1 /*
   2  * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/macroAssembler.hpp"
  27 #include "asm/macroAssembler.inline.hpp"
  28 #include "ci/ciReplay.hpp"
  29 #include "classfile/systemDictionary.hpp"
  30 #include "code/exceptionHandlerTable.hpp"
  31 #include "code/nmethod.hpp"
  32 #include "compiler/compileLog.hpp"
  33 #include "compiler/disassembler.hpp"
  34 #include "compiler/oopMap.hpp"
  35 #include "opto/addnode.hpp"
  36 #include "opto/block.hpp"
  37 #include "opto/c2compiler.hpp"
  38 #include "opto/callGenerator.hpp"
  39 #include "opto/callnode.hpp"
  40 #include "opto/cfgnode.hpp"
  41 #include "opto/chaitin.hpp"
  42 #include "opto/compile.hpp"
  43 #include "opto/connode.hpp"
  44 #include "opto/divnode.hpp"
  45 #include "opto/escape.hpp"
  46 #include "opto/idealGraphPrinter.hpp"
  47 #include "opto/loopnode.hpp"
  48 #include "opto/machnode.hpp"
  49 #include "opto/macro.hpp"
  50 #include "opto/matcher.hpp"
  51 #include "opto/mathexactnode.hpp"
  52 #include "opto/memnode.hpp"
  53 #include "opto/mulnode.hpp"
  54 #include "opto/narrowptrnode.hpp"
  55 #include "opto/node.hpp"
  56 #include "opto/opcodes.hpp"
  57 #include "opto/output.hpp"
  58 #include "opto/parse.hpp"
  59 #include "opto/phaseX.hpp"
  60 #include "opto/rootnode.hpp"
  61 #include "opto/runtime.hpp"
  62 #include "opto/stringopts.hpp"
  63 #include "opto/type.hpp"
  64 #include "opto/vectornode.hpp"
  65 #include "runtime/arguments.hpp"
  66 #include "runtime/signature.hpp"
  67 #include "runtime/stubRoutines.hpp"
  68 #include "runtime/timer.hpp"
  69 #include "trace/tracing.hpp"
  70 #include "utilities/copy.hpp"
  71 #ifdef TARGET_ARCH_MODEL_x86_32
  72 # include "adfiles/ad_x86_32.hpp"
  73 #endif
  74 #ifdef TARGET_ARCH_MODEL_x86_64
  75 # include "adfiles/ad_x86_64.hpp"
  76 #endif
  77 #ifdef TARGET_ARCH_MODEL_sparc
  78 # include "adfiles/ad_sparc.hpp"
  79 #endif
  80 #ifdef TARGET_ARCH_MODEL_zero
  81 # include "adfiles/ad_zero.hpp"
  82 #endif
  83 #ifdef TARGET_ARCH_MODEL_arm
  84 # include "adfiles/ad_arm.hpp"
  85 #endif
  86 #ifdef TARGET_ARCH_MODEL_ppc_32
  87 # include "adfiles/ad_ppc_32.hpp"
  88 #endif
  89 #ifdef TARGET_ARCH_MODEL_ppc_64
  90 # include "adfiles/ad_ppc_64.hpp"
  91 #endif
  92 
  93 
  94 // -------------------- Compile::mach_constant_base_node -----------------------
  95 // Constant table base node singleton.
  96 MachConstantBaseNode* Compile::mach_constant_base_node() {
  97   if (_mach_constant_base_node == NULL) {
  98     _mach_constant_base_node = new (C) MachConstantBaseNode();
  99     _mach_constant_base_node->add_req(C->root());
 100   }
 101   return _mach_constant_base_node;
 102 }
 103 
 104 
 105 /// Support for intrinsics.
 106 
 107 // Return the index at which m must be inserted (or already exists).
 108 // The sort order is by the address of the ciMethod, with is_virtual as minor key.
 109 int Compile::intrinsic_insertion_index(ciMethod* m, bool is_virtual) {
 110 #ifdef ASSERT
 111   for (int i = 1; i < _intrinsics->length(); i++) {
 112     CallGenerator* cg1 = _intrinsics->at(i-1);
 113     CallGenerator* cg2 = _intrinsics->at(i);
 114     assert(cg1->method() != cg2->method()
 115            ? cg1->method()     < cg2->method()
 116            : cg1->is_virtual() < cg2->is_virtual(),
 117            "compiler intrinsics list must stay sorted");
 118   }
 119 #endif
 120   // Binary search sorted list, in decreasing intervals [lo, hi].
 121   int lo = 0, hi = _intrinsics->length()-1;
 122   while (lo <= hi) {
 123     int mid = (uint)(hi + lo) / 2;
 124     ciMethod* mid_m = _intrinsics->at(mid)->method();
 125     if (m < mid_m) {
 126       hi = mid-1;
 127     } else if (m > mid_m) {
 128       lo = mid+1;
 129     } else {
 130       // look at minor sort key
 131       bool mid_virt = _intrinsics->at(mid)->is_virtual();
 132       if (is_virtual < mid_virt) {
 133         hi = mid-1;
 134       } else if (is_virtual > mid_virt) {
 135         lo = mid+1;
 136       } else {
 137         return mid;  // exact match
 138       }
 139     }
 140   }
 141   return lo;  // inexact match
 142 }
 143 
 144 void Compile::register_intrinsic(CallGenerator* cg) {
 145   if (_intrinsics == NULL) {
 146     _intrinsics = new (comp_arena())GrowableArray<CallGenerator*>(comp_arena(), 60, 0, NULL);
 147   }
 148   // This code is stolen from ciObjectFactory::insert.
 149   // Really, GrowableArray should have methods for
 150   // insert_at, remove_at, and binary_search.
 151   int len = _intrinsics->length();
 152   int index = intrinsic_insertion_index(cg->method(), cg->is_virtual());
 153   if (index == len) {
 154     _intrinsics->append(cg);
 155   } else {
 156 #ifdef ASSERT
 157     CallGenerator* oldcg = _intrinsics->at(index);
 158     assert(oldcg->method() != cg->method() || oldcg->is_virtual() != cg->is_virtual(), "don't register twice");
 159 #endif
 160     _intrinsics->append(_intrinsics->at(len-1));
 161     int pos;
 162     for (pos = len-2; pos >= index; pos--) {
 163       _intrinsics->at_put(pos+1,_intrinsics->at(pos));
 164     }
 165     _intrinsics->at_put(index, cg);
 166   }
 167   assert(find_intrinsic(cg->method(), cg->is_virtual()) == cg, "registration worked");
 168 }
 169 
 170 CallGenerator* Compile::find_intrinsic(ciMethod* m, bool is_virtual) {
 171   assert(m->is_loaded(), "don't try this on unloaded methods");
 172   if (_intrinsics != NULL) {
 173     int index = intrinsic_insertion_index(m, is_virtual);
 174     if (index < _intrinsics->length()
 175         && _intrinsics->at(index)->method() == m
 176         && _intrinsics->at(index)->is_virtual() == is_virtual) {
 177       return _intrinsics->at(index);
 178     }
 179   }
 180   // Lazily create intrinsics for intrinsic IDs well-known in the runtime.
 181   if (m->intrinsic_id() != vmIntrinsics::_none &&
 182       m->intrinsic_id() <= vmIntrinsics::LAST_COMPILER_INLINE) {
 183     CallGenerator* cg = make_vm_intrinsic(m, is_virtual);
 184     if (cg != NULL) {
 185       // Save it for next time:
 186       register_intrinsic(cg);
 187       return cg;
 188     } else {
 189       gather_intrinsic_statistics(m->intrinsic_id(), is_virtual, _intrinsic_disabled);
 190     }
 191   }
 192   return NULL;
 193 }
 194 
 195 // Compile:: register_library_intrinsics and make_vm_intrinsic are defined
 196 // in library_call.cpp.
 197 
 198 
 199 #ifndef PRODUCT
 200 // statistics gathering...
 201 
 202 juint  Compile::_intrinsic_hist_count[vmIntrinsics::ID_LIMIT] = {0};
 203 jubyte Compile::_intrinsic_hist_flags[vmIntrinsics::ID_LIMIT] = {0};
 204 
 205 bool Compile::gather_intrinsic_statistics(vmIntrinsics::ID id, bool is_virtual, int flags) {
 206   assert(id > vmIntrinsics::_none && id < vmIntrinsics::ID_LIMIT, "oob");
 207   int oflags = _intrinsic_hist_flags[id];
 208   assert(flags != 0, "what happened?");
 209   if (is_virtual) {
 210     flags |= _intrinsic_virtual;
 211   }
 212   bool changed = (flags != oflags);
 213   if ((flags & _intrinsic_worked) != 0) {
 214     juint count = (_intrinsic_hist_count[id] += 1);
 215     if (count == 1) {
 216       changed = true;           // first time
 217     }
 218     // increment the overall count also:
 219     _intrinsic_hist_count[vmIntrinsics::_none] += 1;
 220   }
 221   if (changed) {
 222     if (((oflags ^ flags) & _intrinsic_virtual) != 0) {
 223       // Something changed about the intrinsic's virtuality.
 224       if ((flags & _intrinsic_virtual) != 0) {
 225         // This is the first use of this intrinsic as a virtual call.
 226         if (oflags != 0) {
 227           // We already saw it as a non-virtual, so note both cases.
 228           flags |= _intrinsic_both;
 229         }
 230       } else if ((oflags & _intrinsic_both) == 0) {
 231         // This is the first use of this intrinsic as a non-virtual
 232         flags |= _intrinsic_both;
 233       }
 234     }
 235     _intrinsic_hist_flags[id] = (jubyte) (oflags | flags);
 236   }
 237   // update the overall flags also:
 238   _intrinsic_hist_flags[vmIntrinsics::_none] |= (jubyte) flags;
 239   return changed;
 240 }
 241 
 242 static char* format_flags(int flags, char* buf) {
 243   buf[0] = 0;
 244   if ((flags & Compile::_intrinsic_worked) != 0)    strcat(buf, ",worked");
 245   if ((flags & Compile::_intrinsic_failed) != 0)    strcat(buf, ",failed");
 246   if ((flags & Compile::_intrinsic_disabled) != 0)  strcat(buf, ",disabled");
 247   if ((flags & Compile::_intrinsic_virtual) != 0)   strcat(buf, ",virtual");
 248   if ((flags & Compile::_intrinsic_both) != 0)      strcat(buf, ",nonvirtual");
 249   if (buf[0] == 0)  strcat(buf, ",");
 250   assert(buf[0] == ',', "must be");
 251   return &buf[1];
 252 }
 253 
 254 void Compile::print_intrinsic_statistics() {
 255   char flagsbuf[100];
 256   ttyLocker ttyl;
 257   if (xtty != NULL)  xtty->head("statistics type='intrinsic'");
 258   tty->print_cr("Compiler intrinsic usage:");
 259   juint total = _intrinsic_hist_count[vmIntrinsics::_none];
 260   if (total == 0)  total = 1;  // avoid div0 in case of no successes
 261   #define PRINT_STAT_LINE(name, c, f) \
 262     tty->print_cr("  %4d (%4.1f%%) %s (%s)", (int)(c), ((c) * 100.0) / total, name, f);
 263   for (int index = 1 + (int)vmIntrinsics::_none; index < (int)vmIntrinsics::ID_LIMIT; index++) {
 264     vmIntrinsics::ID id = (vmIntrinsics::ID) index;
 265     int   flags = _intrinsic_hist_flags[id];
 266     juint count = _intrinsic_hist_count[id];
 267     if ((flags | count) != 0) {
 268       PRINT_STAT_LINE(vmIntrinsics::name_at(id), count, format_flags(flags, flagsbuf));
 269     }
 270   }
 271   PRINT_STAT_LINE("total", total, format_flags(_intrinsic_hist_flags[vmIntrinsics::_none], flagsbuf));
 272   if (xtty != NULL)  xtty->tail("statistics");
 273 }
 274 
 275 void Compile::print_statistics() {
 276   { ttyLocker ttyl;
 277     if (xtty != NULL)  xtty->head("statistics type='opto'");
 278     Parse::print_statistics();
 279     PhaseCCP::print_statistics();
 280     PhaseRegAlloc::print_statistics();
 281     Scheduling::print_statistics();
 282     PhasePeephole::print_statistics();
 283     PhaseIdealLoop::print_statistics();
 284     if (xtty != NULL)  xtty->tail("statistics");
 285   }
 286   if (_intrinsic_hist_flags[vmIntrinsics::_none] != 0) {
 287     // put this under its own <statistics> element.
 288     print_intrinsic_statistics();
 289   }
 290 }
 291 #endif //PRODUCT
 292 
 293 // Support for bundling info
 294 Bundle* Compile::node_bundling(const Node *n) {
 295   assert(valid_bundle_info(n), "oob");
 296   return &_node_bundling_base[n->_idx];
 297 }
 298 
 299 bool Compile::valid_bundle_info(const Node *n) {
 300   return (_node_bundling_limit > n->_idx);
 301 }
 302 
 303 
 304 void Compile::gvn_replace_by(Node* n, Node* nn) {
 305   for (DUIterator_Last imin, i = n->last_outs(imin); i >= imin; ) {
 306     Node* use = n->last_out(i);
 307     bool is_in_table = initial_gvn()->hash_delete(use);
 308     uint uses_found = 0;
 309     for (uint j = 0; j < use->len(); j++) {
 310       if (use->in(j) == n) {
 311         if (j < use->req())
 312           use->set_req(j, nn);
 313         else
 314           use->set_prec(j, nn);
 315         uses_found++;
 316       }
 317     }
 318     if (is_in_table) {
 319       // reinsert into table
 320       initial_gvn()->hash_find_insert(use);
 321     }
 322     record_for_igvn(use);
 323     i -= uses_found;    // we deleted 1 or more copies of this edge
 324   }
 325 }
 326 
 327 
 328 static inline bool not_a_node(const Node* n) {
 329   if (n == NULL)                   return true;
 330   if (((intptr_t)n & 1) != 0)      return true;  // uninitialized, etc.
 331   if (*(address*)n == badAddress)  return true;  // kill by Node::destruct
 332   return false;
 333 }
 334 
 335 // Identify all nodes that are reachable from below, useful.
 336 // Use breadth-first pass that records state in a Unique_Node_List,
 337 // recursive traversal is slower.
 338 void Compile::identify_useful_nodes(Unique_Node_List &useful) {
 339   int estimated_worklist_size = unique();
 340   useful.map( estimated_worklist_size, NULL );  // preallocate space
 341 
 342   // Initialize worklist
 343   if (root() != NULL)     { useful.push(root()); }
 344   // If 'top' is cached, declare it useful to preserve cached node
 345   if( cached_top_node() ) { useful.push(cached_top_node()); }
 346 
 347   // Push all useful nodes onto the list, breadthfirst
 348   for( uint next = 0; next < useful.size(); ++next ) {
 349     assert( next < unique(), "Unique useful nodes < total nodes");
 350     Node *n  = useful.at(next);
 351     uint max = n->len();
 352     for( uint i = 0; i < max; ++i ) {
 353       Node *m = n->in(i);
 354       if (not_a_node(m))  continue;
 355       useful.push(m);
 356     }
 357   }
 358 }
 359 
 360 // Update dead_node_list with any missing dead nodes using useful
 361 // list. Consider all non-useful nodes to be useless i.e., dead nodes.
 362 void Compile::update_dead_node_list(Unique_Node_List &useful) {
 363   uint max_idx = unique();
 364   VectorSet& useful_node_set = useful.member_set();
 365 
 366   for (uint node_idx = 0; node_idx < max_idx; node_idx++) {
 367     // If node with index node_idx is not in useful set,
 368     // mark it as dead in dead node list.
 369     if (! useful_node_set.test(node_idx) ) {
 370       record_dead_node(node_idx);
 371     }
 372   }
 373 }
 374 
 375 void Compile::remove_useless_late_inlines(GrowableArray<CallGenerator*>* inlines, Unique_Node_List &useful) {
 376   int shift = 0;
 377   for (int i = 0; i < inlines->length(); i++) {
 378     CallGenerator* cg = inlines->at(i);
 379     CallNode* call = cg->call_node();
 380     if (shift > 0) {
 381       inlines->at_put(i-shift, cg);
 382     }
 383     if (!useful.member(call)) {
 384       shift++;
 385     }
 386   }
 387   inlines->trunc_to(inlines->length()-shift);
 388 }
 389 
 390 // Disconnect all useless nodes by disconnecting those at the boundary.
 391 void Compile::remove_useless_nodes(Unique_Node_List &useful) {
 392   uint next = 0;
 393   while (next < useful.size()) {
 394     Node *n = useful.at(next++);
 395     // Use raw traversal of out edges since this code removes out edges
 396     int max = n->outcnt();
 397     for (int j = 0; j < max; ++j) {
 398       Node* child = n->raw_out(j);
 399       if (! useful.member(child)) {
 400         assert(!child->is_top() || child != top(),
 401                "If top is cached in Compile object it is in useful list");
 402         // Only need to remove this out-edge to the useless node
 403         n->raw_del_out(j);
 404         --j;
 405         --max;
 406       }
 407     }
 408     if (n->outcnt() == 1 && n->has_special_unique_user()) {
 409       record_for_igvn(n->unique_out());
 410     }
 411   }
 412   // Remove useless macro and predicate opaq nodes
 413   for (int i = C->macro_count()-1; i >= 0; i--) {
 414     Node* n = C->macro_node(i);
 415     if (!useful.member(n)) {
 416       remove_macro_node(n);
 417     }
 418   }
 419   // Remove useless expensive node
 420   for (int i = C->expensive_count()-1; i >= 0; i--) {
 421     Node* n = C->expensive_node(i);
 422     if (!useful.member(n)) {
 423       remove_expensive_node(n);
 424     }
 425   }
 426   // clean up the late inline lists
 427   remove_useless_late_inlines(&_string_late_inlines, useful);
 428   remove_useless_late_inlines(&_boxing_late_inlines, useful);
 429   remove_useless_late_inlines(&_late_inlines, useful);
 430   debug_only(verify_graph_edges(true/*check for no_dead_code*/);)
 431 }
 432 
 433 //------------------------------frame_size_in_words-----------------------------
 434 // frame_slots in units of words
 435 int Compile::frame_size_in_words() const {
 436   // shift is 0 in LP32 and 1 in LP64
 437   const int shift = (LogBytesPerWord - LogBytesPerInt);
 438   int words = _frame_slots >> shift;
 439   assert( words << shift == _frame_slots, "frame size must be properly aligned in LP64" );
 440   return words;
 441 }
 442 
 443 // ============================================================================
 444 //------------------------------CompileWrapper---------------------------------
 445 class CompileWrapper : public StackObj {
 446   Compile *const _compile;
 447  public:
 448   CompileWrapper(Compile* compile);
 449 
 450   ~CompileWrapper();
 451 };
 452 
 453 CompileWrapper::CompileWrapper(Compile* compile) : _compile(compile) {
 454   // the Compile* pointer is stored in the current ciEnv:
 455   ciEnv* env = compile->env();
 456   assert(env == ciEnv::current(), "must already be a ciEnv active");
 457   assert(env->compiler_data() == NULL, "compile already active?");
 458   env->set_compiler_data(compile);
 459   assert(compile == Compile::current(), "sanity");
 460 
 461   compile->set_type_dict(NULL);
 462   compile->set_type_hwm(NULL);
 463   compile->set_type_last_size(0);
 464   compile->set_last_tf(NULL, NULL);
 465   compile->set_indexSet_arena(NULL);
 466   compile->set_indexSet_free_block_list(NULL);
 467   compile->init_type_arena();
 468   Type::Initialize(compile);
 469   _compile->set_scratch_buffer_blob(NULL);
 470   _compile->begin_method();
 471 }
 472 CompileWrapper::~CompileWrapper() {
 473   _compile->end_method();
 474   if (_compile->scratch_buffer_blob() != NULL)
 475     BufferBlob::free(_compile->scratch_buffer_blob());
 476   _compile->env()->set_compiler_data(NULL);
 477 }
 478 
 479 
 480 //----------------------------print_compile_messages---------------------------
 481 void Compile::print_compile_messages() {
 482 #ifndef PRODUCT
 483   // Check if recompiling
 484   if (_subsume_loads == false && PrintOpto) {
 485     // Recompiling without allowing machine instructions to subsume loads
 486     tty->print_cr("*********************************************************");
 487     tty->print_cr("** Bailout: Recompile without subsuming loads          **");
 488     tty->print_cr("*********************************************************");
 489   }
 490   if (_do_escape_analysis != DoEscapeAnalysis && PrintOpto) {
 491     // Recompiling without escape analysis
 492     tty->print_cr("*********************************************************");
 493     tty->print_cr("** Bailout: Recompile without escape analysis          **");
 494     tty->print_cr("*********************************************************");
 495   }
 496   if (_eliminate_boxing != EliminateAutoBox && PrintOpto) {
 497     // Recompiling without boxing elimination
 498     tty->print_cr("*********************************************************");
 499     tty->print_cr("** Bailout: Recompile without boxing elimination       **");
 500     tty->print_cr("*********************************************************");
 501   }
 502   if (env()->break_at_compile()) {
 503     // Open the debugger when compiling this method.
 504     tty->print("### Breaking when compiling: ");
 505     method()->print_short_name();
 506     tty->cr();
 507     BREAKPOINT;
 508   }
 509 
 510   if( PrintOpto ) {
 511     if (is_osr_compilation()) {
 512       tty->print("[OSR]%3d", _compile_id);
 513     } else {
 514       tty->print("%3d", _compile_id);
 515     }
 516   }
 517 #endif
 518 }
 519 
 520 
 521 //-----------------------init_scratch_buffer_blob------------------------------
 522 // Construct a temporary BufferBlob and cache it for this compile.
 523 void Compile::init_scratch_buffer_blob(int const_size) {
 524   // If there is already a scratch buffer blob allocated and the
 525   // constant section is big enough, use it.  Otherwise free the
 526   // current and allocate a new one.
 527   BufferBlob* blob = scratch_buffer_blob();
 528   if ((blob != NULL) && (const_size <= _scratch_const_size)) {
 529     // Use the current blob.
 530   } else {
 531     if (blob != NULL) {
 532       BufferBlob::free(blob);
 533     }
 534 
 535     ResourceMark rm;
 536     _scratch_const_size = const_size;
 537     int size = (MAX_inst_size + MAX_stubs_size + _scratch_const_size);
 538     blob = BufferBlob::create("Compile::scratch_buffer", size);
 539     // Record the buffer blob for next time.
 540     set_scratch_buffer_blob(blob);
 541     // Have we run out of code space?
 542     if (scratch_buffer_blob() == NULL) {
 543       // Let CompilerBroker disable further compilations.
 544       record_failure("Not enough space for scratch buffer in CodeCache");
 545       return;
 546     }
 547   }
 548 
 549   // Initialize the relocation buffers
 550   relocInfo* locs_buf = (relocInfo*) blob->content_end() - MAX_locs_size;
 551   set_scratch_locs_memory(locs_buf);
 552 }
 553 
 554 
 555 //-----------------------scratch_emit_size-------------------------------------
 556 // Helper function that computes size by emitting code
 557 uint Compile::scratch_emit_size(const Node* n) {
 558   // Start scratch_emit_size section.
 559   set_in_scratch_emit_size(true);
 560 
 561   // Emit into a trash buffer and count bytes emitted.
 562   // This is a pretty expensive way to compute a size,
 563   // but it works well enough if seldom used.
 564   // All common fixed-size instructions are given a size
 565   // method by the AD file.
 566   // Note that the scratch buffer blob and locs memory are
 567   // allocated at the beginning of the compile task, and
 568   // may be shared by several calls to scratch_emit_size.
 569   // The allocation of the scratch buffer blob is particularly
 570   // expensive, since it has to grab the code cache lock.
 571   BufferBlob* blob = this->scratch_buffer_blob();
 572   assert(blob != NULL, "Initialize BufferBlob at start");
 573   assert(blob->size() > MAX_inst_size, "sanity");
 574   relocInfo* locs_buf = scratch_locs_memory();
 575   address blob_begin = blob->content_begin();
 576   address blob_end   = (address)locs_buf;
 577   assert(blob->content_contains(blob_end), "sanity");
 578   CodeBuffer buf(blob_begin, blob_end - blob_begin);
 579   buf.initialize_consts_size(_scratch_const_size);
 580   buf.initialize_stubs_size(MAX_stubs_size);
 581   assert(locs_buf != NULL, "sanity");
 582   int lsize = MAX_locs_size / 3;
 583   buf.consts()->initialize_shared_locs(&locs_buf[lsize * 0], lsize);
 584   buf.insts()->initialize_shared_locs( &locs_buf[lsize * 1], lsize);
 585   buf.stubs()->initialize_shared_locs( &locs_buf[lsize * 2], lsize);
 586 
 587   // Do the emission.
 588 
 589   Label fakeL; // Fake label for branch instructions.
 590   Label*   saveL = NULL;
 591   uint save_bnum = 0;
 592   bool is_branch = n->is_MachBranch();
 593   if (is_branch) {
 594     MacroAssembler masm(&buf);
 595     masm.bind(fakeL);
 596     n->as_MachBranch()->save_label(&saveL, &save_bnum);
 597     n->as_MachBranch()->label_set(&fakeL, 0);
 598   }
 599   n->emit(buf, this->regalloc());
 600   if (is_branch) // Restore label.
 601     n->as_MachBranch()->label_set(saveL, save_bnum);
 602 
 603   // End scratch_emit_size section.
 604   set_in_scratch_emit_size(false);
 605 
 606   return buf.insts_size();
 607 }
 608 
 609 
 610 // ============================================================================
 611 //------------------------------Compile standard-------------------------------
 612 debug_only( int Compile::_debug_idx = 100000; )
 613 
 614 // Compile a method.  entry_bci is -1 for normal compilations and indicates
 615 // the continuation bci for on stack replacement.
 616 
 617 
 618 Compile::Compile( ciEnv* ci_env, C2Compiler* compiler, ciMethod* target, int osr_bci,
 619                   bool subsume_loads, bool do_escape_analysis, bool eliminate_boxing )
 620                 : Phase(Compiler),
 621                   _env(ci_env),
 622                   _log(ci_env->log()),
 623                   _compile_id(ci_env->compile_id()),
 624                   _save_argument_registers(false),
 625                   _stub_name(NULL),
 626                   _stub_function(NULL),
 627                   _stub_entry_point(NULL),
 628                   _method(target),
 629                   _entry_bci(osr_bci),
 630                   _initial_gvn(NULL),
 631                   _for_igvn(NULL),
 632                   _warm_calls(NULL),
 633                   _subsume_loads(subsume_loads),
 634                   _do_escape_analysis(do_escape_analysis),
 635                   _eliminate_boxing(eliminate_boxing),
 636                   _failure_reason(NULL),
 637                   _code_buffer("Compile::Fill_buffer"),
 638                   _orig_pc_slot(0),
 639                   _orig_pc_slot_offset_in_bytes(0),
 640                   _has_method_handle_invokes(false),
 641                   _mach_constant_base_node(NULL),
 642                   _node_bundling_limit(0),
 643                   _node_bundling_base(NULL),
 644                   _java_calls(0),
 645                   _inner_loops(0),
 646                   _scratch_const_size(-1),
 647                   _in_scratch_emit_size(false),
 648                   _dead_node_list(comp_arena()),
 649                   _dead_node_count(0),
 650 #ifndef PRODUCT
 651                   _trace_opto_output(TraceOptoOutput || method()->has_option("TraceOptoOutput")),
 652                   _in_dump_cnt(0),
 653                   _printer(IdealGraphPrinter::printer()),
 654 #endif
 655                   _congraph(NULL),
 656                   _replay_inline_data(NULL),
 657                   _late_inlines(comp_arena(), 2, 0, NULL),
 658                   _string_late_inlines(comp_arena(), 2, 0, NULL),
 659                   _boxing_late_inlines(comp_arena(), 2, 0, NULL),
 660                   _late_inlines_pos(0),
 661                   _number_of_mh_late_inlines(0),
 662                   _inlining_progress(false),
 663                   _inlining_incrementally(false),
 664                   _print_inlining_list(NULL),
 665                   _print_inlining_idx(0),
 666                   _preserve_jvm_state(0) {
 667   C = this;
 668 
 669   CompileWrapper cw(this);
 670 #ifndef PRODUCT
 671   if (TimeCompiler2) {
 672     tty->print(" ");
 673     target->holder()->name()->print();
 674     tty->print(".");
 675     target->print_short_name();
 676     tty->print("  ");
 677   }
 678   TraceTime t1("Total compilation time", &_t_totalCompilation, TimeCompiler, TimeCompiler2);
 679   TraceTime t2(NULL, &_t_methodCompilation, TimeCompiler, false);
 680   bool print_opto_assembly = PrintOptoAssembly || _method->has_option("PrintOptoAssembly");
 681   if (!print_opto_assembly) {
 682     bool print_assembly = (PrintAssembly || _method->should_print_assembly());
 683     if (print_assembly && !Disassembler::can_decode()) {
 684       tty->print_cr("PrintAssembly request changed to PrintOptoAssembly");
 685       print_opto_assembly = true;
 686     }
 687   }
 688   set_print_assembly(print_opto_assembly);
 689   set_parsed_irreducible_loop(false);
 690 
 691   if (method()->has_option("ReplayInline")) {
 692     _replay_inline_data = ciReplay::load_inline_data(method(), entry_bci(), ci_env->comp_level());
 693   }
 694 #endif
 695   set_print_inlining(PrintInlining || method()->has_option("PrintInlining") NOT_PRODUCT( || PrintOptoInlining));
 696   set_print_intrinsics(PrintIntrinsics || method()->has_option("PrintIntrinsics"));
 697 
 698   if (ProfileTraps) {
 699     // Make sure the method being compiled gets its own MDO,
 700     // so we can at least track the decompile_count().
 701     method()->ensure_method_data();
 702   }
 703 
 704   Init(::AliasLevel);
 705 
 706 
 707   print_compile_messages();
 708 
 709   _ilt = InlineTree::build_inline_tree_root();
 710 
 711   // Even if NO memory addresses are used, MergeMem nodes must have at least 1 slice
 712   assert(num_alias_types() >= AliasIdxRaw, "");
 713 
 714 #define MINIMUM_NODE_HASH  1023
 715   // Node list that Iterative GVN will start with
 716   Unique_Node_List for_igvn(comp_arena());
 717   set_for_igvn(&for_igvn);
 718 
 719   // GVN that will be run immediately on new nodes
 720   uint estimated_size = method()->code_size()*4+64;
 721   estimated_size = (estimated_size < MINIMUM_NODE_HASH ? MINIMUM_NODE_HASH : estimated_size);
 722   PhaseGVN gvn(node_arena(), estimated_size);
 723   set_initial_gvn(&gvn);
 724 
 725   if (print_inlining() || print_intrinsics()) {
 726     _print_inlining_list = new (comp_arena())GrowableArray<PrintInliningBuffer>(comp_arena(), 1, 1, PrintInliningBuffer());
 727   }
 728   { // Scope for timing the parser
 729     TracePhase t3("parse", &_t_parser, true);
 730 
 731     // Put top into the hash table ASAP.
 732     initial_gvn()->transform_no_reclaim(top());
 733 
 734     // Set up tf(), start(), and find a CallGenerator.
 735     CallGenerator* cg = NULL;
 736     if (is_osr_compilation()) {
 737       const TypeTuple *domain = StartOSRNode::osr_domain();
 738       const TypeTuple *range = TypeTuple::make_range(method()->signature());
 739       init_tf(TypeFunc::make(domain, range));
 740       StartNode* s = new (this) StartOSRNode(root(), domain);
 741       initial_gvn()->set_type_bottom(s);
 742       init_start(s);
 743       cg = CallGenerator::for_osr(method(), entry_bci());
 744     } else {
 745       // Normal case.
 746       init_tf(TypeFunc::make(method()));
 747       StartNode* s = new (this) StartNode(root(), tf()->domain());
 748       initial_gvn()->set_type_bottom(s);
 749       init_start(s);
 750       if (method()->intrinsic_id() == vmIntrinsics::_Reference_get && UseG1GC) {
 751         // With java.lang.ref.reference.get() we must go through the
 752         // intrinsic when G1 is enabled - even when get() is the root
 753         // method of the compile - so that, if necessary, the value in
 754         // the referent field of the reference object gets recorded by
 755         // the pre-barrier code.
 756         // Specifically, if G1 is enabled, the value in the referent
 757         // field is recorded by the G1 SATB pre barrier. This will
 758         // result in the referent being marked live and the reference
 759         // object removed from the list of discovered references during
 760         // reference processing.
 761         cg = find_intrinsic(method(), false);
 762       }
 763       if (cg == NULL) {
 764         float past_uses = method()->interpreter_invocation_count();
 765         float expected_uses = past_uses;
 766         cg = CallGenerator::for_inline(method(), expected_uses);
 767       }
 768     }
 769     if (failing())  return;
 770     if (cg == NULL) {
 771       record_method_not_compilable_all_tiers("cannot parse method");
 772       return;
 773     }
 774     JVMState* jvms = build_start_state(start(), tf());
 775     if ((jvms = cg->generate(jvms, NULL)) == NULL) {
 776       record_method_not_compilable("method parse failed");
 777       return;
 778     }
 779     GraphKit kit(jvms);
 780 
 781     if (!kit.stopped()) {
 782       // Accept return values, and transfer control we know not where.
 783       // This is done by a special, unique ReturnNode bound to root.
 784       return_values(kit.jvms());
 785     }
 786 
 787     if (kit.has_exceptions()) {
 788       // Any exceptions that escape from this call must be rethrown
 789       // to whatever caller is dynamically above us on the stack.
 790       // This is done by a special, unique RethrowNode bound to root.
 791       rethrow_exceptions(kit.transfer_exceptions_into_jvms());
 792     }
 793 
 794     assert(IncrementalInline || (_late_inlines.length() == 0 && !has_mh_late_inlines()), "incremental inlining is off");
 795 
 796     if (_late_inlines.length() == 0 && !has_mh_late_inlines() && !failing() && has_stringbuilder()) {
 797       inline_string_calls(true);
 798     }
 799 
 800     if (failing())  return;
 801 
 802     print_method(PHASE_BEFORE_REMOVEUSELESS, 3);
 803 
 804     // Remove clutter produced by parsing.
 805     if (!failing()) {
 806       ResourceMark rm;
 807       PhaseRemoveUseless pru(initial_gvn(), &for_igvn);
 808     }
 809   }
 810 
 811   // Note:  Large methods are capped off in do_one_bytecode().
 812   if (failing())  return;
 813 
 814   // After parsing, node notes are no longer automagic.
 815   // They must be propagated by register_new_node_with_optimizer(),
 816   // clone(), or the like.
 817   set_default_node_notes(NULL);
 818 
 819   for (;;) {
 820     int successes = Inline_Warm();
 821     if (failing())  return;
 822     if (successes == 0)  break;
 823   }
 824 
 825   // Drain the list.
 826   Finish_Warm();
 827 #ifndef PRODUCT
 828   if (_printer) {
 829     _printer->print_inlining(this);
 830   }
 831 #endif
 832 
 833   if (failing())  return;
 834   NOT_PRODUCT( verify_graph_edges(); )
 835 
 836   // Now optimize
 837   Optimize();
 838   if (failing())  return;
 839   NOT_PRODUCT( verify_graph_edges(); )
 840 
 841 #ifndef PRODUCT
 842   if (PrintIdeal) {
 843     ttyLocker ttyl;  // keep the following output all in one block
 844     // This output goes directly to the tty, not the compiler log.
 845     // To enable tools to match it up with the compilation activity,
 846     // be sure to tag this tty output with the compile ID.
 847     if (xtty != NULL) {
 848       xtty->head("ideal compile_id='%d'%s", compile_id(),
 849                  is_osr_compilation()    ? " compile_kind='osr'" :
 850                  "");
 851     }
 852     root()->dump(9999);
 853     if (xtty != NULL) {
 854       xtty->tail("ideal");
 855     }
 856   }
 857 #endif
 858 
 859   NOT_PRODUCT( verify_barriers(); )
 860 
 861   // Dump compilation data to replay it.
 862   if (method()->has_option("DumpReplay")) {
 863     env()->dump_replay_data(_compile_id);
 864   }
 865   if (method()->has_option("DumpInline") && (ilt() != NULL)) {
 866     env()->dump_inline_data(_compile_id);
 867   }
 868 
 869   // Now that we know the size of all the monitors we can add a fixed slot
 870   // for the original deopt pc.
 871 
 872   _orig_pc_slot =  fixed_slots();
 873   int next_slot = _orig_pc_slot + (sizeof(address) / VMRegImpl::stack_slot_size);
 874   set_fixed_slots(next_slot);
 875 
 876   // Compute when to use implicit null checks. Used by matching trap based
 877   // nodes and NullCheck optimization.
 878   set_allowed_deopt_reasons();
 879 
 880   // Now generate code
 881   Code_Gen();
 882   if (failing())  return;
 883 
 884   // Check if we want to skip execution of all compiled code.
 885   {
 886 #ifndef PRODUCT
 887     if (OptoNoExecute) {
 888       record_method_not_compilable("+OptoNoExecute");  // Flag as failed
 889       return;
 890     }
 891     TracePhase t2("install_code", &_t_registerMethod, TimeCompiler);
 892 #endif
 893 
 894     if (is_osr_compilation()) {
 895       _code_offsets.set_value(CodeOffsets::Verified_Entry, 0);
 896       _code_offsets.set_value(CodeOffsets::OSR_Entry, _first_block_size);
 897     } else {
 898       _code_offsets.set_value(CodeOffsets::Verified_Entry, _first_block_size);
 899       _code_offsets.set_value(CodeOffsets::OSR_Entry, 0);
 900     }
 901 
 902     env()->register_method(_method, _entry_bci,
 903                            &_code_offsets,
 904                            _orig_pc_slot_offset_in_bytes,
 905                            code_buffer(),
 906                            frame_size_in_words(), _oop_map_set,
 907                            &_handler_table, &_inc_table,
 908                            compiler,
 909                            env()->comp_level(),
 910                            has_unsafe_access(),
 911                            SharedRuntime::is_wide_vector(max_vector_size())
 912                            );
 913 
 914     if (log() != NULL) // Print code cache state into compiler log
 915       log()->code_cache_state();
 916   }
 917 }
 918 
 919 //------------------------------Compile----------------------------------------
 920 // Compile a runtime stub
 921 Compile::Compile( ciEnv* ci_env,
 922                   TypeFunc_generator generator,
 923                   address stub_function,
 924                   const char *stub_name,
 925                   int is_fancy_jump,
 926                   bool pass_tls,
 927                   bool save_arg_registers,
 928                   bool return_pc )
 929   : Phase(Compiler),
 930     _env(ci_env),
 931     _log(ci_env->log()),
 932     _compile_id(0),
 933     _save_argument_registers(save_arg_registers),
 934     _method(NULL),
 935     _stub_name(stub_name),
 936     _stub_function(stub_function),
 937     _stub_entry_point(NULL),
 938     _entry_bci(InvocationEntryBci),
 939     _initial_gvn(NULL),
 940     _for_igvn(NULL),
 941     _warm_calls(NULL),
 942     _orig_pc_slot(0),
 943     _orig_pc_slot_offset_in_bytes(0),
 944     _subsume_loads(true),
 945     _do_escape_analysis(false),
 946     _eliminate_boxing(false),
 947     _failure_reason(NULL),
 948     _code_buffer("Compile::Fill_buffer"),
 949     _has_method_handle_invokes(false),
 950     _mach_constant_base_node(NULL),
 951     _node_bundling_limit(0),
 952     _node_bundling_base(NULL),
 953     _java_calls(0),
 954     _inner_loops(0),
 955 #ifndef PRODUCT
 956     _trace_opto_output(TraceOptoOutput),
 957     _in_dump_cnt(0),
 958     _printer(NULL),
 959 #endif
 960     _dead_node_list(comp_arena()),
 961     _dead_node_count(0),
 962     _congraph(NULL),
 963     _replay_inline_data(NULL),
 964     _number_of_mh_late_inlines(0),
 965     _inlining_progress(false),
 966     _inlining_incrementally(false),
 967     _print_inlining_list(NULL),
 968     _print_inlining_idx(0),
 969     _preserve_jvm_state(0),
 970     _allowed_reasons(0) {
 971   C = this;
 972 
 973 #ifndef PRODUCT
 974   TraceTime t1(NULL, &_t_totalCompilation, TimeCompiler, false);
 975   TraceTime t2(NULL, &_t_stubCompilation, TimeCompiler, false);
 976   set_print_assembly(PrintFrameConverterAssembly);
 977   set_parsed_irreducible_loop(false);
 978 #endif
 979   CompileWrapper cw(this);
 980   Init(/*AliasLevel=*/ 0);
 981   init_tf((*generator)());
 982 
 983   {
 984     // The following is a dummy for the sake of GraphKit::gen_stub
 985     Unique_Node_List for_igvn(comp_arena());
 986     set_for_igvn(&for_igvn);  // not used, but some GraphKit guys push on this
 987     PhaseGVN gvn(Thread::current()->resource_area(),255);
 988     set_initial_gvn(&gvn);    // not significant, but GraphKit guys use it pervasively
 989     gvn.transform_no_reclaim(top());
 990 
 991     GraphKit kit;
 992     kit.gen_stub(stub_function, stub_name, is_fancy_jump, pass_tls, return_pc);
 993   }
 994 
 995   NOT_PRODUCT( verify_graph_edges(); )
 996   Code_Gen();
 997   if (failing())  return;
 998 
 999 
1000   // Entry point will be accessed using compile->stub_entry_point();
1001   if (code_buffer() == NULL) {
1002     Matcher::soft_match_failure();
1003   } else {
1004     if (PrintAssembly && (WizardMode || Verbose))
1005       tty->print_cr("### Stub::%s", stub_name);
1006 
1007     if (!failing()) {
1008       assert(_fixed_slots == 0, "no fixed slots used for runtime stubs");
1009 
1010       // Make the NMethod
1011       // For now we mark the frame as never safe for profile stackwalking
1012       RuntimeStub *rs = RuntimeStub::new_runtime_stub(stub_name,
1013                                                       code_buffer(),
1014                                                       CodeOffsets::frame_never_safe,
1015                                                       // _code_offsets.value(CodeOffsets::Frame_Complete),
1016                                                       frame_size_in_words(),
1017                                                       _oop_map_set,
1018                                                       save_arg_registers);
1019       assert(rs != NULL && rs->is_runtime_stub(), "sanity check");
1020 
1021       _stub_entry_point = rs->entry_point();
1022     }
1023   }
1024 }
1025 
1026 //------------------------------Init-------------------------------------------
1027 // Prepare for a single compilation
1028 void Compile::Init(int aliaslevel) {
1029   _unique  = 0;
1030   _regalloc = NULL;
1031 
1032   _tf      = NULL;  // filled in later
1033   _top     = NULL;  // cached later
1034   _matcher = NULL;  // filled in later
1035   _cfg     = NULL;  // filled in later
1036 
1037   set_24_bit_selection_and_mode(Use24BitFP, false);
1038 
1039   _node_note_array = NULL;
1040   _default_node_notes = NULL;
1041 
1042   _immutable_memory = NULL; // filled in at first inquiry
1043 
1044   // Globally visible Nodes
1045   // First set TOP to NULL to give safe behavior during creation of RootNode
1046   set_cached_top_node(NULL);
1047   set_root(new (this) RootNode());
1048   // Now that you have a Root to point to, create the real TOP
1049   set_cached_top_node( new (this) ConNode(Type::TOP) );
1050   set_recent_alloc(NULL, NULL);
1051 
1052   // Create Debug Information Recorder to record scopes, oopmaps, etc.
1053   env()->set_oop_recorder(new OopRecorder(env()->arena()));
1054   env()->set_debug_info(new DebugInformationRecorder(env()->oop_recorder()));
1055   env()->set_dependencies(new Dependencies(env()));
1056 
1057   _fixed_slots = 0;
1058   set_has_split_ifs(false);
1059   set_has_loops(has_method() && method()->has_loops()); // first approximation
1060   set_has_stringbuilder(false);
1061   set_has_boxed_value(false);
1062   _trap_can_recompile = false;  // no traps emitted yet
1063   _major_progress = true; // start out assuming good things will happen
1064   set_has_unsafe_access(false);
1065   set_max_vector_size(0);
1066   Copy::zero_to_bytes(_trap_hist, sizeof(_trap_hist));
1067   set_decompile_count(0);
1068 
1069   set_do_freq_based_layout(BlockLayoutByFrequency || method_has_option("BlockLayoutByFrequency"));
1070   set_num_loop_opts(LoopOptsCount);
1071   set_do_inlining(Inline);
1072   set_max_inline_size(MaxInlineSize);
1073   set_freq_inline_size(FreqInlineSize);
1074   set_do_scheduling(OptoScheduling);
1075   set_do_count_invocations(false);
1076   set_do_method_data_update(false);
1077 
1078   if (debug_info()->recording_non_safepoints()) {
1079     set_node_note_array(new(comp_arena()) GrowableArray<Node_Notes*>
1080                         (comp_arena(), 8, 0, NULL));
1081     set_default_node_notes(Node_Notes::make(this));
1082   }
1083 
1084   // // -- Initialize types before each compile --
1085   // // Update cached type information
1086   // if( _method && _method->constants() )
1087   //   Type::update_loaded_types(_method, _method->constants());
1088 
1089   // Init alias_type map.
1090   if (!_do_escape_analysis && aliaslevel == 3)
1091     aliaslevel = 2;  // No unique types without escape analysis
1092   _AliasLevel = aliaslevel;
1093   const int grow_ats = 16;
1094   _max_alias_types = grow_ats;
1095   _alias_types   = NEW_ARENA_ARRAY(comp_arena(), AliasType*, grow_ats);
1096   AliasType* ats = NEW_ARENA_ARRAY(comp_arena(), AliasType,  grow_ats);
1097   Copy::zero_to_bytes(ats, sizeof(AliasType)*grow_ats);
1098   {
1099     for (int i = 0; i < grow_ats; i++)  _alias_types[i] = &ats[i];
1100   }
1101   // Initialize the first few types.
1102   _alias_types[AliasIdxTop]->Init(AliasIdxTop, NULL);
1103   _alias_types[AliasIdxBot]->Init(AliasIdxBot, TypePtr::BOTTOM);
1104   _alias_types[AliasIdxRaw]->Init(AliasIdxRaw, TypeRawPtr::BOTTOM);
1105   _num_alias_types = AliasIdxRaw+1;
1106   // Zero out the alias type cache.
1107   Copy::zero_to_bytes(_alias_cache, sizeof(_alias_cache));
1108   // A NULL adr_type hits in the cache right away.  Preload the right answer.
1109   probe_alias_cache(NULL)->_index = AliasIdxTop;
1110 
1111   _intrinsics = NULL;
1112   _macro_nodes = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1113   _predicate_opaqs = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1114   _expensive_nodes = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1115   register_library_intrinsics();
1116 }
1117 
1118 //---------------------------init_start----------------------------------------
1119 // Install the StartNode on this compile object.
1120 void Compile::init_start(StartNode* s) {
1121   if (failing())
1122     return; // already failing
1123   assert(s == start(), "");
1124 }
1125 
1126 StartNode* Compile::start() const {
1127   assert(!failing(), "");
1128   for (DUIterator_Fast imax, i = root()->fast_outs(imax); i < imax; i++) {
1129     Node* start = root()->fast_out(i);
1130     if( start->is_Start() )
1131       return start->as_Start();
1132   }
1133   ShouldNotReachHere();
1134   return NULL;
1135 }
1136 
1137 //-------------------------------immutable_memory-------------------------------------
1138 // Access immutable memory
1139 Node* Compile::immutable_memory() {
1140   if (_immutable_memory != NULL) {
1141     return _immutable_memory;
1142   }
1143   StartNode* s = start();
1144   for (DUIterator_Fast imax, i = s->fast_outs(imax); true; i++) {
1145     Node *p = s->fast_out(i);
1146     if (p != s && p->as_Proj()->_con == TypeFunc::Memory) {
1147       _immutable_memory = p;
1148       return _immutable_memory;
1149     }
1150   }
1151   ShouldNotReachHere();
1152   return NULL;
1153 }
1154 
1155 //----------------------set_cached_top_node------------------------------------
1156 // Install the cached top node, and make sure Node::is_top works correctly.
1157 void Compile::set_cached_top_node(Node* tn) {
1158   if (tn != NULL)  verify_top(tn);
1159   Node* old_top = _top;
1160   _top = tn;
1161   // Calling Node::setup_is_top allows the nodes the chance to adjust
1162   // their _out arrays.
1163   if (_top != NULL)     _top->setup_is_top();
1164   if (old_top != NULL)  old_top->setup_is_top();
1165   assert(_top == NULL || top()->is_top(), "");
1166 }
1167 
1168 #ifdef ASSERT
1169 uint Compile::count_live_nodes_by_graph_walk() {
1170   Unique_Node_List useful(comp_arena());
1171   // Get useful node list by walking the graph.
1172   identify_useful_nodes(useful);
1173   return useful.size();
1174 }
1175 
1176 void Compile::print_missing_nodes() {
1177 
1178   // Return if CompileLog is NULL and PrintIdealNodeCount is false.
1179   if ((_log == NULL) && (! PrintIdealNodeCount)) {
1180     return;
1181   }
1182 
1183   // This is an expensive function. It is executed only when the user
1184   // specifies VerifyIdealNodeCount option or otherwise knows the
1185   // additional work that needs to be done to identify reachable nodes
1186   // by walking the flow graph and find the missing ones using
1187   // _dead_node_list.
1188 
1189   Unique_Node_List useful(comp_arena());
1190   // Get useful node list by walking the graph.
1191   identify_useful_nodes(useful);
1192 
1193   uint l_nodes = C->live_nodes();
1194   uint l_nodes_by_walk = useful.size();
1195 
1196   if (l_nodes != l_nodes_by_walk) {
1197     if (_log != NULL) {
1198       _log->begin_head("mismatched_nodes count='%d'", abs((int) (l_nodes - l_nodes_by_walk)));
1199       _log->stamp();
1200       _log->end_head();
1201     }
1202     VectorSet& useful_member_set = useful.member_set();
1203     int last_idx = l_nodes_by_walk;
1204     for (int i = 0; i < last_idx; i++) {
1205       if (useful_member_set.test(i)) {
1206         if (_dead_node_list.test(i)) {
1207           if (_log != NULL) {
1208             _log->elem("mismatched_node_info node_idx='%d' type='both live and dead'", i);
1209           }
1210           if (PrintIdealNodeCount) {
1211             // Print the log message to tty
1212               tty->print_cr("mismatched_node idx='%d' both live and dead'", i);
1213               useful.at(i)->dump();
1214           }
1215         }
1216       }
1217       else if (! _dead_node_list.test(i)) {
1218         if (_log != NULL) {
1219           _log->elem("mismatched_node_info node_idx='%d' type='neither live nor dead'", i);
1220         }
1221         if (PrintIdealNodeCount) {
1222           // Print the log message to tty
1223           tty->print_cr("mismatched_node idx='%d' type='neither live nor dead'", i);
1224         }
1225       }
1226     }
1227     if (_log != NULL) {
1228       _log->tail("mismatched_nodes");
1229     }
1230   }
1231 }
1232 #endif
1233 
1234 #ifndef PRODUCT
1235 void Compile::verify_top(Node* tn) const {
1236   if (tn != NULL) {
1237     assert(tn->is_Con(), "top node must be a constant");
1238     assert(((ConNode*)tn)->type() == Type::TOP, "top node must have correct type");
1239     assert(tn->in(0) != NULL, "must have live top node");
1240   }
1241 }
1242 #endif
1243 
1244 
1245 ///-------------------Managing Per-Node Debug & Profile Info-------------------
1246 
1247 void Compile::grow_node_notes(GrowableArray<Node_Notes*>* arr, int grow_by) {
1248   guarantee(arr != NULL, "");
1249   int num_blocks = arr->length();
1250   if (grow_by < num_blocks)  grow_by = num_blocks;
1251   int num_notes = grow_by * _node_notes_block_size;
1252   Node_Notes* notes = NEW_ARENA_ARRAY(node_arena(), Node_Notes, num_notes);
1253   Copy::zero_to_bytes(notes, num_notes * sizeof(Node_Notes));
1254   while (num_notes > 0) {
1255     arr->append(notes);
1256     notes     += _node_notes_block_size;
1257     num_notes -= _node_notes_block_size;
1258   }
1259   assert(num_notes == 0, "exact multiple, please");
1260 }
1261 
1262 bool Compile::copy_node_notes_to(Node* dest, Node* source) {
1263   if (source == NULL || dest == NULL)  return false;
1264 
1265   if (dest->is_Con())
1266     return false;               // Do not push debug info onto constants.
1267 
1268 #ifdef ASSERT
1269   // Leave a bread crumb trail pointing to the original node:
1270   if (dest != NULL && dest != source && dest->debug_orig() == NULL) {
1271     dest->set_debug_orig(source);
1272   }
1273 #endif
1274 
1275   if (node_note_array() == NULL)
1276     return false;               // Not collecting any notes now.
1277 
1278   // This is a copy onto a pre-existing node, which may already have notes.
1279   // If both nodes have notes, do not overwrite any pre-existing notes.
1280   Node_Notes* source_notes = node_notes_at(source->_idx);
1281   if (source_notes == NULL || source_notes->is_clear())  return false;
1282   Node_Notes* dest_notes   = node_notes_at(dest->_idx);
1283   if (dest_notes == NULL || dest_notes->is_clear()) {
1284     return set_node_notes_at(dest->_idx, source_notes);
1285   }
1286 
1287   Node_Notes merged_notes = (*source_notes);
1288   // The order of operations here ensures that dest notes will win...
1289   merged_notes.update_from(dest_notes);
1290   return set_node_notes_at(dest->_idx, &merged_notes);
1291 }
1292 
1293 
1294 //--------------------------allow_range_check_smearing-------------------------
1295 // Gating condition for coalescing similar range checks.
1296 // Sometimes we try 'speculatively' replacing a series of a range checks by a
1297 // single covering check that is at least as strong as any of them.
1298 // If the optimization succeeds, the simplified (strengthened) range check
1299 // will always succeed.  If it fails, we will deopt, and then give up
1300 // on the optimization.
1301 bool Compile::allow_range_check_smearing() const {
1302   // If this method has already thrown a range-check,
1303   // assume it was because we already tried range smearing
1304   // and it failed.
1305   uint already_trapped = trap_count(Deoptimization::Reason_range_check);
1306   return !already_trapped;
1307 }
1308 
1309 
1310 //------------------------------flatten_alias_type-----------------------------
1311 const TypePtr *Compile::flatten_alias_type( const TypePtr *tj ) const {
1312   int offset = tj->offset();
1313   TypePtr::PTR ptr = tj->ptr();
1314 
1315   // Known instance (scalarizable allocation) alias only with itself.
1316   bool is_known_inst = tj->isa_oopptr() != NULL &&
1317                        tj->is_oopptr()->is_known_instance();
1318 
1319   // Process weird unsafe references.
1320   if (offset == Type::OffsetBot && (tj->isa_instptr() /*|| tj->isa_klassptr()*/)) {
1321     assert(InlineUnsafeOps, "indeterminate pointers come only from unsafe ops");
1322     assert(!is_known_inst, "scalarizable allocation should not have unsafe references");
1323     tj = TypeOopPtr::BOTTOM;
1324     ptr = tj->ptr();
1325     offset = tj->offset();
1326   }
1327 
1328   // Array pointers need some flattening
1329   const TypeAryPtr *ta = tj->isa_aryptr();
1330   if (ta && ta->is_stable()) {
1331     // Erase stability property for alias analysis.
1332     tj = ta = ta->cast_to_stable(false);
1333   }
1334   if( ta && is_known_inst ) {
1335     if ( offset != Type::OffsetBot &&
1336          offset > arrayOopDesc::length_offset_in_bytes() ) {
1337       offset = Type::OffsetBot; // Flatten constant access into array body only
1338       tj = ta = TypeAryPtr::make(ptr, ta->ary(), ta->klass(), true, offset, ta->instance_id());
1339     }
1340   } else if( ta && _AliasLevel >= 2 ) {
1341     // For arrays indexed by constant indices, we flatten the alias
1342     // space to include all of the array body.  Only the header, klass
1343     // and array length can be accessed un-aliased.
1344     if( offset != Type::OffsetBot ) {
1345       if( ta->const_oop() ) { // MethodData* or Method*
1346         offset = Type::OffsetBot;   // Flatten constant access into array body
1347         tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),ta->ary(),ta->klass(),false,offset);
1348       } else if( offset == arrayOopDesc::length_offset_in_bytes() ) {
1349         // range is OK as-is.
1350         tj = ta = TypeAryPtr::RANGE;
1351       } else if( offset == oopDesc::klass_offset_in_bytes() ) {
1352         tj = TypeInstPtr::KLASS; // all klass loads look alike
1353         ta = TypeAryPtr::RANGE; // generic ignored junk
1354         ptr = TypePtr::BotPTR;
1355       } else if( offset == oopDesc::mark_offset_in_bytes() ) {
1356         tj = TypeInstPtr::MARK;
1357         ta = TypeAryPtr::RANGE; // generic ignored junk
1358         ptr = TypePtr::BotPTR;
1359       } else {                  // Random constant offset into array body
1360         offset = Type::OffsetBot;   // Flatten constant access into array body
1361         tj = ta = TypeAryPtr::make(ptr,ta->ary(),ta->klass(),false,offset);
1362       }
1363     }
1364     // Arrays of fixed size alias with arrays of unknown size.
1365     if (ta->size() != TypeInt::POS) {
1366       const TypeAry *tary = TypeAry::make(ta->elem(), TypeInt::POS);
1367       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,ta->klass(),false,offset);
1368     }
1369     // Arrays of known objects become arrays of unknown objects.
1370     if (ta->elem()->isa_narrowoop() && ta->elem() != TypeNarrowOop::BOTTOM) {
1371       const TypeAry *tary = TypeAry::make(TypeNarrowOop::BOTTOM, ta->size());
1372       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,offset);
1373     }
1374     if (ta->elem()->isa_oopptr() && ta->elem() != TypeInstPtr::BOTTOM) {
1375       const TypeAry *tary = TypeAry::make(TypeInstPtr::BOTTOM, ta->size());
1376       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,offset);
1377     }
1378     // Arrays of bytes and of booleans both use 'bastore' and 'baload' so
1379     // cannot be distinguished by bytecode alone.
1380     if (ta->elem() == TypeInt::BOOL) {
1381       const TypeAry *tary = TypeAry::make(TypeInt::BYTE, ta->size());
1382       ciKlass* aklass = ciTypeArrayKlass::make(T_BYTE);
1383       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,aklass,false,offset);
1384     }
1385     // During the 2nd round of IterGVN, NotNull castings are removed.
1386     // Make sure the Bottom and NotNull variants alias the same.
1387     // Also, make sure exact and non-exact variants alias the same.
1388     if (ptr == TypePtr::NotNull || ta->klass_is_exact() || ta->speculative() != NULL) {
1389       tj = ta = TypeAryPtr::make(TypePtr::BotPTR,ta->ary(),ta->klass(),false,offset);
1390     }
1391   }
1392 
1393   // Oop pointers need some flattening
1394   const TypeInstPtr *to = tj->isa_instptr();
1395   if( to && _AliasLevel >= 2 && to != TypeOopPtr::BOTTOM ) {
1396     ciInstanceKlass *k = to->klass()->as_instance_klass();
1397     if( ptr == TypePtr::Constant ) {
1398       if (to->klass() != ciEnv::current()->Class_klass() ||
1399           offset < k->size_helper() * wordSize) {
1400         // No constant oop pointers (such as Strings); they alias with
1401         // unknown strings.
1402         assert(!is_known_inst, "not scalarizable allocation");
1403         tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,offset);
1404       }
1405     } else if( is_known_inst ) {
1406       tj = to; // Keep NotNull and klass_is_exact for instance type
1407     } else if( ptr == TypePtr::NotNull || to->klass_is_exact() ) {
1408       // During the 2nd round of IterGVN, NotNull castings are removed.
1409       // Make sure the Bottom and NotNull variants alias the same.
1410       // Also, make sure exact and non-exact variants alias the same.
1411       tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,offset);
1412     }
1413     if (to->speculative() != NULL) {
1414       tj = to = TypeInstPtr::make(to->ptr(),to->klass(),to->klass_is_exact(),to->const_oop(),to->offset(), to->instance_id());
1415     }
1416     // Canonicalize the holder of this field
1417     if (offset >= 0 && offset < instanceOopDesc::base_offset_in_bytes()) {
1418       // First handle header references such as a LoadKlassNode, even if the
1419       // object's klass is unloaded at compile time (4965979).
1420       if (!is_known_inst) { // Do it only for non-instance types
1421         tj = to = TypeInstPtr::make(TypePtr::BotPTR, env()->Object_klass(), false, NULL, offset);
1422       }
1423     } else if (offset < 0 || offset >= k->size_helper() * wordSize) {
1424       // Static fields are in the space above the normal instance
1425       // fields in the java.lang.Class instance.
1426       if (to->klass() != ciEnv::current()->Class_klass()) {
1427         to = NULL;
1428         tj = TypeOopPtr::BOTTOM;
1429         offset = tj->offset();
1430       }
1431     } else {
1432       ciInstanceKlass *canonical_holder = k->get_canonical_holder(offset);
1433       if (!k->equals(canonical_holder) || tj->offset() != offset) {
1434         if( is_known_inst ) {
1435           tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, true, NULL, offset, to->instance_id());
1436         } else {
1437           tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, false, NULL, offset);
1438         }
1439       }
1440     }
1441   }
1442 
1443   // Klass pointers to object array klasses need some flattening
1444   const TypeKlassPtr *tk = tj->isa_klassptr();
1445   if( tk ) {
1446     // If we are referencing a field within a Klass, we need
1447     // to assume the worst case of an Object.  Both exact and
1448     // inexact types must flatten to the same alias class so
1449     // use NotNull as the PTR.
1450     if ( offset == Type::OffsetBot || (offset >= 0 && (size_t)offset < sizeof(Klass)) ) {
1451 
1452       tj = tk = TypeKlassPtr::make(TypePtr::NotNull,
1453                                    TypeKlassPtr::OBJECT->klass(),
1454                                    offset);
1455     }
1456 
1457     ciKlass* klass = tk->klass();
1458     if( klass->is_obj_array_klass() ) {
1459       ciKlass* k = TypeAryPtr::OOPS->klass();
1460       if( !k || !k->is_loaded() )                  // Only fails for some -Xcomp runs
1461         k = TypeInstPtr::BOTTOM->klass();
1462       tj = tk = TypeKlassPtr::make( TypePtr::NotNull, k, offset );
1463     }
1464 
1465     // Check for precise loads from the primary supertype array and force them
1466     // to the supertype cache alias index.  Check for generic array loads from
1467     // the primary supertype array and also force them to the supertype cache
1468     // alias index.  Since the same load can reach both, we need to merge
1469     // these 2 disparate memories into the same alias class.  Since the
1470     // primary supertype array is read-only, there's no chance of confusion
1471     // where we bypass an array load and an array store.
1472     int primary_supers_offset = in_bytes(Klass::primary_supers_offset());
1473     if (offset == Type::OffsetBot ||
1474         (offset >= primary_supers_offset &&
1475          offset < (int)(primary_supers_offset + Klass::primary_super_limit() * wordSize)) ||
1476         offset == (int)in_bytes(Klass::secondary_super_cache_offset())) {
1477       offset = in_bytes(Klass::secondary_super_cache_offset());
1478       tj = tk = TypeKlassPtr::make( TypePtr::NotNull, tk->klass(), offset );
1479     }
1480   }
1481 
1482   // Flatten all Raw pointers together.
1483   if (tj->base() == Type::RawPtr)
1484     tj = TypeRawPtr::BOTTOM;
1485 
1486   if (tj->base() == Type::AnyPtr)
1487     tj = TypePtr::BOTTOM;      // An error, which the caller must check for.
1488 
1489   // Flatten all to bottom for now
1490   switch( _AliasLevel ) {
1491   case 0:
1492     tj = TypePtr::BOTTOM;
1493     break;
1494   case 1:                       // Flatten to: oop, static, field or array
1495     switch (tj->base()) {
1496     //case Type::AryPtr: tj = TypeAryPtr::RANGE;    break;
1497     case Type::RawPtr:   tj = TypeRawPtr::BOTTOM;   break;
1498     case Type::AryPtr:   // do not distinguish arrays at all
1499     case Type::InstPtr:  tj = TypeInstPtr::BOTTOM;  break;
1500     case Type::KlassPtr: tj = TypeKlassPtr::OBJECT; break;
1501     case Type::AnyPtr:   tj = TypePtr::BOTTOM;      break;  // caller checks it
1502     default: ShouldNotReachHere();
1503     }
1504     break;
1505   case 2:                       // No collapsing at level 2; keep all splits
1506   case 3:                       // No collapsing at level 3; keep all splits
1507     break;
1508   default:
1509     Unimplemented();
1510   }
1511 
1512   offset = tj->offset();
1513   assert( offset != Type::OffsetTop, "Offset has fallen from constant" );
1514 
1515   assert( (offset != Type::OffsetBot && tj->base() != Type::AryPtr) ||
1516           (offset == Type::OffsetBot && tj->base() == Type::AryPtr) ||
1517           (offset == Type::OffsetBot && tj == TypeOopPtr::BOTTOM) ||
1518           (offset == Type::OffsetBot && tj == TypePtr::BOTTOM) ||
1519           (offset == oopDesc::mark_offset_in_bytes() && tj->base() == Type::AryPtr) ||
1520           (offset == oopDesc::klass_offset_in_bytes() && tj->base() == Type::AryPtr) ||
1521           (offset == arrayOopDesc::length_offset_in_bytes() && tj->base() == Type::AryPtr)  ,
1522           "For oops, klasses, raw offset must be constant; for arrays the offset is never known" );
1523   assert( tj->ptr() != TypePtr::TopPTR &&
1524           tj->ptr() != TypePtr::AnyNull &&
1525           tj->ptr() != TypePtr::Null, "No imprecise addresses" );
1526 //    assert( tj->ptr() != TypePtr::Constant ||
1527 //            tj->base() == Type::RawPtr ||
1528 //            tj->base() == Type::KlassPtr, "No constant oop addresses" );
1529 
1530   return tj;
1531 }
1532 
1533 void Compile::AliasType::Init(int i, const TypePtr* at) {
1534   _index = i;
1535   _adr_type = at;
1536   _field = NULL;
1537   _element = NULL;
1538   _is_rewritable = true; // default
1539   const TypeOopPtr *atoop = (at != NULL) ? at->isa_oopptr() : NULL;
1540   if (atoop != NULL && atoop->is_known_instance()) {
1541     const TypeOopPtr *gt = atoop->cast_to_instance_id(TypeOopPtr::InstanceBot);
1542     _general_index = Compile::current()->get_alias_index(gt);
1543   } else {
1544     _general_index = 0;
1545   }
1546 }
1547 
1548 //---------------------------------print_on------------------------------------
1549 #ifndef PRODUCT
1550 void Compile::AliasType::print_on(outputStream* st) {
1551   if (index() < 10)
1552         st->print("@ <%d> ", index());
1553   else  st->print("@ <%d>",  index());
1554   st->print(is_rewritable() ? "   " : " RO");
1555   int offset = adr_type()->offset();
1556   if (offset == Type::OffsetBot)
1557         st->print(" +any");
1558   else  st->print(" +%-3d", offset);
1559   st->print(" in ");
1560   adr_type()->dump_on(st);
1561   const TypeOopPtr* tjp = adr_type()->isa_oopptr();
1562   if (field() != NULL && tjp) {
1563     if (tjp->klass()  != field()->holder() ||
1564         tjp->offset() != field()->offset_in_bytes()) {
1565       st->print(" != ");
1566       field()->print();
1567       st->print(" ***");
1568     }
1569   }
1570 }
1571 
1572 void print_alias_types() {
1573   Compile* C = Compile::current();
1574   tty->print_cr("--- Alias types, AliasIdxBot .. %d", C->num_alias_types()-1);
1575   for (int idx = Compile::AliasIdxBot; idx < C->num_alias_types(); idx++) {
1576     C->alias_type(idx)->print_on(tty);
1577     tty->cr();
1578   }
1579 }
1580 #endif
1581 
1582 
1583 //----------------------------probe_alias_cache--------------------------------
1584 Compile::AliasCacheEntry* Compile::probe_alias_cache(const TypePtr* adr_type) {
1585   intptr_t key = (intptr_t) adr_type;
1586   key ^= key >> logAliasCacheSize;
1587   return &_alias_cache[key & right_n_bits(logAliasCacheSize)];
1588 }
1589 
1590 
1591 //-----------------------------grow_alias_types--------------------------------
1592 void Compile::grow_alias_types() {
1593   const int old_ats  = _max_alias_types; // how many before?
1594   const int new_ats  = old_ats;          // how many more?
1595   const int grow_ats = old_ats+new_ats;  // how many now?
1596   _max_alias_types = grow_ats;
1597   _alias_types =  REALLOC_ARENA_ARRAY(comp_arena(), AliasType*, _alias_types, old_ats, grow_ats);
1598   AliasType* ats =    NEW_ARENA_ARRAY(comp_arena(), AliasType, new_ats);
1599   Copy::zero_to_bytes(ats, sizeof(AliasType)*new_ats);
1600   for (int i = 0; i < new_ats; i++)  _alias_types[old_ats+i] = &ats[i];
1601 }
1602 
1603 
1604 //--------------------------------find_alias_type------------------------------
1605 Compile::AliasType* Compile::find_alias_type(const TypePtr* adr_type, bool no_create, ciField* original_field) {
1606   if (_AliasLevel == 0)
1607     return alias_type(AliasIdxBot);
1608 
1609   AliasCacheEntry* ace = probe_alias_cache(adr_type);
1610   if (ace->_adr_type == adr_type) {
1611     return alias_type(ace->_index);
1612   }
1613 
1614   // Handle special cases.
1615   if (adr_type == NULL)             return alias_type(AliasIdxTop);
1616   if (adr_type == TypePtr::BOTTOM)  return alias_type(AliasIdxBot);
1617 
1618   // Do it the slow way.
1619   const TypePtr* flat = flatten_alias_type(adr_type);
1620 
1621 #ifdef ASSERT
1622   assert(flat == flatten_alias_type(flat), "idempotent");
1623   assert(flat != TypePtr::BOTTOM,     "cannot alias-analyze an untyped ptr");
1624   if (flat->isa_oopptr() && !flat->isa_klassptr()) {
1625     const TypeOopPtr* foop = flat->is_oopptr();
1626     // Scalarizable allocations have exact klass always.
1627     bool exact = !foop->klass_is_exact() || foop->is_known_instance();
1628     const TypePtr* xoop = foop->cast_to_exactness(exact)->is_ptr();
1629     assert(foop == flatten_alias_type(xoop), "exactness must not affect alias type");
1630   }
1631   assert(flat == flatten_alias_type(flat), "exact bit doesn't matter");
1632 #endif
1633 
1634   int idx = AliasIdxTop;
1635   for (int i = 0; i < num_alias_types(); i++) {
1636     if (alias_type(i)->adr_type() == flat) {
1637       idx = i;
1638       break;
1639     }
1640   }
1641 
1642   if (idx == AliasIdxTop) {
1643     if (no_create)  return NULL;
1644     // Grow the array if necessary.
1645     if (_num_alias_types == _max_alias_types)  grow_alias_types();
1646     // Add a new alias type.
1647     idx = _num_alias_types++;
1648     _alias_types[idx]->Init(idx, flat);
1649     if (flat == TypeInstPtr::KLASS)  alias_type(idx)->set_rewritable(false);
1650     if (flat == TypeAryPtr::RANGE)   alias_type(idx)->set_rewritable(false);
1651     if (flat->isa_instptr()) {
1652       if (flat->offset() == java_lang_Class::klass_offset_in_bytes()
1653           && flat->is_instptr()->klass() == env()->Class_klass())
1654         alias_type(idx)->set_rewritable(false);
1655     }
1656     if (flat->isa_aryptr()) {
1657 #ifdef ASSERT
1658       const int header_size_min  = arrayOopDesc::base_offset_in_bytes(T_BYTE);
1659       // (T_BYTE has the weakest alignment and size restrictions...)
1660       assert(flat->offset() < header_size_min, "array body reference must be OffsetBot");
1661 #endif
1662       if (flat->offset() == TypePtr::OffsetBot) {
1663         alias_type(idx)->set_element(flat->is_aryptr()->elem());
1664       }
1665     }
1666     if (flat->isa_klassptr()) {
1667       if (flat->offset() == in_bytes(Klass::super_check_offset_offset()))
1668         alias_type(idx)->set_rewritable(false);
1669       if (flat->offset() == in_bytes(Klass::modifier_flags_offset()))
1670         alias_type(idx)->set_rewritable(false);
1671       if (flat->offset() == in_bytes(Klass::access_flags_offset()))
1672         alias_type(idx)->set_rewritable(false);
1673       if (flat->offset() == in_bytes(Klass::java_mirror_offset()))
1674         alias_type(idx)->set_rewritable(false);
1675     }
1676     // %%% (We would like to finalize JavaThread::threadObj_offset(),
1677     // but the base pointer type is not distinctive enough to identify
1678     // references into JavaThread.)
1679 
1680     // Check for final fields.
1681     const TypeInstPtr* tinst = flat->isa_instptr();
1682     if (tinst && tinst->offset() >= instanceOopDesc::base_offset_in_bytes()) {
1683       ciField* field;
1684       if (tinst->const_oop() != NULL &&
1685           tinst->klass() == ciEnv::current()->Class_klass() &&
1686           tinst->offset() >= (tinst->klass()->as_instance_klass()->size_helper() * wordSize)) {
1687         // static field
1688         ciInstanceKlass* k = tinst->const_oop()->as_instance()->java_lang_Class_klass()->as_instance_klass();
1689         field = k->get_field_by_offset(tinst->offset(), true);
1690       } else {
1691         ciInstanceKlass *k = tinst->klass()->as_instance_klass();
1692         field = k->get_field_by_offset(tinst->offset(), false);
1693       }
1694       assert(field == NULL ||
1695              original_field == NULL ||
1696              (field->holder() == original_field->holder() &&
1697               field->offset() == original_field->offset() &&
1698               field->is_static() == original_field->is_static()), "wrong field?");
1699       // Set field() and is_rewritable() attributes.
1700       if (field != NULL)  alias_type(idx)->set_field(field);
1701     }
1702   }
1703 
1704   // Fill the cache for next time.
1705   ace->_adr_type = adr_type;
1706   ace->_index    = idx;
1707   assert(alias_type(adr_type) == alias_type(idx),  "type must be installed");
1708 
1709   // Might as well try to fill the cache for the flattened version, too.
1710   AliasCacheEntry* face = probe_alias_cache(flat);
1711   if (face->_adr_type == NULL) {
1712     face->_adr_type = flat;
1713     face->_index    = idx;
1714     assert(alias_type(flat) == alias_type(idx), "flat type must work too");
1715   }
1716 
1717   return alias_type(idx);
1718 }
1719 
1720 
1721 Compile::AliasType* Compile::alias_type(ciField* field) {
1722   const TypeOopPtr* t;
1723   if (field->is_static())
1724     t = TypeInstPtr::make(field->holder()->java_mirror());
1725   else
1726     t = TypeOopPtr::make_from_klass_raw(field->holder());
1727   AliasType* atp = alias_type(t->add_offset(field->offset_in_bytes()), field);
1728   assert((field->is_final() || field->is_stable()) == !atp->is_rewritable(), "must get the rewritable bits correct");
1729   return atp;
1730 }
1731 
1732 
1733 //------------------------------have_alias_type--------------------------------
1734 bool Compile::have_alias_type(const TypePtr* adr_type) {
1735   AliasCacheEntry* ace = probe_alias_cache(adr_type);
1736   if (ace->_adr_type == adr_type) {
1737     return true;
1738   }
1739 
1740   // Handle special cases.
1741   if (adr_type == NULL)             return true;
1742   if (adr_type == TypePtr::BOTTOM)  return true;
1743 
1744   return find_alias_type(adr_type, true, NULL) != NULL;
1745 }
1746 
1747 //-----------------------------must_alias--------------------------------------
1748 // True if all values of the given address type are in the given alias category.
1749 bool Compile::must_alias(const TypePtr* adr_type, int alias_idx) {
1750   if (alias_idx == AliasIdxBot)         return true;  // the universal category
1751   if (adr_type == NULL)                 return true;  // NULL serves as TypePtr::TOP
1752   if (alias_idx == AliasIdxTop)         return false; // the empty category
1753   if (adr_type->base() == Type::AnyPtr) return false; // TypePtr::BOTTOM or its twins
1754 
1755   // the only remaining possible overlap is identity
1756   int adr_idx = get_alias_index(adr_type);
1757   assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
1758   assert(adr_idx == alias_idx ||
1759          (alias_type(alias_idx)->adr_type() != TypeOopPtr::BOTTOM
1760           && adr_type                       != TypeOopPtr::BOTTOM),
1761          "should not be testing for overlap with an unsafe pointer");
1762   return adr_idx == alias_idx;
1763 }
1764 
1765 //------------------------------can_alias--------------------------------------
1766 // True if any values of the given address type are in the given alias category.
1767 bool Compile::can_alias(const TypePtr* adr_type, int alias_idx) {
1768   if (alias_idx == AliasIdxTop)         return false; // the empty category
1769   if (adr_type == NULL)                 return false; // NULL serves as TypePtr::TOP
1770   if (alias_idx == AliasIdxBot)         return true;  // the universal category
1771   if (adr_type->base() == Type::AnyPtr) return true;  // TypePtr::BOTTOM or its twins
1772 
1773   // the only remaining possible overlap is identity
1774   int adr_idx = get_alias_index(adr_type);
1775   assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
1776   return adr_idx == alias_idx;
1777 }
1778 
1779 
1780 
1781 //---------------------------pop_warm_call-------------------------------------
1782 WarmCallInfo* Compile::pop_warm_call() {
1783   WarmCallInfo* wci = _warm_calls;
1784   if (wci != NULL)  _warm_calls = wci->remove_from(wci);
1785   return wci;
1786 }
1787 
1788 //----------------------------Inline_Warm--------------------------------------
1789 int Compile::Inline_Warm() {
1790   // If there is room, try to inline some more warm call sites.
1791   // %%% Do a graph index compaction pass when we think we're out of space?
1792   if (!InlineWarmCalls)  return 0;
1793 
1794   int calls_made_hot = 0;
1795   int room_to_grow   = NodeCountInliningCutoff - unique();
1796   int amount_to_grow = MIN2(room_to_grow, (int)NodeCountInliningStep);
1797   int amount_grown   = 0;
1798   WarmCallInfo* call;
1799   while (amount_to_grow > 0 && (call = pop_warm_call()) != NULL) {
1800     int est_size = (int)call->size();
1801     if (est_size > (room_to_grow - amount_grown)) {
1802       // This one won't fit anyway.  Get rid of it.
1803       call->make_cold();
1804       continue;
1805     }
1806     call->make_hot();
1807     calls_made_hot++;
1808     amount_grown   += est_size;
1809     amount_to_grow -= est_size;
1810   }
1811 
1812   if (calls_made_hot > 0)  set_major_progress();
1813   return calls_made_hot;
1814 }
1815 
1816 
1817 //----------------------------Finish_Warm--------------------------------------
1818 void Compile::Finish_Warm() {
1819   if (!InlineWarmCalls)  return;
1820   if (failing())  return;
1821   if (warm_calls() == NULL)  return;
1822 
1823   // Clean up loose ends, if we are out of space for inlining.
1824   WarmCallInfo* call;
1825   while ((call = pop_warm_call()) != NULL) {
1826     call->make_cold();
1827   }
1828 }
1829 
1830 //---------------------cleanup_loop_predicates-----------------------
1831 // Remove the opaque nodes that protect the predicates so that all unused
1832 // checks and uncommon_traps will be eliminated from the ideal graph
1833 void Compile::cleanup_loop_predicates(PhaseIterGVN &igvn) {
1834   if (predicate_count()==0) return;
1835   for (int i = predicate_count(); i > 0; i--) {
1836     Node * n = predicate_opaque1_node(i-1);
1837     assert(n->Opcode() == Op_Opaque1, "must be");
1838     igvn.replace_node(n, n->in(1));
1839   }
1840   assert(predicate_count()==0, "should be clean!");
1841 }
1842 
1843 // StringOpts and late inlining of string methods
1844 void Compile::inline_string_calls(bool parse_time) {
1845   {
1846     // remove useless nodes to make the usage analysis simpler
1847     ResourceMark rm;
1848     PhaseRemoveUseless pru(initial_gvn(), for_igvn());
1849   }
1850 
1851   {
1852     ResourceMark rm;
1853     print_method(PHASE_BEFORE_STRINGOPTS, 3);
1854     PhaseStringOpts pso(initial_gvn(), for_igvn());
1855     print_method(PHASE_AFTER_STRINGOPTS, 3);
1856   }
1857 
1858   // now inline anything that we skipped the first time around
1859   if (!parse_time) {
1860     _late_inlines_pos = _late_inlines.length();
1861   }
1862 
1863   while (_string_late_inlines.length() > 0) {
1864     CallGenerator* cg = _string_late_inlines.pop();
1865     cg->do_late_inline();
1866     if (failing())  return;
1867   }
1868   _string_late_inlines.trunc_to(0);
1869 }
1870 
1871 // Late inlining of boxing methods
1872 void Compile::inline_boxing_calls(PhaseIterGVN& igvn) {
1873   if (_boxing_late_inlines.length() > 0) {
1874     assert(has_boxed_value(), "inconsistent");
1875 
1876     PhaseGVN* gvn = initial_gvn();
1877     set_inlining_incrementally(true);
1878 
1879     assert( igvn._worklist.size() == 0, "should be done with igvn" );
1880     for_igvn()->clear();
1881     gvn->replace_with(&igvn);
1882 
1883     while (_boxing_late_inlines.length() > 0) {
1884       CallGenerator* cg = _boxing_late_inlines.pop();
1885       cg->do_late_inline();
1886       if (failing())  return;
1887     }
1888     _boxing_late_inlines.trunc_to(0);
1889 
1890     {
1891       ResourceMark rm;
1892       PhaseRemoveUseless pru(gvn, for_igvn());
1893     }
1894 
1895     igvn = PhaseIterGVN(gvn);
1896     igvn.optimize();
1897 
1898     set_inlining_progress(false);
1899     set_inlining_incrementally(false);
1900   }
1901 }
1902 
1903 void Compile::inline_incrementally_one(PhaseIterGVN& igvn) {
1904   assert(IncrementalInline, "incremental inlining should be on");
1905   PhaseGVN* gvn = initial_gvn();
1906 
1907   set_inlining_progress(false);
1908   for_igvn()->clear();
1909   gvn->replace_with(&igvn);
1910 
1911   int i = 0;
1912 
1913   for (; i <_late_inlines.length() && !inlining_progress(); i++) {
1914     CallGenerator* cg = _late_inlines.at(i);
1915     _late_inlines_pos = i+1;
1916     cg->do_late_inline();
1917     if (failing())  return;
1918   }
1919   int j = 0;
1920   for (; i < _late_inlines.length(); i++, j++) {
1921     _late_inlines.at_put(j, _late_inlines.at(i));
1922   }
1923   _late_inlines.trunc_to(j);
1924 
1925   {
1926     ResourceMark rm;
1927     PhaseRemoveUseless pru(gvn, for_igvn());
1928   }
1929 
1930   igvn = PhaseIterGVN(gvn);
1931 }
1932 
1933 // Perform incremental inlining until bound on number of live nodes is reached
1934 void Compile::inline_incrementally(PhaseIterGVN& igvn) {
1935   PhaseGVN* gvn = initial_gvn();
1936 
1937   set_inlining_incrementally(true);
1938   set_inlining_progress(true);
1939   uint low_live_nodes = 0;
1940 
1941   while(inlining_progress() && _late_inlines.length() > 0) {
1942 
1943     if (live_nodes() > (uint)LiveNodeCountInliningCutoff) {
1944       if (low_live_nodes < (uint)LiveNodeCountInliningCutoff * 8 / 10) {
1945         // PhaseIdealLoop is expensive so we only try it once we are
1946         // out of loop and we only try it again if the previous helped
1947         // got the number of nodes down significantly
1948         PhaseIdealLoop ideal_loop( igvn, false, true );
1949         if (failing())  return;
1950         low_live_nodes = live_nodes();
1951         _major_progress = true;
1952       }
1953 
1954       if (live_nodes() > (uint)LiveNodeCountInliningCutoff) {
1955         break;
1956       }
1957     }
1958 
1959     inline_incrementally_one(igvn);
1960 
1961     if (failing())  return;
1962 
1963     igvn.optimize();
1964 
1965     if (failing())  return;
1966   }
1967 
1968   assert( igvn._worklist.size() == 0, "should be done with igvn" );
1969 
1970   if (_string_late_inlines.length() > 0) {
1971     assert(has_stringbuilder(), "inconsistent");
1972     for_igvn()->clear();
1973     initial_gvn()->replace_with(&igvn);
1974 
1975     inline_string_calls(false);
1976 
1977     if (failing())  return;
1978 
1979     {
1980       ResourceMark rm;
1981       PhaseRemoveUseless pru(initial_gvn(), for_igvn());
1982     }
1983 
1984     igvn = PhaseIterGVN(gvn);
1985 
1986     igvn.optimize();
1987   }
1988 
1989   set_inlining_incrementally(false);
1990 }
1991 
1992 
1993 //------------------------------Optimize---------------------------------------
1994 // Given a graph, optimize it.
1995 void Compile::Optimize() {
1996   TracePhase t1("optimizer", &_t_optimizer, true);
1997 
1998 #ifndef PRODUCT
1999   if (env()->break_at_compile()) {
2000     BREAKPOINT;
2001   }
2002 
2003 #endif
2004 
2005   ResourceMark rm;
2006   int          loop_opts_cnt;
2007 
2008   NOT_PRODUCT( verify_graph_edges(); )
2009 
2010   print_method(PHASE_AFTER_PARSING);
2011 
2012  {
2013   // Iterative Global Value Numbering, including ideal transforms
2014   // Initialize IterGVN with types and values from parse-time GVN
2015   PhaseIterGVN igvn(initial_gvn());
2016   {
2017     NOT_PRODUCT( TracePhase t2("iterGVN", &_t_iterGVN, TimeCompiler); )
2018     igvn.optimize();
2019   }
2020 
2021   print_method(PHASE_ITER_GVN1, 2);
2022 
2023   if (failing())  return;
2024 
2025   {
2026     NOT_PRODUCT( TracePhase t2("incrementalInline", &_t_incrInline, TimeCompiler); )
2027     inline_incrementally(igvn);
2028   }
2029 
2030   print_method(PHASE_INCREMENTAL_INLINE, 2);
2031 
2032   if (failing())  return;
2033 
2034   if (eliminate_boxing()) {
2035     NOT_PRODUCT( TracePhase t2("incrementalInline", &_t_incrInline, TimeCompiler); )
2036     // Inline valueOf() methods now.
2037     inline_boxing_calls(igvn);
2038 
2039     print_method(PHASE_INCREMENTAL_BOXING_INLINE, 2);
2040 
2041     if (failing())  return;
2042   }
2043 
2044   // Remove the speculative part of types and clean up the graph from
2045   // the extra CastPP nodes whose only purpose is to carry them. Do
2046   // that early so that optimizations are not disrupted by the extra
2047   // CastPP nodes.
2048   remove_speculative_types(igvn);
2049 
2050   // No more new expensive nodes will be added to the list from here
2051   // so keep only the actual candidates for optimizations.
2052   cleanup_expensive_nodes(igvn);
2053 
2054   // Perform escape analysis
2055   if (_do_escape_analysis && ConnectionGraph::has_candidates(this)) {
2056     if (has_loops()) {
2057       // Cleanup graph (remove dead nodes).
2058       TracePhase t2("idealLoop", &_t_idealLoop, true);
2059       PhaseIdealLoop ideal_loop( igvn, false, true );
2060       if (major_progress()) print_method(PHASE_PHASEIDEAL_BEFORE_EA, 2);
2061       if (failing())  return;
2062     }
2063     ConnectionGraph::do_analysis(this, &igvn);
2064 
2065     if (failing())  return;
2066 
2067     // Optimize out fields loads from scalar replaceable allocations.
2068     igvn.optimize();
2069     print_method(PHASE_ITER_GVN_AFTER_EA, 2);
2070 
2071     if (failing())  return;
2072 
2073     if (congraph() != NULL && macro_count() > 0) {
2074       NOT_PRODUCT( TracePhase t2("macroEliminate", &_t_macroEliminate, TimeCompiler); )
2075       PhaseMacroExpand mexp(igvn);
2076       mexp.eliminate_macro_nodes();
2077       igvn.set_delay_transform(false);
2078 
2079       igvn.optimize();
2080       print_method(PHASE_ITER_GVN_AFTER_ELIMINATION, 2);
2081 
2082       if (failing())  return;
2083     }
2084   }
2085 
2086   // Loop transforms on the ideal graph.  Range Check Elimination,
2087   // peeling, unrolling, etc.
2088 
2089   // Set loop opts counter
2090   loop_opts_cnt = num_loop_opts();
2091   if((loop_opts_cnt > 0) && (has_loops() || has_split_ifs())) {
2092     {
2093       TracePhase t2("idealLoop", &_t_idealLoop, true);
2094       PhaseIdealLoop ideal_loop( igvn, true );
2095       loop_opts_cnt--;
2096       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP1, 2);
2097       if (failing())  return;
2098     }
2099     // Loop opts pass if partial peeling occurred in previous pass
2100     if(PartialPeelLoop && major_progress() && (loop_opts_cnt > 0)) {
2101       TracePhase t3("idealLoop", &_t_idealLoop, true);
2102       PhaseIdealLoop ideal_loop( igvn, false );
2103       loop_opts_cnt--;
2104       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP2, 2);
2105       if (failing())  return;
2106     }
2107     // Loop opts pass for loop-unrolling before CCP
2108     if(major_progress() && (loop_opts_cnt > 0)) {
2109       TracePhase t4("idealLoop", &_t_idealLoop, true);
2110       PhaseIdealLoop ideal_loop( igvn, false );
2111       loop_opts_cnt--;
2112       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP3, 2);
2113     }
2114     if (!failing()) {
2115       // Verify that last round of loop opts produced a valid graph
2116       NOT_PRODUCT( TracePhase t2("idealLoopVerify", &_t_idealLoopVerify, TimeCompiler); )
2117       PhaseIdealLoop::verify(igvn);
2118     }
2119   }
2120   if (failing())  return;
2121 
2122   // Conditional Constant Propagation;
2123   PhaseCCP ccp( &igvn );
2124   assert( true, "Break here to ccp.dump_nodes_and_types(_root,999,1)");
2125   {
2126     TracePhase t2("ccp", &_t_ccp, true);
2127     ccp.do_transform();
2128   }
2129   print_method(PHASE_CPP1, 2);
2130 
2131   assert( true, "Break here to ccp.dump_old2new_map()");
2132 
2133   // Iterative Global Value Numbering, including ideal transforms
2134   {
2135     NOT_PRODUCT( TracePhase t2("iterGVN2", &_t_iterGVN2, TimeCompiler); )
2136     igvn = ccp;
2137     igvn.optimize();
2138   }
2139 
2140   print_method(PHASE_ITER_GVN2, 2);
2141 
2142   if (failing())  return;
2143 
2144   // Loop transforms on the ideal graph.  Range Check Elimination,
2145   // peeling, unrolling, etc.
2146   if(loop_opts_cnt > 0) {
2147     debug_only( int cnt = 0; );
2148     while(major_progress() && (loop_opts_cnt > 0)) {
2149       TracePhase t2("idealLoop", &_t_idealLoop, true);
2150       assert( cnt++ < 40, "infinite cycle in loop optimization" );
2151       PhaseIdealLoop ideal_loop( igvn, true);
2152       loop_opts_cnt--;
2153       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP_ITERATIONS, 2);
2154       if (failing())  return;
2155     }
2156   }
2157 
2158   {
2159     // Verify that all previous optimizations produced a valid graph
2160     // at least to this point, even if no loop optimizations were done.
2161     NOT_PRODUCT( TracePhase t2("idealLoopVerify", &_t_idealLoopVerify, TimeCompiler); )
2162     PhaseIdealLoop::verify(igvn);
2163   }
2164 
2165   {
2166     NOT_PRODUCT( TracePhase t2("macroExpand", &_t_macroExpand, TimeCompiler); )
2167     PhaseMacroExpand  mex(igvn);
2168     if (mex.expand_macro_nodes()) {
2169       assert(failing(), "must bail out w/ explicit message");
2170       return;
2171     }
2172   }
2173 
2174  } // (End scope of igvn; run destructor if necessary for asserts.)
2175 
2176   dump_inlining();
2177   // A method with only infinite loops has no edges entering loops from root
2178   {
2179     NOT_PRODUCT( TracePhase t2("graphReshape", &_t_graphReshaping, TimeCompiler); )
2180     if (final_graph_reshaping()) {
2181       assert(failing(), "must bail out w/ explicit message");
2182       return;
2183     }
2184   }
2185 
2186   print_method(PHASE_OPTIMIZE_FINISHED, 2);
2187 }
2188 
2189 
2190 //------------------------------Code_Gen---------------------------------------
2191 // Given a graph, generate code for it
2192 void Compile::Code_Gen() {
2193   if (failing()) {
2194     return;
2195   }
2196 
2197   // Perform instruction selection.  You might think we could reclaim Matcher
2198   // memory PDQ, but actually the Matcher is used in generating spill code.
2199   // Internals of the Matcher (including some VectorSets) must remain live
2200   // for awhile - thus I cannot reclaim Matcher memory lest a VectorSet usage
2201   // set a bit in reclaimed memory.
2202 
2203   // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
2204   // nodes.  Mapping is only valid at the root of each matched subtree.
2205   NOT_PRODUCT( verify_graph_edges(); )
2206 
2207   Matcher matcher;
2208   _matcher = &matcher;
2209   {
2210     TracePhase t2("matcher", &_t_matcher, true);
2211     matcher.match();
2212   }
2213   // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
2214   // nodes.  Mapping is only valid at the root of each matched subtree.
2215   NOT_PRODUCT( verify_graph_edges(); )
2216 
2217   // If you have too many nodes, or if matching has failed, bail out
2218   check_node_count(0, "out of nodes matching instructions");
2219   if (failing()) {
2220     return;
2221   }
2222 
2223   // Build a proper-looking CFG
2224   PhaseCFG cfg(node_arena(), root(), matcher);
2225   _cfg = &cfg;
2226   {
2227     NOT_PRODUCT( TracePhase t2("scheduler", &_t_scheduler, TimeCompiler); )
2228     bool success = cfg.do_global_code_motion();
2229     if (!success) {
2230       return;
2231     }
2232 
2233     print_method(PHASE_GLOBAL_CODE_MOTION, 2);
2234     NOT_PRODUCT( verify_graph_edges(); )
2235     debug_only( cfg.verify(); )
2236   }
2237 
2238   PhaseChaitin regalloc(unique(), cfg, matcher);
2239   _regalloc = &regalloc;
2240   {
2241     TracePhase t2("regalloc", &_t_registerAllocation, true);
2242     // Perform register allocation.  After Chaitin, use-def chains are
2243     // no longer accurate (at spill code) and so must be ignored.
2244     // Node->LRG->reg mappings are still accurate.
2245     _regalloc->Register_Allocate();
2246 
2247     // Bail out if the allocator builds too many nodes
2248     if (failing()) {
2249       return;
2250     }
2251   }
2252 
2253   // Prior to register allocation we kept empty basic blocks in case the
2254   // the allocator needed a place to spill.  After register allocation we
2255   // are not adding any new instructions.  If any basic block is empty, we
2256   // can now safely remove it.
2257   {
2258     NOT_PRODUCT( TracePhase t2("blockOrdering", &_t_blockOrdering, TimeCompiler); )
2259     cfg.remove_empty_blocks();
2260     if (do_freq_based_layout()) {
2261       PhaseBlockLayout layout(cfg);
2262     } else {
2263       cfg.set_loop_alignment();
2264     }
2265     cfg.fixup_flow();
2266   }
2267 
2268   // Apply peephole optimizations
2269   if( OptoPeephole ) {
2270     NOT_PRODUCT( TracePhase t2("peephole", &_t_peephole, TimeCompiler); )
2271     PhasePeephole peep( _regalloc, cfg);
2272     peep.do_transform();
2273   }
2274 
2275   // Do late expand if CPU requires this.
2276   if (Matcher::require_postalloc_expand) {
2277     NOT_PRODUCT(TracePhase t2c("postalloc_expand", &_t_postalloc_expand, true));
2278     cfg.postalloc_expand(_regalloc);
2279   }
2280 
2281   // Convert Nodes to instruction bits in a buffer
2282   {
2283     // %%%% workspace merge brought two timers together for one job
2284     TracePhase t2a("output", &_t_output, true);
2285     NOT_PRODUCT( TraceTime t2b(NULL, &_t_codeGeneration, TimeCompiler, false); )
2286     Output();
2287   }
2288 
2289   print_method(PHASE_FINAL_CODE);
2290 
2291   // He's dead, Jim.
2292   _cfg     = (PhaseCFG*)0xdeadbeef;
2293   _regalloc = (PhaseChaitin*)0xdeadbeef;
2294 }
2295 
2296 
2297 //------------------------------dump_asm---------------------------------------
2298 // Dump formatted assembly
2299 #ifndef PRODUCT
2300 void Compile::dump_asm(int *pcs, uint pc_limit) {
2301   bool cut_short = false;
2302   tty->print_cr("#");
2303   tty->print("#  ");  _tf->dump();  tty->cr();
2304   tty->print_cr("#");
2305 
2306   // For all blocks
2307   int pc = 0x0;                 // Program counter
2308   char starts_bundle = ' ';
2309   _regalloc->dump_frame();
2310 
2311   Node *n = NULL;
2312   for (uint i = 0; i < _cfg->number_of_blocks(); i++) {
2313     if (VMThread::should_terminate()) {
2314       cut_short = true;
2315       break;
2316     }
2317     Block* block = _cfg->get_block(i);
2318     if (block->is_connector() && !Verbose) {
2319       continue;
2320     }
2321     n = block->head();
2322     if (pcs && n->_idx < pc_limit) {
2323       tty->print("%3.3x   ", pcs[n->_idx]);
2324     } else {
2325       tty->print("      ");
2326     }
2327     block->dump_head(_cfg);
2328     if (block->is_connector()) {
2329       tty->print_cr("        # Empty connector block");
2330     } else if (block->num_preds() == 2 && block->pred(1)->is_CatchProj() && block->pred(1)->as_CatchProj()->_con == CatchProjNode::fall_through_index) {
2331       tty->print_cr("        # Block is sole successor of call");
2332     }
2333 
2334     // For all instructions
2335     Node *delay = NULL;
2336     for (uint j = 0; j < block->number_of_nodes(); j++) {
2337       if (VMThread::should_terminate()) {
2338         cut_short = true;
2339         break;
2340       }
2341       n = block->get_node(j);
2342       if (valid_bundle_info(n)) {
2343         Bundle* bundle = node_bundling(n);
2344         if (bundle->used_in_unconditional_delay()) {
2345           delay = n;
2346           continue;
2347         }
2348         if (bundle->starts_bundle()) {
2349           starts_bundle = '+';
2350         }
2351       }
2352 
2353       if (WizardMode) {
2354         n->dump();
2355       }
2356 
2357       if( !n->is_Region() &&    // Dont print in the Assembly
2358           !n->is_Phi() &&       // a few noisely useless nodes
2359           !n->is_Proj() &&
2360           !n->is_MachTemp() &&
2361           !n->is_SafePointScalarObject() &&
2362           !n->is_Catch() &&     // Would be nice to print exception table targets
2363           !n->is_MergeMem() &&  // Not very interesting
2364           !n->is_top() &&       // Debug info table constants
2365           !(n->is_Con() && !n->is_Mach())// Debug info table constants
2366           ) {
2367         if (pcs && n->_idx < pc_limit)
2368           tty->print("%3.3x", pcs[n->_idx]);
2369         else
2370           tty->print("   ");
2371         tty->print(" %c ", starts_bundle);
2372         starts_bundle = ' ';
2373         tty->print("\t");
2374         n->format(_regalloc, tty);
2375         tty->cr();
2376       }
2377 
2378       // If we have an instruction with a delay slot, and have seen a delay,
2379       // then back up and print it
2380       if (valid_bundle_info(n) && node_bundling(n)->use_unconditional_delay()) {
2381         assert(delay != NULL, "no unconditional delay instruction");
2382         if (WizardMode) delay->dump();
2383 
2384         if (node_bundling(delay)->starts_bundle())
2385           starts_bundle = '+';
2386         if (pcs && n->_idx < pc_limit)
2387           tty->print("%3.3x", pcs[n->_idx]);
2388         else
2389           tty->print("   ");
2390         tty->print(" %c ", starts_bundle);
2391         starts_bundle = ' ';
2392         tty->print("\t");
2393         delay->format(_regalloc, tty);
2394         tty->print_cr("");
2395         delay = NULL;
2396       }
2397 
2398       // Dump the exception table as well
2399       if( n->is_Catch() && (Verbose || WizardMode) ) {
2400         // Print the exception table for this offset
2401         _handler_table.print_subtable_for(pc);
2402       }
2403     }
2404 
2405     if (pcs && n->_idx < pc_limit)
2406       tty->print_cr("%3.3x", pcs[n->_idx]);
2407     else
2408       tty->print_cr("");
2409 
2410     assert(cut_short || delay == NULL, "no unconditional delay branch");
2411 
2412   } // End of per-block dump
2413   tty->print_cr("");
2414 
2415   if (cut_short)  tty->print_cr("*** disassembly is cut short ***");
2416 }
2417 #endif
2418 
2419 //------------------------------Final_Reshape_Counts---------------------------
2420 // This class defines counters to help identify when a method
2421 // may/must be executed using hardware with only 24-bit precision.
2422 struct Final_Reshape_Counts : public StackObj {
2423   int  _call_count;             // count non-inlined 'common' calls
2424   int  _float_count;            // count float ops requiring 24-bit precision
2425   int  _double_count;           // count double ops requiring more precision
2426   int  _java_call_count;        // count non-inlined 'java' calls
2427   int  _inner_loop_count;       // count loops which need alignment
2428   VectorSet _visited;           // Visitation flags
2429   Node_List _tests;             // Set of IfNodes & PCTableNodes
2430 
2431   Final_Reshape_Counts() :
2432     _call_count(0), _float_count(0), _double_count(0),
2433     _java_call_count(0), _inner_loop_count(0),
2434     _visited( Thread::current()->resource_area() ) { }
2435 
2436   void inc_call_count  () { _call_count  ++; }
2437   void inc_float_count () { _float_count ++; }
2438   void inc_double_count() { _double_count++; }
2439   void inc_java_call_count() { _java_call_count++; }
2440   void inc_inner_loop_count() { _inner_loop_count++; }
2441 
2442   int  get_call_count  () const { return _call_count  ; }
2443   int  get_float_count () const { return _float_count ; }
2444   int  get_double_count() const { return _double_count; }
2445   int  get_java_call_count() const { return _java_call_count; }
2446   int  get_inner_loop_count() const { return _inner_loop_count; }
2447 };
2448 
2449 #ifdef ASSERT
2450 static bool oop_offset_is_sane(const TypeInstPtr* tp) {
2451   ciInstanceKlass *k = tp->klass()->as_instance_klass();
2452   // Make sure the offset goes inside the instance layout.
2453   return k->contains_field_offset(tp->offset());
2454   // Note that OffsetBot and OffsetTop are very negative.
2455 }
2456 #endif
2457 
2458 // Eliminate trivially redundant StoreCMs and accumulate their
2459 // precedence edges.
2460 void Compile::eliminate_redundant_card_marks(Node* n) {
2461   assert(n->Opcode() == Op_StoreCM, "expected StoreCM");
2462   if (n->in(MemNode::Address)->outcnt() > 1) {
2463     // There are multiple users of the same address so it might be
2464     // possible to eliminate some of the StoreCMs
2465     Node* mem = n->in(MemNode::Memory);
2466     Node* adr = n->in(MemNode::Address);
2467     Node* val = n->in(MemNode::ValueIn);
2468     Node* prev = n;
2469     bool done = false;
2470     // Walk the chain of StoreCMs eliminating ones that match.  As
2471     // long as it's a chain of single users then the optimization is
2472     // safe.  Eliminating partially redundant StoreCMs would require
2473     // cloning copies down the other paths.
2474     while (mem->Opcode() == Op_StoreCM && mem->outcnt() == 1 && !done) {
2475       if (adr == mem->in(MemNode::Address) &&
2476           val == mem->in(MemNode::ValueIn)) {
2477         // redundant StoreCM
2478         if (mem->req() > MemNode::OopStore) {
2479           // Hasn't been processed by this code yet.
2480           n->add_prec(mem->in(MemNode::OopStore));
2481         } else {
2482           // Already converted to precedence edge
2483           for (uint i = mem->req(); i < mem->len(); i++) {
2484             // Accumulate any precedence edges
2485             if (mem->in(i) != NULL) {
2486               n->add_prec(mem->in(i));
2487             }
2488           }
2489           // Everything above this point has been processed.
2490           done = true;
2491         }
2492         // Eliminate the previous StoreCM
2493         prev->set_req(MemNode::Memory, mem->in(MemNode::Memory));
2494         assert(mem->outcnt() == 0, "should be dead");
2495         mem->disconnect_inputs(NULL, this);
2496       } else {
2497         prev = mem;
2498       }
2499       mem = prev->in(MemNode::Memory);
2500     }
2501   }
2502 }
2503 
2504 //------------------------------final_graph_reshaping_impl----------------------
2505 // Implement items 1-5 from final_graph_reshaping below.
2506 void Compile::final_graph_reshaping_impl( Node *n, Final_Reshape_Counts &frc) {
2507 
2508   if ( n->outcnt() == 0 ) return; // dead node
2509   uint nop = n->Opcode();
2510 
2511   // Check for 2-input instruction with "last use" on right input.
2512   // Swap to left input.  Implements item (2).
2513   if( n->req() == 3 &&          // two-input instruction
2514       n->in(1)->outcnt() > 1 && // left use is NOT a last use
2515       (!n->in(1)->is_Phi() || n->in(1)->in(2) != n) && // it is not data loop
2516       n->in(2)->outcnt() == 1 &&// right use IS a last use
2517       !n->in(2)->is_Con() ) {   // right use is not a constant
2518     // Check for commutative opcode
2519     switch( nop ) {
2520     case Op_AddI:  case Op_AddF:  case Op_AddD:  case Op_AddL:
2521     case Op_MaxI:  case Op_MinI:
2522     case Op_MulI:  case Op_MulF:  case Op_MulD:  case Op_MulL:
2523     case Op_AndL:  case Op_XorL:  case Op_OrL:
2524     case Op_AndI:  case Op_XorI:  case Op_OrI: {
2525       // Move "last use" input to left by swapping inputs
2526       n->swap_edges(1, 2);
2527       break;
2528     }
2529     default:
2530       break;
2531     }
2532   }
2533 
2534 #ifdef ASSERT
2535   if( n->is_Mem() ) {
2536     int alias_idx = get_alias_index(n->as_Mem()->adr_type());
2537     assert( n->in(0) != NULL || alias_idx != Compile::AliasIdxRaw ||
2538             // oop will be recorded in oop map if load crosses safepoint
2539             n->is_Load() && (n->as_Load()->bottom_type()->isa_oopptr() ||
2540                              LoadNode::is_immutable_value(n->in(MemNode::Address))),
2541             "raw memory operations should have control edge");
2542   }
2543 #endif
2544   // Count FPU ops and common calls, implements item (3)
2545   switch( nop ) {
2546   // Count all float operations that may use FPU
2547   case Op_AddF:
2548   case Op_SubF:
2549   case Op_MulF:
2550   case Op_DivF:
2551   case Op_NegF:
2552   case Op_ModF:
2553   case Op_ConvI2F:
2554   case Op_ConF:
2555   case Op_CmpF:
2556   case Op_CmpF3:
2557   // case Op_ConvL2F: // longs are split into 32-bit halves
2558     frc.inc_float_count();
2559     break;
2560 
2561   case Op_ConvF2D:
2562   case Op_ConvD2F:
2563     frc.inc_float_count();
2564     frc.inc_double_count();
2565     break;
2566 
2567   // Count all double operations that may use FPU
2568   case Op_AddD:
2569   case Op_SubD:
2570   case Op_MulD:
2571   case Op_DivD:
2572   case Op_NegD:
2573   case Op_ModD:
2574   case Op_ConvI2D:
2575   case Op_ConvD2I:
2576   // case Op_ConvL2D: // handled by leaf call
2577   // case Op_ConvD2L: // handled by leaf call
2578   case Op_ConD:
2579   case Op_CmpD:
2580   case Op_CmpD3:
2581     frc.inc_double_count();
2582     break;
2583   case Op_Opaque1:              // Remove Opaque Nodes before matching
2584   case Op_Opaque2:              // Remove Opaque Nodes before matching
2585     n->subsume_by(n->in(1), this);
2586     break;
2587   case Op_CallStaticJava:
2588   case Op_CallJava:
2589   case Op_CallDynamicJava:
2590     frc.inc_java_call_count(); // Count java call site;
2591   case Op_CallRuntime:
2592   case Op_CallLeaf:
2593   case Op_CallLeafNoFP: {
2594     assert( n->is_Call(), "" );
2595     CallNode *call = n->as_Call();
2596     // Count call sites where the FP mode bit would have to be flipped.
2597     // Do not count uncommon runtime calls:
2598     // uncommon_trap, _complete_monitor_locking, _complete_monitor_unlocking,
2599     // _new_Java, _new_typeArray, _new_objArray, _rethrow_Java, ...
2600     if( !call->is_CallStaticJava() || !call->as_CallStaticJava()->_name ) {
2601       frc.inc_call_count();   // Count the call site
2602     } else {                  // See if uncommon argument is shared
2603       Node *n = call->in(TypeFunc::Parms);
2604       int nop = n->Opcode();
2605       // Clone shared simple arguments to uncommon calls, item (1).
2606       if( n->outcnt() > 1 &&
2607           !n->is_Proj() &&
2608           nop != Op_CreateEx &&
2609           nop != Op_CheckCastPP &&
2610           nop != Op_DecodeN &&
2611           nop != Op_DecodeNKlass &&
2612           !n->is_Mem() ) {
2613         Node *x = n->clone();
2614         call->set_req( TypeFunc::Parms, x );
2615       }
2616     }
2617     break;
2618   }
2619 
2620   case Op_StoreD:
2621   case Op_LoadD:
2622   case Op_LoadD_unaligned:
2623     frc.inc_double_count();
2624     goto handle_mem;
2625   case Op_StoreF:
2626   case Op_LoadF:
2627     frc.inc_float_count();
2628     goto handle_mem;
2629 
2630   case Op_StoreCM:
2631     {
2632       // Convert OopStore dependence into precedence edge
2633       Node* prec = n->in(MemNode::OopStore);
2634       n->del_req(MemNode::OopStore);
2635       n->add_prec(prec);
2636       eliminate_redundant_card_marks(n);
2637     }
2638 
2639     // fall through
2640 
2641   case Op_StoreB:
2642   case Op_StoreC:
2643   case Op_StorePConditional:
2644   case Op_StoreI:
2645   case Op_StoreL:
2646   case Op_StoreIConditional:
2647   case Op_StoreLConditional:
2648   case Op_CompareAndSwapI:
2649   case Op_CompareAndSwapL:
2650   case Op_CompareAndSwapP:
2651   case Op_CompareAndSwapN:
2652   case Op_GetAndAddI:
2653   case Op_GetAndAddL:
2654   case Op_GetAndSetI:
2655   case Op_GetAndSetL:
2656   case Op_GetAndSetP:
2657   case Op_GetAndSetN:
2658   case Op_StoreP:
2659   case Op_StoreN:
2660   case Op_StoreNKlass:
2661   case Op_LoadB:
2662   case Op_LoadUB:
2663   case Op_LoadUS:
2664   case Op_LoadI:
2665   case Op_LoadKlass:
2666   case Op_LoadNKlass:
2667   case Op_LoadL:
2668   case Op_LoadL_unaligned:
2669   case Op_LoadPLocked:
2670   case Op_LoadP:
2671   case Op_LoadN:
2672   case Op_LoadRange:
2673   case Op_LoadS: {
2674   handle_mem:
2675 #ifdef ASSERT
2676     if( VerifyOptoOopOffsets ) {
2677       assert( n->is_Mem(), "" );
2678       MemNode *mem  = (MemNode*)n;
2679       // Check to see if address types have grounded out somehow.
2680       const TypeInstPtr *tp = mem->in(MemNode::Address)->bottom_type()->isa_instptr();
2681       assert( !tp || oop_offset_is_sane(tp), "" );
2682     }
2683 #endif
2684     break;
2685   }
2686 
2687   case Op_AddP: {               // Assert sane base pointers
2688     Node *addp = n->in(AddPNode::Address);
2689     assert( !addp->is_AddP() ||
2690             addp->in(AddPNode::Base)->is_top() || // Top OK for allocation
2691             addp->in(AddPNode::Base) == n->in(AddPNode::Base),
2692             "Base pointers must match" );
2693 #ifdef _LP64
2694     if ((UseCompressedOops || UseCompressedClassPointers) &&
2695         addp->Opcode() == Op_ConP &&
2696         addp == n->in(AddPNode::Base) &&
2697         n->in(AddPNode::Offset)->is_Con()) {
2698       // Use addressing with narrow klass to load with offset on x86.
2699       // On sparc loading 32-bits constant and decoding it have less
2700       // instructions (4) then load 64-bits constant (7).
2701       // Do this transformation here since IGVN will convert ConN back to ConP.
2702       const Type* t = addp->bottom_type();
2703       if (t->isa_oopptr() || t->isa_klassptr()) {
2704         Node* nn = NULL;
2705 
2706         int op = t->isa_oopptr() ? Op_ConN : Op_ConNKlass;
2707 
2708         // Look for existing ConN node of the same exact type.
2709         Node* r  = root();
2710         uint cnt = r->outcnt();
2711         for (uint i = 0; i < cnt; i++) {
2712           Node* m = r->raw_out(i);
2713           if (m!= NULL && m->Opcode() == op &&
2714               m->bottom_type()->make_ptr() == t) {
2715             nn = m;
2716             break;
2717           }
2718         }
2719         if (nn != NULL) {
2720           // Decode a narrow oop to match address
2721           // [R12 + narrow_oop_reg<<3 + offset]
2722           if (t->isa_oopptr()) {
2723             nn = new (this) DecodeNNode(nn, t);
2724           } else {
2725             nn = new (this) DecodeNKlassNode(nn, t);
2726           }
2727           n->set_req(AddPNode::Base, nn);
2728           n->set_req(AddPNode::Address, nn);
2729           if (addp->outcnt() == 0) {
2730             addp->disconnect_inputs(NULL, this);
2731           }
2732         }
2733       }
2734     }
2735 #endif
2736     break;
2737   }
2738 
2739 #ifdef _LP64
2740   case Op_CastPP:
2741     if (n->in(1)->is_DecodeN() && Matcher::gen_narrow_oop_implicit_null_checks()) {
2742       Node* in1 = n->in(1);
2743       const Type* t = n->bottom_type();
2744       Node* new_in1 = in1->clone();
2745       new_in1->as_DecodeN()->set_type(t);
2746 
2747       if (!Matcher::narrow_oop_use_complex_address()) {
2748         //
2749         // x86, ARM and friends can handle 2 adds in addressing mode
2750         // and Matcher can fold a DecodeN node into address by using
2751         // a narrow oop directly and do implicit NULL check in address:
2752         //
2753         // [R12 + narrow_oop_reg<<3 + offset]
2754         // NullCheck narrow_oop_reg
2755         //
2756         // On other platforms (Sparc) we have to keep new DecodeN node and
2757         // use it to do implicit NULL check in address:
2758         //
2759         // decode_not_null narrow_oop_reg, base_reg
2760         // [base_reg + offset]
2761         // NullCheck base_reg
2762         //
2763         // Pin the new DecodeN node to non-null path on these platform (Sparc)
2764         // to keep the information to which NULL check the new DecodeN node
2765         // corresponds to use it as value in implicit_null_check().
2766         //
2767         new_in1->set_req(0, n->in(0));
2768       }
2769 
2770       n->subsume_by(new_in1, this);
2771       if (in1->outcnt() == 0) {
2772         in1->disconnect_inputs(NULL, this);
2773       }
2774     }
2775     break;
2776 
2777   case Op_CmpP:
2778     // Do this transformation here to preserve CmpPNode::sub() and
2779     // other TypePtr related Ideal optimizations (for example, ptr nullness).
2780     if (n->in(1)->is_DecodeNarrowPtr() || n->in(2)->is_DecodeNarrowPtr()) {
2781       Node* in1 = n->in(1);
2782       Node* in2 = n->in(2);
2783       if (!in1->is_DecodeNarrowPtr()) {
2784         in2 = in1;
2785         in1 = n->in(2);
2786       }
2787       assert(in1->is_DecodeNarrowPtr(), "sanity");
2788 
2789       Node* new_in2 = NULL;
2790       if (in2->is_DecodeNarrowPtr()) {
2791         assert(in2->Opcode() == in1->Opcode(), "must be same node type");
2792         new_in2 = in2->in(1);
2793       } else if (in2->Opcode() == Op_ConP) {
2794         const Type* t = in2->bottom_type();
2795         if (t == TypePtr::NULL_PTR) {
2796           assert(in1->is_DecodeN(), "compare klass to null?");
2797           // Don't convert CmpP null check into CmpN if compressed
2798           // oops implicit null check is not generated.
2799           // This will allow to generate normal oop implicit null check.
2800           if (Matcher::gen_narrow_oop_implicit_null_checks())
2801             new_in2 = ConNode::make(this, TypeNarrowOop::NULL_PTR);
2802           //
2803           // This transformation together with CastPP transformation above
2804           // will generated code for implicit NULL checks for compressed oops.
2805           //
2806           // The original code after Optimize()
2807           //
2808           //    LoadN memory, narrow_oop_reg
2809           //    decode narrow_oop_reg, base_reg
2810           //    CmpP base_reg, NULL
2811           //    CastPP base_reg // NotNull
2812           //    Load [base_reg + offset], val_reg
2813           //
2814           // after these transformations will be
2815           //
2816           //    LoadN memory, narrow_oop_reg
2817           //    CmpN narrow_oop_reg, NULL
2818           //    decode_not_null narrow_oop_reg, base_reg
2819           //    Load [base_reg + offset], val_reg
2820           //
2821           // and the uncommon path (== NULL) will use narrow_oop_reg directly
2822           // since narrow oops can be used in debug info now (see the code in
2823           // final_graph_reshaping_walk()).
2824           //
2825           // At the end the code will be matched to
2826           // on x86:
2827           //
2828           //    Load_narrow_oop memory, narrow_oop_reg
2829           //    Load [R12 + narrow_oop_reg<<3 + offset], val_reg
2830           //    NullCheck narrow_oop_reg
2831           //
2832           // and on sparc:
2833           //
2834           //    Load_narrow_oop memory, narrow_oop_reg
2835           //    decode_not_null narrow_oop_reg, base_reg
2836           //    Load [base_reg + offset], val_reg
2837           //    NullCheck base_reg
2838           //
2839         } else if (t->isa_oopptr()) {
2840           new_in2 = ConNode::make(this, t->make_narrowoop());
2841         } else if (t->isa_klassptr()) {
2842           new_in2 = ConNode::make(this, t->make_narrowklass());
2843         }
2844       }
2845       if (new_in2 != NULL) {
2846         Node* cmpN = new (this) CmpNNode(in1->in(1), new_in2);
2847         n->subsume_by(cmpN, this);
2848         if (in1->outcnt() == 0) {
2849           in1->disconnect_inputs(NULL, this);
2850         }
2851         if (in2->outcnt() == 0) {
2852           in2->disconnect_inputs(NULL, this);
2853         }
2854       }
2855     }
2856     break;
2857 
2858   case Op_DecodeN:
2859   case Op_DecodeNKlass:
2860     assert(!n->in(1)->is_EncodeNarrowPtr(), "should be optimized out");
2861     // DecodeN could be pinned when it can't be fold into
2862     // an address expression, see the code for Op_CastPP above.
2863     assert(n->in(0) == NULL || (UseCompressedOops && !Matcher::narrow_oop_use_complex_address()), "no control");
2864     break;
2865 
2866   case Op_EncodeP:
2867   case Op_EncodePKlass: {
2868     Node* in1 = n->in(1);
2869     if (in1->is_DecodeNarrowPtr()) {
2870       n->subsume_by(in1->in(1), this);
2871     } else if (in1->Opcode() == Op_ConP) {
2872       const Type* t = in1->bottom_type();
2873       if (t == TypePtr::NULL_PTR) {
2874         assert(t->isa_oopptr(), "null klass?");
2875         n->subsume_by(ConNode::make(this, TypeNarrowOop::NULL_PTR), this);
2876       } else if (t->isa_oopptr()) {
2877         n->subsume_by(ConNode::make(this, t->make_narrowoop()), this);
2878       } else if (t->isa_klassptr()) {
2879         n->subsume_by(ConNode::make(this, t->make_narrowklass()), this);
2880       }
2881     }
2882     if (in1->outcnt() == 0) {
2883       in1->disconnect_inputs(NULL, this);
2884     }
2885     break;
2886   }
2887 
2888   case Op_Proj: {
2889     if (OptimizeStringConcat) {
2890       ProjNode* p = n->as_Proj();
2891       if (p->_is_io_use) {
2892         // Separate projections were used for the exception path which
2893         // are normally removed by a late inline.  If it wasn't inlined
2894         // then they will hang around and should just be replaced with
2895         // the original one.
2896         Node* proj = NULL;
2897         // Replace with just one
2898         for (SimpleDUIterator i(p->in(0)); i.has_next(); i.next()) {
2899           Node *use = i.get();
2900           if (use->is_Proj() && p != use && use->as_Proj()->_con == p->_con) {
2901             proj = use;
2902             break;
2903           }
2904         }
2905         assert(proj != NULL, "must be found");
2906         p->subsume_by(proj, this);
2907       }
2908     }
2909     break;
2910   }
2911 
2912   case Op_Phi:
2913     if (n->as_Phi()->bottom_type()->isa_narrowoop() || n->as_Phi()->bottom_type()->isa_narrowklass()) {
2914       // The EncodeP optimization may create Phi with the same edges
2915       // for all paths. It is not handled well by Register Allocator.
2916       Node* unique_in = n->in(1);
2917       assert(unique_in != NULL, "");
2918       uint cnt = n->req();
2919       for (uint i = 2; i < cnt; i++) {
2920         Node* m = n->in(i);
2921         assert(m != NULL, "");
2922         if (unique_in != m)
2923           unique_in = NULL;
2924       }
2925       if (unique_in != NULL) {
2926         n->subsume_by(unique_in, this);
2927       }
2928     }
2929     break;
2930 
2931 #endif
2932 
2933   case Op_ModI:
2934     if (UseDivMod) {
2935       // Check if a%b and a/b both exist
2936       Node* d = n->find_similar(Op_DivI);
2937       if (d) {
2938         // Replace them with a fused divmod if supported
2939         if (Matcher::has_match_rule(Op_DivModI)) {
2940           DivModINode* divmod = DivModINode::make(this, n);
2941           d->subsume_by(divmod->div_proj(), this);
2942           n->subsume_by(divmod->mod_proj(), this);
2943         } else {
2944           // replace a%b with a-((a/b)*b)
2945           Node* mult = new (this) MulINode(d, d->in(2));
2946           Node* sub  = new (this) SubINode(d->in(1), mult);
2947           n->subsume_by(sub, this);
2948         }
2949       }
2950     }
2951     break;
2952 
2953   case Op_ModL:
2954     if (UseDivMod) {
2955       // Check if a%b and a/b both exist
2956       Node* d = n->find_similar(Op_DivL);
2957       if (d) {
2958         // Replace them with a fused divmod if supported
2959         if (Matcher::has_match_rule(Op_DivModL)) {
2960           DivModLNode* divmod = DivModLNode::make(this, n);
2961           d->subsume_by(divmod->div_proj(), this);
2962           n->subsume_by(divmod->mod_proj(), this);
2963         } else {
2964           // replace a%b with a-((a/b)*b)
2965           Node* mult = new (this) MulLNode(d, d->in(2));
2966           Node* sub  = new (this) SubLNode(d->in(1), mult);
2967           n->subsume_by(sub, this);
2968         }
2969       }
2970     }
2971     break;
2972 
2973   case Op_LoadVector:
2974   case Op_StoreVector:
2975     break;
2976 
2977   case Op_PackB:
2978   case Op_PackS:
2979   case Op_PackI:
2980   case Op_PackF:
2981   case Op_PackL:
2982   case Op_PackD:
2983     if (n->req()-1 > 2) {
2984       // Replace many operand PackNodes with a binary tree for matching
2985       PackNode* p = (PackNode*) n;
2986       Node* btp = p->binary_tree_pack(this, 1, n->req());
2987       n->subsume_by(btp, this);
2988     }
2989     break;
2990   case Op_Loop:
2991   case Op_CountedLoop:
2992     if (n->as_Loop()->is_inner_loop()) {
2993       frc.inc_inner_loop_count();
2994     }
2995     break;
2996   case Op_LShiftI:
2997   case Op_RShiftI:
2998   case Op_URShiftI:
2999   case Op_LShiftL:
3000   case Op_RShiftL:
3001   case Op_URShiftL:
3002     if (Matcher::need_masked_shift_count) {
3003       // The cpu's shift instructions don't restrict the count to the
3004       // lower 5/6 bits. We need to do the masking ourselves.
3005       Node* in2 = n->in(2);
3006       juint mask = (n->bottom_type() == TypeInt::INT) ? (BitsPerInt - 1) : (BitsPerLong - 1);
3007       const TypeInt* t = in2->find_int_type();
3008       if (t != NULL && t->is_con()) {
3009         juint shift = t->get_con();
3010         if (shift > mask) { // Unsigned cmp
3011           n->set_req(2, ConNode::make(this, TypeInt::make(shift & mask)));
3012         }
3013       } else {
3014         if (t == NULL || t->_lo < 0 || t->_hi > (int)mask) {
3015           Node* shift = new (this) AndINode(in2, ConNode::make(this, TypeInt::make(mask)));
3016           n->set_req(2, shift);
3017         }
3018       }
3019       if (in2->outcnt() == 0) { // Remove dead node
3020         in2->disconnect_inputs(NULL, this);
3021       }
3022     }
3023     break;
3024   case Op_MemBarStoreStore:
3025   case Op_MemBarRelease:
3026     // Break the link with AllocateNode: it is no longer useful and
3027     // confuses register allocation.
3028     if (n->req() > MemBarNode::Precedent) {
3029       n->set_req(MemBarNode::Precedent, top());
3030     }
3031     break;
3032   default:
3033     assert( !n->is_Call(), "" );
3034     assert( !n->is_Mem(), "" );
3035     break;
3036   }
3037 
3038   // Collect CFG split points
3039   if (n->is_MultiBranch())
3040     frc._tests.push(n);
3041 }
3042 
3043 //------------------------------final_graph_reshaping_walk---------------------
3044 // Replacing Opaque nodes with their input in final_graph_reshaping_impl(),
3045 // requires that the walk visits a node's inputs before visiting the node.
3046 void Compile::final_graph_reshaping_walk( Node_Stack &nstack, Node *root, Final_Reshape_Counts &frc ) {
3047   ResourceArea *area = Thread::current()->resource_area();
3048   Unique_Node_List sfpt(area);
3049 
3050   frc._visited.set(root->_idx); // first, mark node as visited
3051   uint cnt = root->req();
3052   Node *n = root;
3053   uint  i = 0;
3054   while (true) {
3055     if (i < cnt) {
3056       // Place all non-visited non-null inputs onto stack
3057       Node* m = n->in(i);
3058       ++i;
3059       if (m != NULL && !frc._visited.test_set(m->_idx)) {
3060         if (m->is_SafePoint() && m->as_SafePoint()->jvms() != NULL)
3061           sfpt.push(m);
3062         cnt = m->req();
3063         nstack.push(n, i); // put on stack parent and next input's index
3064         n = m;
3065         i = 0;
3066       }
3067     } else {
3068       // Now do post-visit work
3069       final_graph_reshaping_impl( n, frc );
3070       if (nstack.is_empty())
3071         break;             // finished
3072       n = nstack.node();   // Get node from stack
3073       cnt = n->req();
3074       i = nstack.index();
3075       nstack.pop();        // Shift to the next node on stack
3076     }
3077   }
3078 
3079   // Skip next transformation if compressed oops are not used.
3080   if ((UseCompressedOops && !Matcher::gen_narrow_oop_implicit_null_checks()) ||
3081       (!UseCompressedOops && !UseCompressedClassPointers))
3082     return;
3083 
3084   // Go over safepoints nodes to skip DecodeN/DecodeNKlass nodes for debug edges.
3085   // It could be done for an uncommon traps or any safepoints/calls
3086   // if the DecodeN/DecodeNKlass node is referenced only in a debug info.
3087   while (sfpt.size() > 0) {
3088     n = sfpt.pop();
3089     JVMState *jvms = n->as_SafePoint()->jvms();
3090     assert(jvms != NULL, "sanity");
3091     int start = jvms->debug_start();
3092     int end   = n->req();
3093     bool is_uncommon = (n->is_CallStaticJava() &&
3094                         n->as_CallStaticJava()->uncommon_trap_request() != 0);
3095     for (int j = start; j < end; j++) {
3096       Node* in = n->in(j);
3097       if (in->is_DecodeNarrowPtr()) {
3098         bool safe_to_skip = true;
3099         if (!is_uncommon ) {
3100           // Is it safe to skip?
3101           for (uint i = 0; i < in->outcnt(); i++) {
3102             Node* u = in->raw_out(i);
3103             if (!u->is_SafePoint() ||
3104                  u->is_Call() && u->as_Call()->has_non_debug_use(n)) {
3105               safe_to_skip = false;
3106             }
3107           }
3108         }
3109         if (safe_to_skip) {
3110           n->set_req(j, in->in(1));
3111         }
3112         if (in->outcnt() == 0) {
3113           in->disconnect_inputs(NULL, this);
3114         }
3115       }
3116     }
3117   }
3118 }
3119 
3120 //------------------------------final_graph_reshaping--------------------------
3121 // Final Graph Reshaping.
3122 //
3123 // (1) Clone simple inputs to uncommon calls, so they can be scheduled late
3124 //     and not commoned up and forced early.  Must come after regular
3125 //     optimizations to avoid GVN undoing the cloning.  Clone constant
3126 //     inputs to Loop Phis; these will be split by the allocator anyways.
3127 //     Remove Opaque nodes.
3128 // (2) Move last-uses by commutative operations to the left input to encourage
3129 //     Intel update-in-place two-address operations and better register usage
3130 //     on RISCs.  Must come after regular optimizations to avoid GVN Ideal
3131 //     calls canonicalizing them back.
3132 // (3) Count the number of double-precision FP ops, single-precision FP ops
3133 //     and call sites.  On Intel, we can get correct rounding either by
3134 //     forcing singles to memory (requires extra stores and loads after each
3135 //     FP bytecode) or we can set a rounding mode bit (requires setting and
3136 //     clearing the mode bit around call sites).  The mode bit is only used
3137 //     if the relative frequency of single FP ops to calls is low enough.
3138 //     This is a key transform for SPEC mpeg_audio.
3139 // (4) Detect infinite loops; blobs of code reachable from above but not
3140 //     below.  Several of the Code_Gen algorithms fail on such code shapes,
3141 //     so we simply bail out.  Happens a lot in ZKM.jar, but also happens
3142 //     from time to time in other codes (such as -Xcomp finalizer loops, etc).
3143 //     Detection is by looking for IfNodes where only 1 projection is
3144 //     reachable from below or CatchNodes missing some targets.
3145 // (5) Assert for insane oop offsets in debug mode.
3146 
3147 bool Compile::final_graph_reshaping() {
3148   // an infinite loop may have been eliminated by the optimizer,
3149   // in which case the graph will be empty.
3150   if (root()->req() == 1) {
3151     record_method_not_compilable("trivial infinite loop");
3152     return true;
3153   }
3154 
3155   // Expensive nodes have their control input set to prevent the GVN
3156   // from freely commoning them. There's no GVN beyond this point so
3157   // no need to keep the control input. We want the expensive nodes to
3158   // be freely moved to the least frequent code path by gcm.
3159   assert(OptimizeExpensiveOps || expensive_count() == 0, "optimization off but list non empty?");
3160   for (int i = 0; i < expensive_count(); i++) {
3161     _expensive_nodes->at(i)->set_req(0, NULL);
3162   }
3163 
3164   Final_Reshape_Counts frc;
3165 
3166   // Visit everybody reachable!
3167   // Allocate stack of size C->unique()/2 to avoid frequent realloc
3168   Node_Stack nstack(unique() >> 1);
3169   final_graph_reshaping_walk(nstack, root(), frc);
3170 
3171   // Check for unreachable (from below) code (i.e., infinite loops).
3172   for( uint i = 0; i < frc._tests.size(); i++ ) {
3173     MultiBranchNode *n = frc._tests[i]->as_MultiBranch();
3174     // Get number of CFG targets.
3175     // Note that PCTables include exception targets after calls.
3176     uint required_outcnt = n->required_outcnt();
3177     if (n->outcnt() != required_outcnt) {
3178       // Check for a few special cases.  Rethrow Nodes never take the
3179       // 'fall-thru' path, so expected kids is 1 less.
3180       if (n->is_PCTable() && n->in(0) && n->in(0)->in(0)) {
3181         if (n->in(0)->in(0)->is_Call()) {
3182           CallNode *call = n->in(0)->in(0)->as_Call();
3183           if (call->entry_point() == OptoRuntime::rethrow_stub()) {
3184             required_outcnt--;      // Rethrow always has 1 less kid
3185           } else if (call->req() > TypeFunc::Parms &&
3186                      call->is_CallDynamicJava()) {
3187             // Check for null receiver. In such case, the optimizer has
3188             // detected that the virtual call will always result in a null
3189             // pointer exception. The fall-through projection of this CatchNode
3190             // will not be populated.
3191             Node *arg0 = call->in(TypeFunc::Parms);
3192             if (arg0->is_Type() &&
3193                 arg0->as_Type()->type()->higher_equal(TypePtr::NULL_PTR)) {
3194               required_outcnt--;
3195             }
3196           } else if (call->entry_point() == OptoRuntime::new_array_Java() &&
3197                      call->req() > TypeFunc::Parms+1 &&
3198                      call->is_CallStaticJava()) {
3199             // Check for negative array length. In such case, the optimizer has
3200             // detected that the allocation attempt will always result in an
3201             // exception. There is no fall-through projection of this CatchNode .
3202             Node *arg1 = call->in(TypeFunc::Parms+1);
3203             if (arg1->is_Type() &&
3204                 arg1->as_Type()->type()->join(TypeInt::POS)->empty()) {
3205               required_outcnt--;
3206             }
3207           }
3208         }
3209       }
3210       // Recheck with a better notion of 'required_outcnt'
3211       if (n->outcnt() != required_outcnt) {
3212         record_method_not_compilable("malformed control flow");
3213         return true;            // Not all targets reachable!
3214       }
3215     }
3216     // Check that I actually visited all kids.  Unreached kids
3217     // must be infinite loops.
3218     for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++)
3219       if (!frc._visited.test(n->fast_out(j)->_idx)) {
3220         record_method_not_compilable("infinite loop");
3221         return true;            // Found unvisited kid; must be unreach
3222       }
3223   }
3224 
3225   // If original bytecodes contained a mixture of floats and doubles
3226   // check if the optimizer has made it homogenous, item (3).
3227   if( Use24BitFPMode && Use24BitFP && UseSSE == 0 &&
3228       frc.get_float_count() > 32 &&
3229       frc.get_double_count() == 0 &&
3230       (10 * frc.get_call_count() < frc.get_float_count()) ) {
3231     set_24_bit_selection_and_mode( false,  true );
3232   }
3233 
3234   set_java_calls(frc.get_java_call_count());
3235   set_inner_loops(frc.get_inner_loop_count());
3236 
3237   // No infinite loops, no reason to bail out.
3238   return false;
3239 }
3240 
3241 //-----------------------------too_many_traps----------------------------------
3242 // Report if there are too many traps at the current method and bci.
3243 // Return true if there was a trap, and/or PerMethodTrapLimit is exceeded.
3244 bool Compile::too_many_traps(ciMethod* method,
3245                              int bci,
3246                              Deoptimization::DeoptReason reason) {
3247   ciMethodData* md = method->method_data();
3248   if (md->is_empty()) {
3249     // Assume the trap has not occurred, or that it occurred only
3250     // because of a transient condition during start-up in the interpreter.
3251     return false;
3252   }
3253   ciMethod* m = Deoptimization::reason_is_speculate(reason) ? this->method() : NULL;
3254   if (md->has_trap_at(bci, m, reason) != 0) {
3255     // Assume PerBytecodeTrapLimit==0, for a more conservative heuristic.
3256     // Also, if there are multiple reasons, or if there is no per-BCI record,
3257     // assume the worst.
3258     if (log())
3259       log()->elem("observe trap='%s' count='%d'",
3260                   Deoptimization::trap_reason_name(reason),
3261                   md->trap_count(reason));
3262     return true;
3263   } else {
3264     // Ignore method/bci and see if there have been too many globally.
3265     return too_many_traps(reason, md);
3266   }
3267 }
3268 
3269 // Less-accurate variant which does not require a method and bci.
3270 bool Compile::too_many_traps(Deoptimization::DeoptReason reason,
3271                              ciMethodData* logmd) {
3272   if (trap_count(reason) >= Deoptimization::per_method_trap_limit(reason)) {
3273     // Too many traps globally.
3274     // Note that we use cumulative trap_count, not just md->trap_count.
3275     if (log()) {
3276       int mcount = (logmd == NULL)? -1: (int)logmd->trap_count(reason);
3277       log()->elem("observe trap='%s' count='0' mcount='%d' ccount='%d'",
3278                   Deoptimization::trap_reason_name(reason),
3279                   mcount, trap_count(reason));
3280     }
3281     return true;
3282   } else {
3283     // The coast is clear.
3284     return false;
3285   }
3286 }
3287 
3288 //--------------------------too_many_recompiles--------------------------------
3289 // Report if there are too many recompiles at the current method and bci.
3290 // Consults PerBytecodeRecompilationCutoff and PerMethodRecompilationCutoff.
3291 // Is not eager to return true, since this will cause the compiler to use
3292 // Action_none for a trap point, to avoid too many recompilations.
3293 bool Compile::too_many_recompiles(ciMethod* method,
3294                                   int bci,
3295                                   Deoptimization::DeoptReason reason) {
3296   ciMethodData* md = method->method_data();
3297   if (md->is_empty()) {
3298     // Assume the trap has not occurred, or that it occurred only
3299     // because of a transient condition during start-up in the interpreter.
3300     return false;
3301   }
3302   // Pick a cutoff point well within PerBytecodeRecompilationCutoff.
3303   uint bc_cutoff = (uint) PerBytecodeRecompilationCutoff / 8;
3304   uint m_cutoff  = (uint) PerMethodRecompilationCutoff / 2 + 1;  // not zero
3305   Deoptimization::DeoptReason per_bc_reason
3306     = Deoptimization::reason_recorded_per_bytecode_if_any(reason);
3307   ciMethod* m = Deoptimization::reason_is_speculate(reason) ? this->method() : NULL;
3308   if ((per_bc_reason == Deoptimization::Reason_none
3309        || md->has_trap_at(bci, m, reason) != 0)
3310       // The trap frequency measure we care about is the recompile count:
3311       && md->trap_recompiled_at(bci, m)
3312       && md->overflow_recompile_count() >= bc_cutoff) {
3313     // Do not emit a trap here if it has already caused recompilations.
3314     // Also, if there are multiple reasons, or if there is no per-BCI record,
3315     // assume the worst.
3316     if (log())
3317       log()->elem("observe trap='%s recompiled' count='%d' recompiles2='%d'",
3318                   Deoptimization::trap_reason_name(reason),
3319                   md->trap_count(reason),
3320                   md->overflow_recompile_count());
3321     return true;
3322   } else if (trap_count(reason) != 0
3323              && decompile_count() >= m_cutoff) {
3324     // Too many recompiles globally, and we have seen this sort of trap.
3325     // Use cumulative decompile_count, not just md->decompile_count.
3326     if (log())
3327       log()->elem("observe trap='%s' count='%d' mcount='%d' decompiles='%d' mdecompiles='%d'",
3328                   Deoptimization::trap_reason_name(reason),
3329                   md->trap_count(reason), trap_count(reason),
3330                   md->decompile_count(), decompile_count());
3331     return true;
3332   } else {
3333     // The coast is clear.
3334     return false;
3335   }
3336 }
3337 
3338 // Compute when not to trap. Used by matching trap based nodes and
3339 // NullCheck optimization.
3340 void Compile::set_allowed_deopt_reasons() {
3341   _allowed_reasons = 0;
3342   if (is_method_compilation()) {
3343     for (int rs = (int)Deoptimization::Reason_none+1; rs < Compile::trapHistLength; rs++) {
3344       assert(rs < BitsPerInt, "recode bit map");
3345       if (!too_many_traps((Deoptimization::DeoptReason) rs)) {
3346         _allowed_reasons |= nth_bit(rs);
3347       }
3348     }
3349   }
3350 }
3351 
3352 #ifndef PRODUCT
3353 //------------------------------verify_graph_edges---------------------------
3354 // Walk the Graph and verify that there is a one-to-one correspondence
3355 // between Use-Def edges and Def-Use edges in the graph.
3356 void Compile::verify_graph_edges(bool no_dead_code) {
3357   if (VerifyGraphEdges) {
3358     ResourceArea *area = Thread::current()->resource_area();
3359     Unique_Node_List visited(area);
3360     // Call recursive graph walk to check edges
3361     _root->verify_edges(visited);
3362     if (no_dead_code) {
3363       // Now make sure that no visited node is used by an unvisited node.
3364       bool dead_nodes = 0;
3365       Unique_Node_List checked(area);
3366       while (visited.size() > 0) {
3367         Node* n = visited.pop();
3368         checked.push(n);
3369         for (uint i = 0; i < n->outcnt(); i++) {
3370           Node* use = n->raw_out(i);
3371           if (checked.member(use))  continue;  // already checked
3372           if (visited.member(use))  continue;  // already in the graph
3373           if (use->is_Con())        continue;  // a dead ConNode is OK
3374           // At this point, we have found a dead node which is DU-reachable.
3375           if (dead_nodes++ == 0)
3376             tty->print_cr("*** Dead nodes reachable via DU edges:");
3377           use->dump(2);
3378           tty->print_cr("---");
3379           checked.push(use);  // No repeats; pretend it is now checked.
3380         }
3381       }
3382       assert(dead_nodes == 0, "using nodes must be reachable from root");
3383     }
3384   }
3385 }
3386 
3387 // Verify GC barriers consistency
3388 // Currently supported:
3389 // - G1 pre-barriers (see GraphKit::g1_write_barrier_pre())
3390 void Compile::verify_barriers() {
3391   if (UseG1GC) {
3392     // Verify G1 pre-barriers
3393     const int marking_offset = in_bytes(JavaThread::satb_mark_queue_offset() + PtrQueue::byte_offset_of_active());
3394 
3395     ResourceArea *area = Thread::current()->resource_area();
3396     Unique_Node_List visited(area);
3397     Node_List worklist(area);
3398     // We're going to walk control flow backwards starting from the Root
3399     worklist.push(_root);
3400     while (worklist.size() > 0) {
3401       Node* x = worklist.pop();
3402       if (x == NULL || x == top()) continue;
3403       if (visited.member(x)) {
3404         continue;
3405       } else {
3406         visited.push(x);
3407       }
3408 
3409       if (x->is_Region()) {
3410         for (uint i = 1; i < x->req(); i++) {
3411           worklist.push(x->in(i));
3412         }
3413       } else {
3414         worklist.push(x->in(0));
3415         // We are looking for the pattern:
3416         //                            /->ThreadLocal
3417         // If->Bool->CmpI->LoadB->AddP->ConL(marking_offset)
3418         //              \->ConI(0)
3419         // We want to verify that the If and the LoadB have the same control
3420         // See GraphKit::g1_write_barrier_pre()
3421         if (x->is_If()) {
3422           IfNode *iff = x->as_If();
3423           if (iff->in(1)->is_Bool() && iff->in(1)->in(1)->is_Cmp()) {
3424             CmpNode *cmp = iff->in(1)->in(1)->as_Cmp();
3425             if (cmp->Opcode() == Op_CmpI && cmp->in(2)->is_Con() && cmp->in(2)->bottom_type()->is_int()->get_con() == 0
3426                 && cmp->in(1)->is_Load()) {
3427               LoadNode* load = cmp->in(1)->as_Load();
3428               if (load->Opcode() == Op_LoadB && load->in(2)->is_AddP() && load->in(2)->in(2)->Opcode() == Op_ThreadLocal
3429                   && load->in(2)->in(3)->is_Con()
3430                   && load->in(2)->in(3)->bottom_type()->is_intptr_t()->get_con() == marking_offset) {
3431 
3432                 Node* if_ctrl = iff->in(0);
3433                 Node* load_ctrl = load->in(0);
3434 
3435                 if (if_ctrl != load_ctrl) {
3436                   // Skip possible CProj->NeverBranch in infinite loops
3437                   if ((if_ctrl->is_Proj() && if_ctrl->Opcode() == Op_CProj)
3438                       && (if_ctrl->in(0)->is_MultiBranch() && if_ctrl->in(0)->Opcode() == Op_NeverBranch)) {
3439                     if_ctrl = if_ctrl->in(0)->in(0);
3440                   }
3441                 }
3442                 assert(load_ctrl != NULL && if_ctrl == load_ctrl, "controls must match");
3443               }
3444             }
3445           }
3446         }
3447       }
3448     }
3449   }
3450 }
3451 
3452 #endif
3453 
3454 // The Compile object keeps track of failure reasons separately from the ciEnv.
3455 // This is required because there is not quite a 1-1 relation between the
3456 // ciEnv and its compilation task and the Compile object.  Note that one
3457 // ciEnv might use two Compile objects, if C2Compiler::compile_method decides
3458 // to backtrack and retry without subsuming loads.  Other than this backtracking
3459 // behavior, the Compile's failure reason is quietly copied up to the ciEnv
3460 // by the logic in C2Compiler.
3461 void Compile::record_failure(const char* reason) {
3462   if (log() != NULL) {
3463     log()->elem("failure reason='%s' phase='compile'", reason);
3464   }
3465   if (_failure_reason == NULL) {
3466     // Record the first failure reason.
3467     _failure_reason = reason;
3468   }
3469 
3470   EventCompilerFailure event;
3471   if (event.should_commit()) {
3472     event.set_compileID(Compile::compile_id());
3473     event.set_failure(reason);
3474     event.commit();
3475   }
3476 
3477   if (!C->failure_reason_is(C2Compiler::retry_no_subsuming_loads())) {
3478     C->print_method(PHASE_FAILURE);
3479   }
3480   _root = NULL;  // flush the graph, too
3481 }
3482 
3483 Compile::TracePhase::TracePhase(const char* name, elapsedTimer* accumulator, bool dolog)
3484   : TraceTime(NULL, accumulator, false NOT_PRODUCT( || TimeCompiler ), false),
3485     _phase_name(name), _dolog(dolog)
3486 {
3487   if (dolog) {
3488     C = Compile::current();
3489     _log = C->log();
3490   } else {
3491     C = NULL;
3492     _log = NULL;
3493   }
3494   if (_log != NULL) {
3495     _log->begin_head("phase name='%s' nodes='%d' live='%d'", _phase_name, C->unique(), C->live_nodes());
3496     _log->stamp();
3497     _log->end_head();
3498   }
3499 }
3500 
3501 Compile::TracePhase::~TracePhase() {
3502 
3503   C = Compile::current();
3504   if (_dolog) {
3505     _log = C->log();
3506   } else {
3507     _log = NULL;
3508   }
3509 
3510 #ifdef ASSERT
3511   if (PrintIdealNodeCount) {
3512     tty->print_cr("phase name='%s' nodes='%d' live='%d' live_graph_walk='%d'",
3513                   _phase_name, C->unique(), C->live_nodes(), C->count_live_nodes_by_graph_walk());
3514   }
3515 
3516   if (VerifyIdealNodeCount) {
3517     Compile::current()->print_missing_nodes();
3518   }
3519 #endif
3520 
3521   if (_log != NULL) {
3522     _log->done("phase name='%s' nodes='%d' live='%d'", _phase_name, C->unique(), C->live_nodes());
3523   }
3524 }
3525 
3526 //=============================================================================
3527 // Two Constant's are equal when the type and the value are equal.
3528 bool Compile::Constant::operator==(const Constant& other) {
3529   if (type()          != other.type()         )  return false;
3530   if (can_be_reused() != other.can_be_reused())  return false;
3531   // For floating point values we compare the bit pattern.
3532   switch (type()) {
3533   case T_FLOAT:   return (_v._value.i == other._v._value.i);
3534   case T_LONG:
3535   case T_DOUBLE:  return (_v._value.j == other._v._value.j);
3536   case T_OBJECT:
3537   case T_ADDRESS: return (_v._value.l == other._v._value.l);
3538   case T_VOID:    return (_v._value.l == other._v._value.l);  // jump-table entries
3539   case T_METADATA: return (_v._metadata == other._v._metadata);
3540   default: ShouldNotReachHere();
3541   }
3542   return false;
3543 }
3544 
3545 static int type_to_size_in_bytes(BasicType t) {
3546   switch (t) {
3547   case T_LONG:    return sizeof(jlong  );
3548   case T_FLOAT:   return sizeof(jfloat );
3549   case T_DOUBLE:  return sizeof(jdouble);
3550   case T_METADATA: return sizeof(Metadata*);
3551     // We use T_VOID as marker for jump-table entries (labels) which
3552     // need an internal word relocation.
3553   case T_VOID:
3554   case T_ADDRESS:
3555   case T_OBJECT:  return sizeof(jobject);
3556   }
3557 
3558   ShouldNotReachHere();
3559   return -1;
3560 }
3561 
3562 int Compile::ConstantTable::qsort_comparator(Constant* a, Constant* b) {
3563   // sort descending
3564   if (a->freq() > b->freq())  return -1;
3565   if (a->freq() < b->freq())  return  1;
3566   return 0;
3567 }
3568 
3569 void Compile::ConstantTable::calculate_offsets_and_size() {
3570   // First, sort the array by frequencies.
3571   _constants.sort(qsort_comparator);
3572 
3573 #ifdef ASSERT
3574   // Make sure all jump-table entries were sorted to the end of the
3575   // array (they have a negative frequency).
3576   bool found_void = false;
3577   for (int i = 0; i < _constants.length(); i++) {
3578     Constant con = _constants.at(i);
3579     if (con.type() == T_VOID)
3580       found_void = true;  // jump-tables
3581     else
3582       assert(!found_void, "wrong sorting");
3583   }
3584 #endif
3585 
3586   int offset = 0;
3587   for (int i = 0; i < _constants.length(); i++) {
3588     Constant* con = _constants.adr_at(i);
3589 
3590     // Align offset for type.
3591     int typesize = type_to_size_in_bytes(con->type());
3592     offset = align_size_up(offset, typesize);
3593     con->set_offset(offset);   // set constant's offset
3594 
3595     if (con->type() == T_VOID) {
3596       MachConstantNode* n = (MachConstantNode*) con->get_jobject();
3597       offset = offset + typesize * n->outcnt();  // expand jump-table
3598     } else {
3599       offset = offset + typesize;
3600     }
3601   }
3602 
3603   // Align size up to the next section start (which is insts; see
3604   // CodeBuffer::align_at_start).
3605   assert(_size == -1, "already set?");
3606   _size = align_size_up(offset, CodeEntryAlignment);
3607 }
3608 
3609 void Compile::ConstantTable::emit(CodeBuffer& cb) {
3610   MacroAssembler _masm(&cb);
3611   for (int i = 0; i < _constants.length(); i++) {
3612     Constant con = _constants.at(i);
3613     address constant_addr;
3614     switch (con.type()) {
3615     case T_LONG:   constant_addr = _masm.long_constant(  con.get_jlong()  ); break;
3616     case T_FLOAT:  constant_addr = _masm.float_constant( con.get_jfloat() ); break;
3617     case T_DOUBLE: constant_addr = _masm.double_constant(con.get_jdouble()); break;
3618     case T_OBJECT: {
3619       jobject obj = con.get_jobject();
3620       int oop_index = _masm.oop_recorder()->find_index(obj);
3621       constant_addr = _masm.address_constant((address) obj, oop_Relocation::spec(oop_index));
3622       break;
3623     }
3624     case T_ADDRESS: {
3625       address addr = (address) con.get_jobject();
3626       constant_addr = _masm.address_constant(addr);
3627       break;
3628     }
3629     // We use T_VOID as marker for jump-table entries (labels) which
3630     // need an internal word relocation.
3631     case T_VOID: {
3632       MachConstantNode* n = (MachConstantNode*) con.get_jobject();
3633       // Fill the jump-table with a dummy word.  The real value is
3634       // filled in later in fill_jump_table.
3635       address dummy = (address) n;
3636       constant_addr = _masm.address_constant(dummy);
3637       // Expand jump-table
3638       for (uint i = 1; i < n->outcnt(); i++) {
3639         address temp_addr = _masm.address_constant(dummy + i);
3640         assert(temp_addr, "consts section too small");
3641       }
3642       break;
3643     }
3644     case T_METADATA: {
3645       Metadata* obj = con.get_metadata();
3646       int metadata_index = _masm.oop_recorder()->find_index(obj);
3647       constant_addr = _masm.address_constant((address) obj, metadata_Relocation::spec(metadata_index));
3648       break;
3649     }
3650     default: ShouldNotReachHere();
3651     }
3652     assert(constant_addr, "consts section too small");
3653     assert((constant_addr - _masm.code()->consts()->start()) == con.offset(), err_msg_res("must be: %d == %d", constant_addr - _masm.code()->consts()->start(), con.offset()));
3654   }
3655 }
3656 
3657 int Compile::ConstantTable::find_offset(Constant& con) const {
3658   int idx = _constants.find(con);
3659   assert(idx != -1, "constant must be in constant table");
3660   int offset = _constants.at(idx).offset();
3661   assert(offset != -1, "constant table not emitted yet?");
3662   return offset;
3663 }
3664 
3665 void Compile::ConstantTable::add(Constant& con) {
3666   if (con.can_be_reused()) {
3667     int idx = _constants.find(con);
3668     if (idx != -1 && _constants.at(idx).can_be_reused()) {
3669       _constants.adr_at(idx)->inc_freq(con.freq());  // increase the frequency by the current value
3670       return;
3671     }
3672   }
3673   (void) _constants.append(con);
3674 }
3675 
3676 Compile::Constant Compile::ConstantTable::add(MachConstantNode* n, BasicType type, jvalue value) {
3677   Block* b = Compile::current()->cfg()->get_block_for_node(n);
3678   Constant con(type, value, b->_freq);
3679   add(con);
3680   return con;
3681 }
3682 
3683 Compile::Constant Compile::ConstantTable::add(Metadata* metadata) {
3684   Constant con(metadata);
3685   add(con);
3686   return con;
3687 }
3688 
3689 Compile::Constant Compile::ConstantTable::add(MachConstantNode* n, MachOper* oper) {
3690   jvalue value;
3691   BasicType type = oper->type()->basic_type();
3692   switch (type) {
3693   case T_LONG:    value.j = oper->constantL(); break;
3694   case T_FLOAT:   value.f = oper->constantF(); break;
3695   case T_DOUBLE:  value.d = oper->constantD(); break;
3696   case T_OBJECT:
3697   case T_ADDRESS: value.l = (jobject) oper->constant(); break;
3698   case T_METADATA: return add((Metadata*)oper->constant()); break;
3699   default: guarantee(false, err_msg_res("unhandled type: %s", type2name(type)));
3700   }
3701   return add(n, type, value);
3702 }
3703 
3704 Compile::Constant Compile::ConstantTable::add_jump_table(MachConstantNode* n) {
3705   jvalue value;
3706   // We can use the node pointer here to identify the right jump-table
3707   // as this method is called from Compile::Fill_buffer right before
3708   // the MachNodes are emitted and the jump-table is filled (means the
3709   // MachNode pointers do not change anymore).
3710   value.l = (jobject) n;
3711   Constant con(T_VOID, value, next_jump_table_freq(), false);  // Labels of a jump-table cannot be reused.
3712   add(con);
3713   return con;
3714 }
3715 
3716 void Compile::ConstantTable::fill_jump_table(CodeBuffer& cb, MachConstantNode* n, GrowableArray<Label*> labels) const {
3717   // If called from Compile::scratch_emit_size do nothing.
3718   if (Compile::current()->in_scratch_emit_size())  return;
3719 
3720   assert(labels.is_nonempty(), "must be");
3721   assert((uint) labels.length() == n->outcnt(), err_msg_res("must be equal: %d == %d", labels.length(), n->outcnt()));
3722 
3723   // Since MachConstantNode::constant_offset() also contains
3724   // table_base_offset() we need to subtract the table_base_offset()
3725   // to get the plain offset into the constant table.
3726   int offset = n->constant_offset() - table_base_offset();
3727 
3728   MacroAssembler _masm(&cb);
3729   address* jump_table_base = (address*) (_masm.code()->consts()->start() + offset);
3730 
3731   for (uint i = 0; i < n->outcnt(); i++) {
3732     address* constant_addr = &jump_table_base[i];
3733     assert(*constant_addr == (((address) n) + i), err_msg_res("all jump-table entries must contain adjusted node pointer: " INTPTR_FORMAT " == " INTPTR_FORMAT, *constant_addr, (((address) n) + i)));
3734     *constant_addr = cb.consts()->target(*labels.at(i), (address) constant_addr);
3735     cb.consts()->relocate((address) constant_addr, relocInfo::internal_word_type);
3736   }
3737 }
3738 
3739 void Compile::dump_inlining() {
3740   if (print_inlining() || print_intrinsics()) {
3741     // Print inlining message for candidates that we couldn't inline
3742     // for lack of space or non constant receiver
3743     for (int i = 0; i < _late_inlines.length(); i++) {
3744       CallGenerator* cg = _late_inlines.at(i);
3745       cg->print_inlining_late("live nodes > LiveNodeCountInliningCutoff");
3746     }
3747     Unique_Node_List useful;
3748     useful.push(root());
3749     for (uint next = 0; next < useful.size(); ++next) {
3750       Node* n  = useful.at(next);
3751       if (n->is_Call() && n->as_Call()->generator() != NULL && n->as_Call()->generator()->call_node() == n) {
3752         CallNode* call = n->as_Call();
3753         CallGenerator* cg = call->generator();
3754         cg->print_inlining_late("receiver not constant");
3755       }
3756       uint max = n->len();
3757       for ( uint i = 0; i < max; ++i ) {
3758         Node *m = n->in(i);
3759         if ( m == NULL ) continue;
3760         useful.push(m);
3761       }
3762     }
3763     for (int i = 0; i < _print_inlining_list->length(); i++) {
3764       tty->print(_print_inlining_list->adr_at(i)->ss()->as_string());
3765     }
3766   }
3767 }
3768 
3769 // Dump inlining replay data to the stream.
3770 // Don't change thread state and acquire any locks.
3771 void Compile::dump_inline_data(outputStream* out) {
3772   InlineTree* inl_tree = ilt();
3773   if (inl_tree != NULL) {
3774     out->print(" inline %d", inl_tree->count());
3775     inl_tree->dump_replay_data(out);
3776   }
3777 }
3778 
3779 int Compile::cmp_expensive_nodes(Node* n1, Node* n2) {
3780   if (n1->Opcode() < n2->Opcode())      return -1;
3781   else if (n1->Opcode() > n2->Opcode()) return 1;
3782 
3783   assert(n1->req() == n2->req(), err_msg_res("can't compare %s nodes: n1->req() = %d, n2->req() = %d", NodeClassNames[n1->Opcode()], n1->req(), n2->req()));
3784   for (uint i = 1; i < n1->req(); i++) {
3785     if (n1->in(i) < n2->in(i))      return -1;
3786     else if (n1->in(i) > n2->in(i)) return 1;
3787   }
3788 
3789   return 0;
3790 }
3791 
3792 int Compile::cmp_expensive_nodes(Node** n1p, Node** n2p) {
3793   Node* n1 = *n1p;
3794   Node* n2 = *n2p;
3795 
3796   return cmp_expensive_nodes(n1, n2);
3797 }
3798 
3799 void Compile::sort_expensive_nodes() {
3800   if (!expensive_nodes_sorted()) {
3801     _expensive_nodes->sort(cmp_expensive_nodes);
3802   }
3803 }
3804 
3805 bool Compile::expensive_nodes_sorted() const {
3806   for (int i = 1; i < _expensive_nodes->length(); i++) {
3807     if (cmp_expensive_nodes(_expensive_nodes->adr_at(i), _expensive_nodes->adr_at(i-1)) < 0) {
3808       return false;
3809     }
3810   }
3811   return true;
3812 }
3813 
3814 bool Compile::should_optimize_expensive_nodes(PhaseIterGVN &igvn) {
3815   if (_expensive_nodes->length() == 0) {
3816     return false;
3817   }
3818 
3819   assert(OptimizeExpensiveOps, "optimization off?");
3820 
3821   // Take this opportunity to remove dead nodes from the list
3822   int j = 0;
3823   for (int i = 0; i < _expensive_nodes->length(); i++) {
3824     Node* n = _expensive_nodes->at(i);
3825     if (!n->is_unreachable(igvn)) {
3826       assert(n->is_expensive(), "should be expensive");
3827       _expensive_nodes->at_put(j, n);
3828       j++;
3829     }
3830   }
3831   _expensive_nodes->trunc_to(j);
3832 
3833   // Then sort the list so that similar nodes are next to each other
3834   // and check for at least two nodes of identical kind with same data
3835   // inputs.
3836   sort_expensive_nodes();
3837 
3838   for (int i = 0; i < _expensive_nodes->length()-1; i++) {
3839     if (cmp_expensive_nodes(_expensive_nodes->adr_at(i), _expensive_nodes->adr_at(i+1)) == 0) {
3840       return true;
3841     }
3842   }
3843 
3844   return false;
3845 }
3846 
3847 void Compile::cleanup_expensive_nodes(PhaseIterGVN &igvn) {
3848   if (_expensive_nodes->length() == 0) {
3849     return;
3850   }
3851 
3852   assert(OptimizeExpensiveOps, "optimization off?");
3853 
3854   // Sort to bring similar nodes next to each other and clear the
3855   // control input of nodes for which there's only a single copy.
3856   sort_expensive_nodes();
3857 
3858   int j = 0;
3859   int identical = 0;
3860   int i = 0;
3861   for (; i < _expensive_nodes->length()-1; i++) {
3862     assert(j <= i, "can't write beyond current index");
3863     if (_expensive_nodes->at(i)->Opcode() == _expensive_nodes->at(i+1)->Opcode()) {
3864       identical++;
3865       _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
3866       continue;
3867     }
3868     if (identical > 0) {
3869       _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
3870       identical = 0;
3871     } else {
3872       Node* n = _expensive_nodes->at(i);
3873       igvn.hash_delete(n);
3874       n->set_req(0, NULL);
3875       igvn.hash_insert(n);
3876     }
3877   }
3878   if (identical > 0) {
3879     _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
3880   } else if (_expensive_nodes->length() >= 1) {
3881     Node* n = _expensive_nodes->at(i);
3882     igvn.hash_delete(n);
3883     n->set_req(0, NULL);
3884     igvn.hash_insert(n);
3885   }
3886   _expensive_nodes->trunc_to(j);
3887 }
3888 
3889 void Compile::add_expensive_node(Node * n) {
3890   assert(!_expensive_nodes->contains(n), "duplicate entry in expensive list");
3891   assert(n->is_expensive(), "expensive nodes with non-null control here only");
3892   assert(!n->is_CFG() && !n->is_Mem(), "no cfg or memory nodes here");
3893   if (OptimizeExpensiveOps) {
3894     _expensive_nodes->append(n);
3895   } else {
3896     // Clear control input and let IGVN optimize expensive nodes if
3897     // OptimizeExpensiveOps is off.
3898     n->set_req(0, NULL);
3899   }
3900 }
3901 
3902 /**
3903  * Remove the speculative part of types and clean up the graph
3904  */
3905 void Compile::remove_speculative_types(PhaseIterGVN &igvn) {
3906   if (UseTypeSpeculation) {
3907     Unique_Node_List worklist;
3908     worklist.push(root());
3909     int modified = 0;
3910     // Go over all type nodes that carry a speculative type, drop the
3911     // speculative part of the type and enqueue the node for an igvn
3912     // which may optimize it out.
3913     for (uint next = 0; next < worklist.size(); ++next) {
3914       Node *n  = worklist.at(next);
3915       if (n->is_Type()) {
3916         TypeNode* tn = n->as_Type();
3917         const Type* t = tn->type();
3918         const Type* t_no_spec = t->remove_speculative();
3919         if (t_no_spec != t) {
3920           bool in_hash = igvn.hash_delete(n);
3921           assert(in_hash, "node should be in igvn hash table");
3922           tn->set_type(t_no_spec);
3923           igvn.hash_insert(n);
3924           igvn._worklist.push(n); // give it a chance to go away
3925           modified++;
3926         }
3927       }
3928       uint max = n->len();
3929       for( uint i = 0; i < max; ++i ) {
3930         Node *m = n->in(i);
3931         if (not_a_node(m))  continue;
3932         worklist.push(m);
3933       }
3934     }
3935     // Drop the speculative part of all types in the igvn's type table
3936     igvn.remove_speculative_types();
3937     if (modified > 0) {
3938       igvn.optimize();
3939     }
3940 #ifdef ASSERT
3941     // Verify that after the IGVN is over no speculative type has resurfaced
3942     worklist.clear();
3943     worklist.push(root());
3944     for (uint next = 0; next < worklist.size(); ++next) {
3945       Node *n  = worklist.at(next);
3946       const Type* t = igvn.type(n);
3947       assert(t == t->remove_speculative(), "no more speculative types");
3948       if (n->is_Type()) {
3949         t = n->as_Type()->type();
3950         assert(t == t->remove_speculative(), "no more speculative types");
3951       }
3952       uint max = n->len();
3953       for( uint i = 0; i < max; ++i ) {
3954         Node *m = n->in(i);
3955         if (not_a_node(m))  continue;
3956         worklist.push(m);
3957       }
3958     }
3959     igvn.check_no_speculative_types();
3960 #endif
3961   }
3962 }
3963 
3964 // Auxiliary method to support randomized stressing/fuzzing.
3965 //
3966 // This method can be called the arbitrary number of times, with current count
3967 // as the argument. The logic allows selecting a single candidate from the
3968 // running list of candidates as follows:
3969 //    int count = 0;
3970 //    Cand* selected = null;
3971 //    while(cand = cand->next()) {
3972 //      if (randomized_select(++count)) {
3973 //        selected = cand;
3974 //      }
3975 //    }
3976 //
3977 // Including count equalizes the chances any candidate is "selected".
3978 // This is useful when we don't have the complete list of candidates to choose
3979 // from uniformly. In this case, we need to adjust the randomicity of the
3980 // selection, or else we will end up biasing the selection towards the latter
3981 // candidates.
3982 //
3983 // Quick back-envelope calculation shows that for the list of n candidates
3984 // the equal probability for the candidate to persist as "best" can be
3985 // achieved by replacing it with "next" k-th candidate with the probability
3986 // of 1/k. It can be easily shown that by the end of the run, the
3987 // probability for any candidate is converged to 1/n, thus giving the
3988 // uniform distribution among all the candidates.
3989 //
3990 // We don't care about the domain size as long as (RANDOMIZED_DOMAIN / count) is large.
3991 #define RANDOMIZED_DOMAIN_POW 29
3992 #define RANDOMIZED_DOMAIN (1 << RANDOMIZED_DOMAIN_POW)
3993 #define RANDOMIZED_DOMAIN_MASK ((1 << (RANDOMIZED_DOMAIN_POW + 1)) - 1)
3994 bool Compile::randomized_select(int count) {
3995   assert(count > 0, "only positive");
3996   return (os::random() & RANDOMIZED_DOMAIN_MASK) < (RANDOMIZED_DOMAIN / count);
3997 }