1 /*
   2  * Copyright (c) 1999, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/systemDictionary.hpp"
  27 #include "classfile/vmSymbols.hpp"
  28 #include "compiler/compileBroker.hpp"
  29 #include "compiler/compileLog.hpp"
  30 #include "oops/objArrayKlass.hpp"
  31 #include "opto/addnode.hpp"
  32 #include "opto/callGenerator.hpp"
  33 #include "opto/castnode.hpp"
  34 #include "opto/cfgnode.hpp"
  35 #include "opto/convertnode.hpp"
  36 #include "opto/countbitsnode.hpp"
  37 #include "opto/intrinsicnode.hpp"
  38 #include "opto/idealKit.hpp"
  39 #include "opto/mathexactnode.hpp"
  40 #include "opto/movenode.hpp"
  41 #include "opto/mulnode.hpp"
  42 #include "opto/narrowptrnode.hpp"
  43 #include "opto/parse.hpp"
  44 #include "opto/runtime.hpp"
  45 #include "opto/subnode.hpp"
  46 #include "prims/nativeLookup.hpp"
  47 #include "runtime/sharedRuntime.hpp"
  48 #include "trace/traceMacros.hpp"
  49 
  50 class LibraryIntrinsic : public InlineCallGenerator {
  51   // Extend the set of intrinsics known to the runtime:
  52  public:
  53  private:
  54   bool             _is_virtual;
  55   bool             _is_predicted;
  56   bool             _does_virtual_dispatch;
  57   vmIntrinsics::ID _intrinsic_id;
  58 
  59  public:
  60   LibraryIntrinsic(ciMethod* m, bool is_virtual, bool is_predicted, bool does_virtual_dispatch, vmIntrinsics::ID id)
  61     : InlineCallGenerator(m),
  62       _is_virtual(is_virtual),
  63       _is_predicted(is_predicted),
  64       _does_virtual_dispatch(does_virtual_dispatch),
  65       _intrinsic_id(id)
  66   {
  67   }
  68   virtual bool is_intrinsic() const { return true; }
  69   virtual bool is_virtual()   const { return _is_virtual; }
  70   virtual bool is_predicted()   const { return _is_predicted; }
  71   virtual bool does_virtual_dispatch()   const { return _does_virtual_dispatch; }
  72   virtual JVMState* generate(JVMState* jvms, Parse* parent_parser);
  73   virtual Node* generate_predicate(JVMState* jvms);
  74   vmIntrinsics::ID intrinsic_id() const { return _intrinsic_id; }
  75 };
  76 
  77 
  78 // Local helper class for LibraryIntrinsic:
  79 class LibraryCallKit : public GraphKit {
  80  private:
  81   LibraryIntrinsic* _intrinsic;     // the library intrinsic being called
  82   Node*             _result;        // the result node, if any
  83   int               _reexecute_sp;  // the stack pointer when bytecode needs to be reexecuted
  84 
  85   const TypeOopPtr* sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type, bool is_native_ptr = false);
  86 
  87  public:
  88   LibraryCallKit(JVMState* jvms, LibraryIntrinsic* intrinsic)
  89     : GraphKit(jvms),
  90       _intrinsic(intrinsic),
  91       _result(NULL)
  92   {
  93     // Check if this is a root compile.  In that case we don't have a caller.
  94     if (!jvms->has_method()) {
  95       _reexecute_sp = sp();
  96     } else {
  97       // Find out how many arguments the interpreter needs when deoptimizing
  98       // and save the stack pointer value so it can used by uncommon_trap.
  99       // We find the argument count by looking at the declared signature.
 100       bool ignored_will_link;
 101       ciSignature* declared_signature = NULL;
 102       ciMethod* ignored_callee = caller()->get_method_at_bci(bci(), ignored_will_link, &declared_signature);
 103       const int nargs = declared_signature->arg_size_for_bc(caller()->java_code_at_bci(bci()));
 104       _reexecute_sp = sp() + nargs;  // "push" arguments back on stack
 105     }
 106   }
 107 
 108   virtual LibraryCallKit* is_LibraryCallKit() const { return (LibraryCallKit*)this; }
 109 
 110   ciMethod*         caller()    const    { return jvms()->method(); }
 111   int               bci()       const    { return jvms()->bci(); }
 112   LibraryIntrinsic* intrinsic() const    { return _intrinsic; }
 113   vmIntrinsics::ID  intrinsic_id() const { return _intrinsic->intrinsic_id(); }
 114   ciMethod*         callee()    const    { return _intrinsic->method(); }
 115 
 116   bool try_to_inline();
 117   Node* try_to_predicate();
 118 
 119   void push_result() {
 120     // Push the result onto the stack.
 121     if (!stopped() && result() != NULL) {
 122       BasicType bt = result()->bottom_type()->basic_type();
 123       push_node(bt, result());
 124     }
 125   }
 126 
 127  private:
 128   void fatal_unexpected_iid(vmIntrinsics::ID iid) {
 129     fatal(err_msg_res("unexpected intrinsic %d: %s", iid, vmIntrinsics::name_at(iid)));
 130   }
 131 
 132   void  set_result(Node* n) { assert(_result == NULL, "only set once"); _result = n; }
 133   void  set_result(RegionNode* region, PhiNode* value);
 134   Node*     result() { return _result; }
 135 
 136   virtual int reexecute_sp() { return _reexecute_sp; }
 137 
 138   // Helper functions to inline natives
 139   Node* generate_guard(Node* test, RegionNode* region, float true_prob);
 140   Node* generate_slow_guard(Node* test, RegionNode* region);
 141   Node* generate_fair_guard(Node* test, RegionNode* region);
 142   Node* generate_negative_guard(Node* index, RegionNode* region,
 143                                 // resulting CastII of index:
 144                                 Node* *pos_index = NULL);
 145   Node* generate_nonpositive_guard(Node* index, bool never_negative,
 146                                    // resulting CastII of index:
 147                                    Node* *pos_index = NULL);
 148   Node* generate_limit_guard(Node* offset, Node* subseq_length,
 149                              Node* array_length,
 150                              RegionNode* region);
 151   Node* generate_current_thread(Node* &tls_output);
 152   address basictype2arraycopy(BasicType t, Node *src_offset, Node *dest_offset,
 153                               bool disjoint_bases, const char* &name, bool dest_uninitialized);
 154   Node* load_mirror_from_klass(Node* klass);
 155   Node* load_klass_from_mirror_common(Node* mirror, bool never_see_null,
 156                                       RegionNode* region, int null_path,
 157                                       int offset);
 158   Node* load_klass_from_mirror(Node* mirror, bool never_see_null,
 159                                RegionNode* region, int null_path) {
 160     int offset = java_lang_Class::klass_offset_in_bytes();
 161     return load_klass_from_mirror_common(mirror, never_see_null,
 162                                          region, null_path,
 163                                          offset);
 164   }
 165   Node* load_array_klass_from_mirror(Node* mirror, bool never_see_null,
 166                                      RegionNode* region, int null_path) {
 167     int offset = java_lang_Class::array_klass_offset_in_bytes();
 168     return load_klass_from_mirror_common(mirror, never_see_null,
 169                                          region, null_path,
 170                                          offset);
 171   }
 172   Node* generate_access_flags_guard(Node* kls,
 173                                     int modifier_mask, int modifier_bits,
 174                                     RegionNode* region);
 175   Node* generate_interface_guard(Node* kls, RegionNode* region);
 176   Node* generate_array_guard(Node* kls, RegionNode* region) {
 177     return generate_array_guard_common(kls, region, false, false);
 178   }
 179   Node* generate_non_array_guard(Node* kls, RegionNode* region) {
 180     return generate_array_guard_common(kls, region, false, true);
 181   }
 182   Node* generate_objArray_guard(Node* kls, RegionNode* region) {
 183     return generate_array_guard_common(kls, region, true, false);
 184   }
 185   Node* generate_non_objArray_guard(Node* kls, RegionNode* region) {
 186     return generate_array_guard_common(kls, region, true, true);
 187   }
 188   Node* generate_array_guard_common(Node* kls, RegionNode* region,
 189                                     bool obj_array, bool not_array);
 190   Node* generate_virtual_guard(Node* obj_klass, RegionNode* slow_region);
 191   CallJavaNode* generate_method_call(vmIntrinsics::ID method_id,
 192                                      bool is_virtual = false, bool is_static = false);
 193   CallJavaNode* generate_method_call_static(vmIntrinsics::ID method_id) {
 194     return generate_method_call(method_id, false, true);
 195   }
 196   CallJavaNode* generate_method_call_virtual(vmIntrinsics::ID method_id) {
 197     return generate_method_call(method_id, true, false);
 198   }
 199   Node * load_field_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString, bool is_exact, bool is_static);
 200 
 201   Node* make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2);
 202   Node* make_string_method_node(int opcode, Node* str1, Node* str2);
 203   bool inline_string_compareTo();
 204   bool inline_string_indexOf();
 205   Node* string_indexOf(Node* string_object, ciTypeArray* target_array, jint offset, jint cache_i, jint md2_i);
 206   bool inline_string_equals();
 207   Node* round_double_node(Node* n);
 208   bool runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName);
 209   bool inline_math_native(vmIntrinsics::ID id);
 210   bool inline_trig(vmIntrinsics::ID id);
 211   bool inline_math(vmIntrinsics::ID id);
 212   template <typename OverflowOp>
 213   bool inline_math_overflow(Node* arg1, Node* arg2);
 214   void inline_math_mathExact(Node* math, Node* test);
 215   bool inline_math_addExactI(bool is_increment);
 216   bool inline_math_addExactL(bool is_increment);
 217   bool inline_math_multiplyExactI();
 218   bool inline_math_multiplyExactL();
 219   bool inline_math_negateExactI();
 220   bool inline_math_negateExactL();
 221   bool inline_math_subtractExactI(bool is_decrement);
 222   bool inline_math_subtractExactL(bool is_decrement);
 223   bool inline_exp();
 224   bool inline_pow();
 225   void finish_pow_exp(Node* result, Node* x, Node* y, const TypeFunc* call_type, address funcAddr, const char* funcName);
 226   bool inline_min_max(vmIntrinsics::ID id);
 227   Node* generate_min_max(vmIntrinsics::ID id, Node* x, Node* y);
 228   // This returns Type::AnyPtr, RawPtr, or OopPtr.
 229   int classify_unsafe_addr(Node* &base, Node* &offset);
 230   Node* make_unsafe_address(Node* base, Node* offset);
 231   // Helper for inline_unsafe_access.
 232   // Generates the guards that check whether the result of
 233   // Unsafe.getObject should be recorded in an SATB log buffer.
 234   void insert_pre_barrier(Node* base_oop, Node* offset, Node* pre_val, bool need_mem_bar);
 235   bool inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile);
 236   bool inline_unsafe_prefetch(bool is_native_ptr, bool is_store, bool is_static);
 237   static bool klass_needs_init_guard(Node* kls);
 238   bool inline_unsafe_allocate();
 239   bool inline_unsafe_copyMemory();
 240   bool inline_native_currentThread();
 241 #ifdef TRACE_HAVE_INTRINSICS
 242   bool inline_native_classID();
 243   bool inline_native_threadID();
 244 #endif
 245   bool inline_native_time_funcs(address method, const char* funcName);
 246   bool inline_native_isInterrupted();
 247   bool inline_native_Class_query(vmIntrinsics::ID id);
 248   bool inline_native_subtype_check();
 249 
 250   bool inline_native_newArray();
 251   bool inline_native_getLength();
 252   bool inline_array_copyOf(bool is_copyOfRange);
 253   bool inline_array_equals();
 254   void copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark);
 255   bool inline_native_clone(bool is_virtual);
 256   bool inline_native_Reflection_getCallerClass();
 257   // Helper function for inlining native object hash method
 258   bool inline_native_hashcode(bool is_virtual, bool is_static);
 259   bool inline_native_getClass();
 260 
 261   // Helper functions for inlining arraycopy
 262   bool inline_arraycopy();
 263   void generate_arraycopy(const TypePtr* adr_type,
 264                           BasicType basic_elem_type,
 265                           Node* src,  Node* src_offset,
 266                           Node* dest, Node* dest_offset,
 267                           Node* copy_length,
 268                           bool disjoint_bases = false,
 269                           bool length_never_negative = false,
 270                           RegionNode* slow_region = NULL);
 271   AllocateArrayNode* tightly_coupled_allocation(Node* ptr,
 272                                                 RegionNode* slow_region);
 273   void generate_clear_array(const TypePtr* adr_type,
 274                             Node* dest,
 275                             BasicType basic_elem_type,
 276                             Node* slice_off,
 277                             Node* slice_len,
 278                             Node* slice_end);
 279   bool generate_block_arraycopy(const TypePtr* adr_type,
 280                                 BasicType basic_elem_type,
 281                                 AllocateNode* alloc,
 282                                 Node* src,  Node* src_offset,
 283                                 Node* dest, Node* dest_offset,
 284                                 Node* dest_size, bool dest_uninitialized);
 285   void generate_slow_arraycopy(const TypePtr* adr_type,
 286                                Node* src,  Node* src_offset,
 287                                Node* dest, Node* dest_offset,
 288                                Node* copy_length, bool dest_uninitialized);
 289   Node* generate_checkcast_arraycopy(const TypePtr* adr_type,
 290                                      Node* dest_elem_klass,
 291                                      Node* src,  Node* src_offset,
 292                                      Node* dest, Node* dest_offset,
 293                                      Node* copy_length, bool dest_uninitialized);
 294   Node* generate_generic_arraycopy(const TypePtr* adr_type,
 295                                    Node* src,  Node* src_offset,
 296                                    Node* dest, Node* dest_offset,
 297                                    Node* copy_length, bool dest_uninitialized);
 298   void generate_unchecked_arraycopy(const TypePtr* adr_type,
 299                                     BasicType basic_elem_type,
 300                                     bool disjoint_bases,
 301                                     Node* src,  Node* src_offset,
 302                                     Node* dest, Node* dest_offset,
 303                                     Node* copy_length, bool dest_uninitialized);
 304   typedef enum { LS_xadd, LS_xchg, LS_cmpxchg } LoadStoreKind;
 305   bool inline_unsafe_load_store(BasicType type,  LoadStoreKind kind);
 306   bool inline_unsafe_ordered_store(BasicType type);
 307   bool inline_unsafe_fence(vmIntrinsics::ID id);
 308   bool inline_fp_conversions(vmIntrinsics::ID id);
 309   bool inline_number_methods(vmIntrinsics::ID id);
 310   bool inline_reference_get();
 311   bool inline_aescrypt_Block(vmIntrinsics::ID id);
 312   bool inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id);
 313   Node* inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting);
 314   Node* get_key_start_from_aescrypt_object(Node* aescrypt_object);
 315   Node* get_original_key_start_from_aescrypt_object(Node* aescrypt_object);
 316   bool inline_encodeISOArray();
 317   bool inline_updateCRC32();
 318   bool inline_updateBytesCRC32();
 319   bool inline_updateByteBufferCRC32();
 320 };
 321 
 322 
 323 //---------------------------make_vm_intrinsic----------------------------
 324 CallGenerator* Compile::make_vm_intrinsic(ciMethod* m, bool is_virtual) {
 325   vmIntrinsics::ID id = m->intrinsic_id();
 326   assert(id != vmIntrinsics::_none, "must be a VM intrinsic");
 327 
 328   if (DisableIntrinsic[0] != '\0'
 329       && strstr(DisableIntrinsic, vmIntrinsics::name_at(id)) != NULL) {
 330     // disabled by a user request on the command line:
 331     // example: -XX:DisableIntrinsic=_hashCode,_getClass
 332     return NULL;
 333   }
 334 
 335   if (!m->is_loaded()) {
 336     // do not attempt to inline unloaded methods
 337     return NULL;
 338   }
 339 
 340   // Only a few intrinsics implement a virtual dispatch.
 341   // They are expensive calls which are also frequently overridden.
 342   if (is_virtual) {
 343     switch (id) {
 344     case vmIntrinsics::_hashCode:
 345     case vmIntrinsics::_clone:
 346       // OK, Object.hashCode and Object.clone intrinsics come in both flavors
 347       break;
 348     default:
 349       return NULL;
 350     }
 351   }
 352 
 353   // -XX:-InlineNatives disables nearly all intrinsics:
 354   if (!InlineNatives) {
 355     switch (id) {
 356     case vmIntrinsics::_indexOf:
 357     case vmIntrinsics::_compareTo:
 358     case vmIntrinsics::_equals:
 359     case vmIntrinsics::_equalsC:
 360     case vmIntrinsics::_getAndAddInt:
 361     case vmIntrinsics::_getAndAddLong:
 362     case vmIntrinsics::_getAndSetInt:
 363     case vmIntrinsics::_getAndSetLong:
 364     case vmIntrinsics::_getAndSetObject:
 365     case vmIntrinsics::_loadFence:
 366     case vmIntrinsics::_storeFence:
 367     case vmIntrinsics::_fullFence:
 368       break;  // InlineNatives does not control String.compareTo
 369     case vmIntrinsics::_Reference_get:
 370       break;  // InlineNatives does not control Reference.get
 371     default:
 372       return NULL;
 373     }
 374   }
 375 
 376   bool is_predicted = false;
 377   bool does_virtual_dispatch = false;
 378 
 379   switch (id) {
 380   case vmIntrinsics::_compareTo:
 381     if (!SpecialStringCompareTo)  return NULL;
 382     if (!Matcher::match_rule_supported(Op_StrComp))  return NULL;
 383     break;
 384   case vmIntrinsics::_indexOf:
 385     if (!SpecialStringIndexOf)  return NULL;
 386     break;
 387   case vmIntrinsics::_equals:
 388     if (!SpecialStringEquals)  return NULL;
 389     if (!Matcher::match_rule_supported(Op_StrEquals))  return NULL;
 390     break;
 391   case vmIntrinsics::_equalsC:
 392     if (!SpecialArraysEquals)  return NULL;
 393     if (!Matcher::match_rule_supported(Op_AryEq))  return NULL;
 394     break;
 395   case vmIntrinsics::_arraycopy:
 396     if (!InlineArrayCopy)  return NULL;
 397     break;
 398   case vmIntrinsics::_copyMemory:
 399     if (StubRoutines::unsafe_arraycopy() == NULL)  return NULL;
 400     if (!InlineArrayCopy)  return NULL;
 401     break;
 402   case vmIntrinsics::_hashCode:
 403     if (!InlineObjectHash)  return NULL;
 404     does_virtual_dispatch = true;
 405     break;
 406   case vmIntrinsics::_clone:
 407     does_virtual_dispatch = true;
 408   case vmIntrinsics::_copyOf:
 409   case vmIntrinsics::_copyOfRange:
 410     if (!InlineObjectCopy)  return NULL;
 411     // These also use the arraycopy intrinsic mechanism:
 412     if (!InlineArrayCopy)  return NULL;
 413     break;
 414   case vmIntrinsics::_encodeISOArray:
 415     if (!SpecialEncodeISOArray)  return NULL;
 416     if (!Matcher::match_rule_supported(Op_EncodeISOArray))  return NULL;
 417     break;
 418   case vmIntrinsics::_checkIndex:
 419     // We do not intrinsify this.  The optimizer does fine with it.
 420     return NULL;
 421 
 422   case vmIntrinsics::_getCallerClass:
 423     if (!UseNewReflection)  return NULL;
 424     if (!InlineReflectionGetCallerClass)  return NULL;
 425     if (SystemDictionary::reflect_CallerSensitive_klass() == NULL)  return NULL;
 426     break;
 427 
 428   case vmIntrinsics::_bitCount_i:
 429     if (!Matcher::match_rule_supported(Op_PopCountI)) return NULL;
 430     break;
 431 
 432   case vmIntrinsics::_bitCount_l:
 433     if (!Matcher::match_rule_supported(Op_PopCountL)) return NULL;
 434     break;
 435 
 436   case vmIntrinsics::_numberOfLeadingZeros_i:
 437     if (!Matcher::match_rule_supported(Op_CountLeadingZerosI)) return NULL;
 438     break;
 439 
 440   case vmIntrinsics::_numberOfLeadingZeros_l:
 441     if (!Matcher::match_rule_supported(Op_CountLeadingZerosL)) return NULL;
 442     break;
 443 
 444   case vmIntrinsics::_numberOfTrailingZeros_i:
 445     if (!Matcher::match_rule_supported(Op_CountTrailingZerosI)) return NULL;
 446     break;
 447 
 448   case vmIntrinsics::_numberOfTrailingZeros_l:
 449     if (!Matcher::match_rule_supported(Op_CountTrailingZerosL)) return NULL;
 450     break;
 451 
 452   case vmIntrinsics::_reverseBytes_c:
 453     if (!Matcher::match_rule_supported(Op_ReverseBytesUS)) return NULL;
 454     break;
 455   case vmIntrinsics::_reverseBytes_s:
 456     if (!Matcher::match_rule_supported(Op_ReverseBytesS))  return NULL;
 457     break;
 458   case vmIntrinsics::_reverseBytes_i:
 459     if (!Matcher::match_rule_supported(Op_ReverseBytesI))  return NULL;
 460     break;
 461   case vmIntrinsics::_reverseBytes_l:
 462     if (!Matcher::match_rule_supported(Op_ReverseBytesL))  return NULL;
 463     break;
 464 
 465   case vmIntrinsics::_Reference_get:
 466     // Use the intrinsic version of Reference.get() so that the value in
 467     // the referent field can be registered by the G1 pre-barrier code.
 468     // Also add memory barrier to prevent commoning reads from this field
 469     // across safepoint since GC can change it value.
 470     break;
 471 
 472   case vmIntrinsics::_compareAndSwapObject:
 473 #ifdef _LP64
 474     if (!UseCompressedOops && !Matcher::match_rule_supported(Op_CompareAndSwapP)) return NULL;
 475 #endif
 476     break;
 477 
 478   case vmIntrinsics::_compareAndSwapLong:
 479     if (!Matcher::match_rule_supported(Op_CompareAndSwapL)) return NULL;
 480     break;
 481 
 482   case vmIntrinsics::_getAndAddInt:
 483     if (!Matcher::match_rule_supported(Op_GetAndAddI)) return NULL;
 484     break;
 485 
 486   case vmIntrinsics::_getAndAddLong:
 487     if (!Matcher::match_rule_supported(Op_GetAndAddL)) return NULL;
 488     break;
 489 
 490   case vmIntrinsics::_getAndSetInt:
 491     if (!Matcher::match_rule_supported(Op_GetAndSetI)) return NULL;
 492     break;
 493 
 494   case vmIntrinsics::_getAndSetLong:
 495     if (!Matcher::match_rule_supported(Op_GetAndSetL)) return NULL;
 496     break;
 497 
 498   case vmIntrinsics::_getAndSetObject:
 499 #ifdef _LP64
 500     if (!UseCompressedOops && !Matcher::match_rule_supported(Op_GetAndSetP)) return NULL;
 501     if (UseCompressedOops && !Matcher::match_rule_supported(Op_GetAndSetN)) return NULL;
 502     break;
 503 #else
 504     if (!Matcher::match_rule_supported(Op_GetAndSetP)) return NULL;
 505     break;
 506 #endif
 507 
 508   case vmIntrinsics::_aescrypt_encryptBlock:
 509   case vmIntrinsics::_aescrypt_decryptBlock:
 510     if (!UseAESIntrinsics) return NULL;
 511     break;
 512 
 513   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
 514   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
 515     if (!UseAESIntrinsics) return NULL;
 516     // these two require the predicated logic
 517     is_predicted = true;
 518     break;
 519 
 520   case vmIntrinsics::_updateCRC32:
 521   case vmIntrinsics::_updateBytesCRC32:
 522   case vmIntrinsics::_updateByteBufferCRC32:
 523     if (!UseCRC32Intrinsics) return NULL;
 524     break;
 525 
 526   case vmIntrinsics::_incrementExactI:
 527   case vmIntrinsics::_addExactI:
 528     if (!Matcher::match_rule_supported(Op_OverflowAddI) || !UseMathExactIntrinsics) return NULL;
 529     break;
 530   case vmIntrinsics::_incrementExactL:
 531   case vmIntrinsics::_addExactL:
 532     if (!Matcher::match_rule_supported(Op_OverflowAddL) || !UseMathExactIntrinsics) return NULL;
 533     break;
 534   case vmIntrinsics::_decrementExactI:
 535   case vmIntrinsics::_subtractExactI:
 536     if (!Matcher::match_rule_supported(Op_OverflowSubI) || !UseMathExactIntrinsics) return NULL;
 537     break;
 538   case vmIntrinsics::_decrementExactL:
 539   case vmIntrinsics::_subtractExactL:
 540     if (!Matcher::match_rule_supported(Op_OverflowSubL) || !UseMathExactIntrinsics) return NULL;
 541     break;
 542   case vmIntrinsics::_negateExactI:
 543     if (!Matcher::match_rule_supported(Op_OverflowSubI) || !UseMathExactIntrinsics) return NULL;
 544     break;
 545   case vmIntrinsics::_negateExactL:
 546     if (!Matcher::match_rule_supported(Op_OverflowSubL) || !UseMathExactIntrinsics) return NULL;
 547     break;
 548   case vmIntrinsics::_multiplyExactI:
 549     if (!Matcher::match_rule_supported(Op_OverflowMulI) || !UseMathExactIntrinsics) return NULL;
 550     break;
 551   case vmIntrinsics::_multiplyExactL:
 552     if (!Matcher::match_rule_supported(Op_OverflowMulL) || !UseMathExactIntrinsics) return NULL;
 553     break;
 554 
 555  default:
 556     assert(id <= vmIntrinsics::LAST_COMPILER_INLINE, "caller responsibility");
 557     assert(id != vmIntrinsics::_Object_init && id != vmIntrinsics::_invoke, "enum out of order?");
 558     break;
 559   }
 560 
 561   // -XX:-InlineClassNatives disables natives from the Class class.
 562   // The flag applies to all reflective calls, notably Array.newArray
 563   // (visible to Java programmers as Array.newInstance).
 564   if (m->holder()->name() == ciSymbol::java_lang_Class() ||
 565       m->holder()->name() == ciSymbol::java_lang_reflect_Array()) {
 566     if (!InlineClassNatives)  return NULL;
 567   }
 568 
 569   // -XX:-InlineThreadNatives disables natives from the Thread class.
 570   if (m->holder()->name() == ciSymbol::java_lang_Thread()) {
 571     if (!InlineThreadNatives)  return NULL;
 572   }
 573 
 574   // -XX:-InlineMathNatives disables natives from the Math,Float and Double classes.
 575   if (m->holder()->name() == ciSymbol::java_lang_Math() ||
 576       m->holder()->name() == ciSymbol::java_lang_Float() ||
 577       m->holder()->name() == ciSymbol::java_lang_Double()) {
 578     if (!InlineMathNatives)  return NULL;
 579   }
 580 
 581   // -XX:-InlineUnsafeOps disables natives from the Unsafe class.
 582   if (m->holder()->name() == ciSymbol::sun_misc_Unsafe()) {
 583     if (!InlineUnsafeOps)  return NULL;
 584   }
 585 
 586   return new LibraryIntrinsic(m, is_virtual, is_predicted, does_virtual_dispatch, (vmIntrinsics::ID) id);
 587 }
 588 
 589 //----------------------register_library_intrinsics-----------------------
 590 // Initialize this file's data structures, for each Compile instance.
 591 void Compile::register_library_intrinsics() {
 592   // Nothing to do here.
 593 }
 594 
 595 JVMState* LibraryIntrinsic::generate(JVMState* jvms, Parse* parent_parser) {
 596   LibraryCallKit kit(jvms, this);
 597   Compile* C = kit.C;
 598   int nodes = C->unique();
 599 #ifndef PRODUCT
 600   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
 601     char buf[1000];
 602     const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
 603     tty->print_cr("Intrinsic %s", str);
 604   }
 605 #endif
 606   ciMethod* callee = kit.callee();
 607   const int bci    = kit.bci();
 608 
 609   // Try to inline the intrinsic.
 610   if (kit.try_to_inline()) {
 611     if (C->print_intrinsics() || C->print_inlining()) {
 612       C->print_inlining(callee, jvms->depth() - 1, bci, is_virtual() ? "(intrinsic, virtual)" : "(intrinsic)");
 613     }
 614     C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
 615     if (C->log()) {
 616       C->log()->elem("intrinsic id='%s'%s nodes='%d'",
 617                      vmIntrinsics::name_at(intrinsic_id()),
 618                      (is_virtual() ? " virtual='1'" : ""),
 619                      C->unique() - nodes);
 620     }
 621     // Push the result from the inlined method onto the stack.
 622     kit.push_result();
 623     return kit.transfer_exceptions_into_jvms();
 624   }
 625 
 626   // The intrinsic bailed out
 627   if (C->print_intrinsics() || C->print_inlining()) {
 628     if (jvms->has_method()) {
 629       // Not a root compile.
 630       const char* msg = is_virtual() ? "failed to inline (intrinsic, virtual)" : "failed to inline (intrinsic)";
 631       C->print_inlining(callee, jvms->depth() - 1, bci, msg);
 632     } else {
 633       // Root compile
 634       tty->print("Did not generate intrinsic %s%s at bci:%d in",
 635                vmIntrinsics::name_at(intrinsic_id()),
 636                (is_virtual() ? " (virtual)" : ""), bci);
 637     }
 638   }
 639   C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
 640   return NULL;
 641 }
 642 
 643 Node* LibraryIntrinsic::generate_predicate(JVMState* jvms) {
 644   LibraryCallKit kit(jvms, this);
 645   Compile* C = kit.C;
 646   int nodes = C->unique();
 647 #ifndef PRODUCT
 648   assert(is_predicted(), "sanity");
 649   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
 650     char buf[1000];
 651     const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
 652     tty->print_cr("Predicate for intrinsic %s", str);
 653   }
 654 #endif
 655   ciMethod* callee = kit.callee();
 656   const int bci    = kit.bci();
 657 
 658   Node* slow_ctl = kit.try_to_predicate();
 659   if (!kit.failing()) {
 660     if (C->print_intrinsics() || C->print_inlining()) {
 661       C->print_inlining(callee, jvms->depth() - 1, bci, is_virtual() ? "(intrinsic, virtual)" : "(intrinsic)");
 662     }
 663     C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
 664     if (C->log()) {
 665       C->log()->elem("predicate_intrinsic id='%s'%s nodes='%d'",
 666                      vmIntrinsics::name_at(intrinsic_id()),
 667                      (is_virtual() ? " virtual='1'" : ""),
 668                      C->unique() - nodes);
 669     }
 670     return slow_ctl; // Could be NULL if the check folds.
 671   }
 672 
 673   // The intrinsic bailed out
 674   if (C->print_intrinsics() || C->print_inlining()) {
 675     if (jvms->has_method()) {
 676       // Not a root compile.
 677       const char* msg = "failed to generate predicate for intrinsic";
 678       C->print_inlining(kit.callee(), jvms->depth() - 1, bci, msg);
 679     } else {
 680       // Root compile
 681       C->print_inlining_stream()->print("Did not generate predicate for intrinsic %s%s at bci:%d in",
 682                                         vmIntrinsics::name_at(intrinsic_id()),
 683                                         (is_virtual() ? " (virtual)" : ""), bci);
 684     }
 685   }
 686   C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
 687   return NULL;
 688 }
 689 
 690 bool LibraryCallKit::try_to_inline() {
 691   // Handle symbolic names for otherwise undistinguished boolean switches:
 692   const bool is_store       = true;
 693   const bool is_native_ptr  = true;
 694   const bool is_static      = true;
 695   const bool is_volatile    = true;
 696 
 697   if (!jvms()->has_method()) {
 698     // Root JVMState has a null method.
 699     assert(map()->memory()->Opcode() == Op_Parm, "");
 700     // Insert the memory aliasing node
 701     set_all_memory(reset_memory());
 702   }
 703   assert(merged_memory(), "");
 704 
 705 
 706   switch (intrinsic_id()) {
 707   case vmIntrinsics::_hashCode:                 return inline_native_hashcode(intrinsic()->is_virtual(), !is_static);
 708   case vmIntrinsics::_identityHashCode:         return inline_native_hashcode(/*!virtual*/ false,         is_static);
 709   case vmIntrinsics::_getClass:                 return inline_native_getClass();
 710 
 711   case vmIntrinsics::_dsin:
 712   case vmIntrinsics::_dcos:
 713   case vmIntrinsics::_dtan:
 714   case vmIntrinsics::_dabs:
 715   case vmIntrinsics::_datan2:
 716   case vmIntrinsics::_dsqrt:
 717   case vmIntrinsics::_dexp:
 718   case vmIntrinsics::_dlog:
 719   case vmIntrinsics::_dlog10:
 720   case vmIntrinsics::_dpow:                     return inline_math_native(intrinsic_id());
 721 
 722   case vmIntrinsics::_min:
 723   case vmIntrinsics::_max:                      return inline_min_max(intrinsic_id());
 724 
 725   case vmIntrinsics::_addExactI:                return inline_math_addExactI(false /* add */);
 726   case vmIntrinsics::_addExactL:                return inline_math_addExactL(false /* add */);
 727   case vmIntrinsics::_decrementExactI:          return inline_math_subtractExactI(true /* decrement */);
 728   case vmIntrinsics::_decrementExactL:          return inline_math_subtractExactL(true /* decrement */);
 729   case vmIntrinsics::_incrementExactI:          return inline_math_addExactI(true /* increment */);
 730   case vmIntrinsics::_incrementExactL:          return inline_math_addExactL(true /* increment */);
 731   case vmIntrinsics::_multiplyExactI:           return inline_math_multiplyExactI();
 732   case vmIntrinsics::_multiplyExactL:           return inline_math_multiplyExactL();
 733   case vmIntrinsics::_negateExactI:             return inline_math_negateExactI();
 734   case vmIntrinsics::_negateExactL:             return inline_math_negateExactL();
 735   case vmIntrinsics::_subtractExactI:           return inline_math_subtractExactI(false /* subtract */);
 736   case vmIntrinsics::_subtractExactL:           return inline_math_subtractExactL(false /* subtract */);
 737 
 738   case vmIntrinsics::_arraycopy:                return inline_arraycopy();
 739 
 740   case vmIntrinsics::_compareTo:                return inline_string_compareTo();
 741   case vmIntrinsics::_indexOf:                  return inline_string_indexOf();
 742   case vmIntrinsics::_equals:                   return inline_string_equals();
 743 
 744   case vmIntrinsics::_getObject:                return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT,  !is_volatile);
 745   case vmIntrinsics::_getBoolean:               return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN, !is_volatile);
 746   case vmIntrinsics::_getByte:                  return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE,    !is_volatile);
 747   case vmIntrinsics::_getShort:                 return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT,   !is_volatile);
 748   case vmIntrinsics::_getChar:                  return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR,    !is_volatile);
 749   case vmIntrinsics::_getInt:                   return inline_unsafe_access(!is_native_ptr, !is_store, T_INT,     !is_volatile);
 750   case vmIntrinsics::_getLong:                  return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG,    !is_volatile);
 751   case vmIntrinsics::_getFloat:                 return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT,   !is_volatile);
 752   case vmIntrinsics::_getDouble:                return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE,  !is_volatile);
 753 
 754   case vmIntrinsics::_putObject:                return inline_unsafe_access(!is_native_ptr,  is_store, T_OBJECT,  !is_volatile);
 755   case vmIntrinsics::_putBoolean:               return inline_unsafe_access(!is_native_ptr,  is_store, T_BOOLEAN, !is_volatile);
 756   case vmIntrinsics::_putByte:                  return inline_unsafe_access(!is_native_ptr,  is_store, T_BYTE,    !is_volatile);
 757   case vmIntrinsics::_putShort:                 return inline_unsafe_access(!is_native_ptr,  is_store, T_SHORT,   !is_volatile);
 758   case vmIntrinsics::_putChar:                  return inline_unsafe_access(!is_native_ptr,  is_store, T_CHAR,    !is_volatile);
 759   case vmIntrinsics::_putInt:                   return inline_unsafe_access(!is_native_ptr,  is_store, T_INT,     !is_volatile);
 760   case vmIntrinsics::_putLong:                  return inline_unsafe_access(!is_native_ptr,  is_store, T_LONG,    !is_volatile);
 761   case vmIntrinsics::_putFloat:                 return inline_unsafe_access(!is_native_ptr,  is_store, T_FLOAT,   !is_volatile);
 762   case vmIntrinsics::_putDouble:                return inline_unsafe_access(!is_native_ptr,  is_store, T_DOUBLE,  !is_volatile);
 763 
 764   case vmIntrinsics::_getByte_raw:              return inline_unsafe_access( is_native_ptr, !is_store, T_BYTE,    !is_volatile);
 765   case vmIntrinsics::_getShort_raw:             return inline_unsafe_access( is_native_ptr, !is_store, T_SHORT,   !is_volatile);
 766   case vmIntrinsics::_getChar_raw:              return inline_unsafe_access( is_native_ptr, !is_store, T_CHAR,    !is_volatile);
 767   case vmIntrinsics::_getInt_raw:               return inline_unsafe_access( is_native_ptr, !is_store, T_INT,     !is_volatile);
 768   case vmIntrinsics::_getLong_raw:              return inline_unsafe_access( is_native_ptr, !is_store, T_LONG,    !is_volatile);
 769   case vmIntrinsics::_getFloat_raw:             return inline_unsafe_access( is_native_ptr, !is_store, T_FLOAT,   !is_volatile);
 770   case vmIntrinsics::_getDouble_raw:            return inline_unsafe_access( is_native_ptr, !is_store, T_DOUBLE,  !is_volatile);
 771   case vmIntrinsics::_getAddress_raw:           return inline_unsafe_access( is_native_ptr, !is_store, T_ADDRESS, !is_volatile);
 772 
 773   case vmIntrinsics::_putByte_raw:              return inline_unsafe_access( is_native_ptr,  is_store, T_BYTE,    !is_volatile);
 774   case vmIntrinsics::_putShort_raw:             return inline_unsafe_access( is_native_ptr,  is_store, T_SHORT,   !is_volatile);
 775   case vmIntrinsics::_putChar_raw:              return inline_unsafe_access( is_native_ptr,  is_store, T_CHAR,    !is_volatile);
 776   case vmIntrinsics::_putInt_raw:               return inline_unsafe_access( is_native_ptr,  is_store, T_INT,     !is_volatile);
 777   case vmIntrinsics::_putLong_raw:              return inline_unsafe_access( is_native_ptr,  is_store, T_LONG,    !is_volatile);
 778   case vmIntrinsics::_putFloat_raw:             return inline_unsafe_access( is_native_ptr,  is_store, T_FLOAT,   !is_volatile);
 779   case vmIntrinsics::_putDouble_raw:            return inline_unsafe_access( is_native_ptr,  is_store, T_DOUBLE,  !is_volatile);
 780   case vmIntrinsics::_putAddress_raw:           return inline_unsafe_access( is_native_ptr,  is_store, T_ADDRESS, !is_volatile);
 781 
 782   case vmIntrinsics::_getObjectVolatile:        return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT,   is_volatile);
 783   case vmIntrinsics::_getBooleanVolatile:       return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN,  is_volatile);
 784   case vmIntrinsics::_getByteVolatile:          return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE,     is_volatile);
 785   case vmIntrinsics::_getShortVolatile:         return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT,    is_volatile);
 786   case vmIntrinsics::_getCharVolatile:          return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR,     is_volatile);
 787   case vmIntrinsics::_getIntVolatile:           return inline_unsafe_access(!is_native_ptr, !is_store, T_INT,      is_volatile);
 788   case vmIntrinsics::_getLongVolatile:          return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG,     is_volatile);
 789   case vmIntrinsics::_getFloatVolatile:         return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT,    is_volatile);
 790   case vmIntrinsics::_getDoubleVolatile:        return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE,   is_volatile);
 791 
 792   case vmIntrinsics::_putObjectVolatile:        return inline_unsafe_access(!is_native_ptr,  is_store, T_OBJECT,   is_volatile);
 793   case vmIntrinsics::_putBooleanVolatile:       return inline_unsafe_access(!is_native_ptr,  is_store, T_BOOLEAN,  is_volatile);
 794   case vmIntrinsics::_putByteVolatile:          return inline_unsafe_access(!is_native_ptr,  is_store, T_BYTE,     is_volatile);
 795   case vmIntrinsics::_putShortVolatile:         return inline_unsafe_access(!is_native_ptr,  is_store, T_SHORT,    is_volatile);
 796   case vmIntrinsics::_putCharVolatile:          return inline_unsafe_access(!is_native_ptr,  is_store, T_CHAR,     is_volatile);
 797   case vmIntrinsics::_putIntVolatile:           return inline_unsafe_access(!is_native_ptr,  is_store, T_INT,      is_volatile);
 798   case vmIntrinsics::_putLongVolatile:          return inline_unsafe_access(!is_native_ptr,  is_store, T_LONG,     is_volatile);
 799   case vmIntrinsics::_putFloatVolatile:         return inline_unsafe_access(!is_native_ptr,  is_store, T_FLOAT,    is_volatile);
 800   case vmIntrinsics::_putDoubleVolatile:        return inline_unsafe_access(!is_native_ptr,  is_store, T_DOUBLE,   is_volatile);
 801 
 802   case vmIntrinsics::_prefetchRead:             return inline_unsafe_prefetch(!is_native_ptr, !is_store, !is_static);
 803   case vmIntrinsics::_prefetchWrite:            return inline_unsafe_prefetch(!is_native_ptr,  is_store, !is_static);
 804   case vmIntrinsics::_prefetchReadStatic:       return inline_unsafe_prefetch(!is_native_ptr, !is_store,  is_static);
 805   case vmIntrinsics::_prefetchWriteStatic:      return inline_unsafe_prefetch(!is_native_ptr,  is_store,  is_static);
 806 
 807   case vmIntrinsics::_compareAndSwapObject:     return inline_unsafe_load_store(T_OBJECT, LS_cmpxchg);
 808   case vmIntrinsics::_compareAndSwapInt:        return inline_unsafe_load_store(T_INT,    LS_cmpxchg);
 809   case vmIntrinsics::_compareAndSwapLong:       return inline_unsafe_load_store(T_LONG,   LS_cmpxchg);
 810 
 811   case vmIntrinsics::_putOrderedObject:         return inline_unsafe_ordered_store(T_OBJECT);
 812   case vmIntrinsics::_putOrderedInt:            return inline_unsafe_ordered_store(T_INT);
 813   case vmIntrinsics::_putOrderedLong:           return inline_unsafe_ordered_store(T_LONG);
 814 
 815   case vmIntrinsics::_getAndAddInt:             return inline_unsafe_load_store(T_INT,    LS_xadd);
 816   case vmIntrinsics::_getAndAddLong:            return inline_unsafe_load_store(T_LONG,   LS_xadd);
 817   case vmIntrinsics::_getAndSetInt:             return inline_unsafe_load_store(T_INT,    LS_xchg);
 818   case vmIntrinsics::_getAndSetLong:            return inline_unsafe_load_store(T_LONG,   LS_xchg);
 819   case vmIntrinsics::_getAndSetObject:          return inline_unsafe_load_store(T_OBJECT, LS_xchg);
 820 
 821   case vmIntrinsics::_loadFence:
 822   case vmIntrinsics::_storeFence:
 823   case vmIntrinsics::_fullFence:                return inline_unsafe_fence(intrinsic_id());
 824 
 825   case vmIntrinsics::_currentThread:            return inline_native_currentThread();
 826   case vmIntrinsics::_isInterrupted:            return inline_native_isInterrupted();
 827 
 828 #ifdef TRACE_HAVE_INTRINSICS
 829   case vmIntrinsics::_classID:                  return inline_native_classID();
 830   case vmIntrinsics::_threadID:                 return inline_native_threadID();
 831   case vmIntrinsics::_counterTime:              return inline_native_time_funcs(CAST_FROM_FN_PTR(address, TRACE_TIME_METHOD), "counterTime");
 832 #endif
 833   case vmIntrinsics::_currentTimeMillis:        return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeMillis), "currentTimeMillis");
 834   case vmIntrinsics::_nanoTime:                 return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeNanos), "nanoTime");
 835   case vmIntrinsics::_allocateInstance:         return inline_unsafe_allocate();
 836   case vmIntrinsics::_copyMemory:               return inline_unsafe_copyMemory();
 837   case vmIntrinsics::_newArray:                 return inline_native_newArray();
 838   case vmIntrinsics::_getLength:                return inline_native_getLength();
 839   case vmIntrinsics::_copyOf:                   return inline_array_copyOf(false);
 840   case vmIntrinsics::_copyOfRange:              return inline_array_copyOf(true);
 841   case vmIntrinsics::_equalsC:                  return inline_array_equals();
 842   case vmIntrinsics::_clone:                    return inline_native_clone(intrinsic()->is_virtual());
 843 
 844   case vmIntrinsics::_isAssignableFrom:         return inline_native_subtype_check();
 845 
 846   case vmIntrinsics::_isInstance:
 847   case vmIntrinsics::_getModifiers:
 848   case vmIntrinsics::_isInterface:
 849   case vmIntrinsics::_isArray:
 850   case vmIntrinsics::_isPrimitive:
 851   case vmIntrinsics::_getSuperclass:
 852   case vmIntrinsics::_getComponentType:
 853   case vmIntrinsics::_getClassAccessFlags:      return inline_native_Class_query(intrinsic_id());
 854 
 855   case vmIntrinsics::_floatToRawIntBits:
 856   case vmIntrinsics::_floatToIntBits:
 857   case vmIntrinsics::_intBitsToFloat:
 858   case vmIntrinsics::_doubleToRawLongBits:
 859   case vmIntrinsics::_doubleToLongBits:
 860   case vmIntrinsics::_longBitsToDouble:         return inline_fp_conversions(intrinsic_id());
 861 
 862   case vmIntrinsics::_numberOfLeadingZeros_i:
 863   case vmIntrinsics::_numberOfLeadingZeros_l:
 864   case vmIntrinsics::_numberOfTrailingZeros_i:
 865   case vmIntrinsics::_numberOfTrailingZeros_l:
 866   case vmIntrinsics::_bitCount_i:
 867   case vmIntrinsics::_bitCount_l:
 868   case vmIntrinsics::_reverseBytes_i:
 869   case vmIntrinsics::_reverseBytes_l:
 870   case vmIntrinsics::_reverseBytes_s:
 871   case vmIntrinsics::_reverseBytes_c:           return inline_number_methods(intrinsic_id());
 872 
 873   case vmIntrinsics::_getCallerClass:           return inline_native_Reflection_getCallerClass();
 874 
 875   case vmIntrinsics::_Reference_get:            return inline_reference_get();
 876 
 877   case vmIntrinsics::_aescrypt_encryptBlock:
 878   case vmIntrinsics::_aescrypt_decryptBlock:    return inline_aescrypt_Block(intrinsic_id());
 879 
 880   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
 881   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
 882     return inline_cipherBlockChaining_AESCrypt(intrinsic_id());
 883 
 884   case vmIntrinsics::_encodeISOArray:
 885     return inline_encodeISOArray();
 886 
 887   case vmIntrinsics::_updateCRC32:
 888     return inline_updateCRC32();
 889   case vmIntrinsics::_updateBytesCRC32:
 890     return inline_updateBytesCRC32();
 891   case vmIntrinsics::_updateByteBufferCRC32:
 892     return inline_updateByteBufferCRC32();
 893 
 894   default:
 895     // If you get here, it may be that someone has added a new intrinsic
 896     // to the list in vmSymbols.hpp without implementing it here.
 897 #ifndef PRODUCT
 898     if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
 899       tty->print_cr("*** Warning: Unimplemented intrinsic %s(%d)",
 900                     vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
 901     }
 902 #endif
 903     return false;
 904   }
 905 }
 906 
 907 Node* LibraryCallKit::try_to_predicate() {
 908   if (!jvms()->has_method()) {
 909     // Root JVMState has a null method.
 910     assert(map()->memory()->Opcode() == Op_Parm, "");
 911     // Insert the memory aliasing node
 912     set_all_memory(reset_memory());
 913   }
 914   assert(merged_memory(), "");
 915 
 916   switch (intrinsic_id()) {
 917   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
 918     return inline_cipherBlockChaining_AESCrypt_predicate(false);
 919   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
 920     return inline_cipherBlockChaining_AESCrypt_predicate(true);
 921 
 922   default:
 923     // If you get here, it may be that someone has added a new intrinsic
 924     // to the list in vmSymbols.hpp without implementing it here.
 925 #ifndef PRODUCT
 926     if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
 927       tty->print_cr("*** Warning: Unimplemented predicate for intrinsic %s(%d)",
 928                     vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
 929     }
 930 #endif
 931     Node* slow_ctl = control();
 932     set_control(top()); // No fast path instrinsic
 933     return slow_ctl;
 934   }
 935 }
 936 
 937 //------------------------------set_result-------------------------------
 938 // Helper function for finishing intrinsics.
 939 void LibraryCallKit::set_result(RegionNode* region, PhiNode* value) {
 940   record_for_igvn(region);
 941   set_control(_gvn.transform(region));
 942   set_result( _gvn.transform(value));
 943   assert(value->type()->basic_type() == result()->bottom_type()->basic_type(), "sanity");
 944 }
 945 
 946 //------------------------------generate_guard---------------------------
 947 // Helper function for generating guarded fast-slow graph structures.
 948 // The given 'test', if true, guards a slow path.  If the test fails
 949 // then a fast path can be taken.  (We generally hope it fails.)
 950 // In all cases, GraphKit::control() is updated to the fast path.
 951 // The returned value represents the control for the slow path.
 952 // The return value is never 'top'; it is either a valid control
 953 // or NULL if it is obvious that the slow path can never be taken.
 954 // Also, if region and the slow control are not NULL, the slow edge
 955 // is appended to the region.
 956 Node* LibraryCallKit::generate_guard(Node* test, RegionNode* region, float true_prob) {
 957   if (stopped()) {
 958     // Already short circuited.
 959     return NULL;
 960   }
 961 
 962   // Build an if node and its projections.
 963   // If test is true we take the slow path, which we assume is uncommon.
 964   if (_gvn.type(test) == TypeInt::ZERO) {
 965     // The slow branch is never taken.  No need to build this guard.
 966     return NULL;
 967   }
 968 
 969   IfNode* iff = create_and_map_if(control(), test, true_prob, COUNT_UNKNOWN);
 970 
 971   Node* if_slow = _gvn.transform(new (C) IfTrueNode(iff));
 972   if (if_slow == top()) {
 973     // The slow branch is never taken.  No need to build this guard.
 974     return NULL;
 975   }
 976 
 977   if (region != NULL)
 978     region->add_req(if_slow);
 979 
 980   Node* if_fast = _gvn.transform(new (C) IfFalseNode(iff));
 981   set_control(if_fast);
 982 
 983   return if_slow;
 984 }
 985 
 986 inline Node* LibraryCallKit::generate_slow_guard(Node* test, RegionNode* region) {
 987   return generate_guard(test, region, PROB_UNLIKELY_MAG(3));
 988 }
 989 inline Node* LibraryCallKit::generate_fair_guard(Node* test, RegionNode* region) {
 990   return generate_guard(test, region, PROB_FAIR);
 991 }
 992 
 993 inline Node* LibraryCallKit::generate_negative_guard(Node* index, RegionNode* region,
 994                                                      Node* *pos_index) {
 995   if (stopped())
 996     return NULL;                // already stopped
 997   if (_gvn.type(index)->higher_equal(TypeInt::POS)) // [0,maxint]
 998     return NULL;                // index is already adequately typed
 999   Node* cmp_lt = _gvn.transform(new (C) CmpINode(index, intcon(0)));
1000   Node* bol_lt = _gvn.transform(new (C) BoolNode(cmp_lt, BoolTest::lt));
1001   Node* is_neg = generate_guard(bol_lt, region, PROB_MIN);
1002   if (is_neg != NULL && pos_index != NULL) {
1003     // Emulate effect of Parse::adjust_map_after_if.
1004     Node* ccast = new (C) CastIINode(index, TypeInt::POS);
1005     ccast->set_req(0, control());
1006     (*pos_index) = _gvn.transform(ccast);
1007   }
1008   return is_neg;
1009 }
1010 
1011 inline Node* LibraryCallKit::generate_nonpositive_guard(Node* index, bool never_negative,
1012                                                         Node* *pos_index) {
1013   if (stopped())
1014     return NULL;                // already stopped
1015   if (_gvn.type(index)->higher_equal(TypeInt::POS1)) // [1,maxint]
1016     return NULL;                // index is already adequately typed
1017   Node* cmp_le = _gvn.transform(new (C) CmpINode(index, intcon(0)));
1018   BoolTest::mask le_or_eq = (never_negative ? BoolTest::eq : BoolTest::le);
1019   Node* bol_le = _gvn.transform(new (C) BoolNode(cmp_le, le_or_eq));
1020   Node* is_notp = generate_guard(bol_le, NULL, PROB_MIN);
1021   if (is_notp != NULL && pos_index != NULL) {
1022     // Emulate effect of Parse::adjust_map_after_if.
1023     Node* ccast = new (C) CastIINode(index, TypeInt::POS1);
1024     ccast->set_req(0, control());
1025     (*pos_index) = _gvn.transform(ccast);
1026   }
1027   return is_notp;
1028 }
1029 
1030 // Make sure that 'position' is a valid limit index, in [0..length].
1031 // There are two equivalent plans for checking this:
1032 //   A. (offset + copyLength)  unsigned<=  arrayLength
1033 //   B. offset  <=  (arrayLength - copyLength)
1034 // We require that all of the values above, except for the sum and
1035 // difference, are already known to be non-negative.
1036 // Plan A is robust in the face of overflow, if offset and copyLength
1037 // are both hugely positive.
1038 //
1039 // Plan B is less direct and intuitive, but it does not overflow at
1040 // all, since the difference of two non-negatives is always
1041 // representable.  Whenever Java methods must perform the equivalent
1042 // check they generally use Plan B instead of Plan A.
1043 // For the moment we use Plan A.
1044 inline Node* LibraryCallKit::generate_limit_guard(Node* offset,
1045                                                   Node* subseq_length,
1046                                                   Node* array_length,
1047                                                   RegionNode* region) {
1048   if (stopped())
1049     return NULL;                // already stopped
1050   bool zero_offset = _gvn.type(offset) == TypeInt::ZERO;
1051   if (zero_offset && subseq_length->eqv_uncast(array_length))
1052     return NULL;                // common case of whole-array copy
1053   Node* last = subseq_length;
1054   if (!zero_offset)             // last += offset
1055     last = _gvn.transform(new (C) AddINode(last, offset));
1056   Node* cmp_lt = _gvn.transform(new (C) CmpUNode(array_length, last));
1057   Node* bol_lt = _gvn.transform(new (C) BoolNode(cmp_lt, BoolTest::lt));
1058   Node* is_over = generate_guard(bol_lt, region, PROB_MIN);
1059   return is_over;
1060 }
1061 
1062 
1063 //--------------------------generate_current_thread--------------------
1064 Node* LibraryCallKit::generate_current_thread(Node* &tls_output) {
1065   ciKlass*    thread_klass = env()->Thread_klass();
1066   const Type* thread_type  = TypeOopPtr::make_from_klass(thread_klass)->cast_to_ptr_type(TypePtr::NotNull);
1067   Node* thread = _gvn.transform(new (C) ThreadLocalNode());
1068   Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::threadObj_offset()));
1069   Node* threadObj = make_load(NULL, p, thread_type, T_OBJECT, MemNode::unordered);
1070   tls_output = thread;
1071   return threadObj;
1072 }
1073 
1074 
1075 //------------------------------make_string_method_node------------------------
1076 // Helper method for String intrinsic functions. This version is called
1077 // with str1 and str2 pointing to String object nodes.
1078 //
1079 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1, Node* str2) {
1080   Node* no_ctrl = NULL;
1081 
1082   // Get start addr of string
1083   Node* str1_value   = load_String_value(no_ctrl, str1);
1084   Node* str1_offset  = load_String_offset(no_ctrl, str1);
1085   Node* str1_start   = array_element_address(str1_value, str1_offset, T_CHAR);
1086 
1087   // Get length of string 1
1088   Node* str1_len  = load_String_length(no_ctrl, str1);
1089 
1090   Node* str2_value   = load_String_value(no_ctrl, str2);
1091   Node* str2_offset  = load_String_offset(no_ctrl, str2);
1092   Node* str2_start   = array_element_address(str2_value, str2_offset, T_CHAR);
1093 
1094   Node* str2_len = NULL;
1095   Node* result = NULL;
1096 
1097   switch (opcode) {
1098   case Op_StrIndexOf:
1099     // Get length of string 2
1100     str2_len = load_String_length(no_ctrl, str2);
1101 
1102     result = new (C) StrIndexOfNode(control(), memory(TypeAryPtr::CHARS),
1103                                  str1_start, str1_len, str2_start, str2_len);
1104     break;
1105   case Op_StrComp:
1106     // Get length of string 2
1107     str2_len = load_String_length(no_ctrl, str2);
1108 
1109     result = new (C) StrCompNode(control(), memory(TypeAryPtr::CHARS),
1110                                  str1_start, str1_len, str2_start, str2_len);
1111     break;
1112   case Op_StrEquals:
1113     result = new (C) StrEqualsNode(control(), memory(TypeAryPtr::CHARS),
1114                                str1_start, str2_start, str1_len);
1115     break;
1116   default:
1117     ShouldNotReachHere();
1118     return NULL;
1119   }
1120 
1121   // All these intrinsics have checks.
1122   C->set_has_split_ifs(true); // Has chance for split-if optimization
1123 
1124   return _gvn.transform(result);
1125 }
1126 
1127 // Helper method for String intrinsic functions. This version is called
1128 // with str1 and str2 pointing to char[] nodes, with cnt1 and cnt2 pointing
1129 // to Int nodes containing the lenghts of str1 and str2.
1130 //
1131 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2) {
1132   Node* result = NULL;
1133   switch (opcode) {
1134   case Op_StrIndexOf:
1135     result = new (C) StrIndexOfNode(control(), memory(TypeAryPtr::CHARS),
1136                                  str1_start, cnt1, str2_start, cnt2);
1137     break;
1138   case Op_StrComp:
1139     result = new (C) StrCompNode(control(), memory(TypeAryPtr::CHARS),
1140                                  str1_start, cnt1, str2_start, cnt2);
1141     break;
1142   case Op_StrEquals:
1143     result = new (C) StrEqualsNode(control(), memory(TypeAryPtr::CHARS),
1144                                  str1_start, str2_start, cnt1);
1145     break;
1146   default:
1147     ShouldNotReachHere();
1148     return NULL;
1149   }
1150 
1151   // All these intrinsics have checks.
1152   C->set_has_split_ifs(true); // Has chance for split-if optimization
1153 
1154   return _gvn.transform(result);
1155 }
1156 
1157 //------------------------------inline_string_compareTo------------------------
1158 // public int java.lang.String.compareTo(String anotherString);
1159 bool LibraryCallKit::inline_string_compareTo() {
1160   Node* receiver = null_check(argument(0));
1161   Node* arg      = null_check(argument(1));
1162   if (stopped()) {
1163     return true;
1164   }
1165   set_result(make_string_method_node(Op_StrComp, receiver, arg));
1166   return true;
1167 }
1168 
1169 //------------------------------inline_string_equals------------------------
1170 bool LibraryCallKit::inline_string_equals() {
1171   Node* receiver = null_check_receiver();
1172   // NOTE: Do not null check argument for String.equals() because spec
1173   // allows to specify NULL as argument.
1174   Node* argument = this->argument(1);
1175   if (stopped()) {
1176     return true;
1177   }
1178 
1179   // paths (plus control) merge
1180   RegionNode* region = new (C) RegionNode(5);
1181   Node* phi = new (C) PhiNode(region, TypeInt::BOOL);
1182 
1183   // does source == target string?
1184   Node* cmp = _gvn.transform(new (C) CmpPNode(receiver, argument));
1185   Node* bol = _gvn.transform(new (C) BoolNode(cmp, BoolTest::eq));
1186 
1187   Node* if_eq = generate_slow_guard(bol, NULL);
1188   if (if_eq != NULL) {
1189     // receiver == argument
1190     phi->init_req(2, intcon(1));
1191     region->init_req(2, if_eq);
1192   }
1193 
1194   // get String klass for instanceOf
1195   ciInstanceKlass* klass = env()->String_klass();
1196 
1197   if (!stopped()) {
1198     Node* inst = gen_instanceof(argument, makecon(TypeKlassPtr::make(klass)));
1199     Node* cmp  = _gvn.transform(new (C) CmpINode(inst, intcon(1)));
1200     Node* bol  = _gvn.transform(new (C) BoolNode(cmp, BoolTest::ne));
1201 
1202     Node* inst_false = generate_guard(bol, NULL, PROB_MIN);
1203     //instanceOf == true, fallthrough
1204 
1205     if (inst_false != NULL) {
1206       phi->init_req(3, intcon(0));
1207       region->init_req(3, inst_false);
1208     }
1209   }
1210 
1211   if (!stopped()) {
1212     const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(klass);
1213 
1214     // Properly cast the argument to String
1215     argument = _gvn.transform(new (C) CheckCastPPNode(control(), argument, string_type));
1216     // This path is taken only when argument's type is String:NotNull.
1217     argument = cast_not_null(argument, false);
1218 
1219     Node* no_ctrl = NULL;
1220 
1221     // Get start addr of receiver
1222     Node* receiver_val    = load_String_value(no_ctrl, receiver);
1223     Node* receiver_offset = load_String_offset(no_ctrl, receiver);
1224     Node* receiver_start = array_element_address(receiver_val, receiver_offset, T_CHAR);
1225 
1226     // Get length of receiver
1227     Node* receiver_cnt  = load_String_length(no_ctrl, receiver);
1228 
1229     // Get start addr of argument
1230     Node* argument_val    = load_String_value(no_ctrl, argument);
1231     Node* argument_offset = load_String_offset(no_ctrl, argument);
1232     Node* argument_start = array_element_address(argument_val, argument_offset, T_CHAR);
1233 
1234     // Get length of argument
1235     Node* argument_cnt  = load_String_length(no_ctrl, argument);
1236 
1237     // Check for receiver count != argument count
1238     Node* cmp = _gvn.transform(new(C) CmpINode(receiver_cnt, argument_cnt));
1239     Node* bol = _gvn.transform(new(C) BoolNode(cmp, BoolTest::ne));
1240     Node* if_ne = generate_slow_guard(bol, NULL);
1241     if (if_ne != NULL) {
1242       phi->init_req(4, intcon(0));
1243       region->init_req(4, if_ne);
1244     }
1245 
1246     // Check for count == 0 is done by assembler code for StrEquals.
1247 
1248     if (!stopped()) {
1249       Node* equals = make_string_method_node(Op_StrEquals, receiver_start, receiver_cnt, argument_start, argument_cnt);
1250       phi->init_req(1, equals);
1251       region->init_req(1, control());
1252     }
1253   }
1254 
1255   // post merge
1256   set_control(_gvn.transform(region));
1257   record_for_igvn(region);
1258 
1259   set_result(_gvn.transform(phi));
1260   return true;
1261 }
1262 
1263 //------------------------------inline_array_equals----------------------------
1264 bool LibraryCallKit::inline_array_equals() {
1265   Node* arg1 = argument(0);
1266   Node* arg2 = argument(1);
1267   set_result(_gvn.transform(new (C) AryEqNode(control(), memory(TypeAryPtr::CHARS), arg1, arg2)));
1268   return true;
1269 }
1270 
1271 // Java version of String.indexOf(constant string)
1272 // class StringDecl {
1273 //   StringDecl(char[] ca) {
1274 //     offset = 0;
1275 //     count = ca.length;
1276 //     value = ca;
1277 //   }
1278 //   int offset;
1279 //   int count;
1280 //   char[] value;
1281 // }
1282 //
1283 // static int string_indexOf_J(StringDecl string_object, char[] target_object,
1284 //                             int targetOffset, int cache_i, int md2) {
1285 //   int cache = cache_i;
1286 //   int sourceOffset = string_object.offset;
1287 //   int sourceCount = string_object.count;
1288 //   int targetCount = target_object.length;
1289 //
1290 //   int targetCountLess1 = targetCount - 1;
1291 //   int sourceEnd = sourceOffset + sourceCount - targetCountLess1;
1292 //
1293 //   char[] source = string_object.value;
1294 //   char[] target = target_object;
1295 //   int lastChar = target[targetCountLess1];
1296 //
1297 //  outer_loop:
1298 //   for (int i = sourceOffset; i < sourceEnd; ) {
1299 //     int src = source[i + targetCountLess1];
1300 //     if (src == lastChar) {
1301 //       // With random strings and a 4-character alphabet,
1302 //       // reverse matching at this point sets up 0.8% fewer
1303 //       // frames, but (paradoxically) makes 0.3% more probes.
1304 //       // Since those probes are nearer the lastChar probe,
1305 //       // there is may be a net D$ win with reverse matching.
1306 //       // But, reversing loop inhibits unroll of inner loop
1307 //       // for unknown reason.  So, does running outer loop from
1308 //       // (sourceOffset - targetCountLess1) to (sourceOffset + sourceCount)
1309 //       for (int j = 0; j < targetCountLess1; j++) {
1310 //         if (target[targetOffset + j] != source[i+j]) {
1311 //           if ((cache & (1 << source[i+j])) == 0) {
1312 //             if (md2 < j+1) {
1313 //               i += j+1;
1314 //               continue outer_loop;
1315 //             }
1316 //           }
1317 //           i += md2;
1318 //           continue outer_loop;
1319 //         }
1320 //       }
1321 //       return i - sourceOffset;
1322 //     }
1323 //     if ((cache & (1 << src)) == 0) {
1324 //       i += targetCountLess1;
1325 //     } // using "i += targetCount;" and an "else i++;" causes a jump to jump.
1326 //     i++;
1327 //   }
1328 //   return -1;
1329 // }
1330 
1331 //------------------------------string_indexOf------------------------
1332 Node* LibraryCallKit::string_indexOf(Node* string_object, ciTypeArray* target_array, jint targetOffset_i,
1333                                      jint cache_i, jint md2_i) {
1334 
1335   Node* no_ctrl  = NULL;
1336   float likely   = PROB_LIKELY(0.9);
1337   float unlikely = PROB_UNLIKELY(0.9);
1338 
1339   const int nargs = 0; // no arguments to push back for uncommon trap in predicate
1340 
1341   Node* source        = load_String_value(no_ctrl, string_object);
1342   Node* sourceOffset  = load_String_offset(no_ctrl, string_object);
1343   Node* sourceCount   = load_String_length(no_ctrl, string_object);
1344 
1345   Node* target = _gvn.transform( makecon(TypeOopPtr::make_from_constant(target_array, true)));
1346   jint target_length = target_array->length();
1347   const TypeAry* target_array_type = TypeAry::make(TypeInt::CHAR, TypeInt::make(0, target_length, Type::WidenMin));
1348   const TypeAryPtr* target_type = TypeAryPtr::make(TypePtr::BotPTR, target_array_type, target_array->klass(), true, Type::OffsetBot);
1349 
1350   // String.value field is known to be @Stable.
1351   if (UseImplicitStableValues) {
1352     target = cast_array_to_stable(target, target_type);
1353   }
1354 
1355   IdealKit kit(this, false, true);
1356 #define __ kit.
1357   Node* zero             = __ ConI(0);
1358   Node* one              = __ ConI(1);
1359   Node* cache            = __ ConI(cache_i);
1360   Node* md2              = __ ConI(md2_i);
1361   Node* lastChar         = __ ConI(target_array->char_at(target_length - 1));
1362   Node* targetCount      = __ ConI(target_length);
1363   Node* targetCountLess1 = __ ConI(target_length - 1);
1364   Node* targetOffset     = __ ConI(targetOffset_i);
1365   Node* sourceEnd        = __ SubI(__ AddI(sourceOffset, sourceCount), targetCountLess1);
1366 
1367   IdealVariable rtn(kit), i(kit), j(kit); __ declarations_done();
1368   Node* outer_loop = __ make_label(2 /* goto */);
1369   Node* return_    = __ make_label(1);
1370 
1371   __ set(rtn,__ ConI(-1));
1372   __ loop(this, nargs, i, sourceOffset, BoolTest::lt, sourceEnd); {
1373        Node* i2  = __ AddI(__ value(i), targetCountLess1);
1374        // pin to prohibit loading of "next iteration" value which may SEGV (rare)
1375        Node* src = load_array_element(__ ctrl(), source, i2, TypeAryPtr::CHARS);
1376        __ if_then(src, BoolTest::eq, lastChar, unlikely); {
1377          __ loop(this, nargs, j, zero, BoolTest::lt, targetCountLess1); {
1378               Node* tpj = __ AddI(targetOffset, __ value(j));
1379               Node* targ = load_array_element(no_ctrl, target, tpj, target_type);
1380               Node* ipj  = __ AddI(__ value(i), __ value(j));
1381               Node* src2 = load_array_element(no_ctrl, source, ipj, TypeAryPtr::CHARS);
1382               __ if_then(targ, BoolTest::ne, src2); {
1383                 __ if_then(__ AndI(cache, __ LShiftI(one, src2)), BoolTest::eq, zero); {
1384                   __ if_then(md2, BoolTest::lt, __ AddI(__ value(j), one)); {
1385                     __ increment(i, __ AddI(__ value(j), one));
1386                     __ goto_(outer_loop);
1387                   } __ end_if(); __ dead(j);
1388                 }__ end_if(); __ dead(j);
1389                 __ increment(i, md2);
1390                 __ goto_(outer_loop);
1391               }__ end_if();
1392               __ increment(j, one);
1393          }__ end_loop(); __ dead(j);
1394          __ set(rtn, __ SubI(__ value(i), sourceOffset)); __ dead(i);
1395          __ goto_(return_);
1396        }__ end_if();
1397        __ if_then(__ AndI(cache, __ LShiftI(one, src)), BoolTest::eq, zero, likely); {
1398          __ increment(i, targetCountLess1);
1399        }__ end_if();
1400        __ increment(i, one);
1401        __ bind(outer_loop);
1402   }__ end_loop(); __ dead(i);
1403   __ bind(return_);
1404 
1405   // Final sync IdealKit and GraphKit.
1406   final_sync(kit);
1407   Node* result = __ value(rtn);
1408 #undef __
1409   C->set_has_loops(true);
1410   return result;
1411 }
1412 
1413 //------------------------------inline_string_indexOf------------------------
1414 bool LibraryCallKit::inline_string_indexOf() {
1415   Node* receiver = argument(0);
1416   Node* arg      = argument(1);
1417 
1418   Node* result;
1419   // Disable the use of pcmpestri until it can be guaranteed that
1420   // the load doesn't cross into the uncommited space.
1421   if (Matcher::has_match_rule(Op_StrIndexOf) &&
1422       UseSSE42Intrinsics) {
1423     // Generate SSE4.2 version of indexOf
1424     // We currently only have match rules that use SSE4.2
1425 
1426     receiver = null_check(receiver);
1427     arg      = null_check(arg);
1428     if (stopped()) {
1429       return true;
1430     }
1431 
1432     ciInstanceKlass* str_klass = env()->String_klass();
1433     const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(str_klass);
1434 
1435     // Make the merge point
1436     RegionNode* result_rgn = new (C) RegionNode(4);
1437     Node*       result_phi = new (C) PhiNode(result_rgn, TypeInt::INT);
1438     Node* no_ctrl  = NULL;
1439 
1440     // Get start addr of source string
1441     Node* source = load_String_value(no_ctrl, receiver);
1442     Node* source_offset = load_String_offset(no_ctrl, receiver);
1443     Node* source_start = array_element_address(source, source_offset, T_CHAR);
1444 
1445     // Get length of source string
1446     Node* source_cnt  = load_String_length(no_ctrl, receiver);
1447 
1448     // Get start addr of substring
1449     Node* substr = load_String_value(no_ctrl, arg);
1450     Node* substr_offset = load_String_offset(no_ctrl, arg);
1451     Node* substr_start = array_element_address(substr, substr_offset, T_CHAR);
1452 
1453     // Get length of source string
1454     Node* substr_cnt  = load_String_length(no_ctrl, arg);
1455 
1456     // Check for substr count > string count
1457     Node* cmp = _gvn.transform(new(C) CmpINode(substr_cnt, source_cnt));
1458     Node* bol = _gvn.transform(new(C) BoolNode(cmp, BoolTest::gt));
1459     Node* if_gt = generate_slow_guard(bol, NULL);
1460     if (if_gt != NULL) {
1461       result_phi->init_req(2, intcon(-1));
1462       result_rgn->init_req(2, if_gt);
1463     }
1464 
1465     if (!stopped()) {
1466       // Check for substr count == 0
1467       cmp = _gvn.transform(new(C) CmpINode(substr_cnt, intcon(0)));
1468       bol = _gvn.transform(new(C) BoolNode(cmp, BoolTest::eq));
1469       Node* if_zero = generate_slow_guard(bol, NULL);
1470       if (if_zero != NULL) {
1471         result_phi->init_req(3, intcon(0));
1472         result_rgn->init_req(3, if_zero);
1473       }
1474     }
1475 
1476     if (!stopped()) {
1477       result = make_string_method_node(Op_StrIndexOf, source_start, source_cnt, substr_start, substr_cnt);
1478       result_phi->init_req(1, result);
1479       result_rgn->init_req(1, control());
1480     }
1481     set_control(_gvn.transform(result_rgn));
1482     record_for_igvn(result_rgn);
1483     result = _gvn.transform(result_phi);
1484 
1485   } else { // Use LibraryCallKit::string_indexOf
1486     // don't intrinsify if argument isn't a constant string.
1487     if (!arg->is_Con()) {
1488      return false;
1489     }
1490     const TypeOopPtr* str_type = _gvn.type(arg)->isa_oopptr();
1491     if (str_type == NULL) {
1492       return false;
1493     }
1494     ciInstanceKlass* klass = env()->String_klass();
1495     ciObject* str_const = str_type->const_oop();
1496     if (str_const == NULL || str_const->klass() != klass) {
1497       return false;
1498     }
1499     ciInstance* str = str_const->as_instance();
1500     assert(str != NULL, "must be instance");
1501 
1502     ciObject* v = str->field_value_by_offset(java_lang_String::value_offset_in_bytes()).as_object();
1503     ciTypeArray* pat = v->as_type_array(); // pattern (argument) character array
1504 
1505     int o;
1506     int c;
1507     if (java_lang_String::has_offset_field()) {
1508       o = str->field_value_by_offset(java_lang_String::offset_offset_in_bytes()).as_int();
1509       c = str->field_value_by_offset(java_lang_String::count_offset_in_bytes()).as_int();
1510     } else {
1511       o = 0;
1512       c = pat->length();
1513     }
1514 
1515     // constant strings have no offset and count == length which
1516     // simplifies the resulting code somewhat so lets optimize for that.
1517     if (o != 0 || c != pat->length()) {
1518      return false;
1519     }
1520 
1521     receiver = null_check(receiver, T_OBJECT);
1522     // NOTE: No null check on the argument is needed since it's a constant String oop.
1523     if (stopped()) {
1524       return true;
1525     }
1526 
1527     // The null string as a pattern always returns 0 (match at beginning of string)
1528     if (c == 0) {
1529       set_result(intcon(0));
1530       return true;
1531     }
1532 
1533     // Generate default indexOf
1534     jchar lastChar = pat->char_at(o + (c - 1));
1535     int cache = 0;
1536     int i;
1537     for (i = 0; i < c - 1; i++) {
1538       assert(i < pat->length(), "out of range");
1539       cache |= (1 << (pat->char_at(o + i) & (sizeof(cache) * BitsPerByte - 1)));
1540     }
1541 
1542     int md2 = c;
1543     for (i = 0; i < c - 1; i++) {
1544       assert(i < pat->length(), "out of range");
1545       if (pat->char_at(o + i) == lastChar) {
1546         md2 = (c - 1) - i;
1547       }
1548     }
1549 
1550     result = string_indexOf(receiver, pat, o, cache, md2);
1551   }
1552   set_result(result);
1553   return true;
1554 }
1555 
1556 //--------------------------round_double_node--------------------------------
1557 // Round a double node if necessary.
1558 Node* LibraryCallKit::round_double_node(Node* n) {
1559   if (Matcher::strict_fp_requires_explicit_rounding && UseSSE <= 1)
1560     n = _gvn.transform(new (C) RoundDoubleNode(0, n));
1561   return n;
1562 }
1563 
1564 //------------------------------inline_math-----------------------------------
1565 // public static double Math.abs(double)
1566 // public static double Math.sqrt(double)
1567 // public static double Math.log(double)
1568 // public static double Math.log10(double)
1569 bool LibraryCallKit::inline_math(vmIntrinsics::ID id) {
1570   Node* arg = round_double_node(argument(0));
1571   Node* n;
1572   switch (id) {
1573   case vmIntrinsics::_dabs:   n = new (C) AbsDNode(                arg);  break;
1574   case vmIntrinsics::_dsqrt:  n = new (C) SqrtDNode(C, control(),  arg);  break;
1575   case vmIntrinsics::_dlog:   n = new (C) LogDNode(C, control(),   arg);  break;
1576   case vmIntrinsics::_dlog10: n = new (C) Log10DNode(C, control(), arg);  break;
1577   default:  fatal_unexpected_iid(id);  break;
1578   }
1579   set_result(_gvn.transform(n));
1580   return true;
1581 }
1582 
1583 //------------------------------inline_trig----------------------------------
1584 // Inline sin/cos/tan instructions, if possible.  If rounding is required, do
1585 // argument reduction which will turn into a fast/slow diamond.
1586 bool LibraryCallKit::inline_trig(vmIntrinsics::ID id) {
1587   Node* arg = round_double_node(argument(0));
1588   Node* n = NULL;
1589 
1590   switch (id) {
1591   case vmIntrinsics::_dsin:  n = new (C) SinDNode(C, control(), arg);  break;
1592   case vmIntrinsics::_dcos:  n = new (C) CosDNode(C, control(), arg);  break;
1593   case vmIntrinsics::_dtan:  n = new (C) TanDNode(C, control(), arg);  break;
1594   default:  fatal_unexpected_iid(id);  break;
1595   }
1596   n = _gvn.transform(n);
1597 
1598   // Rounding required?  Check for argument reduction!
1599   if (Matcher::strict_fp_requires_explicit_rounding) {
1600     static const double     pi_4 =  0.7853981633974483;
1601     static const double neg_pi_4 = -0.7853981633974483;
1602     // pi/2 in 80-bit extended precision
1603     // static const unsigned char pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0x3f,0x00,0x00,0x00,0x00,0x00,0x00};
1604     // -pi/2 in 80-bit extended precision
1605     // static const unsigned char neg_pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0xbf,0x00,0x00,0x00,0x00,0x00,0x00};
1606     // Cutoff value for using this argument reduction technique
1607     //static const double    pi_2_minus_epsilon =  1.564660403643354;
1608     //static const double neg_pi_2_plus_epsilon = -1.564660403643354;
1609 
1610     // Pseudocode for sin:
1611     // if (x <= Math.PI / 4.0) {
1612     //   if (x >= -Math.PI / 4.0) return  fsin(x);
1613     //   if (x >= -Math.PI / 2.0) return -fcos(x + Math.PI / 2.0);
1614     // } else {
1615     //   if (x <=  Math.PI / 2.0) return  fcos(x - Math.PI / 2.0);
1616     // }
1617     // return StrictMath.sin(x);
1618 
1619     // Pseudocode for cos:
1620     // if (x <= Math.PI / 4.0) {
1621     //   if (x >= -Math.PI / 4.0) return  fcos(x);
1622     //   if (x >= -Math.PI / 2.0) return  fsin(x + Math.PI / 2.0);
1623     // } else {
1624     //   if (x <=  Math.PI / 2.0) return -fsin(x - Math.PI / 2.0);
1625     // }
1626     // return StrictMath.cos(x);
1627 
1628     // Actually, sticking in an 80-bit Intel value into C2 will be tough; it
1629     // requires a special machine instruction to load it.  Instead we'll try
1630     // the 'easy' case.  If we really need the extra range +/- PI/2 we'll
1631     // probably do the math inside the SIN encoding.
1632 
1633     // Make the merge point
1634     RegionNode* r = new (C) RegionNode(3);
1635     Node* phi = new (C) PhiNode(r, Type::DOUBLE);
1636 
1637     // Flatten arg so we need only 1 test
1638     Node *abs = _gvn.transform(new (C) AbsDNode(arg));
1639     // Node for PI/4 constant
1640     Node *pi4 = makecon(TypeD::make(pi_4));
1641     // Check PI/4 : abs(arg)
1642     Node *cmp = _gvn.transform(new (C) CmpDNode(pi4,abs));
1643     // Check: If PI/4 < abs(arg) then go slow
1644     Node *bol = _gvn.transform(new (C) BoolNode( cmp, BoolTest::lt ));
1645     // Branch either way
1646     IfNode *iff = create_and_xform_if(control(),bol, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
1647     set_control(opt_iff(r,iff));
1648 
1649     // Set fast path result
1650     phi->init_req(2, n);
1651 
1652     // Slow path - non-blocking leaf call
1653     Node* call = NULL;
1654     switch (id) {
1655     case vmIntrinsics::_dsin:
1656       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
1657                                CAST_FROM_FN_PTR(address, SharedRuntime::dsin),
1658                                "Sin", NULL, arg, top());
1659       break;
1660     case vmIntrinsics::_dcos:
1661       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
1662                                CAST_FROM_FN_PTR(address, SharedRuntime::dcos),
1663                                "Cos", NULL, arg, top());
1664       break;
1665     case vmIntrinsics::_dtan:
1666       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
1667                                CAST_FROM_FN_PTR(address, SharedRuntime::dtan),
1668                                "Tan", NULL, arg, top());
1669       break;
1670     }
1671     assert(control()->in(0) == call, "");
1672     Node* slow_result = _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
1673     r->init_req(1, control());
1674     phi->init_req(1, slow_result);
1675 
1676     // Post-merge
1677     set_control(_gvn.transform(r));
1678     record_for_igvn(r);
1679     n = _gvn.transform(phi);
1680 
1681     C->set_has_split_ifs(true); // Has chance for split-if optimization
1682   }
1683   set_result(n);
1684   return true;
1685 }
1686 
1687 void LibraryCallKit::finish_pow_exp(Node* result, Node* x, Node* y, const TypeFunc* call_type, address funcAddr, const char* funcName) {
1688   //-------------------
1689   //result=(result.isNaN())? funcAddr():result;
1690   // Check: If isNaN() by checking result!=result? then either trap
1691   // or go to runtime
1692   Node* cmpisnan = _gvn.transform(new (C) CmpDNode(result, result));
1693   // Build the boolean node
1694   Node* bolisnum = _gvn.transform(new (C) BoolNode(cmpisnan, BoolTest::eq));
1695 
1696   if (!too_many_traps(Deoptimization::Reason_intrinsic)) {
1697     { BuildCutout unless(this, bolisnum, PROB_STATIC_FREQUENT);
1698       // The pow or exp intrinsic returned a NaN, which requires a call
1699       // to the runtime.  Recompile with the runtime call.
1700       uncommon_trap(Deoptimization::Reason_intrinsic,
1701                     Deoptimization::Action_make_not_entrant);
1702     }
1703     set_result(result);
1704   } else {
1705     // If this inlining ever returned NaN in the past, we compile a call
1706     // to the runtime to properly handle corner cases
1707 
1708     IfNode* iff = create_and_xform_if(control(), bolisnum, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
1709     Node* if_slow = _gvn.transform(new (C) IfFalseNode(iff));
1710     Node* if_fast = _gvn.transform(new (C) IfTrueNode(iff));
1711 
1712     if (!if_slow->is_top()) {
1713       RegionNode* result_region = new (C) RegionNode(3);
1714       PhiNode*    result_val = new (C) PhiNode(result_region, Type::DOUBLE);
1715 
1716       result_region->init_req(1, if_fast);
1717       result_val->init_req(1, result);
1718 
1719       set_control(if_slow);
1720 
1721       const TypePtr* no_memory_effects = NULL;
1722       Node* rt = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
1723                                    no_memory_effects,
1724                                    x, top(), y, y ? top() : NULL);
1725       Node* value = _gvn.transform(new (C) ProjNode(rt, TypeFunc::Parms+0));
1726 #ifdef ASSERT
1727       Node* value_top = _gvn.transform(new (C) ProjNode(rt, TypeFunc::Parms+1));
1728       assert(value_top == top(), "second value must be top");
1729 #endif
1730 
1731       result_region->init_req(2, control());
1732       result_val->init_req(2, value);
1733       set_result(result_region, result_val);
1734     } else {
1735       set_result(result);
1736     }
1737   }
1738 }
1739 
1740 //------------------------------inline_exp-------------------------------------
1741 // Inline exp instructions, if possible.  The Intel hardware only misses
1742 // really odd corner cases (+/- Infinity).  Just uncommon-trap them.
1743 bool LibraryCallKit::inline_exp() {
1744   Node* arg = round_double_node(argument(0));
1745   Node* n   = _gvn.transform(new (C) ExpDNode(C, control(), arg));
1746 
1747   finish_pow_exp(n, arg, NULL, OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dexp), "EXP");
1748 
1749   C->set_has_split_ifs(true); // Has chance for split-if optimization
1750   return true;
1751 }
1752 
1753 //------------------------------inline_pow-------------------------------------
1754 // Inline power instructions, if possible.
1755 bool LibraryCallKit::inline_pow() {
1756   // Pseudocode for pow
1757   // if (x <= 0.0) {
1758   //   long longy = (long)y;
1759   //   if ((double)longy == y) { // if y is long
1760   //     if (y + 1 == y) longy = 0; // huge number: even
1761   //     result = ((1&longy) == 0)?-DPow(abs(x), y):DPow(abs(x), y);
1762   //   } else {
1763   //     result = NaN;
1764   //   }
1765   // } else {
1766   //   result = DPow(x,y);
1767   // }
1768   // if (result != result)?  {
1769   //   result = uncommon_trap() or runtime_call();
1770   // }
1771   // return result;
1772 
1773   Node* x = round_double_node(argument(0));
1774   Node* y = round_double_node(argument(2));
1775 
1776   Node* result = NULL;
1777 
1778   if (!too_many_traps(Deoptimization::Reason_intrinsic)) {
1779     // Short form: skip the fancy tests and just check for NaN result.
1780     result = _gvn.transform(new (C) PowDNode(C, control(), x, y));
1781   } else {
1782     // If this inlining ever returned NaN in the past, include all
1783     // checks + call to the runtime.
1784 
1785     // Set the merge point for If node with condition of (x <= 0.0)
1786     // There are four possible paths to region node and phi node
1787     RegionNode *r = new (C) RegionNode(4);
1788     Node *phi = new (C) PhiNode(r, Type::DOUBLE);
1789 
1790     // Build the first if node: if (x <= 0.0)
1791     // Node for 0 constant
1792     Node *zeronode = makecon(TypeD::ZERO);
1793     // Check x:0
1794     Node *cmp = _gvn.transform(new (C) CmpDNode(x, zeronode));
1795     // Check: If (x<=0) then go complex path
1796     Node *bol1 = _gvn.transform(new (C) BoolNode( cmp, BoolTest::le ));
1797     // Branch either way
1798     IfNode *if1 = create_and_xform_if(control(),bol1, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
1799     // Fast path taken; set region slot 3
1800     Node *fast_taken = _gvn.transform(new (C) IfFalseNode(if1));
1801     r->init_req(3,fast_taken); // Capture fast-control
1802 
1803     // Fast path not-taken, i.e. slow path
1804     Node *complex_path = _gvn.transform(new (C) IfTrueNode(if1));
1805 
1806     // Set fast path result
1807     Node *fast_result = _gvn.transform(new (C) PowDNode(C, control(), x, y));
1808     phi->init_req(3, fast_result);
1809 
1810     // Complex path
1811     // Build the second if node (if y is long)
1812     // Node for (long)y
1813     Node *longy = _gvn.transform(new (C) ConvD2LNode(y));
1814     // Node for (double)((long) y)
1815     Node *doublelongy= _gvn.transform(new (C) ConvL2DNode(longy));
1816     // Check (double)((long) y) : y
1817     Node *cmplongy= _gvn.transform(new (C) CmpDNode(doublelongy, y));
1818     // Check if (y isn't long) then go to slow path
1819 
1820     Node *bol2 = _gvn.transform(new (C) BoolNode( cmplongy, BoolTest::ne ));
1821     // Branch either way
1822     IfNode *if2 = create_and_xform_if(complex_path,bol2, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
1823     Node* ylong_path = _gvn.transform(new (C) IfFalseNode(if2));
1824 
1825     Node *slow_path = _gvn.transform(new (C) IfTrueNode(if2));
1826 
1827     // Calculate DPow(abs(x), y)*(1 & (long)y)
1828     // Node for constant 1
1829     Node *conone = longcon(1);
1830     // 1& (long)y
1831     Node *signnode= _gvn.transform(new (C) AndLNode(conone, longy));
1832 
1833     // A huge number is always even. Detect a huge number by checking
1834     // if y + 1 == y and set integer to be tested for parity to 0.
1835     // Required for corner case:
1836     // (long)9.223372036854776E18 = max_jlong
1837     // (double)(long)9.223372036854776E18 = 9.223372036854776E18
1838     // max_jlong is odd but 9.223372036854776E18 is even
1839     Node* yplus1 = _gvn.transform(new (C) AddDNode(y, makecon(TypeD::make(1))));
1840     Node *cmpyplus1= _gvn.transform(new (C) CmpDNode(yplus1, y));
1841     Node *bolyplus1 = _gvn.transform(new (C) BoolNode( cmpyplus1, BoolTest::eq ));
1842     Node* correctedsign = NULL;
1843     if (ConditionalMoveLimit != 0) {
1844       correctedsign = _gvn.transform( CMoveNode::make(C, NULL, bolyplus1, signnode, longcon(0), TypeLong::LONG));
1845     } else {
1846       IfNode *ifyplus1 = create_and_xform_if(ylong_path,bolyplus1, PROB_FAIR, COUNT_UNKNOWN);
1847       RegionNode *r = new (C) RegionNode(3);
1848       Node *phi = new (C) PhiNode(r, TypeLong::LONG);
1849       r->init_req(1, _gvn.transform(new (C) IfFalseNode(ifyplus1)));
1850       r->init_req(2, _gvn.transform(new (C) IfTrueNode(ifyplus1)));
1851       phi->init_req(1, signnode);
1852       phi->init_req(2, longcon(0));
1853       correctedsign = _gvn.transform(phi);
1854       ylong_path = _gvn.transform(r);
1855       record_for_igvn(r);
1856     }
1857 
1858     // zero node
1859     Node *conzero = longcon(0);
1860     // Check (1&(long)y)==0?
1861     Node *cmpeq1 = _gvn.transform(new (C) CmpLNode(correctedsign, conzero));
1862     // Check if (1&(long)y)!=0?, if so the result is negative
1863     Node *bol3 = _gvn.transform(new (C) BoolNode( cmpeq1, BoolTest::ne ));
1864     // abs(x)
1865     Node *absx=_gvn.transform(new (C) AbsDNode(x));
1866     // abs(x)^y
1867     Node *absxpowy = _gvn.transform(new (C) PowDNode(C, control(), absx, y));
1868     // -abs(x)^y
1869     Node *negabsxpowy = _gvn.transform(new (C) NegDNode (absxpowy));
1870     // (1&(long)y)==1?-DPow(abs(x), y):DPow(abs(x), y)
1871     Node *signresult = NULL;
1872     if (ConditionalMoveLimit != 0) {
1873       signresult = _gvn.transform( CMoveNode::make(C, NULL, bol3, absxpowy, negabsxpowy, Type::DOUBLE));
1874     } else {
1875       IfNode *ifyeven = create_and_xform_if(ylong_path,bol3, PROB_FAIR, COUNT_UNKNOWN);
1876       RegionNode *r = new (C) RegionNode(3);
1877       Node *phi = new (C) PhiNode(r, Type::DOUBLE);
1878       r->init_req(1, _gvn.transform(new (C) IfFalseNode(ifyeven)));
1879       r->init_req(2, _gvn.transform(new (C) IfTrueNode(ifyeven)));
1880       phi->init_req(1, absxpowy);
1881       phi->init_req(2, negabsxpowy);
1882       signresult = _gvn.transform(phi);
1883       ylong_path = _gvn.transform(r);
1884       record_for_igvn(r);
1885     }
1886     // Set complex path fast result
1887     r->init_req(2, ylong_path);
1888     phi->init_req(2, signresult);
1889 
1890     static const jlong nan_bits = CONST64(0x7ff8000000000000);
1891     Node *slow_result = makecon(TypeD::make(*(double*)&nan_bits)); // return NaN
1892     r->init_req(1,slow_path);
1893     phi->init_req(1,slow_result);
1894 
1895     // Post merge
1896     set_control(_gvn.transform(r));
1897     record_for_igvn(r);
1898     result = _gvn.transform(phi);
1899   }
1900 
1901   finish_pow_exp(result, x, y, OptoRuntime::Math_DD_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dpow), "POW");
1902 
1903   C->set_has_split_ifs(true); // Has chance for split-if optimization
1904   return true;
1905 }
1906 
1907 //------------------------------runtime_math-----------------------------
1908 bool LibraryCallKit::runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName) {
1909   assert(call_type == OptoRuntime::Math_DD_D_Type() || call_type == OptoRuntime::Math_D_D_Type(),
1910          "must be (DD)D or (D)D type");
1911 
1912   // Inputs
1913   Node* a = round_double_node(argument(0));
1914   Node* b = (call_type == OptoRuntime::Math_DD_D_Type()) ? round_double_node(argument(2)) : NULL;
1915 
1916   const TypePtr* no_memory_effects = NULL;
1917   Node* trig = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
1918                                  no_memory_effects,
1919                                  a, top(), b, b ? top() : NULL);
1920   Node* value = _gvn.transform(new (C) ProjNode(trig, TypeFunc::Parms+0));
1921 #ifdef ASSERT
1922   Node* value_top = _gvn.transform(new (C) ProjNode(trig, TypeFunc::Parms+1));
1923   assert(value_top == top(), "second value must be top");
1924 #endif
1925 
1926   set_result(value);
1927   return true;
1928 }
1929 
1930 //------------------------------inline_math_native-----------------------------
1931 bool LibraryCallKit::inline_math_native(vmIntrinsics::ID id) {
1932 #define FN_PTR(f) CAST_FROM_FN_PTR(address, f)
1933   switch (id) {
1934     // These intrinsics are not properly supported on all hardware
1935   case vmIntrinsics::_dcos:   return Matcher::has_match_rule(Op_CosD)   ? inline_trig(id) :
1936     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dcos),   "COS");
1937   case vmIntrinsics::_dsin:   return Matcher::has_match_rule(Op_SinD)   ? inline_trig(id) :
1938     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dsin),   "SIN");
1939   case vmIntrinsics::_dtan:   return Matcher::has_match_rule(Op_TanD)   ? inline_trig(id) :
1940     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dtan),   "TAN");
1941 
1942   case vmIntrinsics::_dlog:   return Matcher::has_match_rule(Op_LogD)   ? inline_math(id) :
1943     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dlog),   "LOG");
1944   case vmIntrinsics::_dlog10: return Matcher::has_match_rule(Op_Log10D) ? inline_math(id) :
1945     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dlog10), "LOG10");
1946 
1947     // These intrinsics are supported on all hardware
1948   case vmIntrinsics::_dsqrt:  return Matcher::match_rule_supported(Op_SqrtD) ? inline_math(id) : false;
1949   case vmIntrinsics::_dabs:   return Matcher::has_match_rule(Op_AbsD)   ? inline_math(id) : false;
1950 
1951   case vmIntrinsics::_dexp:   return Matcher::has_match_rule(Op_ExpD)   ? inline_exp()    :
1952     runtime_math(OptoRuntime::Math_D_D_Type(),  FN_PTR(SharedRuntime::dexp),  "EXP");
1953   case vmIntrinsics::_dpow:   return Matcher::has_match_rule(Op_PowD)   ? inline_pow()    :
1954     runtime_math(OptoRuntime::Math_DD_D_Type(), FN_PTR(SharedRuntime::dpow),  "POW");
1955 #undef FN_PTR
1956 
1957    // These intrinsics are not yet correctly implemented
1958   case vmIntrinsics::_datan2:
1959     return false;
1960 
1961   default:
1962     fatal_unexpected_iid(id);
1963     return false;
1964   }
1965 }
1966 
1967 static bool is_simple_name(Node* n) {
1968   return (n->req() == 1         // constant
1969           || (n->is_Type() && n->as_Type()->type()->singleton())
1970           || n->is_Proj()       // parameter or return value
1971           || n->is_Phi()        // local of some sort
1972           );
1973 }
1974 
1975 //----------------------------inline_min_max-----------------------------------
1976 bool LibraryCallKit::inline_min_max(vmIntrinsics::ID id) {
1977   set_result(generate_min_max(id, argument(0), argument(1)));
1978   return true;
1979 }
1980 
1981 void LibraryCallKit::inline_math_mathExact(Node* math, Node *test) {
1982   Node* bol = _gvn.transform( new (C) BoolNode(test, BoolTest::overflow) );
1983   IfNode* check = create_and_map_if(control(), bol, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
1984   Node* fast_path = _gvn.transform( new (C) IfFalseNode(check));
1985   Node* slow_path = _gvn.transform( new (C) IfTrueNode(check) );
1986 
1987   {
1988     PreserveJVMState pjvms(this);
1989     PreserveReexecuteState preexecs(this);
1990     jvms()->set_should_reexecute(true);
1991 
1992     set_control(slow_path);
1993     set_i_o(i_o());
1994 
1995     uncommon_trap(Deoptimization::Reason_intrinsic,
1996                   Deoptimization::Action_none);
1997   }
1998 
1999   set_control(fast_path);
2000   set_result(math);
2001 }
2002 
2003 template <typename OverflowOp>
2004 bool LibraryCallKit::inline_math_overflow(Node* arg1, Node* arg2) {
2005   typedef typename OverflowOp::MathOp MathOp;
2006 
2007   MathOp* mathOp = new(C) MathOp(arg1, arg2);
2008   Node* operation = _gvn.transform( mathOp );
2009   Node* ofcheck = _gvn.transform( new(C) OverflowOp(arg1, arg2) );
2010   inline_math_mathExact(operation, ofcheck);
2011   return true;
2012 }
2013 
2014 bool LibraryCallKit::inline_math_addExactI(bool is_increment) {
2015   return inline_math_overflow<OverflowAddINode>(argument(0), is_increment ? intcon(1) : argument(1));
2016 }
2017 
2018 bool LibraryCallKit::inline_math_addExactL(bool is_increment) {
2019   return inline_math_overflow<OverflowAddLNode>(argument(0), is_increment ? longcon(1) : argument(2));
2020 }
2021 
2022 bool LibraryCallKit::inline_math_subtractExactI(bool is_decrement) {
2023   return inline_math_overflow<OverflowSubINode>(argument(0), is_decrement ? intcon(1) : argument(1));
2024 }
2025 
2026 bool LibraryCallKit::inline_math_subtractExactL(bool is_decrement) {
2027   return inline_math_overflow<OverflowSubLNode>(argument(0), is_decrement ? longcon(1) : argument(2));
2028 }
2029 
2030 bool LibraryCallKit::inline_math_negateExactI() {
2031   return inline_math_overflow<OverflowSubINode>(intcon(0), argument(0));
2032 }
2033 
2034 bool LibraryCallKit::inline_math_negateExactL() {
2035   return inline_math_overflow<OverflowSubLNode>(longcon(0), argument(0));
2036 }
2037 
2038 bool LibraryCallKit::inline_math_multiplyExactI() {
2039   return inline_math_overflow<OverflowMulINode>(argument(0), argument(1));
2040 }
2041 
2042 bool LibraryCallKit::inline_math_multiplyExactL() {
2043   return inline_math_overflow<OverflowMulLNode>(argument(0), argument(2));
2044 }
2045 
2046 Node*
2047 LibraryCallKit::generate_min_max(vmIntrinsics::ID id, Node* x0, Node* y0) {
2048   // These are the candidate return value:
2049   Node* xvalue = x0;
2050   Node* yvalue = y0;
2051 
2052   if (xvalue == yvalue) {
2053     return xvalue;
2054   }
2055 
2056   bool want_max = (id == vmIntrinsics::_max);
2057 
2058   const TypeInt* txvalue = _gvn.type(xvalue)->isa_int();
2059   const TypeInt* tyvalue = _gvn.type(yvalue)->isa_int();
2060   if (txvalue == NULL || tyvalue == NULL)  return top();
2061   // This is not really necessary, but it is consistent with a
2062   // hypothetical MaxINode::Value method:
2063   int widen = MAX2(txvalue->_widen, tyvalue->_widen);
2064 
2065   // %%% This folding logic should (ideally) be in a different place.
2066   // Some should be inside IfNode, and there to be a more reliable
2067   // transformation of ?: style patterns into cmoves.  We also want
2068   // more powerful optimizations around cmove and min/max.
2069 
2070   // Try to find a dominating comparison of these guys.
2071   // It can simplify the index computation for Arrays.copyOf
2072   // and similar uses of System.arraycopy.
2073   // First, compute the normalized version of CmpI(x, y).
2074   int   cmp_op = Op_CmpI;
2075   Node* xkey = xvalue;
2076   Node* ykey = yvalue;
2077   Node* ideal_cmpxy = _gvn.transform(new(C) CmpINode(xkey, ykey));
2078   if (ideal_cmpxy->is_Cmp()) {
2079     // E.g., if we have CmpI(length - offset, count),
2080     // it might idealize to CmpI(length, count + offset)
2081     cmp_op = ideal_cmpxy->Opcode();
2082     xkey = ideal_cmpxy->in(1);
2083     ykey = ideal_cmpxy->in(2);
2084   }
2085 
2086   // Start by locating any relevant comparisons.
2087   Node* start_from = (xkey->outcnt() < ykey->outcnt()) ? xkey : ykey;
2088   Node* cmpxy = NULL;
2089   Node* cmpyx = NULL;
2090   for (DUIterator_Fast kmax, k = start_from->fast_outs(kmax); k < kmax; k++) {
2091     Node* cmp = start_from->fast_out(k);
2092     if (cmp->outcnt() > 0 &&            // must have prior uses
2093         cmp->in(0) == NULL &&           // must be context-independent
2094         cmp->Opcode() == cmp_op) {      // right kind of compare
2095       if (cmp->in(1) == xkey && cmp->in(2) == ykey)  cmpxy = cmp;
2096       if (cmp->in(1) == ykey && cmp->in(2) == xkey)  cmpyx = cmp;
2097     }
2098   }
2099 
2100   const int NCMPS = 2;
2101   Node* cmps[NCMPS] = { cmpxy, cmpyx };
2102   int cmpn;
2103   for (cmpn = 0; cmpn < NCMPS; cmpn++) {
2104     if (cmps[cmpn] != NULL)  break;     // find a result
2105   }
2106   if (cmpn < NCMPS) {
2107     // Look for a dominating test that tells us the min and max.
2108     int depth = 0;                // Limit search depth for speed
2109     Node* dom = control();
2110     for (; dom != NULL; dom = IfNode::up_one_dom(dom, true)) {
2111       if (++depth >= 100)  break;
2112       Node* ifproj = dom;
2113       if (!ifproj->is_Proj())  continue;
2114       Node* iff = ifproj->in(0);
2115       if (!iff->is_If())  continue;
2116       Node* bol = iff->in(1);
2117       if (!bol->is_Bool())  continue;
2118       Node* cmp = bol->in(1);
2119       if (cmp == NULL)  continue;
2120       for (cmpn = 0; cmpn < NCMPS; cmpn++)
2121         if (cmps[cmpn] == cmp)  break;
2122       if (cmpn == NCMPS)  continue;
2123       BoolTest::mask btest = bol->as_Bool()->_test._test;
2124       if (ifproj->is_IfFalse())  btest = BoolTest(btest).negate();
2125       if (cmp->in(1) == ykey)    btest = BoolTest(btest).commute();
2126       // At this point, we know that 'x btest y' is true.
2127       switch (btest) {
2128       case BoolTest::eq:
2129         // They are proven equal, so we can collapse the min/max.
2130         // Either value is the answer.  Choose the simpler.
2131         if (is_simple_name(yvalue) && !is_simple_name(xvalue))
2132           return yvalue;
2133         return xvalue;
2134       case BoolTest::lt:          // x < y
2135       case BoolTest::le:          // x <= y
2136         return (want_max ? yvalue : xvalue);
2137       case BoolTest::gt:          // x > y
2138       case BoolTest::ge:          // x >= y
2139         return (want_max ? xvalue : yvalue);
2140       }
2141     }
2142   }
2143 
2144   // We failed to find a dominating test.
2145   // Let's pick a test that might GVN with prior tests.
2146   Node*          best_bol   = NULL;
2147   BoolTest::mask best_btest = BoolTest::illegal;
2148   for (cmpn = 0; cmpn < NCMPS; cmpn++) {
2149     Node* cmp = cmps[cmpn];
2150     if (cmp == NULL)  continue;
2151     for (DUIterator_Fast jmax, j = cmp->fast_outs(jmax); j < jmax; j++) {
2152       Node* bol = cmp->fast_out(j);
2153       if (!bol->is_Bool())  continue;
2154       BoolTest::mask btest = bol->as_Bool()->_test._test;
2155       if (btest == BoolTest::eq || btest == BoolTest::ne)  continue;
2156       if (cmp->in(1) == ykey)   btest = BoolTest(btest).commute();
2157       if (bol->outcnt() > (best_bol == NULL ? 0 : best_bol->outcnt())) {
2158         best_bol   = bol->as_Bool();
2159         best_btest = btest;
2160       }
2161     }
2162   }
2163 
2164   Node* answer_if_true  = NULL;
2165   Node* answer_if_false = NULL;
2166   switch (best_btest) {
2167   default:
2168     if (cmpxy == NULL)
2169       cmpxy = ideal_cmpxy;
2170     best_bol = _gvn.transform(new(C) BoolNode(cmpxy, BoolTest::lt));
2171     // and fall through:
2172   case BoolTest::lt:          // x < y
2173   case BoolTest::le:          // x <= y
2174     answer_if_true  = (want_max ? yvalue : xvalue);
2175     answer_if_false = (want_max ? xvalue : yvalue);
2176     break;
2177   case BoolTest::gt:          // x > y
2178   case BoolTest::ge:          // x >= y
2179     answer_if_true  = (want_max ? xvalue : yvalue);
2180     answer_if_false = (want_max ? yvalue : xvalue);
2181     break;
2182   }
2183 
2184   jint hi, lo;
2185   if (want_max) {
2186     // We can sharpen the minimum.
2187     hi = MAX2(txvalue->_hi, tyvalue->_hi);
2188     lo = MAX2(txvalue->_lo, tyvalue->_lo);
2189   } else {
2190     // We can sharpen the maximum.
2191     hi = MIN2(txvalue->_hi, tyvalue->_hi);
2192     lo = MIN2(txvalue->_lo, tyvalue->_lo);
2193   }
2194 
2195   // Use a flow-free graph structure, to avoid creating excess control edges
2196   // which could hinder other optimizations.
2197   // Since Math.min/max is often used with arraycopy, we want
2198   // tightly_coupled_allocation to be able to see beyond min/max expressions.
2199   Node* cmov = CMoveNode::make(C, NULL, best_bol,
2200                                answer_if_false, answer_if_true,
2201                                TypeInt::make(lo, hi, widen));
2202 
2203   return _gvn.transform(cmov);
2204 
2205   /*
2206   // This is not as desirable as it may seem, since Min and Max
2207   // nodes do not have a full set of optimizations.
2208   // And they would interfere, anyway, with 'if' optimizations
2209   // and with CMoveI canonical forms.
2210   switch (id) {
2211   case vmIntrinsics::_min:
2212     result_val = _gvn.transform(new (C, 3) MinINode(x,y)); break;
2213   case vmIntrinsics::_max:
2214     result_val = _gvn.transform(new (C, 3) MaxINode(x,y)); break;
2215   default:
2216     ShouldNotReachHere();
2217   }
2218   */
2219 }
2220 
2221 inline int
2222 LibraryCallKit::classify_unsafe_addr(Node* &base, Node* &offset) {
2223   const TypePtr* base_type = TypePtr::NULL_PTR;
2224   if (base != NULL)  base_type = _gvn.type(base)->isa_ptr();
2225   if (base_type == NULL) {
2226     // Unknown type.
2227     return Type::AnyPtr;
2228   } else if (base_type == TypePtr::NULL_PTR) {
2229     // Since this is a NULL+long form, we have to switch to a rawptr.
2230     base   = _gvn.transform(new (C) CastX2PNode(offset));
2231     offset = MakeConX(0);
2232     return Type::RawPtr;
2233   } else if (base_type->base() == Type::RawPtr) {
2234     return Type::RawPtr;
2235   } else if (base_type->isa_oopptr()) {
2236     // Base is never null => always a heap address.
2237     if (base_type->ptr() == TypePtr::NotNull) {
2238       return Type::OopPtr;
2239     }
2240     // Offset is small => always a heap address.
2241     const TypeX* offset_type = _gvn.type(offset)->isa_intptr_t();
2242     if (offset_type != NULL &&
2243         base_type->offset() == 0 &&     // (should always be?)
2244         offset_type->_lo >= 0 &&
2245         !MacroAssembler::needs_explicit_null_check(offset_type->_hi)) {
2246       return Type::OopPtr;
2247     }
2248     // Otherwise, it might either be oop+off or NULL+addr.
2249     return Type::AnyPtr;
2250   } else {
2251     // No information:
2252     return Type::AnyPtr;
2253   }
2254 }
2255 
2256 inline Node* LibraryCallKit::make_unsafe_address(Node* base, Node* offset) {
2257   int kind = classify_unsafe_addr(base, offset);
2258   if (kind == Type::RawPtr) {
2259     return basic_plus_adr(top(), base, offset);
2260   } else {
2261     return basic_plus_adr(base, offset);
2262   }
2263 }
2264 
2265 //--------------------------inline_number_methods-----------------------------
2266 // inline int     Integer.numberOfLeadingZeros(int)
2267 // inline int        Long.numberOfLeadingZeros(long)
2268 //
2269 // inline int     Integer.numberOfTrailingZeros(int)
2270 // inline int        Long.numberOfTrailingZeros(long)
2271 //
2272 // inline int     Integer.bitCount(int)
2273 // inline int        Long.bitCount(long)
2274 //
2275 // inline char  Character.reverseBytes(char)
2276 // inline short     Short.reverseBytes(short)
2277 // inline int     Integer.reverseBytes(int)
2278 // inline long       Long.reverseBytes(long)
2279 bool LibraryCallKit::inline_number_methods(vmIntrinsics::ID id) {
2280   Node* arg = argument(0);
2281   Node* n;
2282   switch (id) {
2283   case vmIntrinsics::_numberOfLeadingZeros_i:   n = new (C) CountLeadingZerosINode( arg);  break;
2284   case vmIntrinsics::_numberOfLeadingZeros_l:   n = new (C) CountLeadingZerosLNode( arg);  break;
2285   case vmIntrinsics::_numberOfTrailingZeros_i:  n = new (C) CountTrailingZerosINode(arg);  break;
2286   case vmIntrinsics::_numberOfTrailingZeros_l:  n = new (C) CountTrailingZerosLNode(arg);  break;
2287   case vmIntrinsics::_bitCount_i:               n = new (C) PopCountINode(          arg);  break;
2288   case vmIntrinsics::_bitCount_l:               n = new (C) PopCountLNode(          arg);  break;
2289   case vmIntrinsics::_reverseBytes_c:           n = new (C) ReverseBytesUSNode(0,   arg);  break;
2290   case vmIntrinsics::_reverseBytes_s:           n = new (C) ReverseBytesSNode( 0,   arg);  break;
2291   case vmIntrinsics::_reverseBytes_i:           n = new (C) ReverseBytesINode( 0,   arg);  break;
2292   case vmIntrinsics::_reverseBytes_l:           n = new (C) ReverseBytesLNode( 0,   arg);  break;
2293   default:  fatal_unexpected_iid(id);  break;
2294   }
2295   set_result(_gvn.transform(n));
2296   return true;
2297 }
2298 
2299 //----------------------------inline_unsafe_access----------------------------
2300 
2301 const static BasicType T_ADDRESS_HOLDER = T_LONG;
2302 
2303 // Helper that guards and inserts a pre-barrier.
2304 void LibraryCallKit::insert_pre_barrier(Node* base_oop, Node* offset,
2305                                         Node* pre_val, bool need_mem_bar) {
2306   // We could be accessing the referent field of a reference object. If so, when G1
2307   // is enabled, we need to log the value in the referent field in an SATB buffer.
2308   // This routine performs some compile time filters and generates suitable
2309   // runtime filters that guard the pre-barrier code.
2310   // Also add memory barrier for non volatile load from the referent field
2311   // to prevent commoning of loads across safepoint.
2312   if (!UseG1GC && !need_mem_bar)
2313     return;
2314 
2315   // Some compile time checks.
2316 
2317   // If offset is a constant, is it java_lang_ref_Reference::_reference_offset?
2318   const TypeX* otype = offset->find_intptr_t_type();
2319   if (otype != NULL && otype->is_con() &&
2320       otype->get_con() != java_lang_ref_Reference::referent_offset) {
2321     // Constant offset but not the reference_offset so just return
2322     return;
2323   }
2324 
2325   // We only need to generate the runtime guards for instances.
2326   const TypeOopPtr* btype = base_oop->bottom_type()->isa_oopptr();
2327   if (btype != NULL) {
2328     if (btype->isa_aryptr()) {
2329       // Array type so nothing to do
2330       return;
2331     }
2332 
2333     const TypeInstPtr* itype = btype->isa_instptr();
2334     if (itype != NULL) {
2335       // Can the klass of base_oop be statically determined to be
2336       // _not_ a sub-class of Reference and _not_ Object?
2337       ciKlass* klass = itype->klass();
2338       if ( klass->is_loaded() &&
2339           !klass->is_subtype_of(env()->Reference_klass()) &&
2340           !env()->Object_klass()->is_subtype_of(klass)) {
2341         return;
2342       }
2343     }
2344   }
2345 
2346   // The compile time filters did not reject base_oop/offset so
2347   // we need to generate the following runtime filters
2348   //
2349   // if (offset == java_lang_ref_Reference::_reference_offset) {
2350   //   if (instance_of(base, java.lang.ref.Reference)) {
2351   //     pre_barrier(_, pre_val, ...);
2352   //   }
2353   // }
2354 
2355   float likely   = PROB_LIKELY(  0.999);
2356   float unlikely = PROB_UNLIKELY(0.999);
2357 
2358   IdealKit ideal(this);
2359 #define __ ideal.
2360 
2361   Node* referent_off = __ ConX(java_lang_ref_Reference::referent_offset);
2362 
2363   __ if_then(offset, BoolTest::eq, referent_off, unlikely); {
2364       // Update graphKit memory and control from IdealKit.
2365       sync_kit(ideal);
2366 
2367       Node* ref_klass_con = makecon(TypeKlassPtr::make(env()->Reference_klass()));
2368       Node* is_instof = gen_instanceof(base_oop, ref_klass_con);
2369 
2370       // Update IdealKit memory and control from graphKit.
2371       __ sync_kit(this);
2372 
2373       Node* one = __ ConI(1);
2374       // is_instof == 0 if base_oop == NULL
2375       __ if_then(is_instof, BoolTest::eq, one, unlikely); {
2376 
2377         // Update graphKit from IdeakKit.
2378         sync_kit(ideal);
2379 
2380         // Use the pre-barrier to record the value in the referent field
2381         pre_barrier(false /* do_load */,
2382                     __ ctrl(),
2383                     NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
2384                     pre_val /* pre_val */,
2385                     T_OBJECT);
2386         if (need_mem_bar) {
2387           // Add memory barrier to prevent commoning reads from this field
2388           // across safepoint since GC can change its value.
2389           insert_mem_bar(Op_MemBarCPUOrder);
2390         }
2391         // Update IdealKit from graphKit.
2392         __ sync_kit(this);
2393 
2394       } __ end_if(); // _ref_type != ref_none
2395   } __ end_if(); // offset == referent_offset
2396 
2397   // Final sync IdealKit and GraphKit.
2398   final_sync(ideal);
2399 #undef __
2400 }
2401 
2402 
2403 // Interpret Unsafe.fieldOffset cookies correctly:
2404 extern jlong Unsafe_field_offset_to_byte_offset(jlong field_offset);
2405 
2406 const TypeOopPtr* LibraryCallKit::sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type, bool is_native_ptr) {
2407   // Attempt to infer a sharper value type from the offset and base type.
2408   ciKlass* sharpened_klass = NULL;
2409 
2410   // See if it is an instance field, with an object type.
2411   if (alias_type->field() != NULL) {
2412     assert(!is_native_ptr, "native pointer op cannot use a java address");
2413     if (alias_type->field()->type()->is_klass()) {
2414       sharpened_klass = alias_type->field()->type()->as_klass();
2415     }
2416   }
2417 
2418   // See if it is a narrow oop array.
2419   if (adr_type->isa_aryptr()) {
2420     if (adr_type->offset() >= objArrayOopDesc::base_offset_in_bytes()) {
2421       const TypeOopPtr *elem_type = adr_type->is_aryptr()->elem()->isa_oopptr();
2422       if (elem_type != NULL) {
2423         sharpened_klass = elem_type->klass();
2424       }
2425     }
2426   }
2427 
2428   // The sharpened class might be unloaded if there is no class loader
2429   // contraint in place.
2430   if (sharpened_klass != NULL && sharpened_klass->is_loaded()) {
2431     const TypeOopPtr* tjp = TypeOopPtr::make_from_klass(sharpened_klass);
2432 
2433 #ifndef PRODUCT
2434     if (C->print_intrinsics() || C->print_inlining()) {
2435       tty->print("  from base type: ");  adr_type->dump();
2436       tty->print("  sharpened value: ");  tjp->dump();
2437     }
2438 #endif
2439     // Sharpen the value type.
2440     return tjp;
2441   }
2442   return NULL;
2443 }
2444 
2445 bool LibraryCallKit::inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile) {
2446   if (callee()->is_static())  return false;  // caller must have the capability!
2447 
2448 #ifndef PRODUCT
2449   {
2450     ResourceMark rm;
2451     // Check the signatures.
2452     ciSignature* sig = callee()->signature();
2453 #ifdef ASSERT
2454     if (!is_store) {
2455       // Object getObject(Object base, int/long offset), etc.
2456       BasicType rtype = sig->return_type()->basic_type();
2457       if (rtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::getAddress_name())
2458           rtype = T_ADDRESS;  // it is really a C void*
2459       assert(rtype == type, "getter must return the expected value");
2460       if (!is_native_ptr) {
2461         assert(sig->count() == 2, "oop getter has 2 arguments");
2462         assert(sig->type_at(0)->basic_type() == T_OBJECT, "getter base is object");
2463         assert(sig->type_at(1)->basic_type() == T_LONG, "getter offset is correct");
2464       } else {
2465         assert(sig->count() == 1, "native getter has 1 argument");
2466         assert(sig->type_at(0)->basic_type() == T_LONG, "getter base is long");
2467       }
2468     } else {
2469       // void putObject(Object base, int/long offset, Object x), etc.
2470       assert(sig->return_type()->basic_type() == T_VOID, "putter must not return a value");
2471       if (!is_native_ptr) {
2472         assert(sig->count() == 3, "oop putter has 3 arguments");
2473         assert(sig->type_at(0)->basic_type() == T_OBJECT, "putter base is object");
2474         assert(sig->type_at(1)->basic_type() == T_LONG, "putter offset is correct");
2475       } else {
2476         assert(sig->count() == 2, "native putter has 2 arguments");
2477         assert(sig->type_at(0)->basic_type() == T_LONG, "putter base is long");
2478       }
2479       BasicType vtype = sig->type_at(sig->count()-1)->basic_type();
2480       if (vtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::putAddress_name())
2481         vtype = T_ADDRESS;  // it is really a C void*
2482       assert(vtype == type, "putter must accept the expected value");
2483     }
2484 #endif // ASSERT
2485  }
2486 #endif //PRODUCT
2487 
2488   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2489 
2490   Node* receiver = argument(0);  // type: oop
2491 
2492   // Build address expression.  See the code in inline_unsafe_prefetch.
2493   Node* adr;
2494   Node* heap_base_oop = top();
2495   Node* offset = top();
2496   Node* val;
2497 
2498   if (!is_native_ptr) {
2499     // The base is either a Java object or a value produced by Unsafe.staticFieldBase
2500     Node* base = argument(1);  // type: oop
2501     // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
2502     offset = argument(2);  // type: long
2503     // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2504     // to be plain byte offsets, which are also the same as those accepted
2505     // by oopDesc::field_base.
2506     assert(Unsafe_field_offset_to_byte_offset(11) == 11,
2507            "fieldOffset must be byte-scaled");
2508     // 32-bit machines ignore the high half!
2509     offset = ConvL2X(offset);
2510     adr = make_unsafe_address(base, offset);
2511     heap_base_oop = base;
2512     val = is_store ? argument(4) : NULL;
2513   } else {
2514     Node* ptr = argument(1);  // type: long
2515     ptr = ConvL2X(ptr);  // adjust Java long to machine word
2516     adr = make_unsafe_address(NULL, ptr);
2517     val = is_store ? argument(3) : NULL;
2518   }
2519 
2520   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
2521 
2522   // First guess at the value type.
2523   const Type *value_type = Type::get_const_basic_type(type);
2524 
2525   // Try to categorize the address.  If it comes up as TypeJavaPtr::BOTTOM,
2526   // there was not enough information to nail it down.
2527   Compile::AliasType* alias_type = C->alias_type(adr_type);
2528   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
2529 
2530   // We will need memory barriers unless we can determine a unique
2531   // alias category for this reference.  (Note:  If for some reason
2532   // the barriers get omitted and the unsafe reference begins to "pollute"
2533   // the alias analysis of the rest of the graph, either Compile::can_alias
2534   // or Compile::must_alias will throw a diagnostic assert.)
2535   bool need_mem_bar = (alias_type->adr_type() == TypeOopPtr::BOTTOM);
2536 
2537   // If we are reading the value of the referent field of a Reference
2538   // object (either by using Unsafe directly or through reflection)
2539   // then, if G1 is enabled, we need to record the referent in an
2540   // SATB log buffer using the pre-barrier mechanism.
2541   // Also we need to add memory barrier to prevent commoning reads
2542   // from this field across safepoint since GC can change its value.
2543   bool need_read_barrier = !is_native_ptr && !is_store &&
2544                            offset != top() && heap_base_oop != top();
2545 
2546   if (!is_store && type == T_OBJECT) {
2547     const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type, is_native_ptr);
2548     if (tjp != NULL) {
2549       value_type = tjp;
2550     }
2551   }
2552 
2553   receiver = null_check(receiver);
2554   if (stopped()) {
2555     return true;
2556   }
2557   // Heap pointers get a null-check from the interpreter,
2558   // as a courtesy.  However, this is not guaranteed by Unsafe,
2559   // and it is not possible to fully distinguish unintended nulls
2560   // from intended ones in this API.
2561 
2562   if (is_volatile) {
2563     // We need to emit leading and trailing CPU membars (see below) in
2564     // addition to memory membars when is_volatile. This is a little
2565     // too strong, but avoids the need to insert per-alias-type
2566     // volatile membars (for stores; compare Parse::do_put_xxx), which
2567     // we cannot do effectively here because we probably only have a
2568     // rough approximation of type.
2569     need_mem_bar = true;
2570     // For Stores, place a memory ordering barrier now.
2571     if (is_store) {
2572       insert_mem_bar(Op_MemBarRelease);
2573     } else {
2574       if (support_IRIW_for_not_multiple_copy_atomic_cpu) {
2575         insert_mem_bar(Op_MemBarVolatile);
2576       }
2577     }
2578   }
2579 
2580   // Memory barrier to prevent normal and 'unsafe' accesses from
2581   // bypassing each other.  Happens after null checks, so the
2582   // exception paths do not take memory state from the memory barrier,
2583   // so there's no problems making a strong assert about mixing users
2584   // of safe & unsafe memory.  Otherwise fails in a CTW of rt.jar
2585   // around 5701, class sun/reflect/UnsafeBooleanFieldAccessorImpl.
2586   if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
2587 
2588   if (!is_store) {
2589     Node* p = make_load(control(), adr, value_type, type, adr_type, MemNode::unordered, is_volatile);
2590     // load value
2591     switch (type) {
2592     case T_BOOLEAN:
2593     case T_CHAR:
2594     case T_BYTE:
2595     case T_SHORT:
2596     case T_INT:
2597     case T_LONG:
2598     case T_FLOAT:
2599     case T_DOUBLE:
2600       break;
2601     case T_OBJECT:
2602       if (need_read_barrier) {
2603         insert_pre_barrier(heap_base_oop, offset, p, !(is_volatile || need_mem_bar));
2604       }
2605       break;
2606     case T_ADDRESS:
2607       // Cast to an int type.
2608       p = _gvn.transform(new (C) CastP2XNode(NULL, p));
2609       p = ConvX2L(p);
2610       break;
2611     default:
2612       fatal(err_msg_res("unexpected type %d: %s", type, type2name(type)));
2613       break;
2614     }
2615     // The load node has the control of the preceding MemBarCPUOrder.  All
2616     // following nodes will have the control of the MemBarCPUOrder inserted at
2617     // the end of this method.  So, pushing the load onto the stack at a later
2618     // point is fine.
2619     set_result(p);
2620   } else {
2621     // place effect of store into memory
2622     switch (type) {
2623     case T_DOUBLE:
2624       val = dstore_rounding(val);
2625       break;
2626     case T_ADDRESS:
2627       // Repackage the long as a pointer.
2628       val = ConvL2X(val);
2629       val = _gvn.transform(new (C) CastX2PNode(val));
2630       break;
2631     }
2632 
2633     MemNode::MemOrd mo = is_volatile ? MemNode::release : MemNode::unordered;
2634     if (type != T_OBJECT ) {
2635       (void) store_to_memory(control(), adr, val, type, adr_type, mo, is_volatile);
2636     } else {
2637       // Possibly an oop being stored to Java heap or native memory
2638       if (!TypePtr::NULL_PTR->higher_equal(_gvn.type(heap_base_oop))) {
2639         // oop to Java heap.
2640         (void) store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type, mo);
2641       } else {
2642         // We can't tell at compile time if we are storing in the Java heap or outside
2643         // of it. So we need to emit code to conditionally do the proper type of
2644         // store.
2645 
2646         IdealKit ideal(this);
2647 #define __ ideal.
2648         // QQQ who knows what probability is here??
2649         __ if_then(heap_base_oop, BoolTest::ne, null(), PROB_UNLIKELY(0.999)); {
2650           // Sync IdealKit and graphKit.
2651           sync_kit(ideal);
2652           Node* st = store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type, mo);
2653           // Update IdealKit memory.
2654           __ sync_kit(this);
2655         } __ else_(); {
2656           __ store(__ ctrl(), adr, val, type, alias_type->index(), mo, is_volatile);
2657         } __ end_if();
2658         // Final sync IdealKit and GraphKit.
2659         final_sync(ideal);
2660 #undef __
2661       }
2662     }
2663   }
2664 
2665   if (is_volatile) {
2666     if (!is_store) {
2667       insert_mem_bar(Op_MemBarAcquire);
2668     } else {
2669       if (!support_IRIW_for_not_multiple_copy_atomic_cpu) {
2670         insert_mem_bar(Op_MemBarVolatile);
2671       }
2672     }
2673   }
2674 
2675   if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
2676 
2677   return true;
2678 }
2679 
2680 //----------------------------inline_unsafe_prefetch----------------------------
2681 
2682 bool LibraryCallKit::inline_unsafe_prefetch(bool is_native_ptr, bool is_store, bool is_static) {
2683 #ifndef PRODUCT
2684   {
2685     ResourceMark rm;
2686     // Check the signatures.
2687     ciSignature* sig = callee()->signature();
2688 #ifdef ASSERT
2689     // Object getObject(Object base, int/long offset), etc.
2690     BasicType rtype = sig->return_type()->basic_type();
2691     if (!is_native_ptr) {
2692       assert(sig->count() == 2, "oop prefetch has 2 arguments");
2693       assert(sig->type_at(0)->basic_type() == T_OBJECT, "prefetch base is object");
2694       assert(sig->type_at(1)->basic_type() == T_LONG, "prefetcha offset is correct");
2695     } else {
2696       assert(sig->count() == 1, "native prefetch has 1 argument");
2697       assert(sig->type_at(0)->basic_type() == T_LONG, "prefetch base is long");
2698     }
2699 #endif // ASSERT
2700   }
2701 #endif // !PRODUCT
2702 
2703   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2704 
2705   const int idx = is_static ? 0 : 1;
2706   if (!is_static) {
2707     null_check_receiver();
2708     if (stopped()) {
2709       return true;
2710     }
2711   }
2712 
2713   // Build address expression.  See the code in inline_unsafe_access.
2714   Node *adr;
2715   if (!is_native_ptr) {
2716     // The base is either a Java object or a value produced by Unsafe.staticFieldBase
2717     Node* base   = argument(idx + 0);  // type: oop
2718     // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
2719     Node* offset = argument(idx + 1);  // type: long
2720     // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2721     // to be plain byte offsets, which are also the same as those accepted
2722     // by oopDesc::field_base.
2723     assert(Unsafe_field_offset_to_byte_offset(11) == 11,
2724            "fieldOffset must be byte-scaled");
2725     // 32-bit machines ignore the high half!
2726     offset = ConvL2X(offset);
2727     adr = make_unsafe_address(base, offset);
2728   } else {
2729     Node* ptr = argument(idx + 0);  // type: long
2730     ptr = ConvL2X(ptr);  // adjust Java long to machine word
2731     adr = make_unsafe_address(NULL, ptr);
2732   }
2733 
2734   // Generate the read or write prefetch
2735   Node *prefetch;
2736   if (is_store) {
2737     prefetch = new (C) PrefetchWriteNode(i_o(), adr);
2738   } else {
2739     prefetch = new (C) PrefetchReadNode(i_o(), adr);
2740   }
2741   prefetch->init_req(0, control());
2742   set_i_o(_gvn.transform(prefetch));
2743 
2744   return true;
2745 }
2746 
2747 //----------------------------inline_unsafe_load_store----------------------------
2748 // This method serves a couple of different customers (depending on LoadStoreKind):
2749 //
2750 // LS_cmpxchg:
2751 //   public final native boolean compareAndSwapObject(Object o, long offset, Object expected, Object x);
2752 //   public final native boolean compareAndSwapInt(   Object o, long offset, int    expected, int    x);
2753 //   public final native boolean compareAndSwapLong(  Object o, long offset, long   expected, long   x);
2754 //
2755 // LS_xadd:
2756 //   public int  getAndAddInt( Object o, long offset, int  delta)
2757 //   public long getAndAddLong(Object o, long offset, long delta)
2758 //
2759 // LS_xchg:
2760 //   int    getAndSet(Object o, long offset, int    newValue)
2761 //   long   getAndSet(Object o, long offset, long   newValue)
2762 //   Object getAndSet(Object o, long offset, Object newValue)
2763 //
2764 bool LibraryCallKit::inline_unsafe_load_store(BasicType type, LoadStoreKind kind) {
2765   // This basic scheme here is the same as inline_unsafe_access, but
2766   // differs in enough details that combining them would make the code
2767   // overly confusing.  (This is a true fact! I originally combined
2768   // them, but even I was confused by it!) As much code/comments as
2769   // possible are retained from inline_unsafe_access though to make
2770   // the correspondences clearer. - dl
2771 
2772   if (callee()->is_static())  return false;  // caller must have the capability!
2773 
2774 #ifndef PRODUCT
2775   BasicType rtype;
2776   {
2777     ResourceMark rm;
2778     // Check the signatures.
2779     ciSignature* sig = callee()->signature();
2780     rtype = sig->return_type()->basic_type();
2781     if (kind == LS_xadd || kind == LS_xchg) {
2782       // Check the signatures.
2783 #ifdef ASSERT
2784       assert(rtype == type, "get and set must return the expected type");
2785       assert(sig->count() == 3, "get and set has 3 arguments");
2786       assert(sig->type_at(0)->basic_type() == T_OBJECT, "get and set base is object");
2787       assert(sig->type_at(1)->basic_type() == T_LONG, "get and set offset is long");
2788       assert(sig->type_at(2)->basic_type() == type, "get and set must take expected type as new value/delta");
2789 #endif // ASSERT
2790     } else if (kind == LS_cmpxchg) {
2791       // Check the signatures.
2792 #ifdef ASSERT
2793       assert(rtype == T_BOOLEAN, "CAS must return boolean");
2794       assert(sig->count() == 4, "CAS has 4 arguments");
2795       assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object");
2796       assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long");
2797 #endif // ASSERT
2798     } else {
2799       ShouldNotReachHere();
2800     }
2801   }
2802 #endif //PRODUCT
2803 
2804   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2805 
2806   // Get arguments:
2807   Node* receiver = NULL;
2808   Node* base     = NULL;
2809   Node* offset   = NULL;
2810   Node* oldval   = NULL;
2811   Node* newval   = NULL;
2812   if (kind == LS_cmpxchg) {
2813     const bool two_slot_type = type2size[type] == 2;
2814     receiver = argument(0);  // type: oop
2815     base     = argument(1);  // type: oop
2816     offset   = argument(2);  // type: long
2817     oldval   = argument(4);  // type: oop, int, or long
2818     newval   = argument(two_slot_type ? 6 : 5);  // type: oop, int, or long
2819   } else if (kind == LS_xadd || kind == LS_xchg){
2820     receiver = argument(0);  // type: oop
2821     base     = argument(1);  // type: oop
2822     offset   = argument(2);  // type: long
2823     oldval   = NULL;
2824     newval   = argument(4);  // type: oop, int, or long
2825   }
2826 
2827   // Null check receiver.
2828   receiver = null_check(receiver);
2829   if (stopped()) {
2830     return true;
2831   }
2832 
2833   // Build field offset expression.
2834   // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2835   // to be plain byte offsets, which are also the same as those accepted
2836   // by oopDesc::field_base.
2837   assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
2838   // 32-bit machines ignore the high half of long offsets
2839   offset = ConvL2X(offset);
2840   Node* adr = make_unsafe_address(base, offset);
2841   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
2842 
2843   // For CAS, unlike inline_unsafe_access, there seems no point in
2844   // trying to refine types. Just use the coarse types here.
2845   const Type *value_type = Type::get_const_basic_type(type);
2846   Compile::AliasType* alias_type = C->alias_type(adr_type);
2847   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
2848 
2849   if (kind == LS_xchg && type == T_OBJECT) {
2850     const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type);
2851     if (tjp != NULL) {
2852       value_type = tjp;
2853     }
2854   }
2855 
2856   int alias_idx = C->get_alias_index(adr_type);
2857 
2858   // Memory-model-wise, a LoadStore acts like a little synchronized
2859   // block, so needs barriers on each side.  These don't translate
2860   // into actual barriers on most machines, but we still need rest of
2861   // compiler to respect ordering.
2862 
2863   insert_mem_bar(Op_MemBarRelease);
2864   insert_mem_bar(Op_MemBarCPUOrder);
2865 
2866   // 4984716: MemBars must be inserted before this
2867   //          memory node in order to avoid a false
2868   //          dependency which will confuse the scheduler.
2869   Node *mem = memory(alias_idx);
2870 
2871   // For now, we handle only those cases that actually exist: ints,
2872   // longs, and Object. Adding others should be straightforward.
2873   Node* load_store;
2874   switch(type) {
2875   case T_INT:
2876     if (kind == LS_xadd) {
2877       load_store = _gvn.transform(new (C) GetAndAddINode(control(), mem, adr, newval, adr_type));
2878     } else if (kind == LS_xchg) {
2879       load_store = _gvn.transform(new (C) GetAndSetINode(control(), mem, adr, newval, adr_type));
2880     } else if (kind == LS_cmpxchg) {
2881       load_store = _gvn.transform(new (C) CompareAndSwapINode(control(), mem, adr, newval, oldval));
2882     } else {
2883       ShouldNotReachHere();
2884     }
2885     break;
2886   case T_LONG:
2887     if (kind == LS_xadd) {
2888       load_store = _gvn.transform(new (C) GetAndAddLNode(control(), mem, adr, newval, adr_type));
2889     } else if (kind == LS_xchg) {
2890       load_store = _gvn.transform(new (C) GetAndSetLNode(control(), mem, adr, newval, adr_type));
2891     } else if (kind == LS_cmpxchg) {
2892       load_store = _gvn.transform(new (C) CompareAndSwapLNode(control(), mem, adr, newval, oldval));
2893     } else {
2894       ShouldNotReachHere();
2895     }
2896     break;
2897   case T_OBJECT:
2898     // Transformation of a value which could be NULL pointer (CastPP #NULL)
2899     // could be delayed during Parse (for example, in adjust_map_after_if()).
2900     // Execute transformation here to avoid barrier generation in such case.
2901     if (_gvn.type(newval) == TypePtr::NULL_PTR)
2902       newval = _gvn.makecon(TypePtr::NULL_PTR);
2903 
2904     // Reference stores need a store barrier.
2905     if (kind == LS_xchg) {
2906       // If pre-barrier must execute before the oop store, old value will require do_load here.
2907       if (!can_move_pre_barrier()) {
2908         pre_barrier(true /* do_load*/,
2909                     control(), base, adr, alias_idx, newval, value_type->make_oopptr(),
2910                     NULL /* pre_val*/,
2911                     T_OBJECT);
2912       } // Else move pre_barrier to use load_store value, see below.
2913     } else if (kind == LS_cmpxchg) {
2914       // Same as for newval above:
2915       if (_gvn.type(oldval) == TypePtr::NULL_PTR) {
2916         oldval = _gvn.makecon(TypePtr::NULL_PTR);
2917       }
2918       // The only known value which might get overwritten is oldval.
2919       pre_barrier(false /* do_load */,
2920                   control(), NULL, NULL, max_juint, NULL, NULL,
2921                   oldval /* pre_val */,
2922                   T_OBJECT);
2923     } else {
2924       ShouldNotReachHere();
2925     }
2926 
2927 #ifdef _LP64
2928     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
2929       Node *newval_enc = _gvn.transform(new (C) EncodePNode(newval, newval->bottom_type()->make_narrowoop()));
2930       if (kind == LS_xchg) {
2931         load_store = _gvn.transform(new (C) GetAndSetNNode(control(), mem, adr,
2932                                                            newval_enc, adr_type, value_type->make_narrowoop()));
2933       } else {
2934         assert(kind == LS_cmpxchg, "wrong LoadStore operation");
2935         Node *oldval_enc = _gvn.transform(new (C) EncodePNode(oldval, oldval->bottom_type()->make_narrowoop()));
2936         load_store = _gvn.transform(new (C) CompareAndSwapNNode(control(), mem, adr,
2937                                                                 newval_enc, oldval_enc));
2938       }
2939     } else
2940 #endif
2941     {
2942       if (kind == LS_xchg) {
2943         load_store = _gvn.transform(new (C) GetAndSetPNode(control(), mem, adr, newval, adr_type, value_type->is_oopptr()));
2944       } else {
2945         assert(kind == LS_cmpxchg, "wrong LoadStore operation");
2946         load_store = _gvn.transform(new (C) CompareAndSwapPNode(control(), mem, adr, newval, oldval));
2947       }
2948     }
2949     post_barrier(control(), load_store, base, adr, alias_idx, newval, T_OBJECT, true);
2950     break;
2951   default:
2952     fatal(err_msg_res("unexpected type %d: %s", type, type2name(type)));
2953     break;
2954   }
2955 
2956   // SCMemProjNodes represent the memory state of a LoadStore. Their
2957   // main role is to prevent LoadStore nodes from being optimized away
2958   // when their results aren't used.
2959   Node* proj = _gvn.transform(new (C) SCMemProjNode(load_store));
2960   set_memory(proj, alias_idx);
2961 
2962   if (type == T_OBJECT && kind == LS_xchg) {
2963 #ifdef _LP64
2964     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
2965       load_store = _gvn.transform(new (C) DecodeNNode(load_store, load_store->get_ptr_type()));
2966     }
2967 #endif
2968     if (can_move_pre_barrier()) {
2969       // Don't need to load pre_val. The old value is returned by load_store.
2970       // The pre_barrier can execute after the xchg as long as no safepoint
2971       // gets inserted between them.
2972       pre_barrier(false /* do_load */,
2973                   control(), NULL, NULL, max_juint, NULL, NULL,
2974                   load_store /* pre_val */,
2975                   T_OBJECT);
2976     }
2977   }
2978 
2979   // Add the trailing membar surrounding the access
2980   insert_mem_bar(Op_MemBarCPUOrder);
2981   insert_mem_bar(Op_MemBarAcquire);
2982 
2983   assert(type2size[load_store->bottom_type()->basic_type()] == type2size[rtype], "result type should match");
2984   set_result(load_store);
2985   return true;
2986 }
2987 
2988 //----------------------------inline_unsafe_ordered_store----------------------
2989 // public native void sun.misc.Unsafe.putOrderedObject(Object o, long offset, Object x);
2990 // public native void sun.misc.Unsafe.putOrderedInt(Object o, long offset, int x);
2991 // public native void sun.misc.Unsafe.putOrderedLong(Object o, long offset, long x);
2992 bool LibraryCallKit::inline_unsafe_ordered_store(BasicType type) {
2993   // This is another variant of inline_unsafe_access, differing in
2994   // that it always issues store-store ("release") barrier and ensures
2995   // store-atomicity (which only matters for "long").
2996 
2997   if (callee()->is_static())  return false;  // caller must have the capability!
2998 
2999 #ifndef PRODUCT
3000   {
3001     ResourceMark rm;
3002     // Check the signatures.
3003     ciSignature* sig = callee()->signature();
3004 #ifdef ASSERT
3005     BasicType rtype = sig->return_type()->basic_type();
3006     assert(rtype == T_VOID, "must return void");
3007     assert(sig->count() == 3, "has 3 arguments");
3008     assert(sig->type_at(0)->basic_type() == T_OBJECT, "base is object");
3009     assert(sig->type_at(1)->basic_type() == T_LONG, "offset is long");
3010 #endif // ASSERT
3011   }
3012 #endif //PRODUCT
3013 
3014   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
3015 
3016   // Get arguments:
3017   Node* receiver = argument(0);  // type: oop
3018   Node* base     = argument(1);  // type: oop
3019   Node* offset   = argument(2);  // type: long
3020   Node* val      = argument(4);  // type: oop, int, or long
3021 
3022   // Null check receiver.
3023   receiver = null_check(receiver);
3024   if (stopped()) {
3025     return true;
3026   }
3027 
3028   // Build field offset expression.
3029   assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
3030   // 32-bit machines ignore the high half of long offsets
3031   offset = ConvL2X(offset);
3032   Node* adr = make_unsafe_address(base, offset);
3033   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
3034   const Type *value_type = Type::get_const_basic_type(type);
3035   Compile::AliasType* alias_type = C->alias_type(adr_type);
3036 
3037   insert_mem_bar(Op_MemBarRelease);
3038   insert_mem_bar(Op_MemBarCPUOrder);
3039   // Ensure that the store is atomic for longs:
3040   const bool require_atomic_access = true;
3041   Node* store;
3042   if (type == T_OBJECT) // reference stores need a store barrier.
3043     store = store_oop_to_unknown(control(), base, adr, adr_type, val, type, MemNode::release);
3044   else {
3045     store = store_to_memory(control(), adr, val, type, adr_type, MemNode::release, require_atomic_access);
3046   }
3047   insert_mem_bar(Op_MemBarCPUOrder);
3048   return true;
3049 }
3050 
3051 bool LibraryCallKit::inline_unsafe_fence(vmIntrinsics::ID id) {
3052   // Regardless of form, don't allow previous ld/st to move down,
3053   // then issue acquire, release, or volatile mem_bar.
3054   insert_mem_bar(Op_MemBarCPUOrder);
3055   switch(id) {
3056     case vmIntrinsics::_loadFence:
3057       insert_mem_bar(Op_LoadFence);
3058       return true;
3059     case vmIntrinsics::_storeFence:
3060       insert_mem_bar(Op_StoreFence);
3061       return true;
3062     case vmIntrinsics::_fullFence:
3063       insert_mem_bar(Op_MemBarVolatile);
3064       return true;
3065     default:
3066       fatal_unexpected_iid(id);
3067       return false;
3068   }
3069 }
3070 
3071 bool LibraryCallKit::klass_needs_init_guard(Node* kls) {
3072   if (!kls->is_Con()) {
3073     return true;
3074   }
3075   const TypeKlassPtr* klsptr = kls->bottom_type()->isa_klassptr();
3076   if (klsptr == NULL) {
3077     return true;
3078   }
3079   ciInstanceKlass* ik = klsptr->klass()->as_instance_klass();
3080   // don't need a guard for a klass that is already initialized
3081   return !ik->is_initialized();
3082 }
3083 
3084 //----------------------------inline_unsafe_allocate---------------------------
3085 // public native Object sun.misc.Unsafe.allocateInstance(Class<?> cls);
3086 bool LibraryCallKit::inline_unsafe_allocate() {
3087   if (callee()->is_static())  return false;  // caller must have the capability!
3088 
3089   null_check_receiver();  // null-check, then ignore
3090   Node* cls = null_check(argument(1));
3091   if (stopped())  return true;
3092 
3093   Node* kls = load_klass_from_mirror(cls, false, NULL, 0);
3094   kls = null_check(kls);
3095   if (stopped())  return true;  // argument was like int.class
3096 
3097   Node* test = NULL;
3098   if (LibraryCallKit::klass_needs_init_guard(kls)) {
3099     // Note:  The argument might still be an illegal value like
3100     // Serializable.class or Object[].class.   The runtime will handle it.
3101     // But we must make an explicit check for initialization.
3102     Node* insp = basic_plus_adr(kls, in_bytes(InstanceKlass::init_state_offset()));
3103     // Use T_BOOLEAN for InstanceKlass::_init_state so the compiler
3104     // can generate code to load it as unsigned byte.
3105     Node* inst = make_load(NULL, insp, TypeInt::UBYTE, T_BOOLEAN, MemNode::unordered);
3106     Node* bits = intcon(InstanceKlass::fully_initialized);
3107     test = _gvn.transform(new (C) SubINode(inst, bits));
3108     // The 'test' is non-zero if we need to take a slow path.
3109   }
3110 
3111   Node* obj = new_instance(kls, test);
3112   set_result(obj);
3113   return true;
3114 }
3115 
3116 #ifdef TRACE_HAVE_INTRINSICS
3117 /*
3118  * oop -> myklass
3119  * myklass->trace_id |= USED
3120  * return myklass->trace_id & ~0x3
3121  */
3122 bool LibraryCallKit::inline_native_classID() {
3123   null_check_receiver();  // null-check, then ignore
3124   Node* cls = null_check(argument(1), T_OBJECT);
3125   Node* kls = load_klass_from_mirror(cls, false, NULL, 0);
3126   kls = null_check(kls, T_OBJECT);
3127   ByteSize offset = TRACE_ID_OFFSET;
3128   Node* insp = basic_plus_adr(kls, in_bytes(offset));
3129   Node* tvalue = make_load(NULL, insp, TypeLong::LONG, T_LONG, MemNode::unordered);
3130   Node* bits = longcon(~0x03l); // ignore bit 0 & 1
3131   Node* andl = _gvn.transform(new (C) AndLNode(tvalue, bits));
3132   Node* clsused = longcon(0x01l); // set the class bit
3133   Node* orl = _gvn.transform(new (C) OrLNode(tvalue, clsused));
3134 
3135   const TypePtr *adr_type = _gvn.type(insp)->isa_ptr();
3136   store_to_memory(control(), insp, orl, T_LONG, adr_type, MemNode::unordered);
3137   set_result(andl);
3138   return true;
3139 }
3140 
3141 bool LibraryCallKit::inline_native_threadID() {
3142   Node* tls_ptr = NULL;
3143   Node* cur_thr = generate_current_thread(tls_ptr);
3144   Node* p = basic_plus_adr(top()/*!oop*/, tls_ptr, in_bytes(JavaThread::osthread_offset()));
3145   Node* osthread = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered);
3146   p = basic_plus_adr(top()/*!oop*/, osthread, in_bytes(OSThread::thread_id_offset()));
3147 
3148   Node* threadid = NULL;
3149   size_t thread_id_size = OSThread::thread_id_size();
3150   if (thread_id_size == (size_t) BytesPerLong) {
3151     threadid = ConvL2I(make_load(control(), p, TypeLong::LONG, T_LONG, MemNode::unordered));
3152   } else if (thread_id_size == (size_t) BytesPerInt) {
3153     threadid = make_load(control(), p, TypeInt::INT, T_INT, MemNode::unordered);
3154   } else {
3155     ShouldNotReachHere();
3156   }
3157   set_result(threadid);
3158   return true;
3159 }
3160 #endif
3161 
3162 //------------------------inline_native_time_funcs--------------
3163 // inline code for System.currentTimeMillis() and System.nanoTime()
3164 // these have the same type and signature
3165 bool LibraryCallKit::inline_native_time_funcs(address funcAddr, const char* funcName) {
3166   const TypeFunc* tf = OptoRuntime::void_long_Type();
3167   const TypePtr* no_memory_effects = NULL;
3168   Node* time = make_runtime_call(RC_LEAF, tf, funcAddr, funcName, no_memory_effects);
3169   Node* value = _gvn.transform(new (C) ProjNode(time, TypeFunc::Parms+0));
3170 #ifdef ASSERT
3171   Node* value_top = _gvn.transform(new (C) ProjNode(time, TypeFunc::Parms+1));
3172   assert(value_top == top(), "second value must be top");
3173 #endif
3174   set_result(value);
3175   return true;
3176 }
3177 
3178 //------------------------inline_native_currentThread------------------
3179 bool LibraryCallKit::inline_native_currentThread() {
3180   Node* junk = NULL;
3181   set_result(generate_current_thread(junk));
3182   return true;
3183 }
3184 
3185 //------------------------inline_native_isInterrupted------------------
3186 // private native boolean java.lang.Thread.isInterrupted(boolean ClearInterrupted);
3187 bool LibraryCallKit::inline_native_isInterrupted() {
3188   // Add a fast path to t.isInterrupted(clear_int):
3189   //   (t == Thread.current() &&
3190   //    (!TLS._osthread._interrupted || WINDOWS_ONLY(false) NOT_WINDOWS(!clear_int)))
3191   //   ? TLS._osthread._interrupted : /*slow path:*/ t.isInterrupted(clear_int)
3192   // So, in the common case that the interrupt bit is false,
3193   // we avoid making a call into the VM.  Even if the interrupt bit
3194   // is true, if the clear_int argument is false, we avoid the VM call.
3195   // However, if the receiver is not currentThread, we must call the VM,
3196   // because there must be some locking done around the operation.
3197 
3198   // We only go to the fast case code if we pass two guards.
3199   // Paths which do not pass are accumulated in the slow_region.
3200 
3201   enum {
3202     no_int_result_path   = 1, // t == Thread.current() && !TLS._osthread._interrupted
3203     no_clear_result_path = 2, // t == Thread.current() &&  TLS._osthread._interrupted && !clear_int
3204     slow_result_path     = 3, // slow path: t.isInterrupted(clear_int)
3205     PATH_LIMIT
3206   };
3207 
3208   // Ensure that it's not possible to move the load of TLS._osthread._interrupted flag
3209   // out of the function.
3210   insert_mem_bar(Op_MemBarCPUOrder);
3211 
3212   RegionNode* result_rgn = new (C) RegionNode(PATH_LIMIT);
3213   PhiNode*    result_val = new (C) PhiNode(result_rgn, TypeInt::BOOL);
3214 
3215   RegionNode* slow_region = new (C) RegionNode(1);
3216   record_for_igvn(slow_region);
3217 
3218   // (a) Receiving thread must be the current thread.
3219   Node* rec_thr = argument(0);
3220   Node* tls_ptr = NULL;
3221   Node* cur_thr = generate_current_thread(tls_ptr);
3222   Node* cmp_thr = _gvn.transform(new (C) CmpPNode(cur_thr, rec_thr));
3223   Node* bol_thr = _gvn.transform(new (C) BoolNode(cmp_thr, BoolTest::ne));
3224 
3225   generate_slow_guard(bol_thr, slow_region);
3226 
3227   // (b) Interrupt bit on TLS must be false.
3228   Node* p = basic_plus_adr(top()/*!oop*/, tls_ptr, in_bytes(JavaThread::osthread_offset()));
3229   Node* osthread = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered);
3230   p = basic_plus_adr(top()/*!oop*/, osthread, in_bytes(OSThread::interrupted_offset()));
3231 
3232   // Set the control input on the field _interrupted read to prevent it floating up.
3233   Node* int_bit = make_load(control(), p, TypeInt::BOOL, T_INT, MemNode::unordered);
3234   Node* cmp_bit = _gvn.transform(new (C) CmpINode(int_bit, intcon(0)));
3235   Node* bol_bit = _gvn.transform(new (C) BoolNode(cmp_bit, BoolTest::ne));
3236 
3237   IfNode* iff_bit = create_and_map_if(control(), bol_bit, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
3238 
3239   // First fast path:  if (!TLS._interrupted) return false;
3240   Node* false_bit = _gvn.transform(new (C) IfFalseNode(iff_bit));
3241   result_rgn->init_req(no_int_result_path, false_bit);
3242   result_val->init_req(no_int_result_path, intcon(0));
3243 
3244   // drop through to next case
3245   set_control( _gvn.transform(new (C) IfTrueNode(iff_bit)));
3246 
3247 #ifndef TARGET_OS_FAMILY_windows
3248   // (c) Or, if interrupt bit is set and clear_int is false, use 2nd fast path.
3249   Node* clr_arg = argument(1);
3250   Node* cmp_arg = _gvn.transform(new (C) CmpINode(clr_arg, intcon(0)));
3251   Node* bol_arg = _gvn.transform(new (C) BoolNode(cmp_arg, BoolTest::ne));
3252   IfNode* iff_arg = create_and_map_if(control(), bol_arg, PROB_FAIR, COUNT_UNKNOWN);
3253 
3254   // Second fast path:  ... else if (!clear_int) return true;
3255   Node* false_arg = _gvn.transform(new (C) IfFalseNode(iff_arg));
3256   result_rgn->init_req(no_clear_result_path, false_arg);
3257   result_val->init_req(no_clear_result_path, intcon(1));
3258 
3259   // drop through to next case
3260   set_control( _gvn.transform(new (C) IfTrueNode(iff_arg)));
3261 #else
3262   // To return true on Windows you must read the _interrupted field
3263   // and check the the event state i.e. take the slow path.
3264 #endif // TARGET_OS_FAMILY_windows
3265 
3266   // (d) Otherwise, go to the slow path.
3267   slow_region->add_req(control());
3268   set_control( _gvn.transform(slow_region));
3269 
3270   if (stopped()) {
3271     // There is no slow path.
3272     result_rgn->init_req(slow_result_path, top());
3273     result_val->init_req(slow_result_path, top());
3274   } else {
3275     // non-virtual because it is a private non-static
3276     CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_isInterrupted);
3277 
3278     Node* slow_val = set_results_for_java_call(slow_call);
3279     // this->control() comes from set_results_for_java_call
3280 
3281     Node* fast_io  = slow_call->in(TypeFunc::I_O);
3282     Node* fast_mem = slow_call->in(TypeFunc::Memory);
3283 
3284     // These two phis are pre-filled with copies of of the fast IO and Memory
3285     PhiNode* result_mem  = PhiNode::make(result_rgn, fast_mem, Type::MEMORY, TypePtr::BOTTOM);
3286     PhiNode* result_io   = PhiNode::make(result_rgn, fast_io,  Type::ABIO);
3287 
3288     result_rgn->init_req(slow_result_path, control());
3289     result_io ->init_req(slow_result_path, i_o());
3290     result_mem->init_req(slow_result_path, reset_memory());
3291     result_val->init_req(slow_result_path, slow_val);
3292 
3293     set_all_memory(_gvn.transform(result_mem));
3294     set_i_o(       _gvn.transform(result_io));
3295   }
3296 
3297   C->set_has_split_ifs(true); // Has chance for split-if optimization
3298   set_result(result_rgn, result_val);
3299   return true;
3300 }
3301 
3302 //---------------------------load_mirror_from_klass----------------------------
3303 // Given a klass oop, load its java mirror (a java.lang.Class oop).
3304 Node* LibraryCallKit::load_mirror_from_klass(Node* klass) {
3305   Node* p = basic_plus_adr(klass, in_bytes(Klass::java_mirror_offset()));
3306   return make_load(NULL, p, TypeInstPtr::MIRROR, T_OBJECT, MemNode::unordered);
3307 }
3308 
3309 //-----------------------load_klass_from_mirror_common-------------------------
3310 // Given a java mirror (a java.lang.Class oop), load its corresponding klass oop.
3311 // Test the klass oop for null (signifying a primitive Class like Integer.TYPE),
3312 // and branch to the given path on the region.
3313 // If never_see_null, take an uncommon trap on null, so we can optimistically
3314 // compile for the non-null case.
3315 // If the region is NULL, force never_see_null = true.
3316 Node* LibraryCallKit::load_klass_from_mirror_common(Node* mirror,
3317                                                     bool never_see_null,
3318                                                     RegionNode* region,
3319                                                     int null_path,
3320                                                     int offset) {
3321   if (region == NULL)  never_see_null = true;
3322   Node* p = basic_plus_adr(mirror, offset);
3323   const TypeKlassPtr*  kls_type = TypeKlassPtr::OBJECT_OR_NULL;
3324   Node* kls = _gvn.transform( LoadKlassNode::make(_gvn, immutable_memory(), p, TypeRawPtr::BOTTOM, kls_type));
3325   Node* null_ctl = top();
3326   kls = null_check_oop(kls, &null_ctl, never_see_null);
3327   if (region != NULL) {
3328     // Set region->in(null_path) if the mirror is a primitive (e.g, int.class).
3329     region->init_req(null_path, null_ctl);
3330   } else {
3331     assert(null_ctl == top(), "no loose ends");
3332   }
3333   return kls;
3334 }
3335 
3336 //--------------------(inline_native_Class_query helpers)---------------------
3337 // Use this for JVM_ACC_INTERFACE, JVM_ACC_IS_CLONEABLE, JVM_ACC_HAS_FINALIZER.
3338 // Fall through if (mods & mask) == bits, take the guard otherwise.
3339 Node* LibraryCallKit::generate_access_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region) {
3340   // Branch around if the given klass has the given modifier bit set.
3341   // Like generate_guard, adds a new path onto the region.
3342   Node* modp = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
3343   Node* mods = make_load(NULL, modp, TypeInt::INT, T_INT, MemNode::unordered);
3344   Node* mask = intcon(modifier_mask);
3345   Node* bits = intcon(modifier_bits);
3346   Node* mbit = _gvn.transform(new (C) AndINode(mods, mask));
3347   Node* cmp  = _gvn.transform(new (C) CmpINode(mbit, bits));
3348   Node* bol  = _gvn.transform(new (C) BoolNode(cmp, BoolTest::ne));
3349   return generate_fair_guard(bol, region);
3350 }
3351 Node* LibraryCallKit::generate_interface_guard(Node* kls, RegionNode* region) {
3352   return generate_access_flags_guard(kls, JVM_ACC_INTERFACE, 0, region);
3353 }
3354 
3355 //-------------------------inline_native_Class_query-------------------
3356 bool LibraryCallKit::inline_native_Class_query(vmIntrinsics::ID id) {
3357   const Type* return_type = TypeInt::BOOL;
3358   Node* prim_return_value = top();  // what happens if it's a primitive class?
3359   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3360   bool expect_prim = false;     // most of these guys expect to work on refs
3361 
3362   enum { _normal_path = 1, _prim_path = 2, PATH_LIMIT };
3363 
3364   Node* mirror = argument(0);
3365   Node* obj    = top();
3366 
3367   switch (id) {
3368   case vmIntrinsics::_isInstance:
3369     // nothing is an instance of a primitive type
3370     prim_return_value = intcon(0);
3371     obj = argument(1);
3372     break;
3373   case vmIntrinsics::_getModifiers:
3374     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
3375     assert(is_power_of_2((int)JVM_ACC_WRITTEN_FLAGS+1), "change next line");
3376     return_type = TypeInt::make(0, JVM_ACC_WRITTEN_FLAGS, Type::WidenMin);
3377     break;
3378   case vmIntrinsics::_isInterface:
3379     prim_return_value = intcon(0);
3380     break;
3381   case vmIntrinsics::_isArray:
3382     prim_return_value = intcon(0);
3383     expect_prim = true;  // cf. ObjectStreamClass.getClassSignature
3384     break;
3385   case vmIntrinsics::_isPrimitive:
3386     prim_return_value = intcon(1);
3387     expect_prim = true;  // obviously
3388     break;
3389   case vmIntrinsics::_getSuperclass:
3390     prim_return_value = null();
3391     return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
3392     break;
3393   case vmIntrinsics::_getComponentType:
3394     prim_return_value = null();
3395     return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
3396     break;
3397   case vmIntrinsics::_getClassAccessFlags:
3398     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
3399     return_type = TypeInt::INT;  // not bool!  6297094
3400     break;
3401   default:
3402     fatal_unexpected_iid(id);
3403     break;
3404   }
3405 
3406   const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
3407   if (mirror_con == NULL)  return false;  // cannot happen?
3408 
3409 #ifndef PRODUCT
3410   if (C->print_intrinsics() || C->print_inlining()) {
3411     ciType* k = mirror_con->java_mirror_type();
3412     if (k) {
3413       tty->print("Inlining %s on constant Class ", vmIntrinsics::name_at(intrinsic_id()));
3414       k->print_name();
3415       tty->cr();
3416     }
3417   }
3418 #endif
3419 
3420   // Null-check the mirror, and the mirror's klass ptr (in case it is a primitive).
3421   RegionNode* region = new (C) RegionNode(PATH_LIMIT);
3422   record_for_igvn(region);
3423   PhiNode* phi = new (C) PhiNode(region, return_type);
3424 
3425   // The mirror will never be null of Reflection.getClassAccessFlags, however
3426   // it may be null for Class.isInstance or Class.getModifiers. Throw a NPE
3427   // if it is. See bug 4774291.
3428 
3429   // For Reflection.getClassAccessFlags(), the null check occurs in
3430   // the wrong place; see inline_unsafe_access(), above, for a similar
3431   // situation.
3432   mirror = null_check(mirror);
3433   // If mirror or obj is dead, only null-path is taken.
3434   if (stopped())  return true;
3435 
3436   if (expect_prim)  never_see_null = false;  // expect nulls (meaning prims)
3437 
3438   // Now load the mirror's klass metaobject, and null-check it.
3439   // Side-effects region with the control path if the klass is null.
3440   Node* kls = load_klass_from_mirror(mirror, never_see_null, region, _prim_path);
3441   // If kls is null, we have a primitive mirror.
3442   phi->init_req(_prim_path, prim_return_value);
3443   if (stopped()) { set_result(region, phi); return true; }
3444   bool safe_for_replace = (region->in(_prim_path) == top());
3445 
3446   Node* p;  // handy temp
3447   Node* null_ctl;
3448 
3449   // Now that we have the non-null klass, we can perform the real query.
3450   // For constant classes, the query will constant-fold in LoadNode::Value.
3451   Node* query_value = top();
3452   switch (id) {
3453   case vmIntrinsics::_isInstance:
3454     // nothing is an instance of a primitive type
3455     query_value = gen_instanceof(obj, kls, safe_for_replace);
3456     break;
3457 
3458   case vmIntrinsics::_getModifiers:
3459     p = basic_plus_adr(kls, in_bytes(Klass::modifier_flags_offset()));
3460     query_value = make_load(NULL, p, TypeInt::INT, T_INT, MemNode::unordered);
3461     break;
3462 
3463   case vmIntrinsics::_isInterface:
3464     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
3465     if (generate_interface_guard(kls, region) != NULL)
3466       // A guard was added.  If the guard is taken, it was an interface.
3467       phi->add_req(intcon(1));
3468     // If we fall through, it's a plain class.
3469     query_value = intcon(0);
3470     break;
3471 
3472   case vmIntrinsics::_isArray:
3473     // (To verify this code sequence, check the asserts in JVM_IsArrayClass.)
3474     if (generate_array_guard(kls, region) != NULL)
3475       // A guard was added.  If the guard is taken, it was an array.
3476       phi->add_req(intcon(1));
3477     // If we fall through, it's a plain class.
3478     query_value = intcon(0);
3479     break;
3480 
3481   case vmIntrinsics::_isPrimitive:
3482     query_value = intcon(0); // "normal" path produces false
3483     break;
3484 
3485   case vmIntrinsics::_getSuperclass:
3486     // The rules here are somewhat unfortunate, but we can still do better
3487     // with random logic than with a JNI call.
3488     // Interfaces store null or Object as _super, but must report null.
3489     // Arrays store an intermediate super as _super, but must report Object.
3490     // Other types can report the actual _super.
3491     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
3492     if (generate_interface_guard(kls, region) != NULL)
3493       // A guard was added.  If the guard is taken, it was an interface.
3494       phi->add_req(null());
3495     if (generate_array_guard(kls, region) != NULL)
3496       // A guard was added.  If the guard is taken, it was an array.
3497       phi->add_req(makecon(TypeInstPtr::make(env()->Object_klass()->java_mirror())));
3498     // If we fall through, it's a plain class.  Get its _super.
3499     p = basic_plus_adr(kls, in_bytes(Klass::super_offset()));
3500     kls = _gvn.transform( LoadKlassNode::make(_gvn, immutable_memory(), p, TypeRawPtr::BOTTOM, TypeKlassPtr::OBJECT_OR_NULL));
3501     null_ctl = top();
3502     kls = null_check_oop(kls, &null_ctl);
3503     if (null_ctl != top()) {
3504       // If the guard is taken, Object.superClass is null (both klass and mirror).
3505       region->add_req(null_ctl);
3506       phi   ->add_req(null());
3507     }
3508     if (!stopped()) {
3509       query_value = load_mirror_from_klass(kls);
3510     }
3511     break;
3512 
3513   case vmIntrinsics::_getComponentType:
3514     if (generate_array_guard(kls, region) != NULL) {
3515       // Be sure to pin the oop load to the guard edge just created:
3516       Node* is_array_ctrl = region->in(region->req()-1);
3517       Node* cma = basic_plus_adr(kls, in_bytes(ArrayKlass::component_mirror_offset()));
3518       Node* cmo = make_load(is_array_ctrl, cma, TypeInstPtr::MIRROR, T_OBJECT, MemNode::unordered);
3519       phi->add_req(cmo);
3520     }
3521     query_value = null();  // non-array case is null
3522     break;
3523 
3524   case vmIntrinsics::_getClassAccessFlags:
3525     p = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
3526     query_value = make_load(NULL, p, TypeInt::INT, T_INT, MemNode::unordered);
3527     break;
3528 
3529   default:
3530     fatal_unexpected_iid(id);
3531     break;
3532   }
3533 
3534   // Fall-through is the normal case of a query to a real class.
3535   phi->init_req(1, query_value);
3536   region->init_req(1, control());
3537 
3538   C->set_has_split_ifs(true); // Has chance for split-if optimization
3539   set_result(region, phi);
3540   return true;
3541 }
3542 
3543 //--------------------------inline_native_subtype_check------------------------
3544 // This intrinsic takes the JNI calls out of the heart of
3545 // UnsafeFieldAccessorImpl.set, which improves Field.set, readObject, etc.
3546 bool LibraryCallKit::inline_native_subtype_check() {
3547   // Pull both arguments off the stack.
3548   Node* args[2];                // two java.lang.Class mirrors: superc, subc
3549   args[0] = argument(0);
3550   args[1] = argument(1);
3551   Node* klasses[2];             // corresponding Klasses: superk, subk
3552   klasses[0] = klasses[1] = top();
3553 
3554   enum {
3555     // A full decision tree on {superc is prim, subc is prim}:
3556     _prim_0_path = 1,           // {P,N} => false
3557                                 // {P,P} & superc!=subc => false
3558     _prim_same_path,            // {P,P} & superc==subc => true
3559     _prim_1_path,               // {N,P} => false
3560     _ref_subtype_path,          // {N,N} & subtype check wins => true
3561     _both_ref_path,             // {N,N} & subtype check loses => false
3562     PATH_LIMIT
3563   };
3564 
3565   RegionNode* region = new (C) RegionNode(PATH_LIMIT);
3566   Node*       phi    = new (C) PhiNode(region, TypeInt::BOOL);
3567   record_for_igvn(region);
3568 
3569   const TypePtr* adr_type = TypeRawPtr::BOTTOM;   // memory type of loads
3570   const TypeKlassPtr* kls_type = TypeKlassPtr::OBJECT_OR_NULL;
3571   int class_klass_offset = java_lang_Class::klass_offset_in_bytes();
3572 
3573   // First null-check both mirrors and load each mirror's klass metaobject.
3574   int which_arg;
3575   for (which_arg = 0; which_arg <= 1; which_arg++) {
3576     Node* arg = args[which_arg];
3577     arg = null_check(arg);
3578     if (stopped())  break;
3579     args[which_arg] = arg;
3580 
3581     Node* p = basic_plus_adr(arg, class_klass_offset);
3582     Node* kls = LoadKlassNode::make(_gvn, immutable_memory(), p, adr_type, kls_type);
3583     klasses[which_arg] = _gvn.transform(kls);
3584   }
3585 
3586   // Having loaded both klasses, test each for null.
3587   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3588   for (which_arg = 0; which_arg <= 1; which_arg++) {
3589     Node* kls = klasses[which_arg];
3590     Node* null_ctl = top();
3591     kls = null_check_oop(kls, &null_ctl, never_see_null);
3592     int prim_path = (which_arg == 0 ? _prim_0_path : _prim_1_path);
3593     region->init_req(prim_path, null_ctl);
3594     if (stopped())  break;
3595     klasses[which_arg] = kls;
3596   }
3597 
3598   if (!stopped()) {
3599     // now we have two reference types, in klasses[0..1]
3600     Node* subk   = klasses[1];  // the argument to isAssignableFrom
3601     Node* superk = klasses[0];  // the receiver
3602     region->set_req(_both_ref_path, gen_subtype_check(subk, superk));
3603     // now we have a successful reference subtype check
3604     region->set_req(_ref_subtype_path, control());
3605   }
3606 
3607   // If both operands are primitive (both klasses null), then
3608   // we must return true when they are identical primitives.
3609   // It is convenient to test this after the first null klass check.
3610   set_control(region->in(_prim_0_path)); // go back to first null check
3611   if (!stopped()) {
3612     // Since superc is primitive, make a guard for the superc==subc case.
3613     Node* cmp_eq = _gvn.transform(new (C) CmpPNode(args[0], args[1]));
3614     Node* bol_eq = _gvn.transform(new (C) BoolNode(cmp_eq, BoolTest::eq));
3615     generate_guard(bol_eq, region, PROB_FAIR);
3616     if (region->req() == PATH_LIMIT+1) {
3617       // A guard was added.  If the added guard is taken, superc==subc.
3618       region->swap_edges(PATH_LIMIT, _prim_same_path);
3619       region->del_req(PATH_LIMIT);
3620     }
3621     region->set_req(_prim_0_path, control()); // Not equal after all.
3622   }
3623 
3624   // these are the only paths that produce 'true':
3625   phi->set_req(_prim_same_path,   intcon(1));
3626   phi->set_req(_ref_subtype_path, intcon(1));
3627 
3628   // pull together the cases:
3629   assert(region->req() == PATH_LIMIT, "sane region");
3630   for (uint i = 1; i < region->req(); i++) {
3631     Node* ctl = region->in(i);
3632     if (ctl == NULL || ctl == top()) {
3633       region->set_req(i, top());
3634       phi   ->set_req(i, top());
3635     } else if (phi->in(i) == NULL) {
3636       phi->set_req(i, intcon(0)); // all other paths produce 'false'
3637     }
3638   }
3639 
3640   set_control(_gvn.transform(region));
3641   set_result(_gvn.transform(phi));
3642   return true;
3643 }
3644 
3645 //---------------------generate_array_guard_common------------------------
3646 Node* LibraryCallKit::generate_array_guard_common(Node* kls, RegionNode* region,
3647                                                   bool obj_array, bool not_array) {
3648   // If obj_array/non_array==false/false:
3649   // Branch around if the given klass is in fact an array (either obj or prim).
3650   // If obj_array/non_array==false/true:
3651   // Branch around if the given klass is not an array klass of any kind.
3652   // If obj_array/non_array==true/true:
3653   // Branch around if the kls is not an oop array (kls is int[], String, etc.)
3654   // If obj_array/non_array==true/false:
3655   // Branch around if the kls is an oop array (Object[] or subtype)
3656   //
3657   // Like generate_guard, adds a new path onto the region.
3658   jint  layout_con = 0;
3659   Node* layout_val = get_layout_helper(kls, layout_con);
3660   if (layout_val == NULL) {
3661     bool query = (obj_array
3662                   ? Klass::layout_helper_is_objArray(layout_con)
3663                   : Klass::layout_helper_is_array(layout_con));
3664     if (query == not_array) {
3665       return NULL;                       // never a branch
3666     } else {                             // always a branch
3667       Node* always_branch = control();
3668       if (region != NULL)
3669         region->add_req(always_branch);
3670       set_control(top());
3671       return always_branch;
3672     }
3673   }
3674   // Now test the correct condition.
3675   jint  nval = (obj_array
3676                 ? ((jint)Klass::_lh_array_tag_type_value
3677                    <<    Klass::_lh_array_tag_shift)
3678                 : Klass::_lh_neutral_value);
3679   Node* cmp = _gvn.transform(new(C) CmpINode(layout_val, intcon(nval)));
3680   BoolTest::mask btest = BoolTest::lt;  // correct for testing is_[obj]array
3681   // invert the test if we are looking for a non-array
3682   if (not_array)  btest = BoolTest(btest).negate();
3683   Node* bol = _gvn.transform(new(C) BoolNode(cmp, btest));
3684   return generate_fair_guard(bol, region);
3685 }
3686 
3687 
3688 //-----------------------inline_native_newArray--------------------------
3689 // private static native Object java.lang.reflect.newArray(Class<?> componentType, int length);
3690 bool LibraryCallKit::inline_native_newArray() {
3691   Node* mirror    = argument(0);
3692   Node* count_val = argument(1);
3693 
3694   mirror = null_check(mirror);
3695   // If mirror or obj is dead, only null-path is taken.
3696   if (stopped())  return true;
3697 
3698   enum { _normal_path = 1, _slow_path = 2, PATH_LIMIT };
3699   RegionNode* result_reg = new(C) RegionNode(PATH_LIMIT);
3700   PhiNode*    result_val = new(C) PhiNode(result_reg,
3701                                           TypeInstPtr::NOTNULL);
3702   PhiNode*    result_io  = new(C) PhiNode(result_reg, Type::ABIO);
3703   PhiNode*    result_mem = new(C) PhiNode(result_reg, Type::MEMORY,
3704                                           TypePtr::BOTTOM);
3705 
3706   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3707   Node* klass_node = load_array_klass_from_mirror(mirror, never_see_null,
3708                                                   result_reg, _slow_path);
3709   Node* normal_ctl   = control();
3710   Node* no_array_ctl = result_reg->in(_slow_path);
3711 
3712   // Generate code for the slow case.  We make a call to newArray().
3713   set_control(no_array_ctl);
3714   if (!stopped()) {
3715     // Either the input type is void.class, or else the
3716     // array klass has not yet been cached.  Either the
3717     // ensuing call will throw an exception, or else it
3718     // will cache the array klass for next time.
3719     PreserveJVMState pjvms(this);
3720     CallJavaNode* slow_call = generate_method_call_static(vmIntrinsics::_newArray);
3721     Node* slow_result = set_results_for_java_call(slow_call);
3722     // this->control() comes from set_results_for_java_call
3723     result_reg->set_req(_slow_path, control());
3724     result_val->set_req(_slow_path, slow_result);
3725     result_io ->set_req(_slow_path, i_o());
3726     result_mem->set_req(_slow_path, reset_memory());
3727   }
3728 
3729   set_control(normal_ctl);
3730   if (!stopped()) {
3731     // Normal case:  The array type has been cached in the java.lang.Class.
3732     // The following call works fine even if the array type is polymorphic.
3733     // It could be a dynamic mix of int[], boolean[], Object[], etc.
3734     Node* obj = new_array(klass_node, count_val, 0);  // no arguments to push
3735     result_reg->init_req(_normal_path, control());
3736     result_val->init_req(_normal_path, obj);
3737     result_io ->init_req(_normal_path, i_o());
3738     result_mem->init_req(_normal_path, reset_memory());
3739   }
3740 
3741   // Return the combined state.
3742   set_i_o(        _gvn.transform(result_io)  );
3743   set_all_memory( _gvn.transform(result_mem));
3744 
3745   C->set_has_split_ifs(true); // Has chance for split-if optimization
3746   set_result(result_reg, result_val);
3747   return true;
3748 }
3749 
3750 //----------------------inline_native_getLength--------------------------
3751 // public static native int java.lang.reflect.Array.getLength(Object array);
3752 bool LibraryCallKit::inline_native_getLength() {
3753   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
3754 
3755   Node* array = null_check(argument(0));
3756   // If array is dead, only null-path is taken.
3757   if (stopped())  return true;
3758 
3759   // Deoptimize if it is a non-array.
3760   Node* non_array = generate_non_array_guard(load_object_klass(array), NULL);
3761 
3762   if (non_array != NULL) {
3763     PreserveJVMState pjvms(this);
3764     set_control(non_array);
3765     uncommon_trap(Deoptimization::Reason_intrinsic,
3766                   Deoptimization::Action_maybe_recompile);
3767   }
3768 
3769   // If control is dead, only non-array-path is taken.
3770   if (stopped())  return true;
3771 
3772   // The works fine even if the array type is polymorphic.
3773   // It could be a dynamic mix of int[], boolean[], Object[], etc.
3774   Node* result = load_array_length(array);
3775 
3776   C->set_has_split_ifs(true);  // Has chance for split-if optimization
3777   set_result(result);
3778   return true;
3779 }
3780 
3781 //------------------------inline_array_copyOf----------------------------
3782 // public static <T,U> T[] java.util.Arrays.copyOf(     U[] original, int newLength,         Class<? extends T[]> newType);
3783 // public static <T,U> T[] java.util.Arrays.copyOfRange(U[] original, int from,      int to, Class<? extends T[]> newType);
3784 bool LibraryCallKit::inline_array_copyOf(bool is_copyOfRange) {
3785   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
3786 
3787   // Get the arguments.
3788   Node* original          = argument(0);
3789   Node* start             = is_copyOfRange? argument(1): intcon(0);
3790   Node* end               = is_copyOfRange? argument(2): argument(1);
3791   Node* array_type_mirror = is_copyOfRange? argument(3): argument(2);
3792 
3793   Node* newcopy;
3794 
3795   // Set the original stack and the reexecute bit for the interpreter to reexecute
3796   // the bytecode that invokes Arrays.copyOf if deoptimization happens.
3797   { PreserveReexecuteState preexecs(this);
3798     jvms()->set_should_reexecute(true);
3799 
3800     array_type_mirror = null_check(array_type_mirror);
3801     original          = null_check(original);
3802 
3803     // Check if a null path was taken unconditionally.
3804     if (stopped())  return true;
3805 
3806     Node* orig_length = load_array_length(original);
3807 
3808     Node* klass_node = load_klass_from_mirror(array_type_mirror, false, NULL, 0);
3809     klass_node = null_check(klass_node);
3810 
3811     RegionNode* bailout = new (C) RegionNode(1);
3812     record_for_igvn(bailout);
3813 
3814     // Despite the generic type of Arrays.copyOf, the mirror might be int, int[], etc.
3815     // Bail out if that is so.
3816     Node* not_objArray = generate_non_objArray_guard(klass_node, bailout);
3817     if (not_objArray != NULL) {
3818       // Improve the klass node's type from the new optimistic assumption:
3819       ciKlass* ak = ciArrayKlass::make(env()->Object_klass());
3820       const Type* akls = TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
3821       Node* cast = new (C) CastPPNode(klass_node, akls);
3822       cast->init_req(0, control());
3823       klass_node = _gvn.transform(cast);
3824     }
3825 
3826     // Bail out if either start or end is negative.
3827     generate_negative_guard(start, bailout, &start);
3828     generate_negative_guard(end,   bailout, &end);
3829 
3830     Node* length = end;
3831     if (_gvn.type(start) != TypeInt::ZERO) {
3832       length = _gvn.transform(new (C) SubINode(end, start));
3833     }
3834 
3835     // Bail out if length is negative.
3836     // Without this the new_array would throw
3837     // NegativeArraySizeException but IllegalArgumentException is what
3838     // should be thrown
3839     generate_negative_guard(length, bailout, &length);
3840 
3841     if (bailout->req() > 1) {
3842       PreserveJVMState pjvms(this);
3843       set_control(_gvn.transform(bailout));
3844       uncommon_trap(Deoptimization::Reason_intrinsic,
3845                     Deoptimization::Action_maybe_recompile);
3846     }
3847 
3848     if (!stopped()) {
3849       // How many elements will we copy from the original?
3850       // The answer is MinI(orig_length - start, length).
3851       Node* orig_tail = _gvn.transform(new (C) SubINode(orig_length, start));
3852       Node* moved = generate_min_max(vmIntrinsics::_min, orig_tail, length);
3853 
3854       newcopy = new_array(klass_node, length, 0);  // no argments to push
3855 
3856       // Generate a direct call to the right arraycopy function(s).
3857       // We know the copy is disjoint but we might not know if the
3858       // oop stores need checking.
3859       // Extreme case:  Arrays.copyOf((Integer[])x, 10, String[].class).
3860       // This will fail a store-check if x contains any non-nulls.
3861       bool disjoint_bases = true;
3862       // if start > orig_length then the length of the copy may be
3863       // negative.
3864       bool length_never_negative = !is_copyOfRange;
3865       generate_arraycopy(TypeAryPtr::OOPS, T_OBJECT,
3866                          original, start, newcopy, intcon(0), moved,
3867                          disjoint_bases, length_never_negative);
3868     }
3869   } // original reexecute is set back here
3870 
3871   C->set_has_split_ifs(true); // Has chance for split-if optimization
3872   if (!stopped()) {
3873     set_result(newcopy);
3874   }
3875   return true;
3876 }
3877 
3878 
3879 //----------------------generate_virtual_guard---------------------------
3880 // Helper for hashCode and clone.  Peeks inside the vtable to avoid a call.
3881 Node* LibraryCallKit::generate_virtual_guard(Node* obj_klass,
3882                                              RegionNode* slow_region) {
3883   ciMethod* method = callee();
3884   int vtable_index = method->vtable_index();
3885   assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index,
3886          err_msg_res("bad index %d", vtable_index));
3887   // Get the Method* out of the appropriate vtable entry.
3888   int entry_offset  = (InstanceKlass::vtable_start_offset() +
3889                      vtable_index*vtableEntry::size()) * wordSize +
3890                      vtableEntry::method_offset_in_bytes();
3891   Node* entry_addr  = basic_plus_adr(obj_klass, entry_offset);
3892   Node* target_call = make_load(NULL, entry_addr, TypePtr::NOTNULL, T_ADDRESS, MemNode::unordered);
3893 
3894   // Compare the target method with the expected method (e.g., Object.hashCode).
3895   const TypePtr* native_call_addr = TypeMetadataPtr::make(method);
3896 
3897   Node* native_call = makecon(native_call_addr);
3898   Node* chk_native  = _gvn.transform(new(C) CmpPNode(target_call, native_call));
3899   Node* test_native = _gvn.transform(new(C) BoolNode(chk_native, BoolTest::ne));
3900 
3901   return generate_slow_guard(test_native, slow_region);
3902 }
3903 
3904 //-----------------------generate_method_call----------------------------
3905 // Use generate_method_call to make a slow-call to the real
3906 // method if the fast path fails.  An alternative would be to
3907 // use a stub like OptoRuntime::slow_arraycopy_Java.
3908 // This only works for expanding the current library call,
3909 // not another intrinsic.  (E.g., don't use this for making an
3910 // arraycopy call inside of the copyOf intrinsic.)
3911 CallJavaNode*
3912 LibraryCallKit::generate_method_call(vmIntrinsics::ID method_id, bool is_virtual, bool is_static) {
3913   // When compiling the intrinsic method itself, do not use this technique.
3914   guarantee(callee() != C->method(), "cannot make slow-call to self");
3915 
3916   ciMethod* method = callee();
3917   // ensure the JVMS we have will be correct for this call
3918   guarantee(method_id == method->intrinsic_id(), "must match");
3919 
3920   const TypeFunc* tf = TypeFunc::make(method);
3921   CallJavaNode* slow_call;
3922   if (is_static) {
3923     assert(!is_virtual, "");
3924     slow_call = new(C) CallStaticJavaNode(C, tf,
3925                            SharedRuntime::get_resolve_static_call_stub(),
3926                            method, bci());
3927   } else if (is_virtual) {
3928     null_check_receiver();
3929     int vtable_index = Method::invalid_vtable_index;
3930     if (UseInlineCaches) {
3931       // Suppress the vtable call
3932     } else {
3933       // hashCode and clone are not a miranda methods,
3934       // so the vtable index is fixed.
3935       // No need to use the linkResolver to get it.
3936        vtable_index = method->vtable_index();
3937        assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index,
3938               err_msg_res("bad index %d", vtable_index));
3939     }
3940     slow_call = new(C) CallDynamicJavaNode(tf,
3941                           SharedRuntime::get_resolve_virtual_call_stub(),
3942                           method, vtable_index, bci());
3943   } else {  // neither virtual nor static:  opt_virtual
3944     null_check_receiver();
3945     slow_call = new(C) CallStaticJavaNode(C, tf,
3946                                 SharedRuntime::get_resolve_opt_virtual_call_stub(),
3947                                 method, bci());
3948     slow_call->set_optimized_virtual(true);
3949   }
3950   set_arguments_for_java_call(slow_call);
3951   set_edges_for_java_call(slow_call);
3952   return slow_call;
3953 }
3954 
3955 
3956 //------------------------------inline_native_hashcode--------------------
3957 // Build special case code for calls to hashCode on an object.
3958 bool LibraryCallKit::inline_native_hashcode(bool is_virtual, bool is_static) {
3959   assert(is_static == callee()->is_static(), "correct intrinsic selection");
3960   assert(!(is_virtual && is_static), "either virtual, special, or static");
3961 
3962   enum { _slow_path = 1, _fast_path, _null_path, PATH_LIMIT };
3963 
3964   RegionNode* result_reg = new(C) RegionNode(PATH_LIMIT);
3965   PhiNode*    result_val = new(C) PhiNode(result_reg,
3966                                           TypeInt::INT);
3967   PhiNode*    result_io  = new(C) PhiNode(result_reg, Type::ABIO);
3968   PhiNode*    result_mem = new(C) PhiNode(result_reg, Type::MEMORY,
3969                                           TypePtr::BOTTOM);
3970   Node* obj = NULL;
3971   if (!is_static) {
3972     // Check for hashing null object
3973     obj = null_check_receiver();
3974     if (stopped())  return true;        // unconditionally null
3975     result_reg->init_req(_null_path, top());
3976     result_val->init_req(_null_path, top());
3977   } else {
3978     // Do a null check, and return zero if null.
3979     // System.identityHashCode(null) == 0
3980     obj = argument(0);
3981     Node* null_ctl = top();
3982     obj = null_check_oop(obj, &null_ctl);
3983     result_reg->init_req(_null_path, null_ctl);
3984     result_val->init_req(_null_path, _gvn.intcon(0));
3985   }
3986 
3987   // Unconditionally null?  Then return right away.
3988   if (stopped()) {
3989     set_control( result_reg->in(_null_path));
3990     if (!stopped())
3991       set_result(result_val->in(_null_path));
3992     return true;
3993   }
3994 
3995   // After null check, get the object's klass.
3996   Node* obj_klass = load_object_klass(obj);
3997 
3998   // This call may be virtual (invokevirtual) or bound (invokespecial).
3999   // For each case we generate slightly different code.
4000 
4001   // We only go to the fast case code if we pass a number of guards.  The
4002   // paths which do not pass are accumulated in the slow_region.
4003   RegionNode* slow_region = new (C) RegionNode(1);
4004   record_for_igvn(slow_region);
4005 
4006   // If this is a virtual call, we generate a funny guard.  We pull out
4007   // the vtable entry corresponding to hashCode() from the target object.
4008   // If the target method which we are calling happens to be the native
4009   // Object hashCode() method, we pass the guard.  We do not need this
4010   // guard for non-virtual calls -- the caller is known to be the native
4011   // Object hashCode().
4012   if (is_virtual) {
4013     generate_virtual_guard(obj_klass, slow_region);
4014   }
4015 
4016   // Get the header out of the object, use LoadMarkNode when available
4017   Node* header_addr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
4018   Node* header = make_load(control(), header_addr, TypeX_X, TypeX_X->basic_type(), MemNode::unordered);
4019 
4020   // Test the header to see if it is unlocked.
4021   Node *lock_mask      = _gvn.MakeConX(markOopDesc::biased_lock_mask_in_place);
4022   Node *lmasked_header = _gvn.transform(new (C) AndXNode(header, lock_mask));
4023   Node *unlocked_val   = _gvn.MakeConX(markOopDesc::unlocked_value);
4024   Node *chk_unlocked   = _gvn.transform(new (C) CmpXNode( lmasked_header, unlocked_val));
4025   Node *test_unlocked  = _gvn.transform(new (C) BoolNode( chk_unlocked, BoolTest::ne));
4026 
4027   generate_slow_guard(test_unlocked, slow_region);
4028 
4029   // Get the hash value and check to see that it has been properly assigned.
4030   // We depend on hash_mask being at most 32 bits and avoid the use of
4031   // hash_mask_in_place because it could be larger than 32 bits in a 64-bit
4032   // vm: see markOop.hpp.
4033   Node *hash_mask      = _gvn.intcon(markOopDesc::hash_mask);
4034   Node *hash_shift     = _gvn.intcon(markOopDesc::hash_shift);
4035   Node *hshifted_header= _gvn.transform(new (C) URShiftXNode(header, hash_shift));
4036   // This hack lets the hash bits live anywhere in the mark object now, as long
4037   // as the shift drops the relevant bits into the low 32 bits.  Note that
4038   // Java spec says that HashCode is an int so there's no point in capturing
4039   // an 'X'-sized hashcode (32 in 32-bit build or 64 in 64-bit build).
4040   hshifted_header      = ConvX2I(hshifted_header);
4041   Node *hash_val       = _gvn.transform(new (C) AndINode(hshifted_header, hash_mask));
4042 
4043   Node *no_hash_val    = _gvn.intcon(markOopDesc::no_hash);
4044   Node *chk_assigned   = _gvn.transform(new (C) CmpINode( hash_val, no_hash_val));
4045   Node *test_assigned  = _gvn.transform(new (C) BoolNode( chk_assigned, BoolTest::eq));
4046 
4047   generate_slow_guard(test_assigned, slow_region);
4048 
4049   Node* init_mem = reset_memory();
4050   // fill in the rest of the null path:
4051   result_io ->init_req(_null_path, i_o());
4052   result_mem->init_req(_null_path, init_mem);
4053 
4054   result_val->init_req(_fast_path, hash_val);
4055   result_reg->init_req(_fast_path, control());
4056   result_io ->init_req(_fast_path, i_o());
4057   result_mem->init_req(_fast_path, init_mem);
4058 
4059   // Generate code for the slow case.  We make a call to hashCode().
4060   set_control(_gvn.transform(slow_region));
4061   if (!stopped()) {
4062     // No need for PreserveJVMState, because we're using up the present state.
4063     set_all_memory(init_mem);
4064     vmIntrinsics::ID hashCode_id = is_static ? vmIntrinsics::_identityHashCode : vmIntrinsics::_hashCode;
4065     CallJavaNode* slow_call = generate_method_call(hashCode_id, is_virtual, is_static);
4066     Node* slow_result = set_results_for_java_call(slow_call);
4067     // this->control() comes from set_results_for_java_call
4068     result_reg->init_req(_slow_path, control());
4069     result_val->init_req(_slow_path, slow_result);
4070     result_io  ->set_req(_slow_path, i_o());
4071     result_mem ->set_req(_slow_path, reset_memory());
4072   }
4073 
4074   // Return the combined state.
4075   set_i_o(        _gvn.transform(result_io)  );
4076   set_all_memory( _gvn.transform(result_mem));
4077 
4078   set_result(result_reg, result_val);
4079   return true;
4080 }
4081 
4082 //---------------------------inline_native_getClass----------------------------
4083 // public final native Class<?> java.lang.Object.getClass();
4084 //
4085 // Build special case code for calls to getClass on an object.
4086 bool LibraryCallKit::inline_native_getClass() {
4087   Node* obj = null_check_receiver();
4088   if (stopped())  return true;
4089   set_result(load_mirror_from_klass(load_object_klass(obj)));
4090   return true;
4091 }
4092 
4093 //-----------------inline_native_Reflection_getCallerClass---------------------
4094 // public static native Class<?> sun.reflect.Reflection.getCallerClass();
4095 //
4096 // In the presence of deep enough inlining, getCallerClass() becomes a no-op.
4097 //
4098 // NOTE: This code must perform the same logic as JVM_GetCallerClass
4099 // in that it must skip particular security frames and checks for
4100 // caller sensitive methods.
4101 bool LibraryCallKit::inline_native_Reflection_getCallerClass() {
4102 #ifndef PRODUCT
4103   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4104     tty->print_cr("Attempting to inline sun.reflect.Reflection.getCallerClass");
4105   }
4106 #endif
4107 
4108   if (!jvms()->has_method()) {
4109 #ifndef PRODUCT
4110     if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4111       tty->print_cr("  Bailing out because intrinsic was inlined at top level");
4112     }
4113 #endif
4114     return false;
4115   }
4116 
4117   // Walk back up the JVM state to find the caller at the required
4118   // depth.
4119   JVMState* caller_jvms = jvms();
4120 
4121   // Cf. JVM_GetCallerClass
4122   // NOTE: Start the loop at depth 1 because the current JVM state does
4123   // not include the Reflection.getCallerClass() frame.
4124   for (int n = 1; caller_jvms != NULL; caller_jvms = caller_jvms->caller(), n++) {
4125     ciMethod* m = caller_jvms->method();
4126     switch (n) {
4127     case 0:
4128       fatal("current JVM state does not include the Reflection.getCallerClass frame");
4129       break;
4130     case 1:
4131       // Frame 0 and 1 must be caller sensitive (see JVM_GetCallerClass).
4132       if (!m->caller_sensitive()) {
4133 #ifndef PRODUCT
4134         if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4135           tty->print_cr("  Bailing out: CallerSensitive annotation expected at frame %d", n);
4136         }
4137 #endif
4138         return false;  // bail-out; let JVM_GetCallerClass do the work
4139       }
4140       break;
4141     default:
4142       if (!m->is_ignored_by_security_stack_walk()) {
4143         // We have reached the desired frame; return the holder class.
4144         // Acquire method holder as java.lang.Class and push as constant.
4145         ciInstanceKlass* caller_klass = caller_jvms->method()->holder();
4146         ciInstance* caller_mirror = caller_klass->java_mirror();
4147         set_result(makecon(TypeInstPtr::make(caller_mirror)));
4148 
4149 #ifndef PRODUCT
4150         if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4151           tty->print_cr("  Succeeded: caller = %d) %s.%s, JVMS depth = %d", n, caller_klass->name()->as_utf8(), caller_jvms->method()->name()->as_utf8(), jvms()->depth());
4152           tty->print_cr("  JVM state at this point:");
4153           for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) {
4154             ciMethod* m = jvms()->of_depth(i)->method();
4155             tty->print_cr("   %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8());
4156           }
4157         }
4158 #endif
4159         return true;
4160       }
4161       break;
4162     }
4163   }
4164 
4165 #ifndef PRODUCT
4166   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4167     tty->print_cr("  Bailing out because caller depth exceeded inlining depth = %d", jvms()->depth());
4168     tty->print_cr("  JVM state at this point:");
4169     for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) {
4170       ciMethod* m = jvms()->of_depth(i)->method();
4171       tty->print_cr("   %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8());
4172     }
4173   }
4174 #endif
4175 
4176   return false;  // bail-out; let JVM_GetCallerClass do the work
4177 }
4178 
4179 bool LibraryCallKit::inline_fp_conversions(vmIntrinsics::ID id) {
4180   Node* arg = argument(0);
4181   Node* result;
4182 
4183   switch (id) {
4184   case vmIntrinsics::_floatToRawIntBits:    result = new (C) MoveF2INode(arg);  break;
4185   case vmIntrinsics::_intBitsToFloat:       result = new (C) MoveI2FNode(arg);  break;
4186   case vmIntrinsics::_doubleToRawLongBits:  result = new (C) MoveD2LNode(arg);  break;
4187   case vmIntrinsics::_longBitsToDouble:     result = new (C) MoveL2DNode(arg);  break;
4188 
4189   case vmIntrinsics::_doubleToLongBits: {
4190     // two paths (plus control) merge in a wood
4191     RegionNode *r = new (C) RegionNode(3);
4192     Node *phi = new (C) PhiNode(r, TypeLong::LONG);
4193 
4194     Node *cmpisnan = _gvn.transform(new (C) CmpDNode(arg, arg));
4195     // Build the boolean node
4196     Node *bolisnan = _gvn.transform(new (C) BoolNode(cmpisnan, BoolTest::ne));
4197 
4198     // Branch either way.
4199     // NaN case is less traveled, which makes all the difference.
4200     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
4201     Node *opt_isnan = _gvn.transform(ifisnan);
4202     assert( opt_isnan->is_If(), "Expect an IfNode");
4203     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
4204     Node *iftrue = _gvn.transform(new (C) IfTrueNode(opt_ifisnan));
4205 
4206     set_control(iftrue);
4207 
4208     static const jlong nan_bits = CONST64(0x7ff8000000000000);
4209     Node *slow_result = longcon(nan_bits); // return NaN
4210     phi->init_req(1, _gvn.transform( slow_result ));
4211     r->init_req(1, iftrue);
4212 
4213     // Else fall through
4214     Node *iffalse = _gvn.transform(new (C) IfFalseNode(opt_ifisnan));
4215     set_control(iffalse);
4216 
4217     phi->init_req(2, _gvn.transform(new (C) MoveD2LNode(arg)));
4218     r->init_req(2, iffalse);
4219 
4220     // Post merge
4221     set_control(_gvn.transform(r));
4222     record_for_igvn(r);
4223 
4224     C->set_has_split_ifs(true); // Has chance for split-if optimization
4225     result = phi;
4226     assert(result->bottom_type()->isa_long(), "must be");
4227     break;
4228   }
4229 
4230   case vmIntrinsics::_floatToIntBits: {
4231     // two paths (plus control) merge in a wood
4232     RegionNode *r = new (C) RegionNode(3);
4233     Node *phi = new (C) PhiNode(r, TypeInt::INT);
4234 
4235     Node *cmpisnan = _gvn.transform(new (C) CmpFNode(arg, arg));
4236     // Build the boolean node
4237     Node *bolisnan = _gvn.transform(new (C) BoolNode(cmpisnan, BoolTest::ne));
4238 
4239     // Branch either way.
4240     // NaN case is less traveled, which makes all the difference.
4241     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
4242     Node *opt_isnan = _gvn.transform(ifisnan);
4243     assert( opt_isnan->is_If(), "Expect an IfNode");
4244     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
4245     Node *iftrue = _gvn.transform(new (C) IfTrueNode(opt_ifisnan));
4246 
4247     set_control(iftrue);
4248 
4249     static const jint nan_bits = 0x7fc00000;
4250     Node *slow_result = makecon(TypeInt::make(nan_bits)); // return NaN
4251     phi->init_req(1, _gvn.transform( slow_result ));
4252     r->init_req(1, iftrue);
4253 
4254     // Else fall through
4255     Node *iffalse = _gvn.transform(new (C) IfFalseNode(opt_ifisnan));
4256     set_control(iffalse);
4257 
4258     phi->init_req(2, _gvn.transform(new (C) MoveF2INode(arg)));
4259     r->init_req(2, iffalse);
4260 
4261     // Post merge
4262     set_control(_gvn.transform(r));
4263     record_for_igvn(r);
4264 
4265     C->set_has_split_ifs(true); // Has chance for split-if optimization
4266     result = phi;
4267     assert(result->bottom_type()->isa_int(), "must be");
4268     break;
4269   }
4270 
4271   default:
4272     fatal_unexpected_iid(id);
4273     break;
4274   }
4275   set_result(_gvn.transform(result));
4276   return true;
4277 }
4278 
4279 #ifdef _LP64
4280 #define XTOP ,top() /*additional argument*/
4281 #else  //_LP64
4282 #define XTOP        /*no additional argument*/
4283 #endif //_LP64
4284 
4285 //----------------------inline_unsafe_copyMemory-------------------------
4286 // public native void sun.misc.Unsafe.copyMemory(Object srcBase, long srcOffset, Object destBase, long destOffset, long bytes);
4287 bool LibraryCallKit::inline_unsafe_copyMemory() {
4288   if (callee()->is_static())  return false;  // caller must have the capability!
4289   null_check_receiver();  // null-check receiver
4290   if (stopped())  return true;
4291 
4292   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
4293 
4294   Node* src_ptr =         argument(1);   // type: oop
4295   Node* src_off = ConvL2X(argument(2));  // type: long
4296   Node* dst_ptr =         argument(4);   // type: oop
4297   Node* dst_off = ConvL2X(argument(5));  // type: long
4298   Node* size    = ConvL2X(argument(7));  // type: long
4299 
4300   assert(Unsafe_field_offset_to_byte_offset(11) == 11,
4301          "fieldOffset must be byte-scaled");
4302 
4303   Node* src = make_unsafe_address(src_ptr, src_off);
4304   Node* dst = make_unsafe_address(dst_ptr, dst_off);
4305 
4306   // Conservatively insert a memory barrier on all memory slices.
4307   // Do not let writes of the copy source or destination float below the copy.
4308   insert_mem_bar(Op_MemBarCPUOrder);
4309 
4310   // Call it.  Note that the length argument is not scaled.
4311   make_runtime_call(RC_LEAF|RC_NO_FP,
4312                     OptoRuntime::fast_arraycopy_Type(),
4313                     StubRoutines::unsafe_arraycopy(),
4314                     "unsafe_arraycopy",
4315                     TypeRawPtr::BOTTOM,
4316                     src, dst, size XTOP);
4317 
4318   // Do not let reads of the copy destination float above the copy.
4319   insert_mem_bar(Op_MemBarCPUOrder);
4320 
4321   return true;
4322 }
4323 
4324 //------------------------clone_coping-----------------------------------
4325 // Helper function for inline_native_clone.
4326 void LibraryCallKit::copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark) {
4327   assert(obj_size != NULL, "");
4328   Node* raw_obj = alloc_obj->in(1);
4329   assert(alloc_obj->is_CheckCastPP() && raw_obj->is_Proj() && raw_obj->in(0)->is_Allocate(), "");
4330 
4331   AllocateNode* alloc = NULL;
4332   if (ReduceBulkZeroing) {
4333     // We will be completely responsible for initializing this object -
4334     // mark Initialize node as complete.
4335     alloc = AllocateNode::Ideal_allocation(alloc_obj, &_gvn);
4336     // The object was just allocated - there should be no any stores!
4337     guarantee(alloc != NULL && alloc->maybe_set_complete(&_gvn), "");
4338     // Mark as complete_with_arraycopy so that on AllocateNode
4339     // expansion, we know this AllocateNode is initialized by an array
4340     // copy and a StoreStore barrier exists after the array copy.
4341     alloc->initialization()->set_complete_with_arraycopy();
4342   }
4343 
4344   // Copy the fastest available way.
4345   // TODO: generate fields copies for small objects instead.
4346   Node* src  = obj;
4347   Node* dest = alloc_obj;
4348   Node* size = _gvn.transform(obj_size);
4349 
4350   // Exclude the header but include array length to copy by 8 bytes words.
4351   // Can't use base_offset_in_bytes(bt) since basic type is unknown.
4352   int base_off = is_array ? arrayOopDesc::length_offset_in_bytes() :
4353                             instanceOopDesc::base_offset_in_bytes();
4354   // base_off:
4355   // 8  - 32-bit VM
4356   // 12 - 64-bit VM, compressed klass
4357   // 16 - 64-bit VM, normal klass
4358   if (base_off % BytesPerLong != 0) {
4359     assert(UseCompressedClassPointers, "");
4360     if (is_array) {
4361       // Exclude length to copy by 8 bytes words.
4362       base_off += sizeof(int);
4363     } else {
4364       // Include klass to copy by 8 bytes words.
4365       base_off = instanceOopDesc::klass_offset_in_bytes();
4366     }
4367     assert(base_off % BytesPerLong == 0, "expect 8 bytes alignment");
4368   }
4369   src  = basic_plus_adr(src,  base_off);
4370   dest = basic_plus_adr(dest, base_off);
4371 
4372   // Compute the length also, if needed:
4373   Node* countx = size;
4374   countx = _gvn.transform(new (C) SubXNode(countx, MakeConX(base_off)));
4375   countx = _gvn.transform(new (C) URShiftXNode(countx, intcon(LogBytesPerLong) ));
4376 
4377   const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
4378   bool disjoint_bases = true;
4379   generate_unchecked_arraycopy(raw_adr_type, T_LONG, disjoint_bases,
4380                                src, NULL, dest, NULL, countx,
4381                                /*dest_uninitialized*/true);
4382 
4383   // If necessary, emit some card marks afterwards.  (Non-arrays only.)
4384   if (card_mark) {
4385     assert(!is_array, "");
4386     // Put in store barrier for any and all oops we are sticking
4387     // into this object.  (We could avoid this if we could prove
4388     // that the object type contains no oop fields at all.)
4389     Node* no_particular_value = NULL;
4390     Node* no_particular_field = NULL;
4391     int raw_adr_idx = Compile::AliasIdxRaw;
4392     post_barrier(control(),
4393                  memory(raw_adr_type),
4394                  alloc_obj,
4395                  no_particular_field,
4396                  raw_adr_idx,
4397                  no_particular_value,
4398                  T_OBJECT,
4399                  false);
4400   }
4401 
4402   // Do not let reads from the cloned object float above the arraycopy.
4403   if (alloc != NULL) {
4404     // Do not let stores that initialize this object be reordered with
4405     // a subsequent store that would make this object accessible by
4406     // other threads.
4407     // Record what AllocateNode this StoreStore protects so that
4408     // escape analysis can go from the MemBarStoreStoreNode to the
4409     // AllocateNode and eliminate the MemBarStoreStoreNode if possible
4410     // based on the escape status of the AllocateNode.
4411     insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
4412   } else {
4413     insert_mem_bar(Op_MemBarCPUOrder);
4414   }
4415 }
4416 
4417 //------------------------inline_native_clone----------------------------
4418 // protected native Object java.lang.Object.clone();
4419 //
4420 // Here are the simple edge cases:
4421 //  null receiver => normal trap
4422 //  virtual and clone was overridden => slow path to out-of-line clone
4423 //  not cloneable or finalizer => slow path to out-of-line Object.clone
4424 //
4425 // The general case has two steps, allocation and copying.
4426 // Allocation has two cases, and uses GraphKit::new_instance or new_array.
4427 //
4428 // Copying also has two cases, oop arrays and everything else.
4429 // Oop arrays use arrayof_oop_arraycopy (same as System.arraycopy).
4430 // Everything else uses the tight inline loop supplied by CopyArrayNode.
4431 //
4432 // These steps fold up nicely if and when the cloned object's klass
4433 // can be sharply typed as an object array, a type array, or an instance.
4434 //
4435 bool LibraryCallKit::inline_native_clone(bool is_virtual) {
4436   PhiNode* result_val;
4437 
4438   // Set the reexecute bit for the interpreter to reexecute
4439   // the bytecode that invokes Object.clone if deoptimization happens.
4440   { PreserveReexecuteState preexecs(this);
4441     jvms()->set_should_reexecute(true);
4442 
4443     Node* obj = null_check_receiver();
4444     if (stopped())  return true;
4445 
4446     Node* obj_klass = load_object_klass(obj);
4447     const TypeKlassPtr* tklass = _gvn.type(obj_klass)->isa_klassptr();
4448     const TypeOopPtr*   toop   = ((tklass != NULL)
4449                                 ? tklass->as_instance_type()
4450                                 : TypeInstPtr::NOTNULL);
4451 
4452     // Conservatively insert a memory barrier on all memory slices.
4453     // Do not let writes into the original float below the clone.
4454     insert_mem_bar(Op_MemBarCPUOrder);
4455 
4456     // paths into result_reg:
4457     enum {
4458       _slow_path = 1,     // out-of-line call to clone method (virtual or not)
4459       _objArray_path,     // plain array allocation, plus arrayof_oop_arraycopy
4460       _array_path,        // plain array allocation, plus arrayof_long_arraycopy
4461       _instance_path,     // plain instance allocation, plus arrayof_long_arraycopy
4462       PATH_LIMIT
4463     };
4464     RegionNode* result_reg = new(C) RegionNode(PATH_LIMIT);
4465     result_val             = new(C) PhiNode(result_reg,
4466                                             TypeInstPtr::NOTNULL);
4467     PhiNode*    result_i_o = new(C) PhiNode(result_reg, Type::ABIO);
4468     PhiNode*    result_mem = new(C) PhiNode(result_reg, Type::MEMORY,
4469                                             TypePtr::BOTTOM);
4470     record_for_igvn(result_reg);
4471 
4472     const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
4473     int raw_adr_idx = Compile::AliasIdxRaw;
4474 
4475     Node* array_ctl = generate_array_guard(obj_klass, (RegionNode*)NULL);
4476     if (array_ctl != NULL) {
4477       // It's an array.
4478       PreserveJVMState pjvms(this);
4479       set_control(array_ctl);
4480       Node* obj_length = load_array_length(obj);
4481       Node* obj_size  = NULL;
4482       Node* alloc_obj = new_array(obj_klass, obj_length, 0, &obj_size);  // no arguments to push
4483 
4484       if (!use_ReduceInitialCardMarks()) {
4485         // If it is an oop array, it requires very special treatment,
4486         // because card marking is required on each card of the array.
4487         Node* is_obja = generate_objArray_guard(obj_klass, (RegionNode*)NULL);
4488         if (is_obja != NULL) {
4489           PreserveJVMState pjvms2(this);
4490           set_control(is_obja);
4491           // Generate a direct call to the right arraycopy function(s).
4492           bool disjoint_bases = true;
4493           bool length_never_negative = true;
4494           generate_arraycopy(TypeAryPtr::OOPS, T_OBJECT,
4495                              obj, intcon(0), alloc_obj, intcon(0),
4496                              obj_length,
4497                              disjoint_bases, length_never_negative);
4498           result_reg->init_req(_objArray_path, control());
4499           result_val->init_req(_objArray_path, alloc_obj);
4500           result_i_o ->set_req(_objArray_path, i_o());
4501           result_mem ->set_req(_objArray_path, reset_memory());
4502         }
4503       }
4504       // Otherwise, there are no card marks to worry about.
4505       // (We can dispense with card marks if we know the allocation
4506       //  comes out of eden (TLAB)...  In fact, ReduceInitialCardMarks
4507       //  causes the non-eden paths to take compensating steps to
4508       //  simulate a fresh allocation, so that no further
4509       //  card marks are required in compiled code to initialize
4510       //  the object.)
4511 
4512       if (!stopped()) {
4513         copy_to_clone(obj, alloc_obj, obj_size, true, false);
4514 
4515         // Present the results of the copy.
4516         result_reg->init_req(_array_path, control());
4517         result_val->init_req(_array_path, alloc_obj);
4518         result_i_o ->set_req(_array_path, i_o());
4519         result_mem ->set_req(_array_path, reset_memory());
4520       }
4521     }
4522 
4523     // We only go to the instance fast case code if we pass a number of guards.
4524     // The paths which do not pass are accumulated in the slow_region.
4525     RegionNode* slow_region = new (C) RegionNode(1);
4526     record_for_igvn(slow_region);
4527     if (!stopped()) {
4528       // It's an instance (we did array above).  Make the slow-path tests.
4529       // If this is a virtual call, we generate a funny guard.  We grab
4530       // the vtable entry corresponding to clone() from the target object.
4531       // If the target method which we are calling happens to be the
4532       // Object clone() method, we pass the guard.  We do not need this
4533       // guard for non-virtual calls; the caller is known to be the native
4534       // Object clone().
4535       if (is_virtual) {
4536         generate_virtual_guard(obj_klass, slow_region);
4537       }
4538 
4539       // The object must be cloneable and must not have a finalizer.
4540       // Both of these conditions may be checked in a single test.
4541       // We could optimize the cloneable test further, but we don't care.
4542       generate_access_flags_guard(obj_klass,
4543                                   // Test both conditions:
4544                                   JVM_ACC_IS_CLONEABLE | JVM_ACC_HAS_FINALIZER,
4545                                   // Must be cloneable but not finalizer:
4546                                   JVM_ACC_IS_CLONEABLE,
4547                                   slow_region);
4548     }
4549 
4550     if (!stopped()) {
4551       // It's an instance, and it passed the slow-path tests.
4552       PreserveJVMState pjvms(this);
4553       Node* obj_size  = NULL;
4554       Node* alloc_obj = new_instance(obj_klass, NULL, &obj_size);
4555 
4556       copy_to_clone(obj, alloc_obj, obj_size, false, !use_ReduceInitialCardMarks());
4557 
4558       // Present the results of the slow call.
4559       result_reg->init_req(_instance_path, control());
4560       result_val->init_req(_instance_path, alloc_obj);
4561       result_i_o ->set_req(_instance_path, i_o());
4562       result_mem ->set_req(_instance_path, reset_memory());
4563     }
4564 
4565     // Generate code for the slow case.  We make a call to clone().
4566     set_control(_gvn.transform(slow_region));
4567     if (!stopped()) {
4568       PreserveJVMState pjvms(this);
4569       CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_clone, is_virtual);
4570       Node* slow_result = set_results_for_java_call(slow_call);
4571       // this->control() comes from set_results_for_java_call
4572       result_reg->init_req(_slow_path, control());
4573       result_val->init_req(_slow_path, slow_result);
4574       result_i_o ->set_req(_slow_path, i_o());
4575       result_mem ->set_req(_slow_path, reset_memory());
4576     }
4577 
4578     // Return the combined state.
4579     set_control(    _gvn.transform(result_reg));
4580     set_i_o(        _gvn.transform(result_i_o));
4581     set_all_memory( _gvn.transform(result_mem));
4582   } // original reexecute is set back here
4583 
4584   set_result(_gvn.transform(result_val));
4585   return true;
4586 }
4587 
4588 //------------------------------basictype2arraycopy----------------------------
4589 address LibraryCallKit::basictype2arraycopy(BasicType t,
4590                                             Node* src_offset,
4591                                             Node* dest_offset,
4592                                             bool disjoint_bases,
4593                                             const char* &name,
4594                                             bool dest_uninitialized) {
4595   const TypeInt* src_offset_inttype  = gvn().find_int_type(src_offset);;
4596   const TypeInt* dest_offset_inttype = gvn().find_int_type(dest_offset);;
4597 
4598   bool aligned = false;
4599   bool disjoint = disjoint_bases;
4600 
4601   // if the offsets are the same, we can treat the memory regions as
4602   // disjoint, because either the memory regions are in different arrays,
4603   // or they are identical (which we can treat as disjoint.)  We can also
4604   // treat a copy with a destination index  less that the source index
4605   // as disjoint since a low->high copy will work correctly in this case.
4606   if (src_offset_inttype != NULL && src_offset_inttype->is_con() &&
4607       dest_offset_inttype != NULL && dest_offset_inttype->is_con()) {
4608     // both indices are constants
4609     int s_offs = src_offset_inttype->get_con();
4610     int d_offs = dest_offset_inttype->get_con();
4611     int element_size = type2aelembytes(t);
4612     aligned = ((arrayOopDesc::base_offset_in_bytes(t) + s_offs * element_size) % HeapWordSize == 0) &&
4613               ((arrayOopDesc::base_offset_in_bytes(t) + d_offs * element_size) % HeapWordSize == 0);
4614     if (s_offs >= d_offs)  disjoint = true;
4615   } else if (src_offset == dest_offset && src_offset != NULL) {
4616     // This can occur if the offsets are identical non-constants.
4617     disjoint = true;
4618   }
4619 
4620   return StubRoutines::select_arraycopy_function(t, aligned, disjoint, name, dest_uninitialized);
4621 }
4622 
4623 
4624 //------------------------------inline_arraycopy-----------------------
4625 // public static native void java.lang.System.arraycopy(Object src,  int  srcPos,
4626 //                                                      Object dest, int destPos,
4627 //                                                      int length);
4628 bool LibraryCallKit::inline_arraycopy() {
4629   // Get the arguments.
4630   Node* src         = argument(0);  // type: oop
4631   Node* src_offset  = argument(1);  // type: int
4632   Node* dest        = argument(2);  // type: oop
4633   Node* dest_offset = argument(3);  // type: int
4634   Node* length      = argument(4);  // type: int
4635 
4636   // Compile time checks.  If any of these checks cannot be verified at compile time,
4637   // we do not make a fast path for this call.  Instead, we let the call remain as it
4638   // is.  The checks we choose to mandate at compile time are:
4639   //
4640   // (1) src and dest are arrays.
4641   const Type* src_type  = src->Value(&_gvn);
4642   const Type* dest_type = dest->Value(&_gvn);
4643   const TypeAryPtr* top_src  = src_type->isa_aryptr();
4644   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
4645 
4646   // Do we have the type of src?
4647   bool has_src = (top_src != NULL && top_src->klass() != NULL);
4648   // Do we have the type of dest?
4649   bool has_dest = (top_dest != NULL && top_dest->klass() != NULL);
4650   // Is the type for src from speculation?
4651   bool src_spec = false;
4652   // Is the type for dest from speculation?
4653   bool dest_spec = false;
4654 
4655   if (!has_src || !has_dest) {
4656     // We don't have sufficient type information, let's see if
4657     // speculative types can help. We need to have types for both src
4658     // and dest so that it pays off.
4659 
4660     // Do we already have or could we have type information for src
4661     bool could_have_src = has_src;
4662     // Do we already have or could we have type information for dest
4663     bool could_have_dest = has_dest;
4664 
4665     ciKlass* src_k = NULL;
4666     if (!has_src) {
4667       src_k = src_type->speculative_type();
4668       if (src_k != NULL && src_k->is_array_klass()) {
4669         could_have_src = true;
4670       }
4671     }
4672 
4673     ciKlass* dest_k = NULL;
4674     if (!has_dest) {
4675       dest_k = dest_type->speculative_type();
4676       if (dest_k != NULL && dest_k->is_array_klass()) {
4677         could_have_dest = true;
4678       }
4679     }
4680 
4681     if (could_have_src && could_have_dest) {
4682       // This is going to pay off so emit the required guards
4683       if (!has_src) {
4684         src = maybe_cast_profiled_obj(src, src_k);
4685         src_type  = _gvn.type(src);
4686         top_src  = src_type->isa_aryptr();
4687         has_src = (top_src != NULL && top_src->klass() != NULL);
4688         src_spec = true;
4689       }
4690       if (!has_dest) {
4691         dest = maybe_cast_profiled_obj(dest, dest_k);
4692         dest_type  = _gvn.type(dest);
4693         top_dest  = dest_type->isa_aryptr();
4694         has_dest = (top_dest != NULL && top_dest->klass() != NULL);
4695         dest_spec = true;
4696       }
4697     }
4698   }
4699 
4700   if (!has_src || !has_dest) {
4701     // Conservatively insert a memory barrier on all memory slices.
4702     // Do not let writes into the source float below the arraycopy.
4703     insert_mem_bar(Op_MemBarCPUOrder);
4704 
4705     // Call StubRoutines::generic_arraycopy stub.
4706     generate_arraycopy(TypeRawPtr::BOTTOM, T_CONFLICT,
4707                        src, src_offset, dest, dest_offset, length);
4708 
4709     // Do not let reads from the destination float above the arraycopy.
4710     // Since we cannot type the arrays, we don't know which slices
4711     // might be affected.  We could restrict this barrier only to those
4712     // memory slices which pertain to array elements--but don't bother.
4713     if (!InsertMemBarAfterArraycopy)
4714       // (If InsertMemBarAfterArraycopy, there is already one in place.)
4715       insert_mem_bar(Op_MemBarCPUOrder);
4716     return true;
4717   }
4718 
4719   // (2) src and dest arrays must have elements of the same BasicType
4720   // Figure out the size and type of the elements we will be copying.
4721   BasicType src_elem  =  top_src->klass()->as_array_klass()->element_type()->basic_type();
4722   BasicType dest_elem = top_dest->klass()->as_array_klass()->element_type()->basic_type();
4723   if (src_elem  == T_ARRAY)  src_elem  = T_OBJECT;
4724   if (dest_elem == T_ARRAY)  dest_elem = T_OBJECT;
4725 
4726   if (src_elem != dest_elem || dest_elem == T_VOID) {
4727     // The component types are not the same or are not recognized.  Punt.
4728     // (But, avoid the native method wrapper to JVM_ArrayCopy.)
4729     generate_slow_arraycopy(TypePtr::BOTTOM,
4730                             src, src_offset, dest, dest_offset, length,
4731                             /*dest_uninitialized*/false);
4732     return true;
4733   }
4734 
4735   if (src_elem == T_OBJECT) {
4736     // If both arrays are object arrays then having the exact types
4737     // for both will remove the need for a subtype check at runtime
4738     // before the call and may make it possible to pick a faster copy
4739     // routine (without a subtype check on every element)
4740     // Do we have the exact type of src?
4741     bool could_have_src = src_spec;
4742     // Do we have the exact type of dest?
4743     bool could_have_dest = dest_spec;
4744     ciKlass* src_k = top_src->klass();
4745     ciKlass* dest_k = top_dest->klass();
4746     if (!src_spec) {
4747       src_k = src_type->speculative_type();
4748       if (src_k != NULL && src_k->is_array_klass()) {
4749           could_have_src = true;
4750       }
4751     }
4752     if (!dest_spec) {
4753       dest_k = dest_type->speculative_type();
4754       if (dest_k != NULL && dest_k->is_array_klass()) {
4755         could_have_dest = true;
4756       }
4757     }
4758     if (could_have_src && could_have_dest) {
4759       // If we can have both exact types, emit the missing guards
4760       if (could_have_src && !src_spec) {
4761         src = maybe_cast_profiled_obj(src, src_k);
4762       }
4763       if (could_have_dest && !dest_spec) {
4764         dest = maybe_cast_profiled_obj(dest, dest_k);
4765       }
4766     }
4767   }
4768 
4769   //---------------------------------------------------------------------------
4770   // We will make a fast path for this call to arraycopy.
4771 
4772   // We have the following tests left to perform:
4773   //
4774   // (3) src and dest must not be null.
4775   // (4) src_offset must not be negative.
4776   // (5) dest_offset must not be negative.
4777   // (6) length must not be negative.
4778   // (7) src_offset + length must not exceed length of src.
4779   // (8) dest_offset + length must not exceed length of dest.
4780   // (9) each element of an oop array must be assignable
4781 
4782   RegionNode* slow_region = new (C) RegionNode(1);
4783   record_for_igvn(slow_region);
4784 
4785   // (3) operands must not be null
4786   // We currently perform our null checks with the null_check routine.
4787   // This means that the null exceptions will be reported in the caller
4788   // rather than (correctly) reported inside of the native arraycopy call.
4789   // This should be corrected, given time.  We do our null check with the
4790   // stack pointer restored.
4791   src  = null_check(src,  T_ARRAY);
4792   dest = null_check(dest, T_ARRAY);
4793 
4794   // (4) src_offset must not be negative.
4795   generate_negative_guard(src_offset, slow_region);
4796 
4797   // (5) dest_offset must not be negative.
4798   generate_negative_guard(dest_offset, slow_region);
4799 
4800   // (6) length must not be negative (moved to generate_arraycopy()).
4801   // generate_negative_guard(length, slow_region);
4802 
4803   // (7) src_offset + length must not exceed length of src.
4804   generate_limit_guard(src_offset, length,
4805                        load_array_length(src),
4806                        slow_region);
4807 
4808   // (8) dest_offset + length must not exceed length of dest.
4809   generate_limit_guard(dest_offset, length,
4810                        load_array_length(dest),
4811                        slow_region);
4812 
4813   // (9) each element of an oop array must be assignable
4814   // The generate_arraycopy subroutine checks this.
4815 
4816   // This is where the memory effects are placed:
4817   const TypePtr* adr_type = TypeAryPtr::get_array_body_type(dest_elem);
4818   generate_arraycopy(adr_type, dest_elem,
4819                      src, src_offset, dest, dest_offset, length,
4820                      false, false, slow_region);
4821 
4822   return true;
4823 }
4824 
4825 //-----------------------------generate_arraycopy----------------------
4826 // Generate an optimized call to arraycopy.
4827 // Caller must guard against non-arrays.
4828 // Caller must determine a common array basic-type for both arrays.
4829 // Caller must validate offsets against array bounds.
4830 // The slow_region has already collected guard failure paths
4831 // (such as out of bounds length or non-conformable array types).
4832 // The generated code has this shape, in general:
4833 //
4834 //     if (length == 0)  return   // via zero_path
4835 //     slowval = -1
4836 //     if (types unknown) {
4837 //       slowval = call generic copy loop
4838 //       if (slowval == 0)  return  // via checked_path
4839 //     } else if (indexes in bounds) {
4840 //       if ((is object array) && !(array type check)) {
4841 //         slowval = call checked copy loop
4842 //         if (slowval == 0)  return  // via checked_path
4843 //       } else {
4844 //         call bulk copy loop
4845 //         return  // via fast_path
4846 //       }
4847 //     }
4848 //     // adjust params for remaining work:
4849 //     if (slowval != -1) {
4850 //       n = -1^slowval; src_offset += n; dest_offset += n; length -= n
4851 //     }
4852 //   slow_region:
4853 //     call slow arraycopy(src, src_offset, dest, dest_offset, length)
4854 //     return  // via slow_call_path
4855 //
4856 // This routine is used from several intrinsics:  System.arraycopy,
4857 // Object.clone (the array subcase), and Arrays.copyOf[Range].
4858 //
4859 void
4860 LibraryCallKit::generate_arraycopy(const TypePtr* adr_type,
4861                                    BasicType basic_elem_type,
4862                                    Node* src,  Node* src_offset,
4863                                    Node* dest, Node* dest_offset,
4864                                    Node* copy_length,
4865                                    bool disjoint_bases,
4866                                    bool length_never_negative,
4867                                    RegionNode* slow_region) {
4868 
4869   if (slow_region == NULL) {
4870     slow_region = new(C) RegionNode(1);
4871     record_for_igvn(slow_region);
4872   }
4873 
4874   Node* original_dest      = dest;
4875   AllocateArrayNode* alloc = NULL;  // used for zeroing, if needed
4876   bool  dest_uninitialized = false;
4877 
4878   // See if this is the initialization of a newly-allocated array.
4879   // If so, we will take responsibility here for initializing it to zero.
4880   // (Note:  Because tightly_coupled_allocation performs checks on the
4881   // out-edges of the dest, we need to avoid making derived pointers
4882   // from it until we have checked its uses.)
4883   if (ReduceBulkZeroing
4884       && !ZeroTLAB              // pointless if already zeroed
4885       && basic_elem_type != T_CONFLICT // avoid corner case
4886       && !src->eqv_uncast(dest)
4887       && ((alloc = tightly_coupled_allocation(dest, slow_region))
4888           != NULL)
4889       && _gvn.find_int_con(alloc->in(AllocateNode::ALength), 1) > 0
4890       && alloc->maybe_set_complete(&_gvn)) {
4891     // "You break it, you buy it."
4892     InitializeNode* init = alloc->initialization();
4893     assert(init->is_complete(), "we just did this");
4894     init->set_complete_with_arraycopy();
4895     assert(dest->is_CheckCastPP(), "sanity");
4896     assert(dest->in(0)->in(0) == init, "dest pinned");
4897     adr_type = TypeRawPtr::BOTTOM;  // all initializations are into raw memory
4898     // From this point on, every exit path is responsible for
4899     // initializing any non-copied parts of the object to zero.
4900     // Also, if this flag is set we make sure that arraycopy interacts properly
4901     // with G1, eliding pre-barriers. See CR 6627983.
4902     dest_uninitialized = true;
4903   } else {
4904     // No zeroing elimination here.
4905     alloc             = NULL;
4906     //original_dest   = dest;
4907     //dest_uninitialized = false;
4908   }
4909 
4910   // Results are placed here:
4911   enum { fast_path        = 1,  // normal void-returning assembly stub
4912          checked_path     = 2,  // special assembly stub with cleanup
4913          slow_call_path   = 3,  // something went wrong; call the VM
4914          zero_path        = 4,  // bypass when length of copy is zero
4915          bcopy_path       = 5,  // copy primitive array by 64-bit blocks
4916          PATH_LIMIT       = 6
4917   };
4918   RegionNode* result_region = new(C) RegionNode(PATH_LIMIT);
4919   PhiNode*    result_i_o    = new(C) PhiNode(result_region, Type::ABIO);
4920   PhiNode*    result_memory = new(C) PhiNode(result_region, Type::MEMORY, adr_type);
4921   record_for_igvn(result_region);
4922   _gvn.set_type_bottom(result_i_o);
4923   _gvn.set_type_bottom(result_memory);
4924   assert(adr_type != TypePtr::BOTTOM, "must be RawMem or a T[] slice");
4925 
4926   // The slow_control path:
4927   Node* slow_control;
4928   Node* slow_i_o = i_o();
4929   Node* slow_mem = memory(adr_type);
4930   debug_only(slow_control = (Node*) badAddress);
4931 
4932   // Checked control path:
4933   Node* checked_control = top();
4934   Node* checked_mem     = NULL;
4935   Node* checked_i_o     = NULL;
4936   Node* checked_value   = NULL;
4937 
4938   if (basic_elem_type == T_CONFLICT) {
4939     assert(!dest_uninitialized, "");
4940     Node* cv = generate_generic_arraycopy(adr_type,
4941                                           src, src_offset, dest, dest_offset,
4942                                           copy_length, dest_uninitialized);
4943     if (cv == NULL)  cv = intcon(-1);  // failure (no stub available)
4944     checked_control = control();
4945     checked_i_o     = i_o();
4946     checked_mem     = memory(adr_type);
4947     checked_value   = cv;
4948     set_control(top());         // no fast path
4949   }
4950 
4951   Node* not_pos = generate_nonpositive_guard(copy_length, length_never_negative);
4952   if (not_pos != NULL) {
4953     PreserveJVMState pjvms(this);
4954     set_control(not_pos);
4955 
4956     // (6) length must not be negative.
4957     if (!length_never_negative) {
4958       generate_negative_guard(copy_length, slow_region);
4959     }
4960 
4961     // copy_length is 0.
4962     if (!stopped() && dest_uninitialized) {
4963       Node* dest_length = alloc->in(AllocateNode::ALength);
4964       if (copy_length->eqv_uncast(dest_length)
4965           || _gvn.find_int_con(dest_length, 1) <= 0) {
4966         // There is no zeroing to do. No need for a secondary raw memory barrier.
4967       } else {
4968         // Clear the whole thing since there are no source elements to copy.
4969         generate_clear_array(adr_type, dest, basic_elem_type,
4970                              intcon(0), NULL,
4971                              alloc->in(AllocateNode::AllocSize));
4972         // Use a secondary InitializeNode as raw memory barrier.
4973         // Currently it is needed only on this path since other
4974         // paths have stub or runtime calls as raw memory barriers.
4975         InitializeNode* init = insert_mem_bar_volatile(Op_Initialize,
4976                                                        Compile::AliasIdxRaw,
4977                                                        top())->as_Initialize();
4978         init->set_complete(&_gvn);  // (there is no corresponding AllocateNode)
4979       }
4980     }
4981 
4982     // Present the results of the fast call.
4983     result_region->init_req(zero_path, control());
4984     result_i_o   ->init_req(zero_path, i_o());
4985     result_memory->init_req(zero_path, memory(adr_type));
4986   }
4987 
4988   if (!stopped() && dest_uninitialized) {
4989     // We have to initialize the *uncopied* part of the array to zero.
4990     // The copy destination is the slice dest[off..off+len].  The other slices
4991     // are dest_head = dest[0..off] and dest_tail = dest[off+len..dest.length].
4992     Node* dest_size   = alloc->in(AllocateNode::AllocSize);
4993     Node* dest_length = alloc->in(AllocateNode::ALength);
4994     Node* dest_tail   = _gvn.transform(new(C) AddINode(dest_offset,
4995                                                           copy_length));
4996 
4997     // If there is a head section that needs zeroing, do it now.
4998     if (find_int_con(dest_offset, -1) != 0) {
4999       generate_clear_array(adr_type, dest, basic_elem_type,
5000                            intcon(0), dest_offset,
5001                            NULL);
5002     }
5003 
5004     // Next, perform a dynamic check on the tail length.
5005     // It is often zero, and we can win big if we prove this.
5006     // There are two wins:  Avoid generating the ClearArray
5007     // with its attendant messy index arithmetic, and upgrade
5008     // the copy to a more hardware-friendly word size of 64 bits.
5009     Node* tail_ctl = NULL;
5010     if (!stopped() && !dest_tail->eqv_uncast(dest_length)) {
5011       Node* cmp_lt   = _gvn.transform(new(C) CmpINode(dest_tail, dest_length));
5012       Node* bol_lt   = _gvn.transform(new(C) BoolNode(cmp_lt, BoolTest::lt));
5013       tail_ctl = generate_slow_guard(bol_lt, NULL);
5014       assert(tail_ctl != NULL || !stopped(), "must be an outcome");
5015     }
5016 
5017     // At this point, let's assume there is no tail.
5018     if (!stopped() && alloc != NULL && basic_elem_type != T_OBJECT) {
5019       // There is no tail.  Try an upgrade to a 64-bit copy.
5020       bool didit = false;
5021       { PreserveJVMState pjvms(this);
5022         didit = generate_block_arraycopy(adr_type, basic_elem_type, alloc,
5023                                          src, src_offset, dest, dest_offset,
5024                                          dest_size, dest_uninitialized);
5025         if (didit) {
5026           // Present the results of the block-copying fast call.
5027           result_region->init_req(bcopy_path, control());
5028           result_i_o   ->init_req(bcopy_path, i_o());
5029           result_memory->init_req(bcopy_path, memory(adr_type));
5030         }
5031       }
5032       if (didit)
5033         set_control(top());     // no regular fast path
5034     }
5035 
5036     // Clear the tail, if any.
5037     if (tail_ctl != NULL) {
5038       Node* notail_ctl = stopped() ? NULL : control();
5039       set_control(tail_ctl);
5040       if (notail_ctl == NULL) {
5041         generate_clear_array(adr_type, dest, basic_elem_type,
5042                              dest_tail, NULL,
5043                              dest_size);
5044       } else {
5045         // Make a local merge.
5046         Node* done_ctl = new(C) RegionNode(3);
5047         Node* done_mem = new(C) PhiNode(done_ctl, Type::MEMORY, adr_type);
5048         done_ctl->init_req(1, notail_ctl);
5049         done_mem->init_req(1, memory(adr_type));
5050         generate_clear_array(adr_type, dest, basic_elem_type,
5051                              dest_tail, NULL,
5052                              dest_size);
5053         done_ctl->init_req(2, control());
5054         done_mem->init_req(2, memory(adr_type));
5055         set_control( _gvn.transform(done_ctl));
5056         set_memory(  _gvn.transform(done_mem), adr_type );
5057       }
5058     }
5059   }
5060 
5061   BasicType copy_type = basic_elem_type;
5062   assert(basic_elem_type != T_ARRAY, "caller must fix this");
5063   if (!stopped() && copy_type == T_OBJECT) {
5064     // If src and dest have compatible element types, we can copy bits.
5065     // Types S[] and D[] are compatible if D is a supertype of S.
5066     //
5067     // If they are not, we will use checked_oop_disjoint_arraycopy,
5068     // which performs a fast optimistic per-oop check, and backs off
5069     // further to JVM_ArrayCopy on the first per-oop check that fails.
5070     // (Actually, we don't move raw bits only; the GC requires card marks.)
5071 
5072     // Get the Klass* for both src and dest
5073     Node* src_klass  = load_object_klass(src);
5074     Node* dest_klass = load_object_klass(dest);
5075 
5076     // Generate the subtype check.
5077     // This might fold up statically, or then again it might not.
5078     //
5079     // Non-static example:  Copying List<String>.elements to a new String[].
5080     // The backing store for a List<String> is always an Object[],
5081     // but its elements are always type String, if the generic types
5082     // are correct at the source level.
5083     //
5084     // Test S[] against D[], not S against D, because (probably)
5085     // the secondary supertype cache is less busy for S[] than S.
5086     // This usually only matters when D is an interface.
5087     Node* not_subtype_ctrl = gen_subtype_check(src_klass, dest_klass);
5088     // Plug failing path into checked_oop_disjoint_arraycopy
5089     if (not_subtype_ctrl != top()) {
5090       PreserveJVMState pjvms(this);
5091       set_control(not_subtype_ctrl);
5092       // (At this point we can assume disjoint_bases, since types differ.)
5093       int ek_offset = in_bytes(ObjArrayKlass::element_klass_offset());
5094       Node* p1 = basic_plus_adr(dest_klass, ek_offset);
5095       Node* n1 = LoadKlassNode::make(_gvn, immutable_memory(), p1, TypeRawPtr::BOTTOM);
5096       Node* dest_elem_klass = _gvn.transform(n1);
5097       Node* cv = generate_checkcast_arraycopy(adr_type,
5098                                               dest_elem_klass,
5099                                               src, src_offset, dest, dest_offset,
5100                                               ConvI2X(copy_length), dest_uninitialized);
5101       if (cv == NULL)  cv = intcon(-1);  // failure (no stub available)
5102       checked_control = control();
5103       checked_i_o     = i_o();
5104       checked_mem     = memory(adr_type);
5105       checked_value   = cv;
5106     }
5107     // At this point we know we do not need type checks on oop stores.
5108 
5109     // Let's see if we need card marks:
5110     if (alloc != NULL && use_ReduceInitialCardMarks()) {
5111       // If we do not need card marks, copy using the jint or jlong stub.
5112       copy_type = LP64_ONLY(UseCompressedOops ? T_INT : T_LONG) NOT_LP64(T_INT);
5113       assert(type2aelembytes(basic_elem_type) == type2aelembytes(copy_type),
5114              "sizes agree");
5115     }
5116   }
5117 
5118   if (!stopped()) {
5119     // Generate the fast path, if possible.
5120     PreserveJVMState pjvms(this);
5121     generate_unchecked_arraycopy(adr_type, copy_type, disjoint_bases,
5122                                  src, src_offset, dest, dest_offset,
5123                                  ConvI2X(copy_length), dest_uninitialized);
5124 
5125     // Present the results of the fast call.
5126     result_region->init_req(fast_path, control());
5127     result_i_o   ->init_req(fast_path, i_o());
5128     result_memory->init_req(fast_path, memory(adr_type));
5129   }
5130 
5131   // Here are all the slow paths up to this point, in one bundle:
5132   slow_control = top();
5133   if (slow_region != NULL)
5134     slow_control = _gvn.transform(slow_region);
5135   DEBUG_ONLY(slow_region = (RegionNode*)badAddress);
5136 
5137   set_control(checked_control);
5138   if (!stopped()) {
5139     // Clean up after the checked call.
5140     // The returned value is either 0 or -1^K,
5141     // where K = number of partially transferred array elements.
5142     Node* cmp = _gvn.transform(new(C) CmpINode(checked_value, intcon(0)));
5143     Node* bol = _gvn.transform(new(C) BoolNode(cmp, BoolTest::eq));
5144     IfNode* iff = create_and_map_if(control(), bol, PROB_MAX, COUNT_UNKNOWN);
5145 
5146     // If it is 0, we are done, so transfer to the end.
5147     Node* checks_done = _gvn.transform(new(C) IfTrueNode(iff));
5148     result_region->init_req(checked_path, checks_done);
5149     result_i_o   ->init_req(checked_path, checked_i_o);
5150     result_memory->init_req(checked_path, checked_mem);
5151 
5152     // If it is not zero, merge into the slow call.
5153     set_control( _gvn.transform(new(C) IfFalseNode(iff) ));
5154     RegionNode* slow_reg2 = new(C) RegionNode(3);
5155     PhiNode*    slow_i_o2 = new(C) PhiNode(slow_reg2, Type::ABIO);
5156     PhiNode*    slow_mem2 = new(C) PhiNode(slow_reg2, Type::MEMORY, adr_type);
5157     record_for_igvn(slow_reg2);
5158     slow_reg2  ->init_req(1, slow_control);
5159     slow_i_o2  ->init_req(1, slow_i_o);
5160     slow_mem2  ->init_req(1, slow_mem);
5161     slow_reg2  ->init_req(2, control());
5162     slow_i_o2  ->init_req(2, checked_i_o);
5163     slow_mem2  ->init_req(2, checked_mem);
5164 
5165     slow_control = _gvn.transform(slow_reg2);
5166     slow_i_o     = _gvn.transform(slow_i_o2);
5167     slow_mem     = _gvn.transform(slow_mem2);
5168 
5169     if (alloc != NULL) {
5170       // We'll restart from the very beginning, after zeroing the whole thing.
5171       // This can cause double writes, but that's OK since dest is brand new.
5172       // So we ignore the low 31 bits of the value returned from the stub.
5173     } else {
5174       // We must continue the copy exactly where it failed, or else
5175       // another thread might see the wrong number of writes to dest.
5176       Node* checked_offset = _gvn.transform(new(C) XorINode(checked_value, intcon(-1)));
5177       Node* slow_offset    = new(C) PhiNode(slow_reg2, TypeInt::INT);
5178       slow_offset->init_req(1, intcon(0));
5179       slow_offset->init_req(2, checked_offset);
5180       slow_offset  = _gvn.transform(slow_offset);
5181 
5182       // Adjust the arguments by the conditionally incoming offset.
5183       Node* src_off_plus  = _gvn.transform(new(C) AddINode(src_offset,  slow_offset));
5184       Node* dest_off_plus = _gvn.transform(new(C) AddINode(dest_offset, slow_offset));
5185       Node* length_minus  = _gvn.transform(new(C) SubINode(copy_length, slow_offset));
5186 
5187       // Tweak the node variables to adjust the code produced below:
5188       src_offset  = src_off_plus;
5189       dest_offset = dest_off_plus;
5190       copy_length = length_minus;
5191     }
5192   }
5193 
5194   set_control(slow_control);
5195   if (!stopped()) {
5196     // Generate the slow path, if needed.
5197     PreserveJVMState pjvms(this);   // replace_in_map may trash the map
5198 
5199     set_memory(slow_mem, adr_type);
5200     set_i_o(slow_i_o);
5201 
5202     if (dest_uninitialized) {
5203       generate_clear_array(adr_type, dest, basic_elem_type,
5204                            intcon(0), NULL,
5205                            alloc->in(AllocateNode::AllocSize));
5206     }
5207 
5208     generate_slow_arraycopy(adr_type,
5209                             src, src_offset, dest, dest_offset,
5210                             copy_length, /*dest_uninitialized*/false);
5211 
5212     result_region->init_req(slow_call_path, control());
5213     result_i_o   ->init_req(slow_call_path, i_o());
5214     result_memory->init_req(slow_call_path, memory(adr_type));
5215   }
5216 
5217   // Remove unused edges.
5218   for (uint i = 1; i < result_region->req(); i++) {
5219     if (result_region->in(i) == NULL)
5220       result_region->init_req(i, top());
5221   }
5222 
5223   // Finished; return the combined state.
5224   set_control( _gvn.transform(result_region));
5225   set_i_o(     _gvn.transform(result_i_o)    );
5226   set_memory(  _gvn.transform(result_memory), adr_type );
5227 
5228   // The memory edges above are precise in order to model effects around
5229   // array copies accurately to allow value numbering of field loads around
5230   // arraycopy.  Such field loads, both before and after, are common in Java
5231   // collections and similar classes involving header/array data structures.
5232   //
5233   // But with low number of register or when some registers are used or killed
5234   // by arraycopy calls it causes registers spilling on stack. See 6544710.
5235   // The next memory barrier is added to avoid it. If the arraycopy can be
5236   // optimized away (which it can, sometimes) then we can manually remove
5237   // the membar also.
5238   //
5239   // Do not let reads from the cloned object float above the arraycopy.
5240   if (alloc != NULL) {
5241     // Do not let stores that initialize this object be reordered with
5242     // a subsequent store that would make this object accessible by
5243     // other threads.
5244     // Record what AllocateNode this StoreStore protects so that
5245     // escape analysis can go from the MemBarStoreStoreNode to the
5246     // AllocateNode and eliminate the MemBarStoreStoreNode if possible
5247     // based on the escape status of the AllocateNode.
5248     insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
5249   } else if (InsertMemBarAfterArraycopy)
5250     insert_mem_bar(Op_MemBarCPUOrder);
5251 }
5252 
5253 
5254 // Helper function which determines if an arraycopy immediately follows
5255 // an allocation, with no intervening tests or other escapes for the object.
5256 AllocateArrayNode*
5257 LibraryCallKit::tightly_coupled_allocation(Node* ptr,
5258                                            RegionNode* slow_region) {
5259   if (stopped())             return NULL;  // no fast path
5260   if (C->AliasLevel() == 0)  return NULL;  // no MergeMems around
5261 
5262   AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(ptr, &_gvn);
5263   if (alloc == NULL)  return NULL;
5264 
5265   Node* rawmem = memory(Compile::AliasIdxRaw);
5266   // Is the allocation's memory state untouched?
5267   if (!(rawmem->is_Proj() && rawmem->in(0)->is_Initialize())) {
5268     // Bail out if there have been raw-memory effects since the allocation.
5269     // (Example:  There might have been a call or safepoint.)
5270     return NULL;
5271   }
5272   rawmem = rawmem->in(0)->as_Initialize()->memory(Compile::AliasIdxRaw);
5273   if (!(rawmem->is_Proj() && rawmem->in(0) == alloc)) {
5274     return NULL;
5275   }
5276 
5277   // There must be no unexpected observers of this allocation.
5278   for (DUIterator_Fast imax, i = ptr->fast_outs(imax); i < imax; i++) {
5279     Node* obs = ptr->fast_out(i);
5280     if (obs != this->map()) {
5281       return NULL;
5282     }
5283   }
5284 
5285   // This arraycopy must unconditionally follow the allocation of the ptr.
5286   Node* alloc_ctl = ptr->in(0);
5287   assert(just_allocated_object(alloc_ctl) == ptr, "most recent allo");
5288 
5289   Node* ctl = control();
5290   while (ctl != alloc_ctl) {
5291     // There may be guards which feed into the slow_region.
5292     // Any other control flow means that we might not get a chance
5293     // to finish initializing the allocated object.
5294     if ((ctl->is_IfFalse() || ctl->is_IfTrue()) && ctl->in(0)->is_If()) {
5295       IfNode* iff = ctl->in(0)->as_If();
5296       Node* not_ctl = iff->proj_out(1 - ctl->as_Proj()->_con);
5297       assert(not_ctl != NULL && not_ctl != ctl, "found alternate");
5298       if (slow_region != NULL && slow_region->find_edge(not_ctl) >= 1) {
5299         ctl = iff->in(0);       // This test feeds the known slow_region.
5300         continue;
5301       }
5302       // One more try:  Various low-level checks bottom out in
5303       // uncommon traps.  If the debug-info of the trap omits
5304       // any reference to the allocation, as we've already
5305       // observed, then there can be no objection to the trap.
5306       bool found_trap = false;
5307       for (DUIterator_Fast jmax, j = not_ctl->fast_outs(jmax); j < jmax; j++) {
5308         Node* obs = not_ctl->fast_out(j);
5309         if (obs->in(0) == not_ctl && obs->is_Call() &&
5310             (obs->as_Call()->entry_point() == SharedRuntime::uncommon_trap_blob()->entry_point())) {
5311           found_trap = true; break;
5312         }
5313       }
5314       if (found_trap) {
5315         ctl = iff->in(0);       // This test feeds a harmless uncommon trap.
5316         continue;
5317       }
5318     }
5319     return NULL;
5320   }
5321 
5322   // If we get this far, we have an allocation which immediately
5323   // precedes the arraycopy, and we can take over zeroing the new object.
5324   // The arraycopy will finish the initialization, and provide
5325   // a new control state to which we will anchor the destination pointer.
5326 
5327   return alloc;
5328 }
5329 
5330 // Helper for initialization of arrays, creating a ClearArray.
5331 // It writes zero bits in [start..end), within the body of an array object.
5332 // The memory effects are all chained onto the 'adr_type' alias category.
5333 //
5334 // Since the object is otherwise uninitialized, we are free
5335 // to put a little "slop" around the edges of the cleared area,
5336 // as long as it does not go back into the array's header,
5337 // or beyond the array end within the heap.
5338 //
5339 // The lower edge can be rounded down to the nearest jint and the
5340 // upper edge can be rounded up to the nearest MinObjAlignmentInBytes.
5341 //
5342 // Arguments:
5343 //   adr_type           memory slice where writes are generated
5344 //   dest               oop of the destination array
5345 //   basic_elem_type    element type of the destination
5346 //   slice_idx          array index of first element to store
5347 //   slice_len          number of elements to store (or NULL)
5348 //   dest_size          total size in bytes of the array object
5349 //
5350 // Exactly one of slice_len or dest_size must be non-NULL.
5351 // If dest_size is non-NULL, zeroing extends to the end of the object.
5352 // If slice_len is non-NULL, the slice_idx value must be a constant.
5353 void
5354 LibraryCallKit::generate_clear_array(const TypePtr* adr_type,
5355                                      Node* dest,
5356                                      BasicType basic_elem_type,
5357                                      Node* slice_idx,
5358                                      Node* slice_len,
5359                                      Node* dest_size) {
5360   // one or the other but not both of slice_len and dest_size:
5361   assert((slice_len != NULL? 1: 0) + (dest_size != NULL? 1: 0) == 1, "");
5362   if (slice_len == NULL)  slice_len = top();
5363   if (dest_size == NULL)  dest_size = top();
5364 
5365   // operate on this memory slice:
5366   Node* mem = memory(adr_type); // memory slice to operate on
5367 
5368   // scaling and rounding of indexes:
5369   int scale = exact_log2(type2aelembytes(basic_elem_type));
5370   int abase = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
5371   int clear_low = (-1 << scale) & (BytesPerInt  - 1);
5372   int bump_bit  = (-1 << scale) & BytesPerInt;
5373 
5374   // determine constant starts and ends
5375   const intptr_t BIG_NEG = -128;
5376   assert(BIG_NEG + 2*abase < 0, "neg enough");
5377   intptr_t slice_idx_con = (intptr_t) find_int_con(slice_idx, BIG_NEG);
5378   intptr_t slice_len_con = (intptr_t) find_int_con(slice_len, BIG_NEG);
5379   if (slice_len_con == 0) {
5380     return;                     // nothing to do here
5381   }
5382   intptr_t start_con = (abase + (slice_idx_con << scale)) & ~clear_low;
5383   intptr_t end_con   = find_intptr_t_con(dest_size, -1);
5384   if (slice_idx_con >= 0 && slice_len_con >= 0) {
5385     assert(end_con < 0, "not two cons");
5386     end_con = round_to(abase + ((slice_idx_con + slice_len_con) << scale),
5387                        BytesPerLong);
5388   }
5389 
5390   if (start_con >= 0 && end_con >= 0) {
5391     // Constant start and end.  Simple.
5392     mem = ClearArrayNode::clear_memory(control(), mem, dest,
5393                                        start_con, end_con, &_gvn);
5394   } else if (start_con >= 0 && dest_size != top()) {
5395     // Constant start, pre-rounded end after the tail of the array.
5396     Node* end = dest_size;
5397     mem = ClearArrayNode::clear_memory(control(), mem, dest,
5398                                        start_con, end, &_gvn);
5399   } else if (start_con >= 0 && slice_len != top()) {
5400     // Constant start, non-constant end.  End needs rounding up.
5401     // End offset = round_up(abase + ((slice_idx_con + slice_len) << scale), 8)
5402     intptr_t end_base  = abase + (slice_idx_con << scale);
5403     int      end_round = (-1 << scale) & (BytesPerLong  - 1);
5404     Node*    end       = ConvI2X(slice_len);
5405     if (scale != 0)
5406       end = _gvn.transform(new(C) LShiftXNode(end, intcon(scale) ));
5407     end_base += end_round;
5408     end = _gvn.transform(new(C) AddXNode(end, MakeConX(end_base)));
5409     end = _gvn.transform(new(C) AndXNode(end, MakeConX(~end_round)));
5410     mem = ClearArrayNode::clear_memory(control(), mem, dest,
5411                                        start_con, end, &_gvn);
5412   } else if (start_con < 0 && dest_size != top()) {
5413     // Non-constant start, pre-rounded end after the tail of the array.
5414     // This is almost certainly a "round-to-end" operation.
5415     Node* start = slice_idx;
5416     start = ConvI2X(start);
5417     if (scale != 0)
5418       start = _gvn.transform(new(C) LShiftXNode( start, intcon(scale) ));
5419     start = _gvn.transform(new(C) AddXNode(start, MakeConX(abase)));
5420     if ((bump_bit | clear_low) != 0) {
5421       int to_clear = (bump_bit | clear_low);
5422       // Align up mod 8, then store a jint zero unconditionally
5423       // just before the mod-8 boundary.
5424       if (((abase + bump_bit) & ~to_clear) - bump_bit
5425           < arrayOopDesc::length_offset_in_bytes() + BytesPerInt) {
5426         bump_bit = 0;
5427         assert((abase & to_clear) == 0, "array base must be long-aligned");
5428       } else {
5429         // Bump 'start' up to (or past) the next jint boundary:
5430         start = _gvn.transform(new(C) AddXNode(start, MakeConX(bump_bit)));
5431         assert((abase & clear_low) == 0, "array base must be int-aligned");
5432       }
5433       // Round bumped 'start' down to jlong boundary in body of array.
5434       start = _gvn.transform(new(C) AndXNode(start, MakeConX(~to_clear)));
5435       if (bump_bit != 0) {
5436         // Store a zero to the immediately preceding jint:
5437         Node* x1 = _gvn.transform(new(C) AddXNode(start, MakeConX(-bump_bit)));
5438         Node* p1 = basic_plus_adr(dest, x1);
5439         mem = StoreNode::make(_gvn, control(), mem, p1, adr_type, intcon(0), T_INT, MemNode::unordered);
5440         mem = _gvn.transform(mem);
5441       }
5442     }
5443     Node* end = dest_size; // pre-rounded
5444     mem = ClearArrayNode::clear_memory(control(), mem, dest,
5445                                        start, end, &_gvn);
5446   } else {
5447     // Non-constant start, unrounded non-constant end.
5448     // (Nobody zeroes a random midsection of an array using this routine.)
5449     ShouldNotReachHere();       // fix caller
5450   }
5451 
5452   // Done.
5453   set_memory(mem, adr_type);
5454 }
5455 
5456 
5457 bool
5458 LibraryCallKit::generate_block_arraycopy(const TypePtr* adr_type,
5459                                          BasicType basic_elem_type,
5460                                          AllocateNode* alloc,
5461                                          Node* src,  Node* src_offset,
5462                                          Node* dest, Node* dest_offset,
5463                                          Node* dest_size, bool dest_uninitialized) {
5464   // See if there is an advantage from block transfer.
5465   int scale = exact_log2(type2aelembytes(basic_elem_type));
5466   if (scale >= LogBytesPerLong)
5467     return false;               // it is already a block transfer
5468 
5469   // Look at the alignment of the starting offsets.
5470   int abase = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
5471 
5472   intptr_t src_off_con  = (intptr_t) find_int_con(src_offset, -1);
5473   intptr_t dest_off_con = (intptr_t) find_int_con(dest_offset, -1);
5474   if (src_off_con < 0 || dest_off_con < 0)
5475     // At present, we can only understand constants.
5476     return false;
5477 
5478   intptr_t src_off  = abase + (src_off_con  << scale);
5479   intptr_t dest_off = abase + (dest_off_con << scale);
5480 
5481   if (((src_off | dest_off) & (BytesPerLong-1)) != 0) {
5482     // Non-aligned; too bad.
5483     // One more chance:  Pick off an initial 32-bit word.
5484     // This is a common case, since abase can be odd mod 8.
5485     if (((src_off | dest_off) & (BytesPerLong-1)) == BytesPerInt &&
5486         ((src_off ^ dest_off) & (BytesPerLong-1)) == 0) {
5487       Node* sptr = basic_plus_adr(src,  src_off);
5488       Node* dptr = basic_plus_adr(dest, dest_off);
5489       Node* sval = make_load(control(), sptr, TypeInt::INT, T_INT, adr_type, MemNode::unordered);
5490       store_to_memory(control(), dptr, sval, T_INT, adr_type, MemNode::unordered);
5491       src_off += BytesPerInt;
5492       dest_off += BytesPerInt;
5493     } else {
5494       return false;
5495     }
5496   }
5497   assert(src_off % BytesPerLong == 0, "");
5498   assert(dest_off % BytesPerLong == 0, "");
5499 
5500   // Do this copy by giant steps.
5501   Node* sptr  = basic_plus_adr(src,  src_off);
5502   Node* dptr  = basic_plus_adr(dest, dest_off);
5503   Node* countx = dest_size;
5504   countx = _gvn.transform(new (C) SubXNode(countx, MakeConX(dest_off)));
5505   countx = _gvn.transform(new (C) URShiftXNode(countx, intcon(LogBytesPerLong)));
5506 
5507   bool disjoint_bases = true;   // since alloc != NULL
5508   generate_unchecked_arraycopy(adr_type, T_LONG, disjoint_bases,
5509                                sptr, NULL, dptr, NULL, countx, dest_uninitialized);
5510 
5511   return true;
5512 }
5513 
5514 
5515 // Helper function; generates code for the slow case.
5516 // We make a call to a runtime method which emulates the native method,
5517 // but without the native wrapper overhead.
5518 void
5519 LibraryCallKit::generate_slow_arraycopy(const TypePtr* adr_type,
5520                                         Node* src,  Node* src_offset,
5521                                         Node* dest, Node* dest_offset,
5522                                         Node* copy_length, bool dest_uninitialized) {
5523   assert(!dest_uninitialized, "Invariant");
5524   Node* call = make_runtime_call(RC_NO_LEAF | RC_UNCOMMON,
5525                                  OptoRuntime::slow_arraycopy_Type(),
5526                                  OptoRuntime::slow_arraycopy_Java(),
5527                                  "slow_arraycopy", adr_type,
5528                                  src, src_offset, dest, dest_offset,
5529                                  copy_length);
5530 
5531   // Handle exceptions thrown by this fellow:
5532   make_slow_call_ex(call, env()->Throwable_klass(), false);
5533 }
5534 
5535 // Helper function; generates code for cases requiring runtime checks.
5536 Node*
5537 LibraryCallKit::generate_checkcast_arraycopy(const TypePtr* adr_type,
5538                                              Node* dest_elem_klass,
5539                                              Node* src,  Node* src_offset,
5540                                              Node* dest, Node* dest_offset,
5541                                              Node* copy_length, bool dest_uninitialized) {
5542   if (stopped())  return NULL;
5543 
5544   address copyfunc_addr = StubRoutines::checkcast_arraycopy(dest_uninitialized);
5545   if (copyfunc_addr == NULL) { // Stub was not generated, go slow path.
5546     return NULL;
5547   }
5548 
5549   // Pick out the parameters required to perform a store-check
5550   // for the target array.  This is an optimistic check.  It will
5551   // look in each non-null element's class, at the desired klass's
5552   // super_check_offset, for the desired klass.
5553   int sco_offset = in_bytes(Klass::super_check_offset_offset());
5554   Node* p3 = basic_plus_adr(dest_elem_klass, sco_offset);
5555   Node* n3 = new(C) LoadINode(NULL, memory(p3), p3, _gvn.type(p3)->is_ptr(), TypeInt::INT, MemNode::unordered);
5556   Node* check_offset = ConvI2X(_gvn.transform(n3));
5557   Node* check_value  = dest_elem_klass;
5558 
5559   Node* src_start  = array_element_address(src,  src_offset,  T_OBJECT);
5560   Node* dest_start = array_element_address(dest, dest_offset, T_OBJECT);
5561 
5562   // (We know the arrays are never conjoint, because their types differ.)
5563   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
5564                                  OptoRuntime::checkcast_arraycopy_Type(),
5565                                  copyfunc_addr, "checkcast_arraycopy", adr_type,
5566                                  // five arguments, of which two are
5567                                  // intptr_t (jlong in LP64)
5568                                  src_start, dest_start,
5569                                  copy_length XTOP,
5570                                  check_offset XTOP,
5571                                  check_value);
5572 
5573   return _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
5574 }
5575 
5576 
5577 // Helper function; generates code for cases requiring runtime checks.
5578 Node*
5579 LibraryCallKit::generate_generic_arraycopy(const TypePtr* adr_type,
5580                                            Node* src,  Node* src_offset,
5581                                            Node* dest, Node* dest_offset,
5582                                            Node* copy_length, bool dest_uninitialized) {
5583   assert(!dest_uninitialized, "Invariant");
5584   if (stopped())  return NULL;
5585   address copyfunc_addr = StubRoutines::generic_arraycopy();
5586   if (copyfunc_addr == NULL) { // Stub was not generated, go slow path.
5587     return NULL;
5588   }
5589 
5590   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
5591                     OptoRuntime::generic_arraycopy_Type(),
5592                     copyfunc_addr, "generic_arraycopy", adr_type,
5593                     src, src_offset, dest, dest_offset, copy_length);
5594 
5595   return _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
5596 }
5597 
5598 // Helper function; generates the fast out-of-line call to an arraycopy stub.
5599 void
5600 LibraryCallKit::generate_unchecked_arraycopy(const TypePtr* adr_type,
5601                                              BasicType basic_elem_type,
5602                                              bool disjoint_bases,
5603                                              Node* src,  Node* src_offset,
5604                                              Node* dest, Node* dest_offset,
5605                                              Node* copy_length, bool dest_uninitialized) {
5606   if (stopped())  return;               // nothing to do
5607 
5608   Node* src_start  = src;
5609   Node* dest_start = dest;
5610   if (src_offset != NULL || dest_offset != NULL) {
5611     assert(src_offset != NULL && dest_offset != NULL, "");
5612     src_start  = array_element_address(src,  src_offset,  basic_elem_type);
5613     dest_start = array_element_address(dest, dest_offset, basic_elem_type);
5614   }
5615 
5616   // Figure out which arraycopy runtime method to call.
5617   const char* copyfunc_name = "arraycopy";
5618   address     copyfunc_addr =
5619       basictype2arraycopy(basic_elem_type, src_offset, dest_offset,
5620                           disjoint_bases, copyfunc_name, dest_uninitialized);
5621 
5622   // Call it.  Note that the count_ix value is not scaled to a byte-size.
5623   make_runtime_call(RC_LEAF|RC_NO_FP,
5624                     OptoRuntime::fast_arraycopy_Type(),
5625                     copyfunc_addr, copyfunc_name, adr_type,
5626                     src_start, dest_start, copy_length XTOP);
5627 }
5628 
5629 //-------------inline_encodeISOArray-----------------------------------
5630 // encode char[] to byte[] in ISO_8859_1
5631 bool LibraryCallKit::inline_encodeISOArray() {
5632   assert(callee()->signature()->size() == 5, "encodeISOArray has 5 parameters");
5633   // no receiver since it is static method
5634   Node *src         = argument(0);
5635   Node *src_offset  = argument(1);
5636   Node *dst         = argument(2);
5637   Node *dst_offset  = argument(3);
5638   Node *length      = argument(4);
5639 
5640   const Type* src_type = src->Value(&_gvn);
5641   const Type* dst_type = dst->Value(&_gvn);
5642   const TypeAryPtr* top_src = src_type->isa_aryptr();
5643   const TypeAryPtr* top_dest = dst_type->isa_aryptr();
5644   if (top_src  == NULL || top_src->klass()  == NULL ||
5645       top_dest == NULL || top_dest->klass() == NULL) {
5646     // failed array check
5647     return false;
5648   }
5649 
5650   // Figure out the size and type of the elements we will be copying.
5651   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5652   BasicType dst_elem = dst_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5653   if (src_elem != T_CHAR || dst_elem != T_BYTE) {
5654     return false;
5655   }
5656   Node* src_start = array_element_address(src, src_offset, src_elem);
5657   Node* dst_start = array_element_address(dst, dst_offset, dst_elem);
5658   // 'src_start' points to src array + scaled offset
5659   // 'dst_start' points to dst array + scaled offset
5660 
5661   const TypeAryPtr* mtype = TypeAryPtr::BYTES;
5662   Node* enc = new (C) EncodeISOArrayNode(control(), memory(mtype), src_start, dst_start, length);
5663   enc = _gvn.transform(enc);
5664   Node* res_mem = _gvn.transform(new (C) SCMemProjNode(enc));
5665   set_memory(res_mem, mtype);
5666   set_result(enc);
5667   return true;
5668 }
5669 
5670 /**
5671  * Calculate CRC32 for byte.
5672  * int java.util.zip.CRC32.update(int crc, int b)
5673  */
5674 bool LibraryCallKit::inline_updateCRC32() {
5675   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
5676   assert(callee()->signature()->size() == 2, "update has 2 parameters");
5677   // no receiver since it is static method
5678   Node* crc  = argument(0); // type: int
5679   Node* b    = argument(1); // type: int
5680 
5681   /*
5682    *    int c = ~ crc;
5683    *    b = timesXtoThe32[(b ^ c) & 0xFF];
5684    *    b = b ^ (c >>> 8);
5685    *    crc = ~b;
5686    */
5687 
5688   Node* M1 = intcon(-1);
5689   crc = _gvn.transform(new (C) XorINode(crc, M1));
5690   Node* result = _gvn.transform(new (C) XorINode(crc, b));
5691   result = _gvn.transform(new (C) AndINode(result, intcon(0xFF)));
5692 
5693   Node* base = makecon(TypeRawPtr::make(StubRoutines::crc_table_addr()));
5694   Node* offset = _gvn.transform(new (C) LShiftINode(result, intcon(0x2)));
5695   Node* adr = basic_plus_adr(top(), base, ConvI2X(offset));
5696   result = make_load(control(), adr, TypeInt::INT, T_INT, MemNode::unordered);
5697 
5698   crc = _gvn.transform(new (C) URShiftINode(crc, intcon(8)));
5699   result = _gvn.transform(new (C) XorINode(crc, result));
5700   result = _gvn.transform(new (C) XorINode(result, M1));
5701   set_result(result);
5702   return true;
5703 }
5704 
5705 /**
5706  * Calculate CRC32 for byte[] array.
5707  * int java.util.zip.CRC32.updateBytes(int crc, byte[] buf, int off, int len)
5708  */
5709 bool LibraryCallKit::inline_updateBytesCRC32() {
5710   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
5711   assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters");
5712   // no receiver since it is static method
5713   Node* crc     = argument(0); // type: int
5714   Node* src     = argument(1); // type: oop
5715   Node* offset  = argument(2); // type: int
5716   Node* length  = argument(3); // type: int
5717 
5718   const Type* src_type = src->Value(&_gvn);
5719   const TypeAryPtr* top_src = src_type->isa_aryptr();
5720   if (top_src  == NULL || top_src->klass()  == NULL) {
5721     // failed array check
5722     return false;
5723   }
5724 
5725   // Figure out the size and type of the elements we will be copying.
5726   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5727   if (src_elem != T_BYTE) {
5728     return false;
5729   }
5730 
5731   // 'src_start' points to src array + scaled offset
5732   Node* src_start = array_element_address(src, offset, src_elem);
5733 
5734   // We assume that range check is done by caller.
5735   // TODO: generate range check (offset+length < src.length) in debug VM.
5736 
5737   // Call the stub.
5738   address stubAddr = StubRoutines::updateBytesCRC32();
5739   const char *stubName = "updateBytesCRC32";
5740 
5741   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(),
5742                                  stubAddr, stubName, TypePtr::BOTTOM,
5743                                  crc, src_start, length);
5744   Node* result = _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
5745   set_result(result);
5746   return true;
5747 }
5748 
5749 /**
5750  * Calculate CRC32 for ByteBuffer.
5751  * int java.util.zip.CRC32.updateByteBuffer(int crc, long buf, int off, int len)
5752  */
5753 bool LibraryCallKit::inline_updateByteBufferCRC32() {
5754   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
5755   assert(callee()->signature()->size() == 5, "updateByteBuffer has 4 parameters and one is long");
5756   // no receiver since it is static method
5757   Node* crc     = argument(0); // type: int
5758   Node* src     = argument(1); // type: long
5759   Node* offset  = argument(3); // type: int
5760   Node* length  = argument(4); // type: int
5761 
5762   src = ConvL2X(src);  // adjust Java long to machine word
5763   Node* base = _gvn.transform(new (C) CastX2PNode(src));
5764   offset = ConvI2X(offset);
5765 
5766   // 'src_start' points to src array + scaled offset
5767   Node* src_start = basic_plus_adr(top(), base, offset);
5768 
5769   // Call the stub.
5770   address stubAddr = StubRoutines::updateBytesCRC32();
5771   const char *stubName = "updateBytesCRC32";
5772 
5773   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(),
5774                                  stubAddr, stubName, TypePtr::BOTTOM,
5775                                  crc, src_start, length);
5776   Node* result = _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
5777   set_result(result);
5778   return true;
5779 }
5780 
5781 //----------------------------inline_reference_get----------------------------
5782 // public T java.lang.ref.Reference.get();
5783 bool LibraryCallKit::inline_reference_get() {
5784   const int referent_offset = java_lang_ref_Reference::referent_offset;
5785   guarantee(referent_offset > 0, "should have already been set");
5786 
5787   // Get the argument:
5788   Node* reference_obj = null_check_receiver();
5789   if (stopped()) return true;
5790 
5791   Node* adr = basic_plus_adr(reference_obj, reference_obj, referent_offset);
5792 
5793   ciInstanceKlass* klass = env()->Object_klass();
5794   const TypeOopPtr* object_type = TypeOopPtr::make_from_klass(klass);
5795 
5796   Node* no_ctrl = NULL;
5797   Node* result = make_load(no_ctrl, adr, object_type, T_OBJECT, MemNode::unordered);
5798 
5799   // Use the pre-barrier to record the value in the referent field
5800   pre_barrier(false /* do_load */,
5801               control(),
5802               NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
5803               result /* pre_val */,
5804               T_OBJECT);
5805 
5806   // Add memory barrier to prevent commoning reads from this field
5807   // across safepoint since GC can change its value.
5808   insert_mem_bar(Op_MemBarCPUOrder);
5809 
5810   set_result(result);
5811   return true;
5812 }
5813 
5814 
5815 Node * LibraryCallKit::load_field_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString,
5816                                               bool is_exact=true, bool is_static=false) {
5817 
5818   const TypeInstPtr* tinst = _gvn.type(fromObj)->isa_instptr();
5819   assert(tinst != NULL, "obj is null");
5820   assert(tinst->klass()->is_loaded(), "obj is not loaded");
5821   assert(!is_exact || tinst->klass_is_exact(), "klass not exact");
5822 
5823   ciField* field = tinst->klass()->as_instance_klass()->get_field_by_name(ciSymbol::make(fieldName),
5824                                                                           ciSymbol::make(fieldTypeString),
5825                                                                           is_static);
5826   if (field == NULL) return (Node *) NULL;
5827   assert (field != NULL, "undefined field");
5828 
5829   // Next code  copied from Parse::do_get_xxx():
5830 
5831   // Compute address and memory type.
5832   int offset  = field->offset_in_bytes();
5833   bool is_vol = field->is_volatile();
5834   ciType* field_klass = field->type();
5835   assert(field_klass->is_loaded(), "should be loaded");
5836   const TypePtr* adr_type = C->alias_type(field)->adr_type();
5837   Node *adr = basic_plus_adr(fromObj, fromObj, offset);
5838   BasicType bt = field->layout_type();
5839 
5840   // Build the resultant type of the load
5841   const Type *type = TypeOopPtr::make_from_klass(field_klass->as_klass());
5842 
5843   // Build the load.
5844   Node* loadedField = make_load(NULL, adr, type, bt, adr_type, MemNode::unordered, is_vol);
5845   return loadedField;
5846 }
5847 
5848 
5849 //------------------------------inline_aescrypt_Block-----------------------
5850 bool LibraryCallKit::inline_aescrypt_Block(vmIntrinsics::ID id) {
5851   address stubAddr;
5852   const char *stubName;
5853   assert(UseAES, "need AES instruction support");
5854 
5855   switch(id) {
5856   case vmIntrinsics::_aescrypt_encryptBlock:
5857     stubAddr = StubRoutines::aescrypt_encryptBlock();
5858     stubName = "aescrypt_encryptBlock";
5859     break;
5860   case vmIntrinsics::_aescrypt_decryptBlock:
5861     stubAddr = StubRoutines::aescrypt_decryptBlock();
5862     stubName = "aescrypt_decryptBlock";
5863     break;
5864   }
5865   if (stubAddr == NULL) return false;
5866 
5867   Node* aescrypt_object = argument(0);
5868   Node* src             = argument(1);
5869   Node* src_offset      = argument(2);
5870   Node* dest            = argument(3);
5871   Node* dest_offset     = argument(4);
5872 
5873   // (1) src and dest are arrays.
5874   const Type* src_type = src->Value(&_gvn);
5875   const Type* dest_type = dest->Value(&_gvn);
5876   const TypeAryPtr* top_src = src_type->isa_aryptr();
5877   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
5878   assert (top_src  != NULL && top_src->klass()  != NULL &&  top_dest != NULL && top_dest->klass() != NULL, "args are strange");
5879 
5880   // for the quick and dirty code we will skip all the checks.
5881   // we are just trying to get the call to be generated.
5882   Node* src_start  = src;
5883   Node* dest_start = dest;
5884   if (src_offset != NULL || dest_offset != NULL) {
5885     assert(src_offset != NULL && dest_offset != NULL, "");
5886     src_start  = array_element_address(src,  src_offset,  T_BYTE);
5887     dest_start = array_element_address(dest, dest_offset, T_BYTE);
5888   }
5889 
5890   // now need to get the start of its expanded key array
5891   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
5892   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
5893   if (k_start == NULL) return false;
5894 
5895   if (Matcher::pass_original_key_for_aes()) {
5896     // on SPARC we need to pass the original key since key expansion needs to happen in intrinsics due to
5897     // compatibility issues between Java key expansion and SPARC crypto instructions
5898     Node* original_k_start = get_original_key_start_from_aescrypt_object(aescrypt_object);
5899     if (original_k_start == NULL) return false;
5900 
5901     // Call the stub.
5902     make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(),
5903                       stubAddr, stubName, TypePtr::BOTTOM,
5904                       src_start, dest_start, k_start, original_k_start);
5905   } else {
5906     // Call the stub.
5907     make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(),
5908                       stubAddr, stubName, TypePtr::BOTTOM,
5909                       src_start, dest_start, k_start);
5910   }
5911 
5912   return true;
5913 }
5914 
5915 //------------------------------inline_cipherBlockChaining_AESCrypt-----------------------
5916 bool LibraryCallKit::inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id) {
5917   address stubAddr;
5918   const char *stubName;
5919 
5920   assert(UseAES, "need AES instruction support");
5921 
5922   switch(id) {
5923   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
5924     stubAddr = StubRoutines::cipherBlockChaining_encryptAESCrypt();
5925     stubName = "cipherBlockChaining_encryptAESCrypt";
5926     break;
5927   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
5928     stubAddr = StubRoutines::cipherBlockChaining_decryptAESCrypt();
5929     stubName = "cipherBlockChaining_decryptAESCrypt";
5930     break;
5931   }
5932   if (stubAddr == NULL) return false;
5933 
5934   Node* cipherBlockChaining_object = argument(0);
5935   Node* src                        = argument(1);
5936   Node* src_offset                 = argument(2);
5937   Node* len                        = argument(3);
5938   Node* dest                       = argument(4);
5939   Node* dest_offset                = argument(5);
5940 
5941   // (1) src and dest are arrays.
5942   const Type* src_type = src->Value(&_gvn);
5943   const Type* dest_type = dest->Value(&_gvn);
5944   const TypeAryPtr* top_src = src_type->isa_aryptr();
5945   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
5946   assert (top_src  != NULL && top_src->klass()  != NULL
5947           &&  top_dest != NULL && top_dest->klass() != NULL, "args are strange");
5948 
5949   // checks are the responsibility of the caller
5950   Node* src_start  = src;
5951   Node* dest_start = dest;
5952   if (src_offset != NULL || dest_offset != NULL) {
5953     assert(src_offset != NULL && dest_offset != NULL, "");
5954     src_start  = array_element_address(src,  src_offset,  T_BYTE);
5955     dest_start = array_element_address(dest, dest_offset, T_BYTE);
5956   }
5957 
5958   // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object
5959   // (because of the predicated logic executed earlier).
5960   // so we cast it here safely.
5961   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
5962 
5963   Node* embeddedCipherObj = load_field_from_object(cipherBlockChaining_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
5964   if (embeddedCipherObj == NULL) return false;
5965 
5966   // cast it to what we know it will be at runtime
5967   const TypeInstPtr* tinst = _gvn.type(cipherBlockChaining_object)->isa_instptr();
5968   assert(tinst != NULL, "CBC obj is null");
5969   assert(tinst->klass()->is_loaded(), "CBC obj is not loaded");
5970   ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
5971   if (!klass_AESCrypt->is_loaded()) return false;
5972 
5973   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
5974   const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt);
5975   const TypeOopPtr* xtype = aklass->as_instance_type();
5976   Node* aescrypt_object = new(C) CheckCastPPNode(control(), embeddedCipherObj, xtype);
5977   aescrypt_object = _gvn.transform(aescrypt_object);
5978 
5979   // we need to get the start of the aescrypt_object's expanded key array
5980   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
5981   if (k_start == NULL) return false;
5982 
5983   // similarly, get the start address of the r vector
5984   Node* objRvec = load_field_from_object(cipherBlockChaining_object, "r", "[B", /*is_exact*/ false);
5985   if (objRvec == NULL) return false;
5986   Node* r_start = array_element_address(objRvec, intcon(0), T_BYTE);
5987 
5988   Node* cbcCrypt;
5989   if (Matcher::pass_original_key_for_aes()) {
5990     // on SPARC we need to pass the original key since key expansion needs to happen in intrinsics due to
5991     // compatibility issues between Java key expansion and SPARC crypto instructions
5992     Node* original_k_start = get_original_key_start_from_aescrypt_object(aescrypt_object);
5993     if (original_k_start == NULL) return false;
5994 
5995     // Call the stub, passing src_start, dest_start, k_start, r_start, src_len and original_k_start
5996     cbcCrypt = make_runtime_call(RC_LEAF|RC_NO_FP,
5997                                  OptoRuntime::cipherBlockChaining_aescrypt_Type(),
5998                                  stubAddr, stubName, TypePtr::BOTTOM,
5999                                  src_start, dest_start, k_start, r_start, len, original_k_start);
6000   } else {
6001     // Call the stub, passing src_start, dest_start, k_start, r_start and src_len
6002     cbcCrypt = make_runtime_call(RC_LEAF|RC_NO_FP,
6003                                  OptoRuntime::cipherBlockChaining_aescrypt_Type(),
6004                                  stubAddr, stubName, TypePtr::BOTTOM,
6005                                  src_start, dest_start, k_start, r_start, len);
6006   }
6007 
6008   // return cipher length (int)
6009   Node* retvalue = _gvn.transform(new (C) ProjNode(cbcCrypt, TypeFunc::Parms));
6010   set_result(retvalue);
6011   return true;
6012 }
6013 
6014 //------------------------------get_key_start_from_aescrypt_object-----------------------
6015 Node * LibraryCallKit::get_key_start_from_aescrypt_object(Node *aescrypt_object) {
6016   Node* objAESCryptKey = load_field_from_object(aescrypt_object, "K", "[I", /*is_exact*/ false);
6017   assert (objAESCryptKey != NULL, "wrong version of com.sun.crypto.provider.AESCrypt");
6018   if (objAESCryptKey == NULL) return (Node *) NULL;
6019 
6020   // now have the array, need to get the start address of the K array
6021   Node* k_start = array_element_address(objAESCryptKey, intcon(0), T_INT);
6022   return k_start;
6023 }
6024 
6025 //------------------------------get_original_key_start_from_aescrypt_object-----------------------
6026 Node * LibraryCallKit::get_original_key_start_from_aescrypt_object(Node *aescrypt_object) {
6027   Node* objAESCryptKey = load_field_from_object(aescrypt_object, "lastKey", "[B", /*is_exact*/ false);
6028   assert (objAESCryptKey != NULL, "wrong version of com.sun.crypto.provider.AESCrypt");
6029   if (objAESCryptKey == NULL) return (Node *) NULL;
6030 
6031   // now have the array, need to get the start address of the lastKey array
6032   Node* original_k_start = array_element_address(objAESCryptKey, intcon(0), T_BYTE);
6033   return original_k_start;
6034 }
6035 
6036 //----------------------------inline_cipherBlockChaining_AESCrypt_predicate----------------------------
6037 // Return node representing slow path of predicate check.
6038 // the pseudo code we want to emulate with this predicate is:
6039 // for encryption:
6040 //    if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath
6041 // for decryption:
6042 //    if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath
6043 //    note cipher==plain is more conservative than the original java code but that's OK
6044 //
6045 Node* LibraryCallKit::inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting) {
6046   // First, check receiver for NULL since it is virtual method.
6047   Node* objCBC = argument(0);
6048   objCBC = null_check(objCBC);
6049 
6050   if (stopped()) return NULL; // Always NULL
6051 
6052   // Load embeddedCipher field of CipherBlockChaining object.
6053   Node* embeddedCipherObj = load_field_from_object(objCBC, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
6054 
6055   // get AESCrypt klass for instanceOf check
6056   // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point
6057   // will have same classloader as CipherBlockChaining object
6058   const TypeInstPtr* tinst = _gvn.type(objCBC)->isa_instptr();
6059   assert(tinst != NULL, "CBCobj is null");
6060   assert(tinst->klass()->is_loaded(), "CBCobj is not loaded");
6061 
6062   // we want to do an instanceof comparison against the AESCrypt class
6063   ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
6064   if (!klass_AESCrypt->is_loaded()) {
6065     // if AESCrypt is not even loaded, we never take the intrinsic fast path
6066     Node* ctrl = control();
6067     set_control(top()); // no regular fast path
6068     return ctrl;
6069   }
6070   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
6071 
6072   Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt)));
6073   Node* cmp_instof  = _gvn.transform(new (C) CmpINode(instof, intcon(1)));
6074   Node* bool_instof  = _gvn.transform(new (C) BoolNode(cmp_instof, BoolTest::ne));
6075 
6076   Node* instof_false = generate_guard(bool_instof, NULL, PROB_MIN);
6077 
6078   // for encryption, we are done
6079   if (!decrypting)
6080     return instof_false;  // even if it is NULL
6081 
6082   // for decryption, we need to add a further check to avoid
6083   // taking the intrinsic path when cipher and plain are the same
6084   // see the original java code for why.
6085   RegionNode* region = new(C) RegionNode(3);
6086   region->init_req(1, instof_false);
6087   Node* src = argument(1);
6088   Node* dest = argument(4);
6089   Node* cmp_src_dest = _gvn.transform(new (C) CmpPNode(src, dest));
6090   Node* bool_src_dest = _gvn.transform(new (C) BoolNode(cmp_src_dest, BoolTest::eq));
6091   Node* src_dest_conjoint = generate_guard(bool_src_dest, NULL, PROB_MIN);
6092   region->init_req(2, src_dest_conjoint);
6093 
6094   record_for_igvn(region);
6095   return _gvn.transform(region);
6096 }