1 /*
   2  * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "memory/allocation.inline.hpp"
  27 #include "opto/addnode.hpp"
  28 #include "opto/connode.hpp"
  29 #include "opto/divnode.hpp"
  30 #include "opto/machnode.hpp"
  31 #include "opto/matcher.hpp"
  32 #include "opto/mulnode.hpp"
  33 #include "opto/phaseX.hpp"
  34 #include "opto/subnode.hpp"
  35 
  36 // Portions of code courtesy of Clifford Click
  37 
  38 // Optimization - Graph Style
  39 
  40 #include <math.h>
  41 
  42 //----------------------magic_int_divide_constants-----------------------------
  43 // Compute magic multiplier and shift constant for converting a 32 bit divide
  44 // by constant into a multiply/shift/add series. Return false if calculations
  45 // fail.
  46 //
  47 // Borrowed almost verbatim from Hacker's Delight by Henry S. Warren, Jr. with
  48 // minor type name and parameter changes.
  49 static bool magic_int_divide_constants(jint d, jint &M, jint &s) {
  50   int32_t p;
  51   uint32_t ad, anc, delta, q1, r1, q2, r2, t;
  52   const uint32_t two31 = 0x80000000L;     // 2**31.
  53 
  54   ad = ABS(d);
  55   if (d == 0 || d == 1) return false;
  56   t = two31 + ((uint32_t)d >> 31);
  57   anc = t - 1 - t%ad;     // Absolute value of nc.
  58   p = 31;                 // Init. p.
  59   q1 = two31/anc;         // Init. q1 = 2**p/|nc|.
  60   r1 = two31 - q1*anc;    // Init. r1 = rem(2**p, |nc|).
  61   q2 = two31/ad;          // Init. q2 = 2**p/|d|.
  62   r2 = two31 - q2*ad;     // Init. r2 = rem(2**p, |d|).
  63   do {
  64     p = p + 1;
  65     q1 = 2*q1;            // Update q1 = 2**p/|nc|.
  66     r1 = 2*r1;            // Update r1 = rem(2**p, |nc|).
  67     if (r1 >= anc) {      // (Must be an unsigned
  68       q1 = q1 + 1;        // comparison here).
  69       r1 = r1 - anc;
  70     }
  71     q2 = 2*q2;            // Update q2 = 2**p/|d|.
  72     r2 = 2*r2;            // Update r2 = rem(2**p, |d|).
  73     if (r2 >= ad) {       // (Must be an unsigned
  74       q2 = q2 + 1;        // comparison here).
  75       r2 = r2 - ad;
  76     }
  77     delta = ad - r2;
  78   } while (q1 < delta || (q1 == delta && r1 == 0));
  79 
  80   M = q2 + 1;
  81   if (d < 0) M = -M;      // Magic number and
  82   s = p - 32;             // shift amount to return.
  83 
  84   return true;
  85 }
  86 
  87 //--------------------------transform_int_divide-------------------------------
  88 // Convert a division by constant divisor into an alternate Ideal graph.
  89 // Return NULL if no transformation occurs.
  90 static Node *transform_int_divide( PhaseGVN *phase, Node *dividend, jint divisor ) {
  91 
  92   // Check for invalid divisors
  93   assert( divisor != 0 && divisor != min_jint,
  94           "bad divisor for transforming to long multiply" );
  95 
  96   bool d_pos = divisor >= 0;
  97   jint d = d_pos ? divisor : -divisor;
  98   const int N = 32;
  99 
 100   // Result
 101   Node *q = NULL;
 102 
 103   if (d == 1) {
 104     // division by +/- 1
 105     if (!d_pos) {
 106       // Just negate the value
 107       q = new (phase->C) SubINode(phase->intcon(0), dividend);
 108     }
 109   } else if ( is_power_of_2(d) ) {
 110     // division by +/- a power of 2
 111 
 112     // See if we can simply do a shift without rounding
 113     bool needs_rounding = true;
 114     const Type *dt = phase->type(dividend);
 115     const TypeInt *dti = dt->isa_int();
 116     if (dti && dti->_lo >= 0) {
 117       // we don't need to round a positive dividend
 118       needs_rounding = false;
 119     } else if( dividend->Opcode() == Op_AndI ) {
 120       // An AND mask of sufficient size clears the low bits and
 121       // I can avoid rounding.
 122       const TypeInt *andconi_t = phase->type( dividend->in(2) )->isa_int();
 123       if( andconi_t && andconi_t->is_con() ) {
 124         jint andconi = andconi_t->get_con();
 125         if( andconi < 0 && is_power_of_2(-andconi) && (-andconi) >= d ) {
 126           if( (-andconi) == d ) // Remove AND if it clears bits which will be shifted
 127             dividend = dividend->in(1);
 128           needs_rounding = false;
 129         }
 130       }
 131     }
 132 
 133     // Add rounding to the shift to handle the sign bit
 134     int l = log2_intptr(d-1)+1;
 135     if (needs_rounding) {
 136       // Divide-by-power-of-2 can be made into a shift, but you have to do
 137       // more math for the rounding.  You need to add 0 for positive
 138       // numbers, and "i-1" for negative numbers.  Example: i=4, so the
 139       // shift is by 2.  You need to add 3 to negative dividends and 0 to
 140       // positive ones.  So (-7+3)>>2 becomes -1, (-4+3)>>2 becomes -1,
 141       // (-2+3)>>2 becomes 0, etc.
 142 
 143       // Compute 0 or -1, based on sign bit
 144       Node *sign = phase->transform(new (phase->C) RShiftINode(dividend, phase->intcon(N - 1)));
 145       // Mask sign bit to the low sign bits
 146       Node *round = phase->transform(new (phase->C) URShiftINode(sign, phase->intcon(N - l)));
 147       // Round up before shifting
 148       dividend = phase->transform(new (phase->C) AddINode(dividend, round));
 149     }
 150 
 151     // Shift for division
 152     q = new (phase->C) RShiftINode(dividend, phase->intcon(l));
 153 
 154     if (!d_pos) {
 155       q = new (phase->C) SubINode(phase->intcon(0), phase->transform(q));
 156     }
 157   } else {
 158     // Attempt the jint constant divide -> multiply transform found in
 159     //   "Division by Invariant Integers using Multiplication"
 160     //     by Granlund and Montgomery
 161     // See also "Hacker's Delight", chapter 10 by Warren.
 162 
 163     jint magic_const;
 164     jint shift_const;
 165     if (magic_int_divide_constants(d, magic_const, shift_const)) {
 166       Node *magic = phase->longcon(magic_const);
 167       Node *dividend_long = phase->transform(new (phase->C) ConvI2LNode(dividend));
 168 
 169       // Compute the high half of the dividend x magic multiplication
 170       Node *mul_hi = phase->transform(new (phase->C) MulLNode(dividend_long, magic));
 171 
 172       if (magic_const < 0) {
 173         mul_hi = phase->transform(new (phase->C) RShiftLNode(mul_hi, phase->intcon(N)));
 174         mul_hi = phase->transform(new (phase->C) ConvL2INode(mul_hi));
 175 
 176         // The magic multiplier is too large for a 32 bit constant. We've adjusted
 177         // it down by 2^32, but have to add 1 dividend back in after the multiplication.
 178         // This handles the "overflow" case described by Granlund and Montgomery.
 179         mul_hi = phase->transform(new (phase->C) AddINode(dividend, mul_hi));
 180 
 181         // Shift over the (adjusted) mulhi
 182         if (shift_const != 0) {
 183           mul_hi = phase->transform(new (phase->C) RShiftINode(mul_hi, phase->intcon(shift_const)));
 184         }
 185       } else {
 186         // No add is required, we can merge the shifts together.
 187         mul_hi = phase->transform(new (phase->C) RShiftLNode(mul_hi, phase->intcon(N + shift_const)));
 188         mul_hi = phase->transform(new (phase->C) ConvL2INode(mul_hi));
 189       }
 190 
 191       // Get a 0 or -1 from the sign of the dividend.
 192       Node *addend0 = mul_hi;
 193       Node *addend1 = phase->transform(new (phase->C) RShiftINode(dividend, phase->intcon(N-1)));
 194 
 195       // If the divisor is negative, swap the order of the input addends;
 196       // this has the effect of negating the quotient.
 197       if (!d_pos) {
 198         Node *temp = addend0; addend0 = addend1; addend1 = temp;
 199       }
 200 
 201       // Adjust the final quotient by subtracting -1 (adding 1)
 202       // from the mul_hi.
 203       q = new (phase->C) SubINode(addend0, addend1);
 204     }
 205   }
 206 
 207   return q;
 208 }
 209 
 210 //---------------------magic_long_divide_constants-----------------------------
 211 // Compute magic multiplier and shift constant for converting a 64 bit divide
 212 // by constant into a multiply/shift/add series. Return false if calculations
 213 // fail.
 214 //
 215 // Borrowed almost verbatim from Hacker's Delight by Henry S. Warren, Jr. with
 216 // minor type name and parameter changes.  Adjusted to 64 bit word width.
 217 static bool magic_long_divide_constants(jlong d, jlong &M, jint &s) {
 218   int64_t p;
 219   uint64_t ad, anc, delta, q1, r1, q2, r2, t;
 220   const uint64_t two63 = 0x8000000000000000LL;     // 2**63.
 221 
 222   ad = ABS(d);
 223   if (d == 0 || d == 1) return false;
 224   t = two63 + ((uint64_t)d >> 63);
 225   anc = t - 1 - t%ad;     // Absolute value of nc.
 226   p = 63;                 // Init. p.
 227   q1 = two63/anc;         // Init. q1 = 2**p/|nc|.
 228   r1 = two63 - q1*anc;    // Init. r1 = rem(2**p, |nc|).
 229   q2 = two63/ad;          // Init. q2 = 2**p/|d|.
 230   r2 = two63 - q2*ad;     // Init. r2 = rem(2**p, |d|).
 231   do {
 232     p = p + 1;
 233     q1 = 2*q1;            // Update q1 = 2**p/|nc|.
 234     r1 = 2*r1;            // Update r1 = rem(2**p, |nc|).
 235     if (r1 >= anc) {      // (Must be an unsigned
 236       q1 = q1 + 1;        // comparison here).
 237       r1 = r1 - anc;
 238     }
 239     q2 = 2*q2;            // Update q2 = 2**p/|d|.
 240     r2 = 2*r2;            // Update r2 = rem(2**p, |d|).
 241     if (r2 >= ad) {       // (Must be an unsigned
 242       q2 = q2 + 1;        // comparison here).
 243       r2 = r2 - ad;
 244     }
 245     delta = ad - r2;
 246   } while (q1 < delta || (q1 == delta && r1 == 0));
 247 
 248   M = q2 + 1;
 249   if (d < 0) M = -M;      // Magic number and
 250   s = p - 64;             // shift amount to return.
 251 
 252   return true;
 253 }
 254 
 255 //---------------------long_by_long_mulhi--------------------------------------
 256 // Generate ideal node graph for upper half of a 64 bit x 64 bit multiplication
 257 static Node* long_by_long_mulhi(PhaseGVN* phase, Node* dividend, jlong magic_const) {
 258   // If the architecture supports a 64x64 mulhi, there is
 259   // no need to synthesize it in ideal nodes.
 260   if (Matcher::has_match_rule(Op_MulHiL)) {
 261     Node* v = phase->longcon(magic_const);
 262     return new (phase->C) MulHiLNode(dividend, v);
 263   }
 264 
 265   // Taken from Hacker's Delight, Fig. 8-2. Multiply high signed.
 266   // (http://www.hackersdelight.org/HDcode/mulhs.c)
 267   //
 268   // int mulhs(int u, int v) {
 269   //    unsigned u0, v0, w0;
 270   //    int u1, v1, w1, w2, t;
 271   //
 272   //    u0 = u & 0xFFFF;  u1 = u >> 16;
 273   //    v0 = v & 0xFFFF;  v1 = v >> 16;
 274   //    w0 = u0*v0;
 275   //    t  = u1*v0 + (w0 >> 16);
 276   //    w1 = t & 0xFFFF;
 277   //    w2 = t >> 16;
 278   //    w1 = u0*v1 + w1;
 279   //    return u1*v1 + w2 + (w1 >> 16);
 280   // }
 281   //
 282   // Note: The version above is for 32x32 multiplications, while the
 283   // following inline comments are adapted to 64x64.
 284 
 285   const int N = 64;
 286 
 287   // Dummy node to keep intermediate nodes alive during construction
 288   Node* hook = new (phase->C) Node(4);
 289 
 290   // u0 = u & 0xFFFFFFFF;  u1 = u >> 32;
 291   Node* u0 = phase->transform(new (phase->C) AndLNode(dividend, phase->longcon(0xFFFFFFFF)));
 292   Node* u1 = phase->transform(new (phase->C) RShiftLNode(dividend, phase->intcon(N / 2)));
 293   hook->init_req(0, u0);
 294   hook->init_req(1, u1);
 295 
 296   // v0 = v & 0xFFFFFFFF;  v1 = v >> 32;
 297   Node* v0 = phase->longcon(magic_const & 0xFFFFFFFF);
 298   Node* v1 = phase->longcon(magic_const >> (N / 2));
 299 
 300   // w0 = u0*v0;
 301   Node* w0 = phase->transform(new (phase->C) MulLNode(u0, v0));
 302 
 303   // t = u1*v0 + (w0 >> 32);
 304   Node* u1v0 = phase->transform(new (phase->C) MulLNode(u1, v0));
 305   Node* temp = phase->transform(new (phase->C) URShiftLNode(w0, phase->intcon(N / 2)));
 306   Node* t    = phase->transform(new (phase->C) AddLNode(u1v0, temp));
 307   hook->init_req(2, t);
 308 
 309   // w1 = t & 0xFFFFFFFF;
 310   Node* w1 = phase->transform(new (phase->C) AndLNode(t, phase->longcon(0xFFFFFFFF)));
 311   hook->init_req(3, w1);
 312 
 313   // w2 = t >> 32;
 314   Node* w2 = phase->transform(new (phase->C) RShiftLNode(t, phase->intcon(N / 2)));
 315 
 316   // w1 = u0*v1 + w1;
 317   Node* u0v1 = phase->transform(new (phase->C) MulLNode(u0, v1));
 318   w1         = phase->transform(new (phase->C) AddLNode(u0v1, w1));
 319 
 320   // return u1*v1 + w2 + (w1 >> 32);
 321   Node* u1v1  = phase->transform(new (phase->C) MulLNode(u1, v1));
 322   Node* temp1 = phase->transform(new (phase->C) AddLNode(u1v1, w2));
 323   Node* temp2 = phase->transform(new (phase->C) RShiftLNode(w1, phase->intcon(N / 2)));
 324 
 325   // Remove the bogus extra edges used to keep things alive
 326   PhaseIterGVN* igvn = phase->is_IterGVN();
 327   if (igvn != NULL) {
 328     igvn->remove_dead_node(hook);
 329   } else {
 330     for (int i = 0; i < 4; i++) {
 331       hook->set_req(i, NULL);
 332     }
 333   }
 334 
 335   return new (phase->C) AddLNode(temp1, temp2);
 336 }
 337 
 338 
 339 //--------------------------transform_long_divide------------------------------
 340 // Convert a division by constant divisor into an alternate Ideal graph.
 341 // Return NULL if no transformation occurs.
 342 static Node *transform_long_divide( PhaseGVN *phase, Node *dividend, jlong divisor ) {
 343   // Check for invalid divisors
 344   assert( divisor != 0L && divisor != min_jlong,
 345           "bad divisor for transforming to long multiply" );
 346 
 347   bool d_pos = divisor >= 0;
 348   jlong d = d_pos ? divisor : -divisor;
 349   const int N = 64;
 350 
 351   // Result
 352   Node *q = NULL;
 353 
 354   if (d == 1) {
 355     // division by +/- 1
 356     if (!d_pos) {
 357       // Just negate the value
 358       q = new (phase->C) SubLNode(phase->longcon(0), dividend);
 359     }
 360   } else if ( is_power_of_2_long(d) ) {
 361 
 362     // division by +/- a power of 2
 363 
 364     // See if we can simply do a shift without rounding
 365     bool needs_rounding = true;
 366     const Type *dt = phase->type(dividend);
 367     const TypeLong *dtl = dt->isa_long();
 368 
 369     if (dtl && dtl->_lo > 0) {
 370       // we don't need to round a positive dividend
 371       needs_rounding = false;
 372     } else if( dividend->Opcode() == Op_AndL ) {
 373       // An AND mask of sufficient size clears the low bits and
 374       // I can avoid rounding.
 375       const TypeLong *andconl_t = phase->type( dividend->in(2) )->isa_long();
 376       if( andconl_t && andconl_t->is_con() ) {
 377         jlong andconl = andconl_t->get_con();
 378         if( andconl < 0 && is_power_of_2_long(-andconl) && (-andconl) >= d ) {
 379           if( (-andconl) == d ) // Remove AND if it clears bits which will be shifted
 380             dividend = dividend->in(1);
 381           needs_rounding = false;
 382         }
 383       }
 384     }
 385 
 386     // Add rounding to the shift to handle the sign bit
 387     int l = log2_long(d-1)+1;
 388     if (needs_rounding) {
 389       // Divide-by-power-of-2 can be made into a shift, but you have to do
 390       // more math for the rounding.  You need to add 0 for positive
 391       // numbers, and "i-1" for negative numbers.  Example: i=4, so the
 392       // shift is by 2.  You need to add 3 to negative dividends and 0 to
 393       // positive ones.  So (-7+3)>>2 becomes -1, (-4+3)>>2 becomes -1,
 394       // (-2+3)>>2 becomes 0, etc.
 395 
 396       // Compute 0 or -1, based on sign bit
 397       Node *sign = phase->transform(new (phase->C) RShiftLNode(dividend, phase->intcon(N - 1)));
 398       // Mask sign bit to the low sign bits
 399       Node *round = phase->transform(new (phase->C) URShiftLNode(sign, phase->intcon(N - l)));
 400       // Round up before shifting
 401       dividend = phase->transform(new (phase->C) AddLNode(dividend, round));
 402     }
 403 
 404     // Shift for division
 405     q = new (phase->C) RShiftLNode(dividend, phase->intcon(l));
 406 
 407     if (!d_pos) {
 408       q = new (phase->C) SubLNode(phase->longcon(0), phase->transform(q));
 409     }
 410   } else if ( !Matcher::use_asm_for_ldiv_by_con(d) ) { // Use hardware DIV instruction when
 411                                                        // it is faster than code generated below.
 412     // Attempt the jlong constant divide -> multiply transform found in
 413     //   "Division by Invariant Integers using Multiplication"
 414     //     by Granlund and Montgomery
 415     // See also "Hacker's Delight", chapter 10 by Warren.
 416 
 417     jlong magic_const;
 418     jint shift_const;
 419     if (magic_long_divide_constants(d, magic_const, shift_const)) {
 420       // Compute the high half of the dividend x magic multiplication
 421       Node *mul_hi = phase->transform(long_by_long_mulhi(phase, dividend, magic_const));
 422 
 423       // The high half of the 128-bit multiply is computed.
 424       if (magic_const < 0) {
 425         // The magic multiplier is too large for a 64 bit constant. We've adjusted
 426         // it down by 2^64, but have to add 1 dividend back in after the multiplication.
 427         // This handles the "overflow" case described by Granlund and Montgomery.
 428         mul_hi = phase->transform(new (phase->C) AddLNode(dividend, mul_hi));
 429       }
 430 
 431       // Shift over the (adjusted) mulhi
 432       if (shift_const != 0) {
 433         mul_hi = phase->transform(new (phase->C) RShiftLNode(mul_hi, phase->intcon(shift_const)));
 434       }
 435 
 436       // Get a 0 or -1 from the sign of the dividend.
 437       Node *addend0 = mul_hi;
 438       Node *addend1 = phase->transform(new (phase->C) RShiftLNode(dividend, phase->intcon(N-1)));
 439 
 440       // If the divisor is negative, swap the order of the input addends;
 441       // this has the effect of negating the quotient.
 442       if (!d_pos) {
 443         Node *temp = addend0; addend0 = addend1; addend1 = temp;
 444       }
 445 
 446       // Adjust the final quotient by subtracting -1 (adding 1)
 447       // from the mul_hi.
 448       q = new (phase->C) SubLNode(addend0, addend1);
 449     }
 450   }
 451 
 452   return q;
 453 }
 454 
 455 //=============================================================================
 456 //------------------------------Identity---------------------------------------
 457 // If the divisor is 1, we are an identity on the dividend.
 458 Node *DivINode::Identity( PhaseTransform *phase ) {
 459   return (phase->type( in(2) )->higher_equal(TypeInt::ONE)) ? in(1) : this;
 460 }
 461 
 462 //------------------------------Idealize---------------------------------------
 463 // Divides can be changed to multiplies and/or shifts
 464 Node *DivINode::Ideal(PhaseGVN *phase, bool can_reshape) {
 465   if (in(0) && remove_dead_region(phase, can_reshape))  return this;
 466   // Don't bother trying to transform a dead node
 467   if( in(0) && in(0)->is_top() )  return NULL;
 468 
 469   const Type *t = phase->type( in(2) );
 470   if( t == TypeInt::ONE )       // Identity?
 471     return NULL;                // Skip it
 472 
 473   const TypeInt *ti = t->isa_int();
 474   if( !ti ) return NULL;
 475   if( !ti->is_con() ) return NULL;
 476   jint i = ti->get_con();       // Get divisor
 477 
 478   if (i == 0) return NULL;      // Dividing by zero constant does not idealize
 479 
 480   set_req(0,NULL);              // Dividing by a not-zero constant; no faulting
 481 
 482   // Dividing by MININT does not optimize as a power-of-2 shift.
 483   if( i == min_jint ) return NULL;
 484 
 485   return transform_int_divide( phase, in(1), i );
 486 }
 487 
 488 //------------------------------Value------------------------------------------
 489 // A DivINode divides its inputs.  The third input is a Control input, used to
 490 // prevent hoisting the divide above an unsafe test.
 491 const Type *DivINode::Value( PhaseTransform *phase ) const {
 492   // Either input is TOP ==> the result is TOP
 493   const Type *t1 = phase->type( in(1) );
 494   const Type *t2 = phase->type( in(2) );
 495   if( t1 == Type::TOP ) return Type::TOP;
 496   if( t2 == Type::TOP ) return Type::TOP;
 497 
 498   // x/x == 1 since we always generate the dynamic divisor check for 0.
 499   if( phase->eqv( in(1), in(2) ) )
 500     return TypeInt::ONE;
 501 
 502   // Either input is BOTTOM ==> the result is the local BOTTOM
 503   const Type *bot = bottom_type();
 504   if( (t1 == bot) || (t2 == bot) ||
 505       (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
 506     return bot;
 507 
 508   // Divide the two numbers.  We approximate.
 509   // If divisor is a constant and not zero
 510   const TypeInt *i1 = t1->is_int();
 511   const TypeInt *i2 = t2->is_int();
 512   int widen = MAX2(i1->_widen, i2->_widen);
 513 
 514   if( i2->is_con() && i2->get_con() != 0 ) {
 515     int32 d = i2->get_con(); // Divisor
 516     jint lo, hi;
 517     if( d >= 0 ) {
 518       lo = i1->_lo/d;
 519       hi = i1->_hi/d;
 520     } else {
 521       if( d == -1 && i1->_lo == min_jint ) {
 522         // 'min_jint/-1' throws arithmetic exception during compilation
 523         lo = min_jint;
 524         // do not support holes, 'hi' must go to either min_jint or max_jint:
 525         // [min_jint, -10]/[-1,-1] ==> [min_jint] UNION [10,max_jint]
 526         hi = i1->_hi == min_jint ? min_jint : max_jint;
 527       } else {
 528         lo = i1->_hi/d;
 529         hi = i1->_lo/d;
 530       }
 531     }
 532     return TypeInt::make(lo, hi, widen);
 533   }
 534 
 535   // If the dividend is a constant
 536   if( i1->is_con() ) {
 537     int32 d = i1->get_con();
 538     if( d < 0 ) {
 539       if( d == min_jint ) {
 540         //  (-min_jint) == min_jint == (min_jint / -1)
 541         return TypeInt::make(min_jint, max_jint/2 + 1, widen);
 542       } else {
 543         return TypeInt::make(d, -d, widen);
 544       }
 545     }
 546     return TypeInt::make(-d, d, widen);
 547   }
 548 
 549   // Otherwise we give up all hope
 550   return TypeInt::INT;
 551 }
 552 
 553 
 554 //=============================================================================
 555 //------------------------------Identity---------------------------------------
 556 // If the divisor is 1, we are an identity on the dividend.
 557 Node *DivLNode::Identity( PhaseTransform *phase ) {
 558   return (phase->type( in(2) )->higher_equal(TypeLong::ONE)) ? in(1) : this;
 559 }
 560 
 561 //------------------------------Idealize---------------------------------------
 562 // Dividing by a power of 2 is a shift.
 563 Node *DivLNode::Ideal( PhaseGVN *phase, bool can_reshape) {
 564   if (in(0) && remove_dead_region(phase, can_reshape))  return this;
 565   // Don't bother trying to transform a dead node
 566   if( in(0) && in(0)->is_top() )  return NULL;
 567 
 568   const Type *t = phase->type( in(2) );
 569   if( t == TypeLong::ONE )      // Identity?
 570     return NULL;                // Skip it
 571 
 572   const TypeLong *tl = t->isa_long();
 573   if( !tl ) return NULL;
 574   if( !tl->is_con() ) return NULL;
 575   jlong l = tl->get_con();      // Get divisor
 576 
 577   if (l == 0) return NULL;      // Dividing by zero constant does not idealize
 578 
 579   set_req(0,NULL);              // Dividing by a not-zero constant; no faulting
 580 
 581   // Dividing by MINLONG does not optimize as a power-of-2 shift.
 582   if( l == min_jlong ) return NULL;
 583 
 584   return transform_long_divide( phase, in(1), l );
 585 }
 586 
 587 //------------------------------Value------------------------------------------
 588 // A DivLNode divides its inputs.  The third input is a Control input, used to
 589 // prevent hoisting the divide above an unsafe test.
 590 const Type *DivLNode::Value( PhaseTransform *phase ) const {
 591   // Either input is TOP ==> the result is TOP
 592   const Type *t1 = phase->type( in(1) );
 593   const Type *t2 = phase->type( in(2) );
 594   if( t1 == Type::TOP ) return Type::TOP;
 595   if( t2 == Type::TOP ) return Type::TOP;
 596 
 597   // x/x == 1 since we always generate the dynamic divisor check for 0.
 598   if( phase->eqv( in(1), in(2) ) )
 599     return TypeLong::ONE;
 600 
 601   // Either input is BOTTOM ==> the result is the local BOTTOM
 602   const Type *bot = bottom_type();
 603   if( (t1 == bot) || (t2 == bot) ||
 604       (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
 605     return bot;
 606 
 607   // Divide the two numbers.  We approximate.
 608   // If divisor is a constant and not zero
 609   const TypeLong *i1 = t1->is_long();
 610   const TypeLong *i2 = t2->is_long();
 611   int widen = MAX2(i1->_widen, i2->_widen);
 612 
 613   if( i2->is_con() && i2->get_con() != 0 ) {
 614     jlong d = i2->get_con();    // Divisor
 615     jlong lo, hi;
 616     if( d >= 0 ) {
 617       lo = i1->_lo/d;
 618       hi = i1->_hi/d;
 619     } else {
 620       if( d == CONST64(-1) && i1->_lo == min_jlong ) {
 621         // 'min_jlong/-1' throws arithmetic exception during compilation
 622         lo = min_jlong;
 623         // do not support holes, 'hi' must go to either min_jlong or max_jlong:
 624         // [min_jlong, -10]/[-1,-1] ==> [min_jlong] UNION [10,max_jlong]
 625         hi = i1->_hi == min_jlong ? min_jlong : max_jlong;
 626       } else {
 627         lo = i1->_hi/d;
 628         hi = i1->_lo/d;
 629       }
 630     }
 631     return TypeLong::make(lo, hi, widen);
 632   }
 633 
 634   // If the dividend is a constant
 635   if( i1->is_con() ) {
 636     jlong d = i1->get_con();
 637     if( d < 0 ) {
 638       if( d == min_jlong ) {
 639         //  (-min_jlong) == min_jlong == (min_jlong / -1)
 640         return TypeLong::make(min_jlong, max_jlong/2 + 1, widen);
 641       } else {
 642         return TypeLong::make(d, -d, widen);
 643       }
 644     }
 645     return TypeLong::make(-d, d, widen);
 646   }
 647 
 648   // Otherwise we give up all hope
 649   return TypeLong::LONG;
 650 }
 651 
 652 
 653 //=============================================================================
 654 //------------------------------Value------------------------------------------
 655 // An DivFNode divides its inputs.  The third input is a Control input, used to
 656 // prevent hoisting the divide above an unsafe test.
 657 const Type *DivFNode::Value( PhaseTransform *phase ) const {
 658   // Either input is TOP ==> the result is TOP
 659   const Type *t1 = phase->type( in(1) );
 660   const Type *t2 = phase->type( in(2) );
 661   if( t1 == Type::TOP ) return Type::TOP;
 662   if( t2 == Type::TOP ) return Type::TOP;
 663 
 664   // Either input is BOTTOM ==> the result is the local BOTTOM
 665   const Type *bot = bottom_type();
 666   if( (t1 == bot) || (t2 == bot) ||
 667       (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
 668     return bot;
 669 
 670   // x/x == 1, we ignore 0/0.
 671   // Note: if t1 and t2 are zero then result is NaN (JVMS page 213)
 672   // Does not work for variables because of NaN's
 673   if( phase->eqv( in(1), in(2) ) && t1->base() == Type::FloatCon)
 674     if (!g_isnan(t1->getf()) && g_isfinite(t1->getf()) && t1->getf() != 0.0) // could be negative ZERO or NaN
 675       return TypeF::ONE;
 676 
 677   if( t2 == TypeF::ONE )
 678     return t1;
 679 
 680   // If divisor is a constant and not zero, divide them numbers
 681   if( t1->base() == Type::FloatCon &&
 682       t2->base() == Type::FloatCon &&
 683       t2->getf() != 0.0 ) // could be negative zero
 684     return TypeF::make( t1->getf()/t2->getf() );
 685 
 686   // If the dividend is a constant zero
 687   // Note: if t1 and t2 are zero then result is NaN (JVMS page 213)
 688   // Test TypeF::ZERO is not sufficient as it could be negative zero
 689 
 690   if( t1 == TypeF::ZERO && !g_isnan(t2->getf()) && t2->getf() != 0.0 )
 691     return TypeF::ZERO;
 692 
 693   // Otherwise we give up all hope
 694   return Type::FLOAT;
 695 }
 696 
 697 //------------------------------isA_Copy---------------------------------------
 698 // Dividing by self is 1.
 699 // If the divisor is 1, we are an identity on the dividend.
 700 Node *DivFNode::Identity( PhaseTransform *phase ) {
 701   return (phase->type( in(2) ) == TypeF::ONE) ? in(1) : this;
 702 }
 703 
 704 
 705 //------------------------------Idealize---------------------------------------
 706 Node *DivFNode::Ideal(PhaseGVN *phase, bool can_reshape) {
 707   if (in(0) && remove_dead_region(phase, can_reshape))  return this;
 708   // Don't bother trying to transform a dead node
 709   if( in(0) && in(0)->is_top() )  return NULL;
 710 
 711   const Type *t2 = phase->type( in(2) );
 712   if( t2 == TypeF::ONE )         // Identity?
 713     return NULL;                // Skip it
 714 
 715   const TypeF *tf = t2->isa_float_constant();
 716   if( !tf ) return NULL;
 717   if( tf->base() != Type::FloatCon ) return NULL;
 718 
 719   // Check for out of range values
 720   if( tf->is_nan() || !tf->is_finite() ) return NULL;
 721 
 722   // Get the value
 723   float f = tf->getf();
 724   int exp;
 725 
 726   // Only for special case of dividing by a power of 2
 727   if( frexp((double)f, &exp) != 0.5 ) return NULL;
 728 
 729   // Limit the range of acceptable exponents
 730   if( exp < -126 || exp > 126 ) return NULL;
 731 
 732   // Compute the reciprocal
 733   float reciprocal = ((float)1.0) / f;
 734 
 735   assert( frexp((double)reciprocal, &exp) == 0.5, "reciprocal should be power of 2" );
 736 
 737   // return multiplication by the reciprocal
 738   return (new (phase->C) MulFNode(in(1), phase->makecon(TypeF::make(reciprocal))));
 739 }
 740 
 741 //=============================================================================
 742 //------------------------------Value------------------------------------------
 743 // An DivDNode divides its inputs.  The third input is a Control input, used to
 744 // prevent hoisting the divide above an unsafe test.
 745 const Type *DivDNode::Value( PhaseTransform *phase ) const {
 746   // Either input is TOP ==> the result is TOP
 747   const Type *t1 = phase->type( in(1) );
 748   const Type *t2 = phase->type( in(2) );
 749   if( t1 == Type::TOP ) return Type::TOP;
 750   if( t2 == Type::TOP ) return Type::TOP;
 751 
 752   // Either input is BOTTOM ==> the result is the local BOTTOM
 753   const Type *bot = bottom_type();
 754   if( (t1 == bot) || (t2 == bot) ||
 755       (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
 756     return bot;
 757 
 758   // x/x == 1, we ignore 0/0.
 759   // Note: if t1 and t2 are zero then result is NaN (JVMS page 213)
 760   // Does not work for variables because of NaN's
 761   if( phase->eqv( in(1), in(2) ) && t1->base() == Type::DoubleCon)
 762     if (!g_isnan(t1->getd()) && g_isfinite(t1->getd()) && t1->getd() != 0.0) // could be negative ZERO or NaN
 763       return TypeD::ONE;
 764 
 765   if( t2 == TypeD::ONE )
 766     return t1;
 767 
 768 #if defined(IA32)
 769   if (!phase->C->method()->is_strict())
 770     // Can't trust native compilers to properly fold strict double
 771     // division with round-to-zero on this platform.
 772 #endif
 773     {
 774       // If divisor is a constant and not zero, divide them numbers
 775       if( t1->base() == Type::DoubleCon &&
 776           t2->base() == Type::DoubleCon &&
 777           t2->getd() != 0.0 ) // could be negative zero
 778         return TypeD::make( t1->getd()/t2->getd() );
 779     }
 780 
 781   // If the dividend is a constant zero
 782   // Note: if t1 and t2 are zero then result is NaN (JVMS page 213)
 783   // Test TypeF::ZERO is not sufficient as it could be negative zero
 784   if( t1 == TypeD::ZERO && !g_isnan(t2->getd()) && t2->getd() != 0.0 )
 785     return TypeD::ZERO;
 786 
 787   // Otherwise we give up all hope
 788   return Type::DOUBLE;
 789 }
 790 
 791 
 792 //------------------------------isA_Copy---------------------------------------
 793 // Dividing by self is 1.
 794 // If the divisor is 1, we are an identity on the dividend.
 795 Node *DivDNode::Identity( PhaseTransform *phase ) {
 796   return (phase->type( in(2) ) == TypeD::ONE) ? in(1) : this;
 797 }
 798 
 799 //------------------------------Idealize---------------------------------------
 800 Node *DivDNode::Ideal(PhaseGVN *phase, bool can_reshape) {
 801   if (in(0) && remove_dead_region(phase, can_reshape))  return this;
 802   // Don't bother trying to transform a dead node
 803   if( in(0) && in(0)->is_top() )  return NULL;
 804 
 805   const Type *t2 = phase->type( in(2) );
 806   if( t2 == TypeD::ONE )         // Identity?
 807     return NULL;                // Skip it
 808 
 809   const TypeD *td = t2->isa_double_constant();
 810   if( !td ) return NULL;
 811   if( td->base() != Type::DoubleCon ) return NULL;
 812 
 813   // Check for out of range values
 814   if( td->is_nan() || !td->is_finite() ) return NULL;
 815 
 816   // Get the value
 817   double d = td->getd();
 818   int exp;
 819 
 820   // Only for special case of dividing by a power of 2
 821   if( frexp(d, &exp) != 0.5 ) return NULL;
 822 
 823   // Limit the range of acceptable exponents
 824   if( exp < -1021 || exp > 1022 ) return NULL;
 825 
 826   // Compute the reciprocal
 827   double reciprocal = 1.0 / d;
 828 
 829   assert( frexp(reciprocal, &exp) == 0.5, "reciprocal should be power of 2" );
 830 
 831   // return multiplication by the reciprocal
 832   return (new (phase->C) MulDNode(in(1), phase->makecon(TypeD::make(reciprocal))));
 833 }
 834 
 835 //=============================================================================
 836 //------------------------------Idealize---------------------------------------
 837 Node *ModINode::Ideal(PhaseGVN *phase, bool can_reshape) {
 838   // Check for dead control input
 839   if( in(0) && remove_dead_region(phase, can_reshape) )  return this;
 840   // Don't bother trying to transform a dead node
 841   if( in(0) && in(0)->is_top() )  return NULL;
 842 
 843   // Get the modulus
 844   const Type *t = phase->type( in(2) );
 845   if( t == Type::TOP ) return NULL;
 846   const TypeInt *ti = t->is_int();
 847 
 848   // Check for useless control input
 849   // Check for excluding mod-zero case
 850   if( in(0) && (ti->_hi < 0 || ti->_lo > 0) ) {
 851     set_req(0, NULL);        // Yank control input
 852     return this;
 853   }
 854 
 855   // See if we are MOD'ing by 2^k or 2^k-1.
 856   if( !ti->is_con() ) return NULL;
 857   jint con = ti->get_con();
 858 
 859   Node *hook = new (phase->C) Node(1);
 860 
 861   // First, special check for modulo 2^k-1
 862   if( con >= 0 && con < max_jint && is_power_of_2(con+1) ) {
 863     uint k = exact_log2(con+1);  // Extract k
 864 
 865     // Basic algorithm by David Detlefs.  See fastmod_int.java for gory details.
 866     static int unroll_factor[] = { 999, 999, 29, 14, 9, 7, 5, 4, 4, 3, 3, 2, 2, 2, 2, 2, 1 /*past here we assume 1 forever*/};
 867     int trip_count = 1;
 868     if( k < ARRAY_SIZE(unroll_factor))  trip_count = unroll_factor[k];
 869 
 870     // If the unroll factor is not too large, and if conditional moves are
 871     // ok, then use this case
 872     if( trip_count <= 5 && ConditionalMoveLimit != 0 ) {
 873       Node *x = in(1);            // Value being mod'd
 874       Node *divisor = in(2);      // Also is mask
 875 
 876       hook->init_req(0, x);       // Add a use to x to prevent him from dying
 877       // Generate code to reduce X rapidly to nearly 2^k-1.
 878       for( int i = 0; i < trip_count; i++ ) {
 879         Node *xl = phase->transform( new (phase->C) AndINode(x,divisor) );
 880         Node *xh = phase->transform( new (phase->C) RShiftINode(x,phase->intcon(k)) ); // Must be signed
 881         x = phase->transform( new (phase->C) AddINode(xh,xl) );
 882         hook->set_req(0, x);
 883       }
 884 
 885       // Generate sign-fixup code.  Was original value positive?
 886       // int hack_res = (i >= 0) ? divisor : 1;
 887       Node *cmp1 = phase->transform( new (phase->C) CmpINode( in(1), phase->intcon(0) ) );
 888       Node *bol1 = phase->transform( new (phase->C) BoolNode( cmp1, BoolTest::ge ) );
 889       Node *cmov1= phase->transform( new (phase->C) CMoveINode(bol1, phase->intcon(1), divisor, TypeInt::POS) );
 890       // if( x >= hack_res ) x -= divisor;
 891       Node *sub  = phase->transform( new (phase->C) SubINode( x, divisor ) );
 892       Node *cmp2 = phase->transform( new (phase->C) CmpINode( x, cmov1 ) );
 893       Node *bol2 = phase->transform( new (phase->C) BoolNode( cmp2, BoolTest::ge ) );
 894       // Convention is to not transform the return value of an Ideal
 895       // since Ideal is expected to return a modified 'this' or a new node.
 896       Node *cmov2= new (phase->C) CMoveINode(bol2, x, sub, TypeInt::INT);
 897       // cmov2 is now the mod
 898 
 899       // Now remove the bogus extra edges used to keep things alive
 900       if (can_reshape) {
 901         phase->is_IterGVN()->remove_dead_node(hook);
 902       } else {
 903         hook->set_req(0, NULL);   // Just yank bogus edge during Parse phase
 904       }
 905       return cmov2;
 906     }
 907   }
 908 
 909   // Fell thru, the unroll case is not appropriate. Transform the modulo
 910   // into a long multiply/int multiply/subtract case
 911 
 912   // Cannot handle mod 0, and min_jint isn't handled by the transform
 913   if( con == 0 || con == min_jint ) return NULL;
 914 
 915   // Get the absolute value of the constant; at this point, we can use this
 916   jint pos_con = (con >= 0) ? con : -con;
 917 
 918   // integer Mod 1 is always 0
 919   if( pos_con == 1 ) return new (phase->C) ConINode(TypeInt::ZERO);
 920 
 921   int log2_con = -1;
 922 
 923   // If this is a power of two, they maybe we can mask it
 924   if( is_power_of_2(pos_con) ) {
 925     log2_con = log2_intptr((intptr_t)pos_con);
 926 
 927     const Type *dt = phase->type(in(1));
 928     const TypeInt *dti = dt->isa_int();
 929 
 930     // See if this can be masked, if the dividend is non-negative
 931     if( dti && dti->_lo >= 0 )
 932       return ( new (phase->C) AndINode( in(1), phase->intcon( pos_con-1 ) ) );
 933   }
 934 
 935   // Save in(1) so that it cannot be changed or deleted
 936   hook->init_req(0, in(1));
 937 
 938   // Divide using the transform from DivI to MulL
 939   Node *result = transform_int_divide( phase, in(1), pos_con );
 940   if (result != NULL) {
 941     Node *divide = phase->transform(result);
 942 
 943     // Re-multiply, using a shift if this is a power of two
 944     Node *mult = NULL;
 945 
 946     if( log2_con >= 0 )
 947       mult = phase->transform( new (phase->C) LShiftINode( divide, phase->intcon( log2_con ) ) );
 948     else
 949       mult = phase->transform( new (phase->C) MulINode( divide, phase->intcon( pos_con ) ) );
 950 
 951     // Finally, subtract the multiplied divided value from the original
 952     result = new (phase->C) SubINode( in(1), mult );
 953   }
 954 
 955   // Now remove the bogus extra edges used to keep things alive
 956   if (can_reshape) {
 957     phase->is_IterGVN()->remove_dead_node(hook);
 958   } else {
 959     hook->set_req(0, NULL);       // Just yank bogus edge during Parse phase
 960   }
 961 
 962   // return the value
 963   return result;
 964 }
 965 
 966 //------------------------------Value------------------------------------------
 967 const Type *ModINode::Value( PhaseTransform *phase ) const {
 968   // Either input is TOP ==> the result is TOP
 969   const Type *t1 = phase->type( in(1) );
 970   const Type *t2 = phase->type( in(2) );
 971   if( t1 == Type::TOP ) return Type::TOP;
 972   if( t2 == Type::TOP ) return Type::TOP;
 973 
 974   // We always generate the dynamic check for 0.
 975   // 0 MOD X is 0
 976   if( t1 == TypeInt::ZERO ) return TypeInt::ZERO;
 977   // X MOD X is 0
 978   if( phase->eqv( in(1), in(2) ) ) return TypeInt::ZERO;
 979 
 980   // Either input is BOTTOM ==> the result is the local BOTTOM
 981   const Type *bot = bottom_type();
 982   if( (t1 == bot) || (t2 == bot) ||
 983       (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
 984     return bot;
 985 
 986   const TypeInt *i1 = t1->is_int();
 987   const TypeInt *i2 = t2->is_int();
 988   if( !i1->is_con() || !i2->is_con() ) {
 989     if( i1->_lo >= 0 && i2->_lo >= 0 )
 990       return TypeInt::POS;
 991     // If both numbers are not constants, we know little.
 992     return TypeInt::INT;
 993   }
 994   // Mod by zero?  Throw exception at runtime!
 995   if( !i2->get_con() ) return TypeInt::POS;
 996 
 997   // We must be modulo'ing 2 float constants.
 998   // Check for min_jint % '-1', result is defined to be '0'.
 999   if( i1->get_con() == min_jint && i2->get_con() == -1 )
1000     return TypeInt::ZERO;
1001 
1002   return TypeInt::make( i1->get_con() % i2->get_con() );
1003 }
1004 
1005 
1006 //=============================================================================
1007 //------------------------------Idealize---------------------------------------
1008 Node *ModLNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1009   // Check for dead control input
1010   if( in(0) && remove_dead_region(phase, can_reshape) )  return this;
1011   // Don't bother trying to transform a dead node
1012   if( in(0) && in(0)->is_top() )  return NULL;
1013 
1014   // Get the modulus
1015   const Type *t = phase->type( in(2) );
1016   if( t == Type::TOP ) return NULL;
1017   const TypeLong *tl = t->is_long();
1018 
1019   // Check for useless control input
1020   // Check for excluding mod-zero case
1021   if( in(0) && (tl->_hi < 0 || tl->_lo > 0) ) {
1022     set_req(0, NULL);        // Yank control input
1023     return this;
1024   }
1025 
1026   // See if we are MOD'ing by 2^k or 2^k-1.
1027   if( !tl->is_con() ) return NULL;
1028   jlong con = tl->get_con();
1029 
1030   Node *hook = new (phase->C) Node(1);
1031 
1032   // Expand mod
1033   if( con >= 0 && con < max_jlong && is_power_of_2_long(con+1) ) {
1034     uint k = exact_log2_long(con+1);  // Extract k
1035 
1036     // Basic algorithm by David Detlefs.  See fastmod_long.java for gory details.
1037     // Used to help a popular random number generator which does a long-mod
1038     // of 2^31-1 and shows up in SpecJBB and SciMark.
1039     static int unroll_factor[] = { 999, 999, 61, 30, 20, 15, 12, 10, 8, 7, 6, 6, 5, 5, 4, 4, 4, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1 /*past here we assume 1 forever*/};
1040     int trip_count = 1;
1041     if( k < ARRAY_SIZE(unroll_factor)) trip_count = unroll_factor[k];
1042 
1043     // If the unroll factor is not too large, and if conditional moves are
1044     // ok, then use this case
1045     if( trip_count <= 5 && ConditionalMoveLimit != 0 ) {
1046       Node *x = in(1);            // Value being mod'd
1047       Node *divisor = in(2);      // Also is mask
1048 
1049       hook->init_req(0, x);       // Add a use to x to prevent him from dying
1050       // Generate code to reduce X rapidly to nearly 2^k-1.
1051       for( int i = 0; i < trip_count; i++ ) {
1052         Node *xl = phase->transform( new (phase->C) AndLNode(x,divisor) );
1053         Node *xh = phase->transform( new (phase->C) RShiftLNode(x,phase->intcon(k)) ); // Must be signed
1054         x = phase->transform( new (phase->C) AddLNode(xh,xl) );
1055         hook->set_req(0, x);    // Add a use to x to prevent him from dying
1056       }
1057 
1058       // Generate sign-fixup code.  Was original value positive?
1059       // long hack_res = (i >= 0) ? divisor : CONST64(1);
1060       Node *cmp1 = phase->transform( new (phase->C) CmpLNode( in(1), phase->longcon(0) ) );
1061       Node *bol1 = phase->transform( new (phase->C) BoolNode( cmp1, BoolTest::ge ) );
1062       Node *cmov1= phase->transform( new (phase->C) CMoveLNode(bol1, phase->longcon(1), divisor, TypeLong::LONG) );
1063       // if( x >= hack_res ) x -= divisor;
1064       Node *sub  = phase->transform( new (phase->C) SubLNode( x, divisor ) );
1065       Node *cmp2 = phase->transform( new (phase->C) CmpLNode( x, cmov1 ) );
1066       Node *bol2 = phase->transform( new (phase->C) BoolNode( cmp2, BoolTest::ge ) );
1067       // Convention is to not transform the return value of an Ideal
1068       // since Ideal is expected to return a modified 'this' or a new node.
1069       Node *cmov2= new (phase->C) CMoveLNode(bol2, x, sub, TypeLong::LONG);
1070       // cmov2 is now the mod
1071 
1072       // Now remove the bogus extra edges used to keep things alive
1073       if (can_reshape) {
1074         phase->is_IterGVN()->remove_dead_node(hook);
1075       } else {
1076         hook->set_req(0, NULL);   // Just yank bogus edge during Parse phase
1077       }
1078       return cmov2;
1079     }
1080   }
1081 
1082   // Fell thru, the unroll case is not appropriate. Transform the modulo
1083   // into a long multiply/int multiply/subtract case
1084 
1085   // Cannot handle mod 0, and min_jlong isn't handled by the transform
1086   if( con == 0 || con == min_jlong ) return NULL;
1087 
1088   // Get the absolute value of the constant; at this point, we can use this
1089   jlong pos_con = (con >= 0) ? con : -con;
1090 
1091   // integer Mod 1 is always 0
1092   if( pos_con == 1 ) return new (phase->C) ConLNode(TypeLong::ZERO);
1093 
1094   int log2_con = -1;
1095 
1096   // If this is a power of two, then maybe we can mask it
1097   if( is_power_of_2_long(pos_con) ) {
1098     log2_con = exact_log2_long(pos_con);
1099 
1100     const Type *dt = phase->type(in(1));
1101     const TypeLong *dtl = dt->isa_long();
1102 
1103     // See if this can be masked, if the dividend is non-negative
1104     if( dtl && dtl->_lo >= 0 )
1105       return ( new (phase->C) AndLNode( in(1), phase->longcon( pos_con-1 ) ) );
1106   }
1107 
1108   // Save in(1) so that it cannot be changed or deleted
1109   hook->init_req(0, in(1));
1110 
1111   // Divide using the transform from DivL to MulL
1112   Node *result = transform_long_divide( phase, in(1), pos_con );
1113   if (result != NULL) {
1114     Node *divide = phase->transform(result);
1115 
1116     // Re-multiply, using a shift if this is a power of two
1117     Node *mult = NULL;
1118 
1119     if( log2_con >= 0 )
1120       mult = phase->transform( new (phase->C) LShiftLNode( divide, phase->intcon( log2_con ) ) );
1121     else
1122       mult = phase->transform( new (phase->C) MulLNode( divide, phase->longcon( pos_con ) ) );
1123 
1124     // Finally, subtract the multiplied divided value from the original
1125     result = new (phase->C) SubLNode( in(1), mult );
1126   }
1127 
1128   // Now remove the bogus extra edges used to keep things alive
1129   if (can_reshape) {
1130     phase->is_IterGVN()->remove_dead_node(hook);
1131   } else {
1132     hook->set_req(0, NULL);       // Just yank bogus edge during Parse phase
1133   }
1134 
1135   // return the value
1136   return result;
1137 }
1138 
1139 //------------------------------Value------------------------------------------
1140 const Type *ModLNode::Value( PhaseTransform *phase ) const {
1141   // Either input is TOP ==> the result is TOP
1142   const Type *t1 = phase->type( in(1) );
1143   const Type *t2 = phase->type( in(2) );
1144   if( t1 == Type::TOP ) return Type::TOP;
1145   if( t2 == Type::TOP ) return Type::TOP;
1146 
1147   // We always generate the dynamic check for 0.
1148   // 0 MOD X is 0
1149   if( t1 == TypeLong::ZERO ) return TypeLong::ZERO;
1150   // X MOD X is 0
1151   if( phase->eqv( in(1), in(2) ) ) return TypeLong::ZERO;
1152 
1153   // Either input is BOTTOM ==> the result is the local BOTTOM
1154   const Type *bot = bottom_type();
1155   if( (t1 == bot) || (t2 == bot) ||
1156       (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
1157     return bot;
1158 
1159   const TypeLong *i1 = t1->is_long();
1160   const TypeLong *i2 = t2->is_long();
1161   if( !i1->is_con() || !i2->is_con() ) {
1162     if( i1->_lo >= CONST64(0) && i2->_lo >= CONST64(0) )
1163       return TypeLong::POS;
1164     // If both numbers are not constants, we know little.
1165     return TypeLong::LONG;
1166   }
1167   // Mod by zero?  Throw exception at runtime!
1168   if( !i2->get_con() ) return TypeLong::POS;
1169 
1170   // We must be modulo'ing 2 float constants.
1171   // Check for min_jint % '-1', result is defined to be '0'.
1172   if( i1->get_con() == min_jlong && i2->get_con() == -1 )
1173     return TypeLong::ZERO;
1174 
1175   return TypeLong::make( i1->get_con() % i2->get_con() );
1176 }
1177 
1178 
1179 //=============================================================================
1180 //------------------------------Value------------------------------------------
1181 const Type *ModFNode::Value( PhaseTransform *phase ) const {
1182   // Either input is TOP ==> the result is TOP
1183   const Type *t1 = phase->type( in(1) );
1184   const Type *t2 = phase->type( in(2) );
1185   if( t1 == Type::TOP ) return Type::TOP;
1186   if( t2 == Type::TOP ) return Type::TOP;
1187 
1188   // Either input is BOTTOM ==> the result is the local BOTTOM
1189   const Type *bot = bottom_type();
1190   if( (t1 == bot) || (t2 == bot) ||
1191       (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
1192     return bot;
1193 
1194   // If either number is not a constant, we know nothing.
1195   if ((t1->base() != Type::FloatCon) || (t2->base() != Type::FloatCon)) {
1196     return Type::FLOAT;         // note: x%x can be either NaN or 0
1197   }
1198 
1199   float f1 = t1->getf();
1200   float f2 = t2->getf();
1201   jint  x1 = jint_cast(f1);     // note:  *(int*)&f1, not just (int)f1
1202   jint  x2 = jint_cast(f2);
1203 
1204   // If either is a NaN, return an input NaN
1205   if (g_isnan(f1))    return t1;
1206   if (g_isnan(f2))    return t2;
1207 
1208   // If an operand is infinity or the divisor is +/- zero, punt.
1209   if (!g_isfinite(f1) || !g_isfinite(f2) || x2 == 0 || x2 == min_jint)
1210     return Type::FLOAT;
1211 
1212   // We must be modulo'ing 2 float constants.
1213   // Make sure that the sign of the fmod is equal to the sign of the dividend
1214   jint xr = jint_cast(fmod(f1, f2));
1215   if ((x1 ^ xr) < 0) {
1216     xr ^= min_jint;
1217   }
1218 
1219   return TypeF::make(jfloat_cast(xr));
1220 }
1221 
1222 
1223 //=============================================================================
1224 //------------------------------Value------------------------------------------
1225 const Type *ModDNode::Value( PhaseTransform *phase ) const {
1226   // Either input is TOP ==> the result is TOP
1227   const Type *t1 = phase->type( in(1) );
1228   const Type *t2 = phase->type( in(2) );
1229   if( t1 == Type::TOP ) return Type::TOP;
1230   if( t2 == Type::TOP ) return Type::TOP;
1231 
1232   // Either input is BOTTOM ==> the result is the local BOTTOM
1233   const Type *bot = bottom_type();
1234   if( (t1 == bot) || (t2 == bot) ||
1235       (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
1236     return bot;
1237 
1238   // If either number is not a constant, we know nothing.
1239   if ((t1->base() != Type::DoubleCon) || (t2->base() != Type::DoubleCon)) {
1240     return Type::DOUBLE;        // note: x%x can be either NaN or 0
1241   }
1242 
1243   double f1 = t1->getd();
1244   double f2 = t2->getd();
1245   jlong  x1 = jlong_cast(f1);   // note:  *(long*)&f1, not just (long)f1
1246   jlong  x2 = jlong_cast(f2);
1247 
1248   // If either is a NaN, return an input NaN
1249   if (g_isnan(f1))    return t1;
1250   if (g_isnan(f2))    return t2;
1251 
1252   // If an operand is infinity or the divisor is +/- zero, punt.
1253   if (!g_isfinite(f1) || !g_isfinite(f2) || x2 == 0 || x2 == min_jlong)
1254     return Type::DOUBLE;
1255 
1256   // We must be modulo'ing 2 double constants.
1257   // Make sure that the sign of the fmod is equal to the sign of the dividend
1258   jlong xr = jlong_cast(fmod(f1, f2));
1259   if ((x1 ^ xr) < 0) {
1260     xr ^= min_jlong;
1261   }
1262 
1263   return TypeD::make(jdouble_cast(xr));
1264 }
1265 
1266 //=============================================================================
1267 
1268 DivModNode::DivModNode( Node *c, Node *dividend, Node *divisor ) : MultiNode(3) {
1269   init_req(0, c);
1270   init_req(1, dividend);
1271   init_req(2, divisor);
1272 }
1273 
1274 //------------------------------make------------------------------------------
1275 DivModINode* DivModINode::make(Compile* C, Node* div_or_mod) {
1276   Node* n = div_or_mod;
1277   assert(n->Opcode() == Op_DivI || n->Opcode() == Op_ModI,
1278          "only div or mod input pattern accepted");
1279 
1280   DivModINode* divmod = new (C) DivModINode(n->in(0), n->in(1), n->in(2));
1281   Node*        dproj  = new (C) ProjNode(divmod, DivModNode::div_proj_num);
1282   Node*        mproj  = new (C) ProjNode(divmod, DivModNode::mod_proj_num);
1283   return divmod;
1284 }
1285 
1286 //------------------------------make------------------------------------------
1287 DivModLNode* DivModLNode::make(Compile* C, Node* div_or_mod) {
1288   Node* n = div_or_mod;
1289   assert(n->Opcode() == Op_DivL || n->Opcode() == Op_ModL,
1290          "only div or mod input pattern accepted");
1291 
1292   DivModLNode* divmod = new (C) DivModLNode(n->in(0), n->in(1), n->in(2));
1293   Node*        dproj  = new (C) ProjNode(divmod, DivModNode::div_proj_num);
1294   Node*        mproj  = new (C) ProjNode(divmod, DivModNode::mod_proj_num);
1295   return divmod;
1296 }
1297 
1298 //------------------------------match------------------------------------------
1299 // return result(s) along with their RegMask info
1300 Node *DivModINode::match( const ProjNode *proj, const Matcher *match ) {
1301   uint ideal_reg = proj->ideal_reg();
1302   RegMask rm;
1303   if (proj->_con == div_proj_num) {
1304     rm = match->divI_proj_mask();
1305   } else {
1306     assert(proj->_con == mod_proj_num, "must be div or mod projection");
1307     rm = match->modI_proj_mask();
1308   }
1309   return new (match->C)MachProjNode(this, proj->_con, rm, ideal_reg);
1310 }
1311 
1312 
1313 //------------------------------match------------------------------------------
1314 // return result(s) along with their RegMask info
1315 Node *DivModLNode::match( const ProjNode *proj, const Matcher *match ) {
1316   uint ideal_reg = proj->ideal_reg();
1317   RegMask rm;
1318   if (proj->_con == div_proj_num) {
1319     rm = match->divL_proj_mask();
1320   } else {
1321     assert(proj->_con == mod_proj_num, "must be div or mod projection");
1322     rm = match->modL_proj_mask();
1323   }
1324   return new (match->C)MachProjNode(this, proj->_con, rm, ideal_reg);
1325 }