1 /*
   2  * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "compiler/compileLog.hpp"
  27 #include "memory/allocation.inline.hpp"
  28 #include "opto/addnode.hpp"
  29 #include "opto/callnode.hpp"
  30 #include "opto/cfgnode.hpp"
  31 #include "opto/constnode.hpp"
  32 #include "opto/loopnode.hpp"
  33 #include "opto/matcher.hpp"
  34 #include "opto/movenode.hpp"
  35 #include "opto/mulnode.hpp"
  36 #include "opto/opcodes.hpp"
  37 #include "opto/phaseX.hpp"
  38 #include "opto/subnode.hpp"
  39 #include "runtime/sharedRuntime.hpp"
  40 
  41 // Portions of code courtesy of Clifford Click
  42 
  43 // Optimization - Graph Style
  44 
  45 #include "math.h"
  46 
  47 //=============================================================================
  48 //------------------------------Identity---------------------------------------
  49 // If right input is a constant 0, return the left input.
  50 Node *SubNode::Identity( PhaseTransform *phase ) {
  51   assert(in(1) != this, "Must already have called Value");
  52   assert(in(2) != this, "Must already have called Value");
  53 
  54   // Remove double negation
  55   const Type *zero = add_id();
  56   if( phase->type( in(1) )->higher_equal( zero ) &&
  57       in(2)->Opcode() == Opcode() &&
  58       phase->type( in(2)->in(1) )->higher_equal( zero ) ) {
  59     return in(2)->in(2);
  60   }
  61 
  62   // Convert "(X+Y) - Y" into X and "(X+Y) - X" into Y
  63   if( in(1)->Opcode() == Op_AddI ) {
  64     if( phase->eqv(in(1)->in(2),in(2)) )
  65       return in(1)->in(1);
  66     if (phase->eqv(in(1)->in(1),in(2)))
  67       return in(1)->in(2);
  68 
  69     // Also catch: "(X + Opaque2(Y)) - Y".  In this case, 'Y' is a loop-varying
  70     // trip counter and X is likely to be loop-invariant (that's how O2 Nodes
  71     // are originally used, although the optimizer sometimes jiggers things).
  72     // This folding through an O2 removes a loop-exit use of a loop-varying
  73     // value and generally lowers register pressure in and around the loop.
  74     if( in(1)->in(2)->Opcode() == Op_Opaque2 &&
  75         phase->eqv(in(1)->in(2)->in(1),in(2)) )
  76       return in(1)->in(1);
  77   }
  78 
  79   return ( phase->type( in(2) )->higher_equal( zero ) ) ? in(1) : this;
  80 }
  81 
  82 //------------------------------Value------------------------------------------
  83 // A subtract node differences it's two inputs.
  84 const Type *SubNode::Value( PhaseTransform *phase ) const {
  85   const Node* in1 = in(1);
  86   const Node* in2 = in(2);
  87   // Either input is TOP ==> the result is TOP
  88   const Type* t1 = (in1 == this) ? Type::TOP : phase->type(in1);
  89   if( t1 == Type::TOP ) return Type::TOP;
  90   const Type* t2 = (in2 == this) ? Type::TOP : phase->type(in2);
  91   if( t2 == Type::TOP ) return Type::TOP;
  92 
  93   // Not correct for SubFnode and AddFNode (must check for infinity)
  94   // Equal?  Subtract is zero
  95   if (in1->eqv_uncast(in2))  return add_id();
  96 
  97   // Either input is BOTTOM ==> the result is the local BOTTOM
  98   if( t1 == Type::BOTTOM || t2 == Type::BOTTOM )
  99     return bottom_type();
 100 
 101   return sub(t1,t2);            // Local flavor of type subtraction
 102 
 103 }
 104 
 105 //=============================================================================
 106 
 107 //------------------------------Helper function--------------------------------
 108 static bool ok_to_convert(Node* inc, Node* iv) {
 109     // Do not collapse (x+c0)-y if "+" is a loop increment, because the
 110     // "-" is loop invariant and collapsing extends the live-range of "x"
 111     // to overlap with the "+", forcing another register to be used in
 112     // the loop.
 113     // This test will be clearer with '&&' (apply DeMorgan's rule)
 114     // but I like the early cutouts that happen here.
 115     const PhiNode *phi;
 116     if( ( !inc->in(1)->is_Phi() ||
 117           !(phi=inc->in(1)->as_Phi()) ||
 118           phi->is_copy() ||
 119           !phi->region()->is_CountedLoop() ||
 120           inc != phi->region()->as_CountedLoop()->incr() )
 121        &&
 122         // Do not collapse (x+c0)-iv if "iv" is a loop induction variable,
 123         // because "x" maybe invariant.
 124         ( !iv->is_loop_iv() )
 125       ) {
 126       return true;
 127     } else {
 128       return false;
 129     }
 130 }
 131 //------------------------------Ideal------------------------------------------
 132 Node *SubINode::Ideal(PhaseGVN *phase, bool can_reshape){
 133   Node *in1 = in(1);
 134   Node *in2 = in(2);
 135   uint op1 = in1->Opcode();
 136   uint op2 = in2->Opcode();
 137 
 138 #ifdef ASSERT
 139   // Check for dead loop
 140   if( phase->eqv( in1, this ) || phase->eqv( in2, this ) ||
 141       ( op1 == Op_AddI || op1 == Op_SubI ) &&
 142       ( phase->eqv( in1->in(1), this ) || phase->eqv( in1->in(2), this ) ||
 143         phase->eqv( in1->in(1), in1  ) || phase->eqv( in1->in(2), in1 ) ) )
 144     assert(false, "dead loop in SubINode::Ideal");
 145 #endif
 146 
 147   const Type *t2 = phase->type( in2 );
 148   if( t2 == Type::TOP ) return NULL;
 149   // Convert "x-c0" into "x+ -c0".
 150   if( t2->base() == Type::Int ){        // Might be bottom or top...
 151     const TypeInt *i = t2->is_int();
 152     if( i->is_con() )
 153       return new (phase->C) AddINode(in1, phase->intcon(-i->get_con()));
 154   }
 155 
 156   // Convert "(x+c0) - y" into (x-y) + c0"
 157   // Do not collapse (x+c0)-y if "+" is a loop increment or
 158   // if "y" is a loop induction variable.
 159   if( op1 == Op_AddI && ok_to_convert(in1, in2) ) {
 160     const Type *tadd = phase->type( in1->in(2) );
 161     if( tadd->singleton() && tadd != Type::TOP ) {
 162       Node *sub2 = phase->transform( new (phase->C) SubINode( in1->in(1), in2 ));
 163       return new (phase->C) AddINode( sub2, in1->in(2) );
 164     }
 165   }
 166 
 167 
 168   // Convert "x - (y+c0)" into "(x-y) - c0"
 169   // Need the same check as in above optimization but reversed.
 170   if (op2 == Op_AddI && ok_to_convert(in2, in1)) {
 171     Node* in21 = in2->in(1);
 172     Node* in22 = in2->in(2);
 173     const TypeInt* tcon = phase->type(in22)->isa_int();
 174     if (tcon != NULL && tcon->is_con()) {
 175       Node* sub2 = phase->transform( new (phase->C) SubINode(in1, in21) );
 176       Node* neg_c0 = phase->intcon(- tcon->get_con());
 177       return new (phase->C) AddINode(sub2, neg_c0);
 178     }
 179   }
 180 
 181   const Type *t1 = phase->type( in1 );
 182   if( t1 == Type::TOP ) return NULL;
 183 
 184 #ifdef ASSERT
 185   // Check for dead loop
 186   if( ( op2 == Op_AddI || op2 == Op_SubI ) &&
 187       ( phase->eqv( in2->in(1), this ) || phase->eqv( in2->in(2), this ) ||
 188         phase->eqv( in2->in(1), in2  ) || phase->eqv( in2->in(2), in2  ) ) )
 189     assert(false, "dead loop in SubINode::Ideal");
 190 #endif
 191 
 192   // Convert "x - (x+y)" into "-y"
 193   if( op2 == Op_AddI &&
 194       phase->eqv( in1, in2->in(1) ) )
 195     return new (phase->C) SubINode( phase->intcon(0),in2->in(2));
 196   // Convert "(x-y) - x" into "-y"
 197   if( op1 == Op_SubI &&
 198       phase->eqv( in1->in(1), in2 ) )
 199     return new (phase->C) SubINode( phase->intcon(0),in1->in(2));
 200   // Convert "x - (y+x)" into "-y"
 201   if( op2 == Op_AddI &&
 202       phase->eqv( in1, in2->in(2) ) )
 203     return new (phase->C) SubINode( phase->intcon(0),in2->in(1));
 204 
 205   // Convert "0 - (x-y)" into "y-x"
 206   if( t1 == TypeInt::ZERO && op2 == Op_SubI )
 207     return new (phase->C) SubINode( in2->in(2), in2->in(1) );
 208 
 209   // Convert "0 - (x+con)" into "-con-x"
 210   jint con;
 211   if( t1 == TypeInt::ZERO && op2 == Op_AddI &&
 212       (con = in2->in(2)->find_int_con(0)) != 0 )
 213     return new (phase->C) SubINode( phase->intcon(-con), in2->in(1) );
 214 
 215   // Convert "(X+A) - (X+B)" into "A - B"
 216   if( op1 == Op_AddI && op2 == Op_AddI && in1->in(1) == in2->in(1) )
 217     return new (phase->C) SubINode( in1->in(2), in2->in(2) );
 218 
 219   // Convert "(A+X) - (B+X)" into "A - B"
 220   if( op1 == Op_AddI && op2 == Op_AddI && in1->in(2) == in2->in(2) )
 221     return new (phase->C) SubINode( in1->in(1), in2->in(1) );
 222 
 223   // Convert "(A+X) - (X+B)" into "A - B"
 224   if( op1 == Op_AddI && op2 == Op_AddI && in1->in(2) == in2->in(1) )
 225     return new (phase->C) SubINode( in1->in(1), in2->in(2) );
 226 
 227   // Convert "(X+A) - (B+X)" into "A - B"
 228   if( op1 == Op_AddI && op2 == Op_AddI && in1->in(1) == in2->in(2) )
 229     return new (phase->C) SubINode( in1->in(2), in2->in(1) );
 230 
 231   // Convert "A-(B-C)" into (A+C)-B", since add is commutative and generally
 232   // nicer to optimize than subtract.
 233   if( op2 == Op_SubI && in2->outcnt() == 1) {
 234     Node *add1 = phase->transform( new (phase->C) AddINode( in1, in2->in(2) ) );
 235     return new (phase->C) SubINode( add1, in2->in(1) );
 236   }
 237 
 238   return NULL;
 239 }
 240 
 241 //------------------------------sub--------------------------------------------
 242 // A subtract node differences it's two inputs.
 243 const Type *SubINode::sub( const Type *t1, const Type *t2 ) const {
 244   const TypeInt *r0 = t1->is_int(); // Handy access
 245   const TypeInt *r1 = t2->is_int();
 246   int32 lo = r0->_lo - r1->_hi;
 247   int32 hi = r0->_hi - r1->_lo;
 248 
 249   // We next check for 32-bit overflow.
 250   // If that happens, we just assume all integers are possible.
 251   if( (((r0->_lo ^ r1->_hi) >= 0) ||    // lo ends have same signs OR
 252        ((r0->_lo ^      lo) >= 0)) &&   // lo results have same signs AND
 253       (((r0->_hi ^ r1->_lo) >= 0) ||    // hi ends have same signs OR
 254        ((r0->_hi ^      hi) >= 0)) )    // hi results have same signs
 255     return TypeInt::make(lo,hi,MAX2(r0->_widen,r1->_widen));
 256   else                          // Overflow; assume all integers
 257     return TypeInt::INT;
 258 }
 259 
 260 //=============================================================================
 261 //------------------------------Ideal------------------------------------------
 262 Node *SubLNode::Ideal(PhaseGVN *phase, bool can_reshape) {
 263   Node *in1 = in(1);
 264   Node *in2 = in(2);
 265   uint op1 = in1->Opcode();
 266   uint op2 = in2->Opcode();
 267 
 268 #ifdef ASSERT
 269   // Check for dead loop
 270   if( phase->eqv( in1, this ) || phase->eqv( in2, this ) ||
 271       ( op1 == Op_AddL || op1 == Op_SubL ) &&
 272       ( phase->eqv( in1->in(1), this ) || phase->eqv( in1->in(2), this ) ||
 273         phase->eqv( in1->in(1), in1  ) || phase->eqv( in1->in(2), in1  ) ) )
 274     assert(false, "dead loop in SubLNode::Ideal");
 275 #endif
 276 
 277   if( phase->type( in2 ) == Type::TOP ) return NULL;
 278   const TypeLong *i = phase->type( in2 )->isa_long();
 279   // Convert "x-c0" into "x+ -c0".
 280   if( i &&                      // Might be bottom or top...
 281       i->is_con() )
 282     return new (phase->C) AddLNode(in1, phase->longcon(-i->get_con()));
 283 
 284   // Convert "(x+c0) - y" into (x-y) + c0"
 285   // Do not collapse (x+c0)-y if "+" is a loop increment or
 286   // if "y" is a loop induction variable.
 287   if( op1 == Op_AddL && ok_to_convert(in1, in2) ) {
 288     Node *in11 = in1->in(1);
 289     const Type *tadd = phase->type( in1->in(2) );
 290     if( tadd->singleton() && tadd != Type::TOP ) {
 291       Node *sub2 = phase->transform( new (phase->C) SubLNode( in11, in2 ));
 292       return new (phase->C) AddLNode( sub2, in1->in(2) );
 293     }
 294   }
 295 
 296   // Convert "x - (y+c0)" into "(x-y) - c0"
 297   // Need the same check as in above optimization but reversed.
 298   if (op2 == Op_AddL && ok_to_convert(in2, in1)) {
 299     Node* in21 = in2->in(1);
 300     Node* in22 = in2->in(2);
 301     const TypeLong* tcon = phase->type(in22)->isa_long();
 302     if (tcon != NULL && tcon->is_con()) {
 303       Node* sub2 = phase->transform( new (phase->C) SubLNode(in1, in21) );
 304       Node* neg_c0 = phase->longcon(- tcon->get_con());
 305       return new (phase->C) AddLNode(sub2, neg_c0);
 306     }
 307   }
 308 
 309   const Type *t1 = phase->type( in1 );
 310   if( t1 == Type::TOP ) return NULL;
 311 
 312 #ifdef ASSERT
 313   // Check for dead loop
 314   if( ( op2 == Op_AddL || op2 == Op_SubL ) &&
 315       ( phase->eqv( in2->in(1), this ) || phase->eqv( in2->in(2), this ) ||
 316         phase->eqv( in2->in(1), in2  ) || phase->eqv( in2->in(2), in2  ) ) )
 317     assert(false, "dead loop in SubLNode::Ideal");
 318 #endif
 319 
 320   // Convert "x - (x+y)" into "-y"
 321   if( op2 == Op_AddL &&
 322       phase->eqv( in1, in2->in(1) ) )
 323     return new (phase->C) SubLNode( phase->makecon(TypeLong::ZERO), in2->in(2));
 324   // Convert "x - (y+x)" into "-y"
 325   if( op2 == Op_AddL &&
 326       phase->eqv( in1, in2->in(2) ) )
 327     return new (phase->C) SubLNode( phase->makecon(TypeLong::ZERO),in2->in(1));
 328 
 329   // Convert "0 - (x-y)" into "y-x"
 330   if( phase->type( in1 ) == TypeLong::ZERO && op2 == Op_SubL )
 331     return new (phase->C) SubLNode( in2->in(2), in2->in(1) );
 332 
 333   // Convert "(X+A) - (X+B)" into "A - B"
 334   if( op1 == Op_AddL && op2 == Op_AddL && in1->in(1) == in2->in(1) )
 335     return new (phase->C) SubLNode( in1->in(2), in2->in(2) );
 336 
 337   // Convert "(A+X) - (B+X)" into "A - B"
 338   if( op1 == Op_AddL && op2 == Op_AddL && in1->in(2) == in2->in(2) )
 339     return new (phase->C) SubLNode( in1->in(1), in2->in(1) );
 340 
 341   // Convert "A-(B-C)" into (A+C)-B"
 342   if( op2 == Op_SubL && in2->outcnt() == 1) {
 343     Node *add1 = phase->transform( new (phase->C) AddLNode( in1, in2->in(2) ) );
 344     return new (phase->C) SubLNode( add1, in2->in(1) );
 345   }
 346 
 347   return NULL;
 348 }
 349 
 350 //------------------------------sub--------------------------------------------
 351 // A subtract node differences it's two inputs.
 352 const Type *SubLNode::sub( const Type *t1, const Type *t2 ) const {
 353   const TypeLong *r0 = t1->is_long(); // Handy access
 354   const TypeLong *r1 = t2->is_long();
 355   jlong lo = r0->_lo - r1->_hi;
 356   jlong hi = r0->_hi - r1->_lo;
 357 
 358   // We next check for 32-bit overflow.
 359   // If that happens, we just assume all integers are possible.
 360   if( (((r0->_lo ^ r1->_hi) >= 0) ||    // lo ends have same signs OR
 361        ((r0->_lo ^      lo) >= 0)) &&   // lo results have same signs AND
 362       (((r0->_hi ^ r1->_lo) >= 0) ||    // hi ends have same signs OR
 363        ((r0->_hi ^      hi) >= 0)) )    // hi results have same signs
 364     return TypeLong::make(lo,hi,MAX2(r0->_widen,r1->_widen));
 365   else                          // Overflow; assume all integers
 366     return TypeLong::LONG;
 367 }
 368 
 369 //=============================================================================
 370 //------------------------------Value------------------------------------------
 371 // A subtract node differences its two inputs.
 372 const Type *SubFPNode::Value( PhaseTransform *phase ) const {
 373   const Node* in1 = in(1);
 374   const Node* in2 = in(2);
 375   // Either input is TOP ==> the result is TOP
 376   const Type* t1 = (in1 == this) ? Type::TOP : phase->type(in1);
 377   if( t1 == Type::TOP ) return Type::TOP;
 378   const Type* t2 = (in2 == this) ? Type::TOP : phase->type(in2);
 379   if( t2 == Type::TOP ) return Type::TOP;
 380 
 381   // if both operands are infinity of same sign, the result is NaN; do
 382   // not replace with zero
 383   if( (t1->is_finite() && t2->is_finite()) ) {
 384     if( phase->eqv(in1, in2) ) return add_id();
 385   }
 386 
 387   // Either input is BOTTOM ==> the result is the local BOTTOM
 388   const Type *bot = bottom_type();
 389   if( (t1 == bot) || (t2 == bot) ||
 390       (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
 391     return bot;
 392 
 393   return sub(t1,t2);            // Local flavor of type subtraction
 394 }
 395 
 396 
 397 //=============================================================================
 398 //------------------------------Ideal------------------------------------------
 399 Node *SubFNode::Ideal(PhaseGVN *phase, bool can_reshape) {
 400   const Type *t2 = phase->type( in(2) );
 401   // Convert "x-c0" into "x+ -c0".
 402   if( t2->base() == Type::FloatCon ) {  // Might be bottom or top...
 403     // return new (phase->C, 3) AddFNode(in(1), phase->makecon( TypeF::make(-t2->getf()) ) );
 404   }
 405 
 406   // Not associative because of boundary conditions (infinity)
 407   if( IdealizedNumerics && !phase->C->method()->is_strict() ) {
 408     // Convert "x - (x+y)" into "-y"
 409     if( in(2)->is_Add() &&
 410         phase->eqv(in(1),in(2)->in(1) ) )
 411       return new (phase->C) SubFNode( phase->makecon(TypeF::ZERO),in(2)->in(2));
 412   }
 413 
 414   // Cannot replace 0.0-X with -X because a 'fsub' bytecode computes
 415   // 0.0-0.0 as +0.0, while a 'fneg' bytecode computes -0.0.
 416   //if( phase->type(in(1)) == TypeF::ZERO )
 417   //return new (phase->C, 2) NegFNode(in(2));
 418 
 419   return NULL;
 420 }
 421 
 422 //------------------------------sub--------------------------------------------
 423 // A subtract node differences its two inputs.
 424 const Type *SubFNode::sub( const Type *t1, const Type *t2 ) const {
 425   // no folding if one of operands is infinity or NaN, do not do constant folding
 426   if( g_isfinite(t1->getf()) && g_isfinite(t2->getf()) ) {
 427     return TypeF::make( t1->getf() - t2->getf() );
 428   }
 429   else if( g_isnan(t1->getf()) ) {
 430     return t1;
 431   }
 432   else if( g_isnan(t2->getf()) ) {
 433     return t2;
 434   }
 435   else {
 436     return Type::FLOAT;
 437   }
 438 }
 439 
 440 //=============================================================================
 441 //------------------------------Ideal------------------------------------------
 442 Node *SubDNode::Ideal(PhaseGVN *phase, bool can_reshape){
 443   const Type *t2 = phase->type( in(2) );
 444   // Convert "x-c0" into "x+ -c0".
 445   if( t2->base() == Type::DoubleCon ) { // Might be bottom or top...
 446     // return new (phase->C, 3) AddDNode(in(1), phase->makecon( TypeD::make(-t2->getd()) ) );
 447   }
 448 
 449   // Not associative because of boundary conditions (infinity)
 450   if( IdealizedNumerics && !phase->C->method()->is_strict() ) {
 451     // Convert "x - (x+y)" into "-y"
 452     if( in(2)->is_Add() &&
 453         phase->eqv(in(1),in(2)->in(1) ) )
 454       return new (phase->C) SubDNode( phase->makecon(TypeD::ZERO),in(2)->in(2));
 455   }
 456 
 457   // Cannot replace 0.0-X with -X because a 'dsub' bytecode computes
 458   // 0.0-0.0 as +0.0, while a 'dneg' bytecode computes -0.0.
 459   //if( phase->type(in(1)) == TypeD::ZERO )
 460   //return new (phase->C, 2) NegDNode(in(2));
 461 
 462   return NULL;
 463 }
 464 
 465 //------------------------------sub--------------------------------------------
 466 // A subtract node differences its two inputs.
 467 const Type *SubDNode::sub( const Type *t1, const Type *t2 ) const {
 468   // no folding if one of operands is infinity or NaN, do not do constant folding
 469   if( g_isfinite(t1->getd()) && g_isfinite(t2->getd()) ) {
 470     return TypeD::make( t1->getd() - t2->getd() );
 471   }
 472   else if( g_isnan(t1->getd()) ) {
 473     return t1;
 474   }
 475   else if( g_isnan(t2->getd()) ) {
 476     return t2;
 477   }
 478   else {
 479     return Type::DOUBLE;
 480   }
 481 }
 482 
 483 //=============================================================================
 484 //------------------------------Idealize---------------------------------------
 485 // Unlike SubNodes, compare must still flatten return value to the
 486 // range -1, 0, 1.
 487 // And optimizations like those for (X + Y) - X fail if overflow happens.
 488 Node *CmpNode::Identity( PhaseTransform *phase ) {
 489   return this;
 490 }
 491 
 492 //=============================================================================
 493 //------------------------------cmp--------------------------------------------
 494 // Simplify a CmpI (compare 2 integers) node, based on local information.
 495 // If both inputs are constants, compare them.
 496 const Type *CmpINode::sub( const Type *t1, const Type *t2 ) const {
 497   const TypeInt *r0 = t1->is_int(); // Handy access
 498   const TypeInt *r1 = t2->is_int();
 499 
 500   if( r0->_hi < r1->_lo )       // Range is always low?
 501     return TypeInt::CC_LT;
 502   else if( r0->_lo > r1->_hi )  // Range is always high?
 503     return TypeInt::CC_GT;
 504 
 505   else if( r0->is_con() && r1->is_con() ) { // comparing constants?
 506     assert(r0->get_con() == r1->get_con(), "must be equal");
 507     return TypeInt::CC_EQ;      // Equal results.
 508   } else if( r0->_hi == r1->_lo ) // Range is never high?
 509     return TypeInt::CC_LE;
 510   else if( r0->_lo == r1->_hi ) // Range is never low?
 511     return TypeInt::CC_GE;
 512   return TypeInt::CC;           // else use worst case results
 513 }
 514 
 515 // Simplify a CmpU (compare 2 integers) node, based on local information.
 516 // If both inputs are constants, compare them.
 517 const Type *CmpUNode::sub( const Type *t1, const Type *t2 ) const {
 518   assert(!t1->isa_ptr(), "obsolete usage of CmpU");
 519 
 520   // comparing two unsigned ints
 521   const TypeInt *r0 = t1->is_int();   // Handy access
 522   const TypeInt *r1 = t2->is_int();
 523 
 524   // Current installed version
 525   // Compare ranges for non-overlap
 526   juint lo0 = r0->_lo;
 527   juint hi0 = r0->_hi;
 528   juint lo1 = r1->_lo;
 529   juint hi1 = r1->_hi;
 530 
 531   // If either one has both negative and positive values,
 532   // it therefore contains both 0 and -1, and since [0..-1] is the
 533   // full unsigned range, the type must act as an unsigned bottom.
 534   bool bot0 = ((jint)(lo0 ^ hi0) < 0);
 535   bool bot1 = ((jint)(lo1 ^ hi1) < 0);
 536 
 537   if (bot0 || bot1) {
 538     // All unsigned values are LE -1 and GE 0.
 539     if (lo0 == 0 && hi0 == 0) {
 540       return TypeInt::CC_LE;            //   0 <= bot
 541     } else if (lo1 == 0 && hi1 == 0) {
 542       return TypeInt::CC_GE;            // bot >= 0
 543     }
 544   } else {
 545     // We can use ranges of the form [lo..hi] if signs are the same.
 546     assert(lo0 <= hi0 && lo1 <= hi1, "unsigned ranges are valid");
 547     // results are reversed, '-' > '+' for unsigned compare
 548     if (hi0 < lo1) {
 549       return TypeInt::CC_LT;            // smaller
 550     } else if (lo0 > hi1) {
 551       return TypeInt::CC_GT;            // greater
 552     } else if (hi0 == lo1 && lo0 == hi1) {
 553       return TypeInt::CC_EQ;            // Equal results
 554     } else if (lo0 >= hi1) {
 555       return TypeInt::CC_GE;
 556     } else if (hi0 <= lo1) {
 557       // Check for special case in Hashtable::get.  (See below.)
 558       if ((jint)lo0 >= 0 && (jint)lo1 >= 0 && is_index_range_check())
 559         return TypeInt::CC_LT;
 560       return TypeInt::CC_LE;
 561     }
 562   }
 563   // Check for special case in Hashtable::get - the hash index is
 564   // mod'ed to the table size so the following range check is useless.
 565   // Check for: (X Mod Y) CmpU Y, where the mod result and Y both have
 566   // to be positive.
 567   // (This is a gross hack, since the sub method never
 568   // looks at the structure of the node in any other case.)
 569   if ((jint)lo0 >= 0 && (jint)lo1 >= 0 && is_index_range_check())
 570     return TypeInt::CC_LT;
 571   return TypeInt::CC;                   // else use worst case results
 572 }
 573 
 574 bool CmpUNode::is_index_range_check() const {
 575   // Check for the "(X ModI Y) CmpU Y" shape
 576   return (in(1)->Opcode() == Op_ModI &&
 577           in(1)->in(2)->eqv_uncast(in(2)));
 578 }
 579 
 580 //------------------------------Idealize---------------------------------------
 581 Node *CmpINode::Ideal( PhaseGVN *phase, bool can_reshape ) {
 582   if (phase->type(in(2))->higher_equal(TypeInt::ZERO)) {
 583     switch (in(1)->Opcode()) {
 584     case Op_CmpL3:              // Collapse a CmpL3/CmpI into a CmpL
 585       return new (phase->C) CmpLNode(in(1)->in(1),in(1)->in(2));
 586     case Op_CmpF3:              // Collapse a CmpF3/CmpI into a CmpF
 587       return new (phase->C) CmpFNode(in(1)->in(1),in(1)->in(2));
 588     case Op_CmpD3:              // Collapse a CmpD3/CmpI into a CmpD
 589       return new (phase->C) CmpDNode(in(1)->in(1),in(1)->in(2));
 590     //case Op_SubI:
 591       // If (x - y) cannot overflow, then ((x - y) <?> 0)
 592       // can be turned into (x <?> y).
 593       // This is handled (with more general cases) by Ideal_sub_algebra.
 594     }
 595   }
 596   return NULL;                  // No change
 597 }
 598 
 599 
 600 //=============================================================================
 601 // Simplify a CmpL (compare 2 longs ) node, based on local information.
 602 // If both inputs are constants, compare them.
 603 const Type *CmpLNode::sub( const Type *t1, const Type *t2 ) const {
 604   const TypeLong *r0 = t1->is_long(); // Handy access
 605   const TypeLong *r1 = t2->is_long();
 606 
 607   if( r0->_hi < r1->_lo )       // Range is always low?
 608     return TypeInt::CC_LT;
 609   else if( r0->_lo > r1->_hi )  // Range is always high?
 610     return TypeInt::CC_GT;
 611 
 612   else if( r0->is_con() && r1->is_con() ) { // comparing constants?
 613     assert(r0->get_con() == r1->get_con(), "must be equal");
 614     return TypeInt::CC_EQ;      // Equal results.
 615   } else if( r0->_hi == r1->_lo ) // Range is never high?
 616     return TypeInt::CC_LE;
 617   else if( r0->_lo == r1->_hi ) // Range is never low?
 618     return TypeInt::CC_GE;
 619   return TypeInt::CC;           // else use worst case results
 620 }
 621 
 622 //=============================================================================
 623 //------------------------------sub--------------------------------------------
 624 // Simplify an CmpP (compare 2 pointers) node, based on local information.
 625 // If both inputs are constants, compare them.
 626 const Type *CmpPNode::sub( const Type *t1, const Type *t2 ) const {
 627   const TypePtr *r0 = t1->is_ptr(); // Handy access
 628   const TypePtr *r1 = t2->is_ptr();
 629 
 630   // Undefined inputs makes for an undefined result
 631   if( TypePtr::above_centerline(r0->_ptr) ||
 632       TypePtr::above_centerline(r1->_ptr) )
 633     return Type::TOP;
 634 
 635   if (r0 == r1 && r0->singleton()) {
 636     // Equal pointer constants (klasses, nulls, etc.)
 637     return TypeInt::CC_EQ;
 638   }
 639 
 640   // See if it is 2 unrelated classes.
 641   const TypeOopPtr* p0 = r0->isa_oopptr();
 642   const TypeOopPtr* p1 = r1->isa_oopptr();
 643   if (p0 && p1) {
 644     Node* in1 = in(1)->uncast();
 645     Node* in2 = in(2)->uncast();
 646     AllocateNode* alloc1 = AllocateNode::Ideal_allocation(in1, NULL);
 647     AllocateNode* alloc2 = AllocateNode::Ideal_allocation(in2, NULL);
 648     if (MemNode::detect_ptr_independence(in1, alloc1, in2, alloc2, NULL)) {
 649       return TypeInt::CC_GT;  // different pointers
 650     }
 651     ciKlass* klass0 = p0->klass();
 652     bool    xklass0 = p0->klass_is_exact();
 653     ciKlass* klass1 = p1->klass();
 654     bool    xklass1 = p1->klass_is_exact();
 655     int kps = (p0->isa_klassptr()?1:0) + (p1->isa_klassptr()?1:0);
 656     if (klass0 && klass1 &&
 657         kps != 1 &&             // both or neither are klass pointers
 658         klass0->is_loaded() && !klass0->is_interface() && // do not trust interfaces
 659         klass1->is_loaded() && !klass1->is_interface() &&
 660         (!klass0->is_obj_array_klass() ||
 661          !klass0->as_obj_array_klass()->base_element_klass()->is_interface()) &&
 662         (!klass1->is_obj_array_klass() ||
 663          !klass1->as_obj_array_klass()->base_element_klass()->is_interface())) {
 664       bool unrelated_classes = false;
 665       // See if neither subclasses the other, or if the class on top
 666       // is precise.  In either of these cases, the compare is known
 667       // to fail if at least one of the pointers is provably not null.
 668       if (klass0->equals(klass1)) {  // if types are unequal but klasses are equal
 669         // Do nothing; we know nothing for imprecise types
 670       } else if (klass0->is_subtype_of(klass1)) {
 671         // If klass1's type is PRECISE, then classes are unrelated.
 672         unrelated_classes = xklass1;
 673       } else if (klass1->is_subtype_of(klass0)) {
 674         // If klass0's type is PRECISE, then classes are unrelated.
 675         unrelated_classes = xklass0;
 676       } else {                  // Neither subtypes the other
 677         unrelated_classes = true;
 678       }
 679       if (unrelated_classes) {
 680         // The oops classes are known to be unrelated. If the joined PTRs of
 681         // two oops is not Null and not Bottom, then we are sure that one
 682         // of the two oops is non-null, and the comparison will always fail.
 683         TypePtr::PTR jp = r0->join_ptr(r1->_ptr);
 684         if (jp != TypePtr::Null && jp != TypePtr::BotPTR) {
 685           return TypeInt::CC_GT;
 686         }
 687       }
 688     }
 689   }
 690 
 691   // Known constants can be compared exactly
 692   // Null can be distinguished from any NotNull pointers
 693   // Unknown inputs makes an unknown result
 694   if( r0->singleton() ) {
 695     intptr_t bits0 = r0->get_con();
 696     if( r1->singleton() )
 697       return bits0 == r1->get_con() ? TypeInt::CC_EQ : TypeInt::CC_GT;
 698     return ( r1->_ptr == TypePtr::NotNull && bits0==0 ) ? TypeInt::CC_GT : TypeInt::CC;
 699   } else if( r1->singleton() ) {
 700     intptr_t bits1 = r1->get_con();
 701     return ( r0->_ptr == TypePtr::NotNull && bits1==0 ) ? TypeInt::CC_GT : TypeInt::CC;
 702   } else
 703     return TypeInt::CC;
 704 }
 705 
 706 static inline Node* isa_java_mirror_load(PhaseGVN* phase, Node* n) {
 707   // Return the klass node for
 708   //   LoadP(AddP(foo:Klass, #java_mirror))
 709   //   or NULL if not matching.
 710   if (n->Opcode() != Op_LoadP) return NULL;
 711 
 712   const TypeInstPtr* tp = phase->type(n)->isa_instptr();
 713   if (!tp || tp->klass() != phase->C->env()->Class_klass()) return NULL;
 714 
 715   Node* adr = n->in(MemNode::Address);
 716   intptr_t off = 0;
 717   Node* k = AddPNode::Ideal_base_and_offset(adr, phase, off);
 718   if (k == NULL)  return NULL;
 719   const TypeKlassPtr* tkp = phase->type(k)->isa_klassptr();
 720   if (!tkp || off != in_bytes(Klass::java_mirror_offset())) return NULL;
 721 
 722   // We've found the klass node of a Java mirror load.
 723   return k;
 724 }
 725 
 726 static inline Node* isa_const_java_mirror(PhaseGVN* phase, Node* n) {
 727   // for ConP(Foo.class) return ConP(Foo.klass)
 728   // otherwise return NULL
 729   if (!n->is_Con()) return NULL;
 730 
 731   const TypeInstPtr* tp = phase->type(n)->isa_instptr();
 732   if (!tp) return NULL;
 733 
 734   ciType* mirror_type = tp->java_mirror_type();
 735   // TypeInstPtr::java_mirror_type() returns non-NULL for compile-
 736   // time Class constants only.
 737   if (!mirror_type) return NULL;
 738 
 739   // x.getClass() == int.class can never be true (for all primitive types)
 740   // Return a ConP(NULL) node for this case.
 741   if (mirror_type->is_classless()) {
 742     return phase->makecon(TypePtr::NULL_PTR);
 743   }
 744 
 745   // return the ConP(Foo.klass)
 746   assert(mirror_type->is_klass(), "mirror_type should represent a Klass*");
 747   return phase->makecon(TypeKlassPtr::make(mirror_type->as_klass()));
 748 }
 749 
 750 //------------------------------Ideal------------------------------------------
 751 // Normalize comparisons between Java mirror loads to compare the klass instead.
 752 //
 753 // Also check for the case of comparing an unknown klass loaded from the primary
 754 // super-type array vs a known klass with no subtypes.  This amounts to
 755 // checking to see an unknown klass subtypes a known klass with no subtypes;
 756 // this only happens on an exact match.  We can shorten this test by 1 load.
 757 Node *CmpPNode::Ideal( PhaseGVN *phase, bool can_reshape ) {
 758   // Normalize comparisons between Java mirrors into comparisons of the low-
 759   // level klass, where a dependent load could be shortened.
 760   //
 761   // The new pattern has a nice effect of matching the same pattern used in the
 762   // fast path of instanceof/checkcast/Class.isInstance(), which allows
 763   // redundant exact type check be optimized away by GVN.
 764   // For example, in
 765   //   if (x.getClass() == Foo.class) {
 766   //     Foo foo = (Foo) x;
 767   //     // ... use a ...
 768   //   }
 769   // a CmpPNode could be shared between if_acmpne and checkcast
 770   {
 771     Node* k1 = isa_java_mirror_load(phase, in(1));
 772     Node* k2 = isa_java_mirror_load(phase, in(2));
 773     Node* conk2 = isa_const_java_mirror(phase, in(2));
 774 
 775     if (k1 && (k2 || conk2)) {
 776       Node* lhs = k1;
 777       Node* rhs = (k2 != NULL) ? k2 : conk2;
 778       this->set_req(1, lhs);
 779       this->set_req(2, rhs);
 780       return this;
 781     }
 782   }
 783 
 784   // Constant pointer on right?
 785   const TypeKlassPtr* t2 = phase->type(in(2))->isa_klassptr();
 786   if (t2 == NULL || !t2->klass_is_exact())
 787     return NULL;
 788   // Get the constant klass we are comparing to.
 789   ciKlass* superklass = t2->klass();
 790 
 791   // Now check for LoadKlass on left.
 792   Node* ldk1 = in(1);
 793   if (ldk1->is_DecodeNKlass()) {
 794     ldk1 = ldk1->in(1);
 795     if (ldk1->Opcode() != Op_LoadNKlass )
 796       return NULL;
 797   } else if (ldk1->Opcode() != Op_LoadKlass )
 798     return NULL;
 799   // Take apart the address of the LoadKlass:
 800   Node* adr1 = ldk1->in(MemNode::Address);
 801   intptr_t con2 = 0;
 802   Node* ldk2 = AddPNode::Ideal_base_and_offset(adr1, phase, con2);
 803   if (ldk2 == NULL)
 804     return NULL;
 805   if (con2 == oopDesc::klass_offset_in_bytes()) {
 806     // We are inspecting an object's concrete class.
 807     // Short-circuit the check if the query is abstract.
 808     if (superklass->is_interface() ||
 809         superklass->is_abstract()) {
 810       // Make it come out always false:
 811       this->set_req(2, phase->makecon(TypePtr::NULL_PTR));
 812       return this;
 813     }
 814   }
 815 
 816   // Check for a LoadKlass from primary supertype array.
 817   // Any nested loadklass from loadklass+con must be from the p.s. array.
 818   if (ldk2->is_DecodeNKlass()) {
 819     // Keep ldk2 as DecodeN since it could be used in CmpP below.
 820     if (ldk2->in(1)->Opcode() != Op_LoadNKlass )
 821       return NULL;
 822   } else if (ldk2->Opcode() != Op_LoadKlass)
 823     return NULL;
 824 
 825   // Verify that we understand the situation
 826   if (con2 != (intptr_t) superklass->super_check_offset())
 827     return NULL;                // Might be element-klass loading from array klass
 828 
 829   // If 'superklass' has no subklasses and is not an interface, then we are
 830   // assured that the only input which will pass the type check is
 831   // 'superklass' itself.
 832   //
 833   // We could be more liberal here, and allow the optimization on interfaces
 834   // which have a single implementor.  This would require us to increase the
 835   // expressiveness of the add_dependency() mechanism.
 836   // %%% Do this after we fix TypeOopPtr:  Deps are expressive enough now.
 837 
 838   // Object arrays must have their base element have no subtypes
 839   while (superklass->is_obj_array_klass()) {
 840     ciType* elem = superklass->as_obj_array_klass()->element_type();
 841     superklass = elem->as_klass();
 842   }
 843   if (superklass->is_instance_klass()) {
 844     ciInstanceKlass* ik = superklass->as_instance_klass();
 845     if (ik->has_subklass() || ik->is_interface())  return NULL;
 846     // Add a dependency if there is a chance that a subclass will be added later.
 847     if (!ik->is_final()) {
 848       phase->C->dependencies()->assert_leaf_type(ik);
 849     }
 850   }
 851 
 852   // Bypass the dependent load, and compare directly
 853   this->set_req(1,ldk2);
 854 
 855   return this;
 856 }
 857 
 858 //=============================================================================
 859 //------------------------------sub--------------------------------------------
 860 // Simplify an CmpN (compare 2 pointers) node, based on local information.
 861 // If both inputs are constants, compare them.
 862 const Type *CmpNNode::sub( const Type *t1, const Type *t2 ) const {
 863   const TypePtr *r0 = t1->make_ptr(); // Handy access
 864   const TypePtr *r1 = t2->make_ptr();
 865 
 866   // Undefined inputs makes for an undefined result
 867   if ((r0 == NULL) || (r1 == NULL) ||
 868       TypePtr::above_centerline(r0->_ptr) ||
 869       TypePtr::above_centerline(r1->_ptr)) {
 870     return Type::TOP;
 871   }
 872   if (r0 == r1 && r0->singleton()) {
 873     // Equal pointer constants (klasses, nulls, etc.)
 874     return TypeInt::CC_EQ;
 875   }
 876 
 877   // See if it is 2 unrelated classes.
 878   const TypeOopPtr* p0 = r0->isa_oopptr();
 879   const TypeOopPtr* p1 = r1->isa_oopptr();
 880   if (p0 && p1) {
 881     ciKlass* klass0 = p0->klass();
 882     bool    xklass0 = p0->klass_is_exact();
 883     ciKlass* klass1 = p1->klass();
 884     bool    xklass1 = p1->klass_is_exact();
 885     int kps = (p0->isa_klassptr()?1:0) + (p1->isa_klassptr()?1:0);
 886     if (klass0 && klass1 &&
 887         kps != 1 &&             // both or neither are klass pointers
 888         !klass0->is_interface() && // do not trust interfaces
 889         !klass1->is_interface()) {
 890       bool unrelated_classes = false;
 891       // See if neither subclasses the other, or if the class on top
 892       // is precise.  In either of these cases, the compare is known
 893       // to fail if at least one of the pointers is provably not null.
 894       if (klass0->equals(klass1)) { // if types are unequal but klasses are equal
 895         // Do nothing; we know nothing for imprecise types
 896       } else if (klass0->is_subtype_of(klass1)) {
 897         // If klass1's type is PRECISE, then classes are unrelated.
 898         unrelated_classes = xklass1;
 899       } else if (klass1->is_subtype_of(klass0)) {
 900         // If klass0's type is PRECISE, then classes are unrelated.
 901         unrelated_classes = xklass0;
 902       } else {                  // Neither subtypes the other
 903         unrelated_classes = true;
 904       }
 905       if (unrelated_classes) {
 906         // The oops classes are known to be unrelated. If the joined PTRs of
 907         // two oops is not Null and not Bottom, then we are sure that one
 908         // of the two oops is non-null, and the comparison will always fail.
 909         TypePtr::PTR jp = r0->join_ptr(r1->_ptr);
 910         if (jp != TypePtr::Null && jp != TypePtr::BotPTR) {
 911           return TypeInt::CC_GT;
 912         }
 913       }
 914     }
 915   }
 916 
 917   // Known constants can be compared exactly
 918   // Null can be distinguished from any NotNull pointers
 919   // Unknown inputs makes an unknown result
 920   if( r0->singleton() ) {
 921     intptr_t bits0 = r0->get_con();
 922     if( r1->singleton() )
 923       return bits0 == r1->get_con() ? TypeInt::CC_EQ : TypeInt::CC_GT;
 924     return ( r1->_ptr == TypePtr::NotNull && bits0==0 ) ? TypeInt::CC_GT : TypeInt::CC;
 925   } else if( r1->singleton() ) {
 926     intptr_t bits1 = r1->get_con();
 927     return ( r0->_ptr == TypePtr::NotNull && bits1==0 ) ? TypeInt::CC_GT : TypeInt::CC;
 928   } else
 929     return TypeInt::CC;
 930 }
 931 
 932 //------------------------------Ideal------------------------------------------
 933 Node *CmpNNode::Ideal( PhaseGVN *phase, bool can_reshape ) {
 934   return NULL;
 935 }
 936 
 937 //=============================================================================
 938 //------------------------------Value------------------------------------------
 939 // Simplify an CmpF (compare 2 floats ) node, based on local information.
 940 // If both inputs are constants, compare them.
 941 const Type *CmpFNode::Value( PhaseTransform *phase ) const {
 942   const Node* in1 = in(1);
 943   const Node* in2 = in(2);
 944   // Either input is TOP ==> the result is TOP
 945   const Type* t1 = (in1 == this) ? Type::TOP : phase->type(in1);
 946   if( t1 == Type::TOP ) return Type::TOP;
 947   const Type* t2 = (in2 == this) ? Type::TOP : phase->type(in2);
 948   if( t2 == Type::TOP ) return Type::TOP;
 949 
 950   // Not constants?  Don't know squat - even if they are the same
 951   // value!  If they are NaN's they compare to LT instead of EQ.
 952   const TypeF *tf1 = t1->isa_float_constant();
 953   const TypeF *tf2 = t2->isa_float_constant();
 954   if( !tf1 || !tf2 ) return TypeInt::CC;
 955 
 956   // This implements the Java bytecode fcmpl, so unordered returns -1.
 957   if( tf1->is_nan() || tf2->is_nan() )
 958     return TypeInt::CC_LT;
 959 
 960   if( tf1->_f < tf2->_f ) return TypeInt::CC_LT;
 961   if( tf1->_f > tf2->_f ) return TypeInt::CC_GT;
 962   assert( tf1->_f == tf2->_f, "do not understand FP behavior" );
 963   return TypeInt::CC_EQ;
 964 }
 965 
 966 
 967 //=============================================================================
 968 //------------------------------Value------------------------------------------
 969 // Simplify an CmpD (compare 2 doubles ) node, based on local information.
 970 // If both inputs are constants, compare them.
 971 const Type *CmpDNode::Value( PhaseTransform *phase ) const {
 972   const Node* in1 = in(1);
 973   const Node* in2 = in(2);
 974   // Either input is TOP ==> the result is TOP
 975   const Type* t1 = (in1 == this) ? Type::TOP : phase->type(in1);
 976   if( t1 == Type::TOP ) return Type::TOP;
 977   const Type* t2 = (in2 == this) ? Type::TOP : phase->type(in2);
 978   if( t2 == Type::TOP ) return Type::TOP;
 979 
 980   // Not constants?  Don't know squat - even if they are the same
 981   // value!  If they are NaN's they compare to LT instead of EQ.
 982   const TypeD *td1 = t1->isa_double_constant();
 983   const TypeD *td2 = t2->isa_double_constant();
 984   if( !td1 || !td2 ) return TypeInt::CC;
 985 
 986   // This implements the Java bytecode dcmpl, so unordered returns -1.
 987   if( td1->is_nan() || td2->is_nan() )
 988     return TypeInt::CC_LT;
 989 
 990   if( td1->_d < td2->_d ) return TypeInt::CC_LT;
 991   if( td1->_d > td2->_d ) return TypeInt::CC_GT;
 992   assert( td1->_d == td2->_d, "do not understand FP behavior" );
 993   return TypeInt::CC_EQ;
 994 }
 995 
 996 //------------------------------Ideal------------------------------------------
 997 Node *CmpDNode::Ideal(PhaseGVN *phase, bool can_reshape){
 998   // Check if we can change this to a CmpF and remove a ConvD2F operation.
 999   // Change  (CMPD (F2D (float)) (ConD value))
1000   // To      (CMPF      (float)  (ConF value))
1001   // Valid when 'value' does not lose precision as a float.
1002   // Benefits: eliminates conversion, does not require 24-bit mode
1003 
1004   // NaNs prevent commuting operands.  This transform works regardless of the
1005   // order of ConD and ConvF2D inputs by preserving the original order.
1006   int idx_f2d = 1;              // ConvF2D on left side?
1007   if( in(idx_f2d)->Opcode() != Op_ConvF2D )
1008     idx_f2d = 2;                // No, swap to check for reversed args
1009   int idx_con = 3-idx_f2d;      // Check for the constant on other input
1010 
1011   if( ConvertCmpD2CmpF &&
1012       in(idx_f2d)->Opcode() == Op_ConvF2D &&
1013       in(idx_con)->Opcode() == Op_ConD ) {
1014     const TypeD *t2 = in(idx_con)->bottom_type()->is_double_constant();
1015     double t2_value_as_double = t2->_d;
1016     float  t2_value_as_float  = (float)t2_value_as_double;
1017     if( t2_value_as_double == (double)t2_value_as_float ) {
1018       // Test value can be represented as a float
1019       // Eliminate the conversion to double and create new comparison
1020       Node *new_in1 = in(idx_f2d)->in(1);
1021       Node *new_in2 = phase->makecon( TypeF::make(t2_value_as_float) );
1022       if( idx_f2d != 1 ) {      // Must flip args to match original order
1023         Node *tmp = new_in1;
1024         new_in1 = new_in2;
1025         new_in2 = tmp;
1026       }
1027       CmpFNode *new_cmp = (Opcode() == Op_CmpD3)
1028         ? new (phase->C) CmpF3Node( new_in1, new_in2 )
1029         : new (phase->C) CmpFNode ( new_in1, new_in2 ) ;
1030       return new_cmp;           // Changed to CmpFNode
1031     }
1032     // Testing value required the precision of a double
1033   }
1034   return NULL;                  // No change
1035 }
1036 
1037 
1038 //=============================================================================
1039 //------------------------------cc2logical-------------------------------------
1040 // Convert a condition code type to a logical type
1041 const Type *BoolTest::cc2logical( const Type *CC ) const {
1042   if( CC == Type::TOP ) return Type::TOP;
1043   if( CC->base() != Type::Int ) return TypeInt::BOOL; // Bottom or worse
1044   const TypeInt *ti = CC->is_int();
1045   if( ti->is_con() ) {          // Only 1 kind of condition codes set?
1046     // Match low order 2 bits
1047     int tmp = ((ti->get_con()&3) == (_test&3)) ? 1 : 0;
1048     if( _test & 4 ) tmp = 1-tmp;     // Optionally complement result
1049     return TypeInt::make(tmp);       // Boolean result
1050   }
1051 
1052   if( CC == TypeInt::CC_GE ) {
1053     if( _test == ge ) return TypeInt::ONE;
1054     if( _test == lt ) return TypeInt::ZERO;
1055   }
1056   if( CC == TypeInt::CC_LE ) {
1057     if( _test == le ) return TypeInt::ONE;
1058     if( _test == gt ) return TypeInt::ZERO;
1059   }
1060 
1061   return TypeInt::BOOL;
1062 }
1063 
1064 //------------------------------dump_spec-------------------------------------
1065 // Print special per-node info
1066 #ifndef PRODUCT
1067 void BoolTest::dump_on(outputStream *st) const {
1068   const char *msg[] = {"eq","gt","of","lt","ne","le","nof","ge"};
1069   st->print(msg[_test]);
1070 }
1071 #endif
1072 
1073 //=============================================================================
1074 uint BoolNode::hash() const { return (Node::hash() << 3)|(_test._test+1); }
1075 uint BoolNode::size_of() const { return sizeof(BoolNode); }
1076 
1077 //------------------------------operator==-------------------------------------
1078 uint BoolNode::cmp( const Node &n ) const {
1079   const BoolNode *b = (const BoolNode *)&n; // Cast up
1080   return (_test._test == b->_test._test);
1081 }
1082 
1083 //-------------------------------make_predicate--------------------------------
1084 Node* BoolNode::make_predicate(Node* test_value, PhaseGVN* phase) {
1085   if (test_value->is_Con())   return test_value;
1086   if (test_value->is_Bool())  return test_value;
1087   Compile* C = phase->C;
1088   if (test_value->is_CMove() &&
1089       test_value->in(CMoveNode::Condition)->is_Bool()) {
1090     BoolNode*   bol   = test_value->in(CMoveNode::Condition)->as_Bool();
1091     const Type* ftype = phase->type(test_value->in(CMoveNode::IfFalse));
1092     const Type* ttype = phase->type(test_value->in(CMoveNode::IfTrue));
1093     if (ftype == TypeInt::ZERO && !TypeInt::ZERO->higher_equal(ttype)) {
1094       return bol;
1095     } else if (ttype == TypeInt::ZERO && !TypeInt::ZERO->higher_equal(ftype)) {
1096       return phase->transform( bol->negate(phase) );
1097     }
1098     // Else fall through.  The CMove gets in the way of the test.
1099     // It should be the case that make_predicate(bol->as_int_value()) == bol.
1100   }
1101   Node* cmp = new (C) CmpINode(test_value, phase->intcon(0));
1102   cmp = phase->transform(cmp);
1103   Node* bol = new (C) BoolNode(cmp, BoolTest::ne);
1104   return phase->transform(bol);
1105 }
1106 
1107 //--------------------------------as_int_value---------------------------------
1108 Node* BoolNode::as_int_value(PhaseGVN* phase) {
1109   // Inverse to make_predicate.  The CMove probably boils down to a Conv2B.
1110   Node* cmov = CMoveNode::make(phase->C, NULL, this,
1111                                phase->intcon(0), phase->intcon(1),
1112                                TypeInt::BOOL);
1113   return phase->transform(cmov);
1114 }
1115 
1116 //----------------------------------negate-------------------------------------
1117 BoolNode* BoolNode::negate(PhaseGVN* phase) {
1118   Compile* C = phase->C;
1119   return new (C) BoolNode(in(1), _test.negate());
1120 }
1121 
1122 
1123 //------------------------------Ideal------------------------------------------
1124 Node *BoolNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1125   // Change "bool tst (cmp con x)" into "bool ~tst (cmp x con)".
1126   // This moves the constant to the right.  Helps value-numbering.
1127   Node *cmp = in(1);
1128   if( !cmp->is_Sub() ) return NULL;
1129   int cop = cmp->Opcode();
1130   if( cop == Op_FastLock || cop == Op_FastUnlock) return NULL;
1131   Node *cmp1 = cmp->in(1);
1132   Node *cmp2 = cmp->in(2);
1133   if( !cmp1 ) return NULL;
1134 
1135   if (_test._test == BoolTest::overflow || _test._test == BoolTest::no_overflow) {
1136     return NULL;
1137   }
1138 
1139   // Constant on left?
1140   Node *con = cmp1;
1141   uint op2 = cmp2->Opcode();
1142   // Move constants to the right of compare's to canonicalize.
1143   // Do not muck with Opaque1 nodes, as this indicates a loop
1144   // guard that cannot change shape.
1145   if( con->is_Con() && !cmp2->is_Con() && op2 != Op_Opaque1 &&
1146       // Because of NaN's, CmpD and CmpF are not commutative
1147       cop != Op_CmpD && cop != Op_CmpF &&
1148       // Protect against swapping inputs to a compare when it is used by a
1149       // counted loop exit, which requires maintaining the loop-limit as in(2)
1150       !is_counted_loop_exit_test() ) {
1151     // Ok, commute the constant to the right of the cmp node.
1152     // Clone the Node, getting a new Node of the same class
1153     cmp = cmp->clone();
1154     // Swap inputs to the clone
1155     cmp->swap_edges(1, 2);
1156     cmp = phase->transform( cmp );
1157     return new (phase->C) BoolNode( cmp, _test.commute() );
1158   }
1159 
1160   // Change "bool eq/ne (cmp (xor X 1) 0)" into "bool ne/eq (cmp X 0)".
1161   // The XOR-1 is an idiom used to flip the sense of a bool.  We flip the
1162   // test instead.
1163   int cmp1_op = cmp1->Opcode();
1164   const TypeInt* cmp2_type = phase->type(cmp2)->isa_int();
1165   if (cmp2_type == NULL)  return NULL;
1166   Node* j_xor = cmp1;
1167   if( cmp2_type == TypeInt::ZERO &&
1168       cmp1_op == Op_XorI &&
1169       j_xor->in(1) != j_xor &&          // An xor of itself is dead
1170       phase->type( j_xor->in(1) ) == TypeInt::BOOL &&
1171       phase->type( j_xor->in(2) ) == TypeInt::ONE &&
1172       (_test._test == BoolTest::eq ||
1173        _test._test == BoolTest::ne) ) {
1174     Node *ncmp = phase->transform(new (phase->C) CmpINode(j_xor->in(1),cmp2));
1175     return new (phase->C) BoolNode( ncmp, _test.negate() );
1176   }
1177 
1178   // Change "bool eq/ne (cmp (Conv2B X) 0)" into "bool eq/ne (cmp X 0)".
1179   // This is a standard idiom for branching on a boolean value.
1180   Node *c2b = cmp1;
1181   if( cmp2_type == TypeInt::ZERO &&
1182       cmp1_op == Op_Conv2B &&
1183       (_test._test == BoolTest::eq ||
1184        _test._test == BoolTest::ne) ) {
1185     Node *ncmp = phase->transform(phase->type(c2b->in(1))->isa_int()
1186        ? (Node*)new (phase->C) CmpINode(c2b->in(1),cmp2)
1187        : (Node*)new (phase->C) CmpPNode(c2b->in(1),phase->makecon(TypePtr::NULL_PTR))
1188     );
1189     return new (phase->C) BoolNode( ncmp, _test._test );
1190   }
1191 
1192   // Comparing a SubI against a zero is equal to comparing the SubI
1193   // arguments directly.  This only works for eq and ne comparisons
1194   // due to possible integer overflow.
1195   if ((_test._test == BoolTest::eq || _test._test == BoolTest::ne) &&
1196         (cop == Op_CmpI) &&
1197         (cmp1->Opcode() == Op_SubI) &&
1198         ( cmp2_type == TypeInt::ZERO ) ) {
1199     Node *ncmp = phase->transform( new (phase->C) CmpINode(cmp1->in(1),cmp1->in(2)));
1200     return new (phase->C) BoolNode( ncmp, _test._test );
1201   }
1202 
1203   // Change (-A vs 0) into (A vs 0) by commuting the test.  Disallow in the
1204   // most general case because negating 0x80000000 does nothing.  Needed for
1205   // the CmpF3/SubI/CmpI idiom.
1206   if( cop == Op_CmpI &&
1207       cmp1->Opcode() == Op_SubI &&
1208       cmp2_type == TypeInt::ZERO &&
1209       phase->type( cmp1->in(1) ) == TypeInt::ZERO &&
1210       phase->type( cmp1->in(2) )->higher_equal(TypeInt::SYMINT) ) {
1211     Node *ncmp = phase->transform( new (phase->C) CmpINode(cmp1->in(2),cmp2));
1212     return new (phase->C) BoolNode( ncmp, _test.commute() );
1213   }
1214 
1215   //  The transformation below is not valid for either signed or unsigned
1216   //  comparisons due to wraparound concerns at MAX_VALUE and MIN_VALUE.
1217   //  This transformation can be resurrected when we are able to
1218   //  make inferences about the range of values being subtracted from
1219   //  (or added to) relative to the wraparound point.
1220   //
1221   //    // Remove +/-1's if possible.
1222   //    // "X <= Y-1" becomes "X <  Y"
1223   //    // "X+1 <= Y" becomes "X <  Y"
1224   //    // "X <  Y+1" becomes "X <= Y"
1225   //    // "X-1 <  Y" becomes "X <= Y"
1226   //    // Do not this to compares off of the counted-loop-end.  These guys are
1227   //    // checking the trip counter and they want to use the post-incremented
1228   //    // counter.  If they use the PRE-incremented counter, then the counter has
1229   //    // to be incremented in a private block on a loop backedge.
1230   //    if( du && du->cnt(this) && du->out(this)[0]->Opcode() == Op_CountedLoopEnd )
1231   //      return NULL;
1232   //  #ifndef PRODUCT
1233   //    // Do not do this in a wash GVN pass during verification.
1234   //    // Gets triggered by too many simple optimizations to be bothered with
1235   //    // re-trying it again and again.
1236   //    if( !phase->allow_progress() ) return NULL;
1237   //  #endif
1238   //    // Not valid for unsigned compare because of corner cases in involving zero.
1239   //    // For example, replacing "X-1 <u Y" with "X <=u Y" fails to throw an
1240   //    // exception in case X is 0 (because 0-1 turns into 4billion unsigned but
1241   //    // "0 <=u Y" is always true).
1242   //    if( cmp->Opcode() == Op_CmpU ) return NULL;
1243   //    int cmp2_op = cmp2->Opcode();
1244   //    if( _test._test == BoolTest::le ) {
1245   //      if( cmp1_op == Op_AddI &&
1246   //          phase->type( cmp1->in(2) ) == TypeInt::ONE )
1247   //        return clone_cmp( cmp, cmp1->in(1), cmp2, phase, BoolTest::lt );
1248   //      else if( cmp2_op == Op_AddI &&
1249   //         phase->type( cmp2->in(2) ) == TypeInt::MINUS_1 )
1250   //        return clone_cmp( cmp, cmp1, cmp2->in(1), phase, BoolTest::lt );
1251   //    } else if( _test._test == BoolTest::lt ) {
1252   //      if( cmp1_op == Op_AddI &&
1253   //          phase->type( cmp1->in(2) ) == TypeInt::MINUS_1 )
1254   //        return clone_cmp( cmp, cmp1->in(1), cmp2, phase, BoolTest::le );
1255   //      else if( cmp2_op == Op_AddI &&
1256   //         phase->type( cmp2->in(2) ) == TypeInt::ONE )
1257   //        return clone_cmp( cmp, cmp1, cmp2->in(1), phase, BoolTest::le );
1258   //    }
1259 
1260   return NULL;
1261 }
1262 
1263 //------------------------------Value------------------------------------------
1264 // Simplify a Bool (convert condition codes to boolean (1 or 0)) node,
1265 // based on local information.   If the input is constant, do it.
1266 const Type *BoolNode::Value( PhaseTransform *phase ) const {
1267   return _test.cc2logical( phase->type( in(1) ) );
1268 }
1269 
1270 //------------------------------dump_spec--------------------------------------
1271 // Dump special per-node info
1272 #ifndef PRODUCT
1273 void BoolNode::dump_spec(outputStream *st) const {
1274   st->print("[");
1275   _test.dump_on(st);
1276   st->print("]");
1277 }
1278 #endif
1279 
1280 //------------------------------is_counted_loop_exit_test--------------------------------------
1281 // Returns true if node is used by a counted loop node.
1282 bool BoolNode::is_counted_loop_exit_test() {
1283   for( DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++ ) {
1284     Node* use = fast_out(i);
1285     if (use->is_CountedLoopEnd()) {
1286       return true;
1287     }
1288   }
1289   return false;
1290 }
1291 
1292 //=============================================================================
1293 //------------------------------Value------------------------------------------
1294 // Compute sqrt
1295 const Type *SqrtDNode::Value( PhaseTransform *phase ) const {
1296   const Type *t1 = phase->type( in(1) );
1297   if( t1 == Type::TOP ) return Type::TOP;
1298   if( t1->base() != Type::DoubleCon ) return Type::DOUBLE;
1299   double d = t1->getd();
1300   if( d < 0.0 ) return Type::DOUBLE;
1301   return TypeD::make( sqrt( d ) );
1302 }
1303 
1304 //=============================================================================
1305 //------------------------------Value------------------------------------------
1306 // Compute cos
1307 const Type *CosDNode::Value( PhaseTransform *phase ) const {
1308   const Type *t1 = phase->type( in(1) );
1309   if( t1 == Type::TOP ) return Type::TOP;
1310   if( t1->base() != Type::DoubleCon ) return Type::DOUBLE;
1311   double d = t1->getd();
1312   return TypeD::make( StubRoutines::intrinsic_cos( d ) );
1313 }
1314 
1315 //=============================================================================
1316 //------------------------------Value------------------------------------------
1317 // Compute sin
1318 const Type *SinDNode::Value( PhaseTransform *phase ) const {
1319   const Type *t1 = phase->type( in(1) );
1320   if( t1 == Type::TOP ) return Type::TOP;
1321   if( t1->base() != Type::DoubleCon ) return Type::DOUBLE;
1322   double d = t1->getd();
1323   return TypeD::make( StubRoutines::intrinsic_sin( d ) );
1324 }
1325 
1326 //=============================================================================
1327 //------------------------------Value------------------------------------------
1328 // Compute tan
1329 const Type *TanDNode::Value( PhaseTransform *phase ) const {
1330   const Type *t1 = phase->type( in(1) );
1331   if( t1 == Type::TOP ) return Type::TOP;
1332   if( t1->base() != Type::DoubleCon ) return Type::DOUBLE;
1333   double d = t1->getd();
1334   return TypeD::make( StubRoutines::intrinsic_tan( d ) );
1335 }
1336 
1337 //=============================================================================
1338 //------------------------------Value------------------------------------------
1339 // Compute log
1340 const Type *LogDNode::Value( PhaseTransform *phase ) const {
1341   const Type *t1 = phase->type( in(1) );
1342   if( t1 == Type::TOP ) return Type::TOP;
1343   if( t1->base() != Type::DoubleCon ) return Type::DOUBLE;
1344   double d = t1->getd();
1345   return TypeD::make( StubRoutines::intrinsic_log( d ) );
1346 }
1347 
1348 //=============================================================================
1349 //------------------------------Value------------------------------------------
1350 // Compute log10
1351 const Type *Log10DNode::Value( PhaseTransform *phase ) const {
1352   const Type *t1 = phase->type( in(1) );
1353   if( t1 == Type::TOP ) return Type::TOP;
1354   if( t1->base() != Type::DoubleCon ) return Type::DOUBLE;
1355   double d = t1->getd();
1356   return TypeD::make( StubRoutines::intrinsic_log10( d ) );
1357 }
1358 
1359 //=============================================================================
1360 //------------------------------Value------------------------------------------
1361 // Compute exp
1362 const Type *ExpDNode::Value( PhaseTransform *phase ) const {
1363   const Type *t1 = phase->type( in(1) );
1364   if( t1 == Type::TOP ) return Type::TOP;
1365   if( t1->base() != Type::DoubleCon ) return Type::DOUBLE;
1366   double d = t1->getd();
1367   return TypeD::make( StubRoutines::intrinsic_exp( d ) );
1368 }
1369 
1370 
1371 //=============================================================================
1372 //------------------------------Value------------------------------------------
1373 // Compute pow
1374 const Type *PowDNode::Value( PhaseTransform *phase ) const {
1375   const Type *t1 = phase->type( in(1) );
1376   if( t1 == Type::TOP ) return Type::TOP;
1377   if( t1->base() != Type::DoubleCon ) return Type::DOUBLE;
1378   const Type *t2 = phase->type( in(2) );
1379   if( t2 == Type::TOP ) return Type::TOP;
1380   if( t2->base() != Type::DoubleCon ) return Type::DOUBLE;
1381   double d1 = t1->getd();
1382   double d2 = t2->getd();
1383   return TypeD::make( StubRoutines::intrinsic_pow( d1, d2 ) );
1384 }