node* oop_store,
3949                                      Node* obj,
3950                                      Node* adr,
3951                                      uint alias_idx,
3952                                      Node* val,
3953                                      BasicType bt,
3954                                      bool use_precise) {
3955   // If we are writing a NULL then we need no post barrier
3956 
3957   if (val != NULL && val->is_Con() && val->bottom_type() == TypePtr::NULL_PTR) {
3958     // Must be NULL
3959     const Type* t = val->bottom_type();
3960     assert(t == Type::TOP || t == TypePtr::NULL_PTR, "must be NULL");
3961     // No post barrier if writing NULLx
3962     return;
3963   }
3964 
3965   if (!use_precise) {
3966     // All card marks for a (non-array) instance are in one place:
3967     adr = obj;
3968   }
3969   // (Else it's an array (or unknown), and we want more precise card marks.)
3970   assert(adr != NULL, "");
3971 
3972   IdealKit ideal(this, true);
3973 
3974   Node* tls = __ thread(); // ThreadLocalStorage
3975 
3976   Node* no_base = __ top();
3977   float likely  = PROB_LIKELY(0.999);
3978   float unlikely  = PROB_UNLIKELY(0.999);
3979   Node* young_card = __ ConI((jint)G1SATBCardTableModRefBS::g1_young_card_val());
3980   Node* dirty_card = __ ConI((jint)CardTableModRefBS::dirty_card_val());
3981   Node* zeroX = __ ConX(0);
3982 
3983   // Get the alias_index for raw card-mark memory
3984   const TypePtr* card_type = TypeRawPtr::BOTTOM;
3985 
3986   const TypeFunc *tf = OptoRuntime::g1_wb_post_Type();
3987 
3988   // Offsets into the thread
3989   const int index_offset  = in_bytes(JavaThread::dirty_card_queue_offset() +
3990                                      PtrQueue::byte_offset_of_index());
3991   const int buffer_offset = in_bytes(JavaThread::dirty_card_queue_offset() +
3992                                      PtrQueue::byte_offset_of_buf());
3993 
3994   // Pointers into the thread
3995 
3996   Node* buffer_adr = __ AddP(no_base, tls, __ ConX(buffer_offset));
3997   Node* index_adr =  __ AddP(no_base, tls, __ ConX(index_offset));
3998 
3999   // Now some values
4000   // Use ctrl to avoid hoisting these values past a safepoint, which could
4001   // potentially reset these fields in the JavaThread.
4002   Node* index  = __ load(__ ctrl(), index_adr, TypeX_X, TypeX_X->basic_type(), Compile::AliasIdxRaw);
4003   Node* buffer = __ load(__ ctrl(), buffer_adr, TypeRawPtr::NOTNULL, T_ADDRESS, Compile::AliasIdxRaw);
4004 
4005   // Convert the store obj pointer to an int prior to doing math on it
4006   // Must use ctrl to prevent "integerized oop" existing across safepoint
4007   Node* cast =  __ CastPX(__ ctrl(), adr);
4008 
4009   // Divide pointer by card size
4010   Node* card_offset = __ URShiftX( cast, __ ConI(CardTableModRefBS::card_shift) );
4011 
4012   // Combine card table base and card offset
4013   Node* card_adr = __ AddP(no_base, byte_map_base_node(), card_offset );
4014 
4015   // If we know the value being stored does it cross regions?
4016 
4017   if (val != NULL) {
4018     // Does the store cause us to cross regions?
4019 
4020     // Should be able to do an unsigned compare of region_size instead of
4021     // and extra shift. Do we have an unsigned compare??
4022     // Node* region_size = __ ConI(1 << HeapRegion::LogOfHRGrainBytes);
4023     Node* xor_res =  __ URShiftX ( __ XorX( cast,  __ CastPX(__ ctrl(), val)), __ ConI(HeapRegion::LogOfHRGrainBytes));
4024 
4025     // if (xor_res == 0) same region so skip
4026     __ if_then(xor_res, BoolTest::ne, zeroX); {
4027 
4028       // No barrier if we are storing a NULL
4029       __ if_then(val, BoolTest::ne, null(), unlikely); {
4030 
4031         // Ok must mark the card if not already dirty
4032 
4033         // load the original value of the card
4034         Node* card_val = __ load(__ ctrl(), card_adr, TypeInt::INT, T_BYTE, Compile::AliasIdxRaw);
4035 
4036         __ if_then(card_val, BoolTest::ne, young_card); {
4037           sync_kit(ideal);
4038           // Use Op_MemBarVolatile to achieve the effect of a StoreLoad barrier.
4039           insert_mem_bar(Op_MemBarVolatile, oop_store);
4040           __ sync_kit(this);
4041 
4042           Node* card_val_reload = __ load(__ ctrl(), card_adr, TypeInt::INT, T_BYTE, Compile::AliasIdxRaw);
4043           __ if_then(card_val_reload, BoolTest::ne, dirty_card); {
4044             g1_mark_card(ideal, card_adr, oop_store, alias_idx, index, index_adr, buffer, tf);
4045           } __ end_if();
4046         } __ end_if();
4047       } __ end_if();
4048     } __ end_if();
4049   } else {
4050     // Object.clone() instrinsic uses this path.
4051     g1_mark_card(ideal, card_adr, oop_store, alias_idx, index, index_adr, buffer, tf);
4052   }
4053 
4054   // Final sync IdealKit and GraphKit.
4055   final_sync(ideal);
4056 }
4057 #undef __
4058 
4059 
4060 
4061 Node* GraphKit::load_String_offset(Node* ctrl, Node* str) {
4062   if (java_lang_String::has_offset_field()) {
4063     int offset_offset = java_lang_String::offset_offset_in_bytes();
4064     const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
4065                                                        false, NULL, 0);
4066     const TypePtr* offset_field_type = string_type->add_offset(offset_offset);
4067     int offset_field_idx = C->get_alias_index(offset_field_type);
4068     return make_load(ctrl,
4069                      basic_plus_adr(str, str, offset_offset),
4070                      TypeInt::INT, T_INT, offset_field_idx, MemNode::unordered);
4071   } else {
4072     return intcon(0);
4073   }
4074 }
4075 
4076 Node* GraphKit::load_String_length(Node* ctrl, Node* str) {
4077   if (java_lang_String::has_count_field()) {
4078     int count_offset = java_lang_String::count_offset_in_bytes();
4079     const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
4080                                                        false, NULL, 0);
4081     const TypePtr* count_field_type = string_type->add_offset(count_offset);
4082     int count_field_idx = C->get_alias_index(count_field_type);
4083     return make_load(ctrl,
4084                      basic_plus_adr(str, str, count_offset),
4085                      TypeInt::INT, T_INT, count_field_idx, MemNode::unordered);
4086   } else {
4087     return load_array_length(load_String_value(ctrl, str));
4088   }
4089 }
4090 
4091 Node* GraphKit::load_String_value(Node* ctrl, Node* str) {
4092   int value_offset = java_lang_String::value_offset_in_bytes();
4093   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
4094                                                      false, NULL, 0);
4095   const TypePtr* value_field_type = string_type->add_offset(value_offset);
4096   const TypeAryPtr*  value_type = TypeAryPtr::make(TypePtr::NotNull,
4097                                                    TypeAry::make(TypeInt::CHAR,TypeInt::POS),
4098                                                    ciTypeArrayKlass::make(T_CHAR), true, 0);
4099   int value_field_idx = C->get_alias_index(value_field_type);
4100   Node* load = make_load(ctrl, basic_plus_adr(str, str, value_offset),
4101                          value_type, T_OBJECT, value_field_idx, MemNode::unordered);
4102   // String.value field is known to be @Stable.
4103   if (UseImplicitStableValues) {
4104     load = cast_array_to_stable(load, value_type);
4105   }
4106   return load;
4107 }
4108 
4109 void GraphKit::store_String_offset(Node* ctrl, Node* str, Node* value) {
4110   int offset_offset = java_lang_String::offset_offset_in_bytes();
4111   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
4112                                                      false, NULL, 0);
4113   const TypePtr* offset_field_type = string_type->add_offset(offset_offset);
4114   int offset_field_idx = C->get_alias_index(offset_field_type);
4115   store_to_memory(ctrl, basic_plus_adr(str, offset_offset),
4116                   value, T_INT, offset_field_idx, MemNode::unordered);
4117 }
4118 
4119 void GraphKit::store_String_value(Node* ctrl, Node* str, Node* value) {
4120   int value_offset = java_lang_String::value_offset_in_bytes();
4121   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
4122                                                      false, NULL, 0);
4123   const TypePtr* value_field_type = string_type->add_offset(value_offset);
4124 
4125   store_oop_to_object(ctrl, str,  basic_plus_adr(str, value_offset), value_field_type,
4126       value, TypeAryPtr::CHARS, T_OBJECT, MemNode::unordered);
4127 }
4128 
4129 void GraphKit::store_String_length(Node* ctrl, Node* str, Node* value) {
4130   int count_offset = java_lang_String::count_offset_in_bytes();
4131   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
4132                                                      false, NULL, 0);
4133   const TypePtr* count_field_type = string_type->add_offset(count_offset);
4134   int count_field_idx = C->get_alias_index(count_field_type);
4135   store_to_memory(ctrl, basic_plus_adr(str, count_offset),
4136                   value, T_INT, count_field_idx, MemNode::unordered);
4137 }
4138 
4139 Node* GraphKit::cast_array_to_stable(Node* ary, const TypeAryPtr* ary_type) {
4140   // Reify the property as a CastPP node in Ideal graph to comply with monotonicity
4141   // assumption of CCP analysis.
4142   return _gvn.transform(new(C) CastPPNode(ary, ary_type->cast_to_stable(true)));
4143 }