1 /*
   2  * Copyright (c) 2001, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "compiler/compileLog.hpp"
  27 #include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp"
  28 #include "gc_implementation/g1/heapRegion.hpp"
  29 #include "gc_interface/collectedHeap.hpp"
  30 #include "memory/barrierSet.hpp"
  31 #include "memory/cardTableModRefBS.hpp"
  32 #include "opto/addnode.hpp"
  33 #include "opto/castnode.hpp"
  34 #include "opto/convertnode.hpp"
  35 #include "opto/graphKit.hpp"
  36 #include "opto/idealKit.hpp"
  37 #include "opto/intrinsicnode.hpp"
  38 #include "opto/locknode.hpp"
  39 #include "opto/machnode.hpp"
  40 #include "opto/opaquenode.hpp"
  41 #include "opto/parse.hpp"
  42 #include "opto/rootnode.hpp"
  43 #include "opto/runtime.hpp"
  44 #include "opto/threadnode.hpp"
  45 #include "runtime/deoptimization.hpp"
  46 #include "runtime/sharedRuntime.hpp"
  47 
  48 //----------------------------GraphKit-----------------------------------------
  49 // Main utility constructor.
  50 GraphKit::GraphKit(JVMState* jvms)
  51   : Phase(Phase::Parser),
  52     _env(C->env()),
  53     _gvn(*C->initial_gvn())
  54 {
  55   _exceptions = jvms->map()->next_exception();
  56   if (_exceptions != NULL)  jvms->map()->set_next_exception(NULL);
  57   set_jvms(jvms);
  58 }
  59 
  60 // Private constructor for parser.
  61 GraphKit::GraphKit()
  62   : Phase(Phase::Parser),
  63     _env(C->env()),
  64     _gvn(*C->initial_gvn())
  65 {
  66   _exceptions = NULL;
  67   set_map(NULL);
  68   debug_only(_sp = -99);
  69   debug_only(set_bci(-99));
  70 }
  71 
  72 
  73 
  74 //---------------------------clean_stack---------------------------------------
  75 // Clear away rubbish from the stack area of the JVM state.
  76 // This destroys any arguments that may be waiting on the stack.
  77 void GraphKit::clean_stack(int from_sp) {
  78   SafePointNode* map      = this->map();
  79   JVMState*      jvms     = this->jvms();
  80   int            stk_size = jvms->stk_size();
  81   int            stkoff   = jvms->stkoff();
  82   Node*          top      = this->top();
  83   for (int i = from_sp; i < stk_size; i++) {
  84     if (map->in(stkoff + i) != top) {
  85       map->set_req(stkoff + i, top);
  86     }
  87   }
  88 }
  89 
  90 
  91 //--------------------------------sync_jvms-----------------------------------
  92 // Make sure our current jvms agrees with our parse state.
  93 JVMState* GraphKit::sync_jvms() const {
  94   JVMState* jvms = this->jvms();
  95   jvms->set_bci(bci());       // Record the new bci in the JVMState
  96   jvms->set_sp(sp());         // Record the new sp in the JVMState
  97   assert(jvms_in_sync(), "jvms is now in sync");
  98   return jvms;
  99 }
 100 
 101 //--------------------------------sync_jvms_for_reexecute---------------------
 102 // Make sure our current jvms agrees with our parse state.  This version
 103 // uses the reexecute_sp for reexecuting bytecodes.
 104 JVMState* GraphKit::sync_jvms_for_reexecute() {
 105   JVMState* jvms = this->jvms();
 106   jvms->set_bci(bci());          // Record the new bci in the JVMState
 107   jvms->set_sp(reexecute_sp());  // Record the new sp in the JVMState
 108   return jvms;
 109 }
 110 
 111 #ifdef ASSERT
 112 bool GraphKit::jvms_in_sync() const {
 113   Parse* parse = is_Parse();
 114   if (parse == NULL) {
 115     if (bci() !=      jvms()->bci())          return false;
 116     if (sp()  != (int)jvms()->sp())           return false;
 117     return true;
 118   }
 119   if (jvms()->method() != parse->method())    return false;
 120   if (jvms()->bci()    != parse->bci())       return false;
 121   int jvms_sp = jvms()->sp();
 122   if (jvms_sp          != parse->sp())        return false;
 123   int jvms_depth = jvms()->depth();
 124   if (jvms_depth       != parse->depth())     return false;
 125   return true;
 126 }
 127 
 128 // Local helper checks for special internal merge points
 129 // used to accumulate and merge exception states.
 130 // They are marked by the region's in(0) edge being the map itself.
 131 // Such merge points must never "escape" into the parser at large,
 132 // until they have been handed to gvn.transform.
 133 static bool is_hidden_merge(Node* reg) {
 134   if (reg == NULL)  return false;
 135   if (reg->is_Phi()) {
 136     reg = reg->in(0);
 137     if (reg == NULL)  return false;
 138   }
 139   return reg->is_Region() && reg->in(0) != NULL && reg->in(0)->is_Root();
 140 }
 141 
 142 void GraphKit::verify_map() const {
 143   if (map() == NULL)  return;  // null map is OK
 144   assert(map()->req() <= jvms()->endoff(), "no extra garbage on map");
 145   assert(!map()->has_exceptions(),    "call add_exception_states_from 1st");
 146   assert(!is_hidden_merge(control()), "call use_exception_state, not set_map");
 147 }
 148 
 149 void GraphKit::verify_exception_state(SafePointNode* ex_map) {
 150   assert(ex_map->next_exception() == NULL, "not already part of a chain");
 151   assert(has_saved_ex_oop(ex_map), "every exception state has an ex_oop");
 152 }
 153 #endif
 154 
 155 //---------------------------stop_and_kill_map---------------------------------
 156 // Set _map to NULL, signalling a stop to further bytecode execution.
 157 // First smash the current map's control to a constant, to mark it dead.
 158 void GraphKit::stop_and_kill_map() {
 159   SafePointNode* dead_map = stop();
 160   if (dead_map != NULL) {
 161     dead_map->disconnect_inputs(NULL, C); // Mark the map as killed.
 162     assert(dead_map->is_killed(), "must be so marked");
 163   }
 164 }
 165 
 166 
 167 //--------------------------------stopped--------------------------------------
 168 // Tell if _map is NULL, or control is top.
 169 bool GraphKit::stopped() {
 170   if (map() == NULL)           return true;
 171   else if (control() == top()) return true;
 172   else                         return false;
 173 }
 174 
 175 
 176 //-----------------------------has_ex_handler----------------------------------
 177 // Tell if this method or any caller method has exception handlers.
 178 bool GraphKit::has_ex_handler() {
 179   for (JVMState* jvmsp = jvms(); jvmsp != NULL; jvmsp = jvmsp->caller()) {
 180     if (jvmsp->has_method() && jvmsp->method()->has_exception_handlers()) {
 181       return true;
 182     }
 183   }
 184   return false;
 185 }
 186 
 187 //------------------------------save_ex_oop------------------------------------
 188 // Save an exception without blowing stack contents or other JVM state.
 189 void GraphKit::set_saved_ex_oop(SafePointNode* ex_map, Node* ex_oop) {
 190   assert(!has_saved_ex_oop(ex_map), "clear ex-oop before setting again");
 191   ex_map->add_req(ex_oop);
 192   debug_only(verify_exception_state(ex_map));
 193 }
 194 
 195 inline static Node* common_saved_ex_oop(SafePointNode* ex_map, bool clear_it) {
 196   assert(GraphKit::has_saved_ex_oop(ex_map), "ex_oop must be there");
 197   Node* ex_oop = ex_map->in(ex_map->req()-1);
 198   if (clear_it)  ex_map->del_req(ex_map->req()-1);
 199   return ex_oop;
 200 }
 201 
 202 //-----------------------------saved_ex_oop------------------------------------
 203 // Recover a saved exception from its map.
 204 Node* GraphKit::saved_ex_oop(SafePointNode* ex_map) {
 205   return common_saved_ex_oop(ex_map, false);
 206 }
 207 
 208 //--------------------------clear_saved_ex_oop---------------------------------
 209 // Erase a previously saved exception from its map.
 210 Node* GraphKit::clear_saved_ex_oop(SafePointNode* ex_map) {
 211   return common_saved_ex_oop(ex_map, true);
 212 }
 213 
 214 #ifdef ASSERT
 215 //---------------------------has_saved_ex_oop----------------------------------
 216 // Erase a previously saved exception from its map.
 217 bool GraphKit::has_saved_ex_oop(SafePointNode* ex_map) {
 218   return ex_map->req() == ex_map->jvms()->endoff()+1;
 219 }
 220 #endif
 221 
 222 //-------------------------make_exception_state--------------------------------
 223 // Turn the current JVM state into an exception state, appending the ex_oop.
 224 SafePointNode* GraphKit::make_exception_state(Node* ex_oop) {
 225   sync_jvms();
 226   SafePointNode* ex_map = stop();  // do not manipulate this map any more
 227   set_saved_ex_oop(ex_map, ex_oop);
 228   return ex_map;
 229 }
 230 
 231 
 232 //--------------------------add_exception_state--------------------------------
 233 // Add an exception to my list of exceptions.
 234 void GraphKit::add_exception_state(SafePointNode* ex_map) {
 235   if (ex_map == NULL || ex_map->control() == top()) {
 236     return;
 237   }
 238 #ifdef ASSERT
 239   verify_exception_state(ex_map);
 240   if (has_exceptions()) {
 241     assert(ex_map->jvms()->same_calls_as(_exceptions->jvms()), "all collected exceptions must come from the same place");
 242   }
 243 #endif
 244 
 245   // If there is already an exception of exactly this type, merge with it.
 246   // In particular, null-checks and other low-level exceptions common up here.
 247   Node*       ex_oop  = saved_ex_oop(ex_map);
 248   const Type* ex_type = _gvn.type(ex_oop);
 249   if (ex_oop == top()) {
 250     // No action needed.
 251     return;
 252   }
 253   assert(ex_type->isa_instptr(), "exception must be an instance");
 254   for (SafePointNode* e2 = _exceptions; e2 != NULL; e2 = e2->next_exception()) {
 255     const Type* ex_type2 = _gvn.type(saved_ex_oop(e2));
 256     // We check sp also because call bytecodes can generate exceptions
 257     // both before and after arguments are popped!
 258     if (ex_type2 == ex_type
 259         && e2->_jvms->sp() == ex_map->_jvms->sp()) {
 260       combine_exception_states(ex_map, e2);
 261       return;
 262     }
 263   }
 264 
 265   // No pre-existing exception of the same type.  Chain it on the list.
 266   push_exception_state(ex_map);
 267 }
 268 
 269 //-----------------------add_exception_states_from-----------------------------
 270 void GraphKit::add_exception_states_from(JVMState* jvms) {
 271   SafePointNode* ex_map = jvms->map()->next_exception();
 272   if (ex_map != NULL) {
 273     jvms->map()->set_next_exception(NULL);
 274     for (SafePointNode* next_map; ex_map != NULL; ex_map = next_map) {
 275       next_map = ex_map->next_exception();
 276       ex_map->set_next_exception(NULL);
 277       add_exception_state(ex_map);
 278     }
 279   }
 280 }
 281 
 282 //-----------------------transfer_exceptions_into_jvms-------------------------
 283 JVMState* GraphKit::transfer_exceptions_into_jvms() {
 284   if (map() == NULL) {
 285     // We need a JVMS to carry the exceptions, but the map has gone away.
 286     // Create a scratch JVMS, cloned from any of the exception states...
 287     if (has_exceptions()) {
 288       _map = _exceptions;
 289       _map = clone_map();
 290       _map->set_next_exception(NULL);
 291       clear_saved_ex_oop(_map);
 292       debug_only(verify_map());
 293     } else {
 294       // ...or created from scratch
 295       JVMState* jvms = new (C) JVMState(_method, NULL);
 296       jvms->set_bci(_bci);
 297       jvms->set_sp(_sp);
 298       jvms->set_map(new (C) SafePointNode(TypeFunc::Parms, jvms));
 299       set_jvms(jvms);
 300       for (uint i = 0; i < map()->req(); i++)  map()->init_req(i, top());
 301       set_all_memory(top());
 302       while (map()->req() < jvms->endoff())  map()->add_req(top());
 303     }
 304     // (This is a kludge, in case you didn't notice.)
 305     set_control(top());
 306   }
 307   JVMState* jvms = sync_jvms();
 308   assert(!jvms->map()->has_exceptions(), "no exceptions on this map yet");
 309   jvms->map()->set_next_exception(_exceptions);
 310   _exceptions = NULL;   // done with this set of exceptions
 311   return jvms;
 312 }
 313 
 314 static inline void add_n_reqs(Node* dstphi, Node* srcphi) {
 315   assert(is_hidden_merge(dstphi), "must be a special merge node");
 316   assert(is_hidden_merge(srcphi), "must be a special merge node");
 317   uint limit = srcphi->req();
 318   for (uint i = PhiNode::Input; i < limit; i++) {
 319     dstphi->add_req(srcphi->in(i));
 320   }
 321 }
 322 static inline void add_one_req(Node* dstphi, Node* src) {
 323   assert(is_hidden_merge(dstphi), "must be a special merge node");
 324   assert(!is_hidden_merge(src), "must not be a special merge node");
 325   dstphi->add_req(src);
 326 }
 327 
 328 //-----------------------combine_exception_states------------------------------
 329 // This helper function combines exception states by building phis on a
 330 // specially marked state-merging region.  These regions and phis are
 331 // untransformed, and can build up gradually.  The region is marked by
 332 // having a control input of its exception map, rather than NULL.  Such
 333 // regions do not appear except in this function, and in use_exception_state.
 334 void GraphKit::combine_exception_states(SafePointNode* ex_map, SafePointNode* phi_map) {
 335   if (failing())  return;  // dying anyway...
 336   JVMState* ex_jvms = ex_map->_jvms;
 337   assert(ex_jvms->same_calls_as(phi_map->_jvms), "consistent call chains");
 338   assert(ex_jvms->stkoff() == phi_map->_jvms->stkoff(), "matching locals");
 339   assert(ex_jvms->sp() == phi_map->_jvms->sp(), "matching stack sizes");
 340   assert(ex_jvms->monoff() == phi_map->_jvms->monoff(), "matching JVMS");
 341   assert(ex_jvms->scloff() == phi_map->_jvms->scloff(), "matching scalar replaced objects");
 342   assert(ex_map->req() == phi_map->req(), "matching maps");
 343   uint tos = ex_jvms->stkoff() + ex_jvms->sp();
 344   Node*         hidden_merge_mark = root();
 345   Node*         region  = phi_map->control();
 346   MergeMemNode* phi_mem = phi_map->merged_memory();
 347   MergeMemNode* ex_mem  = ex_map->merged_memory();
 348   if (region->in(0) != hidden_merge_mark) {
 349     // The control input is not (yet) a specially-marked region in phi_map.
 350     // Make it so, and build some phis.
 351     region = new (C) RegionNode(2);
 352     _gvn.set_type(region, Type::CONTROL);
 353     region->set_req(0, hidden_merge_mark);  // marks an internal ex-state
 354     region->init_req(1, phi_map->control());
 355     phi_map->set_control(region);
 356     Node* io_phi = PhiNode::make(region, phi_map->i_o(), Type::ABIO);
 357     record_for_igvn(io_phi);
 358     _gvn.set_type(io_phi, Type::ABIO);
 359     phi_map->set_i_o(io_phi);
 360     for (MergeMemStream mms(phi_mem); mms.next_non_empty(); ) {
 361       Node* m = mms.memory();
 362       Node* m_phi = PhiNode::make(region, m, Type::MEMORY, mms.adr_type(C));
 363       record_for_igvn(m_phi);
 364       _gvn.set_type(m_phi, Type::MEMORY);
 365       mms.set_memory(m_phi);
 366     }
 367   }
 368 
 369   // Either or both of phi_map and ex_map might already be converted into phis.
 370   Node* ex_control = ex_map->control();
 371   // if there is special marking on ex_map also, we add multiple edges from src
 372   bool add_multiple = (ex_control->in(0) == hidden_merge_mark);
 373   // how wide was the destination phi_map, originally?
 374   uint orig_width = region->req();
 375 
 376   if (add_multiple) {
 377     add_n_reqs(region, ex_control);
 378     add_n_reqs(phi_map->i_o(), ex_map->i_o());
 379   } else {
 380     // ex_map has no merges, so we just add single edges everywhere
 381     add_one_req(region, ex_control);
 382     add_one_req(phi_map->i_o(), ex_map->i_o());
 383   }
 384   for (MergeMemStream mms(phi_mem, ex_mem); mms.next_non_empty2(); ) {
 385     if (mms.is_empty()) {
 386       // get a copy of the base memory, and patch some inputs into it
 387       const TypePtr* adr_type = mms.adr_type(C);
 388       Node* phi = mms.force_memory()->as_Phi()->slice_memory(adr_type);
 389       assert(phi->as_Phi()->region() == mms.base_memory()->in(0), "");
 390       mms.set_memory(phi);
 391       // Prepare to append interesting stuff onto the newly sliced phi:
 392       while (phi->req() > orig_width)  phi->del_req(phi->req()-1);
 393     }
 394     // Append stuff from ex_map:
 395     if (add_multiple) {
 396       add_n_reqs(mms.memory(), mms.memory2());
 397     } else {
 398       add_one_req(mms.memory(), mms.memory2());
 399     }
 400   }
 401   uint limit = ex_map->req();
 402   for (uint i = TypeFunc::Parms; i < limit; i++) {
 403     // Skip everything in the JVMS after tos.  (The ex_oop follows.)
 404     if (i == tos)  i = ex_jvms->monoff();
 405     Node* src = ex_map->in(i);
 406     Node* dst = phi_map->in(i);
 407     if (src != dst) {
 408       PhiNode* phi;
 409       if (dst->in(0) != region) {
 410         dst = phi = PhiNode::make(region, dst, _gvn.type(dst));
 411         record_for_igvn(phi);
 412         _gvn.set_type(phi, phi->type());
 413         phi_map->set_req(i, dst);
 414         // Prepare to append interesting stuff onto the new phi:
 415         while (dst->req() > orig_width)  dst->del_req(dst->req()-1);
 416       } else {
 417         assert(dst->is_Phi(), "nobody else uses a hidden region");
 418         phi = dst->as_Phi();
 419       }
 420       if (add_multiple && src->in(0) == ex_control) {
 421         // Both are phis.
 422         add_n_reqs(dst, src);
 423       } else {
 424         while (dst->req() < region->req())  add_one_req(dst, src);
 425       }
 426       const Type* srctype = _gvn.type(src);
 427       if (phi->type() != srctype) {
 428         const Type* dsttype = phi->type()->meet_speculative(srctype);
 429         if (phi->type() != dsttype) {
 430           phi->set_type(dsttype);
 431           _gvn.set_type(phi, dsttype);
 432         }
 433       }
 434     }
 435   }
 436 }
 437 
 438 //--------------------------use_exception_state--------------------------------
 439 Node* GraphKit::use_exception_state(SafePointNode* phi_map) {
 440   if (failing()) { stop(); return top(); }
 441   Node* region = phi_map->control();
 442   Node* hidden_merge_mark = root();
 443   assert(phi_map->jvms()->map() == phi_map, "sanity: 1-1 relation");
 444   Node* ex_oop = clear_saved_ex_oop(phi_map);
 445   if (region->in(0) == hidden_merge_mark) {
 446     // Special marking for internal ex-states.  Process the phis now.
 447     region->set_req(0, region);  // now it's an ordinary region
 448     set_jvms(phi_map->jvms());   // ...so now we can use it as a map
 449     // Note: Setting the jvms also sets the bci and sp.
 450     set_control(_gvn.transform(region));
 451     uint tos = jvms()->stkoff() + sp();
 452     for (uint i = 1; i < tos; i++) {
 453       Node* x = phi_map->in(i);
 454       if (x->in(0) == region) {
 455         assert(x->is_Phi(), "expected a special phi");
 456         phi_map->set_req(i, _gvn.transform(x));
 457       }
 458     }
 459     for (MergeMemStream mms(merged_memory()); mms.next_non_empty(); ) {
 460       Node* x = mms.memory();
 461       if (x->in(0) == region) {
 462         assert(x->is_Phi(), "nobody else uses a hidden region");
 463         mms.set_memory(_gvn.transform(x));
 464       }
 465     }
 466     if (ex_oop->in(0) == region) {
 467       assert(ex_oop->is_Phi(), "expected a special phi");
 468       ex_oop = _gvn.transform(ex_oop);
 469     }
 470   } else {
 471     set_jvms(phi_map->jvms());
 472   }
 473 
 474   assert(!is_hidden_merge(phi_map->control()), "hidden ex. states cleared");
 475   assert(!is_hidden_merge(phi_map->i_o()), "hidden ex. states cleared");
 476   return ex_oop;
 477 }
 478 
 479 //---------------------------------java_bc-------------------------------------
 480 Bytecodes::Code GraphKit::java_bc() const {
 481   ciMethod* method = this->method();
 482   int       bci    = this->bci();
 483   if (method != NULL && bci != InvocationEntryBci)
 484     return method->java_code_at_bci(bci);
 485   else
 486     return Bytecodes::_illegal;
 487 }
 488 
 489 void GraphKit::uncommon_trap_if_should_post_on_exceptions(Deoptimization::DeoptReason reason,
 490                                                           bool must_throw) {
 491     // if the exception capability is set, then we will generate code
 492     // to check the JavaThread.should_post_on_exceptions flag to see
 493     // if we actually need to report exception events (for this
 494     // thread).  If we don't need to report exception events, we will
 495     // take the normal fast path provided by add_exception_events.  If
 496     // exception event reporting is enabled for this thread, we will
 497     // take the uncommon_trap in the BuildCutout below.
 498 
 499     // first must access the should_post_on_exceptions_flag in this thread's JavaThread
 500     Node* jthread = _gvn.transform(new (C) ThreadLocalNode());
 501     Node* adr = basic_plus_adr(top(), jthread, in_bytes(JavaThread::should_post_on_exceptions_flag_offset()));
 502     Node* should_post_flag = make_load(control(), adr, TypeInt::INT, T_INT, Compile::AliasIdxRaw, MemNode::unordered);
 503 
 504     // Test the should_post_on_exceptions_flag vs. 0
 505     Node* chk = _gvn.transform( new (C) CmpINode(should_post_flag, intcon(0)) );
 506     Node* tst = _gvn.transform( new (C) BoolNode(chk, BoolTest::eq) );
 507 
 508     // Branch to slow_path if should_post_on_exceptions_flag was true
 509     { BuildCutout unless(this, tst, PROB_MAX);
 510       // Do not try anything fancy if we're notifying the VM on every throw.
 511       // Cf. case Bytecodes::_athrow in parse2.cpp.
 512       uncommon_trap(reason, Deoptimization::Action_none,
 513                     (ciKlass*)NULL, (char*)NULL, must_throw);
 514     }
 515 
 516 }
 517 
 518 //------------------------------builtin_throw----------------------------------
 519 void GraphKit::builtin_throw(Deoptimization::DeoptReason reason, Node* arg) {
 520   bool must_throw = true;
 521 
 522   if (env()->jvmti_can_post_on_exceptions()) {
 523     // check if we must post exception events, take uncommon trap if so
 524     uncommon_trap_if_should_post_on_exceptions(reason, must_throw);
 525     // here if should_post_on_exceptions is false
 526     // continue on with the normal codegen
 527   }
 528 
 529   // If this particular condition has not yet happened at this
 530   // bytecode, then use the uncommon trap mechanism, and allow for
 531   // a future recompilation if several traps occur here.
 532   // If the throw is hot, try to use a more complicated inline mechanism
 533   // which keeps execution inside the compiled code.
 534   bool treat_throw_as_hot = false;
 535   ciMethodData* md = method()->method_data();
 536 
 537   if (ProfileTraps) {
 538     if (too_many_traps(reason)) {
 539       treat_throw_as_hot = true;
 540     }
 541     // (If there is no MDO at all, assume it is early in
 542     // execution, and that any deopts are part of the
 543     // startup transient, and don't need to be remembered.)
 544 
 545     // Also, if there is a local exception handler, treat all throws
 546     // as hot if there has been at least one in this method.
 547     if (C->trap_count(reason) != 0
 548         && method()->method_data()->trap_count(reason) != 0
 549         && has_ex_handler()) {
 550         treat_throw_as_hot = true;
 551     }
 552   }
 553 
 554   // If this throw happens frequently, an uncommon trap might cause
 555   // a performance pothole.  If there is a local exception handler,
 556   // and if this particular bytecode appears to be deoptimizing often,
 557   // let us handle the throw inline, with a preconstructed instance.
 558   // Note:   If the deopt count has blown up, the uncommon trap
 559   // runtime is going to flush this nmethod, not matter what.
 560   if (treat_throw_as_hot
 561       && (!StackTraceInThrowable || OmitStackTraceInFastThrow)) {
 562     // If the throw is local, we use a pre-existing instance and
 563     // punt on the backtrace.  This would lead to a missing backtrace
 564     // (a repeat of 4292742) if the backtrace object is ever asked
 565     // for its backtrace.
 566     // Fixing this remaining case of 4292742 requires some flavor of
 567     // escape analysis.  Leave that for the future.
 568     ciInstance* ex_obj = NULL;
 569     switch (reason) {
 570     case Deoptimization::Reason_null_check:
 571       ex_obj = env()->NullPointerException_instance();
 572       break;
 573     case Deoptimization::Reason_div0_check:
 574       ex_obj = env()->ArithmeticException_instance();
 575       break;
 576     case Deoptimization::Reason_range_check:
 577       ex_obj = env()->ArrayIndexOutOfBoundsException_instance();
 578       break;
 579     case Deoptimization::Reason_class_check:
 580       if (java_bc() == Bytecodes::_aastore) {
 581         ex_obj = env()->ArrayStoreException_instance();
 582       } else {
 583         ex_obj = env()->ClassCastException_instance();
 584       }
 585       break;
 586     }
 587     if (failing()) { stop(); return; }  // exception allocation might fail
 588     if (ex_obj != NULL) {
 589       // Cheat with a preallocated exception object.
 590       if (C->log() != NULL)
 591         C->log()->elem("hot_throw preallocated='1' reason='%s'",
 592                        Deoptimization::trap_reason_name(reason));
 593       const TypeInstPtr* ex_con  = TypeInstPtr::make(ex_obj);
 594       Node*              ex_node = _gvn.transform( ConNode::make(C, ex_con) );
 595 
 596       // Clear the detail message of the preallocated exception object.
 597       // Weblogic sometimes mutates the detail message of exceptions
 598       // using reflection.
 599       int offset = java_lang_Throwable::get_detailMessage_offset();
 600       const TypePtr* adr_typ = ex_con->add_offset(offset);
 601 
 602       Node *adr = basic_plus_adr(ex_node, ex_node, offset);
 603       const TypeOopPtr* val_type = TypeOopPtr::make_from_klass(env()->String_klass());
 604       // Conservatively release stores of object references.
 605       Node *store = store_oop_to_object(control(), ex_node, adr, adr_typ, null(), val_type, T_OBJECT, MemNode::release);
 606 
 607       add_exception_state(make_exception_state(ex_node));
 608       return;
 609     }
 610   }
 611 
 612   // %%% Maybe add entry to OptoRuntime which directly throws the exc.?
 613   // It won't be much cheaper than bailing to the interp., since we'll
 614   // have to pass up all the debug-info, and the runtime will have to
 615   // create the stack trace.
 616 
 617   // Usual case:  Bail to interpreter.
 618   // Reserve the right to recompile if we haven't seen anything yet.
 619 
 620   assert(!Deoptimization::reason_is_speculate(reason), "unsupported");
 621   Deoptimization::DeoptAction action = Deoptimization::Action_maybe_recompile;
 622   if (treat_throw_as_hot
 623       && (method()->method_data()->trap_recompiled_at(bci(), NULL)
 624           || C->too_many_traps(reason))) {
 625     // We cannot afford to take more traps here.  Suffer in the interpreter.
 626     if (C->log() != NULL)
 627       C->log()->elem("hot_throw preallocated='0' reason='%s' mcount='%d'",
 628                      Deoptimization::trap_reason_name(reason),
 629                      C->trap_count(reason));
 630     action = Deoptimization::Action_none;
 631   }
 632 
 633   // "must_throw" prunes the JVM state to include only the stack, if there
 634   // are no local exception handlers.  This should cut down on register
 635   // allocation time and code size, by drastically reducing the number
 636   // of in-edges on the call to the uncommon trap.
 637 
 638   uncommon_trap(reason, action, (ciKlass*)NULL, (char*)NULL, must_throw);
 639 }
 640 
 641 
 642 //----------------------------PreserveJVMState---------------------------------
 643 PreserveJVMState::PreserveJVMState(GraphKit* kit, bool clone_map) {
 644   debug_only(kit->verify_map());
 645   _kit    = kit;
 646   _map    = kit->map();   // preserve the map
 647   _sp     = kit->sp();
 648   kit->set_map(clone_map ? kit->clone_map() : NULL);
 649   Compile::current()->inc_preserve_jvm_state();
 650 #ifdef ASSERT
 651   _bci    = kit->bci();
 652   Parse* parser = kit->is_Parse();
 653   int block = (parser == NULL || parser->block() == NULL) ? -1 : parser->block()->rpo();
 654   _block  = block;
 655 #endif
 656 }
 657 PreserveJVMState::~PreserveJVMState() {
 658   GraphKit* kit = _kit;
 659 #ifdef ASSERT
 660   assert(kit->bci() == _bci, "bci must not shift");
 661   Parse* parser = kit->is_Parse();
 662   int block = (parser == NULL || parser->block() == NULL) ? -1 : parser->block()->rpo();
 663   assert(block == _block,    "block must not shift");
 664 #endif
 665   kit->set_map(_map);
 666   kit->set_sp(_sp);
 667   Compile::current()->dec_preserve_jvm_state();
 668 }
 669 
 670 
 671 //-----------------------------BuildCutout-------------------------------------
 672 BuildCutout::BuildCutout(GraphKit* kit, Node* p, float prob, float cnt)
 673   : PreserveJVMState(kit)
 674 {
 675   assert(p->is_Con() || p->is_Bool(), "test must be a bool");
 676   SafePointNode* outer_map = _map;   // preserved map is caller's
 677   SafePointNode* inner_map = kit->map();
 678   IfNode* iff = kit->create_and_map_if(outer_map->control(), p, prob, cnt);
 679   outer_map->set_control(kit->gvn().transform( new (kit->C) IfTrueNode(iff) ));
 680   inner_map->set_control(kit->gvn().transform( new (kit->C) IfFalseNode(iff) ));
 681 }
 682 BuildCutout::~BuildCutout() {
 683   GraphKit* kit = _kit;
 684   assert(kit->stopped(), "cutout code must stop, throw, return, etc.");
 685 }
 686 
 687 //---------------------------PreserveReexecuteState----------------------------
 688 PreserveReexecuteState::PreserveReexecuteState(GraphKit* kit) {
 689   assert(!kit->stopped(), "must call stopped() before");
 690   _kit    =    kit;
 691   _sp     =    kit->sp();
 692   _reexecute = kit->jvms()->_reexecute;
 693 }
 694 PreserveReexecuteState::~PreserveReexecuteState() {
 695   if (_kit->stopped()) return;
 696   _kit->jvms()->_reexecute = _reexecute;
 697   _kit->set_sp(_sp);
 698 }
 699 
 700 //------------------------------clone_map--------------------------------------
 701 // Implementation of PreserveJVMState
 702 //
 703 // Only clone_map(...) here. If this function is only used in the
 704 // PreserveJVMState class we may want to get rid of this extra
 705 // function eventually and do it all there.
 706 
 707 SafePointNode* GraphKit::clone_map() {
 708   if (map() == NULL)  return NULL;
 709 
 710   // Clone the memory edge first
 711   Node* mem = MergeMemNode::make(C, map()->memory());
 712   gvn().set_type_bottom(mem);
 713 
 714   SafePointNode *clonemap = (SafePointNode*)map()->clone();
 715   JVMState* jvms = this->jvms();
 716   JVMState* clonejvms = jvms->clone_shallow(C);
 717   clonemap->set_memory(mem);
 718   clonemap->set_jvms(clonejvms);
 719   clonejvms->set_map(clonemap);
 720   record_for_igvn(clonemap);
 721   gvn().set_type_bottom(clonemap);
 722   return clonemap;
 723 }
 724 
 725 
 726 //-----------------------------set_map_clone-----------------------------------
 727 void GraphKit::set_map_clone(SafePointNode* m) {
 728   _map = m;
 729   _map = clone_map();
 730   _map->set_next_exception(NULL);
 731   debug_only(verify_map());
 732 }
 733 
 734 
 735 //----------------------------kill_dead_locals---------------------------------
 736 // Detect any locals which are known to be dead, and force them to top.
 737 void GraphKit::kill_dead_locals() {
 738   // Consult the liveness information for the locals.  If any
 739   // of them are unused, then they can be replaced by top().  This
 740   // should help register allocation time and cut down on the size
 741   // of the deoptimization information.
 742 
 743   // This call is made from many of the bytecode handling
 744   // subroutines called from the Big Switch in do_one_bytecode.
 745   // Every bytecode which might include a slow path is responsible
 746   // for killing its dead locals.  The more consistent we
 747   // are about killing deads, the fewer useless phis will be
 748   // constructed for them at various merge points.
 749 
 750   // bci can be -1 (InvocationEntryBci).  We return the entry
 751   // liveness for the method.
 752 
 753   if (method() == NULL || method()->code_size() == 0) {
 754     // We are building a graph for a call to a native method.
 755     // All locals are live.
 756     return;
 757   }
 758 
 759   ResourceMark rm;
 760 
 761   // Consult the liveness information for the locals.  If any
 762   // of them are unused, then they can be replaced by top().  This
 763   // should help register allocation time and cut down on the size
 764   // of the deoptimization information.
 765   MethodLivenessResult live_locals = method()->liveness_at_bci(bci());
 766 
 767   int len = (int)live_locals.size();
 768   assert(len <= jvms()->loc_size(), "too many live locals");
 769   for (int local = 0; local < len; local++) {
 770     if (!live_locals.at(local)) {
 771       set_local(local, top());
 772     }
 773   }
 774 }
 775 
 776 #ifdef ASSERT
 777 //-------------------------dead_locals_are_killed------------------------------
 778 // Return true if all dead locals are set to top in the map.
 779 // Used to assert "clean" debug info at various points.
 780 bool GraphKit::dead_locals_are_killed() {
 781   if (method() == NULL || method()->code_size() == 0) {
 782     // No locals need to be dead, so all is as it should be.
 783     return true;
 784   }
 785 
 786   // Make sure somebody called kill_dead_locals upstream.
 787   ResourceMark rm;
 788   for (JVMState* jvms = this->jvms(); jvms != NULL; jvms = jvms->caller()) {
 789     if (jvms->loc_size() == 0)  continue;  // no locals to consult
 790     SafePointNode* map = jvms->map();
 791     ciMethod* method = jvms->method();
 792     int       bci    = jvms->bci();
 793     if (jvms == this->jvms()) {
 794       bci = this->bci();  // it might not yet be synched
 795     }
 796     MethodLivenessResult live_locals = method->liveness_at_bci(bci);
 797     int len = (int)live_locals.size();
 798     if (!live_locals.is_valid() || len == 0)
 799       // This method is trivial, or is poisoned by a breakpoint.
 800       return true;
 801     assert(len == jvms->loc_size(), "live map consistent with locals map");
 802     for (int local = 0; local < len; local++) {
 803       if (!live_locals.at(local) && map->local(jvms, local) != top()) {
 804         if (PrintMiscellaneous && (Verbose || WizardMode)) {
 805           tty->print_cr("Zombie local %d: ", local);
 806           jvms->dump();
 807         }
 808         return false;
 809       }
 810     }
 811   }
 812   return true;
 813 }
 814 
 815 #endif //ASSERT
 816 
 817 // Helper function for enforcing certain bytecodes to reexecute if
 818 // deoptimization happens
 819 static bool should_reexecute_implied_by_bytecode(JVMState *jvms, bool is_anewarray) {
 820   ciMethod* cur_method = jvms->method();
 821   int       cur_bci   = jvms->bci();
 822   if (cur_method != NULL && cur_bci != InvocationEntryBci) {
 823     Bytecodes::Code code = cur_method->java_code_at_bci(cur_bci);
 824     return Interpreter::bytecode_should_reexecute(code) ||
 825            is_anewarray && code == Bytecodes::_multianewarray;
 826     // Reexecute _multianewarray bytecode which was replaced with
 827     // sequence of [a]newarray. See Parse::do_multianewarray().
 828     //
 829     // Note: interpreter should not have it set since this optimization
 830     // is limited by dimensions and guarded by flag so in some cases
 831     // multianewarray() runtime calls will be generated and
 832     // the bytecode should not be reexecutes (stack will not be reset).
 833   } else
 834     return false;
 835 }
 836 
 837 // Helper function for adding JVMState and debug information to node
 838 void GraphKit::add_safepoint_edges(SafePointNode* call, bool must_throw) {
 839   // Add the safepoint edges to the call (or other safepoint).
 840 
 841   // Make sure dead locals are set to top.  This
 842   // should help register allocation time and cut down on the size
 843   // of the deoptimization information.
 844   assert(dead_locals_are_killed(), "garbage in debug info before safepoint");
 845 
 846   // Walk the inline list to fill in the correct set of JVMState's
 847   // Also fill in the associated edges for each JVMState.
 848 
 849   // If the bytecode needs to be reexecuted we need to put
 850   // the arguments back on the stack.
 851   const bool should_reexecute = jvms()->should_reexecute();
 852   JVMState* youngest_jvms = should_reexecute ? sync_jvms_for_reexecute() : sync_jvms();
 853 
 854   // NOTE: set_bci (called from sync_jvms) might reset the reexecute bit to
 855   // undefined if the bci is different.  This is normal for Parse but it
 856   // should not happen for LibraryCallKit because only one bci is processed.
 857   assert(!is_LibraryCallKit() || (jvms()->should_reexecute() == should_reexecute),
 858          "in LibraryCallKit the reexecute bit should not change");
 859 
 860   // If we are guaranteed to throw, we can prune everything but the
 861   // input to the current bytecode.
 862   bool can_prune_locals = false;
 863   uint stack_slots_not_pruned = 0;
 864   int inputs = 0, depth = 0;
 865   if (must_throw) {
 866     assert(method() == youngest_jvms->method(), "sanity");
 867     if (compute_stack_effects(inputs, depth)) {
 868       can_prune_locals = true;
 869       stack_slots_not_pruned = inputs;
 870     }
 871   }
 872 
 873   if (env()->should_retain_local_variables()) {
 874     // At any safepoint, this method can get breakpointed, which would
 875     // then require an immediate deoptimization.
 876     can_prune_locals = false;  // do not prune locals
 877     stack_slots_not_pruned = 0;
 878   }
 879 
 880   // do not scribble on the input jvms
 881   JVMState* out_jvms = youngest_jvms->clone_deep(C);
 882   call->set_jvms(out_jvms); // Start jvms list for call node
 883 
 884   // For a known set of bytecodes, the interpreter should reexecute them if
 885   // deoptimization happens. We set the reexecute state for them here
 886   if (out_jvms->is_reexecute_undefined() && //don't change if already specified
 887       should_reexecute_implied_by_bytecode(out_jvms, call->is_AllocateArray())) {
 888     out_jvms->set_should_reexecute(true); //NOTE: youngest_jvms not changed
 889   }
 890 
 891   // Presize the call:
 892   DEBUG_ONLY(uint non_debug_edges = call->req());
 893   call->add_req_batch(top(), youngest_jvms->debug_depth());
 894   assert(call->req() == non_debug_edges + youngest_jvms->debug_depth(), "");
 895 
 896   // Set up edges so that the call looks like this:
 897   //  Call [state:] ctl io mem fptr retadr
 898   //       [parms:] parm0 ... parmN
 899   //       [root:]  loc0 ... locN stk0 ... stkSP mon0 obj0 ... monN objN
 900   //    [...mid:]   loc0 ... locN stk0 ... stkSP mon0 obj0 ... monN objN [...]
 901   //       [young:] loc0 ... locN stk0 ... stkSP mon0 obj0 ... monN objN
 902   // Note that caller debug info precedes callee debug info.
 903 
 904   // Fill pointer walks backwards from "young:" to "root:" in the diagram above:
 905   uint debug_ptr = call->req();
 906 
 907   // Loop over the map input edges associated with jvms, add them
 908   // to the call node, & reset all offsets to match call node array.
 909   for (JVMState* in_jvms = youngest_jvms; in_jvms != NULL; ) {
 910     uint debug_end   = debug_ptr;
 911     uint debug_start = debug_ptr - in_jvms->debug_size();
 912     debug_ptr = debug_start;  // back up the ptr
 913 
 914     uint p = debug_start;  // walks forward in [debug_start, debug_end)
 915     uint j, k, l;
 916     SafePointNode* in_map = in_jvms->map();
 917     out_jvms->set_map(call);
 918 
 919     if (can_prune_locals) {
 920       assert(in_jvms->method() == out_jvms->method(), "sanity");
 921       // If the current throw can reach an exception handler in this JVMS,
 922       // then we must keep everything live that can reach that handler.
 923       // As a quick and dirty approximation, we look for any handlers at all.
 924       if (in_jvms->method()->has_exception_handlers()) {
 925         can_prune_locals = false;
 926       }
 927     }
 928 
 929     // Add the Locals
 930     k = in_jvms->locoff();
 931     l = in_jvms->loc_size();
 932     out_jvms->set_locoff(p);
 933     if (!can_prune_locals) {
 934       for (j = 0; j < l; j++)
 935         call->set_req(p++, in_map->in(k+j));
 936     } else {
 937       p += l;  // already set to top above by add_req_batch
 938     }
 939 
 940     // Add the Expression Stack
 941     k = in_jvms->stkoff();
 942     l = in_jvms->sp();
 943     out_jvms->set_stkoff(p);
 944     if (!can_prune_locals) {
 945       for (j = 0; j < l; j++)
 946         call->set_req(p++, in_map->in(k+j));
 947     } else if (can_prune_locals && stack_slots_not_pruned != 0) {
 948       // Divide stack into {S0,...,S1}, where S0 is set to top.
 949       uint s1 = stack_slots_not_pruned;
 950       stack_slots_not_pruned = 0;  // for next iteration
 951       if (s1 > l)  s1 = l;
 952       uint s0 = l - s1;
 953       p += s0;  // skip the tops preinstalled by add_req_batch
 954       for (j = s0; j < l; j++)
 955         call->set_req(p++, in_map->in(k+j));
 956     } else {
 957       p += l;  // already set to top above by add_req_batch
 958     }
 959 
 960     // Add the Monitors
 961     k = in_jvms->monoff();
 962     l = in_jvms->mon_size();
 963     out_jvms->set_monoff(p);
 964     for (j = 0; j < l; j++)
 965       call->set_req(p++, in_map->in(k+j));
 966 
 967     // Copy any scalar object fields.
 968     k = in_jvms->scloff();
 969     l = in_jvms->scl_size();
 970     out_jvms->set_scloff(p);
 971     for (j = 0; j < l; j++)
 972       call->set_req(p++, in_map->in(k+j));
 973 
 974     // Finish the new jvms.
 975     out_jvms->set_endoff(p);
 976 
 977     assert(out_jvms->endoff()     == debug_end,             "fill ptr must match");
 978     assert(out_jvms->depth()      == in_jvms->depth(),      "depth must match");
 979     assert(out_jvms->loc_size()   == in_jvms->loc_size(),   "size must match");
 980     assert(out_jvms->mon_size()   == in_jvms->mon_size(),   "size must match");
 981     assert(out_jvms->scl_size()   == in_jvms->scl_size(),   "size must match");
 982     assert(out_jvms->debug_size() == in_jvms->debug_size(), "size must match");
 983 
 984     // Update the two tail pointers in parallel.
 985     out_jvms = out_jvms->caller();
 986     in_jvms  = in_jvms->caller();
 987   }
 988 
 989   assert(debug_ptr == non_debug_edges, "debug info must fit exactly");
 990 
 991   // Test the correctness of JVMState::debug_xxx accessors:
 992   assert(call->jvms()->debug_start() == non_debug_edges, "");
 993   assert(call->jvms()->debug_end()   == call->req(), "");
 994   assert(call->jvms()->debug_depth() == call->req() - non_debug_edges, "");
 995 }
 996 
 997 bool GraphKit::compute_stack_effects(int& inputs, int& depth) {
 998   Bytecodes::Code code = java_bc();
 999   if (code == Bytecodes::_wide) {
1000     code = method()->java_code_at_bci(bci() + 1);
1001   }
1002 
1003   BasicType rtype = T_ILLEGAL;
1004   int       rsize = 0;
1005 
1006   if (code != Bytecodes::_illegal) {
1007     depth = Bytecodes::depth(code); // checkcast=0, athrow=-1
1008     rtype = Bytecodes::result_type(code); // checkcast=P, athrow=V
1009     if (rtype < T_CONFLICT)
1010       rsize = type2size[rtype];
1011   }
1012 
1013   switch (code) {
1014   case Bytecodes::_illegal:
1015     return false;
1016 
1017   case Bytecodes::_ldc:
1018   case Bytecodes::_ldc_w:
1019   case Bytecodes::_ldc2_w:
1020     inputs = 0;
1021     break;
1022 
1023   case Bytecodes::_dup:         inputs = 1;  break;
1024   case Bytecodes::_dup_x1:      inputs = 2;  break;
1025   case Bytecodes::_dup_x2:      inputs = 3;  break;
1026   case Bytecodes::_dup2:        inputs = 2;  break;
1027   case Bytecodes::_dup2_x1:     inputs = 3;  break;
1028   case Bytecodes::_dup2_x2:     inputs = 4;  break;
1029   case Bytecodes::_swap:        inputs = 2;  break;
1030   case Bytecodes::_arraylength: inputs = 1;  break;
1031 
1032   case Bytecodes::_getstatic:
1033   case Bytecodes::_putstatic:
1034   case Bytecodes::_getfield:
1035   case Bytecodes::_putfield:
1036     {
1037       bool ignored_will_link;
1038       ciField* field = method()->get_field_at_bci(bci(), ignored_will_link);
1039       int      size  = field->type()->size();
1040       bool is_get = (depth >= 0), is_static = (depth & 1);
1041       inputs = (is_static ? 0 : 1);
1042       if (is_get) {
1043         depth = size - inputs;
1044       } else {
1045         inputs += size;        // putxxx pops the value from the stack
1046         depth = - inputs;
1047       }
1048     }
1049     break;
1050 
1051   case Bytecodes::_invokevirtual:
1052   case Bytecodes::_invokespecial:
1053   case Bytecodes::_invokestatic:
1054   case Bytecodes::_invokedynamic:
1055   case Bytecodes::_invokeinterface:
1056     {
1057       bool ignored_will_link;
1058       ciSignature* declared_signature = NULL;
1059       ciMethod* ignored_callee = method()->get_method_at_bci(bci(), ignored_will_link, &declared_signature);
1060       assert(declared_signature != NULL, "cannot be null");
1061       inputs   = declared_signature->arg_size_for_bc(code);
1062       int size = declared_signature->return_type()->size();
1063       depth = size - inputs;
1064     }
1065     break;
1066 
1067   case Bytecodes::_multianewarray:
1068     {
1069       ciBytecodeStream iter(method());
1070       iter.reset_to_bci(bci());
1071       iter.next();
1072       inputs = iter.get_dimensions();
1073       assert(rsize == 1, "");
1074       depth = rsize - inputs;
1075     }
1076     break;
1077 
1078   case Bytecodes::_ireturn:
1079   case Bytecodes::_lreturn:
1080   case Bytecodes::_freturn:
1081   case Bytecodes::_dreturn:
1082   case Bytecodes::_areturn:
1083     assert(rsize = -depth, "");
1084     inputs = rsize;
1085     break;
1086 
1087   case Bytecodes::_jsr:
1088   case Bytecodes::_jsr_w:
1089     inputs = 0;
1090     depth  = 1;                  // S.B. depth=1, not zero
1091     break;
1092 
1093   default:
1094     // bytecode produces a typed result
1095     inputs = rsize - depth;
1096     assert(inputs >= 0, "");
1097     break;
1098   }
1099 
1100 #ifdef ASSERT
1101   // spot check
1102   int outputs = depth + inputs;
1103   assert(outputs >= 0, "sanity");
1104   switch (code) {
1105   case Bytecodes::_checkcast: assert(inputs == 1 && outputs == 1, ""); break;
1106   case Bytecodes::_athrow:    assert(inputs == 1 && outputs == 0, ""); break;
1107   case Bytecodes::_aload_0:   assert(inputs == 0 && outputs == 1, ""); break;
1108   case Bytecodes::_return:    assert(inputs == 0 && outputs == 0, ""); break;
1109   case Bytecodes::_drem:      assert(inputs == 4 && outputs == 2, ""); break;
1110   }
1111 #endif //ASSERT
1112 
1113   return true;
1114 }
1115 
1116 
1117 
1118 //------------------------------basic_plus_adr---------------------------------
1119 Node* GraphKit::basic_plus_adr(Node* base, Node* ptr, Node* offset) {
1120   // short-circuit a common case
1121   if (offset == intcon(0))  return ptr;
1122   return _gvn.transform( new (C) AddPNode(base, ptr, offset) );
1123 }
1124 
1125 Node* GraphKit::ConvI2L(Node* offset) {
1126   // short-circuit a common case
1127   jint offset_con = find_int_con(offset, Type::OffsetBot);
1128   if (offset_con != Type::OffsetBot) {
1129     return longcon((jlong) offset_con);
1130   }
1131   return _gvn.transform( new (C) ConvI2LNode(offset));
1132 }
1133 Node* GraphKit::ConvL2I(Node* offset) {
1134   // short-circuit a common case
1135   jlong offset_con = find_long_con(offset, (jlong)Type::OffsetBot);
1136   if (offset_con != (jlong)Type::OffsetBot) {
1137     return intcon((int) offset_con);
1138   }
1139   return _gvn.transform( new (C) ConvL2INode(offset));
1140 }
1141 
1142 //-------------------------load_object_klass-----------------------------------
1143 Node* GraphKit::load_object_klass(Node* obj) {
1144   // Special-case a fresh allocation to avoid building nodes:
1145   Node* akls = AllocateNode::Ideal_klass(obj, &_gvn);
1146   if (akls != NULL)  return akls;
1147   Node* k_adr = basic_plus_adr(obj, oopDesc::klass_offset_in_bytes());
1148   return _gvn.transform( LoadKlassNode::make(_gvn, immutable_memory(), k_adr, TypeInstPtr::KLASS) );
1149 }
1150 
1151 //-------------------------load_array_length-----------------------------------
1152 Node* GraphKit::load_array_length(Node* array) {
1153   // Special-case a fresh allocation to avoid building nodes:
1154   AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(array, &_gvn);
1155   Node *alen;
1156   if (alloc == NULL) {
1157     Node *r_adr = basic_plus_adr(array, arrayOopDesc::length_offset_in_bytes());
1158     alen = _gvn.transform( new (C) LoadRangeNode(0, immutable_memory(), r_adr, TypeInt::POS));
1159   } else {
1160     alen = alloc->Ideal_length();
1161     Node* ccast = alloc->make_ideal_length(_gvn.type(array)->is_oopptr(), &_gvn);
1162     if (ccast != alen) {
1163       alen = _gvn.transform(ccast);
1164     }
1165   }
1166   return alen;
1167 }
1168 
1169 //------------------------------do_null_check----------------------------------
1170 // Helper function to do a NULL pointer check.  Returned value is
1171 // the incoming address with NULL casted away.  You are allowed to use the
1172 // not-null value only if you are control dependent on the test.
1173 extern int explicit_null_checks_inserted,
1174            explicit_null_checks_elided;
1175 Node* GraphKit::null_check_common(Node* value, BasicType type,
1176                                   // optional arguments for variations:
1177                                   bool assert_null,
1178                                   Node* *null_control) {
1179   assert(!assert_null || null_control == NULL, "not both at once");
1180   if (stopped())  return top();
1181   if (!GenerateCompilerNullChecks && !assert_null && null_control == NULL) {
1182     // For some performance testing, we may wish to suppress null checking.
1183     value = cast_not_null(value);   // Make it appear to be non-null (4962416).
1184     return value;
1185   }
1186   explicit_null_checks_inserted++;
1187 
1188   // Construct NULL check
1189   Node *chk = NULL;
1190   switch(type) {
1191     case T_LONG   : chk = new (C) CmpLNode(value, _gvn.zerocon(T_LONG)); break;
1192     case T_INT    : chk = new (C) CmpINode(value, _gvn.intcon(0)); break;
1193     case T_ARRAY  : // fall through
1194       type = T_OBJECT;  // simplify further tests
1195     case T_OBJECT : {
1196       const Type *t = _gvn.type( value );
1197 
1198       const TypeOopPtr* tp = t->isa_oopptr();
1199       if (tp != NULL && tp->klass() != NULL && !tp->klass()->is_loaded()
1200           // Only for do_null_check, not any of its siblings:
1201           && !assert_null && null_control == NULL) {
1202         // Usually, any field access or invocation on an unloaded oop type
1203         // will simply fail to link, since the statically linked class is
1204         // likely also to be unloaded.  However, in -Xcomp mode, sometimes
1205         // the static class is loaded but the sharper oop type is not.
1206         // Rather than checking for this obscure case in lots of places,
1207         // we simply observe that a null check on an unloaded class
1208         // will always be followed by a nonsense operation, so we
1209         // can just issue the uncommon trap here.
1210         // Our access to the unloaded class will only be correct
1211         // after it has been loaded and initialized, which requires
1212         // a trip through the interpreter.
1213 #ifndef PRODUCT
1214         if (WizardMode) { tty->print("Null check of unloaded "); tp->klass()->print(); tty->cr(); }
1215 #endif
1216         uncommon_trap(Deoptimization::Reason_unloaded,
1217                       Deoptimization::Action_reinterpret,
1218                       tp->klass(), "!loaded");
1219         return top();
1220       }
1221 
1222       if (assert_null) {
1223         // See if the type is contained in NULL_PTR.
1224         // If so, then the value is already null.
1225         if (t->higher_equal(TypePtr::NULL_PTR)) {
1226           explicit_null_checks_elided++;
1227           return value;           // Elided null assert quickly!
1228         }
1229       } else {
1230         // See if mixing in the NULL pointer changes type.
1231         // If so, then the NULL pointer was not allowed in the original
1232         // type.  In other words, "value" was not-null.
1233         if (t->meet(TypePtr::NULL_PTR) != t->remove_speculative()) {
1234           // same as: if (!TypePtr::NULL_PTR->higher_equal(t)) ...
1235           explicit_null_checks_elided++;
1236           return value;           // Elided null check quickly!
1237         }
1238       }
1239       chk = new (C) CmpPNode( value, null() );
1240       break;
1241     }
1242 
1243     default:
1244       fatal(err_msg_res("unexpected type: %s", type2name(type)));
1245   }
1246   assert(chk != NULL, "sanity check");
1247   chk = _gvn.transform(chk);
1248 
1249   BoolTest::mask btest = assert_null ? BoolTest::eq : BoolTest::ne;
1250   BoolNode *btst = new (C) BoolNode( chk, btest);
1251   Node   *tst = _gvn.transform( btst );
1252 
1253   //-----------
1254   // if peephole optimizations occurred, a prior test existed.
1255   // If a prior test existed, maybe it dominates as we can avoid this test.
1256   if (tst != btst && type == T_OBJECT) {
1257     // At this point we want to scan up the CFG to see if we can
1258     // find an identical test (and so avoid this test altogether).
1259     Node *cfg = control();
1260     int depth = 0;
1261     while( depth < 16 ) {       // Limit search depth for speed
1262       if( cfg->Opcode() == Op_IfTrue &&
1263           cfg->in(0)->in(1) == tst ) {
1264         // Found prior test.  Use "cast_not_null" to construct an identical
1265         // CastPP (and hence hash to) as already exists for the prior test.
1266         // Return that casted value.
1267         if (assert_null) {
1268           replace_in_map(value, null());
1269           return null();  // do not issue the redundant test
1270         }
1271         Node *oldcontrol = control();
1272         set_control(cfg);
1273         Node *res = cast_not_null(value);
1274         set_control(oldcontrol);
1275         explicit_null_checks_elided++;
1276         return res;
1277       }
1278       cfg = IfNode::up_one_dom(cfg, /*linear_only=*/ true);
1279       if (cfg == NULL)  break;  // Quit at region nodes
1280       depth++;
1281     }
1282   }
1283 
1284   //-----------
1285   // Branch to failure if null
1286   float ok_prob = PROB_MAX;  // a priori estimate:  nulls never happen
1287   Deoptimization::DeoptReason reason;
1288   if (assert_null)
1289     reason = Deoptimization::Reason_null_assert;
1290   else if (type == T_OBJECT)
1291     reason = Deoptimization::Reason_null_check;
1292   else
1293     reason = Deoptimization::Reason_div0_check;
1294 
1295   // %%% Since Reason_unhandled is not recorded on a per-bytecode basis,
1296   // ciMethodData::has_trap_at will return a conservative -1 if any
1297   // must-be-null assertion has failed.  This could cause performance
1298   // problems for a method after its first do_null_assert failure.
1299   // Consider using 'Reason_class_check' instead?
1300 
1301   // To cause an implicit null check, we set the not-null probability
1302   // to the maximum (PROB_MAX).  For an explicit check the probability
1303   // is set to a smaller value.
1304   if (null_control != NULL || too_many_traps(reason)) {
1305     // probability is less likely
1306     ok_prob =  PROB_LIKELY_MAG(3);
1307   } else if (!assert_null &&
1308              (ImplicitNullCheckThreshold > 0) &&
1309              method() != NULL &&
1310              (method()->method_data()->trap_count(reason)
1311               >= (uint)ImplicitNullCheckThreshold)) {
1312     ok_prob =  PROB_LIKELY_MAG(3);
1313   }
1314 
1315   if (null_control != NULL) {
1316     IfNode* iff = create_and_map_if(control(), tst, ok_prob, COUNT_UNKNOWN);
1317     Node* null_true = _gvn.transform( new (C) IfFalseNode(iff));
1318     set_control(      _gvn.transform( new (C) IfTrueNode(iff)));
1319     if (null_true == top())
1320       explicit_null_checks_elided++;
1321     (*null_control) = null_true;
1322   } else {
1323     BuildCutout unless(this, tst, ok_prob);
1324     // Check for optimizer eliding test at parse time
1325     if (stopped()) {
1326       // Failure not possible; do not bother making uncommon trap.
1327       explicit_null_checks_elided++;
1328     } else if (assert_null) {
1329       uncommon_trap(reason,
1330                     Deoptimization::Action_make_not_entrant,
1331                     NULL, "assert_null");
1332     } else {
1333       replace_in_map(value, zerocon(type));
1334       builtin_throw(reason);
1335     }
1336   }
1337 
1338   // Must throw exception, fall-thru not possible?
1339   if (stopped()) {
1340     return top();               // No result
1341   }
1342 
1343   if (assert_null) {
1344     // Cast obj to null on this path.
1345     replace_in_map(value, zerocon(type));
1346     return zerocon(type);
1347   }
1348 
1349   // Cast obj to not-null on this path, if there is no null_control.
1350   // (If there is a null_control, a non-null value may come back to haunt us.)
1351   if (type == T_OBJECT) {
1352     Node* cast = cast_not_null(value, false);
1353     if (null_control == NULL || (*null_control) == top())
1354       replace_in_map(value, cast);
1355     value = cast;
1356   }
1357 
1358   return value;
1359 }
1360 
1361 
1362 //------------------------------cast_not_null----------------------------------
1363 // Cast obj to not-null on this path
1364 Node* GraphKit::cast_not_null(Node* obj, bool do_replace_in_map) {
1365   const Type *t = _gvn.type(obj);
1366   const Type *t_not_null = t->join_speculative(TypePtr::NOTNULL);
1367   // Object is already not-null?
1368   if( t == t_not_null ) return obj;
1369 
1370   Node *cast = new (C) CastPPNode(obj,t_not_null);
1371   cast->init_req(0, control());
1372   cast = _gvn.transform( cast );
1373 
1374   // Scan for instances of 'obj' in the current JVM mapping.
1375   // These instances are known to be not-null after the test.
1376   if (do_replace_in_map)
1377     replace_in_map(obj, cast);
1378 
1379   return cast;                  // Return casted value
1380 }
1381 
1382 
1383 //--------------------------replace_in_map-------------------------------------
1384 void GraphKit::replace_in_map(Node* old, Node* neww) {
1385   if (old == neww) {
1386     return;
1387   }
1388 
1389   map()->replace_edge(old, neww);
1390 
1391   // Note: This operation potentially replaces any edge
1392   // on the map.  This includes locals, stack, and monitors
1393   // of the current (innermost) JVM state.
1394 
1395   if (!ReplaceInParentMaps) {
1396     return;
1397   }
1398 
1399   // PreserveJVMState doesn't do a deep copy so we can't modify
1400   // parents
1401   if (Compile::current()->has_preserve_jvm_state()) {
1402     return;
1403   }
1404 
1405   Parse* parser = is_Parse();
1406   bool progress = true;
1407   Node* ctrl = map()->in(0);
1408   // Follow the chain of parsers and see whether the update can be
1409   // done in the map of callers. We can do the replace for a caller if
1410   // the current control post dominates the control of a caller.
1411   while (parser != NULL && parser->caller() != NULL && progress) {
1412     progress = false;
1413     Node* parent_map = parser->caller()->map();
1414     assert(parser->exits().map()->jvms()->depth() == parser->caller()->depth(), "map mismatch");
1415 
1416     Node* parent_ctrl = parent_map->in(0);
1417 
1418     while (parent_ctrl->is_Region()) {
1419       Node* n = parent_ctrl->as_Region()->is_copy();
1420       if (n == NULL) {
1421         break;
1422       }
1423       parent_ctrl = n;
1424     }
1425 
1426     for (;;) {
1427       if (ctrl == parent_ctrl) {
1428         // update the map of the exits which is the one that will be
1429         // used when compilation resume after inlining
1430         parser->exits().map()->replace_edge(old, neww);
1431         progress = true;
1432         break;
1433       }
1434       if (ctrl->is_Proj() && ctrl->as_Proj()->is_uncommon_trap_if_pattern(Deoptimization::Reason_none)) {
1435         ctrl = ctrl->in(0)->in(0);
1436       } else if (ctrl->is_Region()) {
1437         Node* n = ctrl->as_Region()->is_copy();
1438         if (n == NULL) {
1439           break;
1440         }
1441         ctrl = n;
1442       } else {
1443         break;
1444       }
1445     }
1446 
1447     parser = parser->parent_parser();
1448   }
1449 }
1450 
1451 
1452 //=============================================================================
1453 //--------------------------------memory---------------------------------------
1454 Node* GraphKit::memory(uint alias_idx) {
1455   MergeMemNode* mem = merged_memory();
1456   Node* p = mem->memory_at(alias_idx);
1457   _gvn.set_type(p, Type::MEMORY);  // must be mapped
1458   return p;
1459 }
1460 
1461 //-----------------------------reset_memory------------------------------------
1462 Node* GraphKit::reset_memory() {
1463   Node* mem = map()->memory();
1464   // do not use this node for any more parsing!
1465   debug_only( map()->set_memory((Node*)NULL) );
1466   return _gvn.transform( mem );
1467 }
1468 
1469 //------------------------------set_all_memory---------------------------------
1470 void GraphKit::set_all_memory(Node* newmem) {
1471   Node* mergemem = MergeMemNode::make(C, newmem);
1472   gvn().set_type_bottom(mergemem);
1473   map()->set_memory(mergemem);
1474 }
1475 
1476 //------------------------------set_all_memory_call----------------------------
1477 void GraphKit::set_all_memory_call(Node* call, bool separate_io_proj) {
1478   Node* newmem = _gvn.transform( new (C) ProjNode(call, TypeFunc::Memory, separate_io_proj) );
1479   set_all_memory(newmem);
1480 }
1481 
1482 //=============================================================================
1483 //
1484 // parser factory methods for MemNodes
1485 //
1486 // These are layered on top of the factory methods in LoadNode and StoreNode,
1487 // and integrate with the parser's memory state and _gvn engine.
1488 //
1489 
1490 // factory methods in "int adr_idx"
1491 Node* GraphKit::make_load(Node* ctl, Node* adr, const Type* t, BasicType bt,
1492                           int adr_idx,
1493                           MemNode::MemOrd mo, bool require_atomic_access) {
1494   assert(adr_idx != Compile::AliasIdxTop, "use other make_load factory" );
1495   const TypePtr* adr_type = NULL; // debug-mode-only argument
1496   debug_only(adr_type = C->get_adr_type(adr_idx));
1497   Node* mem = memory(adr_idx);
1498   Node* ld;
1499   if (require_atomic_access && bt == T_LONG) {
1500     ld = LoadLNode::make_atomic(C, ctl, mem, adr, adr_type, t, mo);
1501   } else {
1502     ld = LoadNode::make(_gvn, ctl, mem, adr, adr_type, t, bt, mo);
1503   }
1504   ld = _gvn.transform(ld);
1505   if ((bt == T_OBJECT) && C->do_escape_analysis() || C->eliminate_boxing()) {
1506     // Improve graph before escape analysis and boxing elimination.
1507     record_for_igvn(ld);
1508   }
1509   return ld;
1510 }
1511 
1512 Node* GraphKit::store_to_memory(Node* ctl, Node* adr, Node *val, BasicType bt,
1513                                 int adr_idx,
1514                                 MemNode::MemOrd mo,
1515                                 bool require_atomic_access) {
1516   assert(adr_idx != Compile::AliasIdxTop, "use other store_to_memory factory" );
1517   const TypePtr* adr_type = NULL;
1518   debug_only(adr_type = C->get_adr_type(adr_idx));
1519   Node *mem = memory(adr_idx);
1520   Node* st;
1521   if (require_atomic_access && bt == T_LONG) {
1522     st = StoreLNode::make_atomic(C, ctl, mem, adr, adr_type, val, mo);
1523   } else {
1524     st = StoreNode::make(_gvn, ctl, mem, adr, adr_type, val, bt, mo);
1525   }
1526   st = _gvn.transform(st);
1527   set_memory(st, adr_idx);
1528   // Back-to-back stores can only remove intermediate store with DU info
1529   // so push on worklist for optimizer.
1530   if (mem->req() > MemNode::Address && adr == mem->in(MemNode::Address))
1531     record_for_igvn(st);
1532 
1533   return st;
1534 }
1535 
1536 
1537 void GraphKit::pre_barrier(bool do_load,
1538                            Node* ctl,
1539                            Node* obj,
1540                            Node* adr,
1541                            uint  adr_idx,
1542                            Node* val,
1543                            const TypeOopPtr* val_type,
1544                            Node* pre_val,
1545                            BasicType bt) {
1546 
1547   BarrierSet* bs = Universe::heap()->barrier_set();
1548   set_control(ctl);
1549   switch (bs->kind()) {
1550     case BarrierSet::G1SATBCT:
1551     case BarrierSet::G1SATBCTLogging:
1552       g1_write_barrier_pre(do_load, obj, adr, adr_idx, val, val_type, pre_val, bt);
1553       break;
1554 
1555     case BarrierSet::CardTableModRef:
1556     case BarrierSet::CardTableExtension:
1557     case BarrierSet::ModRef:
1558       break;
1559 
1560     case BarrierSet::Other:
1561     default      :
1562       ShouldNotReachHere();
1563 
1564   }
1565 }
1566 
1567 bool GraphKit::can_move_pre_barrier() const {
1568   BarrierSet* bs = Universe::heap()->barrier_set();
1569   switch (bs->kind()) {
1570     case BarrierSet::G1SATBCT:
1571     case BarrierSet::G1SATBCTLogging:
1572       return true; // Can move it if no safepoint
1573 
1574     case BarrierSet::CardTableModRef:
1575     case BarrierSet::CardTableExtension:
1576     case BarrierSet::ModRef:
1577       return true; // There is no pre-barrier
1578 
1579     case BarrierSet::Other:
1580     default      :
1581       ShouldNotReachHere();
1582   }
1583   return false;
1584 }
1585 
1586 void GraphKit::post_barrier(Node* ctl,
1587                             Node* store,
1588                             Node* obj,
1589                             Node* adr,
1590                             uint  adr_idx,
1591                             Node* val,
1592                             BasicType bt,
1593                             bool use_precise) {
1594   BarrierSet* bs = Universe::heap()->barrier_set();
1595   set_control(ctl);
1596   switch (bs->kind()) {
1597     case BarrierSet::G1SATBCT:
1598     case BarrierSet::G1SATBCTLogging:
1599       g1_write_barrier_post(store, obj, adr, adr_idx, val, bt, use_precise);
1600       break;
1601 
1602     case BarrierSet::CardTableModRef:
1603     case BarrierSet::CardTableExtension:
1604       write_barrier_post(store, obj, adr, adr_idx, val, use_precise);
1605       break;
1606 
1607     case BarrierSet::ModRef:
1608       break;
1609 
1610     case BarrierSet::Other:
1611     default      :
1612       ShouldNotReachHere();
1613 
1614   }
1615 }
1616 
1617 Node* GraphKit::store_oop(Node* ctl,
1618                           Node* obj,
1619                           Node* adr,
1620                           const TypePtr* adr_type,
1621                           Node* val,
1622                           const TypeOopPtr* val_type,
1623                           BasicType bt,
1624                           bool use_precise,
1625                           MemNode::MemOrd mo) {
1626   // Transformation of a value which could be NULL pointer (CastPP #NULL)
1627   // could be delayed during Parse (for example, in adjust_map_after_if()).
1628   // Execute transformation here to avoid barrier generation in such case.
1629   if (_gvn.type(val) == TypePtr::NULL_PTR)
1630     val = _gvn.makecon(TypePtr::NULL_PTR);
1631 
1632   set_control(ctl);
1633   if (stopped()) return top(); // Dead path ?
1634 
1635   assert(bt == T_OBJECT, "sanity");
1636   assert(val != NULL, "not dead path");
1637   uint adr_idx = C->get_alias_index(adr_type);
1638   assert(adr_idx != Compile::AliasIdxTop, "use other store_to_memory factory" );
1639 
1640   pre_barrier(true /* do_load */,
1641               control(), obj, adr, adr_idx, val, val_type,
1642               NULL /* pre_val */,
1643               bt);
1644 
1645   Node* store = store_to_memory(control(), adr, val, bt, adr_idx, mo);
1646   post_barrier(control(), store, obj, adr, adr_idx, val, bt, use_precise);
1647   return store;
1648 }
1649 
1650 // Could be an array or object we don't know at compile time (unsafe ref.)
1651 Node* GraphKit::store_oop_to_unknown(Node* ctl,
1652                              Node* obj,   // containing obj
1653                              Node* adr,  // actual adress to store val at
1654                              const TypePtr* adr_type,
1655                              Node* val,
1656                              BasicType bt,
1657                              MemNode::MemOrd mo) {
1658   Compile::AliasType* at = C->alias_type(adr_type);
1659   const TypeOopPtr* val_type = NULL;
1660   if (adr_type->isa_instptr()) {
1661     if (at->field() != NULL) {
1662       // known field.  This code is a copy of the do_put_xxx logic.
1663       ciField* field = at->field();
1664       if (!field->type()->is_loaded()) {
1665         val_type = TypeInstPtr::BOTTOM;
1666       } else {
1667         val_type = TypeOopPtr::make_from_klass(field->type()->as_klass());
1668       }
1669     }
1670   } else if (adr_type->isa_aryptr()) {
1671     val_type = adr_type->is_aryptr()->elem()->make_oopptr();
1672   }
1673   if (val_type == NULL) {
1674     val_type = TypeInstPtr::BOTTOM;
1675   }
1676   return store_oop(ctl, obj, adr, adr_type, val, val_type, bt, true, mo);
1677 }
1678 
1679 
1680 //-------------------------array_element_address-------------------------
1681 Node* GraphKit::array_element_address(Node* ary, Node* idx, BasicType elembt,
1682                                       const TypeInt* sizetype) {
1683   uint shift  = exact_log2(type2aelembytes(elembt));
1684   uint header = arrayOopDesc::base_offset_in_bytes(elembt);
1685 
1686   // short-circuit a common case (saves lots of confusing waste motion)
1687   jint idx_con = find_int_con(idx, -1);
1688   if (idx_con >= 0) {
1689     intptr_t offset = header + ((intptr_t)idx_con << shift);
1690     return basic_plus_adr(ary, offset);
1691   }
1692 
1693   // must be correct type for alignment purposes
1694   Node* base  = basic_plus_adr(ary, header);
1695 #ifdef _LP64
1696   // The scaled index operand to AddP must be a clean 64-bit value.
1697   // Java allows a 32-bit int to be incremented to a negative
1698   // value, which appears in a 64-bit register as a large
1699   // positive number.  Using that large positive number as an
1700   // operand in pointer arithmetic has bad consequences.
1701   // On the other hand, 32-bit overflow is rare, and the possibility
1702   // can often be excluded, if we annotate the ConvI2L node with
1703   // a type assertion that its value is known to be a small positive
1704   // number.  (The prior range check has ensured this.)
1705   // This assertion is used by ConvI2LNode::Ideal.
1706   int index_max = max_jint - 1;  // array size is max_jint, index is one less
1707   if (sizetype != NULL)  index_max = sizetype->_hi - 1;
1708   const TypeLong* lidxtype = TypeLong::make(CONST64(0), index_max, Type::WidenMax);
1709   idx = _gvn.transform( new (C) ConvI2LNode(idx, lidxtype) );
1710 #endif
1711   Node* scale = _gvn.transform( new (C) LShiftXNode(idx, intcon(shift)) );
1712   return basic_plus_adr(ary, base, scale);
1713 }
1714 
1715 //-------------------------load_array_element-------------------------
1716 Node* GraphKit::load_array_element(Node* ctl, Node* ary, Node* idx, const TypeAryPtr* arytype) {
1717   const Type* elemtype = arytype->elem();
1718   BasicType elembt = elemtype->array_element_basic_type();
1719   Node* adr = array_element_address(ary, idx, elembt, arytype->size());
1720   Node* ld = make_load(ctl, adr, elemtype, elembt, arytype, MemNode::unordered);
1721   return ld;
1722 }
1723 
1724 //-------------------------set_arguments_for_java_call-------------------------
1725 // Arguments (pre-popped from the stack) are taken from the JVMS.
1726 void GraphKit::set_arguments_for_java_call(CallJavaNode* call) {
1727   // Add the call arguments:
1728   uint nargs = call->method()->arg_size();
1729   for (uint i = 0; i < nargs; i++) {
1730     Node* arg = argument(i);
1731     call->init_req(i + TypeFunc::Parms, arg);
1732   }
1733 }
1734 
1735 //---------------------------set_edges_for_java_call---------------------------
1736 // Connect a newly created call into the current JVMS.
1737 // A return value node (if any) is returned from set_edges_for_java_call.
1738 void GraphKit::set_edges_for_java_call(CallJavaNode* call, bool must_throw, bool separate_io_proj) {
1739 
1740   // Add the predefined inputs:
1741   call->init_req( TypeFunc::Control, control() );
1742   call->init_req( TypeFunc::I_O    , i_o() );
1743   call->init_req( TypeFunc::Memory , reset_memory() );
1744   call->init_req( TypeFunc::FramePtr, frameptr() );
1745   call->init_req( TypeFunc::ReturnAdr, top() );
1746 
1747   add_safepoint_edges(call, must_throw);
1748 
1749   Node* xcall = _gvn.transform(call);
1750 
1751   if (xcall == top()) {
1752     set_control(top());
1753     return;
1754   }
1755   assert(xcall == call, "call identity is stable");
1756 
1757   // Re-use the current map to produce the result.
1758 
1759   set_control(_gvn.transform(new (C) ProjNode(call, TypeFunc::Control)));
1760   set_i_o(    _gvn.transform(new (C) ProjNode(call, TypeFunc::I_O    , separate_io_proj)));
1761   set_all_memory_call(xcall, separate_io_proj);
1762 
1763   //return xcall;   // no need, caller already has it
1764 }
1765 
1766 Node* GraphKit::set_results_for_java_call(CallJavaNode* call, bool separate_io_proj) {
1767   if (stopped())  return top();  // maybe the call folded up?
1768 
1769   // Capture the return value, if any.
1770   Node* ret;
1771   if (call->method() == NULL ||
1772       call->method()->return_type()->basic_type() == T_VOID)
1773         ret = top();
1774   else  ret = _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
1775 
1776   // Note:  Since any out-of-line call can produce an exception,
1777   // we always insert an I_O projection from the call into the result.
1778 
1779   make_slow_call_ex(call, env()->Throwable_klass(), separate_io_proj);
1780 
1781   if (separate_io_proj) {
1782     // The caller requested separate projections be used by the fall
1783     // through and exceptional paths, so replace the projections for
1784     // the fall through path.
1785     set_i_o(_gvn.transform( new (C) ProjNode(call, TypeFunc::I_O) ));
1786     set_all_memory(_gvn.transform( new (C) ProjNode(call, TypeFunc::Memory) ));
1787   }
1788   return ret;
1789 }
1790 
1791 //--------------------set_predefined_input_for_runtime_call--------------------
1792 // Reading and setting the memory state is way conservative here.
1793 // The real problem is that I am not doing real Type analysis on memory,
1794 // so I cannot distinguish card mark stores from other stores.  Across a GC
1795 // point the Store Barrier and the card mark memory has to agree.  I cannot
1796 // have a card mark store and its barrier split across the GC point from
1797 // either above or below.  Here I get that to happen by reading ALL of memory.
1798 // A better answer would be to separate out card marks from other memory.
1799 // For now, return the input memory state, so that it can be reused
1800 // after the call, if this call has restricted memory effects.
1801 Node* GraphKit::set_predefined_input_for_runtime_call(SafePointNode* call) {
1802   // Set fixed predefined input arguments
1803   Node* memory = reset_memory();
1804   call->init_req( TypeFunc::Control,   control()  );
1805   call->init_req( TypeFunc::I_O,       top()      ); // does no i/o
1806   call->init_req( TypeFunc::Memory,    memory     ); // may gc ptrs
1807   call->init_req( TypeFunc::FramePtr,  frameptr() );
1808   call->init_req( TypeFunc::ReturnAdr, top()      );
1809   return memory;
1810 }
1811 
1812 //-------------------set_predefined_output_for_runtime_call--------------------
1813 // Set control and memory (not i_o) from the call.
1814 // If keep_mem is not NULL, use it for the output state,
1815 // except for the RawPtr output of the call, if hook_mem is TypeRawPtr::BOTTOM.
1816 // If hook_mem is NULL, this call produces no memory effects at all.
1817 // If hook_mem is a Java-visible memory slice (such as arraycopy operands),
1818 // then only that memory slice is taken from the call.
1819 // In the last case, we must put an appropriate memory barrier before
1820 // the call, so as to create the correct anti-dependencies on loads
1821 // preceding the call.
1822 void GraphKit::set_predefined_output_for_runtime_call(Node* call,
1823                                                       Node* keep_mem,
1824                                                       const TypePtr* hook_mem) {
1825   // no i/o
1826   set_control(_gvn.transform( new (C) ProjNode(call,TypeFunc::Control) ));
1827   if (keep_mem) {
1828     // First clone the existing memory state
1829     set_all_memory(keep_mem);
1830     if (hook_mem != NULL) {
1831       // Make memory for the call
1832       Node* mem = _gvn.transform( new (C) ProjNode(call, TypeFunc::Memory) );
1833       // Set the RawPtr memory state only.  This covers all the heap top/GC stuff
1834       // We also use hook_mem to extract specific effects from arraycopy stubs.
1835       set_memory(mem, hook_mem);
1836     }
1837     // ...else the call has NO memory effects.
1838 
1839     // Make sure the call advertises its memory effects precisely.
1840     // This lets us build accurate anti-dependences in gcm.cpp.
1841     assert(C->alias_type(call->adr_type()) == C->alias_type(hook_mem),
1842            "call node must be constructed correctly");
1843   } else {
1844     assert(hook_mem == NULL, "");
1845     // This is not a "slow path" call; all memory comes from the call.
1846     set_all_memory_call(call);
1847   }
1848 }
1849 
1850 
1851 // Replace the call with the current state of the kit.
1852 void GraphKit::replace_call(CallNode* call, Node* result) {
1853   JVMState* ejvms = NULL;
1854   if (has_exceptions()) {
1855     ejvms = transfer_exceptions_into_jvms();
1856   }
1857 
1858   SafePointNode* final_state = stop();
1859 
1860   // Find all the needed outputs of this call
1861   CallProjections callprojs;
1862   call->extract_projections(&callprojs, true);
1863 
1864   Node* init_mem = call->in(TypeFunc::Memory);
1865   Node* final_mem = final_state->in(TypeFunc::Memory);
1866   Node* final_ctl = final_state->in(TypeFunc::Control);
1867   Node* final_io = final_state->in(TypeFunc::I_O);
1868 
1869   // Replace all the old call edges with the edges from the inlining result
1870   if (callprojs.fallthrough_catchproj != NULL) {
1871     C->gvn_replace_by(callprojs.fallthrough_catchproj, final_ctl);
1872   }
1873   if (callprojs.fallthrough_memproj != NULL) {
1874     C->gvn_replace_by(callprojs.fallthrough_memproj,   final_mem);
1875   }
1876   if (callprojs.fallthrough_ioproj != NULL) {
1877     C->gvn_replace_by(callprojs.fallthrough_ioproj,    final_io);
1878   }
1879 
1880   // Replace the result with the new result if it exists and is used
1881   if (callprojs.resproj != NULL && result != NULL) {
1882     C->gvn_replace_by(callprojs.resproj, result);
1883   }
1884 
1885   if (ejvms == NULL) {
1886     // No exception edges to simply kill off those paths
1887     if (callprojs.catchall_catchproj != NULL) {
1888       C->gvn_replace_by(callprojs.catchall_catchproj, C->top());
1889     }
1890     if (callprojs.catchall_memproj != NULL) {
1891       C->gvn_replace_by(callprojs.catchall_memproj,   C->top());
1892     }
1893     if (callprojs.catchall_ioproj != NULL) {
1894       C->gvn_replace_by(callprojs.catchall_ioproj,    C->top());
1895     }
1896     // Replace the old exception object with top
1897     if (callprojs.exobj != NULL) {
1898       C->gvn_replace_by(callprojs.exobj, C->top());
1899     }
1900   } else {
1901     GraphKit ekit(ejvms);
1902 
1903     // Load my combined exception state into the kit, with all phis transformed:
1904     SafePointNode* ex_map = ekit.combine_and_pop_all_exception_states();
1905 
1906     Node* ex_oop = ekit.use_exception_state(ex_map);
1907     if (callprojs.catchall_catchproj != NULL) {
1908       C->gvn_replace_by(callprojs.catchall_catchproj, ekit.control());
1909     }
1910     if (callprojs.catchall_memproj != NULL) {
1911       C->gvn_replace_by(callprojs.catchall_memproj,   ekit.reset_memory());
1912     }
1913     if (callprojs.catchall_ioproj != NULL) {
1914       C->gvn_replace_by(callprojs.catchall_ioproj,    ekit.i_o());
1915     }
1916 
1917     // Replace the old exception object with the newly created one
1918     if (callprojs.exobj != NULL) {
1919       C->gvn_replace_by(callprojs.exobj, ex_oop);
1920     }
1921   }
1922 
1923   // Disconnect the call from the graph
1924   call->disconnect_inputs(NULL, C);
1925   C->gvn_replace_by(call, C->top());
1926 
1927   // Clean up any MergeMems that feed other MergeMems since the
1928   // optimizer doesn't like that.
1929   if (final_mem->is_MergeMem()) {
1930     Node_List wl;
1931     for (SimpleDUIterator i(final_mem); i.has_next(); i.next()) {
1932       Node* m = i.get();
1933       if (m->is_MergeMem() && !wl.contains(m)) {
1934         wl.push(m);
1935       }
1936     }
1937     while (wl.size()  > 0) {
1938       _gvn.transform(wl.pop());
1939     }
1940   }
1941 }
1942 
1943 
1944 //------------------------------increment_counter------------------------------
1945 // for statistics: increment a VM counter by 1
1946 
1947 void GraphKit::increment_counter(address counter_addr) {
1948   Node* adr1 = makecon(TypeRawPtr::make(counter_addr));
1949   increment_counter(adr1);
1950 }
1951 
1952 void GraphKit::increment_counter(Node* counter_addr) {
1953   int adr_type = Compile::AliasIdxRaw;
1954   Node* ctrl = control();
1955   Node* cnt  = make_load(ctrl, counter_addr, TypeInt::INT, T_INT, adr_type, MemNode::unordered);
1956   Node* incr = _gvn.transform(new (C) AddINode(cnt, _gvn.intcon(1)));
1957   store_to_memory(ctrl, counter_addr, incr, T_INT, adr_type, MemNode::unordered);
1958 }
1959 
1960 
1961 //------------------------------uncommon_trap----------------------------------
1962 // Bail out to the interpreter in mid-method.  Implemented by calling the
1963 // uncommon_trap blob.  This helper function inserts a runtime call with the
1964 // right debug info.
1965 void GraphKit::uncommon_trap(int trap_request,
1966                              ciKlass* klass, const char* comment,
1967                              bool must_throw,
1968                              bool keep_exact_action) {
1969   if (failing())  stop();
1970   if (stopped())  return; // trap reachable?
1971 
1972   // Note:  If ProfileTraps is true, and if a deopt. actually
1973   // occurs here, the runtime will make sure an MDO exists.  There is
1974   // no need to call method()->ensure_method_data() at this point.
1975 
1976   // Set the stack pointer to the right value for reexecution:
1977   set_sp(reexecute_sp());
1978 
1979 #ifdef ASSERT
1980   if (!must_throw) {
1981     // Make sure the stack has at least enough depth to execute
1982     // the current bytecode.
1983     int inputs, ignored_depth;
1984     if (compute_stack_effects(inputs, ignored_depth)) {
1985       assert(sp() >= inputs, err_msg_res("must have enough JVMS stack to execute %s: sp=%d, inputs=%d",
1986              Bytecodes::name(java_bc()), sp(), inputs));
1987     }
1988   }
1989 #endif
1990 
1991   Deoptimization::DeoptReason reason = Deoptimization::trap_request_reason(trap_request);
1992   Deoptimization::DeoptAction action = Deoptimization::trap_request_action(trap_request);
1993 
1994   switch (action) {
1995   case Deoptimization::Action_maybe_recompile:
1996   case Deoptimization::Action_reinterpret:
1997     // Temporary fix for 6529811 to allow virtual calls to be sure they
1998     // get the chance to go from mono->bi->mega
1999     if (!keep_exact_action &&
2000         Deoptimization::trap_request_index(trap_request) < 0 &&
2001         too_many_recompiles(reason)) {
2002       // This BCI is causing too many recompilations.
2003       action = Deoptimization::Action_none;
2004       trap_request = Deoptimization::make_trap_request(reason, action);
2005     } else {
2006       C->set_trap_can_recompile(true);
2007     }
2008     break;
2009   case Deoptimization::Action_make_not_entrant:
2010     C->set_trap_can_recompile(true);
2011     break;
2012 #ifdef ASSERT
2013   case Deoptimization::Action_none:
2014   case Deoptimization::Action_make_not_compilable:
2015     break;
2016   default:
2017     fatal(err_msg_res("unknown action %d: %s", action, Deoptimization::trap_action_name(action)));
2018     break;
2019 #endif
2020   }
2021 
2022   if (TraceOptoParse) {
2023     char buf[100];
2024     tty->print_cr("Uncommon trap %s at bci:%d",
2025                   Deoptimization::format_trap_request(buf, sizeof(buf),
2026                                                       trap_request), bci());
2027   }
2028 
2029   CompileLog* log = C->log();
2030   if (log != NULL) {
2031     int kid = (klass == NULL)? -1: log->identify(klass);
2032     log->begin_elem("uncommon_trap bci='%d'", bci());
2033     char buf[100];
2034     log->print(" %s", Deoptimization::format_trap_request(buf, sizeof(buf),
2035                                                           trap_request));
2036     if (kid >= 0)         log->print(" klass='%d'", kid);
2037     if (comment != NULL)  log->print(" comment='%s'", comment);
2038     log->end_elem();
2039   }
2040 
2041   // Make sure any guarding test views this path as very unlikely
2042   Node *i0 = control()->in(0);
2043   if (i0 != NULL && i0->is_If()) {        // Found a guarding if test?
2044     IfNode *iff = i0->as_If();
2045     float f = iff->_prob;   // Get prob
2046     if (control()->Opcode() == Op_IfTrue) {
2047       if (f > PROB_UNLIKELY_MAG(4))
2048         iff->_prob = PROB_MIN;
2049     } else {
2050       if (f < PROB_LIKELY_MAG(4))
2051         iff->_prob = PROB_MAX;
2052     }
2053   }
2054 
2055   // Clear out dead values from the debug info.
2056   kill_dead_locals();
2057 
2058   // Now insert the uncommon trap subroutine call
2059   address call_addr = SharedRuntime::uncommon_trap_blob()->entry_point();
2060   const TypePtr* no_memory_effects = NULL;
2061   // Pass the index of the class to be loaded
2062   Node* call = make_runtime_call(RC_NO_LEAF | RC_UNCOMMON |
2063                                  (must_throw ? RC_MUST_THROW : 0),
2064                                  OptoRuntime::uncommon_trap_Type(),
2065                                  call_addr, "uncommon_trap", no_memory_effects,
2066                                  intcon(trap_request));
2067   assert(call->as_CallStaticJava()->uncommon_trap_request() == trap_request,
2068          "must extract request correctly from the graph");
2069   assert(trap_request != 0, "zero value reserved by uncommon_trap_request");
2070 
2071   call->set_req(TypeFunc::ReturnAdr, returnadr());
2072   // The debug info is the only real input to this call.
2073 
2074   // Halt-and-catch fire here.  The above call should never return!
2075   HaltNode* halt = new(C) HaltNode(control(), frameptr());
2076   _gvn.set_type_bottom(halt);
2077   root()->add_req(halt);
2078 
2079   stop_and_kill_map();
2080 }
2081 
2082 
2083 //--------------------------just_allocated_object------------------------------
2084 // Report the object that was just allocated.
2085 // It must be the case that there are no intervening safepoints.
2086 // We use this to determine if an object is so "fresh" that
2087 // it does not require card marks.
2088 Node* GraphKit::just_allocated_object(Node* current_control) {
2089   if (C->recent_alloc_ctl() == current_control)
2090     return C->recent_alloc_obj();
2091   return NULL;
2092 }
2093 
2094 
2095 void GraphKit::round_double_arguments(ciMethod* dest_method) {
2096   // (Note:  TypeFunc::make has a cache that makes this fast.)
2097   const TypeFunc* tf    = TypeFunc::make(dest_method);
2098   int             nargs = tf->_domain->_cnt - TypeFunc::Parms;
2099   for (int j = 0; j < nargs; j++) {
2100     const Type *targ = tf->_domain->field_at(j + TypeFunc::Parms);
2101     if( targ->basic_type() == T_DOUBLE ) {
2102       // If any parameters are doubles, they must be rounded before
2103       // the call, dstore_rounding does gvn.transform
2104       Node *arg = argument(j);
2105       arg = dstore_rounding(arg);
2106       set_argument(j, arg);
2107     }
2108   }
2109 }
2110 
2111 /**
2112  * Record profiling data exact_kls for Node n with the type system so
2113  * that it can propagate it (speculation)
2114  *
2115  * @param n          node that the type applies to
2116  * @param exact_kls  type from profiling
2117  *
2118  * @return           node with improved type
2119  */
2120 Node* GraphKit::record_profile_for_speculation(Node* n, ciKlass* exact_kls) {
2121   const Type* current_type = _gvn.type(n);
2122   assert(UseTypeSpeculation, "type speculation must be on");
2123 
2124   const TypeOopPtr* speculative = current_type->speculative();
2125 
2126   if (current_type->would_improve_type(exact_kls, jvms()->depth())) {
2127     const TypeKlassPtr* tklass = TypeKlassPtr::make(exact_kls);
2128     const TypeOopPtr* xtype = tklass->as_instance_type();
2129     assert(xtype->klass_is_exact(), "Should be exact");
2130     // record the new speculative type's depth
2131     speculative = xtype->with_inline_depth(jvms()->depth());
2132   }
2133 
2134   if (speculative != current_type->speculative()) {
2135     // Build a type with a speculative type (what we think we know
2136     // about the type but will need a guard when we use it)
2137     const TypeOopPtr* spec_type = TypeOopPtr::make(TypePtr::BotPTR, Type::OffsetBot, TypeOopPtr::InstanceBot, speculative);
2138     // We're changing the type, we need a new CheckCast node to carry
2139     // the new type. The new type depends on the control: what
2140     // profiling tells us is only valid from here as far as we can
2141     // tell.
2142     Node* cast = new(C) CheckCastPPNode(control(), n, current_type->remove_speculative()->join_speculative(spec_type));
2143     cast = _gvn.transform(cast);
2144     replace_in_map(n, cast);
2145     n = cast;
2146   }
2147 
2148   return n;
2149 }
2150 
2151 /**
2152  * Record profiling data from receiver profiling at an invoke with the
2153  * type system so that it can propagate it (speculation)
2154  *
2155  * @param n  receiver node
2156  *
2157  * @return   node with improved type
2158  */
2159 Node* GraphKit::record_profiled_receiver_for_speculation(Node* n) {
2160   if (!UseTypeSpeculation) {
2161     return n;
2162   }
2163   ciKlass* exact_kls = profile_has_unique_klass();
2164   return record_profile_for_speculation(n, exact_kls);
2165 }
2166 
2167 /**
2168  * Record profiling data from argument profiling at an invoke with the
2169  * type system so that it can propagate it (speculation)
2170  *
2171  * @param dest_method  target method for the call
2172  * @param bc           what invoke bytecode is this?
2173  */
2174 void GraphKit::record_profiled_arguments_for_speculation(ciMethod* dest_method, Bytecodes::Code bc) {
2175   if (!UseTypeSpeculation) {
2176     return;
2177   }
2178   const TypeFunc* tf    = TypeFunc::make(dest_method);
2179   int             nargs = tf->_domain->_cnt - TypeFunc::Parms;
2180   int skip = Bytecodes::has_receiver(bc) ? 1 : 0;
2181   for (int j = skip, i = 0; j < nargs && i < TypeProfileArgsLimit; j++) {
2182     const Type *targ = tf->_domain->field_at(j + TypeFunc::Parms);
2183     if (targ->basic_type() == T_OBJECT || targ->basic_type() == T_ARRAY) {
2184       ciKlass* better_type = method()->argument_profiled_type(bci(), i);
2185       if (better_type != NULL) {
2186         record_profile_for_speculation(argument(j), better_type);
2187       }
2188       i++;
2189     }
2190   }
2191 }
2192 
2193 /**
2194  * Record profiling data from parameter profiling at an invoke with
2195  * the type system so that it can propagate it (speculation)
2196  */
2197 void GraphKit::record_profiled_parameters_for_speculation() {
2198   if (!UseTypeSpeculation) {
2199     return;
2200   }
2201   for (int i = 0, j = 0; i < method()->arg_size() ; i++) {
2202     if (_gvn.type(local(i))->isa_oopptr()) {
2203       ciKlass* better_type = method()->parameter_profiled_type(j);
2204       if (better_type != NULL) {
2205         record_profile_for_speculation(local(i), better_type);
2206       }
2207       j++;
2208     }
2209   }
2210 }
2211 
2212 void GraphKit::round_double_result(ciMethod* dest_method) {
2213   // A non-strict method may return a double value which has an extended
2214   // exponent, but this must not be visible in a caller which is 'strict'
2215   // If a strict caller invokes a non-strict callee, round a double result
2216 
2217   BasicType result_type = dest_method->return_type()->basic_type();
2218   assert( method() != NULL, "must have caller context");
2219   if( result_type == T_DOUBLE && method()->is_strict() && !dest_method->is_strict() ) {
2220     // Destination method's return value is on top of stack
2221     // dstore_rounding() does gvn.transform
2222     Node *result = pop_pair();
2223     result = dstore_rounding(result);
2224     push_pair(result);
2225   }
2226 }
2227 
2228 // rounding for strict float precision conformance
2229 Node* GraphKit::precision_rounding(Node* n) {
2230   return UseStrictFP && _method->flags().is_strict()
2231     && UseSSE == 0 && Matcher::strict_fp_requires_explicit_rounding
2232     ? _gvn.transform( new (C) RoundFloatNode(0, n) )
2233     : n;
2234 }
2235 
2236 // rounding for strict double precision conformance
2237 Node* GraphKit::dprecision_rounding(Node *n) {
2238   return UseStrictFP && _method->flags().is_strict()
2239     && UseSSE <= 1 && Matcher::strict_fp_requires_explicit_rounding
2240     ? _gvn.transform( new (C) RoundDoubleNode(0, n) )
2241     : n;
2242 }
2243 
2244 // rounding for non-strict double stores
2245 Node* GraphKit::dstore_rounding(Node* n) {
2246   return Matcher::strict_fp_requires_explicit_rounding
2247     && UseSSE <= 1
2248     ? _gvn.transform( new (C) RoundDoubleNode(0, n) )
2249     : n;
2250 }
2251 
2252 //=============================================================================
2253 // Generate a fast path/slow path idiom.  Graph looks like:
2254 // [foo] indicates that 'foo' is a parameter
2255 //
2256 //              [in]     NULL
2257 //                 \    /
2258 //                  CmpP
2259 //                  Bool ne
2260 //                   If
2261 //                  /  \
2262 //              True    False-<2>
2263 //              / |
2264 //             /  cast_not_null
2265 //           Load  |    |   ^
2266 //        [fast_test]   |   |
2267 // gvn to   opt_test    |   |
2268 //          /    \      |  <1>
2269 //      True     False  |
2270 //        |         \\  |
2271 //   [slow_call]     \[fast_result]
2272 //    Ctl   Val       \      \
2273 //     |               \      \
2274 //    Catch       <1>   \      \
2275 //   /    \        ^     \      \
2276 //  Ex    No_Ex    |      \      \
2277 //  |       \   \  |       \ <2>  \
2278 //  ...      \  [slow_res] |  |    \   [null_result]
2279 //            \         \--+--+---  |  |
2280 //             \           | /    \ | /
2281 //              --------Region     Phi
2282 //
2283 //=============================================================================
2284 // Code is structured as a series of driver functions all called 'do_XXX' that
2285 // call a set of helper functions.  Helper functions first, then drivers.
2286 
2287 //------------------------------null_check_oop---------------------------------
2288 // Null check oop.  Set null-path control into Region in slot 3.
2289 // Make a cast-not-nullness use the other not-null control.  Return cast.
2290 Node* GraphKit::null_check_oop(Node* value, Node* *null_control,
2291                                bool never_see_null, bool safe_for_replace) {
2292   // Initial NULL check taken path
2293   (*null_control) = top();
2294   Node* cast = null_check_common(value, T_OBJECT, false, null_control);
2295 
2296   // Generate uncommon_trap:
2297   if (never_see_null && (*null_control) != top()) {
2298     // If we see an unexpected null at a check-cast we record it and force a
2299     // recompile; the offending check-cast will be compiled to handle NULLs.
2300     // If we see more than one offending BCI, then all checkcasts in the
2301     // method will be compiled to handle NULLs.
2302     PreserveJVMState pjvms(this);
2303     set_control(*null_control);
2304     replace_in_map(value, null());
2305     uncommon_trap(Deoptimization::Reason_null_check,
2306                   Deoptimization::Action_make_not_entrant);
2307     (*null_control) = top();    // NULL path is dead
2308   }
2309   if ((*null_control) == top() && safe_for_replace) {
2310     replace_in_map(value, cast);
2311   }
2312 
2313   // Cast away null-ness on the result
2314   return cast;
2315 }
2316 
2317 //------------------------------opt_iff----------------------------------------
2318 // Optimize the fast-check IfNode.  Set the fast-path region slot 2.
2319 // Return slow-path control.
2320 Node* GraphKit::opt_iff(Node* region, Node* iff) {
2321   IfNode *opt_iff = _gvn.transform(iff)->as_If();
2322 
2323   // Fast path taken; set region slot 2
2324   Node *fast_taken = _gvn.transform( new (C) IfFalseNode(opt_iff) );
2325   region->init_req(2,fast_taken); // Capture fast-control
2326 
2327   // Fast path not-taken, i.e. slow path
2328   Node *slow_taken = _gvn.transform( new (C) IfTrueNode(opt_iff) );
2329   return slow_taken;
2330 }
2331 
2332 //-----------------------------make_runtime_call-------------------------------
2333 Node* GraphKit::make_runtime_call(int flags,
2334                                   const TypeFunc* call_type, address call_addr,
2335                                   const char* call_name,
2336                                   const TypePtr* adr_type,
2337                                   // The following parms are all optional.
2338                                   // The first NULL ends the list.
2339                                   Node* parm0, Node* parm1,
2340                                   Node* parm2, Node* parm3,
2341                                   Node* parm4, Node* parm5,
2342                                   Node* parm6, Node* parm7) {
2343   // Slow-path call
2344   bool is_leaf = !(flags & RC_NO_LEAF);
2345   bool has_io  = (!is_leaf && !(flags & RC_NO_IO));
2346   if (call_name == NULL) {
2347     assert(!is_leaf, "must supply name for leaf");
2348     call_name = OptoRuntime::stub_name(call_addr);
2349   }
2350   CallNode* call;
2351   if (!is_leaf) {
2352     call = new(C) CallStaticJavaNode(call_type, call_addr, call_name,
2353                                            bci(), adr_type);
2354   } else if (flags & RC_NO_FP) {
2355     call = new(C) CallLeafNoFPNode(call_type, call_addr, call_name, adr_type);
2356   } else {
2357     call = new(C) CallLeafNode(call_type, call_addr, call_name, adr_type);
2358   }
2359 
2360   // The following is similar to set_edges_for_java_call,
2361   // except that the memory effects of the call are restricted to AliasIdxRaw.
2362 
2363   // Slow path call has no side-effects, uses few values
2364   bool wide_in  = !(flags & RC_NARROW_MEM);
2365   bool wide_out = (C->get_alias_index(adr_type) == Compile::AliasIdxBot);
2366 
2367   Node* prev_mem = NULL;
2368   if (wide_in) {
2369     prev_mem = set_predefined_input_for_runtime_call(call);
2370   } else {
2371     assert(!wide_out, "narrow in => narrow out");
2372     Node* narrow_mem = memory(adr_type);
2373     prev_mem = reset_memory();
2374     map()->set_memory(narrow_mem);
2375     set_predefined_input_for_runtime_call(call);
2376   }
2377 
2378   // Hook each parm in order.  Stop looking at the first NULL.
2379   if (parm0 != NULL) { call->init_req(TypeFunc::Parms+0, parm0);
2380   if (parm1 != NULL) { call->init_req(TypeFunc::Parms+1, parm1);
2381   if (parm2 != NULL) { call->init_req(TypeFunc::Parms+2, parm2);
2382   if (parm3 != NULL) { call->init_req(TypeFunc::Parms+3, parm3);
2383   if (parm4 != NULL) { call->init_req(TypeFunc::Parms+4, parm4);
2384   if (parm5 != NULL) { call->init_req(TypeFunc::Parms+5, parm5);
2385   if (parm6 != NULL) { call->init_req(TypeFunc::Parms+6, parm6);
2386   if (parm7 != NULL) { call->init_req(TypeFunc::Parms+7, parm7);
2387     /* close each nested if ===> */  } } } } } } } }
2388   assert(call->in(call->req()-1) != NULL, "must initialize all parms");
2389 
2390   if (!is_leaf) {
2391     // Non-leaves can block and take safepoints:
2392     add_safepoint_edges(call, ((flags & RC_MUST_THROW) != 0));
2393   }
2394   // Non-leaves can throw exceptions:
2395   if (has_io) {
2396     call->set_req(TypeFunc::I_O, i_o());
2397   }
2398 
2399   if (flags & RC_UNCOMMON) {
2400     // Set the count to a tiny probability.  Cf. Estimate_Block_Frequency.
2401     // (An "if" probability corresponds roughly to an unconditional count.
2402     // Sort of.)
2403     call->set_cnt(PROB_UNLIKELY_MAG(4));
2404   }
2405 
2406   Node* c = _gvn.transform(call);
2407   assert(c == call, "cannot disappear");
2408 
2409   if (wide_out) {
2410     // Slow path call has full side-effects.
2411     set_predefined_output_for_runtime_call(call);
2412   } else {
2413     // Slow path call has few side-effects, and/or sets few values.
2414     set_predefined_output_for_runtime_call(call, prev_mem, adr_type);
2415   }
2416 
2417   if (has_io) {
2418     set_i_o(_gvn.transform(new (C) ProjNode(call, TypeFunc::I_O)));
2419   }
2420   return call;
2421 
2422 }
2423 
2424 //------------------------------merge_memory-----------------------------------
2425 // Merge memory from one path into the current memory state.
2426 void GraphKit::merge_memory(Node* new_mem, Node* region, int new_path) {
2427   for (MergeMemStream mms(merged_memory(), new_mem->as_MergeMem()); mms.next_non_empty2(); ) {
2428     Node* old_slice = mms.force_memory();
2429     Node* new_slice = mms.memory2();
2430     if (old_slice != new_slice) {
2431       PhiNode* phi;
2432       if (new_slice->is_Phi() && new_slice->as_Phi()->region() == region) {
2433         phi = new_slice->as_Phi();
2434         #ifdef ASSERT
2435         if (old_slice->is_Phi() && old_slice->as_Phi()->region() == region)
2436           old_slice = old_slice->in(new_path);
2437         // Caller is responsible for ensuring that any pre-existing
2438         // phis are already aware of old memory.
2439         int old_path = (new_path > 1) ? 1 : 2;  // choose old_path != new_path
2440         assert(phi->in(old_path) == old_slice, "pre-existing phis OK");
2441         #endif
2442         mms.set_memory(phi);
2443       } else {
2444         phi = PhiNode::make(region, old_slice, Type::MEMORY, mms.adr_type(C));
2445         _gvn.set_type(phi, Type::MEMORY);
2446         phi->set_req(new_path, new_slice);
2447         mms.set_memory(_gvn.transform(phi));  // assume it is complete
2448       }
2449     }
2450   }
2451 }
2452 
2453 //------------------------------make_slow_call_ex------------------------------
2454 // Make the exception handler hookups for the slow call
2455 void GraphKit::make_slow_call_ex(Node* call, ciInstanceKlass* ex_klass, bool separate_io_proj) {
2456   if (stopped())  return;
2457 
2458   // Make a catch node with just two handlers:  fall-through and catch-all
2459   Node* i_o  = _gvn.transform( new (C) ProjNode(call, TypeFunc::I_O, separate_io_proj) );
2460   Node* catc = _gvn.transform( new (C) CatchNode(control(), i_o, 2) );
2461   Node* norm = _gvn.transform( new (C) CatchProjNode(catc, CatchProjNode::fall_through_index, CatchProjNode::no_handler_bci) );
2462   Node* excp = _gvn.transform( new (C) CatchProjNode(catc, CatchProjNode::catch_all_index,    CatchProjNode::no_handler_bci) );
2463 
2464   { PreserveJVMState pjvms(this);
2465     set_control(excp);
2466     set_i_o(i_o);
2467 
2468     if (excp != top()) {
2469       // Create an exception state also.
2470       // Use an exact type if the caller has specified a specific exception.
2471       const Type* ex_type = TypeOopPtr::make_from_klass_unique(ex_klass)->cast_to_ptr_type(TypePtr::NotNull);
2472       Node*       ex_oop  = new (C) CreateExNode(ex_type, control(), i_o);
2473       add_exception_state(make_exception_state(_gvn.transform(ex_oop)));
2474     }
2475   }
2476 
2477   // Get the no-exception control from the CatchNode.
2478   set_control(norm);
2479 }
2480 
2481 
2482 //-------------------------------gen_subtype_check-----------------------------
2483 // Generate a subtyping check.  Takes as input the subtype and supertype.
2484 // Returns 2 values: sets the default control() to the true path and returns
2485 // the false path.  Only reads invariant memory; sets no (visible) memory.
2486 // The PartialSubtypeCheckNode sets the hidden 1-word cache in the encoding
2487 // but that's not exposed to the optimizer.  This call also doesn't take in an
2488 // Object; if you wish to check an Object you need to load the Object's class
2489 // prior to coming here.
2490 Node* GraphKit::gen_subtype_check(Node* subklass, Node* superklass) {
2491   // Fast check for identical types, perhaps identical constants.
2492   // The types can even be identical non-constants, in cases
2493   // involving Array.newInstance, Object.clone, etc.
2494   if (subklass == superklass)
2495     return top();             // false path is dead; no test needed.
2496 
2497   if (_gvn.type(superklass)->singleton()) {
2498     ciKlass* superk = _gvn.type(superklass)->is_klassptr()->klass();
2499     ciKlass* subk   = _gvn.type(subklass)->is_klassptr()->klass();
2500 
2501     // In the common case of an exact superklass, try to fold up the
2502     // test before generating code.  You may ask, why not just generate
2503     // the code and then let it fold up?  The answer is that the generated
2504     // code will necessarily include null checks, which do not always
2505     // completely fold away.  If they are also needless, then they turn
2506     // into a performance loss.  Example:
2507     //    Foo[] fa = blah(); Foo x = fa[0]; fa[1] = x;
2508     // Here, the type of 'fa' is often exact, so the store check
2509     // of fa[1]=x will fold up, without testing the nullness of x.
2510     switch (static_subtype_check(superk, subk)) {
2511     case SSC_always_false:
2512       {
2513         Node* always_fail = control();
2514         set_control(top());
2515         return always_fail;
2516       }
2517     case SSC_always_true:
2518       return top();
2519     case SSC_easy_test:
2520       {
2521         // Just do a direct pointer compare and be done.
2522         Node* cmp = _gvn.transform( new(C) CmpPNode(subklass, superklass) );
2523         Node* bol = _gvn.transform( new(C) BoolNode(cmp, BoolTest::eq) );
2524         IfNode* iff = create_and_xform_if(control(), bol, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
2525         set_control( _gvn.transform( new(C) IfTrueNode (iff) ) );
2526         return       _gvn.transform( new(C) IfFalseNode(iff) );
2527       }
2528     case SSC_full_test:
2529       break;
2530     default:
2531       ShouldNotReachHere();
2532     }
2533   }
2534 
2535   // %%% Possible further optimization:  Even if the superklass is not exact,
2536   // if the subklass is the unique subtype of the superklass, the check
2537   // will always succeed.  We could leave a dependency behind to ensure this.
2538 
2539   // First load the super-klass's check-offset
2540   Node *p1 = basic_plus_adr( superklass, superklass, in_bytes(Klass::super_check_offset_offset()) );
2541   Node *chk_off = _gvn.transform(new (C) LoadINode(NULL, memory(p1), p1, _gvn.type(p1)->is_ptr(),
2542                                                    TypeInt::INT, MemNode::unordered));
2543   int cacheoff_con = in_bytes(Klass::secondary_super_cache_offset());
2544   bool might_be_cache = (find_int_con(chk_off, cacheoff_con) == cacheoff_con);
2545 
2546   // Load from the sub-klass's super-class display list, or a 1-word cache of
2547   // the secondary superclass list, or a failing value with a sentinel offset
2548   // if the super-klass is an interface or exceptionally deep in the Java
2549   // hierarchy and we have to scan the secondary superclass list the hard way.
2550   // Worst-case type is a little odd: NULL is allowed as a result (usually
2551   // klass loads can never produce a NULL).
2552   Node *chk_off_X = ConvI2X(chk_off);
2553   Node *p2 = _gvn.transform( new (C) AddPNode(subklass,subklass,chk_off_X) );
2554   // For some types like interfaces the following loadKlass is from a 1-word
2555   // cache which is mutable so can't use immutable memory.  Other
2556   // types load from the super-class display table which is immutable.
2557   Node *kmem = might_be_cache ? memory(p2) : immutable_memory();
2558   Node *nkls = _gvn.transform( LoadKlassNode::make( _gvn, kmem, p2, _gvn.type(p2)->is_ptr(), TypeKlassPtr::OBJECT_OR_NULL ) );
2559 
2560   // Compile speed common case: ARE a subtype and we canNOT fail
2561   if( superklass == nkls )
2562     return top();             // false path is dead; no test needed.
2563 
2564   // See if we get an immediate positive hit.  Happens roughly 83% of the
2565   // time.  Test to see if the value loaded just previously from the subklass
2566   // is exactly the superklass.
2567   Node *cmp1 = _gvn.transform( new (C) CmpPNode( superklass, nkls ) );
2568   Node *bol1 = _gvn.transform( new (C) BoolNode( cmp1, BoolTest::eq ) );
2569   IfNode *iff1 = create_and_xform_if( control(), bol1, PROB_LIKELY(0.83f), COUNT_UNKNOWN );
2570   Node *iftrue1 = _gvn.transform( new (C) IfTrueNode ( iff1 ) );
2571   set_control(    _gvn.transform( new (C) IfFalseNode( iff1 ) ) );
2572 
2573   // Compile speed common case: Check for being deterministic right now.  If
2574   // chk_off is a constant and not equal to cacheoff then we are NOT a
2575   // subklass.  In this case we need exactly the 1 test above and we can
2576   // return those results immediately.
2577   if (!might_be_cache) {
2578     Node* not_subtype_ctrl = control();
2579     set_control(iftrue1); // We need exactly the 1 test above
2580     return not_subtype_ctrl;
2581   }
2582 
2583   // Gather the various success & failures here
2584   RegionNode *r_ok_subtype = new (C) RegionNode(4);
2585   record_for_igvn(r_ok_subtype);
2586   RegionNode *r_not_subtype = new (C) RegionNode(3);
2587   record_for_igvn(r_not_subtype);
2588 
2589   r_ok_subtype->init_req(1, iftrue1);
2590 
2591   // Check for immediate negative hit.  Happens roughly 11% of the time (which
2592   // is roughly 63% of the remaining cases).  Test to see if the loaded
2593   // check-offset points into the subklass display list or the 1-element
2594   // cache.  If it points to the display (and NOT the cache) and the display
2595   // missed then it's not a subtype.
2596   Node *cacheoff = _gvn.intcon(cacheoff_con);
2597   Node *cmp2 = _gvn.transform( new (C) CmpINode( chk_off, cacheoff ) );
2598   Node *bol2 = _gvn.transform( new (C) BoolNode( cmp2, BoolTest::ne ) );
2599   IfNode *iff2 = create_and_xform_if( control(), bol2, PROB_LIKELY(0.63f), COUNT_UNKNOWN );
2600   r_not_subtype->init_req(1, _gvn.transform( new (C) IfTrueNode (iff2) ) );
2601   set_control(                _gvn.transform( new (C) IfFalseNode(iff2) ) );
2602 
2603   // Check for self.  Very rare to get here, but it is taken 1/3 the time.
2604   // No performance impact (too rare) but allows sharing of secondary arrays
2605   // which has some footprint reduction.
2606   Node *cmp3 = _gvn.transform( new (C) CmpPNode( subklass, superklass ) );
2607   Node *bol3 = _gvn.transform( new (C) BoolNode( cmp3, BoolTest::eq ) );
2608   IfNode *iff3 = create_and_xform_if( control(), bol3, PROB_LIKELY(0.36f), COUNT_UNKNOWN );
2609   r_ok_subtype->init_req(2, _gvn.transform( new (C) IfTrueNode ( iff3 ) ) );
2610   set_control(               _gvn.transform( new (C) IfFalseNode( iff3 ) ) );
2611 
2612   // -- Roads not taken here: --
2613   // We could also have chosen to perform the self-check at the beginning
2614   // of this code sequence, as the assembler does.  This would not pay off
2615   // the same way, since the optimizer, unlike the assembler, can perform
2616   // static type analysis to fold away many successful self-checks.
2617   // Non-foldable self checks work better here in second position, because
2618   // the initial primary superclass check subsumes a self-check for most
2619   // types.  An exception would be a secondary type like array-of-interface,
2620   // which does not appear in its own primary supertype display.
2621   // Finally, we could have chosen to move the self-check into the
2622   // PartialSubtypeCheckNode, and from there out-of-line in a platform
2623   // dependent manner.  But it is worthwhile to have the check here,
2624   // where it can be perhaps be optimized.  The cost in code space is
2625   // small (register compare, branch).
2626 
2627   // Now do a linear scan of the secondary super-klass array.  Again, no real
2628   // performance impact (too rare) but it's gotta be done.
2629   // Since the code is rarely used, there is no penalty for moving it
2630   // out of line, and it can only improve I-cache density.
2631   // The decision to inline or out-of-line this final check is platform
2632   // dependent, and is found in the AD file definition of PartialSubtypeCheck.
2633   Node* psc = _gvn.transform(
2634     new (C) PartialSubtypeCheckNode(control(), subklass, superklass) );
2635 
2636   Node *cmp4 = _gvn.transform( new (C) CmpPNode( psc, null() ) );
2637   Node *bol4 = _gvn.transform( new (C) BoolNode( cmp4, BoolTest::ne ) );
2638   IfNode *iff4 = create_and_xform_if( control(), bol4, PROB_FAIR, COUNT_UNKNOWN );
2639   r_not_subtype->init_req(2, _gvn.transform( new (C) IfTrueNode (iff4) ) );
2640   r_ok_subtype ->init_req(3, _gvn.transform( new (C) IfFalseNode(iff4) ) );
2641 
2642   // Return false path; set default control to true path.
2643   set_control( _gvn.transform(r_ok_subtype) );
2644   return _gvn.transform(r_not_subtype);
2645 }
2646 
2647 //----------------------------static_subtype_check-----------------------------
2648 // Shortcut important common cases when superklass is exact:
2649 // (0) superklass is java.lang.Object (can occur in reflective code)
2650 // (1) subklass is already limited to a subtype of superklass => always ok
2651 // (2) subklass does not overlap with superklass => always fail
2652 // (3) superklass has NO subtypes and we can check with a simple compare.
2653 int GraphKit::static_subtype_check(ciKlass* superk, ciKlass* subk) {
2654   if (StressReflectiveCode) {
2655     return SSC_full_test;       // Let caller generate the general case.
2656   }
2657 
2658   if (superk == env()->Object_klass()) {
2659     return SSC_always_true;     // (0) this test cannot fail
2660   }
2661 
2662   ciType* superelem = superk;
2663   if (superelem->is_array_klass())
2664     superelem = superelem->as_array_klass()->base_element_type();
2665 
2666   if (!subk->is_interface()) {  // cannot trust static interface types yet
2667     if (subk->is_subtype_of(superk)) {
2668       return SSC_always_true;   // (1) false path dead; no dynamic test needed
2669     }
2670     if (!(superelem->is_klass() && superelem->as_klass()->is_interface()) &&
2671         !superk->is_subtype_of(subk)) {
2672       return SSC_always_false;
2673     }
2674   }
2675 
2676   // If casting to an instance klass, it must have no subtypes
2677   if (superk->is_interface()) {
2678     // Cannot trust interfaces yet.
2679     // %%% S.B. superk->nof_implementors() == 1
2680   } else if (superelem->is_instance_klass()) {
2681     ciInstanceKlass* ik = superelem->as_instance_klass();
2682     if (!ik->has_subklass() && !ik->is_interface()) {
2683       if (!ik->is_final()) {
2684         // Add a dependency if there is a chance of a later subclass.
2685         C->dependencies()->assert_leaf_type(ik);
2686       }
2687       return SSC_easy_test;     // (3) caller can do a simple ptr comparison
2688     }
2689   } else {
2690     // A primitive array type has no subtypes.
2691     return SSC_easy_test;       // (3) caller can do a simple ptr comparison
2692   }
2693 
2694   return SSC_full_test;
2695 }
2696 
2697 // Profile-driven exact type check:
2698 Node* GraphKit::type_check_receiver(Node* receiver, ciKlass* klass,
2699                                     float prob,
2700                                     Node* *casted_receiver) {
2701   const TypeKlassPtr* tklass = TypeKlassPtr::make(klass);
2702   Node* recv_klass = load_object_klass(receiver);
2703   Node* want_klass = makecon(tklass);
2704   Node* cmp = _gvn.transform( new(C) CmpPNode(recv_klass, want_klass) );
2705   Node* bol = _gvn.transform( new(C) BoolNode(cmp, BoolTest::eq) );
2706   IfNode* iff = create_and_xform_if(control(), bol, prob, COUNT_UNKNOWN);
2707   set_control( _gvn.transform( new(C) IfTrueNode (iff) ));
2708   Node* fail = _gvn.transform( new(C) IfFalseNode(iff) );
2709 
2710   const TypeOopPtr* recv_xtype = tklass->as_instance_type();
2711   assert(recv_xtype->klass_is_exact(), "");
2712 
2713   // Subsume downstream occurrences of receiver with a cast to
2714   // recv_xtype, since now we know what the type will be.
2715   Node* cast = new(C) CheckCastPPNode(control(), receiver, recv_xtype);
2716   (*casted_receiver) = _gvn.transform(cast);
2717   // (User must make the replace_in_map call.)
2718 
2719   return fail;
2720 }
2721 
2722 
2723 //------------------------------seems_never_null-------------------------------
2724 // Use null_seen information if it is available from the profile.
2725 // If we see an unexpected null at a type check we record it and force a
2726 // recompile; the offending check will be recompiled to handle NULLs.
2727 // If we see several offending BCIs, then all checks in the
2728 // method will be recompiled.
2729 bool GraphKit::seems_never_null(Node* obj, ciProfileData* data) {
2730   if (UncommonNullCast               // Cutout for this technique
2731       && obj != null()               // And not the -Xcomp stupid case?
2732       && !too_many_traps(Deoptimization::Reason_null_check)
2733       ) {
2734     if (data == NULL)
2735       // Edge case:  no mature data.  Be optimistic here.
2736       return true;
2737     // If the profile has not seen a null, assume it won't happen.
2738     assert(java_bc() == Bytecodes::_checkcast ||
2739            java_bc() == Bytecodes::_instanceof ||
2740            java_bc() == Bytecodes::_aastore, "MDO must collect null_seen bit here");
2741     return !data->as_BitData()->null_seen();
2742   }
2743   return false;
2744 }
2745 
2746 //------------------------maybe_cast_profiled_receiver-------------------------
2747 // If the profile has seen exactly one type, narrow to exactly that type.
2748 // Subsequent type checks will always fold up.
2749 Node* GraphKit::maybe_cast_profiled_receiver(Node* not_null_obj,
2750                                              ciKlass* require_klass,
2751                                              ciKlass* spec_klass,
2752                                              bool safe_for_replace) {
2753   if (!UseTypeProfile || !TypeProfileCasts) return NULL;
2754 
2755   Deoptimization::DeoptReason reason = spec_klass == NULL ? Deoptimization::Reason_class_check : Deoptimization::Reason_speculate_class_check;
2756 
2757   // Make sure we haven't already deoptimized from this tactic.
2758   if (too_many_traps(reason))
2759     return NULL;
2760 
2761   // (No, this isn't a call, but it's enough like a virtual call
2762   // to use the same ciMethod accessor to get the profile info...)
2763   // If we have a speculative type use it instead of profiling (which
2764   // may not help us)
2765   ciKlass* exact_kls = spec_klass == NULL ? profile_has_unique_klass() : spec_klass;
2766   if (exact_kls != NULL) {// no cast failures here
2767     if (require_klass == NULL ||
2768         static_subtype_check(require_klass, exact_kls) == SSC_always_true) {
2769       // If we narrow the type to match what the type profile sees or
2770       // the speculative type, we can then remove the rest of the
2771       // cast.
2772       // This is a win, even if the exact_kls is very specific,
2773       // because downstream operations, such as method calls,
2774       // will often benefit from the sharper type.
2775       Node* exact_obj = not_null_obj; // will get updated in place...
2776       Node* slow_ctl  = type_check_receiver(exact_obj, exact_kls, 1.0,
2777                                             &exact_obj);
2778       { PreserveJVMState pjvms(this);
2779         set_control(slow_ctl);
2780         uncommon_trap(reason,
2781                       Deoptimization::Action_maybe_recompile);
2782       }
2783       if (safe_for_replace) {
2784         replace_in_map(not_null_obj, exact_obj);
2785       }
2786       return exact_obj;
2787     }
2788     // assert(ssc == SSC_always_true)... except maybe the profile lied to us.
2789   }
2790 
2791   return NULL;
2792 }
2793 
2794 /**
2795  * Cast obj to type and emit guard unless we had too many traps here
2796  * already
2797  *
2798  * @param obj       node being casted
2799  * @param type      type to cast the node to
2800  * @param not_null  true if we know node cannot be null
2801  */
2802 Node* GraphKit::maybe_cast_profiled_obj(Node* obj,
2803                                         ciKlass* type,
2804                                         bool not_null) {
2805   // type == NULL if profiling tells us this object is always null
2806   if (type != NULL) {
2807     Deoptimization::DeoptReason class_reason = Deoptimization::Reason_speculate_class_check;
2808     Deoptimization::DeoptReason null_reason = Deoptimization::Reason_null_check;
2809     if (!too_many_traps(null_reason) &&
2810         !too_many_traps(class_reason)) {
2811       Node* not_null_obj = NULL;
2812       // not_null is true if we know the object is not null and
2813       // there's no need for a null check
2814       if (!not_null) {
2815         Node* null_ctl = top();
2816         not_null_obj = null_check_oop(obj, &null_ctl, true, true);
2817         assert(null_ctl->is_top(), "no null control here");
2818       } else {
2819         not_null_obj = obj;
2820       }
2821 
2822       Node* exact_obj = not_null_obj;
2823       ciKlass* exact_kls = type;
2824       Node* slow_ctl  = type_check_receiver(exact_obj, exact_kls, 1.0,
2825                                             &exact_obj);
2826       {
2827         PreserveJVMState pjvms(this);
2828         set_control(slow_ctl);
2829         uncommon_trap(class_reason,
2830                       Deoptimization::Action_maybe_recompile);
2831       }
2832       replace_in_map(not_null_obj, exact_obj);
2833       obj = exact_obj;
2834     }
2835   } else {
2836     if (!too_many_traps(Deoptimization::Reason_null_assert)) {
2837       Node* exact_obj = null_assert(obj);
2838       replace_in_map(obj, exact_obj);
2839       obj = exact_obj;
2840     }
2841   }
2842   return obj;
2843 }
2844 
2845 //-------------------------------gen_instanceof--------------------------------
2846 // Generate an instance-of idiom.  Used by both the instance-of bytecode
2847 // and the reflective instance-of call.
2848 Node* GraphKit::gen_instanceof(Node* obj, Node* superklass, bool safe_for_replace) {
2849   kill_dead_locals();           // Benefit all the uncommon traps
2850   assert( !stopped(), "dead parse path should be checked in callers" );
2851   assert(!TypePtr::NULL_PTR->higher_equal(_gvn.type(superklass)->is_klassptr()),
2852          "must check for not-null not-dead klass in callers");
2853 
2854   // Make the merge point
2855   enum { _obj_path = 1, _fail_path, _null_path, PATH_LIMIT };
2856   RegionNode* region = new(C) RegionNode(PATH_LIMIT);
2857   Node*       phi    = new(C) PhiNode(region, TypeInt::BOOL);
2858   C->set_has_split_ifs(true); // Has chance for split-if optimization
2859 
2860   ciProfileData* data = NULL;
2861   if (java_bc() == Bytecodes::_instanceof) {  // Only for the bytecode
2862     data = method()->method_data()->bci_to_data(bci());
2863   }
2864   bool never_see_null = (ProfileDynamicTypes  // aggressive use of profile
2865                          && seems_never_null(obj, data));
2866 
2867   // Null check; get casted pointer; set region slot 3
2868   Node* null_ctl = top();
2869   Node* not_null_obj = null_check_oop(obj, &null_ctl, never_see_null, safe_for_replace);
2870 
2871   // If not_null_obj is dead, only null-path is taken
2872   if (stopped()) {              // Doing instance-of on a NULL?
2873     set_control(null_ctl);
2874     return intcon(0);
2875   }
2876   region->init_req(_null_path, null_ctl);
2877   phi   ->init_req(_null_path, intcon(0)); // Set null path value
2878   if (null_ctl == top()) {
2879     // Do this eagerly, so that pattern matches like is_diamond_phi
2880     // will work even during parsing.
2881     assert(_null_path == PATH_LIMIT-1, "delete last");
2882     region->del_req(_null_path);
2883     phi   ->del_req(_null_path);
2884   }
2885 
2886   // Do we know the type check always succeed?
2887   bool known_statically = false;
2888   if (_gvn.type(superklass)->singleton()) {
2889     ciKlass* superk = _gvn.type(superklass)->is_klassptr()->klass();
2890     ciKlass* subk = _gvn.type(obj)->is_oopptr()->klass();
2891     if (subk != NULL && subk->is_loaded()) {
2892       int static_res = static_subtype_check(superk, subk);
2893       known_statically = (static_res == SSC_always_true || static_res == SSC_always_false);
2894     }
2895   }
2896 
2897   if (known_statically && UseTypeSpeculation) {
2898     // If we know the type check always succeeds then we don't use the
2899     // profiling data at this bytecode. Don't lose it, feed it to the
2900     // type system as a speculative type.
2901     not_null_obj = record_profiled_receiver_for_speculation(not_null_obj);
2902   } else {
2903     const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr();
2904     // We may not have profiling here or it may not help us. If we
2905     // have a speculative type use it to perform an exact cast.
2906     ciKlass* spec_obj_type = obj_type->speculative_type();
2907     if (spec_obj_type != NULL || (ProfileDynamicTypes && data != NULL)) {
2908       Node* cast_obj = maybe_cast_profiled_receiver(not_null_obj, NULL, spec_obj_type, safe_for_replace);
2909       if (stopped()) {            // Profile disagrees with this path.
2910         set_control(null_ctl);    // Null is the only remaining possibility.
2911         return intcon(0);
2912       }
2913       if (cast_obj != NULL) {
2914         not_null_obj = cast_obj;
2915       }
2916     }
2917   }
2918 
2919   // Load the object's klass
2920   Node* obj_klass = load_object_klass(not_null_obj);
2921 
2922   // Generate the subtype check
2923   Node* not_subtype_ctrl = gen_subtype_check(obj_klass, superklass);
2924 
2925   // Plug in the success path to the general merge in slot 1.
2926   region->init_req(_obj_path, control());
2927   phi   ->init_req(_obj_path, intcon(1));
2928 
2929   // Plug in the failing path to the general merge in slot 2.
2930   region->init_req(_fail_path, not_subtype_ctrl);
2931   phi   ->init_req(_fail_path, intcon(0));
2932 
2933   // Return final merged results
2934   set_control( _gvn.transform(region) );
2935   record_for_igvn(region);
2936   return _gvn.transform(phi);
2937 }
2938 
2939 //-------------------------------gen_checkcast---------------------------------
2940 // Generate a checkcast idiom.  Used by both the checkcast bytecode and the
2941 // array store bytecode.  Stack must be as-if BEFORE doing the bytecode so the
2942 // uncommon-trap paths work.  Adjust stack after this call.
2943 // If failure_control is supplied and not null, it is filled in with
2944 // the control edge for the cast failure.  Otherwise, an appropriate
2945 // uncommon trap or exception is thrown.
2946 Node* GraphKit::gen_checkcast(Node *obj, Node* superklass,
2947                               Node* *failure_control) {
2948   kill_dead_locals();           // Benefit all the uncommon traps
2949   const TypeKlassPtr *tk = _gvn.type(superklass)->is_klassptr();
2950   const Type *toop = TypeOopPtr::make_from_klass(tk->klass());
2951 
2952   // Fast cutout:  Check the case that the cast is vacuously true.
2953   // This detects the common cases where the test will short-circuit
2954   // away completely.  We do this before we perform the null check,
2955   // because if the test is going to turn into zero code, we don't
2956   // want a residual null check left around.  (Causes a slowdown,
2957   // for example, in some objArray manipulations, such as a[i]=a[j].)
2958   if (tk->singleton()) {
2959     const TypeOopPtr* objtp = _gvn.type(obj)->isa_oopptr();
2960     if (objtp != NULL && objtp->klass() != NULL) {
2961       switch (static_subtype_check(tk->klass(), objtp->klass())) {
2962       case SSC_always_true:
2963         // If we know the type check always succeed then we don't use
2964         // the profiling data at this bytecode. Don't lose it, feed it
2965         // to the type system as a speculative type.
2966         return record_profiled_receiver_for_speculation(obj);
2967       case SSC_always_false:
2968         // It needs a null check because a null will *pass* the cast check.
2969         // A non-null value will always produce an exception.
2970         return null_assert(obj);
2971       }
2972     }
2973   }
2974 
2975   ciProfileData* data = NULL;
2976   bool safe_for_replace = false;
2977   if (failure_control == NULL) {        // use MDO in regular case only
2978     assert(java_bc() == Bytecodes::_aastore ||
2979            java_bc() == Bytecodes::_checkcast,
2980            "interpreter profiles type checks only for these BCs");
2981     data = method()->method_data()->bci_to_data(bci());
2982     safe_for_replace = true;
2983   }
2984 
2985   // Make the merge point
2986   enum { _obj_path = 1, _null_path, PATH_LIMIT };
2987   RegionNode* region = new (C) RegionNode(PATH_LIMIT);
2988   Node*       phi    = new (C) PhiNode(region, toop);
2989   C->set_has_split_ifs(true); // Has chance for split-if optimization
2990 
2991   // Use null-cast information if it is available
2992   bool never_see_null = ((failure_control == NULL)  // regular case only
2993                          && seems_never_null(obj, data));
2994 
2995   // Null check; get casted pointer; set region slot 3
2996   Node* null_ctl = top();
2997   Node* not_null_obj = null_check_oop(obj, &null_ctl, never_see_null, safe_for_replace);
2998 
2999   // If not_null_obj is dead, only null-path is taken
3000   if (stopped()) {              // Doing instance-of on a NULL?
3001     set_control(null_ctl);
3002     return null();
3003   }
3004   region->init_req(_null_path, null_ctl);
3005   phi   ->init_req(_null_path, null());  // Set null path value
3006   if (null_ctl == top()) {
3007     // Do this eagerly, so that pattern matches like is_diamond_phi
3008     // will work even during parsing.
3009     assert(_null_path == PATH_LIMIT-1, "delete last");
3010     region->del_req(_null_path);
3011     phi   ->del_req(_null_path);
3012   }
3013 
3014   Node* cast_obj = NULL;
3015   if (tk->klass_is_exact()) {
3016     // The following optimization tries to statically cast the speculative type of the object
3017     // (for example obtained during profiling) to the type of the superklass and then do a
3018     // dynamic check that the type of the object is what we expect. To work correctly
3019     // for checkcast and aastore the type of superklass should be exact.
3020     const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr();
3021     // We may not have profiling here or it may not help us. If we have
3022     // a speculative type use it to perform an exact cast.
3023     ciKlass* spec_obj_type = obj_type->speculative_type();
3024     if (spec_obj_type != NULL ||
3025         (data != NULL &&
3026          // Counter has never been decremented (due to cast failure).
3027          // ...This is a reasonable thing to expect.  It is true of
3028          // all casts inserted by javac to implement generic types.
3029          data->as_CounterData()->count() >= 0)) {
3030       cast_obj = maybe_cast_profiled_receiver(not_null_obj, tk->klass(), spec_obj_type, safe_for_replace);
3031       if (cast_obj != NULL) {
3032         if (failure_control != NULL) // failure is now impossible
3033           (*failure_control) = top();
3034         // adjust the type of the phi to the exact klass:
3035         phi->raise_bottom_type(_gvn.type(cast_obj)->meet_speculative(TypePtr::NULL_PTR));
3036       }
3037     }
3038   }
3039 
3040   if (cast_obj == NULL) {
3041     // Load the object's klass
3042     Node* obj_klass = load_object_klass(not_null_obj);
3043 
3044     // Generate the subtype check
3045     Node* not_subtype_ctrl = gen_subtype_check( obj_klass, superklass );
3046 
3047     // Plug in success path into the merge
3048     cast_obj = _gvn.transform(new (C) CheckCastPPNode(control(),
3049                                                          not_null_obj, toop));
3050     // Failure path ends in uncommon trap (or may be dead - failure impossible)
3051     if (failure_control == NULL) {
3052       if (not_subtype_ctrl != top()) { // If failure is possible
3053         PreserveJVMState pjvms(this);
3054         set_control(not_subtype_ctrl);
3055         builtin_throw(Deoptimization::Reason_class_check, obj_klass);
3056       }
3057     } else {
3058       (*failure_control) = not_subtype_ctrl;
3059     }
3060   }
3061 
3062   region->init_req(_obj_path, control());
3063   phi   ->init_req(_obj_path, cast_obj);
3064 
3065   // A merge of NULL or Casted-NotNull obj
3066   Node* res = _gvn.transform(phi);
3067 
3068   // Note I do NOT always 'replace_in_map(obj,result)' here.
3069   //  if( tk->klass()->can_be_primary_super()  )
3070     // This means that if I successfully store an Object into an array-of-String
3071     // I 'forget' that the Object is really now known to be a String.  I have to
3072     // do this because we don't have true union types for interfaces - if I store
3073     // a Baz into an array-of-Interface and then tell the optimizer it's an
3074     // Interface, I forget that it's also a Baz and cannot do Baz-like field
3075     // references to it.  FIX THIS WHEN UNION TYPES APPEAR!
3076   //  replace_in_map( obj, res );
3077 
3078   // Return final merged results
3079   set_control( _gvn.transform(region) );
3080   record_for_igvn(region);
3081   return res;
3082 }
3083 
3084 //------------------------------next_monitor-----------------------------------
3085 // What number should be given to the next monitor?
3086 int GraphKit::next_monitor() {
3087   int current = jvms()->monitor_depth()* C->sync_stack_slots();
3088   int next = current + C->sync_stack_slots();
3089   // Keep the toplevel high water mark current:
3090   if (C->fixed_slots() < next)  C->set_fixed_slots(next);
3091   return current;
3092 }
3093 
3094 //------------------------------insert_mem_bar---------------------------------
3095 // Memory barrier to avoid floating things around
3096 // The membar serves as a pinch point between both control and all memory slices.
3097 Node* GraphKit::insert_mem_bar(int opcode, Node* precedent) {
3098   MemBarNode* mb = MemBarNode::make(C, opcode, Compile::AliasIdxBot, precedent);
3099   mb->init_req(TypeFunc::Control, control());
3100   mb->init_req(TypeFunc::Memory,  reset_memory());
3101   Node* membar = _gvn.transform(mb);
3102   set_control(_gvn.transform(new (C) ProjNode(membar, TypeFunc::Control)));
3103   set_all_memory_call(membar);
3104   return membar;
3105 }
3106 
3107 //-------------------------insert_mem_bar_volatile----------------------------
3108 // Memory barrier to avoid floating things around
3109 // The membar serves as a pinch point between both control and memory(alias_idx).
3110 // If you want to make a pinch point on all memory slices, do not use this
3111 // function (even with AliasIdxBot); use insert_mem_bar() instead.
3112 Node* GraphKit::insert_mem_bar_volatile(int opcode, int alias_idx, Node* precedent) {
3113   // When Parse::do_put_xxx updates a volatile field, it appends a series
3114   // of MemBarVolatile nodes, one for *each* volatile field alias category.
3115   // The first membar is on the same memory slice as the field store opcode.
3116   // This forces the membar to follow the store.  (Bug 6500685 broke this.)
3117   // All the other membars (for other volatile slices, including AliasIdxBot,
3118   // which stands for all unknown volatile slices) are control-dependent
3119   // on the first membar.  This prevents later volatile loads or stores
3120   // from sliding up past the just-emitted store.
3121 
3122   MemBarNode* mb = MemBarNode::make(C, opcode, alias_idx, precedent);
3123   mb->set_req(TypeFunc::Control,control());
3124   if (alias_idx == Compile::AliasIdxBot) {
3125     mb->set_req(TypeFunc::Memory, merged_memory()->base_memory());
3126   } else {
3127     assert(!(opcode == Op_Initialize && alias_idx != Compile::AliasIdxRaw), "fix caller");
3128     mb->set_req(TypeFunc::Memory, memory(alias_idx));
3129   }
3130   Node* membar = _gvn.transform(mb);
3131   set_control(_gvn.transform(new (C) ProjNode(membar, TypeFunc::Control)));
3132   if (alias_idx == Compile::AliasIdxBot) {
3133     merged_memory()->set_base_memory(_gvn.transform(new (C) ProjNode(membar, TypeFunc::Memory)));
3134   } else {
3135     set_memory(_gvn.transform(new (C) ProjNode(membar, TypeFunc::Memory)),alias_idx);
3136   }
3137   return membar;
3138 }
3139 
3140 //------------------------------shared_lock------------------------------------
3141 // Emit locking code.
3142 FastLockNode* GraphKit::shared_lock(Node* obj) {
3143   // bci is either a monitorenter bc or InvocationEntryBci
3144   // %%% SynchronizationEntryBCI is redundant; use InvocationEntryBci in interfaces
3145   assert(SynchronizationEntryBCI == InvocationEntryBci, "");
3146 
3147   if( !GenerateSynchronizationCode )
3148     return NULL;                // Not locking things?
3149   if (stopped())                // Dead monitor?
3150     return NULL;
3151 
3152   assert(dead_locals_are_killed(), "should kill locals before sync. point");
3153 
3154   // Box the stack location
3155   Node* box = _gvn.transform(new (C) BoxLockNode(next_monitor()));
3156   Node* mem = reset_memory();
3157 
3158   FastLockNode * flock = _gvn.transform(new (C) FastLockNode(0, obj, box) )->as_FastLock();
3159   if (PrintPreciseBiasedLockingStatistics) {
3160     // Create the counters for this fast lock.
3161     flock->create_lock_counter(sync_jvms()); // sync_jvms used to get current bci
3162   }
3163   // Add monitor to debug info for the slow path.  If we block inside the
3164   // slow path and de-opt, we need the monitor hanging around
3165   map()->push_monitor( flock );
3166 
3167   const TypeFunc *tf = LockNode::lock_type();
3168   LockNode *lock = new (C) LockNode(C, tf);
3169 
3170   lock->init_req( TypeFunc::Control, control() );
3171   lock->init_req( TypeFunc::Memory , mem );
3172   lock->init_req( TypeFunc::I_O    , top() )     ;   // does no i/o
3173   lock->init_req( TypeFunc::FramePtr, frameptr() );
3174   lock->init_req( TypeFunc::ReturnAdr, top() );
3175 
3176   lock->init_req(TypeFunc::Parms + 0, obj);
3177   lock->init_req(TypeFunc::Parms + 1, box);
3178   lock->init_req(TypeFunc::Parms + 2, flock);
3179   add_safepoint_edges(lock);
3180 
3181   lock = _gvn.transform( lock )->as_Lock();
3182 
3183   // lock has no side-effects, sets few values
3184   set_predefined_output_for_runtime_call(lock, mem, TypeRawPtr::BOTTOM);
3185 
3186   insert_mem_bar(Op_MemBarAcquireLock);
3187 
3188   // Add this to the worklist so that the lock can be eliminated
3189   record_for_igvn(lock);
3190 
3191 #ifndef PRODUCT
3192   if (PrintLockStatistics) {
3193     // Update the counter for this lock.  Don't bother using an atomic
3194     // operation since we don't require absolute accuracy.
3195     lock->create_lock_counter(map()->jvms());
3196     increment_counter(lock->counter()->addr());
3197   }
3198 #endif
3199 
3200   return flock;
3201 }
3202 
3203 
3204 //------------------------------shared_unlock----------------------------------
3205 // Emit unlocking code.
3206 void GraphKit::shared_unlock(Node* box, Node* obj) {
3207   // bci is either a monitorenter bc or InvocationEntryBci
3208   // %%% SynchronizationEntryBCI is redundant; use InvocationEntryBci in interfaces
3209   assert(SynchronizationEntryBCI == InvocationEntryBci, "");
3210 
3211   if( !GenerateSynchronizationCode )
3212     return;
3213   if (stopped()) {               // Dead monitor?
3214     map()->pop_monitor();        // Kill monitor from debug info
3215     return;
3216   }
3217 
3218   // Memory barrier to avoid floating things down past the locked region
3219   insert_mem_bar(Op_MemBarReleaseLock);
3220 
3221   const TypeFunc *tf = OptoRuntime::complete_monitor_exit_Type();
3222   UnlockNode *unlock = new (C) UnlockNode(C, tf);
3223   uint raw_idx = Compile::AliasIdxRaw;
3224   unlock->init_req( TypeFunc::Control, control() );
3225   unlock->init_req( TypeFunc::Memory , memory(raw_idx) );
3226   unlock->init_req( TypeFunc::I_O    , top() )     ;   // does no i/o
3227   unlock->init_req( TypeFunc::FramePtr, frameptr() );
3228   unlock->init_req( TypeFunc::ReturnAdr, top() );
3229 
3230   unlock->init_req(TypeFunc::Parms + 0, obj);
3231   unlock->init_req(TypeFunc::Parms + 1, box);
3232   unlock = _gvn.transform(unlock)->as_Unlock();
3233 
3234   Node* mem = reset_memory();
3235 
3236   // unlock has no side-effects, sets few values
3237   set_predefined_output_for_runtime_call(unlock, mem, TypeRawPtr::BOTTOM);
3238 
3239   // Kill monitor from debug info
3240   map()->pop_monitor( );
3241 }
3242 
3243 //-------------------------------get_layout_helper-----------------------------
3244 // If the given klass is a constant or known to be an array,
3245 // fetch the constant layout helper value into constant_value
3246 // and return (Node*)NULL.  Otherwise, load the non-constant
3247 // layout helper value, and return the node which represents it.
3248 // This two-faced routine is useful because allocation sites
3249 // almost always feature constant types.
3250 Node* GraphKit::get_layout_helper(Node* klass_node, jint& constant_value) {
3251   const TypeKlassPtr* inst_klass = _gvn.type(klass_node)->isa_klassptr();
3252   if (!StressReflectiveCode && inst_klass != NULL) {
3253     ciKlass* klass = inst_klass->klass();
3254     bool    xklass = inst_klass->klass_is_exact();
3255     if (xklass || klass->is_array_klass()) {
3256       jint lhelper = klass->layout_helper();
3257       if (lhelper != Klass::_lh_neutral_value) {
3258         constant_value = lhelper;
3259         return (Node*) NULL;
3260       }
3261     }
3262   }
3263   constant_value = Klass::_lh_neutral_value;  // put in a known value
3264   Node* lhp = basic_plus_adr(klass_node, klass_node, in_bytes(Klass::layout_helper_offset()));
3265   return make_load(NULL, lhp, TypeInt::INT, T_INT, MemNode::unordered);
3266 }
3267 
3268 // We just put in an allocate/initialize with a big raw-memory effect.
3269 // Hook selected additional alias categories on the initialization.
3270 static void hook_memory_on_init(GraphKit& kit, int alias_idx,
3271                                 MergeMemNode* init_in_merge,
3272                                 Node* init_out_raw) {
3273   DEBUG_ONLY(Node* init_in_raw = init_in_merge->base_memory());
3274   assert(init_in_merge->memory_at(alias_idx) == init_in_raw, "");
3275 
3276   Node* prevmem = kit.memory(alias_idx);
3277   init_in_merge->set_memory_at(alias_idx, prevmem);
3278   kit.set_memory(init_out_raw, alias_idx);
3279 }
3280 
3281 //---------------------------set_output_for_allocation-------------------------
3282 Node* GraphKit::set_output_for_allocation(AllocateNode* alloc,
3283                                           const TypeOopPtr* oop_type) {
3284   int rawidx = Compile::AliasIdxRaw;
3285   alloc->set_req( TypeFunc::FramePtr, frameptr() );
3286   add_safepoint_edges(alloc);
3287   Node* allocx = _gvn.transform(alloc);
3288   set_control( _gvn.transform(new (C) ProjNode(allocx, TypeFunc::Control) ) );
3289   // create memory projection for i_o
3290   set_memory ( _gvn.transform( new (C) ProjNode(allocx, TypeFunc::Memory, true) ), rawidx );
3291   make_slow_call_ex(allocx, env()->Throwable_klass(), true);
3292 
3293   // create a memory projection as for the normal control path
3294   Node* malloc = _gvn.transform(new (C) ProjNode(allocx, TypeFunc::Memory));
3295   set_memory(malloc, rawidx);
3296 
3297   // a normal slow-call doesn't change i_o, but an allocation does
3298   // we create a separate i_o projection for the normal control path
3299   set_i_o(_gvn.transform( new (C) ProjNode(allocx, TypeFunc::I_O, false) ) );
3300   Node* rawoop = _gvn.transform( new (C) ProjNode(allocx, TypeFunc::Parms) );
3301 
3302   // put in an initialization barrier
3303   InitializeNode* init = insert_mem_bar_volatile(Op_Initialize, rawidx,
3304                                                  rawoop)->as_Initialize();
3305   assert(alloc->initialization() == init,  "2-way macro link must work");
3306   assert(init ->allocation()     == alloc, "2-way macro link must work");
3307   {
3308     // Extract memory strands which may participate in the new object's
3309     // initialization, and source them from the new InitializeNode.
3310     // This will allow us to observe initializations when they occur,
3311     // and link them properly (as a group) to the InitializeNode.
3312     assert(init->in(InitializeNode::Memory) == malloc, "");
3313     MergeMemNode* minit_in = MergeMemNode::make(C, malloc);
3314     init->set_req(InitializeNode::Memory, minit_in);
3315     record_for_igvn(minit_in); // fold it up later, if possible
3316     Node* minit_out = memory(rawidx);
3317     assert(minit_out->is_Proj() && minit_out->in(0) == init, "");
3318     if (oop_type->isa_aryptr()) {
3319       const TypePtr* telemref = oop_type->add_offset(Type::OffsetBot);
3320       int            elemidx  = C->get_alias_index(telemref);
3321       hook_memory_on_init(*this, elemidx, minit_in, minit_out);
3322     } else if (oop_type->isa_instptr()) {
3323       ciInstanceKlass* ik = oop_type->klass()->as_instance_klass();
3324       for (int i = 0, len = ik->nof_nonstatic_fields(); i < len; i++) {
3325         ciField* field = ik->nonstatic_field_at(i);
3326         if (field->offset() >= TrackedInitializationLimit * HeapWordSize)
3327           continue;  // do not bother to track really large numbers of fields
3328         // Find (or create) the alias category for this field:
3329         int fieldidx = C->alias_type(field)->index();
3330         hook_memory_on_init(*this, fieldidx, minit_in, minit_out);
3331       }
3332     }
3333   }
3334 
3335   // Cast raw oop to the real thing...
3336   Node* javaoop = new (C) CheckCastPPNode(control(), rawoop, oop_type);
3337   javaoop = _gvn.transform(javaoop);
3338   C->set_recent_alloc(control(), javaoop);
3339   assert(just_allocated_object(control()) == javaoop, "just allocated");
3340 
3341 #ifdef ASSERT
3342   { // Verify that the AllocateNode::Ideal_allocation recognizers work:
3343     assert(AllocateNode::Ideal_allocation(rawoop, &_gvn) == alloc,
3344            "Ideal_allocation works");
3345     assert(AllocateNode::Ideal_allocation(javaoop, &_gvn) == alloc,
3346            "Ideal_allocation works");
3347     if (alloc->is_AllocateArray()) {
3348       assert(AllocateArrayNode::Ideal_array_allocation(rawoop, &_gvn) == alloc->as_AllocateArray(),
3349              "Ideal_allocation works");
3350       assert(AllocateArrayNode::Ideal_array_allocation(javaoop, &_gvn) == alloc->as_AllocateArray(),
3351              "Ideal_allocation works");
3352     } else {
3353       assert(alloc->in(AllocateNode::ALength)->is_top(), "no length, please");
3354     }
3355   }
3356 #endif //ASSERT
3357 
3358   return javaoop;
3359 }
3360 
3361 //---------------------------new_instance--------------------------------------
3362 // This routine takes a klass_node which may be constant (for a static type)
3363 // or may be non-constant (for reflective code).  It will work equally well
3364 // for either, and the graph will fold nicely if the optimizer later reduces
3365 // the type to a constant.
3366 // The optional arguments are for specialized use by intrinsics:
3367 //  - If 'extra_slow_test' if not null is an extra condition for the slow-path.
3368 //  - If 'return_size_val', report the the total object size to the caller.
3369 Node* GraphKit::new_instance(Node* klass_node,
3370                              Node* extra_slow_test,
3371                              Node* *return_size_val) {
3372   // Compute size in doublewords
3373   // The size is always an integral number of doublewords, represented
3374   // as a positive bytewise size stored in the klass's layout_helper.
3375   // The layout_helper also encodes (in a low bit) the need for a slow path.
3376   jint  layout_con = Klass::_lh_neutral_value;
3377   Node* layout_val = get_layout_helper(klass_node, layout_con);
3378   int   layout_is_con = (layout_val == NULL);
3379 
3380   if (extra_slow_test == NULL)  extra_slow_test = intcon(0);
3381   // Generate the initial go-slow test.  It's either ALWAYS (return a
3382   // Node for 1) or NEVER (return a NULL) or perhaps (in the reflective
3383   // case) a computed value derived from the layout_helper.
3384   Node* initial_slow_test = NULL;
3385   if (layout_is_con) {
3386     assert(!StressReflectiveCode, "stress mode does not use these paths");
3387     bool must_go_slow = Klass::layout_helper_needs_slow_path(layout_con);
3388     initial_slow_test = must_go_slow? intcon(1): extra_slow_test;
3389 
3390   } else {   // reflective case
3391     // This reflective path is used by Unsafe.allocateInstance.
3392     // (It may be stress-tested by specifying StressReflectiveCode.)
3393     // Basically, we want to get into the VM is there's an illegal argument.
3394     Node* bit = intcon(Klass::_lh_instance_slow_path_bit);
3395     initial_slow_test = _gvn.transform( new (C) AndINode(layout_val, bit) );
3396     if (extra_slow_test != intcon(0)) {
3397       initial_slow_test = _gvn.transform( new (C) OrINode(initial_slow_test, extra_slow_test) );
3398     }
3399     // (Macro-expander will further convert this to a Bool, if necessary.)
3400   }
3401 
3402   // Find the size in bytes.  This is easy; it's the layout_helper.
3403   // The size value must be valid even if the slow path is taken.
3404   Node* size = NULL;
3405   if (layout_is_con) {
3406     size = MakeConX(Klass::layout_helper_size_in_bytes(layout_con));
3407   } else {   // reflective case
3408     // This reflective path is used by clone and Unsafe.allocateInstance.
3409     size = ConvI2X(layout_val);
3410 
3411     // Clear the low bits to extract layout_helper_size_in_bytes:
3412     assert((int)Klass::_lh_instance_slow_path_bit < BytesPerLong, "clear bit");
3413     Node* mask = MakeConX(~ (intptr_t)right_n_bits(LogBytesPerLong));
3414     size = _gvn.transform( new (C) AndXNode(size, mask) );
3415   }
3416   if (return_size_val != NULL) {
3417     (*return_size_val) = size;
3418   }
3419 
3420   // This is a precise notnull oop of the klass.
3421   // (Actually, it need not be precise if this is a reflective allocation.)
3422   // It's what we cast the result to.
3423   const TypeKlassPtr* tklass = _gvn.type(klass_node)->isa_klassptr();
3424   if (!tklass)  tklass = TypeKlassPtr::OBJECT;
3425   const TypeOopPtr* oop_type = tklass->as_instance_type();
3426 
3427   // Now generate allocation code
3428 
3429   // The entire memory state is needed for slow path of the allocation
3430   // since GC and deoptimization can happened.
3431   Node *mem = reset_memory();
3432   set_all_memory(mem); // Create new memory state
3433 
3434   AllocateNode* alloc
3435     = new (C) AllocateNode(C, AllocateNode::alloc_type(Type::TOP),
3436                            control(), mem, i_o(),
3437                            size, klass_node,
3438                            initial_slow_test);
3439 
3440   return set_output_for_allocation(alloc, oop_type);
3441 }
3442 
3443 //-------------------------------new_array-------------------------------------
3444 // helper for both newarray and anewarray
3445 // The 'length' parameter is (obviously) the length of the array.
3446 // See comments on new_instance for the meaning of the other arguments.
3447 Node* GraphKit::new_array(Node* klass_node,     // array klass (maybe variable)
3448                           Node* length,         // number of array elements
3449                           int   nargs,          // number of arguments to push back for uncommon trap
3450                           Node* *return_size_val) {
3451   jint  layout_con = Klass::_lh_neutral_value;
3452   Node* layout_val = get_layout_helper(klass_node, layout_con);
3453   int   layout_is_con = (layout_val == NULL);
3454 
3455   if (!layout_is_con && !StressReflectiveCode &&
3456       !too_many_traps(Deoptimization::Reason_class_check)) {
3457     // This is a reflective array creation site.
3458     // Optimistically assume that it is a subtype of Object[],
3459     // so that we can fold up all the address arithmetic.
3460     layout_con = Klass::array_layout_helper(T_OBJECT);
3461     Node* cmp_lh = _gvn.transform( new(C) CmpINode(layout_val, intcon(layout_con)) );
3462     Node* bol_lh = _gvn.transform( new(C) BoolNode(cmp_lh, BoolTest::eq) );
3463     { BuildCutout unless(this, bol_lh, PROB_MAX);
3464       inc_sp(nargs);
3465       uncommon_trap(Deoptimization::Reason_class_check,
3466                     Deoptimization::Action_maybe_recompile);
3467     }
3468     layout_val = NULL;
3469     layout_is_con = true;
3470   }
3471 
3472   // Generate the initial go-slow test.  Make sure we do not overflow
3473   // if length is huge (near 2Gig) or negative!  We do not need
3474   // exact double-words here, just a close approximation of needed
3475   // double-words.  We can't add any offset or rounding bits, lest we
3476   // take a size -1 of bytes and make it positive.  Use an unsigned
3477   // compare, so negative sizes look hugely positive.
3478   int fast_size_limit = FastAllocateSizeLimit;
3479   if (layout_is_con) {
3480     assert(!StressReflectiveCode, "stress mode does not use these paths");
3481     // Increase the size limit if we have exact knowledge of array type.
3482     int log2_esize = Klass::layout_helper_log2_element_size(layout_con);
3483     fast_size_limit <<= (LogBytesPerLong - log2_esize);
3484   }
3485 
3486   Node* initial_slow_cmp  = _gvn.transform( new (C) CmpUNode( length, intcon( fast_size_limit ) ) );
3487   Node* initial_slow_test = _gvn.transform( new (C) BoolNode( initial_slow_cmp, BoolTest::gt ) );
3488   if (initial_slow_test->is_Bool()) {
3489     // Hide it behind a CMoveI, or else PhaseIdealLoop::split_up will get sick.
3490     initial_slow_test = initial_slow_test->as_Bool()->as_int_value(&_gvn);
3491   }
3492 
3493   // --- Size Computation ---
3494   // array_size = round_to_heap(array_header + (length << elem_shift));
3495   // where round_to_heap(x) == round_to(x, MinObjAlignmentInBytes)
3496   // and round_to(x, y) == ((x + y-1) & ~(y-1))
3497   // The rounding mask is strength-reduced, if possible.
3498   int round_mask = MinObjAlignmentInBytes - 1;
3499   Node* header_size = NULL;
3500   int   header_size_min  = arrayOopDesc::base_offset_in_bytes(T_BYTE);
3501   // (T_BYTE has the weakest alignment and size restrictions...)
3502   if (layout_is_con) {
3503     int       hsize  = Klass::layout_helper_header_size(layout_con);
3504     int       eshift = Klass::layout_helper_log2_element_size(layout_con);
3505     BasicType etype  = Klass::layout_helper_element_type(layout_con);
3506     if ((round_mask & ~right_n_bits(eshift)) == 0)
3507       round_mask = 0;  // strength-reduce it if it goes away completely
3508     assert((hsize & right_n_bits(eshift)) == 0, "hsize is pre-rounded");
3509     assert(header_size_min <= hsize, "generic minimum is smallest");
3510     header_size_min = hsize;
3511     header_size = intcon(hsize + round_mask);
3512   } else {
3513     Node* hss   = intcon(Klass::_lh_header_size_shift);
3514     Node* hsm   = intcon(Klass::_lh_header_size_mask);
3515     Node* hsize = _gvn.transform( new(C) URShiftINode(layout_val, hss) );
3516     hsize       = _gvn.transform( new(C) AndINode(hsize, hsm) );
3517     Node* mask  = intcon(round_mask);
3518     header_size = _gvn.transform( new(C) AddINode(hsize, mask) );
3519   }
3520 
3521   Node* elem_shift = NULL;
3522   if (layout_is_con) {
3523     int eshift = Klass::layout_helper_log2_element_size(layout_con);
3524     if (eshift != 0)
3525       elem_shift = intcon(eshift);
3526   } else {
3527     // There is no need to mask or shift this value.
3528     // The semantics of LShiftINode include an implicit mask to 0x1F.
3529     assert(Klass::_lh_log2_element_size_shift == 0, "use shift in place");
3530     elem_shift = layout_val;
3531   }
3532 
3533   // Transition to native address size for all offset calculations:
3534   Node* lengthx = ConvI2X(length);
3535   Node* headerx = ConvI2X(header_size);
3536 #ifdef _LP64
3537   { const TypeLong* tllen = _gvn.find_long_type(lengthx);
3538     if (tllen != NULL && tllen->_lo < 0) {
3539       // Add a manual constraint to a positive range.  Cf. array_element_address.
3540       jlong size_max = arrayOopDesc::max_array_length(T_BYTE);
3541       if (size_max > tllen->_hi)  size_max = tllen->_hi;
3542       const TypeLong* tlcon = TypeLong::make(CONST64(0), size_max, Type::WidenMin);
3543       lengthx = _gvn.transform( new (C) ConvI2LNode(length, tlcon));
3544     }
3545   }
3546 #endif
3547 
3548   // Combine header size (plus rounding) and body size.  Then round down.
3549   // This computation cannot overflow, because it is used only in two
3550   // places, one where the length is sharply limited, and the other
3551   // after a successful allocation.
3552   Node* abody = lengthx;
3553   if (elem_shift != NULL)
3554     abody     = _gvn.transform( new(C) LShiftXNode(lengthx, elem_shift) );
3555   Node* size  = _gvn.transform( new(C) AddXNode(headerx, abody) );
3556   if (round_mask != 0) {
3557     Node* mask = MakeConX(~round_mask);
3558     size       = _gvn.transform( new(C) AndXNode(size, mask) );
3559   }
3560   // else if round_mask == 0, the size computation is self-rounding
3561 
3562   if (return_size_val != NULL) {
3563     // This is the size
3564     (*return_size_val) = size;
3565   }
3566 
3567   // Now generate allocation code
3568 
3569   // The entire memory state is needed for slow path of the allocation
3570   // since GC and deoptimization can happened.
3571   Node *mem = reset_memory();
3572   set_all_memory(mem); // Create new memory state
3573 
3574   // Create the AllocateArrayNode and its result projections
3575   AllocateArrayNode* alloc
3576     = new (C) AllocateArrayNode(C, AllocateArrayNode::alloc_type(TypeInt::INT),
3577                                 control(), mem, i_o(),
3578                                 size, klass_node,
3579                                 initial_slow_test,
3580                                 length);
3581 
3582   // Cast to correct type.  Note that the klass_node may be constant or not,
3583   // and in the latter case the actual array type will be inexact also.
3584   // (This happens via a non-constant argument to inline_native_newArray.)
3585   // In any case, the value of klass_node provides the desired array type.
3586   const TypeInt* length_type = _gvn.find_int_type(length);
3587   const TypeOopPtr* ary_type = _gvn.type(klass_node)->is_klassptr()->as_instance_type();
3588   if (ary_type->isa_aryptr() && length_type != NULL) {
3589     // Try to get a better type than POS for the size
3590     ary_type = ary_type->is_aryptr()->cast_to_size(length_type);
3591   }
3592 
3593   Node* javaoop = set_output_for_allocation(alloc, ary_type);
3594 
3595   // Cast length on remaining path to be as narrow as possible
3596   if (map()->find_edge(length) >= 0) {
3597     Node* ccast = alloc->make_ideal_length(ary_type, &_gvn);
3598     if (ccast != length) {
3599       _gvn.set_type_bottom(ccast);
3600       record_for_igvn(ccast);
3601       replace_in_map(length, ccast);
3602     }
3603   }
3604 
3605   return javaoop;
3606 }
3607 
3608 // The following "Ideal_foo" functions are placed here because they recognize
3609 // the graph shapes created by the functions immediately above.
3610 
3611 //---------------------------Ideal_allocation----------------------------------
3612 // Given an oop pointer or raw pointer, see if it feeds from an AllocateNode.
3613 AllocateNode* AllocateNode::Ideal_allocation(Node* ptr, PhaseTransform* phase) {
3614   if (ptr == NULL) {     // reduce dumb test in callers
3615     return NULL;
3616   }
3617   if (ptr->is_CheckCastPP()) { // strip only one raw-to-oop cast
3618     ptr = ptr->in(1);
3619     if (ptr == NULL) return NULL;
3620   }
3621   // Return NULL for allocations with several casts:
3622   //   j.l.reflect.Array.newInstance(jobject, jint)
3623   //   Object.clone()
3624   // to keep more precise type from last cast.
3625   if (ptr->is_Proj()) {
3626     Node* allo = ptr->in(0);
3627     if (allo != NULL && allo->is_Allocate()) {
3628       return allo->as_Allocate();
3629     }
3630   }
3631   // Report failure to match.
3632   return NULL;
3633 }
3634 
3635 // Fancy version which also strips off an offset (and reports it to caller).
3636 AllocateNode* AllocateNode::Ideal_allocation(Node* ptr, PhaseTransform* phase,
3637                                              intptr_t& offset) {
3638   Node* base = AddPNode::Ideal_base_and_offset(ptr, phase, offset);
3639   if (base == NULL)  return NULL;
3640   return Ideal_allocation(base, phase);
3641 }
3642 
3643 // Trace Initialize <- Proj[Parm] <- Allocate
3644 AllocateNode* InitializeNode::allocation() {
3645   Node* rawoop = in(InitializeNode::RawAddress);
3646   if (rawoop->is_Proj()) {
3647     Node* alloc = rawoop->in(0);
3648     if (alloc->is_Allocate()) {
3649       return alloc->as_Allocate();
3650     }
3651   }
3652   return NULL;
3653 }
3654 
3655 // Trace Allocate -> Proj[Parm] -> Initialize
3656 InitializeNode* AllocateNode::initialization() {
3657   ProjNode* rawoop = proj_out(AllocateNode::RawAddress);
3658   if (rawoop == NULL)  return NULL;
3659   for (DUIterator_Fast imax, i = rawoop->fast_outs(imax); i < imax; i++) {
3660     Node* init = rawoop->fast_out(i);
3661     if (init->is_Initialize()) {
3662       assert(init->as_Initialize()->allocation() == this, "2-way link");
3663       return init->as_Initialize();
3664     }
3665   }
3666   return NULL;
3667 }
3668 
3669 //----------------------------- loop predicates ---------------------------
3670 
3671 //------------------------------add_predicate_impl----------------------------
3672 void GraphKit::add_predicate_impl(Deoptimization::DeoptReason reason, int nargs) {
3673   // Too many traps seen?
3674   if (too_many_traps(reason)) {
3675 #ifdef ASSERT
3676     if (TraceLoopPredicate) {
3677       int tc = C->trap_count(reason);
3678       tty->print("too many traps=%s tcount=%d in ",
3679                     Deoptimization::trap_reason_name(reason), tc);
3680       method()->print(); // which method has too many predicate traps
3681       tty->cr();
3682     }
3683 #endif
3684     // We cannot afford to take more traps here,
3685     // do not generate predicate.
3686     return;
3687   }
3688 
3689   Node *cont    = _gvn.intcon(1);
3690   Node* opq     = _gvn.transform(new (C) Opaque1Node(C, cont));
3691   Node *bol     = _gvn.transform(new (C) Conv2BNode(opq));
3692   IfNode* iff   = create_and_map_if(control(), bol, PROB_MAX, COUNT_UNKNOWN);
3693   Node* iffalse = _gvn.transform(new (C) IfFalseNode(iff));
3694   C->add_predicate_opaq(opq);
3695   {
3696     PreserveJVMState pjvms(this);
3697     set_control(iffalse);
3698     inc_sp(nargs);
3699     uncommon_trap(reason, Deoptimization::Action_maybe_recompile);
3700   }
3701   Node* iftrue = _gvn.transform(new (C) IfTrueNode(iff));
3702   set_control(iftrue);
3703 }
3704 
3705 //------------------------------add_predicate---------------------------------
3706 void GraphKit::add_predicate(int nargs) {
3707   if (UseLoopPredicate) {
3708     add_predicate_impl(Deoptimization::Reason_predicate, nargs);
3709   }
3710   // loop's limit check predicate should be near the loop.
3711   if (LoopLimitCheck) {
3712     add_predicate_impl(Deoptimization::Reason_loop_limit_check, nargs);
3713   }
3714 }
3715 
3716 //----------------------------- store barriers ----------------------------
3717 #define __ ideal.
3718 
3719 void GraphKit::sync_kit(IdealKit& ideal) {
3720   set_all_memory(__ merged_memory());
3721   set_i_o(__ i_o());
3722   set_control(__ ctrl());
3723 }
3724 
3725 void GraphKit::final_sync(IdealKit& ideal) {
3726   // Final sync IdealKit and graphKit.
3727   sync_kit(ideal);
3728 }
3729 
3730 // vanilla/CMS post barrier
3731 // Insert a write-barrier store.  This is to let generational GC work; we have
3732 // to flag all oop-stores before the next GC point.
3733 void GraphKit::write_barrier_post(Node* oop_store,
3734                                   Node* obj,
3735                                   Node* adr,
3736                                   uint  adr_idx,
3737                                   Node* val,
3738                                   bool use_precise) {
3739   // No store check needed if we're storing a NULL or an old object
3740   // (latter case is probably a string constant). The concurrent
3741   // mark sweep garbage collector, however, needs to have all nonNull
3742   // oop updates flagged via card-marks.
3743   if (val != NULL && val->is_Con()) {
3744     // must be either an oop or NULL
3745     const Type* t = val->bottom_type();
3746     if (t == TypePtr::NULL_PTR || t == Type::TOP)
3747       // stores of null never (?) need barriers
3748       return;
3749   }
3750 
3751   if (use_ReduceInitialCardMarks()
3752       && obj == just_allocated_object(control())) {
3753     // We can skip marks on a freshly-allocated object in Eden.
3754     // Keep this code in sync with new_store_pre_barrier() in runtime.cpp.
3755     // That routine informs GC to take appropriate compensating steps,
3756     // upon a slow-path allocation, so as to make this card-mark
3757     // elision safe.
3758     return;
3759   }
3760 
3761   if (!use_precise) {
3762     // All card marks for a (non-array) instance are in one place:
3763     adr = obj;
3764   }
3765   // (Else it's an array (or unknown), and we want more precise card marks.)
3766   assert(adr != NULL, "");
3767 
3768   IdealKit ideal(this, true);
3769 
3770   // Convert the pointer to an int prior to doing math on it
3771   Node* cast = __ CastPX(__ ctrl(), adr);
3772 
3773   // Divide by card size
3774   assert(Universe::heap()->barrier_set()->kind() == BarrierSet::CardTableModRef,
3775          "Only one we handle so far.");
3776   Node* card_offset = __ URShiftX( cast, __ ConI(CardTableModRefBS::card_shift) );
3777 
3778   // Combine card table base and card offset
3779   Node* card_adr = __ AddP(__ top(), byte_map_base_node(), card_offset );
3780 
3781   // Get the alias_index for raw card-mark memory
3782   int adr_type = Compile::AliasIdxRaw;
3783   Node*   zero = __ ConI(0); // Dirty card value
3784   BasicType bt = T_BYTE;
3785 
3786   if (UseCondCardMark) {
3787     // The classic GC reference write barrier is typically implemented
3788     // as a store into the global card mark table.  Unfortunately
3789     // unconditional stores can result in false sharing and excessive
3790     // coherence traffic as well as false transactional aborts.
3791     // UseCondCardMark enables MP "polite" conditional card mark
3792     // stores.  In theory we could relax the load from ctrl() to
3793     // no_ctrl, but that doesn't buy much latitude.
3794     Node* card_val = __ load( __ ctrl(), card_adr, TypeInt::BYTE, bt, adr_type);
3795     __ if_then(card_val, BoolTest::ne, zero);
3796   }
3797 
3798   // Smash zero into card
3799   if( !UseConcMarkSweepGC ) {
3800     __ store(__ ctrl(), card_adr, zero, bt, adr_type, MemNode::release);
3801   } else {
3802     // Specialized path for CM store barrier
3803     __ storeCM(__ ctrl(), card_adr, zero, oop_store, adr_idx, bt, adr_type);
3804   }
3805 
3806   if (UseCondCardMark) {
3807     __ end_if();
3808   }
3809 
3810   // Final sync IdealKit and GraphKit.
3811   final_sync(ideal);
3812 }
3813 
3814 // G1 pre/post barriers
3815 void GraphKit::g1_write_barrier_pre(bool do_load,
3816                                     Node* obj,
3817                                     Node* adr,
3818                                     uint alias_idx,
3819                                     Node* val,
3820                                     const TypeOopPtr* val_type,
3821                                     Node* pre_val,
3822                                     BasicType bt) {
3823 
3824   // Some sanity checks
3825   // Note: val is unused in this routine.
3826 
3827   if (do_load) {
3828     // We need to generate the load of the previous value
3829     assert(obj != NULL, "must have a base");
3830     assert(adr != NULL, "where are loading from?");
3831     assert(pre_val == NULL, "loaded already?");
3832     assert(val_type != NULL, "need a type");
3833   } else {
3834     // In this case both val_type and alias_idx are unused.
3835     assert(pre_val != NULL, "must be loaded already");
3836     // Nothing to be done if pre_val is null.
3837     if (pre_val->bottom_type() == TypePtr::NULL_PTR) return;
3838     assert(pre_val->bottom_type()->basic_type() == T_OBJECT, "or we shouldn't be here");
3839   }
3840   assert(bt == T_OBJECT, "or we shouldn't be here");
3841 
3842   IdealKit ideal(this, true);
3843 
3844   Node* tls = __ thread(); // ThreadLocalStorage
3845 
3846   Node* no_ctrl = NULL;
3847   Node* no_base = __ top();
3848   Node* zero  = __ ConI(0);
3849   Node* zeroX = __ ConX(0);
3850 
3851   float likely  = PROB_LIKELY(0.999);
3852   float unlikely  = PROB_UNLIKELY(0.999);
3853 
3854   BasicType active_type = in_bytes(PtrQueue::byte_width_of_active()) == 4 ? T_INT : T_BYTE;
3855   assert(in_bytes(PtrQueue::byte_width_of_active()) == 4 || in_bytes(PtrQueue::byte_width_of_active()) == 1, "flag width");
3856 
3857   // Offsets into the thread
3858   const int marking_offset = in_bytes(JavaThread::satb_mark_queue_offset() +  // 648
3859                                           PtrQueue::byte_offset_of_active());
3860   const int index_offset   = in_bytes(JavaThread::satb_mark_queue_offset() +  // 656
3861                                           PtrQueue::byte_offset_of_index());
3862   const int buffer_offset  = in_bytes(JavaThread::satb_mark_queue_offset() +  // 652
3863                                           PtrQueue::byte_offset_of_buf());
3864 
3865   // Now the actual pointers into the thread
3866   Node* marking_adr = __ AddP(no_base, tls, __ ConX(marking_offset));
3867   Node* buffer_adr  = __ AddP(no_base, tls, __ ConX(buffer_offset));
3868   Node* index_adr   = __ AddP(no_base, tls, __ ConX(index_offset));
3869 
3870   // Now some of the values
3871   Node* marking = __ load(__ ctrl(), marking_adr, TypeInt::INT, active_type, Compile::AliasIdxRaw);
3872 
3873   // if (!marking)
3874   __ if_then(marking, BoolTest::ne, zero, unlikely); {
3875     BasicType index_bt = TypeX_X->basic_type();
3876     assert(sizeof(size_t) == type2aelembytes(index_bt), "Loading G1 PtrQueue::_index with wrong size.");
3877     Node* index   = __ load(__ ctrl(), index_adr, TypeX_X, index_bt, Compile::AliasIdxRaw);
3878 
3879     if (do_load) {
3880       // load original value
3881       // alias_idx correct??
3882       pre_val = __ load(__ ctrl(), adr, val_type, bt, alias_idx);
3883     }
3884 
3885     // if (pre_val != NULL)
3886     __ if_then(pre_val, BoolTest::ne, null()); {
3887       Node* buffer  = __ load(__ ctrl(), buffer_adr, TypeRawPtr::NOTNULL, T_ADDRESS, Compile::AliasIdxRaw);
3888 
3889       // is the queue for this thread full?
3890       __ if_then(index, BoolTest::ne, zeroX, likely); {
3891 
3892         // decrement the index
3893         Node* next_index = _gvn.transform(new (C) SubXNode(index, __ ConX(sizeof(intptr_t))));
3894 
3895         // Now get the buffer location we will log the previous value into and store it
3896         Node *log_addr = __ AddP(no_base, buffer, next_index);
3897         __ store(__ ctrl(), log_addr, pre_val, T_OBJECT, Compile::AliasIdxRaw, MemNode::unordered);
3898         // update the index
3899         __ store(__ ctrl(), index_adr, next_index, index_bt, Compile::AliasIdxRaw, MemNode::unordered);
3900 
3901       } __ else_(); {
3902 
3903         // logging buffer is full, call the runtime
3904         const TypeFunc *tf = OptoRuntime::g1_wb_pre_Type();
3905         __ make_leaf_call(tf, CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), "g1_wb_pre", pre_val, tls);
3906       } __ end_if();  // (!index)
3907     } __ end_if();  // (pre_val != NULL)
3908   } __ end_if();  // (!marking)
3909 
3910   // Final sync IdealKit and GraphKit.
3911   final_sync(ideal);
3912 }
3913 
3914 //
3915 // Update the card table and add card address to the queue
3916 //
3917 void GraphKit::g1_mark_card(IdealKit& ideal,
3918                             Node* card_adr,
3919                             Node* oop_store,
3920                             uint oop_alias_idx,
3921                             Node* index,
3922                             Node* index_adr,
3923                             Node* buffer,
3924                             const TypeFunc* tf) {
3925 
3926   Node* zero  = __ ConI(0);
3927   Node* zeroX = __ ConX(0);
3928   Node* no_base = __ top();
3929   BasicType card_bt = T_BYTE;
3930   // Smash zero into card. MUST BE ORDERED WRT TO STORE
3931   __ storeCM(__ ctrl(), card_adr, zero, oop_store, oop_alias_idx, card_bt, Compile::AliasIdxRaw);
3932 
3933   //  Now do the queue work
3934   __ if_then(index, BoolTest::ne, zeroX); {
3935 
3936     Node* next_index = _gvn.transform(new (C) SubXNode(index, __ ConX(sizeof(intptr_t))));
3937     Node* log_addr = __ AddP(no_base, buffer, next_index);
3938 
3939     // Order, see storeCM.
3940     __ store(__ ctrl(), log_addr, card_adr, T_ADDRESS, Compile::AliasIdxRaw, MemNode::unordered);
3941     __ store(__ ctrl(), index_adr, next_index, TypeX_X->basic_type(), Compile::AliasIdxRaw, MemNode::unordered);
3942 
3943   } __ else_(); {
3944     __ make_leaf_call(tf, CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_post), "g1_wb_post", card_adr, __ thread());
3945   } __ end_if();
3946 
3947 }
3948 
3949 void GraphKit::g1_write_barrier_post(Node* oop_store,
3950                                      Node* obj,
3951                                      Node* adr,
3952                                      uint alias_idx,
3953                                      Node* val,
3954                                      BasicType bt,
3955                                      bool use_precise) {
3956   // If we are writing a NULL then we need no post barrier
3957 
3958   if (val != NULL && val->is_Con() && val->bottom_type() == TypePtr::NULL_PTR) {
3959     // Must be NULL
3960     const Type* t = val->bottom_type();
3961     assert(t == Type::TOP || t == TypePtr::NULL_PTR, "must be NULL");
3962     // No post barrier if writing NULLx
3963     return;
3964   }
3965 
3966   if (!use_precise) {
3967     // All card marks for a (non-array) instance are in one place:
3968     adr = obj;
3969   }
3970   // (Else it's an array (or unknown), and we want more precise card marks.)
3971   assert(adr != NULL, "");
3972 
3973   IdealKit ideal(this, true);
3974 
3975   Node* tls = __ thread(); // ThreadLocalStorage
3976 
3977   Node* no_base = __ top();
3978   float likely  = PROB_LIKELY(0.999);
3979   float unlikely  = PROB_UNLIKELY(0.999);
3980   Node* young_card = __ ConI((jint)G1SATBCardTableModRefBS::g1_young_card_val());
3981   Node* dirty_card = __ ConI((jint)CardTableModRefBS::dirty_card_val());
3982   Node* zeroX = __ ConX(0);
3983 
3984   // Get the alias_index for raw card-mark memory
3985   const TypePtr* card_type = TypeRawPtr::BOTTOM;
3986 
3987   const TypeFunc *tf = OptoRuntime::g1_wb_post_Type();
3988 
3989   // Offsets into the thread
3990   const int index_offset  = in_bytes(JavaThread::dirty_card_queue_offset() +
3991                                      PtrQueue::byte_offset_of_index());
3992   const int buffer_offset = in_bytes(JavaThread::dirty_card_queue_offset() +
3993                                      PtrQueue::byte_offset_of_buf());
3994 
3995   // Pointers into the thread
3996 
3997   Node* buffer_adr = __ AddP(no_base, tls, __ ConX(buffer_offset));
3998   Node* index_adr =  __ AddP(no_base, tls, __ ConX(index_offset));
3999 
4000   // Now some values
4001   // Use ctrl to avoid hoisting these values past a safepoint, which could
4002   // potentially reset these fields in the JavaThread.
4003   Node* index  = __ load(__ ctrl(), index_adr, TypeX_X, TypeX_X->basic_type(), Compile::AliasIdxRaw);
4004   Node* buffer = __ load(__ ctrl(), buffer_adr, TypeRawPtr::NOTNULL, T_ADDRESS, Compile::AliasIdxRaw);
4005 
4006   // Convert the store obj pointer to an int prior to doing math on it
4007   // Must use ctrl to prevent "integerized oop" existing across safepoint
4008   Node* cast =  __ CastPX(__ ctrl(), adr);
4009 
4010   // Divide pointer by card size
4011   Node* card_offset = __ URShiftX( cast, __ ConI(CardTableModRefBS::card_shift) );
4012 
4013   // Combine card table base and card offset
4014   Node* card_adr = __ AddP(no_base, byte_map_base_node(), card_offset );
4015 
4016   // If we know the value being stored does it cross regions?
4017 
4018   if (val != NULL) {
4019     // Does the store cause us to cross regions?
4020 
4021     // Should be able to do an unsigned compare of region_size instead of
4022     // and extra shift. Do we have an unsigned compare??
4023     // Node* region_size = __ ConI(1 << HeapRegion::LogOfHRGrainBytes);
4024     Node* xor_res =  __ URShiftX ( __ XorX( cast,  __ CastPX(__ ctrl(), val)), __ ConI(HeapRegion::LogOfHRGrainBytes));
4025 
4026     // if (xor_res == 0) same region so skip
4027     __ if_then(xor_res, BoolTest::ne, zeroX); {
4028 
4029       // No barrier if we are storing a NULL
4030       __ if_then(val, BoolTest::ne, null(), unlikely); {
4031 
4032         // Ok must mark the card if not already dirty
4033 
4034         // load the original value of the card
4035         Node* card_val = __ load(__ ctrl(), card_adr, TypeInt::INT, T_BYTE, Compile::AliasIdxRaw);
4036 
4037         __ if_then(card_val, BoolTest::ne, young_card); {
4038           sync_kit(ideal);
4039           // Use Op_MemBarVolatile to achieve the effect of a StoreLoad barrier.
4040           insert_mem_bar(Op_MemBarVolatile, oop_store);
4041           __ sync_kit(this);
4042 
4043           Node* card_val_reload = __ load(__ ctrl(), card_adr, TypeInt::INT, T_BYTE, Compile::AliasIdxRaw);
4044           __ if_then(card_val_reload, BoolTest::ne, dirty_card); {
4045             g1_mark_card(ideal, card_adr, oop_store, alias_idx, index, index_adr, buffer, tf);
4046           } __ end_if();
4047         } __ end_if();
4048       } __ end_if();
4049     } __ end_if();
4050   } else {
4051     // Object.clone() instrinsic uses this path.
4052     g1_mark_card(ideal, card_adr, oop_store, alias_idx, index, index_adr, buffer, tf);
4053   }
4054 
4055   // Final sync IdealKit and GraphKit.
4056   final_sync(ideal);
4057 }
4058 #undef __
4059 
4060 
4061 
4062 Node* GraphKit::load_String_offset(Node* ctrl, Node* str) {
4063   if (java_lang_String::has_offset_field()) {
4064     int offset_offset = java_lang_String::offset_offset_in_bytes();
4065     const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
4066                                                        false, NULL, 0);
4067     const TypePtr* offset_field_type = string_type->add_offset(offset_offset);
4068     int offset_field_idx = C->get_alias_index(offset_field_type);
4069     return make_load(ctrl,
4070                      basic_plus_adr(str, str, offset_offset),
4071                      TypeInt::INT, T_INT, offset_field_idx, MemNode::unordered);
4072   } else {
4073     return intcon(0);
4074   }
4075 }
4076 
4077 Node* GraphKit::load_String_length(Node* ctrl, Node* str) {
4078   if (java_lang_String::has_count_field()) {
4079     int count_offset = java_lang_String::count_offset_in_bytes();
4080     const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
4081                                                        false, NULL, 0);
4082     const TypePtr* count_field_type = string_type->add_offset(count_offset);
4083     int count_field_idx = C->get_alias_index(count_field_type);
4084     return make_load(ctrl,
4085                      basic_plus_adr(str, str, count_offset),
4086                      TypeInt::INT, T_INT, count_field_idx, MemNode::unordered);
4087   } else {
4088     return load_array_length(load_String_value(ctrl, str));
4089   }
4090 }
4091 
4092 Node* GraphKit::load_String_value(Node* ctrl, Node* str) {
4093   int value_offset = java_lang_String::value_offset_in_bytes();
4094   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
4095                                                      false, NULL, 0);
4096   const TypePtr* value_field_type = string_type->add_offset(value_offset);
4097   const TypeAryPtr*  value_type = TypeAryPtr::make(TypePtr::NotNull,
4098                                                    TypeAry::make(TypeInt::CHAR,TypeInt::POS),
4099                                                    ciTypeArrayKlass::make(T_CHAR), true, 0);
4100   int value_field_idx = C->get_alias_index(value_field_type);
4101   Node* load = make_load(ctrl, basic_plus_adr(str, str, value_offset),
4102                          value_type, T_OBJECT, value_field_idx, MemNode::unordered);
4103   // String.value field is known to be @Stable.
4104   if (UseImplicitStableValues) {
4105     load = cast_array_to_stable(load, value_type);
4106   }
4107   return load;
4108 }
4109 
4110 void GraphKit::store_String_offset(Node* ctrl, Node* str, Node* value) {
4111   int offset_offset = java_lang_String::offset_offset_in_bytes();
4112   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
4113                                                      false, NULL, 0);
4114   const TypePtr* offset_field_type = string_type->add_offset(offset_offset);
4115   int offset_field_idx = C->get_alias_index(offset_field_type);
4116   store_to_memory(ctrl, basic_plus_adr(str, offset_offset),
4117                   value, T_INT, offset_field_idx, MemNode::unordered);
4118 }
4119 
4120 void GraphKit::store_String_value(Node* ctrl, Node* str, Node* value) {
4121   int value_offset = java_lang_String::value_offset_in_bytes();
4122   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
4123                                                      false, NULL, 0);
4124   const TypePtr* value_field_type = string_type->add_offset(value_offset);
4125 
4126   store_oop_to_object(ctrl, str,  basic_plus_adr(str, value_offset), value_field_type,
4127       value, TypeAryPtr::CHARS, T_OBJECT, MemNode::unordered);
4128 }
4129 
4130 void GraphKit::store_String_length(Node* ctrl, Node* str, Node* value) {
4131   int count_offset = java_lang_String::count_offset_in_bytes();
4132   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
4133                                                      false, NULL, 0);
4134   const TypePtr* count_field_type = string_type->add_offset(count_offset);
4135   int count_field_idx = C->get_alias_index(count_field_type);
4136   store_to_memory(ctrl, basic_plus_adr(str, count_offset),
4137                   value, T_INT, count_field_idx, MemNode::unordered);
4138 }
4139 
4140 Node* GraphKit::cast_array_to_stable(Node* ary, const TypeAryPtr* ary_type) {
4141   // Reify the property as a CastPP node in Ideal graph to comply with monotonicity
4142   // assumption of CCP analysis.
4143   return _gvn.transform(new(C) CastPPNode(ary, ary_type->cast_to_stable(true)));
4144 }