1 /*
   2  * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/systemDictionary.hpp"
  27 #include "compiler/compileLog.hpp"
  28 #include "memory/allocation.inline.hpp"
  29 #include "oops/objArrayKlass.hpp"
  30 #include "opto/addnode.hpp"
  31 #include "opto/cfgnode.hpp"
  32 #include "opto/compile.hpp"
  33 #include "opto/connode.hpp"
  34 #include "opto/loopnode.hpp"
  35 #include "opto/machnode.hpp"
  36 #include "opto/matcher.hpp"
  37 #include "opto/memnode.hpp"
  38 #include "opto/mulnode.hpp"
  39 #include "opto/phaseX.hpp"
  40 #include "opto/regmask.hpp"
  41 
  42 // Portions of code courtesy of Clifford Click
  43 
  44 // Optimization - Graph Style
  45 
  46 static Node *step_through_mergemem(PhaseGVN *phase, MergeMemNode *mmem,  const TypePtr *tp, const TypePtr *adr_check, outputStream *st);
  47 
  48 //=============================================================================
  49 uint MemNode::size_of() const { return sizeof(*this); }
  50 
  51 const TypePtr *MemNode::adr_type() const {
  52   Node* adr = in(Address);
  53   const TypePtr* cross_check = NULL;
  54   DEBUG_ONLY(cross_check = _adr_type);
  55   return calculate_adr_type(adr->bottom_type(), cross_check);
  56 }
  57 
  58 #ifndef PRODUCT
  59 void MemNode::dump_spec(outputStream *st) const {
  60   if (in(Address) == NULL)  return; // node is dead
  61 #ifndef ASSERT
  62   // fake the missing field
  63   const TypePtr* _adr_type = NULL;
  64   if (in(Address) != NULL)
  65     _adr_type = in(Address)->bottom_type()->isa_ptr();
  66 #endif
  67   dump_adr_type(this, _adr_type, st);
  68 
  69   Compile* C = Compile::current();
  70   if( C->alias_type(_adr_type)->is_volatile() )
  71     st->print(" Volatile!");
  72 }
  73 
  74 void MemNode::dump_adr_type(const Node* mem, const TypePtr* adr_type, outputStream *st) {
  75   st->print(" @");
  76   if (adr_type == NULL) {
  77     st->print("NULL");
  78   } else {
  79     adr_type->dump_on(st);
  80     Compile* C = Compile::current();
  81     Compile::AliasType* atp = NULL;
  82     if (C->have_alias_type(adr_type))  atp = C->alias_type(adr_type);
  83     if (atp == NULL)
  84       st->print(", idx=?\?;");
  85     else if (atp->index() == Compile::AliasIdxBot)
  86       st->print(", idx=Bot;");
  87     else if (atp->index() == Compile::AliasIdxTop)
  88       st->print(", idx=Top;");
  89     else if (atp->index() == Compile::AliasIdxRaw)
  90       st->print(", idx=Raw;");
  91     else {
  92       ciField* field = atp->field();
  93       if (field) {
  94         st->print(", name=");
  95         field->print_name_on(st);
  96       }
  97       st->print(", idx=%d;", atp->index());
  98     }
  99   }
 100 }
 101 
 102 extern void print_alias_types();
 103 
 104 #endif
 105 
 106 Node *MemNode::optimize_simple_memory_chain(Node *mchain, const TypeOopPtr *t_oop, Node *load, PhaseGVN *phase) {
 107   assert((t_oop != NULL), "sanity");
 108   bool is_instance = t_oop->is_known_instance_field();
 109   bool is_boxed_value_load = t_oop->is_ptr_to_boxed_value() &&
 110                              (load != NULL) && load->is_Load() &&
 111                              (phase->is_IterGVN() != NULL);
 112   if (!(is_instance || is_boxed_value_load))
 113     return mchain;  // don't try to optimize non-instance types
 114   uint instance_id = t_oop->instance_id();
 115   Node *start_mem = phase->C->start()->proj_out(TypeFunc::Memory);
 116   Node *prev = NULL;
 117   Node *result = mchain;
 118   while (prev != result) {
 119     prev = result;
 120     if (result == start_mem)
 121       break;  // hit one of our sentinels
 122     // skip over a call which does not affect this memory slice
 123     if (result->is_Proj() && result->as_Proj()->_con == TypeFunc::Memory) {
 124       Node *proj_in = result->in(0);
 125       if (proj_in->is_Allocate() && proj_in->_idx == instance_id) {
 126         break;  // hit one of our sentinels
 127       } else if (proj_in->is_Call()) {
 128         CallNode *call = proj_in->as_Call();
 129         if (!call->may_modify(t_oop, phase)) { // returns false for instances
 130           result = call->in(TypeFunc::Memory);
 131         }
 132       } else if (proj_in->is_Initialize()) {
 133         AllocateNode* alloc = proj_in->as_Initialize()->allocation();
 134         // Stop if this is the initialization for the object instance which
 135         // which contains this memory slice, otherwise skip over it.
 136         if ((alloc == NULL) || (alloc->_idx == instance_id)) {
 137           break;
 138         }
 139         if (is_instance) {
 140           result = proj_in->in(TypeFunc::Memory);
 141         } else if (is_boxed_value_load) {
 142           Node* klass = alloc->in(AllocateNode::KlassNode);
 143           const TypeKlassPtr* tklass = phase->type(klass)->is_klassptr();
 144           if (tklass->klass_is_exact() && !tklass->klass()->equals(t_oop->klass())) {
 145             result = proj_in->in(TypeFunc::Memory); // not related allocation
 146           }
 147         }
 148       } else if (proj_in->is_MemBar()) {
 149         result = proj_in->in(TypeFunc::Memory);
 150       } else {
 151         assert(false, "unexpected projection");
 152       }
 153     } else if (result->is_ClearArray()) {
 154       if (!is_instance || !ClearArrayNode::step_through(&result, instance_id, phase)) {
 155         // Can not bypass initialization of the instance
 156         // we are looking for.
 157         break;
 158       }
 159       // Otherwise skip it (the call updated 'result' value).
 160     } else if (result->is_MergeMem()) {
 161       result = step_through_mergemem(phase, result->as_MergeMem(), t_oop, NULL, tty);
 162     }
 163   }
 164   return result;
 165 }
 166 
 167 Node *MemNode::optimize_memory_chain(Node *mchain, const TypePtr *t_adr, Node *load, PhaseGVN *phase) {
 168   const TypeOopPtr* t_oop = t_adr->isa_oopptr();
 169   if (t_oop == NULL)
 170     return mchain;  // don't try to optimize non-oop types
 171   Node* result = optimize_simple_memory_chain(mchain, t_oop, load, phase);
 172   bool is_instance = t_oop->is_known_instance_field();
 173   PhaseIterGVN *igvn = phase->is_IterGVN();
 174   if (is_instance && igvn != NULL  && result->is_Phi()) {
 175     PhiNode *mphi = result->as_Phi();
 176     assert(mphi->bottom_type() == Type::MEMORY, "memory phi required");
 177     const TypePtr *t = mphi->adr_type();
 178     if (t == TypePtr::BOTTOM || t == TypeRawPtr::BOTTOM ||
 179         t->isa_oopptr() && !t->is_oopptr()->is_known_instance() &&
 180         t->is_oopptr()->cast_to_exactness(true)
 181          ->is_oopptr()->cast_to_ptr_type(t_oop->ptr())
 182          ->is_oopptr()->cast_to_instance_id(t_oop->instance_id()) == t_oop) {
 183       // clone the Phi with our address type
 184       result = mphi->split_out_instance(t_adr, igvn);
 185     } else {
 186       assert(phase->C->get_alias_index(t) == phase->C->get_alias_index(t_adr), "correct memory chain");
 187     }
 188   }
 189   return result;
 190 }
 191 
 192 static Node *step_through_mergemem(PhaseGVN *phase, MergeMemNode *mmem,  const TypePtr *tp, const TypePtr *adr_check, outputStream *st) {
 193   uint alias_idx = phase->C->get_alias_index(tp);
 194   Node *mem = mmem;
 195 #ifdef ASSERT
 196   {
 197     // Check that current type is consistent with the alias index used during graph construction
 198     assert(alias_idx >= Compile::AliasIdxRaw, "must not be a bad alias_idx");
 199     bool consistent =  adr_check == NULL || adr_check->empty() ||
 200                        phase->C->must_alias(adr_check, alias_idx );
 201     // Sometimes dead array references collapse to a[-1], a[-2], or a[-3]
 202     if( !consistent && adr_check != NULL && !adr_check->empty() &&
 203                tp->isa_aryptr() &&        tp->offset() == Type::OffsetBot &&
 204         adr_check->isa_aryptr() && adr_check->offset() != Type::OffsetBot &&
 205         ( adr_check->offset() == arrayOopDesc::length_offset_in_bytes() ||
 206           adr_check->offset() == oopDesc::klass_offset_in_bytes() ||
 207           adr_check->offset() == oopDesc::mark_offset_in_bytes() ) ) {
 208       // don't assert if it is dead code.
 209       consistent = true;
 210     }
 211     if( !consistent ) {
 212       st->print("alias_idx==%d, adr_check==", alias_idx);
 213       if( adr_check == NULL ) {
 214         st->print("NULL");
 215       } else {
 216         adr_check->dump();
 217       }
 218       st->cr();
 219       print_alias_types();
 220       assert(consistent, "adr_check must match alias idx");
 221     }
 222   }
 223 #endif
 224   // TypeOopPtr::NOTNULL+any is an OOP with unknown offset - generally
 225   // means an array I have not precisely typed yet.  Do not do any
 226   // alias stuff with it any time soon.
 227   const TypeOopPtr *toop = tp->isa_oopptr();
 228   if( tp->base() != Type::AnyPtr &&
 229       !(toop &&
 230         toop->klass() != NULL &&
 231         toop->klass()->is_java_lang_Object() &&
 232         toop->offset() == Type::OffsetBot) ) {
 233     // compress paths and change unreachable cycles to TOP
 234     // If not, we can update the input infinitely along a MergeMem cycle
 235     // Equivalent code in PhiNode::Ideal
 236     Node* m  = phase->transform(mmem);
 237     // If transformed to a MergeMem, get the desired slice
 238     // Otherwise the returned node represents memory for every slice
 239     mem = (m->is_MergeMem())? m->as_MergeMem()->memory_at(alias_idx) : m;
 240     // Update input if it is progress over what we have now
 241   }
 242   return mem;
 243 }
 244 
 245 //--------------------------Ideal_common---------------------------------------
 246 // Look for degenerate control and memory inputs.  Bypass MergeMem inputs.
 247 // Unhook non-raw memories from complete (macro-expanded) initializations.
 248 Node *MemNode::Ideal_common(PhaseGVN *phase, bool can_reshape) {
 249   // If our control input is a dead region, kill all below the region
 250   Node *ctl = in(MemNode::Control);
 251   if (ctl && remove_dead_region(phase, can_reshape))
 252     return this;
 253   ctl = in(MemNode::Control);
 254   // Don't bother trying to transform a dead node
 255   if (ctl && ctl->is_top())  return NodeSentinel;
 256 
 257   PhaseIterGVN *igvn = phase->is_IterGVN();
 258   // Wait if control on the worklist.
 259   if (ctl && can_reshape && igvn != NULL) {
 260     Node* bol = NULL;
 261     Node* cmp = NULL;
 262     if (ctl->in(0)->is_If()) {
 263       assert(ctl->is_IfTrue() || ctl->is_IfFalse(), "sanity");
 264       bol = ctl->in(0)->in(1);
 265       if (bol->is_Bool())
 266         cmp = ctl->in(0)->in(1)->in(1);
 267     }
 268     if (igvn->_worklist.member(ctl) ||
 269         (bol != NULL && igvn->_worklist.member(bol)) ||
 270         (cmp != NULL && igvn->_worklist.member(cmp)) ) {
 271       // This control path may be dead.
 272       // Delay this memory node transformation until the control is processed.
 273       phase->is_IterGVN()->_worklist.push(this);
 274       return NodeSentinel; // caller will return NULL
 275     }
 276   }
 277   // Ignore if memory is dead, or self-loop
 278   Node *mem = in(MemNode::Memory);
 279   if (phase->type( mem ) == Type::TOP) return NodeSentinel; // caller will return NULL
 280   assert(mem != this, "dead loop in MemNode::Ideal");
 281 
 282   if (can_reshape && igvn != NULL && igvn->_worklist.member(mem)) {
 283     // This memory slice may be dead.
 284     // Delay this mem node transformation until the memory is processed.
 285     phase->is_IterGVN()->_worklist.push(this);
 286     return NodeSentinel; // caller will return NULL
 287   }
 288 
 289   Node *address = in(MemNode::Address);
 290   const Type *t_adr = phase->type(address);
 291   if (t_adr == Type::TOP)              return NodeSentinel; // caller will return NULL
 292 
 293   if (can_reshape && igvn != NULL &&
 294       (igvn->_worklist.member(address) ||
 295        igvn->_worklist.size() > 0 && (t_adr != adr_type())) ) {
 296     // The address's base and type may change when the address is processed.
 297     // Delay this mem node transformation until the address is processed.
 298     phase->is_IterGVN()->_worklist.push(this);
 299     return NodeSentinel; // caller will return NULL
 300   }
 301 
 302   // Do NOT remove or optimize the next lines: ensure a new alias index
 303   // is allocated for an oop pointer type before Escape Analysis.
 304   // Note: C++ will not remove it since the call has side effect.
 305   if (t_adr->isa_oopptr()) {
 306     int alias_idx = phase->C->get_alias_index(t_adr->is_ptr());
 307   }
 308 
 309 #ifdef ASSERT
 310   Node* base = NULL;
 311   if (address->is_AddP())
 312     base = address->in(AddPNode::Base);
 313   if (base != NULL && phase->type(base)->higher_equal(TypePtr::NULL_PTR) &&
 314       !t_adr->isa_rawptr()) {
 315     // Note: raw address has TOP base and top->higher_equal(TypePtr::NULL_PTR) is true.
 316     Compile* C = phase->C;
 317     tty->cr();
 318     tty->print_cr("===== NULL+offs not RAW address =====");
 319     if (C->is_dead_node(this->_idx))    tty->print_cr("'this' is dead");
 320     if ((ctl != NULL) && C->is_dead_node(ctl->_idx)) tty->print_cr("'ctl' is dead");
 321     if (C->is_dead_node(mem->_idx))     tty->print_cr("'mem' is dead");
 322     if (C->is_dead_node(address->_idx)) tty->print_cr("'address' is dead");
 323     if (C->is_dead_node(base->_idx))    tty->print_cr("'base' is dead");
 324     tty->cr();
 325     base->dump(1);
 326     tty->cr();
 327     this->dump(2);
 328     tty->print("this->adr_type():     "); adr_type()->dump(); tty->cr();
 329     tty->print("phase->type(address): "); t_adr->dump(); tty->cr();
 330     tty->print("phase->type(base):    "); phase->type(address)->dump(); tty->cr();
 331     tty->cr();
 332   }
 333   assert(base == NULL || t_adr->isa_rawptr() ||
 334         !phase->type(base)->higher_equal(TypePtr::NULL_PTR), "NULL+offs not RAW address?");
 335 #endif
 336 
 337   // Avoid independent memory operations
 338   Node* old_mem = mem;
 339 
 340   // The code which unhooks non-raw memories from complete (macro-expanded)
 341   // initializations was removed. After macro-expansion all stores catched
 342   // by Initialize node became raw stores and there is no information
 343   // which memory slices they modify. So it is unsafe to move any memory
 344   // operation above these stores. Also in most cases hooked non-raw memories
 345   // were already unhooked by using information from detect_ptr_independence()
 346   // and find_previous_store().
 347 
 348   if (mem->is_MergeMem()) {
 349     MergeMemNode* mmem = mem->as_MergeMem();
 350     const TypePtr *tp = t_adr->is_ptr();
 351 
 352     mem = step_through_mergemem(phase, mmem, tp, adr_type(), tty);
 353   }
 354 
 355   if (mem != old_mem) {
 356     set_req(MemNode::Memory, mem);
 357     if (can_reshape && old_mem->outcnt() == 0) {
 358         igvn->_worklist.push(old_mem);
 359     }
 360     if (phase->type( mem ) == Type::TOP) return NodeSentinel;
 361     return this;
 362   }
 363 
 364   // let the subclass continue analyzing...
 365   return NULL;
 366 }
 367 
 368 // Helper function for proving some simple control dominations.
 369 // Attempt to prove that all control inputs of 'dom' dominate 'sub'.
 370 // Already assumes that 'dom' is available at 'sub', and that 'sub'
 371 // is not a constant (dominated by the method's StartNode).
 372 // Used by MemNode::find_previous_store to prove that the
 373 // control input of a memory operation predates (dominates)
 374 // an allocation it wants to look past.
 375 bool MemNode::all_controls_dominate(Node* dom, Node* sub) {
 376   if (dom == NULL || dom->is_top() || sub == NULL || sub->is_top())
 377     return false; // Conservative answer for dead code
 378 
 379   // Check 'dom'. Skip Proj and CatchProj nodes.
 380   dom = dom->find_exact_control(dom);
 381   if (dom == NULL || dom->is_top())
 382     return false; // Conservative answer for dead code
 383 
 384   if (dom == sub) {
 385     // For the case when, for example, 'sub' is Initialize and the original
 386     // 'dom' is Proj node of the 'sub'.
 387     return false;
 388   }
 389 
 390   if (dom->is_Con() || dom->is_Start() || dom->is_Root() || dom == sub)
 391     return true;
 392 
 393   // 'dom' dominates 'sub' if its control edge and control edges
 394   // of all its inputs dominate or equal to sub's control edge.
 395 
 396   // Currently 'sub' is either Allocate, Initialize or Start nodes.
 397   // Or Region for the check in LoadNode::Ideal();
 398   // 'sub' should have sub->in(0) != NULL.
 399   assert(sub->is_Allocate() || sub->is_Initialize() || sub->is_Start() ||
 400          sub->is_Region() || sub->is_Call(), "expecting only these nodes");
 401 
 402   // Get control edge of 'sub'.
 403   Node* orig_sub = sub;
 404   sub = sub->find_exact_control(sub->in(0));
 405   if (sub == NULL || sub->is_top())
 406     return false; // Conservative answer for dead code
 407 
 408   assert(sub->is_CFG(), "expecting control");
 409 
 410   if (sub == dom)
 411     return true;
 412 
 413   if (sub->is_Start() || sub->is_Root())
 414     return false;
 415 
 416   {
 417     // Check all control edges of 'dom'.
 418 
 419     ResourceMark rm;
 420     Arena* arena = Thread::current()->resource_area();
 421     Node_List nlist(arena);
 422     Unique_Node_List dom_list(arena);
 423 
 424     dom_list.push(dom);
 425     bool only_dominating_controls = false;
 426 
 427     for (uint next = 0; next < dom_list.size(); next++) {
 428       Node* n = dom_list.at(next);
 429       if (n == orig_sub)
 430         return false; // One of dom's inputs dominated by sub.
 431       if (!n->is_CFG() && n->pinned()) {
 432         // Check only own control edge for pinned non-control nodes.
 433         n = n->find_exact_control(n->in(0));
 434         if (n == NULL || n->is_top())
 435           return false; // Conservative answer for dead code
 436         assert(n->is_CFG(), "expecting control");
 437         dom_list.push(n);
 438       } else if (n->is_Con() || n->is_Start() || n->is_Root()) {
 439         only_dominating_controls = true;
 440       } else if (n->is_CFG()) {
 441         if (n->dominates(sub, nlist))
 442           only_dominating_controls = true;
 443         else
 444           return false;
 445       } else {
 446         // First, own control edge.
 447         Node* m = n->find_exact_control(n->in(0));
 448         if (m != NULL) {
 449           if (m->is_top())
 450             return false; // Conservative answer for dead code
 451           dom_list.push(m);
 452         }
 453         // Now, the rest of edges.
 454         uint cnt = n->req();
 455         for (uint i = 1; i < cnt; i++) {
 456           m = n->find_exact_control(n->in(i));
 457           if (m == NULL || m->is_top())
 458             continue;
 459           dom_list.push(m);
 460         }
 461       }
 462     }
 463     return only_dominating_controls;
 464   }
 465 }
 466 
 467 //---------------------detect_ptr_independence---------------------------------
 468 // Used by MemNode::find_previous_store to prove that two base
 469 // pointers are never equal.
 470 // The pointers are accompanied by their associated allocations,
 471 // if any, which have been previously discovered by the caller.
 472 bool MemNode::detect_ptr_independence(Node* p1, AllocateNode* a1,
 473                                       Node* p2, AllocateNode* a2,
 474                                       PhaseTransform* phase) {
 475   // Attempt to prove that these two pointers cannot be aliased.
 476   // They may both manifestly be allocations, and they should differ.
 477   // Or, if they are not both allocations, they can be distinct constants.
 478   // Otherwise, one is an allocation and the other a pre-existing value.
 479   if (a1 == NULL && a2 == NULL) {           // neither an allocation
 480     return (p1 != p2) && p1->is_Con() && p2->is_Con();
 481   } else if (a1 != NULL && a2 != NULL) {    // both allocations
 482     return (a1 != a2);
 483   } else if (a1 != NULL) {                  // one allocation a1
 484     // (Note:  p2->is_Con implies p2->in(0)->is_Root, which dominates.)
 485     return all_controls_dominate(p2, a1);
 486   } else { //(a2 != NULL)                   // one allocation a2
 487     return all_controls_dominate(p1, a2);
 488   }
 489   return false;
 490 }
 491 
 492 
 493 // The logic for reordering loads and stores uses four steps:
 494 // (a) Walk carefully past stores and initializations which we
 495 //     can prove are independent of this load.
 496 // (b) Observe that the next memory state makes an exact match
 497 //     with self (load or store), and locate the relevant store.
 498 // (c) Ensure that, if we were to wire self directly to the store,
 499 //     the optimizer would fold it up somehow.
 500 // (d) Do the rewiring, and return, depending on some other part of
 501 //     the optimizer to fold up the load.
 502 // This routine handles steps (a) and (b).  Steps (c) and (d) are
 503 // specific to loads and stores, so they are handled by the callers.
 504 // (Currently, only LoadNode::Ideal has steps (c), (d).  More later.)
 505 //
 506 Node* MemNode::find_previous_store(PhaseTransform* phase) {
 507   Node*         ctrl   = in(MemNode::Control);
 508   Node*         adr    = in(MemNode::Address);
 509   intptr_t      offset = 0;
 510   Node*         base   = AddPNode::Ideal_base_and_offset(adr, phase, offset);
 511   AllocateNode* alloc  = AllocateNode::Ideal_allocation(base, phase);
 512 
 513   if (offset == Type::OffsetBot)
 514     return NULL;            // cannot unalias unless there are precise offsets
 515 
 516   const TypeOopPtr *addr_t = adr->bottom_type()->isa_oopptr();
 517 
 518   intptr_t size_in_bytes = memory_size();
 519 
 520   Node* mem = in(MemNode::Memory);   // start searching here...
 521 
 522   int cnt = 50;             // Cycle limiter
 523   for (;;) {                // While we can dance past unrelated stores...
 524     if (--cnt < 0)  break;  // Caught in cycle or a complicated dance?
 525 
 526     if (mem->is_Store()) {
 527       Node* st_adr = mem->in(MemNode::Address);
 528       intptr_t st_offset = 0;
 529       Node* st_base = AddPNode::Ideal_base_and_offset(st_adr, phase, st_offset);
 530       if (st_base == NULL)
 531         break;              // inscrutable pointer
 532       if (st_offset != offset && st_offset != Type::OffsetBot) {
 533         const int MAX_STORE = BytesPerLong;
 534         if (st_offset >= offset + size_in_bytes ||
 535             st_offset <= offset - MAX_STORE ||
 536             st_offset <= offset - mem->as_Store()->memory_size()) {
 537           // Success:  The offsets are provably independent.
 538           // (You may ask, why not just test st_offset != offset and be done?
 539           // The answer is that stores of different sizes can co-exist
 540           // in the same sequence of RawMem effects.  We sometimes initialize
 541           // a whole 'tile' of array elements with a single jint or jlong.)
 542           mem = mem->in(MemNode::Memory);
 543           continue;           // (a) advance through independent store memory
 544         }
 545       }
 546       if (st_base != base &&
 547           detect_ptr_independence(base, alloc,
 548                                   st_base,
 549                                   AllocateNode::Ideal_allocation(st_base, phase),
 550                                   phase)) {
 551         // Success:  The bases are provably independent.
 552         mem = mem->in(MemNode::Memory);
 553         continue;           // (a) advance through independent store memory
 554       }
 555 
 556       // (b) At this point, if the bases or offsets do not agree, we lose,
 557       // since we have not managed to prove 'this' and 'mem' independent.
 558       if (st_base == base && st_offset == offset) {
 559         return mem;         // let caller handle steps (c), (d)
 560       }
 561 
 562     } else if (mem->is_Proj() && mem->in(0)->is_Initialize()) {
 563       InitializeNode* st_init = mem->in(0)->as_Initialize();
 564       AllocateNode*  st_alloc = st_init->allocation();
 565       if (st_alloc == NULL)
 566         break;              // something degenerated
 567       bool known_identical = false;
 568       bool known_independent = false;
 569       if (alloc == st_alloc)
 570         known_identical = true;
 571       else if (alloc != NULL)
 572         known_independent = true;
 573       else if (all_controls_dominate(this, st_alloc))
 574         known_independent = true;
 575 
 576       if (known_independent) {
 577         // The bases are provably independent: Either they are
 578         // manifestly distinct allocations, or else the control
 579         // of this load dominates the store's allocation.
 580         int alias_idx = phase->C->get_alias_index(adr_type());
 581         if (alias_idx == Compile::AliasIdxRaw) {
 582           mem = st_alloc->in(TypeFunc::Memory);
 583         } else {
 584           mem = st_init->memory(alias_idx);
 585         }
 586         continue;           // (a) advance through independent store memory
 587       }
 588 
 589       // (b) at this point, if we are not looking at a store initializing
 590       // the same allocation we are loading from, we lose.
 591       if (known_identical) {
 592         // From caller, can_see_stored_value will consult find_captured_store.
 593         return mem;         // let caller handle steps (c), (d)
 594       }
 595 
 596     } else if (addr_t != NULL && addr_t->is_known_instance_field()) {
 597       // Can't use optimize_simple_memory_chain() since it needs PhaseGVN.
 598       if (mem->is_Proj() && mem->in(0)->is_Call()) {
 599         CallNode *call = mem->in(0)->as_Call();
 600         if (!call->may_modify(addr_t, phase)) {
 601           mem = call->in(TypeFunc::Memory);
 602           continue;         // (a) advance through independent call memory
 603         }
 604       } else if (mem->is_Proj() && mem->in(0)->is_MemBar()) {
 605         mem = mem->in(0)->in(TypeFunc::Memory);
 606         continue;           // (a) advance through independent MemBar memory
 607       } else if (mem->is_ClearArray()) {
 608         if (ClearArrayNode::step_through(&mem, (uint)addr_t->instance_id(), phase)) {
 609           // (the call updated 'mem' value)
 610           continue;         // (a) advance through independent allocation memory
 611         } else {
 612           // Can not bypass initialization of the instance
 613           // we are looking for.
 614           return mem;
 615         }
 616       } else if (mem->is_MergeMem()) {
 617         int alias_idx = phase->C->get_alias_index(adr_type());
 618         mem = mem->as_MergeMem()->memory_at(alias_idx);
 619         continue;           // (a) advance through independent MergeMem memory
 620       }
 621     }
 622 
 623     // Unless there is an explicit 'continue', we must bail out here,
 624     // because 'mem' is an inscrutable memory state (e.g., a call).
 625     break;
 626   }
 627 
 628   return NULL;              // bail out
 629 }
 630 
 631 //----------------------calculate_adr_type-------------------------------------
 632 // Helper function.  Notices when the given type of address hits top or bottom.
 633 // Also, asserts a cross-check of the type against the expected address type.
 634 const TypePtr* MemNode::calculate_adr_type(const Type* t, const TypePtr* cross_check) {
 635   if (t == Type::TOP)  return NULL; // does not touch memory any more?
 636   #ifdef PRODUCT
 637   cross_check = NULL;
 638   #else
 639   if (!VerifyAliases || is_error_reported() || Node::in_dump())  cross_check = NULL;
 640   #endif
 641   const TypePtr* tp = t->isa_ptr();
 642   if (tp == NULL) {
 643     assert(cross_check == NULL || cross_check == TypePtr::BOTTOM, "expected memory type must be wide");
 644     return TypePtr::BOTTOM;           // touches lots of memory
 645   } else {
 646     #ifdef ASSERT
 647     // %%%% [phh] We don't check the alias index if cross_check is
 648     //            TypeRawPtr::BOTTOM.  Needs to be investigated.
 649     if (cross_check != NULL &&
 650         cross_check != TypePtr::BOTTOM &&
 651         cross_check != TypeRawPtr::BOTTOM) {
 652       // Recheck the alias index, to see if it has changed (due to a bug).
 653       Compile* C = Compile::current();
 654       assert(C->get_alias_index(cross_check) == C->get_alias_index(tp),
 655              "must stay in the original alias category");
 656       // The type of the address must be contained in the adr_type,
 657       // disregarding "null"-ness.
 658       // (We make an exception for TypeRawPtr::BOTTOM, which is a bit bucket.)
 659       const TypePtr* tp_notnull = tp->join(TypePtr::NOTNULL)->is_ptr();
 660       assert(cross_check->meet(tp_notnull) == cross_check->remove_speculative(),
 661              "real address must not escape from expected memory type");
 662     }
 663     #endif
 664     return tp;
 665   }
 666 }
 667 
 668 //------------------------adr_phi_is_loop_invariant----------------------------
 669 // A helper function for Ideal_DU_postCCP to check if a Phi in a counted
 670 // loop is loop invariant. Make a quick traversal of Phi and associated
 671 // CastPP nodes, looking to see if they are a closed group within the loop.
 672 bool MemNode::adr_phi_is_loop_invariant(Node* adr_phi, Node* cast) {
 673   // The idea is that the phi-nest must boil down to only CastPP nodes
 674   // with the same data. This implies that any path into the loop already
 675   // includes such a CastPP, and so the original cast, whatever its input,
 676   // must be covered by an equivalent cast, with an earlier control input.
 677   ResourceMark rm;
 678 
 679   // The loop entry input of the phi should be the unique dominating
 680   // node for every Phi/CastPP in the loop.
 681   Unique_Node_List closure;
 682   closure.push(adr_phi->in(LoopNode::EntryControl));
 683 
 684   // Add the phi node and the cast to the worklist.
 685   Unique_Node_List worklist;
 686   worklist.push(adr_phi);
 687   if( cast != NULL ){
 688     if( !cast->is_ConstraintCast() ) return false;
 689     worklist.push(cast);
 690   }
 691 
 692   // Begin recursive walk of phi nodes.
 693   while( worklist.size() ){
 694     // Take a node off the worklist
 695     Node *n = worklist.pop();
 696     if( !closure.member(n) ){
 697       // Add it to the closure.
 698       closure.push(n);
 699       // Make a sanity check to ensure we don't waste too much time here.
 700       if( closure.size() > 20) return false;
 701       // This node is OK if:
 702       //  - it is a cast of an identical value
 703       //  - or it is a phi node (then we add its inputs to the worklist)
 704       // Otherwise, the node is not OK, and we presume the cast is not invariant
 705       if( n->is_ConstraintCast() ){
 706         worklist.push(n->in(1));
 707       } else if( n->is_Phi() ) {
 708         for( uint i = 1; i < n->req(); i++ ) {
 709           worklist.push(n->in(i));
 710         }
 711       } else {
 712         return false;
 713       }
 714     }
 715   }
 716 
 717   // Quit when the worklist is empty, and we've found no offending nodes.
 718   return true;
 719 }
 720 
 721 //------------------------------Ideal_DU_postCCP-------------------------------
 722 // Find any cast-away of null-ness and keep its control.  Null cast-aways are
 723 // going away in this pass and we need to make this memory op depend on the
 724 // gating null check.
 725 Node *MemNode::Ideal_DU_postCCP( PhaseCCP *ccp ) {
 726   return Ideal_common_DU_postCCP(ccp, this, in(MemNode::Address));
 727 }
 728 
 729 // I tried to leave the CastPP's in.  This makes the graph more accurate in
 730 // some sense; we get to keep around the knowledge that an oop is not-null
 731 // after some test.  Alas, the CastPP's interfere with GVN (some values are
 732 // the regular oop, some are the CastPP of the oop, all merge at Phi's which
 733 // cannot collapse, etc).  This cost us 10% on SpecJVM, even when I removed
 734 // some of the more trivial cases in the optimizer.  Removing more useless
 735 // Phi's started allowing Loads to illegally float above null checks.  I gave
 736 // up on this approach.  CNC 10/20/2000
 737 // This static method may be called not from MemNode (EncodePNode calls it).
 738 // Only the control edge of the node 'n' might be updated.
 739 Node *MemNode::Ideal_common_DU_postCCP( PhaseCCP *ccp, Node* n, Node* adr ) {
 740   Node *skipped_cast = NULL;
 741   // Need a null check?  Regular static accesses do not because they are
 742   // from constant addresses.  Array ops are gated by the range check (which
 743   // always includes a NULL check).  Just check field ops.
 744   if( n->in(MemNode::Control) == NULL ) {
 745     // Scan upwards for the highest location we can place this memory op.
 746     while( true ) {
 747       switch( adr->Opcode() ) {
 748 
 749       case Op_AddP:             // No change to NULL-ness, so peek thru AddP's
 750         adr = adr->in(AddPNode::Base);
 751         continue;
 752 
 753       case Op_DecodeN:         // No change to NULL-ness, so peek thru
 754       case Op_DecodeNKlass:
 755         adr = adr->in(1);
 756         continue;
 757 
 758       case Op_EncodeP:
 759       case Op_EncodePKlass:
 760         // EncodeP node's control edge could be set by this method
 761         // when EncodeP node depends on CastPP node.
 762         //
 763         // Use its control edge for memory op because EncodeP may go away
 764         // later when it is folded with following or preceding DecodeN node.
 765         if (adr->in(0) == NULL) {
 766           // Keep looking for cast nodes.
 767           adr = adr->in(1);
 768           continue;
 769         }
 770         ccp->hash_delete(n);
 771         n->set_req(MemNode::Control, adr->in(0));
 772         ccp->hash_insert(n);
 773         return n;
 774 
 775       case Op_CastPP:
 776         // If the CastPP is useless, just peek on through it.
 777         if( ccp->type(adr) == ccp->type(adr->in(1)) ) {
 778           // Remember the cast that we've peeked though. If we peek
 779           // through more than one, then we end up remembering the highest
 780           // one, that is, if in a loop, the one closest to the top.
 781           skipped_cast = adr;
 782           adr = adr->in(1);
 783           continue;
 784         }
 785         // CastPP is going away in this pass!  We need this memory op to be
 786         // control-dependent on the test that is guarding the CastPP.
 787         ccp->hash_delete(n);
 788         n->set_req(MemNode::Control, adr->in(0));
 789         ccp->hash_insert(n);
 790         return n;
 791 
 792       case Op_Phi:
 793         // Attempt to float above a Phi to some dominating point.
 794         if (adr->in(0) != NULL && adr->in(0)->is_CountedLoop()) {
 795           // If we've already peeked through a Cast (which could have set the
 796           // control), we can't float above a Phi, because the skipped Cast
 797           // may not be loop invariant.
 798           if (adr_phi_is_loop_invariant(adr, skipped_cast)) {
 799             adr = adr->in(1);
 800             continue;
 801           }
 802         }
 803 
 804         // Intentional fallthrough!
 805 
 806         // No obvious dominating point.  The mem op is pinned below the Phi
 807         // by the Phi itself.  If the Phi goes away (no true value is merged)
 808         // then the mem op can float, but not indefinitely.  It must be pinned
 809         // behind the controls leading to the Phi.
 810       case Op_CheckCastPP:
 811         // These usually stick around to change address type, however a
 812         // useless one can be elided and we still need to pick up a control edge
 813         if (adr->in(0) == NULL) {
 814           // This CheckCastPP node has NO control and is likely useless. But we
 815           // need check further up the ancestor chain for a control input to keep
 816           // the node in place. 4959717.
 817           skipped_cast = adr;
 818           adr = adr->in(1);
 819           continue;
 820         }
 821         ccp->hash_delete(n);
 822         n->set_req(MemNode::Control, adr->in(0));
 823         ccp->hash_insert(n);
 824         return n;
 825 
 826         // List of "safe" opcodes; those that implicitly block the memory
 827         // op below any null check.
 828       case Op_CastX2P:          // no null checks on native pointers
 829       case Op_Parm:             // 'this' pointer is not null
 830       case Op_LoadP:            // Loading from within a klass
 831       case Op_LoadN:            // Loading from within a klass
 832       case Op_LoadKlass:        // Loading from within a klass
 833       case Op_LoadNKlass:       // Loading from within a klass
 834       case Op_ConP:             // Loading from a klass
 835       case Op_ConN:             // Loading from a klass
 836       case Op_ConNKlass:        // Loading from a klass
 837       case Op_CreateEx:         // Sucking up the guts of an exception oop
 838       case Op_Con:              // Reading from TLS
 839       case Op_CMoveP:           // CMoveP is pinned
 840       case Op_CMoveN:           // CMoveN is pinned
 841         break;                  // No progress
 842 
 843       case Op_Proj:             // Direct call to an allocation routine
 844       case Op_SCMemProj:        // Memory state from store conditional ops
 845 #ifdef ASSERT
 846         {
 847           assert(adr->as_Proj()->_con == TypeFunc::Parms, "must be return value");
 848           const Node* call = adr->in(0);
 849           if (call->is_CallJava()) {
 850             const CallJavaNode* call_java = call->as_CallJava();
 851             const TypeTuple *r = call_java->tf()->range();
 852             assert(r->cnt() > TypeFunc::Parms, "must return value");
 853             const Type* ret_type = r->field_at(TypeFunc::Parms);
 854             assert(ret_type && ret_type->isa_ptr(), "must return pointer");
 855             // We further presume that this is one of
 856             // new_instance_Java, new_array_Java, or
 857             // the like, but do not assert for this.
 858           } else if (call->is_Allocate()) {
 859             // similar case to new_instance_Java, etc.
 860           } else if (!call->is_CallLeaf()) {
 861             // Projections from fetch_oop (OSR) are allowed as well.
 862             ShouldNotReachHere();
 863           }
 864         }
 865 #endif
 866         break;
 867       default:
 868         ShouldNotReachHere();
 869       }
 870       break;
 871     }
 872   }
 873 
 874   return  NULL;               // No progress
 875 }
 876 
 877 
 878 //=============================================================================
 879 uint LoadNode::size_of() const { return sizeof(*this); }
 880 uint LoadNode::cmp( const Node &n ) const
 881 { return !Type::cmp( _type, ((LoadNode&)n)._type ); }
 882 const Type *LoadNode::bottom_type() const { return _type; }
 883 uint LoadNode::ideal_reg() const {
 884   return _type->ideal_reg();
 885 }
 886 
 887 #ifndef PRODUCT
 888 void LoadNode::dump_spec(outputStream *st) const {
 889   MemNode::dump_spec(st);
 890   if( !Verbose && !WizardMode ) {
 891     // standard dump does this in Verbose and WizardMode
 892     st->print(" #"); _type->dump_on(st);
 893   }
 894 }
 895 #endif
 896 
 897 #ifdef ASSERT
 898 //----------------------------is_immutable_value-------------------------------
 899 // Helper function to allow a raw load without control edge for some cases
 900 bool LoadNode::is_immutable_value(Node* adr) {
 901   return (adr->is_AddP() && adr->in(AddPNode::Base)->is_top() &&
 902           adr->in(AddPNode::Address)->Opcode() == Op_ThreadLocal &&
 903           (adr->in(AddPNode::Offset)->find_intptr_t_con(-1) ==
 904            in_bytes(JavaThread::osthread_offset())));
 905 }
 906 #endif
 907 
 908 //----------------------------LoadNode::make-----------------------------------
 909 // Polymorphic factory method:
 910 Node *LoadNode::make(PhaseGVN& gvn, Node *ctl, Node *mem, Node *adr, const TypePtr* adr_type, const Type *rt, BasicType bt, MemOrd mo) {
 911   Compile* C = gvn.C;
 912 
 913   // sanity check the alias category against the created node type
 914   assert(!(adr_type->isa_oopptr() &&
 915            adr_type->offset() == oopDesc::klass_offset_in_bytes()),
 916          "use LoadKlassNode instead");
 917   assert(!(adr_type->isa_aryptr() &&
 918            adr_type->offset() == arrayOopDesc::length_offset_in_bytes()),
 919          "use LoadRangeNode instead");
 920   // Check control edge of raw loads
 921   assert( ctl != NULL || C->get_alias_index(adr_type) != Compile::AliasIdxRaw ||
 922           // oop will be recorded in oop map if load crosses safepoint
 923           rt->isa_oopptr() || is_immutable_value(adr),
 924           "raw memory operations should have control edge");
 925   switch (bt) {
 926   case T_BOOLEAN: return new (C) LoadUBNode(ctl, mem, adr, adr_type, rt->is_int(),  mo);
 927   case T_BYTE:    return new (C) LoadBNode (ctl, mem, adr, adr_type, rt->is_int(),  mo);
 928   case T_INT:     return new (C) LoadINode (ctl, mem, adr, adr_type, rt->is_int(),  mo);
 929   case T_CHAR:    return new (C) LoadUSNode(ctl, mem, adr, adr_type, rt->is_int(),  mo);
 930   case T_SHORT:   return new (C) LoadSNode (ctl, mem, adr, adr_type, rt->is_int(),  mo);
 931   case T_LONG:    return new (C) LoadLNode (ctl, mem, adr, adr_type, rt->is_long(), mo);
 932   case T_FLOAT:   return new (C) LoadFNode (ctl, mem, adr, adr_type, rt,            mo);
 933   case T_DOUBLE:  return new (C) LoadDNode (ctl, mem, adr, adr_type, rt,            mo);
 934   case T_ADDRESS: return new (C) LoadPNode (ctl, mem, adr, adr_type, rt->is_ptr(),  mo);
 935   case T_OBJECT:
 936 #ifdef _LP64
 937     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
 938       Node* load  = gvn.transform(new (C) LoadNNode(ctl, mem, adr, adr_type, rt->make_narrowoop(), mo));
 939       return new (C) DecodeNNode(load, load->bottom_type()->make_ptr());
 940     } else
 941 #endif
 942     {
 943       assert(!adr->bottom_type()->is_ptr_to_narrowoop() && !adr->bottom_type()->is_ptr_to_narrowklass(), "should have got back a narrow oop");
 944       return new (C) LoadPNode(ctl, mem, adr, adr_type, rt->is_oopptr(), mo);
 945     }
 946   }
 947   ShouldNotReachHere();
 948   return (LoadNode*)NULL;
 949 }
 950 
 951 LoadLNode* LoadLNode::make_atomic(Compile *C, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, const Type* rt, MemOrd mo) {
 952   bool require_atomic = true;
 953   return new (C) LoadLNode(ctl, mem, adr, adr_type, rt->is_long(), mo, require_atomic);
 954 }
 955 
 956 
 957 
 958 
 959 //------------------------------hash-------------------------------------------
 960 uint LoadNode::hash() const {
 961   // unroll addition of interesting fields
 962   return (uintptr_t)in(Control) + (uintptr_t)in(Memory) + (uintptr_t)in(Address);
 963 }
 964 
 965 static bool skip_through_membars(Compile::AliasType* atp, const TypeInstPtr* tp, bool eliminate_boxing) {
 966   if ((atp != NULL) && (atp->index() >= Compile::AliasIdxRaw)) {
 967     bool non_volatile = (atp->field() != NULL) && !atp->field()->is_volatile();
 968     bool is_stable_ary = FoldStableValues &&
 969                          (tp != NULL) && (tp->isa_aryptr() != NULL) &&
 970                          tp->isa_aryptr()->is_stable();
 971 
 972     return (eliminate_boxing && non_volatile) || is_stable_ary;
 973   }
 974 
 975   return false;
 976 }
 977 
 978 //---------------------------can_see_stored_value------------------------------
 979 // This routine exists to make sure this set of tests is done the same
 980 // everywhere.  We need to make a coordinated change: first LoadNode::Ideal
 981 // will change the graph shape in a way which makes memory alive twice at the
 982 // same time (uses the Oracle model of aliasing), then some
 983 // LoadXNode::Identity will fold things back to the equivalence-class model
 984 // of aliasing.
 985 Node* MemNode::can_see_stored_value(Node* st, PhaseTransform* phase) const {
 986   Node* ld_adr = in(MemNode::Address);
 987   intptr_t ld_off = 0;
 988   AllocateNode* ld_alloc = AllocateNode::Ideal_allocation(ld_adr, phase, ld_off);
 989   const TypeInstPtr* tp = phase->type(ld_adr)->isa_instptr();
 990   Compile::AliasType* atp = (tp != NULL) ? phase->C->alias_type(tp) : NULL;
 991   // This is more general than load from boxing objects.
 992   if (skip_through_membars(atp, tp, phase->C->eliminate_boxing())) {
 993     uint alias_idx = atp->index();
 994     bool final = !atp->is_rewritable();
 995     Node* result = NULL;
 996     Node* current = st;
 997     // Skip through chains of MemBarNodes checking the MergeMems for
 998     // new states for the slice of this load.  Stop once any other
 999     // kind of node is encountered.  Loads from final memory can skip
1000     // through any kind of MemBar but normal loads shouldn't skip
1001     // through MemBarAcquire since the could allow them to move out of
1002     // a synchronized region.
1003     while (current->is_Proj()) {
1004       int opc = current->in(0)->Opcode();
1005       if ((final && (opc == Op_MemBarAcquire ||
1006                      opc == Op_MemBarAcquireLock ||
1007                      opc == Op_LoadFence)) ||
1008           opc == Op_MemBarRelease ||
1009           opc == Op_StoreFence ||
1010           opc == Op_MemBarReleaseLock ||
1011           opc == Op_MemBarCPUOrder) {
1012         Node* mem = current->in(0)->in(TypeFunc::Memory);
1013         if (mem->is_MergeMem()) {
1014           MergeMemNode* merge = mem->as_MergeMem();
1015           Node* new_st = merge->memory_at(alias_idx);
1016           if (new_st == merge->base_memory()) {
1017             // Keep searching
1018             current = new_st;
1019             continue;
1020           }
1021           // Save the new memory state for the slice and fall through
1022           // to exit.
1023           result = new_st;
1024         }
1025       }
1026       break;
1027     }
1028     if (result != NULL) {
1029       st = result;
1030     }
1031   }
1032 
1033   // Loop around twice in the case Load -> Initialize -> Store.
1034   // (See PhaseIterGVN::add_users_to_worklist, which knows about this case.)
1035   for (int trip = 0; trip <= 1; trip++) {
1036 
1037     if (st->is_Store()) {
1038       Node* st_adr = st->in(MemNode::Address);
1039       if (!phase->eqv(st_adr, ld_adr)) {
1040         // Try harder before giving up...  Match raw and non-raw pointers.
1041         intptr_t st_off = 0;
1042         AllocateNode* alloc = AllocateNode::Ideal_allocation(st_adr, phase, st_off);
1043         if (alloc == NULL)       return NULL;
1044         if (alloc != ld_alloc)   return NULL;
1045         if (ld_off != st_off)    return NULL;
1046         // At this point we have proven something like this setup:
1047         //  A = Allocate(...)
1048         //  L = LoadQ(,  AddP(CastPP(, A.Parm),, #Off))
1049         //  S = StoreQ(, AddP(,        A.Parm  , #Off), V)
1050         // (Actually, we haven't yet proven the Q's are the same.)
1051         // In other words, we are loading from a casted version of
1052         // the same pointer-and-offset that we stored to.
1053         // Thus, we are able to replace L by V.
1054       }
1055       // Now prove that we have a LoadQ matched to a StoreQ, for some Q.
1056       if (store_Opcode() != st->Opcode())
1057         return NULL;
1058       return st->in(MemNode::ValueIn);
1059     }
1060 
1061     // A load from a freshly-created object always returns zero.
1062     // (This can happen after LoadNode::Ideal resets the load's memory input
1063     // to find_captured_store, which returned InitializeNode::zero_memory.)
1064     if (st->is_Proj() && st->in(0)->is_Allocate() &&
1065         (st->in(0) == ld_alloc) &&
1066         (ld_off >= st->in(0)->as_Allocate()->minimum_header_size())) {
1067       // return a zero value for the load's basic type
1068       // (This is one of the few places where a generic PhaseTransform
1069       // can create new nodes.  Think of it as lazily manifesting
1070       // virtually pre-existing constants.)
1071       return phase->zerocon(memory_type());
1072     }
1073 
1074     // A load from an initialization barrier can match a captured store.
1075     if (st->is_Proj() && st->in(0)->is_Initialize()) {
1076       InitializeNode* init = st->in(0)->as_Initialize();
1077       AllocateNode* alloc = init->allocation();
1078       if ((alloc != NULL) && (alloc == ld_alloc)) {
1079         // examine a captured store value
1080         st = init->find_captured_store(ld_off, memory_size(), phase);
1081         if (st != NULL)
1082           continue;             // take one more trip around
1083       }
1084     }
1085 
1086     // Load boxed value from result of valueOf() call is input parameter.
1087     if (this->is_Load() && ld_adr->is_AddP() &&
1088         (tp != NULL) && tp->is_ptr_to_boxed_value()) {
1089       intptr_t ignore = 0;
1090       Node* base = AddPNode::Ideal_base_and_offset(ld_adr, phase, ignore);
1091       if (base != NULL && base->is_Proj() &&
1092           base->as_Proj()->_con == TypeFunc::Parms &&
1093           base->in(0)->is_CallStaticJava() &&
1094           base->in(0)->as_CallStaticJava()->is_boxing_method()) {
1095         return base->in(0)->in(TypeFunc::Parms);
1096       }
1097     }
1098 
1099     break;
1100   }
1101 
1102   return NULL;
1103 }
1104 
1105 //----------------------is_instance_field_load_with_local_phi------------------
1106 bool LoadNode::is_instance_field_load_with_local_phi(Node* ctrl) {
1107   if( in(Memory)->is_Phi() && in(Memory)->in(0) == ctrl &&
1108       in(Address)->is_AddP() ) {
1109     const TypeOopPtr* t_oop = in(Address)->bottom_type()->isa_oopptr();
1110     // Only instances and boxed values.
1111     if( t_oop != NULL &&
1112         (t_oop->is_ptr_to_boxed_value() ||
1113          t_oop->is_known_instance_field()) &&
1114         t_oop->offset() != Type::OffsetBot &&
1115         t_oop->offset() != Type::OffsetTop) {
1116       return true;
1117     }
1118   }
1119   return false;
1120 }
1121 
1122 //------------------------------Identity---------------------------------------
1123 // Loads are identity if previous store is to same address
1124 Node *LoadNode::Identity( PhaseTransform *phase ) {
1125   // If the previous store-maker is the right kind of Store, and the store is
1126   // to the same address, then we are equal to the value stored.
1127   Node* mem = in(Memory);
1128   Node* value = can_see_stored_value(mem, phase);
1129   if( value ) {
1130     // byte, short & char stores truncate naturally.
1131     // A load has to load the truncated value which requires
1132     // some sort of masking operation and that requires an
1133     // Ideal call instead of an Identity call.
1134     if (memory_size() < BytesPerInt) {
1135       // If the input to the store does not fit with the load's result type,
1136       // it must be truncated via an Ideal call.
1137       if (!phase->type(value)->higher_equal(phase->type(this)))
1138         return this;
1139     }
1140     // (This works even when value is a Con, but LoadNode::Value
1141     // usually runs first, producing the singleton type of the Con.)
1142     return value;
1143   }
1144 
1145   // Search for an existing data phi which was generated before for the same
1146   // instance's field to avoid infinite generation of phis in a loop.
1147   Node *region = mem->in(0);
1148   if (is_instance_field_load_with_local_phi(region)) {
1149     const TypeOopPtr *addr_t = in(Address)->bottom_type()->isa_oopptr();
1150     int this_index  = phase->C->get_alias_index(addr_t);
1151     int this_offset = addr_t->offset();
1152     int this_iid    = addr_t->instance_id();
1153     if (!addr_t->is_known_instance() &&
1154          addr_t->is_ptr_to_boxed_value()) {
1155       // Use _idx of address base (could be Phi node) for boxed values.
1156       intptr_t   ignore = 0;
1157       Node*      base = AddPNode::Ideal_base_and_offset(in(Address), phase, ignore);
1158       this_iid = base->_idx;
1159     }
1160     const Type* this_type = bottom_type();
1161     for (DUIterator_Fast imax, i = region->fast_outs(imax); i < imax; i++) {
1162       Node* phi = region->fast_out(i);
1163       if (phi->is_Phi() && phi != mem &&
1164           phi->as_Phi()->is_same_inst_field(this_type, this_iid, this_index, this_offset)) {
1165         return phi;
1166       }
1167     }
1168   }
1169 
1170   return this;
1171 }
1172 
1173 // We're loading from an object which has autobox behaviour.
1174 // If this object is result of a valueOf call we'll have a phi
1175 // merging a newly allocated object and a load from the cache.
1176 // We want to replace this load with the original incoming
1177 // argument to the valueOf call.
1178 Node* LoadNode::eliminate_autobox(PhaseGVN* phase) {
1179   assert(phase->C->eliminate_boxing(), "sanity");
1180   intptr_t ignore = 0;
1181   Node* base = AddPNode::Ideal_base_and_offset(in(Address), phase, ignore);
1182   if ((base == NULL) || base->is_Phi()) {
1183     // Push the loads from the phi that comes from valueOf up
1184     // through it to allow elimination of the loads and the recovery
1185     // of the original value. It is done in split_through_phi().
1186     return NULL;
1187   } else if (base->is_Load() ||
1188              base->is_DecodeN() && base->in(1)->is_Load()) {
1189     // Eliminate the load of boxed value for integer types from the cache
1190     // array by deriving the value from the index into the array.
1191     // Capture the offset of the load and then reverse the computation.
1192 
1193     // Get LoadN node which loads a boxing object from 'cache' array.
1194     if (base->is_DecodeN()) {
1195       base = base->in(1);
1196     }
1197     if (!base->in(Address)->is_AddP()) {
1198       return NULL; // Complex address
1199     }
1200     AddPNode* address = base->in(Address)->as_AddP();
1201     Node* cache_base = address->in(AddPNode::Base);
1202     if ((cache_base != NULL) && cache_base->is_DecodeN()) {
1203       // Get ConP node which is static 'cache' field.
1204       cache_base = cache_base->in(1);
1205     }
1206     if ((cache_base != NULL) && cache_base->is_Con()) {
1207       const TypeAryPtr* base_type = cache_base->bottom_type()->isa_aryptr();
1208       if ((base_type != NULL) && base_type->is_autobox_cache()) {
1209         Node* elements[4];
1210         int shift = exact_log2(type2aelembytes(T_OBJECT));
1211         int count = address->unpack_offsets(elements, ARRAY_SIZE(elements));
1212         if ((count >  0) && elements[0]->is_Con() &&
1213             ((count == 1) ||
1214              (count == 2) && elements[1]->Opcode() == Op_LShiftX &&
1215                              elements[1]->in(2) == phase->intcon(shift))) {
1216           ciObjArray* array = base_type->const_oop()->as_obj_array();
1217           // Fetch the box object cache[0] at the base of the array and get its value
1218           ciInstance* box = array->obj_at(0)->as_instance();
1219           ciInstanceKlass* ik = box->klass()->as_instance_klass();
1220           assert(ik->is_box_klass(), "sanity");
1221           assert(ik->nof_nonstatic_fields() == 1, "change following code");
1222           if (ik->nof_nonstatic_fields() == 1) {
1223             // This should be true nonstatic_field_at requires calling
1224             // nof_nonstatic_fields so check it anyway
1225             ciConstant c = box->field_value(ik->nonstatic_field_at(0));
1226             BasicType bt = c.basic_type();
1227             // Only integer types have boxing cache.
1228             assert(bt == T_BOOLEAN || bt == T_CHAR  ||
1229                    bt == T_BYTE    || bt == T_SHORT ||
1230                    bt == T_INT     || bt == T_LONG, err_msg_res("wrong type = %s", type2name(bt)));
1231             jlong cache_low = (bt == T_LONG) ? c.as_long() : c.as_int();
1232             if (cache_low != (int)cache_low) {
1233               return NULL; // should not happen since cache is array indexed by value
1234             }
1235             jlong offset = arrayOopDesc::base_offset_in_bytes(T_OBJECT) - (cache_low << shift);
1236             if (offset != (int)offset) {
1237               return NULL; // should not happen since cache is array indexed by value
1238             }
1239            // Add up all the offsets making of the address of the load
1240             Node* result = elements[0];
1241             for (int i = 1; i < count; i++) {
1242               result = phase->transform(new (phase->C) AddXNode(result, elements[i]));
1243             }
1244             // Remove the constant offset from the address and then
1245             result = phase->transform(new (phase->C) AddXNode(result, phase->MakeConX(-(int)offset)));
1246             // remove the scaling of the offset to recover the original index.
1247             if (result->Opcode() == Op_LShiftX && result->in(2) == phase->intcon(shift)) {
1248               // Peel the shift off directly but wrap it in a dummy node
1249               // since Ideal can't return existing nodes
1250               result = new (phase->C) RShiftXNode(result->in(1), phase->intcon(0));
1251             } else if (result->is_Add() && result->in(2)->is_Con() &&
1252                        result->in(1)->Opcode() == Op_LShiftX &&
1253                        result->in(1)->in(2) == phase->intcon(shift)) {
1254               // We can't do general optimization: ((X<<Z) + Y) >> Z ==> X + (Y>>Z)
1255               // but for boxing cache access we know that X<<Z will not overflow
1256               // (there is range check) so we do this optimizatrion by hand here.
1257               Node* add_con = new (phase->C) RShiftXNode(result->in(2), phase->intcon(shift));
1258               result = new (phase->C) AddXNode(result->in(1)->in(1), phase->transform(add_con));
1259             } else {
1260               result = new (phase->C) RShiftXNode(result, phase->intcon(shift));
1261             }
1262 #ifdef _LP64
1263             if (bt != T_LONG) {
1264               result = new (phase->C) ConvL2INode(phase->transform(result));
1265             }
1266 #else
1267             if (bt == T_LONG) {
1268               result = new (phase->C) ConvI2LNode(phase->transform(result));
1269             }
1270 #endif
1271             return result;
1272           }
1273         }
1274       }
1275     }
1276   }
1277   return NULL;
1278 }
1279 
1280 static bool stable_phi(PhiNode* phi, PhaseGVN *phase) {
1281   Node* region = phi->in(0);
1282   if (region == NULL) {
1283     return false; // Wait stable graph
1284   }
1285   uint cnt = phi->req();
1286   for (uint i = 1; i < cnt; i++) {
1287     Node* rc = region->in(i);
1288     if (rc == NULL || phase->type(rc) == Type::TOP)
1289       return false; // Wait stable graph
1290     Node* in = phi->in(i);
1291     if (in == NULL || phase->type(in) == Type::TOP)
1292       return false; // Wait stable graph
1293   }
1294   return true;
1295 }
1296 //------------------------------split_through_phi------------------------------
1297 // Split instance or boxed field load through Phi.
1298 Node *LoadNode::split_through_phi(PhaseGVN *phase) {
1299   Node* mem     = in(Memory);
1300   Node* address = in(Address);
1301   const TypeOopPtr *t_oop = phase->type(address)->isa_oopptr();
1302 
1303   assert((t_oop != NULL) &&
1304          (t_oop->is_known_instance_field() ||
1305           t_oop->is_ptr_to_boxed_value()), "invalide conditions");
1306 
1307   Compile* C = phase->C;
1308   intptr_t ignore = 0;
1309   Node*    base = AddPNode::Ideal_base_and_offset(address, phase, ignore);
1310   bool base_is_phi = (base != NULL) && base->is_Phi();
1311   bool load_boxed_values = t_oop->is_ptr_to_boxed_value() && C->aggressive_unboxing() &&
1312                            (base != NULL) && (base == address->in(AddPNode::Base)) &&
1313                            phase->type(base)->higher_equal(TypePtr::NOTNULL);
1314 
1315   if (!((mem->is_Phi() || base_is_phi) &&
1316         (load_boxed_values || t_oop->is_known_instance_field()))) {
1317     return NULL; // memory is not Phi
1318   }
1319 
1320   if (mem->is_Phi()) {
1321     if (!stable_phi(mem->as_Phi(), phase)) {
1322       return NULL; // Wait stable graph
1323     }
1324     uint cnt = mem->req();
1325     // Check for loop invariant memory.
1326     if (cnt == 3) {
1327       for (uint i = 1; i < cnt; i++) {
1328         Node* in = mem->in(i);
1329         Node*  m = optimize_memory_chain(in, t_oop, this, phase);
1330         if (m == mem) {
1331           set_req(Memory, mem->in(cnt - i));
1332           return this; // made change
1333         }
1334       }
1335     }
1336   }
1337   if (base_is_phi) {
1338     if (!stable_phi(base->as_Phi(), phase)) {
1339       return NULL; // Wait stable graph
1340     }
1341     uint cnt = base->req();
1342     // Check for loop invariant memory.
1343     if (cnt == 3) {
1344       for (uint i = 1; i < cnt; i++) {
1345         if (base->in(i) == base) {
1346           return NULL; // Wait stable graph
1347         }
1348       }
1349     }
1350   }
1351 
1352   bool load_boxed_phi = load_boxed_values && base_is_phi && (base->in(0) == mem->in(0));
1353 
1354   // Split through Phi (see original code in loopopts.cpp).
1355   assert(C->have_alias_type(t_oop), "instance should have alias type");
1356 
1357   // Do nothing here if Identity will find a value
1358   // (to avoid infinite chain of value phis generation).
1359   if (!phase->eqv(this, this->Identity(phase)))
1360     return NULL;
1361 
1362   // Select Region to split through.
1363   Node* region;
1364   if (!base_is_phi) {
1365     assert(mem->is_Phi(), "sanity");
1366     region = mem->in(0);
1367     // Skip if the region dominates some control edge of the address.
1368     if (!MemNode::all_controls_dominate(address, region))
1369       return NULL;
1370   } else if (!mem->is_Phi()) {
1371     assert(base_is_phi, "sanity");
1372     region = base->in(0);
1373     // Skip if the region dominates some control edge of the memory.
1374     if (!MemNode::all_controls_dominate(mem, region))
1375       return NULL;
1376   } else if (base->in(0) != mem->in(0)) {
1377     assert(base_is_phi && mem->is_Phi(), "sanity");
1378     if (MemNode::all_controls_dominate(mem, base->in(0))) {
1379       region = base->in(0);
1380     } else if (MemNode::all_controls_dominate(address, mem->in(0))) {
1381       region = mem->in(0);
1382     } else {
1383       return NULL; // complex graph
1384     }
1385   } else {
1386     assert(base->in(0) == mem->in(0), "sanity");
1387     region = mem->in(0);
1388   }
1389 
1390   const Type* this_type = this->bottom_type();
1391   int this_index  = C->get_alias_index(t_oop);
1392   int this_offset = t_oop->offset();
1393   int this_iid    = t_oop->instance_id();
1394   if (!t_oop->is_known_instance() && load_boxed_values) {
1395     // Use _idx of address base for boxed values.
1396     this_iid = base->_idx;
1397   }
1398   PhaseIterGVN* igvn = phase->is_IterGVN();
1399   Node* phi = new (C) PhiNode(region, this_type, NULL, this_iid, this_index, this_offset);
1400   for (uint i = 1; i < region->req(); i++) {
1401     Node* x;
1402     Node* the_clone = NULL;
1403     if (region->in(i) == C->top()) {
1404       x = C->top();      // Dead path?  Use a dead data op
1405     } else {
1406       x = this->clone();        // Else clone up the data op
1407       the_clone = x;            // Remember for possible deletion.
1408       // Alter data node to use pre-phi inputs
1409       if (this->in(0) == region) {
1410         x->set_req(0, region->in(i));
1411       } else {
1412         x->set_req(0, NULL);
1413       }
1414       if (mem->is_Phi() && (mem->in(0) == region)) {
1415         x->set_req(Memory, mem->in(i)); // Use pre-Phi input for the clone.
1416       }
1417       if (address->is_Phi() && address->in(0) == region) {
1418         x->set_req(Address, address->in(i)); // Use pre-Phi input for the clone
1419       }
1420       if (base_is_phi && (base->in(0) == region)) {
1421         Node* base_x = base->in(i); // Clone address for loads from boxed objects.
1422         Node* adr_x = phase->transform(new (C) AddPNode(base_x,base_x,address->in(AddPNode::Offset)));
1423         x->set_req(Address, adr_x);
1424       }
1425     }
1426     // Check for a 'win' on some paths
1427     const Type *t = x->Value(igvn);
1428 
1429     bool singleton = t->singleton();
1430 
1431     // See comments in PhaseIdealLoop::split_thru_phi().
1432     if (singleton && t == Type::TOP) {
1433       singleton &= region->is_Loop() && (i != LoopNode::EntryControl);
1434     }
1435 
1436     if (singleton) {
1437       x = igvn->makecon(t);
1438     } else {
1439       // We now call Identity to try to simplify the cloned node.
1440       // Note that some Identity methods call phase->type(this).
1441       // Make sure that the type array is big enough for
1442       // our new node, even though we may throw the node away.
1443       // (This tweaking with igvn only works because x is a new node.)
1444       igvn->set_type(x, t);
1445       // If x is a TypeNode, capture any more-precise type permanently into Node
1446       // otherwise it will be not updated during igvn->transform since
1447       // igvn->type(x) is set to x->Value() already.
1448       x->raise_bottom_type(t);
1449       Node *y = x->Identity(igvn);
1450       if (y != x) {
1451         x = y;
1452       } else {
1453         y = igvn->hash_find_insert(x);
1454         if (y) {
1455           x = y;
1456         } else {
1457           // Else x is a new node we are keeping
1458           // We do not need register_new_node_with_optimizer
1459           // because set_type has already been called.
1460           igvn->_worklist.push(x);
1461         }
1462       }
1463     }
1464     if (x != the_clone && the_clone != NULL) {
1465       igvn->remove_dead_node(the_clone);
1466     }
1467     phi->set_req(i, x);
1468   }
1469   // Record Phi
1470   igvn->register_new_node_with_optimizer(phi);
1471   return phi;
1472 }
1473 
1474 //------------------------------Ideal------------------------------------------
1475 // If the load is from Field memory and the pointer is non-null, we can
1476 // zero out the control input.
1477 // If the offset is constant and the base is an object allocation,
1478 // try to hook me up to the exact initializing store.
1479 Node *LoadNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1480   Node* p = MemNode::Ideal_common(phase, can_reshape);
1481   if (p)  return (p == NodeSentinel) ? NULL : p;
1482 
1483   Node* ctrl    = in(MemNode::Control);
1484   Node* address = in(MemNode::Address);
1485 
1486   // Skip up past a SafePoint control.  Cannot do this for Stores because
1487   // pointer stores & cardmarks must stay on the same side of a SafePoint.
1488   if( ctrl != NULL && ctrl->Opcode() == Op_SafePoint &&
1489       phase->C->get_alias_index(phase->type(address)->is_ptr()) != Compile::AliasIdxRaw ) {
1490     ctrl = ctrl->in(0);
1491     set_req(MemNode::Control,ctrl);
1492   }
1493 
1494   intptr_t ignore = 0;
1495   Node*    base   = AddPNode::Ideal_base_and_offset(address, phase, ignore);
1496   if (base != NULL
1497       && phase->C->get_alias_index(phase->type(address)->is_ptr()) != Compile::AliasIdxRaw) {
1498     // Check for useless control edge in some common special cases
1499     if (in(MemNode::Control) != NULL
1500         && phase->type(base)->higher_equal(TypePtr::NOTNULL)
1501         && all_controls_dominate(base, phase->C->start())) {
1502       // A method-invariant, non-null address (constant or 'this' argument).
1503       set_req(MemNode::Control, NULL);
1504     }
1505   }
1506 
1507   Node* mem = in(MemNode::Memory);
1508   const TypePtr *addr_t = phase->type(address)->isa_ptr();
1509 
1510   if (can_reshape && (addr_t != NULL)) {
1511     // try to optimize our memory input
1512     Node* opt_mem = MemNode::optimize_memory_chain(mem, addr_t, this, phase);
1513     if (opt_mem != mem) {
1514       set_req(MemNode::Memory, opt_mem);
1515       if (phase->type( opt_mem ) == Type::TOP) return NULL;
1516       return this;
1517     }
1518     const TypeOopPtr *t_oop = addr_t->isa_oopptr();
1519     if ((t_oop != NULL) &&
1520         (t_oop->is_known_instance_field() ||
1521          t_oop->is_ptr_to_boxed_value())) {
1522       PhaseIterGVN *igvn = phase->is_IterGVN();
1523       if (igvn != NULL && igvn->_worklist.member(opt_mem)) {
1524         // Delay this transformation until memory Phi is processed.
1525         phase->is_IterGVN()->_worklist.push(this);
1526         return NULL;
1527       }
1528       // Split instance field load through Phi.
1529       Node* result = split_through_phi(phase);
1530       if (result != NULL) return result;
1531 
1532       if (t_oop->is_ptr_to_boxed_value()) {
1533         Node* result = eliminate_autobox(phase);
1534         if (result != NULL) return result;
1535       }
1536     }
1537   }
1538 
1539   // Check for prior store with a different base or offset; make Load
1540   // independent.  Skip through any number of them.  Bail out if the stores
1541   // are in an endless dead cycle and report no progress.  This is a key
1542   // transform for Reflection.  However, if after skipping through the Stores
1543   // we can't then fold up against a prior store do NOT do the transform as
1544   // this amounts to using the 'Oracle' model of aliasing.  It leaves the same
1545   // array memory alive twice: once for the hoisted Load and again after the
1546   // bypassed Store.  This situation only works if EVERYBODY who does
1547   // anti-dependence work knows how to bypass.  I.e. we need all
1548   // anti-dependence checks to ask the same Oracle.  Right now, that Oracle is
1549   // the alias index stuff.  So instead, peek through Stores and IFF we can
1550   // fold up, do so.
1551   Node* prev_mem = find_previous_store(phase);
1552   // Steps (a), (b):  Walk past independent stores to find an exact match.
1553   if (prev_mem != NULL && prev_mem != in(MemNode::Memory)) {
1554     // (c) See if we can fold up on the spot, but don't fold up here.
1555     // Fold-up might require truncation (for LoadB/LoadS/LoadUS) or
1556     // just return a prior value, which is done by Identity calls.
1557     if (can_see_stored_value(prev_mem, phase)) {
1558       // Make ready for step (d):
1559       set_req(MemNode::Memory, prev_mem);
1560       return this;
1561     }
1562   }
1563 
1564   return NULL;                  // No further progress
1565 }
1566 
1567 // Helper to recognize certain Klass fields which are invariant across
1568 // some group of array types (e.g., int[] or all T[] where T < Object).
1569 const Type*
1570 LoadNode::load_array_final_field(const TypeKlassPtr *tkls,
1571                                  ciKlass* klass) const {
1572   if (tkls->offset() == in_bytes(Klass::modifier_flags_offset())) {
1573     // The field is Klass::_modifier_flags.  Return its (constant) value.
1574     // (Folds up the 2nd indirection in aClassConstant.getModifiers().)
1575     assert(this->Opcode() == Op_LoadI, "must load an int from _modifier_flags");
1576     return TypeInt::make(klass->modifier_flags());
1577   }
1578   if (tkls->offset() == in_bytes(Klass::access_flags_offset())) {
1579     // The field is Klass::_access_flags.  Return its (constant) value.
1580     // (Folds up the 2nd indirection in Reflection.getClassAccessFlags(aClassConstant).)
1581     assert(this->Opcode() == Op_LoadI, "must load an int from _access_flags");
1582     return TypeInt::make(klass->access_flags());
1583   }
1584   if (tkls->offset() == in_bytes(Klass::layout_helper_offset())) {
1585     // The field is Klass::_layout_helper.  Return its constant value if known.
1586     assert(this->Opcode() == Op_LoadI, "must load an int from _layout_helper");
1587     return TypeInt::make(klass->layout_helper());
1588   }
1589 
1590   // No match.
1591   return NULL;
1592 }
1593 
1594 // Try to constant-fold a stable array element.
1595 static const Type* fold_stable_ary_elem(const TypeAryPtr* ary, int off, BasicType loadbt) {
1596   assert(ary->const_oop(), "array should be constant");
1597   assert(ary->is_stable(), "array should be stable");
1598 
1599   // Decode the results of GraphKit::array_element_address.
1600   ciArray* aobj = ary->const_oop()->as_array();
1601   ciConstant con = aobj->element_value_by_offset(off);
1602 
1603   if (con.basic_type() != T_ILLEGAL && !con.is_null_or_zero()) {
1604     const Type* con_type = Type::make_from_constant(con);
1605     if (con_type != NULL) {
1606       if (con_type->isa_aryptr()) {
1607         // Join with the array element type, in case it is also stable.
1608         int dim = ary->stable_dimension();
1609         con_type = con_type->is_aryptr()->cast_to_stable(true, dim-1);
1610       }
1611       if (loadbt == T_NARROWOOP && con_type->isa_oopptr()) {
1612         con_type = con_type->make_narrowoop();
1613       }
1614 #ifndef PRODUCT
1615       if (TraceIterativeGVN) {
1616         tty->print("FoldStableValues: array element [off=%d]: con_type=", off);
1617         con_type->dump(); tty->cr();
1618       }
1619 #endif //PRODUCT
1620       return con_type;
1621     }
1622   }
1623   return NULL;
1624 }
1625 
1626 //------------------------------Value-----------------------------------------
1627 const Type *LoadNode::Value( PhaseTransform *phase ) const {
1628   // Either input is TOP ==> the result is TOP
1629   Node* mem = in(MemNode::Memory);
1630   const Type *t1 = phase->type(mem);
1631   if (t1 == Type::TOP)  return Type::TOP;
1632   Node* adr = in(MemNode::Address);
1633   const TypePtr* tp = phase->type(adr)->isa_ptr();
1634   if (tp == NULL || tp->empty())  return Type::TOP;
1635   int off = tp->offset();
1636   assert(off != Type::OffsetTop, "case covered by TypePtr::empty");
1637   Compile* C = phase->C;
1638 
1639   // Try to guess loaded type from pointer type
1640   if (tp->isa_aryptr()) {
1641     const TypeAryPtr* ary = tp->is_aryptr();
1642     const Type* t = ary->elem();
1643 
1644     // Determine whether the reference is beyond the header or not, by comparing
1645     // the offset against the offset of the start of the array's data.
1646     // Different array types begin at slightly different offsets (12 vs. 16).
1647     // We choose T_BYTE as an example base type that is least restrictive
1648     // as to alignment, which will therefore produce the smallest
1649     // possible base offset.
1650     const int min_base_off = arrayOopDesc::base_offset_in_bytes(T_BYTE);
1651     const bool off_beyond_header = ((uint)off >= (uint)min_base_off);
1652 
1653     // Try to constant-fold a stable array element.
1654     if (FoldStableValues && ary->is_stable() && ary->const_oop() != NULL) {
1655       // Make sure the reference is not into the header and the offset is constant
1656       if (off_beyond_header && adr->is_AddP() && off != Type::OffsetBot) {
1657         const Type* con_type = fold_stable_ary_elem(ary, off, memory_type());
1658         if (con_type != NULL) {
1659           return con_type;
1660         }
1661       }
1662     }
1663 
1664     // Don't do this for integer types. There is only potential profit if
1665     // the element type t is lower than _type; that is, for int types, if _type is
1666     // more restrictive than t.  This only happens here if one is short and the other
1667     // char (both 16 bits), and in those cases we've made an intentional decision
1668     // to use one kind of load over the other. See AndINode::Ideal and 4965907.
1669     // Also, do not try to narrow the type for a LoadKlass, regardless of offset.
1670     //
1671     // Yes, it is possible to encounter an expression like (LoadKlass p1:(AddP x x 8))
1672     // where the _gvn.type of the AddP is wider than 8.  This occurs when an earlier
1673     // copy p0 of (AddP x x 8) has been proven equal to p1, and the p0 has been
1674     // subsumed by p1.  If p1 is on the worklist but has not yet been re-transformed,
1675     // it is possible that p1 will have a type like Foo*[int+]:NotNull*+any.
1676     // In fact, that could have been the original type of p1, and p1 could have
1677     // had an original form like p1:(AddP x x (LShiftL quux 3)), where the
1678     // expression (LShiftL quux 3) independently optimized to the constant 8.
1679     if ((t->isa_int() == NULL) && (t->isa_long() == NULL)
1680         && (_type->isa_vect() == NULL)
1681         && Opcode() != Op_LoadKlass && Opcode() != Op_LoadNKlass) {
1682       // t might actually be lower than _type, if _type is a unique
1683       // concrete subclass of abstract class t.
1684       if (off_beyond_header) {  // is the offset beyond the header?
1685         const Type* jt = t->join_speculative(_type);
1686         // In any case, do not allow the join, per se, to empty out the type.
1687         if (jt->empty() && !t->empty()) {
1688           // This can happen if a interface-typed array narrows to a class type.
1689           jt = _type;
1690         }
1691 #ifdef ASSERT
1692         if (phase->C->eliminate_boxing() && adr->is_AddP()) {
1693           // The pointers in the autobox arrays are always non-null
1694           Node* base = adr->in(AddPNode::Base);
1695           if ((base != NULL) && base->is_DecodeN()) {
1696             // Get LoadN node which loads IntegerCache.cache field
1697             base = base->in(1);
1698           }
1699           if ((base != NULL) && base->is_Con()) {
1700             const TypeAryPtr* base_type = base->bottom_type()->isa_aryptr();
1701             if ((base_type != NULL) && base_type->is_autobox_cache()) {
1702               // It could be narrow oop
1703               assert(jt->make_ptr()->ptr() == TypePtr::NotNull,"sanity");
1704             }
1705           }
1706         }
1707 #endif
1708         return jt;
1709       }
1710     }
1711   } else if (tp->base() == Type::InstPtr) {
1712     ciEnv* env = C->env();
1713     const TypeInstPtr* tinst = tp->is_instptr();
1714     ciKlass* klass = tinst->klass();
1715     assert( off != Type::OffsetBot ||
1716             // arrays can be cast to Objects
1717             tp->is_oopptr()->klass()->is_java_lang_Object() ||
1718             // unsafe field access may not have a constant offset
1719             C->has_unsafe_access(),
1720             "Field accesses must be precise" );
1721     // For oop loads, we expect the _type to be precise
1722     if (klass == env->String_klass() &&
1723         adr->is_AddP() && off != Type::OffsetBot) {
1724       // For constant Strings treat the final fields as compile time constants.
1725       Node* base = adr->in(AddPNode::Base);
1726       const TypeOopPtr* t = phase->type(base)->isa_oopptr();
1727       if (t != NULL && t->singleton()) {
1728         ciField* field = env->String_klass()->get_field_by_offset(off, false);
1729         if (field != NULL && field->is_final()) {
1730           ciObject* string = t->const_oop();
1731           ciConstant constant = string->as_instance()->field_value(field);
1732           if (constant.basic_type() == T_INT) {
1733             return TypeInt::make(constant.as_int());
1734           } else if (constant.basic_type() == T_ARRAY) {
1735             if (adr->bottom_type()->is_ptr_to_narrowoop()) {
1736               return TypeNarrowOop::make_from_constant(constant.as_object(), true);
1737             } else {
1738               return TypeOopPtr::make_from_constant(constant.as_object(), true);
1739             }
1740           }
1741         }
1742       }
1743     }
1744     // Optimizations for constant objects
1745     ciObject* const_oop = tinst->const_oop();
1746     if (const_oop != NULL) {
1747       // For constant Boxed value treat the target field as a compile time constant.
1748       if (tinst->is_ptr_to_boxed_value()) {
1749         return tinst->get_const_boxed_value();
1750       } else
1751       // For constant CallSites treat the target field as a compile time constant.
1752       if (const_oop->is_call_site()) {
1753         ciCallSite* call_site = const_oop->as_call_site();
1754         ciField* field = call_site->klass()->as_instance_klass()->get_field_by_offset(off, /*is_static=*/ false);
1755         if (field != NULL && field->is_call_site_target()) {
1756           ciMethodHandle* target = call_site->get_target();
1757           if (target != NULL) {  // just in case
1758             ciConstant constant(T_OBJECT, target);
1759             const Type* t;
1760             if (adr->bottom_type()->is_ptr_to_narrowoop()) {
1761               t = TypeNarrowOop::make_from_constant(constant.as_object(), true);
1762             } else {
1763               t = TypeOopPtr::make_from_constant(constant.as_object(), true);
1764             }
1765             // Add a dependence for invalidation of the optimization.
1766             if (!call_site->is_constant_call_site()) {
1767               C->dependencies()->assert_call_site_target_value(call_site, target);
1768             }
1769             return t;
1770           }
1771         }
1772       }
1773     }
1774   } else if (tp->base() == Type::KlassPtr) {
1775     assert( off != Type::OffsetBot ||
1776             // arrays can be cast to Objects
1777             tp->is_klassptr()->klass()->is_java_lang_Object() ||
1778             // also allow array-loading from the primary supertype
1779             // array during subtype checks
1780             Opcode() == Op_LoadKlass,
1781             "Field accesses must be precise" );
1782     // For klass/static loads, we expect the _type to be precise
1783   }
1784 
1785   const TypeKlassPtr *tkls = tp->isa_klassptr();
1786   if (tkls != NULL && !StressReflectiveCode) {
1787     ciKlass* klass = tkls->klass();
1788     if (klass->is_loaded() && tkls->klass_is_exact()) {
1789       // We are loading a field from a Klass metaobject whose identity
1790       // is known at compile time (the type is "exact" or "precise").
1791       // Check for fields we know are maintained as constants by the VM.
1792       if (tkls->offset() == in_bytes(Klass::super_check_offset_offset())) {
1793         // The field is Klass::_super_check_offset.  Return its (constant) value.
1794         // (Folds up type checking code.)
1795         assert(Opcode() == Op_LoadI, "must load an int from _super_check_offset");
1796         return TypeInt::make(klass->super_check_offset());
1797       }
1798       // Compute index into primary_supers array
1799       juint depth = (tkls->offset() - in_bytes(Klass::primary_supers_offset())) / sizeof(Klass*);
1800       // Check for overflowing; use unsigned compare to handle the negative case.
1801       if( depth < ciKlass::primary_super_limit() ) {
1802         // The field is an element of Klass::_primary_supers.  Return its (constant) value.
1803         // (Folds up type checking code.)
1804         assert(Opcode() == Op_LoadKlass, "must load a klass from _primary_supers");
1805         ciKlass *ss = klass->super_of_depth(depth);
1806         return ss ? TypeKlassPtr::make(ss) : TypePtr::NULL_PTR;
1807       }
1808       const Type* aift = load_array_final_field(tkls, klass);
1809       if (aift != NULL)  return aift;
1810       if (tkls->offset() == in_bytes(ArrayKlass::component_mirror_offset())
1811           && klass->is_array_klass()) {
1812         // The field is ArrayKlass::_component_mirror.  Return its (constant) value.
1813         // (Folds up aClassConstant.getComponentType, common in Arrays.copyOf.)
1814         assert(Opcode() == Op_LoadP, "must load an oop from _component_mirror");
1815         return TypeInstPtr::make(klass->as_array_klass()->component_mirror());
1816       }
1817       if (tkls->offset() == in_bytes(Klass::java_mirror_offset())) {
1818         // The field is Klass::_java_mirror.  Return its (constant) value.
1819         // (Folds up the 2nd indirection in anObjConstant.getClass().)
1820         assert(Opcode() == Op_LoadP, "must load an oop from _java_mirror");
1821         return TypeInstPtr::make(klass->java_mirror());
1822       }
1823     }
1824 
1825     // We can still check if we are loading from the primary_supers array at a
1826     // shallow enough depth.  Even though the klass is not exact, entries less
1827     // than or equal to its super depth are correct.
1828     if (klass->is_loaded() ) {
1829       ciType *inner = klass;
1830       while( inner->is_obj_array_klass() )
1831         inner = inner->as_obj_array_klass()->base_element_type();
1832       if( inner->is_instance_klass() &&
1833           !inner->as_instance_klass()->flags().is_interface() ) {
1834         // Compute index into primary_supers array
1835         juint depth = (tkls->offset() - in_bytes(Klass::primary_supers_offset())) / sizeof(Klass*);
1836         // Check for overflowing; use unsigned compare to handle the negative case.
1837         if( depth < ciKlass::primary_super_limit() &&
1838             depth <= klass->super_depth() ) { // allow self-depth checks to handle self-check case
1839           // The field is an element of Klass::_primary_supers.  Return its (constant) value.
1840           // (Folds up type checking code.)
1841           assert(Opcode() == Op_LoadKlass, "must load a klass from _primary_supers");
1842           ciKlass *ss = klass->super_of_depth(depth);
1843           return ss ? TypeKlassPtr::make(ss) : TypePtr::NULL_PTR;
1844         }
1845       }
1846     }
1847 
1848     // If the type is enough to determine that the thing is not an array,
1849     // we can give the layout_helper a positive interval type.
1850     // This will help short-circuit some reflective code.
1851     if (tkls->offset() == in_bytes(Klass::layout_helper_offset())
1852         && !klass->is_array_klass() // not directly typed as an array
1853         && !klass->is_interface()  // specifically not Serializable & Cloneable
1854         && !klass->is_java_lang_Object()   // not the supertype of all T[]
1855         ) {
1856       // Note:  When interfaces are reliable, we can narrow the interface
1857       // test to (klass != Serializable && klass != Cloneable).
1858       assert(Opcode() == Op_LoadI, "must load an int from _layout_helper");
1859       jint min_size = Klass::instance_layout_helper(oopDesc::header_size(), false);
1860       // The key property of this type is that it folds up tests
1861       // for array-ness, since it proves that the layout_helper is positive.
1862       // Thus, a generic value like the basic object layout helper works fine.
1863       return TypeInt::make(min_size, max_jint, Type::WidenMin);
1864     }
1865   }
1866 
1867   // If we are loading from a freshly-allocated object, produce a zero,
1868   // if the load is provably beyond the header of the object.
1869   // (Also allow a variable load from a fresh array to produce zero.)
1870   const TypeOopPtr *tinst = tp->isa_oopptr();
1871   bool is_instance = (tinst != NULL) && tinst->is_known_instance_field();
1872   bool is_boxed_value = (tinst != NULL) && tinst->is_ptr_to_boxed_value();
1873   if (ReduceFieldZeroing || is_instance || is_boxed_value) {
1874     Node* value = can_see_stored_value(mem,phase);
1875     if (value != NULL && value->is_Con()) {
1876       assert(value->bottom_type()->higher_equal(_type),"sanity");
1877       return value->bottom_type();
1878     }
1879   }
1880 
1881   if (is_instance) {
1882     // If we have an instance type and our memory input is the
1883     // programs's initial memory state, there is no matching store,
1884     // so just return a zero of the appropriate type
1885     Node *mem = in(MemNode::Memory);
1886     if (mem->is_Parm() && mem->in(0)->is_Start()) {
1887       assert(mem->as_Parm()->_con == TypeFunc::Memory, "must be memory Parm");
1888       return Type::get_zero_type(_type->basic_type());
1889     }
1890   }
1891   return _type;
1892 }
1893 
1894 //------------------------------match_edge-------------------------------------
1895 // Do we Match on this edge index or not?  Match only the address.
1896 uint LoadNode::match_edge(uint idx) const {
1897   return idx == MemNode::Address;
1898 }
1899 
1900 //--------------------------LoadBNode::Ideal--------------------------------------
1901 //
1902 //  If the previous store is to the same address as this load,
1903 //  and the value stored was larger than a byte, replace this load
1904 //  with the value stored truncated to a byte.  If no truncation is
1905 //  needed, the replacement is done in LoadNode::Identity().
1906 //
1907 Node *LoadBNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1908   Node* mem = in(MemNode::Memory);
1909   Node* value = can_see_stored_value(mem,phase);
1910   if( value && !phase->type(value)->higher_equal( _type ) ) {
1911     Node *result = phase->transform( new (phase->C) LShiftINode(value, phase->intcon(24)) );
1912     return new (phase->C) RShiftINode(result, phase->intcon(24));
1913   }
1914   // Identity call will handle the case where truncation is not needed.
1915   return LoadNode::Ideal(phase, can_reshape);
1916 }
1917 
1918 const Type* LoadBNode::Value(PhaseTransform *phase) const {
1919   Node* mem = in(MemNode::Memory);
1920   Node* value = can_see_stored_value(mem,phase);
1921   if (value != NULL && value->is_Con() &&
1922       !value->bottom_type()->higher_equal(_type)) {
1923     // If the input to the store does not fit with the load's result type,
1924     // it must be truncated. We can't delay until Ideal call since
1925     // a singleton Value is needed for split_thru_phi optimization.
1926     int con = value->get_int();
1927     return TypeInt::make((con << 24) >> 24);
1928   }
1929   return LoadNode::Value(phase);
1930 }
1931 
1932 //--------------------------LoadUBNode::Ideal-------------------------------------
1933 //
1934 //  If the previous store is to the same address as this load,
1935 //  and the value stored was larger than a byte, replace this load
1936 //  with the value stored truncated to a byte.  If no truncation is
1937 //  needed, the replacement is done in LoadNode::Identity().
1938 //
1939 Node* LoadUBNode::Ideal(PhaseGVN* phase, bool can_reshape) {
1940   Node* mem = in(MemNode::Memory);
1941   Node* value = can_see_stored_value(mem, phase);
1942   if (value && !phase->type(value)->higher_equal(_type))
1943     return new (phase->C) AndINode(value, phase->intcon(0xFF));
1944   // Identity call will handle the case where truncation is not needed.
1945   return LoadNode::Ideal(phase, can_reshape);
1946 }
1947 
1948 const Type* LoadUBNode::Value(PhaseTransform *phase) const {
1949   Node* mem = in(MemNode::Memory);
1950   Node* value = can_see_stored_value(mem,phase);
1951   if (value != NULL && value->is_Con() &&
1952       !value->bottom_type()->higher_equal(_type)) {
1953     // If the input to the store does not fit with the load's result type,
1954     // it must be truncated. We can't delay until Ideal call since
1955     // a singleton Value is needed for split_thru_phi optimization.
1956     int con = value->get_int();
1957     return TypeInt::make(con & 0xFF);
1958   }
1959   return LoadNode::Value(phase);
1960 }
1961 
1962 //--------------------------LoadUSNode::Ideal-------------------------------------
1963 //
1964 //  If the previous store is to the same address as this load,
1965 //  and the value stored was larger than a char, replace this load
1966 //  with the value stored truncated to a char.  If no truncation is
1967 //  needed, the replacement is done in LoadNode::Identity().
1968 //
1969 Node *LoadUSNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1970   Node* mem = in(MemNode::Memory);
1971   Node* value = can_see_stored_value(mem,phase);
1972   if( value && !phase->type(value)->higher_equal( _type ) )
1973     return new (phase->C) AndINode(value,phase->intcon(0xFFFF));
1974   // Identity call will handle the case where truncation is not needed.
1975   return LoadNode::Ideal(phase, can_reshape);
1976 }
1977 
1978 const Type* LoadUSNode::Value(PhaseTransform *phase) const {
1979   Node* mem = in(MemNode::Memory);
1980   Node* value = can_see_stored_value(mem,phase);
1981   if (value != NULL && value->is_Con() &&
1982       !value->bottom_type()->higher_equal(_type)) {
1983     // If the input to the store does not fit with the load's result type,
1984     // it must be truncated. We can't delay until Ideal call since
1985     // a singleton Value is needed for split_thru_phi optimization.
1986     int con = value->get_int();
1987     return TypeInt::make(con & 0xFFFF);
1988   }
1989   return LoadNode::Value(phase);
1990 }
1991 
1992 //--------------------------LoadSNode::Ideal--------------------------------------
1993 //
1994 //  If the previous store is to the same address as this load,
1995 //  and the value stored was larger than a short, replace this load
1996 //  with the value stored truncated to a short.  If no truncation is
1997 //  needed, the replacement is done in LoadNode::Identity().
1998 //
1999 Node *LoadSNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2000   Node* mem = in(MemNode::Memory);
2001   Node* value = can_see_stored_value(mem,phase);
2002   if( value && !phase->type(value)->higher_equal( _type ) ) {
2003     Node *result = phase->transform( new (phase->C) LShiftINode(value, phase->intcon(16)) );
2004     return new (phase->C) RShiftINode(result, phase->intcon(16));
2005   }
2006   // Identity call will handle the case where truncation is not needed.
2007   return LoadNode::Ideal(phase, can_reshape);
2008 }
2009 
2010 const Type* LoadSNode::Value(PhaseTransform *phase) const {
2011   Node* mem = in(MemNode::Memory);
2012   Node* value = can_see_stored_value(mem,phase);
2013   if (value != NULL && value->is_Con() &&
2014       !value->bottom_type()->higher_equal(_type)) {
2015     // If the input to the store does not fit with the load's result type,
2016     // it must be truncated. We can't delay until Ideal call since
2017     // a singleton Value is needed for split_thru_phi optimization.
2018     int con = value->get_int();
2019     return TypeInt::make((con << 16) >> 16);
2020   }
2021   return LoadNode::Value(phase);
2022 }
2023 
2024 //=============================================================================
2025 //----------------------------LoadKlassNode::make------------------------------
2026 // Polymorphic factory method:
2027 Node *LoadKlassNode::make( PhaseGVN& gvn, Node *mem, Node *adr, const TypePtr* at, const TypeKlassPtr *tk ) {
2028   Compile* C = gvn.C;
2029   Node *ctl = NULL;
2030   // sanity check the alias category against the created node type
2031   const TypePtr *adr_type = adr->bottom_type()->isa_ptr();
2032   assert(adr_type != NULL, "expecting TypeKlassPtr");
2033 #ifdef _LP64
2034   if (adr_type->is_ptr_to_narrowklass()) {
2035     assert(UseCompressedClassPointers, "no compressed klasses");
2036     Node* load_klass = gvn.transform(new (C) LoadNKlassNode(ctl, mem, adr, at, tk->make_narrowklass(), MemNode::unordered));
2037     return new (C) DecodeNKlassNode(load_klass, load_klass->bottom_type()->make_ptr());
2038   }
2039 #endif
2040   assert(!adr_type->is_ptr_to_narrowklass() && !adr_type->is_ptr_to_narrowoop(), "should have got back a narrow oop");
2041   return new (C) LoadKlassNode(ctl, mem, adr, at, tk, MemNode::unordered);
2042 }
2043 
2044 //------------------------------Value------------------------------------------
2045 const Type *LoadKlassNode::Value( PhaseTransform *phase ) const {
2046   return klass_value_common(phase);
2047 }
2048 
2049 const Type *LoadNode::klass_value_common( PhaseTransform *phase ) const {
2050   // Either input is TOP ==> the result is TOP
2051   const Type *t1 = phase->type( in(MemNode::Memory) );
2052   if (t1 == Type::TOP)  return Type::TOP;
2053   Node *adr = in(MemNode::Address);
2054   const Type *t2 = phase->type( adr );
2055   if (t2 == Type::TOP)  return Type::TOP;
2056   const TypePtr *tp = t2->is_ptr();
2057   if (TypePtr::above_centerline(tp->ptr()) ||
2058       tp->ptr() == TypePtr::Null)  return Type::TOP;
2059 
2060   // Return a more precise klass, if possible
2061   const TypeInstPtr *tinst = tp->isa_instptr();
2062   if (tinst != NULL) {
2063     ciInstanceKlass* ik = tinst->klass()->as_instance_klass();
2064     int offset = tinst->offset();
2065     if (ik == phase->C->env()->Class_klass()
2066         && (offset == java_lang_Class::klass_offset_in_bytes() ||
2067             offset == java_lang_Class::array_klass_offset_in_bytes())) {
2068       // We are loading a special hidden field from a Class mirror object,
2069       // the field which points to the VM's Klass metaobject.
2070       ciType* t = tinst->java_mirror_type();
2071       // java_mirror_type returns non-null for compile-time Class constants.
2072       if (t != NULL) {
2073         // constant oop => constant klass
2074         if (offset == java_lang_Class::array_klass_offset_in_bytes()) {
2075           if (t->is_void()) {
2076             // We cannot create a void array.  Since void is a primitive type return null
2077             // klass.  Users of this result need to do a null check on the returned klass.
2078             return TypePtr::NULL_PTR;
2079           }
2080           return TypeKlassPtr::make(ciArrayKlass::make(t));
2081         }
2082         if (!t->is_klass()) {
2083           // a primitive Class (e.g., int.class) has NULL for a klass field
2084           return TypePtr::NULL_PTR;
2085         }
2086         // (Folds up the 1st indirection in aClassConstant.getModifiers().)
2087         return TypeKlassPtr::make(t->as_klass());
2088       }
2089       // non-constant mirror, so we can't tell what's going on
2090     }
2091     if( !ik->is_loaded() )
2092       return _type;             // Bail out if not loaded
2093     if (offset == oopDesc::klass_offset_in_bytes()) {
2094       if (tinst->klass_is_exact()) {
2095         return TypeKlassPtr::make(ik);
2096       }
2097       // See if we can become precise: no subklasses and no interface
2098       // (Note:  We need to support verified interfaces.)
2099       if (!ik->is_interface() && !ik->has_subklass()) {
2100         //assert(!UseExactTypes, "this code should be useless with exact types");
2101         // Add a dependence; if any subclass added we need to recompile
2102         if (!ik->is_final()) {
2103           // %%% should use stronger assert_unique_concrete_subtype instead
2104           phase->C->dependencies()->assert_leaf_type(ik);
2105         }
2106         // Return precise klass
2107         return TypeKlassPtr::make(ik);
2108       }
2109 
2110       // Return root of possible klass
2111       return TypeKlassPtr::make(TypePtr::NotNull, ik, 0/*offset*/);
2112     }
2113   }
2114 
2115   // Check for loading klass from an array
2116   const TypeAryPtr *tary = tp->isa_aryptr();
2117   if( tary != NULL ) {
2118     ciKlass *tary_klass = tary->klass();
2119     if (tary_klass != NULL   // can be NULL when at BOTTOM or TOP
2120         && tary->offset() == oopDesc::klass_offset_in_bytes()) {
2121       if (tary->klass_is_exact()) {
2122         return TypeKlassPtr::make(tary_klass);
2123       }
2124       ciArrayKlass *ak = tary->klass()->as_array_klass();
2125       // If the klass is an object array, we defer the question to the
2126       // array component klass.
2127       if( ak->is_obj_array_klass() ) {
2128         assert( ak->is_loaded(), "" );
2129         ciKlass *base_k = ak->as_obj_array_klass()->base_element_klass();
2130         if( base_k->is_loaded() && base_k->is_instance_klass() ) {
2131           ciInstanceKlass* ik = base_k->as_instance_klass();
2132           // See if we can become precise: no subklasses and no interface
2133           if (!ik->is_interface() && !ik->has_subklass()) {
2134             //assert(!UseExactTypes, "this code should be useless with exact types");
2135             // Add a dependence; if any subclass added we need to recompile
2136             if (!ik->is_final()) {
2137               phase->C->dependencies()->assert_leaf_type(ik);
2138             }
2139             // Return precise array klass
2140             return TypeKlassPtr::make(ak);
2141           }
2142         }
2143         return TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
2144       } else {                  // Found a type-array?
2145         //assert(!UseExactTypes, "this code should be useless with exact types");
2146         assert( ak->is_type_array_klass(), "" );
2147         return TypeKlassPtr::make(ak); // These are always precise
2148       }
2149     }
2150   }
2151 
2152   // Check for loading klass from an array klass
2153   const TypeKlassPtr *tkls = tp->isa_klassptr();
2154   if (tkls != NULL && !StressReflectiveCode) {
2155     ciKlass* klass = tkls->klass();
2156     if( !klass->is_loaded() )
2157       return _type;             // Bail out if not loaded
2158     if( klass->is_obj_array_klass() &&
2159         tkls->offset() == in_bytes(ObjArrayKlass::element_klass_offset())) {
2160       ciKlass* elem = klass->as_obj_array_klass()->element_klass();
2161       // // Always returning precise element type is incorrect,
2162       // // e.g., element type could be object and array may contain strings
2163       // return TypeKlassPtr::make(TypePtr::Constant, elem, 0);
2164 
2165       // The array's TypeKlassPtr was declared 'precise' or 'not precise'
2166       // according to the element type's subclassing.
2167       return TypeKlassPtr::make(tkls->ptr(), elem, 0/*offset*/);
2168     }
2169     if( klass->is_instance_klass() && tkls->klass_is_exact() &&
2170         tkls->offset() == in_bytes(Klass::super_offset())) {
2171       ciKlass* sup = klass->as_instance_klass()->super();
2172       // The field is Klass::_super.  Return its (constant) value.
2173       // (Folds up the 2nd indirection in aClassConstant.getSuperClass().)
2174       return sup ? TypeKlassPtr::make(sup) : TypePtr::NULL_PTR;
2175     }
2176   }
2177 
2178   // Bailout case
2179   return LoadNode::Value(phase);
2180 }
2181 
2182 //------------------------------Identity---------------------------------------
2183 // To clean up reflective code, simplify k.java_mirror.as_klass to plain k.
2184 // Also feed through the klass in Allocate(...klass...)._klass.
2185 Node* LoadKlassNode::Identity( PhaseTransform *phase ) {
2186   return klass_identity_common(phase);
2187 }
2188 
2189 Node* LoadNode::klass_identity_common(PhaseTransform *phase ) {
2190   Node* x = LoadNode::Identity(phase);
2191   if (x != this)  return x;
2192 
2193   // Take apart the address into an oop and and offset.
2194   // Return 'this' if we cannot.
2195   Node*    adr    = in(MemNode::Address);
2196   intptr_t offset = 0;
2197   Node*    base   = AddPNode::Ideal_base_and_offset(adr, phase, offset);
2198   if (base == NULL)     return this;
2199   const TypeOopPtr* toop = phase->type(adr)->isa_oopptr();
2200   if (toop == NULL)     return this;
2201 
2202   // We can fetch the klass directly through an AllocateNode.
2203   // This works even if the klass is not constant (clone or newArray).
2204   if (offset == oopDesc::klass_offset_in_bytes()) {
2205     Node* allocated_klass = AllocateNode::Ideal_klass(base, phase);
2206     if (allocated_klass != NULL) {
2207       return allocated_klass;
2208     }
2209   }
2210 
2211   // Simplify k.java_mirror.as_klass to plain k, where k is a Klass*.
2212   // Simplify ak.component_mirror.array_klass to plain ak, ak an ArrayKlass.
2213   // See inline_native_Class_query for occurrences of these patterns.
2214   // Java Example:  x.getClass().isAssignableFrom(y)
2215   // Java Example:  Array.newInstance(x.getClass().getComponentType(), n)
2216   //
2217   // This improves reflective code, often making the Class
2218   // mirror go completely dead.  (Current exception:  Class
2219   // mirrors may appear in debug info, but we could clean them out by
2220   // introducing a new debug info operator for Klass*.java_mirror).
2221   if (toop->isa_instptr() && toop->klass() == phase->C->env()->Class_klass()
2222       && (offset == java_lang_Class::klass_offset_in_bytes() ||
2223           offset == java_lang_Class::array_klass_offset_in_bytes())) {
2224     // We are loading a special hidden field from a Class mirror,
2225     // the field which points to its Klass or ArrayKlass metaobject.
2226     if (base->is_Load()) {
2227       Node* adr2 = base->in(MemNode::Address);
2228       const TypeKlassPtr* tkls = phase->type(adr2)->isa_klassptr();
2229       if (tkls != NULL && !tkls->empty()
2230           && (tkls->klass()->is_instance_klass() ||
2231               tkls->klass()->is_array_klass())
2232           && adr2->is_AddP()
2233           ) {
2234         int mirror_field = in_bytes(Klass::java_mirror_offset());
2235         if (offset == java_lang_Class::array_klass_offset_in_bytes()) {
2236           mirror_field = in_bytes(ArrayKlass::component_mirror_offset());
2237         }
2238         if (tkls->offset() == mirror_field) {
2239           return adr2->in(AddPNode::Base);
2240         }
2241       }
2242     }
2243   }
2244 
2245   return this;
2246 }
2247 
2248 
2249 //------------------------------Value------------------------------------------
2250 const Type *LoadNKlassNode::Value( PhaseTransform *phase ) const {
2251   const Type *t = klass_value_common(phase);
2252   if (t == Type::TOP)
2253     return t;
2254 
2255   return t->make_narrowklass();
2256 }
2257 
2258 //------------------------------Identity---------------------------------------
2259 // To clean up reflective code, simplify k.java_mirror.as_klass to narrow k.
2260 // Also feed through the klass in Allocate(...klass...)._klass.
2261 Node* LoadNKlassNode::Identity( PhaseTransform *phase ) {
2262   Node *x = klass_identity_common(phase);
2263 
2264   const Type *t = phase->type( x );
2265   if( t == Type::TOP ) return x;
2266   if( t->isa_narrowklass()) return x;
2267   assert (!t->isa_narrowoop(), "no narrow oop here");
2268 
2269   return phase->transform(new (phase->C) EncodePKlassNode(x, t->make_narrowklass()));
2270 }
2271 
2272 //------------------------------Value-----------------------------------------
2273 const Type *LoadRangeNode::Value( PhaseTransform *phase ) const {
2274   // Either input is TOP ==> the result is TOP
2275   const Type *t1 = phase->type( in(MemNode::Memory) );
2276   if( t1 == Type::TOP ) return Type::TOP;
2277   Node *adr = in(MemNode::Address);
2278   const Type *t2 = phase->type( adr );
2279   if( t2 == Type::TOP ) return Type::TOP;
2280   const TypePtr *tp = t2->is_ptr();
2281   if (TypePtr::above_centerline(tp->ptr()))  return Type::TOP;
2282   const TypeAryPtr *tap = tp->isa_aryptr();
2283   if( !tap ) return _type;
2284   return tap->size();
2285 }
2286 
2287 //-------------------------------Ideal---------------------------------------
2288 // Feed through the length in AllocateArray(...length...)._length.
2289 Node *LoadRangeNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2290   Node* p = MemNode::Ideal_common(phase, can_reshape);
2291   if (p)  return (p == NodeSentinel) ? NULL : p;
2292 
2293   // Take apart the address into an oop and and offset.
2294   // Return 'this' if we cannot.
2295   Node*    adr    = in(MemNode::Address);
2296   intptr_t offset = 0;
2297   Node*    base   = AddPNode::Ideal_base_and_offset(adr, phase,  offset);
2298   if (base == NULL)     return NULL;
2299   const TypeAryPtr* tary = phase->type(adr)->isa_aryptr();
2300   if (tary == NULL)     return NULL;
2301 
2302   // We can fetch the length directly through an AllocateArrayNode.
2303   // This works even if the length is not constant (clone or newArray).
2304   if (offset == arrayOopDesc::length_offset_in_bytes()) {
2305     AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(base, phase);
2306     if (alloc != NULL) {
2307       Node* allocated_length = alloc->Ideal_length();
2308       Node* len = alloc->make_ideal_length(tary, phase);
2309       if (allocated_length != len) {
2310         // New CastII improves on this.
2311         return len;
2312       }
2313     }
2314   }
2315 
2316   return NULL;
2317 }
2318 
2319 //------------------------------Identity---------------------------------------
2320 // Feed through the length in AllocateArray(...length...)._length.
2321 Node* LoadRangeNode::Identity( PhaseTransform *phase ) {
2322   Node* x = LoadINode::Identity(phase);
2323   if (x != this)  return x;
2324 
2325   // Take apart the address into an oop and and offset.
2326   // Return 'this' if we cannot.
2327   Node*    adr    = in(MemNode::Address);
2328   intptr_t offset = 0;
2329   Node*    base   = AddPNode::Ideal_base_and_offset(adr, phase, offset);
2330   if (base == NULL)     return this;
2331   const TypeAryPtr* tary = phase->type(adr)->isa_aryptr();
2332   if (tary == NULL)     return this;
2333 
2334   // We can fetch the length directly through an AllocateArrayNode.
2335   // This works even if the length is not constant (clone or newArray).
2336   if (offset == arrayOopDesc::length_offset_in_bytes()) {
2337     AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(base, phase);
2338     if (alloc != NULL) {
2339       Node* allocated_length = alloc->Ideal_length();
2340       // Do not allow make_ideal_length to allocate a CastII node.
2341       Node* len = alloc->make_ideal_length(tary, phase, false);
2342       if (allocated_length == len) {
2343         // Return allocated_length only if it would not be improved by a CastII.
2344         return allocated_length;
2345       }
2346     }
2347   }
2348 
2349   return this;
2350 
2351 }
2352 
2353 //=============================================================================
2354 //---------------------------StoreNode::make-----------------------------------
2355 // Polymorphic factory method:
2356 StoreNode* StoreNode::make(PhaseGVN& gvn, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val, BasicType bt, MemOrd mo) {
2357   assert((mo == unordered || mo == release), "unexpected");
2358   Compile* C = gvn.C;
2359   assert(C->get_alias_index(adr_type) != Compile::AliasIdxRaw ||
2360          ctl != NULL, "raw memory operations should have control edge");
2361 
2362   switch (bt) {
2363   case T_BOOLEAN:
2364   case T_BYTE:    return new (C) StoreBNode(ctl, mem, adr, adr_type, val, mo);
2365   case T_INT:     return new (C) StoreINode(ctl, mem, adr, adr_type, val, mo);
2366   case T_CHAR:
2367   case T_SHORT:   return new (C) StoreCNode(ctl, mem, adr, adr_type, val, mo);
2368   case T_LONG:    return new (C) StoreLNode(ctl, mem, adr, adr_type, val, mo);
2369   case T_FLOAT:   return new (C) StoreFNode(ctl, mem, adr, adr_type, val, mo);
2370   case T_DOUBLE:  return new (C) StoreDNode(ctl, mem, adr, adr_type, val, mo);
2371   case T_METADATA:
2372   case T_ADDRESS:
2373   case T_OBJECT:
2374 #ifdef _LP64
2375     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
2376       val = gvn.transform(new (C) EncodePNode(val, val->bottom_type()->make_narrowoop()));
2377       return new (C) StoreNNode(ctl, mem, adr, adr_type, val, mo);
2378     } else if (adr->bottom_type()->is_ptr_to_narrowklass() ||
2379                (UseCompressedClassPointers && val->bottom_type()->isa_klassptr() &&
2380                 adr->bottom_type()->isa_rawptr())) {
2381       val = gvn.transform(new (C) EncodePKlassNode(val, val->bottom_type()->make_narrowklass()));
2382       return new (C) StoreNKlassNode(ctl, mem, adr, adr_type, val, mo);
2383     }
2384 #endif
2385     {
2386       return new (C) StorePNode(ctl, mem, adr, adr_type, val, mo);
2387     }
2388   }
2389   ShouldNotReachHere();
2390   return (StoreNode*)NULL;
2391 }
2392 
2393 StoreLNode* StoreLNode::make_atomic(Compile *C, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val, MemOrd mo) {
2394   bool require_atomic = true;
2395   return new (C) StoreLNode(ctl, mem, adr, adr_type, val, mo, require_atomic);
2396 }
2397 
2398 
2399 //--------------------------bottom_type----------------------------------------
2400 const Type *StoreNode::bottom_type() const {
2401   return Type::MEMORY;
2402 }
2403 
2404 //------------------------------hash-------------------------------------------
2405 uint StoreNode::hash() const {
2406   // unroll addition of interesting fields
2407   //return (uintptr_t)in(Control) + (uintptr_t)in(Memory) + (uintptr_t)in(Address) + (uintptr_t)in(ValueIn);
2408 
2409   // Since they are not commoned, do not hash them:
2410   return NO_HASH;
2411 }
2412 
2413 //------------------------------Ideal------------------------------------------
2414 // Change back-to-back Store(, p, x) -> Store(m, p, y) to Store(m, p, x).
2415 // When a store immediately follows a relevant allocation/initialization,
2416 // try to capture it into the initialization, or hoist it above.
2417 Node *StoreNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2418   Node* p = MemNode::Ideal_common(phase, can_reshape);
2419   if (p)  return (p == NodeSentinel) ? NULL : p;
2420 
2421   Node* mem     = in(MemNode::Memory);
2422   Node* address = in(MemNode::Address);
2423 
2424   // Back-to-back stores to same address?  Fold em up.  Generally
2425   // unsafe if I have intervening uses...  Also disallowed for StoreCM
2426   // since they must follow each StoreP operation.  Redundant StoreCMs
2427   // are eliminated just before matching in final_graph_reshape.
2428   if (mem->is_Store() && mem->in(MemNode::Address)->eqv_uncast(address) &&
2429       mem->Opcode() != Op_StoreCM) {
2430     // Looking at a dead closed cycle of memory?
2431     assert(mem != mem->in(MemNode::Memory), "dead loop in StoreNode::Ideal");
2432 
2433     assert(Opcode() == mem->Opcode() ||
2434            phase->C->get_alias_index(adr_type()) == Compile::AliasIdxRaw,
2435            "no mismatched stores, except on raw memory");
2436 
2437     if (mem->outcnt() == 1 &&           // check for intervening uses
2438         mem->as_Store()->memory_size() <= this->memory_size()) {
2439       // If anybody other than 'this' uses 'mem', we cannot fold 'mem' away.
2440       // For example, 'mem' might be the final state at a conditional return.
2441       // Or, 'mem' might be used by some node which is live at the same time
2442       // 'this' is live, which might be unschedulable.  So, require exactly
2443       // ONE user, the 'this' store, until such time as we clone 'mem' for
2444       // each of 'mem's uses (thus making the exactly-1-user-rule hold true).
2445       if (can_reshape) {  // (%%% is this an anachronism?)
2446         set_req_X(MemNode::Memory, mem->in(MemNode::Memory),
2447                   phase->is_IterGVN());
2448       } else {
2449         // It's OK to do this in the parser, since DU info is always accurate,
2450         // and the parser always refers to nodes via SafePointNode maps.
2451         set_req(MemNode::Memory, mem->in(MemNode::Memory));
2452       }
2453       return this;
2454     }
2455   }
2456 
2457   // Capture an unaliased, unconditional, simple store into an initializer.
2458   // Or, if it is independent of the allocation, hoist it above the allocation.
2459   if (ReduceFieldZeroing && /*can_reshape &&*/
2460       mem->is_Proj() && mem->in(0)->is_Initialize()) {
2461     InitializeNode* init = mem->in(0)->as_Initialize();
2462     intptr_t offset = init->can_capture_store(this, phase, can_reshape);
2463     if (offset > 0) {
2464       Node* moved = init->capture_store(this, offset, phase, can_reshape);
2465       // If the InitializeNode captured me, it made a raw copy of me,
2466       // and I need to disappear.
2467       if (moved != NULL) {
2468         // %%% hack to ensure that Ideal returns a new node:
2469         mem = MergeMemNode::make(phase->C, mem);
2470         return mem;             // fold me away
2471       }
2472     }
2473   }
2474 
2475   return NULL;                  // No further progress
2476 }
2477 
2478 //------------------------------Value-----------------------------------------
2479 const Type *StoreNode::Value( PhaseTransform *phase ) const {
2480   // Either input is TOP ==> the result is TOP
2481   const Type *t1 = phase->type( in(MemNode::Memory) );
2482   if( t1 == Type::TOP ) return Type::TOP;
2483   const Type *t2 = phase->type( in(MemNode::Address) );
2484   if( t2 == Type::TOP ) return Type::TOP;
2485   const Type *t3 = phase->type( in(MemNode::ValueIn) );
2486   if( t3 == Type::TOP ) return Type::TOP;
2487   return Type::MEMORY;
2488 }
2489 
2490 //------------------------------Identity---------------------------------------
2491 // Remove redundant stores:
2492 //   Store(m, p, Load(m, p)) changes to m.
2493 //   Store(, p, x) -> Store(m, p, x) changes to Store(m, p, x).
2494 Node *StoreNode::Identity( PhaseTransform *phase ) {
2495   Node* mem = in(MemNode::Memory);
2496   Node* adr = in(MemNode::Address);
2497   Node* val = in(MemNode::ValueIn);
2498 
2499   // Load then Store?  Then the Store is useless
2500   if (val->is_Load() &&
2501       val->in(MemNode::Address)->eqv_uncast(adr) &&
2502       val->in(MemNode::Memory )->eqv_uncast(mem) &&
2503       val->as_Load()->store_Opcode() == Opcode()) {
2504     return mem;
2505   }
2506 
2507   // Two stores in a row of the same value?
2508   if (mem->is_Store() &&
2509       mem->in(MemNode::Address)->eqv_uncast(adr) &&
2510       mem->in(MemNode::ValueIn)->eqv_uncast(val) &&
2511       mem->Opcode() == Opcode()) {
2512     return mem;
2513   }
2514 
2515   // Store of zero anywhere into a freshly-allocated object?
2516   // Then the store is useless.
2517   // (It must already have been captured by the InitializeNode.)
2518   if (ReduceFieldZeroing && phase->type(val)->is_zero_type()) {
2519     // a newly allocated object is already all-zeroes everywhere
2520     if (mem->is_Proj() && mem->in(0)->is_Allocate()) {
2521       return mem;
2522     }
2523 
2524     // the store may also apply to zero-bits in an earlier object
2525     Node* prev_mem = find_previous_store(phase);
2526     // Steps (a), (b):  Walk past independent stores to find an exact match.
2527     if (prev_mem != NULL) {
2528       Node* prev_val = can_see_stored_value(prev_mem, phase);
2529       if (prev_val != NULL && phase->eqv(prev_val, val)) {
2530         // prev_val and val might differ by a cast; it would be good
2531         // to keep the more informative of the two.
2532         return mem;
2533       }
2534     }
2535   }
2536 
2537   return this;
2538 }
2539 
2540 //------------------------------match_edge-------------------------------------
2541 // Do we Match on this edge index or not?  Match only memory & value
2542 uint StoreNode::match_edge(uint idx) const {
2543   return idx == MemNode::Address || idx == MemNode::ValueIn;
2544 }
2545 
2546 //------------------------------cmp--------------------------------------------
2547 // Do not common stores up together.  They generally have to be split
2548 // back up anyways, so do not bother.
2549 uint StoreNode::cmp( const Node &n ) const {
2550   return (&n == this);          // Always fail except on self
2551 }
2552 
2553 //------------------------------Ideal_masked_input-----------------------------
2554 // Check for a useless mask before a partial-word store
2555 // (StoreB ... (AndI valIn conIa) )
2556 // If (conIa & mask == mask) this simplifies to
2557 // (StoreB ... (valIn) )
2558 Node *StoreNode::Ideal_masked_input(PhaseGVN *phase, uint mask) {
2559   Node *val = in(MemNode::ValueIn);
2560   if( val->Opcode() == Op_AndI ) {
2561     const TypeInt *t = phase->type( val->in(2) )->isa_int();
2562     if( t && t->is_con() && (t->get_con() & mask) == mask ) {
2563       set_req(MemNode::ValueIn, val->in(1));
2564       return this;
2565     }
2566   }
2567   return NULL;
2568 }
2569 
2570 
2571 //------------------------------Ideal_sign_extended_input----------------------
2572 // Check for useless sign-extension before a partial-word store
2573 // (StoreB ... (RShiftI _ (LShiftI _ valIn conIL ) conIR) )
2574 // If (conIL == conIR && conIR <= num_bits)  this simplifies to
2575 // (StoreB ... (valIn) )
2576 Node *StoreNode::Ideal_sign_extended_input(PhaseGVN *phase, int num_bits) {
2577   Node *val = in(MemNode::ValueIn);
2578   if( val->Opcode() == Op_RShiftI ) {
2579     const TypeInt *t = phase->type( val->in(2) )->isa_int();
2580     if( t && t->is_con() && (t->get_con() <= num_bits) ) {
2581       Node *shl = val->in(1);
2582       if( shl->Opcode() == Op_LShiftI ) {
2583         const TypeInt *t2 = phase->type( shl->in(2) )->isa_int();
2584         if( t2 && t2->is_con() && (t2->get_con() == t->get_con()) ) {
2585           set_req(MemNode::ValueIn, shl->in(1));
2586           return this;
2587         }
2588       }
2589     }
2590   }
2591   return NULL;
2592 }
2593 
2594 //------------------------------value_never_loaded-----------------------------------
2595 // Determine whether there are any possible loads of the value stored.
2596 // For simplicity, we actually check if there are any loads from the
2597 // address stored to, not just for loads of the value stored by this node.
2598 //
2599 bool StoreNode::value_never_loaded( PhaseTransform *phase) const {
2600   Node *adr = in(Address);
2601   const TypeOopPtr *adr_oop = phase->type(adr)->isa_oopptr();
2602   if (adr_oop == NULL)
2603     return false;
2604   if (!adr_oop->is_known_instance_field())
2605     return false; // if not a distinct instance, there may be aliases of the address
2606   for (DUIterator_Fast imax, i = adr->fast_outs(imax); i < imax; i++) {
2607     Node *use = adr->fast_out(i);
2608     int opc = use->Opcode();
2609     if (use->is_Load() || use->is_LoadStore()) {
2610       return false;
2611     }
2612   }
2613   return true;
2614 }
2615 
2616 //=============================================================================
2617 //------------------------------Ideal------------------------------------------
2618 // If the store is from an AND mask that leaves the low bits untouched, then
2619 // we can skip the AND operation.  If the store is from a sign-extension
2620 // (a left shift, then right shift) we can skip both.
2621 Node *StoreBNode::Ideal(PhaseGVN *phase, bool can_reshape){
2622   Node *progress = StoreNode::Ideal_masked_input(phase, 0xFF);
2623   if( progress != NULL ) return progress;
2624 
2625   progress = StoreNode::Ideal_sign_extended_input(phase, 24);
2626   if( progress != NULL ) return progress;
2627 
2628   // Finally check the default case
2629   return StoreNode::Ideal(phase, can_reshape);
2630 }
2631 
2632 //=============================================================================
2633 //------------------------------Ideal------------------------------------------
2634 // If the store is from an AND mask that leaves the low bits untouched, then
2635 // we can skip the AND operation
2636 Node *StoreCNode::Ideal(PhaseGVN *phase, bool can_reshape){
2637   Node *progress = StoreNode::Ideal_masked_input(phase, 0xFFFF);
2638   if( progress != NULL ) return progress;
2639 
2640   progress = StoreNode::Ideal_sign_extended_input(phase, 16);
2641   if( progress != NULL ) return progress;
2642 
2643   // Finally check the default case
2644   return StoreNode::Ideal(phase, can_reshape);
2645 }
2646 
2647 //=============================================================================
2648 //------------------------------Identity---------------------------------------
2649 Node *StoreCMNode::Identity( PhaseTransform *phase ) {
2650   // No need to card mark when storing a null ptr
2651   Node* my_store = in(MemNode::OopStore);
2652   if (my_store->is_Store()) {
2653     const Type *t1 = phase->type( my_store->in(MemNode::ValueIn) );
2654     if( t1 == TypePtr::NULL_PTR ) {
2655       return in(MemNode::Memory);
2656     }
2657   }
2658   return this;
2659 }
2660 
2661 //=============================================================================
2662 //------------------------------Ideal---------------------------------------
2663 Node *StoreCMNode::Ideal(PhaseGVN *phase, bool can_reshape){
2664   Node* progress = StoreNode::Ideal(phase, can_reshape);
2665   if (progress != NULL) return progress;
2666 
2667   Node* my_store = in(MemNode::OopStore);
2668   if (my_store->is_MergeMem()) {
2669     Node* mem = my_store->as_MergeMem()->memory_at(oop_alias_idx());
2670     set_req(MemNode::OopStore, mem);
2671     return this;
2672   }
2673 
2674   return NULL;
2675 }
2676 
2677 //------------------------------Value-----------------------------------------
2678 const Type *StoreCMNode::Value( PhaseTransform *phase ) const {
2679   // Either input is TOP ==> the result is TOP
2680   const Type *t = phase->type( in(MemNode::Memory) );
2681   if( t == Type::TOP ) return Type::TOP;
2682   t = phase->type( in(MemNode::Address) );
2683   if( t == Type::TOP ) return Type::TOP;
2684   t = phase->type( in(MemNode::ValueIn) );
2685   if( t == Type::TOP ) return Type::TOP;
2686   // If extra input is TOP ==> the result is TOP
2687   t = phase->type( in(MemNode::OopStore) );
2688   if( t == Type::TOP ) return Type::TOP;
2689 
2690   return StoreNode::Value( phase );
2691 }
2692 
2693 
2694 //=============================================================================
2695 //----------------------------------SCMemProjNode------------------------------
2696 const Type * SCMemProjNode::Value( PhaseTransform *phase ) const
2697 {
2698   return bottom_type();
2699 }
2700 
2701 //=============================================================================
2702 //----------------------------------LoadStoreNode------------------------------
2703 LoadStoreNode::LoadStoreNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at, const Type* rt, uint required )
2704   : Node(required),
2705     _type(rt),
2706     _adr_type(at)
2707 {
2708   init_req(MemNode::Control, c  );
2709   init_req(MemNode::Memory , mem);
2710   init_req(MemNode::Address, adr);
2711   init_req(MemNode::ValueIn, val);
2712   init_class_id(Class_LoadStore);
2713 }
2714 
2715 uint LoadStoreNode::ideal_reg() const {
2716   return _type->ideal_reg();
2717 }
2718 
2719 bool LoadStoreNode::result_not_used() const {
2720   for( DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++ ) {
2721     Node *x = fast_out(i);
2722     if (x->Opcode() == Op_SCMemProj) continue;
2723     return false;
2724   }
2725   return true;
2726 }
2727 
2728 uint LoadStoreNode::size_of() const { return sizeof(*this); }
2729 
2730 //=============================================================================
2731 //----------------------------------LoadStoreConditionalNode--------------------
2732 LoadStoreConditionalNode::LoadStoreConditionalNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex ) : LoadStoreNode(c, mem, adr, val, NULL, TypeInt::BOOL, 5) {
2733   init_req(ExpectedIn, ex );
2734 }
2735 
2736 //=============================================================================
2737 //-------------------------------adr_type--------------------------------------
2738 // Do we Match on this edge index or not?  Do not match memory
2739 const TypePtr* ClearArrayNode::adr_type() const {
2740   Node *adr = in(3);
2741   return MemNode::calculate_adr_type(adr->bottom_type());
2742 }
2743 
2744 //------------------------------match_edge-------------------------------------
2745 // Do we Match on this edge index or not?  Do not match memory
2746 uint ClearArrayNode::match_edge(uint idx) const {
2747   return idx > 1;
2748 }
2749 
2750 //------------------------------Identity---------------------------------------
2751 // Clearing a zero length array does nothing
2752 Node *ClearArrayNode::Identity( PhaseTransform *phase ) {
2753   return phase->type(in(2))->higher_equal(TypeX::ZERO)  ? in(1) : this;
2754 }
2755 
2756 //------------------------------Idealize---------------------------------------
2757 // Clearing a short array is faster with stores
2758 Node *ClearArrayNode::Ideal(PhaseGVN *phase, bool can_reshape){
2759   const int unit = BytesPerLong;
2760   const TypeX* t = phase->type(in(2))->isa_intptr_t();
2761   if (!t)  return NULL;
2762   if (!t->is_con())  return NULL;
2763   intptr_t raw_count = t->get_con();
2764   intptr_t size = raw_count;
2765   if (!Matcher::init_array_count_is_in_bytes) size *= unit;
2766   // Clearing nothing uses the Identity call.
2767   // Negative clears are possible on dead ClearArrays
2768   // (see jck test stmt114.stmt11402.val).
2769   if (size <= 0 || size % unit != 0)  return NULL;
2770   intptr_t count = size / unit;
2771   // Length too long; use fast hardware clear
2772   if (size > Matcher::init_array_short_size)  return NULL;
2773   Node *mem = in(1);
2774   if( phase->type(mem)==Type::TOP ) return NULL;
2775   Node *adr = in(3);
2776   const Type* at = phase->type(adr);
2777   if( at==Type::TOP ) return NULL;
2778   const TypePtr* atp = at->isa_ptr();
2779   // adjust atp to be the correct array element address type
2780   if (atp == NULL)  atp = TypePtr::BOTTOM;
2781   else              atp = atp->add_offset(Type::OffsetBot);
2782   // Get base for derived pointer purposes
2783   if( adr->Opcode() != Op_AddP ) Unimplemented();
2784   Node *base = adr->in(1);
2785 
2786   Node *zero = phase->makecon(TypeLong::ZERO);
2787   Node *off  = phase->MakeConX(BytesPerLong);
2788   mem = new (phase->C) StoreLNode(in(0),mem,adr,atp,zero,MemNode::unordered,false);
2789   count--;
2790   while( count-- ) {
2791     mem = phase->transform(mem);
2792     adr = phase->transform(new (phase->C) AddPNode(base,adr,off));
2793     mem = new (phase->C) StoreLNode(in(0),mem,adr,atp,zero,MemNode::unordered,false);
2794   }
2795   return mem;
2796 }
2797 
2798 //----------------------------step_through----------------------------------
2799 // Return allocation input memory edge if it is different instance
2800 // or itself if it is the one we are looking for.
2801 bool ClearArrayNode::step_through(Node** np, uint instance_id, PhaseTransform* phase) {
2802   Node* n = *np;
2803   assert(n->is_ClearArray(), "sanity");
2804   intptr_t offset;
2805   AllocateNode* alloc = AllocateNode::Ideal_allocation(n->in(3), phase, offset);
2806   // This method is called only before Allocate nodes are expanded during
2807   // macro nodes expansion. Before that ClearArray nodes are only generated
2808   // in LibraryCallKit::generate_arraycopy() which follows allocations.
2809   assert(alloc != NULL, "should have allocation");
2810   if (alloc->_idx == instance_id) {
2811     // Can not bypass initialization of the instance we are looking for.
2812     return false;
2813   }
2814   // Otherwise skip it.
2815   InitializeNode* init = alloc->initialization();
2816   if (init != NULL)
2817     *np = init->in(TypeFunc::Memory);
2818   else
2819     *np = alloc->in(TypeFunc::Memory);
2820   return true;
2821 }
2822 
2823 //----------------------------clear_memory-------------------------------------
2824 // Generate code to initialize object storage to zero.
2825 Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
2826                                    intptr_t start_offset,
2827                                    Node* end_offset,
2828                                    PhaseGVN* phase) {
2829   Compile* C = phase->C;
2830   intptr_t offset = start_offset;
2831 
2832   int unit = BytesPerLong;
2833   if ((offset % unit) != 0) {
2834     Node* adr = new (C) AddPNode(dest, dest, phase->MakeConX(offset));
2835     adr = phase->transform(adr);
2836     const TypePtr* atp = TypeRawPtr::BOTTOM;
2837     mem = StoreNode::make(*phase, ctl, mem, adr, atp, phase->zerocon(T_INT), T_INT, MemNode::unordered);
2838     mem = phase->transform(mem);
2839     offset += BytesPerInt;
2840   }
2841   assert((offset % unit) == 0, "");
2842 
2843   // Initialize the remaining stuff, if any, with a ClearArray.
2844   return clear_memory(ctl, mem, dest, phase->MakeConX(offset), end_offset, phase);
2845 }
2846 
2847 Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
2848                                    Node* start_offset,
2849                                    Node* end_offset,
2850                                    PhaseGVN* phase) {
2851   if (start_offset == end_offset) {
2852     // nothing to do
2853     return mem;
2854   }
2855 
2856   Compile* C = phase->C;
2857   int unit = BytesPerLong;
2858   Node* zbase = start_offset;
2859   Node* zend  = end_offset;
2860 
2861   // Scale to the unit required by the CPU:
2862   if (!Matcher::init_array_count_is_in_bytes) {
2863     Node* shift = phase->intcon(exact_log2(unit));
2864     zbase = phase->transform( new(C) URShiftXNode(zbase, shift) );
2865     zend  = phase->transform( new(C) URShiftXNode(zend,  shift) );
2866   }
2867 
2868   // Bulk clear double-words
2869   Node* zsize = phase->transform( new(C) SubXNode(zend, zbase) );
2870   Node* adr = phase->transform( new(C) AddPNode(dest, dest, start_offset) );
2871   mem = new (C) ClearArrayNode(ctl, mem, zsize, adr);
2872   return phase->transform(mem);
2873 }
2874 
2875 Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
2876                                    intptr_t start_offset,
2877                                    intptr_t end_offset,
2878                                    PhaseGVN* phase) {
2879   if (start_offset == end_offset) {
2880     // nothing to do
2881     return mem;
2882   }
2883 
2884   Compile* C = phase->C;
2885   assert((end_offset % BytesPerInt) == 0, "odd end offset");
2886   intptr_t done_offset = end_offset;
2887   if ((done_offset % BytesPerLong) != 0) {
2888     done_offset -= BytesPerInt;
2889   }
2890   if (done_offset > start_offset) {
2891     mem = clear_memory(ctl, mem, dest,
2892                        start_offset, phase->MakeConX(done_offset), phase);
2893   }
2894   if (done_offset < end_offset) { // emit the final 32-bit store
2895     Node* adr = new (C) AddPNode(dest, dest, phase->MakeConX(done_offset));
2896     adr = phase->transform(adr);
2897     const TypePtr* atp = TypeRawPtr::BOTTOM;
2898     mem = StoreNode::make(*phase, ctl, mem, adr, atp, phase->zerocon(T_INT), T_INT, MemNode::unordered);
2899     mem = phase->transform(mem);
2900     done_offset += BytesPerInt;
2901   }
2902   assert(done_offset == end_offset, "");
2903   return mem;
2904 }
2905 
2906 //=============================================================================
2907 // Do not match memory edge.
2908 uint StrIntrinsicNode::match_edge(uint idx) const {
2909   return idx == 2 || idx == 3;
2910 }
2911 
2912 //------------------------------Ideal------------------------------------------
2913 // Return a node which is more "ideal" than the current node.  Strip out
2914 // control copies
2915 Node *StrIntrinsicNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2916   if (remove_dead_region(phase, can_reshape)) return this;
2917   // Don't bother trying to transform a dead node
2918   if (in(0) && in(0)->is_top())  return NULL;
2919 
2920   if (can_reshape) {
2921     Node* mem = phase->transform(in(MemNode::Memory));
2922     // If transformed to a MergeMem, get the desired slice
2923     uint alias_idx = phase->C->get_alias_index(adr_type());
2924     mem = mem->is_MergeMem() ? mem->as_MergeMem()->memory_at(alias_idx) : mem;
2925     if (mem != in(MemNode::Memory)) {
2926       set_req(MemNode::Memory, mem);
2927       return this;
2928     }
2929   }
2930   return NULL;
2931 }
2932 
2933 //------------------------------Value------------------------------------------
2934 const Type *StrIntrinsicNode::Value( PhaseTransform *phase ) const {
2935   if (in(0) && phase->type(in(0)) == Type::TOP) return Type::TOP;
2936   return bottom_type();
2937 }
2938 
2939 //=============================================================================
2940 //------------------------------match_edge-------------------------------------
2941 // Do not match memory edge
2942 uint EncodeISOArrayNode::match_edge(uint idx) const {
2943   return idx == 2 || idx == 3; // EncodeISOArray src (Binary dst len)
2944 }
2945 
2946 //------------------------------Ideal------------------------------------------
2947 // Return a node which is more "ideal" than the current node.  Strip out
2948 // control copies
2949 Node *EncodeISOArrayNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2950   return remove_dead_region(phase, can_reshape) ? this : NULL;
2951 }
2952 
2953 //------------------------------Value------------------------------------------
2954 const Type *EncodeISOArrayNode::Value(PhaseTransform *phase) const {
2955   if (in(0) && phase->type(in(0)) == Type::TOP) return Type::TOP;
2956   return bottom_type();
2957 }
2958 
2959 //=============================================================================
2960 MemBarNode::MemBarNode(Compile* C, int alias_idx, Node* precedent)
2961   : MultiNode(TypeFunc::Parms + (precedent == NULL? 0: 1)),
2962     _adr_type(C->get_adr_type(alias_idx))
2963 {
2964   init_class_id(Class_MemBar);
2965   Node* top = C->top();
2966   init_req(TypeFunc::I_O,top);
2967   init_req(TypeFunc::FramePtr,top);
2968   init_req(TypeFunc::ReturnAdr,top);
2969   if (precedent != NULL)
2970     init_req(TypeFunc::Parms, precedent);
2971 }
2972 
2973 //------------------------------cmp--------------------------------------------
2974 uint MemBarNode::hash() const { return NO_HASH; }
2975 uint MemBarNode::cmp( const Node &n ) const {
2976   return (&n == this);          // Always fail except on self
2977 }
2978 
2979 //------------------------------make-------------------------------------------
2980 MemBarNode* MemBarNode::make(Compile* C, int opcode, int atp, Node* pn) {
2981   switch (opcode) {
2982   case Op_MemBarAcquire:     return new(C) MemBarAcquireNode(C, atp, pn);
2983   case Op_LoadFence:         return new(C) LoadFenceNode(C, atp, pn);
2984   case Op_MemBarRelease:     return new(C) MemBarReleaseNode(C, atp, pn);
2985   case Op_StoreFence:        return new(C) StoreFenceNode(C, atp, pn);
2986   case Op_MemBarAcquireLock: return new(C) MemBarAcquireLockNode(C, atp, pn);
2987   case Op_MemBarReleaseLock: return new(C) MemBarReleaseLockNode(C, atp, pn);
2988   case Op_MemBarVolatile:    return new(C) MemBarVolatileNode(C, atp, pn);
2989   case Op_MemBarCPUOrder:    return new(C) MemBarCPUOrderNode(C, atp, pn);
2990   case Op_Initialize:        return new(C) InitializeNode(C, atp, pn);
2991   case Op_MemBarStoreStore:  return new(C) MemBarStoreStoreNode(C, atp, pn);
2992   default: ShouldNotReachHere(); return NULL;
2993   }
2994 }
2995 
2996 //------------------------------Ideal------------------------------------------
2997 // Return a node which is more "ideal" than the current node.  Strip out
2998 // control copies
2999 Node *MemBarNode::Ideal(PhaseGVN *phase, bool can_reshape) {
3000   if (remove_dead_region(phase, can_reshape)) return this;
3001   // Don't bother trying to transform a dead node
3002   if (in(0) && in(0)->is_top()) {
3003     return NULL;
3004   }
3005 
3006   // Eliminate volatile MemBars for scalar replaced objects.
3007   if (can_reshape && req() == (Precedent+1)) {
3008     bool eliminate = false;
3009     int opc = Opcode();
3010     if ((opc == Op_MemBarAcquire || opc == Op_MemBarVolatile)) {
3011       // Volatile field loads and stores.
3012       Node* my_mem = in(MemBarNode::Precedent);
3013       // The MembarAquire may keep an unused LoadNode alive through the Precedent edge
3014       if ((my_mem != NULL) && (opc == Op_MemBarAcquire) && (my_mem->outcnt() == 1)) {
3015         // if the Precedent is a decodeN and its input (a Load) is used at more than one place,
3016         // replace this Precedent (decodeN) with the Load instead.
3017         if ((my_mem->Opcode() == Op_DecodeN) && (my_mem->in(1)->outcnt() > 1))  {
3018           Node* load_node = my_mem->in(1);
3019           set_req(MemBarNode::Precedent, load_node);
3020           phase->is_IterGVN()->_worklist.push(my_mem);
3021           my_mem = load_node;
3022         } else {
3023           assert(my_mem->unique_out() == this, "sanity");
3024           del_req(Precedent);
3025           phase->is_IterGVN()->_worklist.push(my_mem); // remove dead node later
3026           my_mem = NULL;
3027         }
3028       }
3029       if (my_mem != NULL && my_mem->is_Mem()) {
3030         const TypeOopPtr* t_oop = my_mem->in(MemNode::Address)->bottom_type()->isa_oopptr();
3031         // Check for scalar replaced object reference.
3032         if( t_oop != NULL && t_oop->is_known_instance_field() &&
3033             t_oop->offset() != Type::OffsetBot &&
3034             t_oop->offset() != Type::OffsetTop) {
3035           eliminate = true;
3036         }
3037       }
3038     } else if (opc == Op_MemBarRelease) {
3039       // Final field stores.
3040       Node* alloc = AllocateNode::Ideal_allocation(in(MemBarNode::Precedent), phase);
3041       if ((alloc != NULL) && alloc->is_Allocate() &&
3042           alloc->as_Allocate()->_is_non_escaping) {
3043         // The allocated object does not escape.
3044         eliminate = true;
3045       }
3046     }
3047     if (eliminate) {
3048       // Replace MemBar projections by its inputs.
3049       PhaseIterGVN* igvn = phase->is_IterGVN();
3050       igvn->replace_node(proj_out(TypeFunc::Memory), in(TypeFunc::Memory));
3051       igvn->replace_node(proj_out(TypeFunc::Control), in(TypeFunc::Control));
3052       // Must return either the original node (now dead) or a new node
3053       // (Do not return a top here, since that would break the uniqueness of top.)
3054       return new (phase->C) ConINode(TypeInt::ZERO);
3055     }
3056   }
3057   return NULL;
3058 }
3059 
3060 //------------------------------Value------------------------------------------
3061 const Type *MemBarNode::Value( PhaseTransform *phase ) const {
3062   if( !in(0) ) return Type::TOP;
3063   if( phase->type(in(0)) == Type::TOP )
3064     return Type::TOP;
3065   return TypeTuple::MEMBAR;
3066 }
3067 
3068 //------------------------------match------------------------------------------
3069 // Construct projections for memory.
3070 Node *MemBarNode::match( const ProjNode *proj, const Matcher *m ) {
3071   switch (proj->_con) {
3072   case TypeFunc::Control:
3073   case TypeFunc::Memory:
3074     return new (m->C) MachProjNode(this,proj->_con,RegMask::Empty,MachProjNode::unmatched_proj);
3075   }
3076   ShouldNotReachHere();
3077   return NULL;
3078 }
3079 
3080 //===========================InitializeNode====================================
3081 // SUMMARY:
3082 // This node acts as a memory barrier on raw memory, after some raw stores.
3083 // The 'cooked' oop value feeds from the Initialize, not the Allocation.
3084 // The Initialize can 'capture' suitably constrained stores as raw inits.
3085 // It can coalesce related raw stores into larger units (called 'tiles').
3086 // It can avoid zeroing new storage for memory units which have raw inits.
3087 // At macro-expansion, it is marked 'complete', and does not optimize further.
3088 //
3089 // EXAMPLE:
3090 // The object 'new short[2]' occupies 16 bytes in a 32-bit machine.
3091 //   ctl = incoming control; mem* = incoming memory
3092 // (Note:  A star * on a memory edge denotes I/O and other standard edges.)
3093 // First allocate uninitialized memory and fill in the header:
3094 //   alloc = (Allocate ctl mem* 16 #short[].klass ...)
3095 //   ctl := alloc.Control; mem* := alloc.Memory*
3096 //   rawmem = alloc.Memory; rawoop = alloc.RawAddress
3097 // Then initialize to zero the non-header parts of the raw memory block:
3098 //   init = (Initialize alloc.Control alloc.Memory* alloc.RawAddress)
3099 //   ctl := init.Control; mem.SLICE(#short[*]) := init.Memory
3100 // After the initialize node executes, the object is ready for service:
3101 //   oop := (CheckCastPP init.Control alloc.RawAddress #short[])
3102 // Suppose its body is immediately initialized as {1,2}:
3103 //   store1 = (StoreC init.Control init.Memory (+ oop 12) 1)
3104 //   store2 = (StoreC init.Control store1      (+ oop 14) 2)
3105 //   mem.SLICE(#short[*]) := store2
3106 //
3107 // DETAILS:
3108 // An InitializeNode collects and isolates object initialization after
3109 // an AllocateNode and before the next possible safepoint.  As a
3110 // memory barrier (MemBarNode), it keeps critical stores from drifting
3111 // down past any safepoint or any publication of the allocation.
3112 // Before this barrier, a newly-allocated object may have uninitialized bits.
3113 // After this barrier, it may be treated as a real oop, and GC is allowed.
3114 //
3115 // The semantics of the InitializeNode include an implicit zeroing of
3116 // the new object from object header to the end of the object.
3117 // (The object header and end are determined by the AllocateNode.)
3118 //
3119 // Certain stores may be added as direct inputs to the InitializeNode.
3120 // These stores must update raw memory, and they must be to addresses
3121 // derived from the raw address produced by AllocateNode, and with
3122 // a constant offset.  They must be ordered by increasing offset.
3123 // The first one is at in(RawStores), the last at in(req()-1).
3124 // Unlike most memory operations, they are not linked in a chain,
3125 // but are displayed in parallel as users of the rawmem output of
3126 // the allocation.
3127 //
3128 // (See comments in InitializeNode::capture_store, which continue
3129 // the example given above.)
3130 //
3131 // When the associated Allocate is macro-expanded, the InitializeNode
3132 // may be rewritten to optimize collected stores.  A ClearArrayNode
3133 // may also be created at that point to represent any required zeroing.
3134 // The InitializeNode is then marked 'complete', prohibiting further
3135 // capturing of nearby memory operations.
3136 //
3137 // During macro-expansion, all captured initializations which store
3138 // constant values of 32 bits or smaller are coalesced (if advantageous)
3139 // into larger 'tiles' 32 or 64 bits.  This allows an object to be
3140 // initialized in fewer memory operations.  Memory words which are
3141 // covered by neither tiles nor non-constant stores are pre-zeroed
3142 // by explicit stores of zero.  (The code shape happens to do all
3143 // zeroing first, then all other stores, with both sequences occurring
3144 // in order of ascending offsets.)
3145 //
3146 // Alternatively, code may be inserted between an AllocateNode and its
3147 // InitializeNode, to perform arbitrary initialization of the new object.
3148 // E.g., the object copying intrinsics insert complex data transfers here.
3149 // The initialization must then be marked as 'complete' disable the
3150 // built-in zeroing semantics and the collection of initializing stores.
3151 //
3152 // While an InitializeNode is incomplete, reads from the memory state
3153 // produced by it are optimizable if they match the control edge and
3154 // new oop address associated with the allocation/initialization.
3155 // They return a stored value (if the offset matches) or else zero.
3156 // A write to the memory state, if it matches control and address,
3157 // and if it is to a constant offset, may be 'captured' by the
3158 // InitializeNode.  It is cloned as a raw memory operation and rewired
3159 // inside the initialization, to the raw oop produced by the allocation.
3160 // Operations on addresses which are provably distinct (e.g., to
3161 // other AllocateNodes) are allowed to bypass the initialization.
3162 //
3163 // The effect of all this is to consolidate object initialization
3164 // (both arrays and non-arrays, both piecewise and bulk) into a
3165 // single location, where it can be optimized as a unit.
3166 //
3167 // Only stores with an offset less than TrackedInitializationLimit words
3168 // will be considered for capture by an InitializeNode.  This puts a
3169 // reasonable limit on the complexity of optimized initializations.
3170 
3171 //---------------------------InitializeNode------------------------------------
3172 InitializeNode::InitializeNode(Compile* C, int adr_type, Node* rawoop)
3173   : _is_complete(Incomplete), _does_not_escape(false),
3174     MemBarNode(C, adr_type, rawoop)
3175 {
3176   init_class_id(Class_Initialize);
3177 
3178   assert(adr_type == Compile::AliasIdxRaw, "only valid atp");
3179   assert(in(RawAddress) == rawoop, "proper init");
3180   // Note:  allocation() can be NULL, for secondary initialization barriers
3181 }
3182 
3183 // Since this node is not matched, it will be processed by the
3184 // register allocator.  Declare that there are no constraints
3185 // on the allocation of the RawAddress edge.
3186 const RegMask &InitializeNode::in_RegMask(uint idx) const {
3187   // This edge should be set to top, by the set_complete.  But be conservative.
3188   if (idx == InitializeNode::RawAddress)
3189     return *(Compile::current()->matcher()->idealreg2spillmask[in(idx)->ideal_reg()]);
3190   return RegMask::Empty;
3191 }
3192 
3193 Node* InitializeNode::memory(uint alias_idx) {
3194   Node* mem = in(Memory);
3195   if (mem->is_MergeMem()) {
3196     return mem->as_MergeMem()->memory_at(alias_idx);
3197   } else {
3198     // incoming raw memory is not split
3199     return mem;
3200   }
3201 }
3202 
3203 bool InitializeNode::is_non_zero() {
3204   if (is_complete())  return false;
3205   remove_extra_zeroes();
3206   return (req() > RawStores);
3207 }
3208 
3209 void InitializeNode::set_complete(PhaseGVN* phase) {
3210   assert(!is_complete(), "caller responsibility");
3211   _is_complete = Complete;
3212 
3213   // After this node is complete, it contains a bunch of
3214   // raw-memory initializations.  There is no need for
3215   // it to have anything to do with non-raw memory effects.
3216   // Therefore, tell all non-raw users to re-optimize themselves,
3217   // after skipping the memory effects of this initialization.
3218   PhaseIterGVN* igvn = phase->is_IterGVN();
3219   if (igvn)  igvn->add_users_to_worklist(this);
3220 }
3221 
3222 // convenience function
3223 // return false if the init contains any stores already
3224 bool AllocateNode::maybe_set_complete(PhaseGVN* phase) {
3225   InitializeNode* init = initialization();
3226   if (init == NULL || init->is_complete())  return false;
3227   init->remove_extra_zeroes();
3228   // for now, if this allocation has already collected any inits, bail:
3229   if (init->is_non_zero())  return false;
3230   init->set_complete(phase);
3231   return true;
3232 }
3233 
3234 void InitializeNode::remove_extra_zeroes() {
3235   if (req() == RawStores)  return;
3236   Node* zmem = zero_memory();
3237   uint fill = RawStores;
3238   for (uint i = fill; i < req(); i++) {
3239     Node* n = in(i);
3240     if (n->is_top() || n == zmem)  continue;  // skip
3241     if (fill < i)  set_req(fill, n);          // compact
3242     ++fill;
3243   }
3244   // delete any empty spaces created:
3245   while (fill < req()) {
3246     del_req(fill);
3247   }
3248 }
3249 
3250 // Helper for remembering which stores go with which offsets.
3251 intptr_t InitializeNode::get_store_offset(Node* st, PhaseTransform* phase) {
3252   if (!st->is_Store())  return -1;  // can happen to dead code via subsume_node
3253   intptr_t offset = -1;
3254   Node* base = AddPNode::Ideal_base_and_offset(st->in(MemNode::Address),
3255                                                phase, offset);
3256   if (base == NULL)     return -1;  // something is dead,
3257   if (offset < 0)       return -1;  //        dead, dead
3258   return offset;
3259 }
3260 
3261 // Helper for proving that an initialization expression is
3262 // "simple enough" to be folded into an object initialization.
3263 // Attempts to prove that a store's initial value 'n' can be captured
3264 // within the initialization without creating a vicious cycle, such as:
3265 //     { Foo p = new Foo(); p.next = p; }
3266 // True for constants and parameters and small combinations thereof.
3267 bool InitializeNode::detect_init_independence(Node* n, int& count) {
3268   if (n == NULL)      return true;   // (can this really happen?)
3269   if (n->is_Proj())   n = n->in(0);
3270   if (n == this)      return false;  // found a cycle
3271   if (n->is_Con())    return true;
3272   if (n->is_Start())  return true;   // params, etc., are OK
3273   if (n->is_Root())   return true;   // even better
3274 
3275   Node* ctl = n->in(0);
3276   if (ctl != NULL && !ctl->is_top()) {
3277     if (ctl->is_Proj())  ctl = ctl->in(0);
3278     if (ctl == this)  return false;
3279 
3280     // If we already know that the enclosing memory op is pinned right after
3281     // the init, then any control flow that the store has picked up
3282     // must have preceded the init, or else be equal to the init.
3283     // Even after loop optimizations (which might change control edges)
3284     // a store is never pinned *before* the availability of its inputs.
3285     if (!MemNode::all_controls_dominate(n, this))
3286       return false;                  // failed to prove a good control
3287   }
3288 
3289   // Check data edges for possible dependencies on 'this'.
3290   if ((count += 1) > 20)  return false;  // complexity limit
3291   for (uint i = 1; i < n->req(); i++) {
3292     Node* m = n->in(i);
3293     if (m == NULL || m == n || m->is_top())  continue;
3294     uint first_i = n->find_edge(m);
3295     if (i != first_i)  continue;  // process duplicate edge just once
3296     if (!detect_init_independence(m, count)) {
3297       return false;
3298     }
3299   }
3300 
3301   return true;
3302 }
3303 
3304 // Here are all the checks a Store must pass before it can be moved into
3305 // an initialization.  Returns zero if a check fails.
3306 // On success, returns the (constant) offset to which the store applies,
3307 // within the initialized memory.
3308 intptr_t InitializeNode::can_capture_store(StoreNode* st, PhaseTransform* phase, bool can_reshape) {
3309   const int FAIL = 0;
3310   if (st->req() != MemNode::ValueIn + 1)
3311     return FAIL;                // an inscrutable StoreNode (card mark?)
3312   Node* ctl = st->in(MemNode::Control);
3313   if (!(ctl != NULL && ctl->is_Proj() && ctl->in(0) == this))
3314     return FAIL;                // must be unconditional after the initialization
3315   Node* mem = st->in(MemNode::Memory);
3316   if (!(mem->is_Proj() && mem->in(0) == this))
3317     return FAIL;                // must not be preceded by other stores
3318   Node* adr = st->in(MemNode::Address);
3319   intptr_t offset;
3320   AllocateNode* alloc = AllocateNode::Ideal_allocation(adr, phase, offset);
3321   if (alloc == NULL)
3322     return FAIL;                // inscrutable address
3323   if (alloc != allocation())
3324     return FAIL;                // wrong allocation!  (store needs to float up)
3325   Node* val = st->in(MemNode::ValueIn);
3326   int complexity_count = 0;
3327   if (!detect_init_independence(val, complexity_count))
3328     return FAIL;                // stored value must be 'simple enough'
3329 
3330   // The Store can be captured only if nothing after the allocation
3331   // and before the Store is using the memory location that the store
3332   // overwrites.
3333   bool failed = false;
3334   // If is_complete_with_arraycopy() is true the shape of the graph is
3335   // well defined and is safe so no need for extra checks.
3336   if (!is_complete_with_arraycopy()) {
3337     // We are going to look at each use of the memory state following
3338     // the allocation to make sure nothing reads the memory that the
3339     // Store writes.
3340     const TypePtr* t_adr = phase->type(adr)->isa_ptr();
3341     int alias_idx = phase->C->get_alias_index(t_adr);
3342     ResourceMark rm;
3343     Unique_Node_List mems;
3344     mems.push(mem);
3345     Node* unique_merge = NULL;
3346     for (uint next = 0; next < mems.size(); ++next) {
3347       Node *m  = mems.at(next);
3348       for (DUIterator_Fast jmax, j = m->fast_outs(jmax); j < jmax; j++) {
3349         Node *n = m->fast_out(j);
3350         if (n->outcnt() == 0) {
3351           continue;
3352         }
3353         if (n == st) {
3354           continue;
3355         } else if (n->in(0) != NULL && n->in(0) != ctl) {
3356           // If the control of this use is different from the control
3357           // of the Store which is right after the InitializeNode then
3358           // this node cannot be between the InitializeNode and the
3359           // Store.
3360           continue;
3361         } else if (n->is_MergeMem()) {
3362           if (n->as_MergeMem()->memory_at(alias_idx) == m) {
3363             // We can hit a MergeMemNode (that will likely go away
3364             // later) that is a direct use of the memory state
3365             // following the InitializeNode on the same slice as the
3366             // store node that we'd like to capture. We need to check
3367             // the uses of the MergeMemNode.
3368             mems.push(n);
3369           }
3370         } else if (n->is_Mem()) {
3371           Node* other_adr = n->in(MemNode::Address);
3372           if (other_adr == adr) {
3373             failed = true;
3374             break;
3375           } else {
3376             const TypePtr* other_t_adr = phase->type(other_adr)->isa_ptr();
3377             if (other_t_adr != NULL) {
3378               int other_alias_idx = phase->C->get_alias_index(other_t_adr);
3379               if (other_alias_idx == alias_idx) {
3380                 // A load from the same memory slice as the store right
3381                 // after the InitializeNode. We check the control of the
3382                 // object/array that is loaded from. If it's the same as
3383                 // the store control then we cannot capture the store.
3384                 assert(!n->is_Store(), "2 stores to same slice on same control?");
3385                 Node* base = other_adr;
3386                 assert(base->is_AddP(), err_msg_res("should be addp but is %s", base->Name()));
3387                 base = base->in(AddPNode::Base);
3388                 if (base != NULL) {
3389                   base = base->uncast();
3390                   if (base->is_Proj() && base->in(0) == alloc) {
3391                     failed = true;
3392                     break;
3393                   }
3394                 }
3395               }
3396             }
3397           }
3398         } else {
3399           failed = true;
3400           break;
3401         }
3402       }
3403     }
3404   }
3405   if (failed) {
3406     if (!can_reshape) {
3407       // We decided we couldn't capture the store during parsing. We
3408       // should try again during the next IGVN once the graph is
3409       // cleaner.
3410       phase->C->record_for_igvn(st);
3411     }
3412     return FAIL;
3413   }
3414 
3415   return offset;                // success
3416 }
3417 
3418 // Find the captured store in(i) which corresponds to the range
3419 // [start..start+size) in the initialized object.
3420 // If there is one, return its index i.  If there isn't, return the
3421 // negative of the index where it should be inserted.
3422 // Return 0 if the queried range overlaps an initialization boundary
3423 // or if dead code is encountered.
3424 // If size_in_bytes is zero, do not bother with overlap checks.
3425 int InitializeNode::captured_store_insertion_point(intptr_t start,
3426                                                    int size_in_bytes,
3427                                                    PhaseTransform* phase) {
3428   const int FAIL = 0, MAX_STORE = BytesPerLong;
3429 
3430   if (is_complete())
3431     return FAIL;                // arraycopy got here first; punt
3432 
3433   assert(allocation() != NULL, "must be present");
3434 
3435   // no negatives, no header fields:
3436   if (start < (intptr_t) allocation()->minimum_header_size())  return FAIL;
3437 
3438   // after a certain size, we bail out on tracking all the stores:
3439   intptr_t ti_limit = (TrackedInitializationLimit * HeapWordSize);
3440   if (start >= ti_limit)  return FAIL;
3441 
3442   for (uint i = InitializeNode::RawStores, limit = req(); ; ) {
3443     if (i >= limit)  return -(int)i; // not found; here is where to put it
3444 
3445     Node*    st     = in(i);
3446     intptr_t st_off = get_store_offset(st, phase);
3447     if (st_off < 0) {
3448       if (st != zero_memory()) {
3449         return FAIL;            // bail out if there is dead garbage
3450       }
3451     } else if (st_off > start) {
3452       // ...we are done, since stores are ordered
3453       if (st_off < start + size_in_bytes) {
3454         return FAIL;            // the next store overlaps
3455       }
3456       return -(int)i;           // not found; here is where to put it
3457     } else if (st_off < start) {
3458       if (size_in_bytes != 0 &&
3459           start < st_off + MAX_STORE &&
3460           start < st_off + st->as_Store()->memory_size()) {
3461         return FAIL;            // the previous store overlaps
3462       }
3463     } else {
3464       if (size_in_bytes != 0 &&
3465           st->as_Store()->memory_size() != size_in_bytes) {
3466         return FAIL;            // mismatched store size
3467       }
3468       return i;
3469     }
3470 
3471     ++i;
3472   }
3473 }
3474 
3475 // Look for a captured store which initializes at the offset 'start'
3476 // with the given size.  If there is no such store, and no other
3477 // initialization interferes, then return zero_memory (the memory
3478 // projection of the AllocateNode).
3479 Node* InitializeNode::find_captured_store(intptr_t start, int size_in_bytes,
3480                                           PhaseTransform* phase) {
3481   assert(stores_are_sane(phase), "");
3482   int i = captured_store_insertion_point(start, size_in_bytes, phase);
3483   if (i == 0) {
3484     return NULL;                // something is dead
3485   } else if (i < 0) {
3486     return zero_memory();       // just primordial zero bits here
3487   } else {
3488     Node* st = in(i);           // here is the store at this position
3489     assert(get_store_offset(st->as_Store(), phase) == start, "sanity");
3490     return st;
3491   }
3492 }
3493 
3494 // Create, as a raw pointer, an address within my new object at 'offset'.
3495 Node* InitializeNode::make_raw_address(intptr_t offset,
3496                                        PhaseTransform* phase) {
3497   Node* addr = in(RawAddress);
3498   if (offset != 0) {
3499     Compile* C = phase->C;
3500     addr = phase->transform( new (C) AddPNode(C->top(), addr,
3501                                                  phase->MakeConX(offset)) );
3502   }
3503   return addr;
3504 }
3505 
3506 // Clone the given store, converting it into a raw store
3507 // initializing a field or element of my new object.
3508 // Caller is responsible for retiring the original store,
3509 // with subsume_node or the like.
3510 //
3511 // From the example above InitializeNode::InitializeNode,
3512 // here are the old stores to be captured:
3513 //   store1 = (StoreC init.Control init.Memory (+ oop 12) 1)
3514 //   store2 = (StoreC init.Control store1      (+ oop 14) 2)
3515 //
3516 // Here is the changed code; note the extra edges on init:
3517 //   alloc = (Allocate ...)
3518 //   rawoop = alloc.RawAddress
3519 //   rawstore1 = (StoreC alloc.Control alloc.Memory (+ rawoop 12) 1)
3520 //   rawstore2 = (StoreC alloc.Control alloc.Memory (+ rawoop 14) 2)
3521 //   init = (Initialize alloc.Control alloc.Memory rawoop
3522 //                      rawstore1 rawstore2)
3523 //
3524 Node* InitializeNode::capture_store(StoreNode* st, intptr_t start,
3525                                     PhaseTransform* phase, bool can_reshape) {
3526   assert(stores_are_sane(phase), "");
3527 
3528   if (start < 0)  return NULL;
3529   assert(can_capture_store(st, phase, can_reshape) == start, "sanity");
3530 
3531   Compile* C = phase->C;
3532   int size_in_bytes = st->memory_size();
3533   int i = captured_store_insertion_point(start, size_in_bytes, phase);
3534   if (i == 0)  return NULL;     // bail out
3535   Node* prev_mem = NULL;        // raw memory for the captured store
3536   if (i > 0) {
3537     prev_mem = in(i);           // there is a pre-existing store under this one
3538     set_req(i, C->top());       // temporarily disconnect it
3539     // See StoreNode::Ideal 'st->outcnt() == 1' for the reason to disconnect.
3540   } else {
3541     i = -i;                     // no pre-existing store
3542     prev_mem = zero_memory();   // a slice of the newly allocated object
3543     if (i > InitializeNode::RawStores && in(i-1) == prev_mem)
3544       set_req(--i, C->top());   // reuse this edge; it has been folded away
3545     else
3546       ins_req(i, C->top());     // build a new edge
3547   }
3548   Node* new_st = st->clone();
3549   new_st->set_req(MemNode::Control, in(Control));
3550   new_st->set_req(MemNode::Memory,  prev_mem);
3551   new_st->set_req(MemNode::Address, make_raw_address(start, phase));
3552   new_st = phase->transform(new_st);
3553 
3554   // At this point, new_st might have swallowed a pre-existing store
3555   // at the same offset, or perhaps new_st might have disappeared,
3556   // if it redundantly stored the same value (or zero to fresh memory).
3557 
3558   // In any case, wire it in:
3559   set_req(i, new_st);
3560 
3561   // The caller may now kill the old guy.
3562   DEBUG_ONLY(Node* check_st = find_captured_store(start, size_in_bytes, phase));
3563   assert(check_st == new_st || check_st == NULL, "must be findable");
3564   assert(!is_complete(), "");
3565   return new_st;
3566 }
3567 
3568 static bool store_constant(jlong* tiles, int num_tiles,
3569                            intptr_t st_off, int st_size,
3570                            jlong con) {
3571   if ((st_off & (st_size-1)) != 0)
3572     return false;               // strange store offset (assume size==2**N)
3573   address addr = (address)tiles + st_off;
3574   assert(st_off >= 0 && addr+st_size <= (address)&tiles[num_tiles], "oob");
3575   switch (st_size) {
3576   case sizeof(jbyte):  *(jbyte*) addr = (jbyte) con; break;
3577   case sizeof(jchar):  *(jchar*) addr = (jchar) con; break;
3578   case sizeof(jint):   *(jint*)  addr = (jint)  con; break;
3579   case sizeof(jlong):  *(jlong*) addr = (jlong) con; break;
3580   default: return false;        // strange store size (detect size!=2**N here)
3581   }
3582   return true;                  // return success to caller
3583 }
3584 
3585 // Coalesce subword constants into int constants and possibly
3586 // into long constants.  The goal, if the CPU permits,
3587 // is to initialize the object with a small number of 64-bit tiles.
3588 // Also, convert floating-point constants to bit patterns.
3589 // Non-constants are not relevant to this pass.
3590 //
3591 // In terms of the running example on InitializeNode::InitializeNode
3592 // and InitializeNode::capture_store, here is the transformation
3593 // of rawstore1 and rawstore2 into rawstore12:
3594 //   alloc = (Allocate ...)
3595 //   rawoop = alloc.RawAddress
3596 //   tile12 = 0x00010002
3597 //   rawstore12 = (StoreI alloc.Control alloc.Memory (+ rawoop 12) tile12)
3598 //   init = (Initialize alloc.Control alloc.Memory rawoop rawstore12)
3599 //
3600 void
3601 InitializeNode::coalesce_subword_stores(intptr_t header_size,
3602                                         Node* size_in_bytes,
3603                                         PhaseGVN* phase) {
3604   Compile* C = phase->C;
3605 
3606   assert(stores_are_sane(phase), "");
3607   // Note:  After this pass, they are not completely sane,
3608   // since there may be some overlaps.
3609 
3610   int old_subword = 0, old_long = 0, new_int = 0, new_long = 0;
3611 
3612   intptr_t ti_limit = (TrackedInitializationLimit * HeapWordSize);
3613   intptr_t size_limit = phase->find_intptr_t_con(size_in_bytes, ti_limit);
3614   size_limit = MIN2(size_limit, ti_limit);
3615   size_limit = align_size_up(size_limit, BytesPerLong);
3616   int num_tiles = size_limit / BytesPerLong;
3617 
3618   // allocate space for the tile map:
3619   const int small_len = DEBUG_ONLY(true ? 3 :) 30; // keep stack frames small
3620   jlong  tiles_buf[small_len];
3621   Node*  nodes_buf[small_len];
3622   jlong  inits_buf[small_len];
3623   jlong* tiles = ((num_tiles <= small_len) ? &tiles_buf[0]
3624                   : NEW_RESOURCE_ARRAY(jlong, num_tiles));
3625   Node** nodes = ((num_tiles <= small_len) ? &nodes_buf[0]
3626                   : NEW_RESOURCE_ARRAY(Node*, num_tiles));
3627   jlong* inits = ((num_tiles <= small_len) ? &inits_buf[0]
3628                   : NEW_RESOURCE_ARRAY(jlong, num_tiles));
3629   // tiles: exact bitwise model of all primitive constants
3630   // nodes: last constant-storing node subsumed into the tiles model
3631   // inits: which bytes (in each tile) are touched by any initializations
3632 
3633   //// Pass A: Fill in the tile model with any relevant stores.
3634 
3635   Copy::zero_to_bytes(tiles, sizeof(tiles[0]) * num_tiles);
3636   Copy::zero_to_bytes(nodes, sizeof(nodes[0]) * num_tiles);
3637   Copy::zero_to_bytes(inits, sizeof(inits[0]) * num_tiles);
3638   Node* zmem = zero_memory(); // initially zero memory state
3639   for (uint i = InitializeNode::RawStores, limit = req(); i < limit; i++) {
3640     Node* st = in(i);
3641     intptr_t st_off = get_store_offset(st, phase);
3642 
3643     // Figure out the store's offset and constant value:
3644     if (st_off < header_size)             continue; //skip (ignore header)
3645     if (st->in(MemNode::Memory) != zmem)  continue; //skip (odd store chain)
3646     int st_size = st->as_Store()->memory_size();
3647     if (st_off + st_size > size_limit)    break;
3648 
3649     // Record which bytes are touched, whether by constant or not.
3650     if (!store_constant(inits, num_tiles, st_off, st_size, (jlong) -1))
3651       continue;                 // skip (strange store size)
3652 
3653     const Type* val = phase->type(st->in(MemNode::ValueIn));
3654     if (!val->singleton())                continue; //skip (non-con store)
3655     BasicType type = val->basic_type();
3656 
3657     jlong con = 0;
3658     switch (type) {
3659     case T_INT:    con = val->is_int()->get_con();  break;
3660     case T_LONG:   con = val->is_long()->get_con(); break;
3661     case T_FLOAT:  con = jint_cast(val->getf());    break;
3662     case T_DOUBLE: con = jlong_cast(val->getd());   break;
3663     default:                              continue; //skip (odd store type)
3664     }
3665 
3666     if (type == T_LONG && Matcher::isSimpleConstant64(con) &&
3667         st->Opcode() == Op_StoreL) {
3668       continue;                 // This StoreL is already optimal.
3669     }
3670 
3671     // Store down the constant.
3672     store_constant(tiles, num_tiles, st_off, st_size, con);
3673 
3674     intptr_t j = st_off >> LogBytesPerLong;
3675 
3676     if (type == T_INT && st_size == BytesPerInt
3677         && (st_off & BytesPerInt) == BytesPerInt) {
3678       jlong lcon = tiles[j];
3679       if (!Matcher::isSimpleConstant64(lcon) &&
3680           st->Opcode() == Op_StoreI) {
3681         // This StoreI is already optimal by itself.
3682         jint* intcon = (jint*) &tiles[j];
3683         intcon[1] = 0;  // undo the store_constant()
3684 
3685         // If the previous store is also optimal by itself, back up and
3686         // undo the action of the previous loop iteration... if we can.
3687         // But if we can't, just let the previous half take care of itself.
3688         st = nodes[j];
3689         st_off -= BytesPerInt;
3690         con = intcon[0];
3691         if (con != 0 && st != NULL && st->Opcode() == Op_StoreI) {
3692           assert(st_off >= header_size, "still ignoring header");
3693           assert(get_store_offset(st, phase) == st_off, "must be");
3694           assert(in(i-1) == zmem, "must be");
3695           DEBUG_ONLY(const Type* tcon = phase->type(st->in(MemNode::ValueIn)));
3696           assert(con == tcon->is_int()->get_con(), "must be");
3697           // Undo the effects of the previous loop trip, which swallowed st:
3698           intcon[0] = 0;        // undo store_constant()
3699           set_req(i-1, st);     // undo set_req(i, zmem)
3700           nodes[j] = NULL;      // undo nodes[j] = st
3701           --old_subword;        // undo ++old_subword
3702         }
3703         continue;               // This StoreI is already optimal.
3704       }
3705     }
3706 
3707     // This store is not needed.
3708     set_req(i, zmem);
3709     nodes[j] = st;              // record for the moment
3710     if (st_size < BytesPerLong) // something has changed
3711           ++old_subword;        // includes int/float, but who's counting...
3712     else  ++old_long;
3713   }
3714 
3715   if ((old_subword + old_long) == 0)
3716     return;                     // nothing more to do
3717 
3718   //// Pass B: Convert any non-zero tiles into optimal constant stores.
3719   // Be sure to insert them before overlapping non-constant stores.
3720   // (E.g., byte[] x = { 1,2,y,4 }  =>  x[int 0] = 0x01020004, x[2]=y.)
3721   for (int j = 0; j < num_tiles; j++) {
3722     jlong con  = tiles[j];
3723     jlong init = inits[j];
3724     if (con == 0)  continue;
3725     jint con0,  con1;           // split the constant, address-wise
3726     jint init0, init1;          // split the init map, address-wise
3727     { union { jlong con; jint intcon[2]; } u;
3728       u.con = con;
3729       con0  = u.intcon[0];
3730       con1  = u.intcon[1];
3731       u.con = init;
3732       init0 = u.intcon[0];
3733       init1 = u.intcon[1];
3734     }
3735 
3736     Node* old = nodes[j];
3737     assert(old != NULL, "need the prior store");
3738     intptr_t offset = (j * BytesPerLong);
3739 
3740     bool split = !Matcher::isSimpleConstant64(con);
3741 
3742     if (offset < header_size) {
3743       assert(offset + BytesPerInt >= header_size, "second int counts");
3744       assert(*(jint*)&tiles[j] == 0, "junk in header");
3745       split = true;             // only the second word counts
3746       // Example:  int a[] = { 42 ... }
3747     } else if (con0 == 0 && init0 == -1) {
3748       split = true;             // first word is covered by full inits
3749       // Example:  int a[] = { ... foo(), 42 ... }
3750     } else if (con1 == 0 && init1 == -1) {
3751       split = true;             // second word is covered by full inits
3752       // Example:  int a[] = { ... 42, foo() ... }
3753     }
3754 
3755     // Here's a case where init0 is neither 0 nor -1:
3756     //   byte a[] = { ... 0,0,foo(),0,  0,0,0,42 ... }
3757     // Assuming big-endian memory, init0, init1 are 0x0000FF00, 0x000000FF.
3758     // In this case the tile is not split; it is (jlong)42.
3759     // The big tile is stored down, and then the foo() value is inserted.
3760     // (If there were foo(),foo() instead of foo(),0, init0 would be -1.)
3761 
3762     Node* ctl = old->in(MemNode::Control);
3763     Node* adr = make_raw_address(offset, phase);
3764     const TypePtr* atp = TypeRawPtr::BOTTOM;
3765 
3766     // One or two coalesced stores to plop down.
3767     Node*    st[2];
3768     intptr_t off[2];
3769     int  nst = 0;
3770     if (!split) {
3771       ++new_long;
3772       off[nst] = offset;
3773       st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp,
3774                                   phase->longcon(con), T_LONG, MemNode::unordered);
3775     } else {
3776       // Omit either if it is a zero.
3777       if (con0 != 0) {
3778         ++new_int;
3779         off[nst]  = offset;
3780         st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp,
3781                                     phase->intcon(con0), T_INT, MemNode::unordered);
3782       }
3783       if (con1 != 0) {
3784         ++new_int;
3785         offset += BytesPerInt;
3786         adr = make_raw_address(offset, phase);
3787         off[nst]  = offset;
3788         st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp,
3789                                     phase->intcon(con1), T_INT, MemNode::unordered);
3790       }
3791     }
3792 
3793     // Insert second store first, then the first before the second.
3794     // Insert each one just before any overlapping non-constant stores.
3795     while (nst > 0) {
3796       Node* st1 = st[--nst];
3797       C->copy_node_notes_to(st1, old);
3798       st1 = phase->transform(st1);
3799       offset = off[nst];
3800       assert(offset >= header_size, "do not smash header");
3801       int ins_idx = captured_store_insertion_point(offset, /*size:*/0, phase);
3802       guarantee(ins_idx != 0, "must re-insert constant store");
3803       if (ins_idx < 0)  ins_idx = -ins_idx;  // never overlap
3804       if (ins_idx > InitializeNode::RawStores && in(ins_idx-1) == zmem)
3805         set_req(--ins_idx, st1);
3806       else
3807         ins_req(ins_idx, st1);
3808     }
3809   }
3810 
3811   if (PrintCompilation && WizardMode)
3812     tty->print_cr("Changed %d/%d subword/long constants into %d/%d int/long",
3813                   old_subword, old_long, new_int, new_long);
3814   if (C->log() != NULL)
3815     C->log()->elem("comment that='%d/%d subword/long to %d/%d int/long'",
3816                    old_subword, old_long, new_int, new_long);
3817 
3818   // Clean up any remaining occurrences of zmem:
3819   remove_extra_zeroes();
3820 }
3821 
3822 // Explore forward from in(start) to find the first fully initialized
3823 // word, and return its offset.  Skip groups of subword stores which
3824 // together initialize full words.  If in(start) is itself part of a
3825 // fully initialized word, return the offset of in(start).  If there
3826 // are no following full-word stores, or if something is fishy, return
3827 // a negative value.
3828 intptr_t InitializeNode::find_next_fullword_store(uint start, PhaseGVN* phase) {
3829   int       int_map = 0;
3830   intptr_t  int_map_off = 0;
3831   const int FULL_MAP = right_n_bits(BytesPerInt);  // the int_map we hope for
3832 
3833   for (uint i = start, limit = req(); i < limit; i++) {
3834     Node* st = in(i);
3835 
3836     intptr_t st_off = get_store_offset(st, phase);
3837     if (st_off < 0)  break;  // return conservative answer
3838 
3839     int st_size = st->as_Store()->memory_size();
3840     if (st_size >= BytesPerInt && (st_off % BytesPerInt) == 0) {
3841       return st_off;            // we found a complete word init
3842     }
3843 
3844     // update the map:
3845 
3846     intptr_t this_int_off = align_size_down(st_off, BytesPerInt);
3847     if (this_int_off != int_map_off) {
3848       // reset the map:
3849       int_map = 0;
3850       int_map_off = this_int_off;
3851     }
3852 
3853     int subword_off = st_off - this_int_off;
3854     int_map |= right_n_bits(st_size) << subword_off;
3855     if ((int_map & FULL_MAP) == FULL_MAP) {
3856       return this_int_off;      // we found a complete word init
3857     }
3858 
3859     // Did this store hit or cross the word boundary?
3860     intptr_t next_int_off = align_size_down(st_off + st_size, BytesPerInt);
3861     if (next_int_off == this_int_off + BytesPerInt) {
3862       // We passed the current int, without fully initializing it.
3863       int_map_off = next_int_off;
3864       int_map >>= BytesPerInt;
3865     } else if (next_int_off > this_int_off + BytesPerInt) {
3866       // We passed the current and next int.
3867       return this_int_off + BytesPerInt;
3868     }
3869   }
3870 
3871   return -1;
3872 }
3873 
3874 
3875 // Called when the associated AllocateNode is expanded into CFG.
3876 // At this point, we may perform additional optimizations.
3877 // Linearize the stores by ascending offset, to make memory
3878 // activity as coherent as possible.
3879 Node* InitializeNode::complete_stores(Node* rawctl, Node* rawmem, Node* rawptr,
3880                                       intptr_t header_size,
3881                                       Node* size_in_bytes,
3882                                       PhaseGVN* phase) {
3883   assert(!is_complete(), "not already complete");
3884   assert(stores_are_sane(phase), "");
3885   assert(allocation() != NULL, "must be present");
3886 
3887   remove_extra_zeroes();
3888 
3889   if (ReduceFieldZeroing || ReduceBulkZeroing)
3890     // reduce instruction count for common initialization patterns
3891     coalesce_subword_stores(header_size, size_in_bytes, phase);
3892 
3893   Node* zmem = zero_memory();   // initially zero memory state
3894   Node* inits = zmem;           // accumulating a linearized chain of inits
3895   #ifdef ASSERT
3896   intptr_t first_offset = allocation()->minimum_header_size();
3897   intptr_t last_init_off = first_offset;  // previous init offset
3898   intptr_t last_init_end = first_offset;  // previous init offset+size
3899   intptr_t last_tile_end = first_offset;  // previous tile offset+size
3900   #endif
3901   intptr_t zeroes_done = header_size;
3902 
3903   bool do_zeroing = true;       // we might give up if inits are very sparse
3904   int  big_init_gaps = 0;       // how many large gaps have we seen?
3905 
3906   if (ZeroTLAB)  do_zeroing = false;
3907   if (!ReduceFieldZeroing && !ReduceBulkZeroing)  do_zeroing = false;
3908 
3909   for (uint i = InitializeNode::RawStores, limit = req(); i < limit; i++) {
3910     Node* st = in(i);
3911     intptr_t st_off = get_store_offset(st, phase);
3912     if (st_off < 0)
3913       break;                    // unknown junk in the inits
3914     if (st->in(MemNode::Memory) != zmem)
3915       break;                    // complicated store chains somehow in list
3916 
3917     int st_size = st->as_Store()->memory_size();
3918     intptr_t next_init_off = st_off + st_size;
3919 
3920     if (do_zeroing && zeroes_done < next_init_off) {
3921       // See if this store needs a zero before it or under it.
3922       intptr_t zeroes_needed = st_off;
3923 
3924       if (st_size < BytesPerInt) {
3925         // Look for subword stores which only partially initialize words.
3926         // If we find some, we must lay down some word-level zeroes first,
3927         // underneath the subword stores.
3928         //
3929         // Examples:
3930         //   byte[] a = { p,q,r,s }  =>  a[0]=p,a[1]=q,a[2]=r,a[3]=s
3931         //   byte[] a = { x,y,0,0 }  =>  a[0..3] = 0, a[0]=x,a[1]=y
3932         //   byte[] a = { 0,0,z,0 }  =>  a[0..3] = 0, a[2]=z
3933         //
3934         // Note:  coalesce_subword_stores may have already done this,
3935         // if it was prompted by constant non-zero subword initializers.
3936         // But this case can still arise with non-constant stores.
3937 
3938         intptr_t next_full_store = find_next_fullword_store(i, phase);
3939 
3940         // In the examples above:
3941         //   in(i)          p   q   r   s     x   y     z
3942         //   st_off        12  13  14  15    12  13    14
3943         //   st_size        1   1   1   1     1   1     1
3944         //   next_full_s.  12  16  16  16    16  16    16
3945         //   z's_done      12  16  16  16    12  16    12
3946         //   z's_needed    12  16  16  16    16  16    16
3947         //   zsize          0   0   0   0     4   0     4
3948         if (next_full_store < 0) {
3949           // Conservative tack:  Zero to end of current word.
3950           zeroes_needed = align_size_up(zeroes_needed, BytesPerInt);
3951         } else {
3952           // Zero to beginning of next fully initialized word.
3953           // Or, don't zero at all, if we are already in that word.
3954           assert(next_full_store >= zeroes_needed, "must go forward");
3955           assert((next_full_store & (BytesPerInt-1)) == 0, "even boundary");
3956           zeroes_needed = next_full_store;
3957         }
3958       }
3959 
3960       if (zeroes_needed > zeroes_done) {
3961         intptr_t zsize = zeroes_needed - zeroes_done;
3962         // Do some incremental zeroing on rawmem, in parallel with inits.
3963         zeroes_done = align_size_down(zeroes_done, BytesPerInt);
3964         rawmem = ClearArrayNode::clear_memory(rawctl, rawmem, rawptr,
3965                                               zeroes_done, zeroes_needed,
3966                                               phase);
3967         zeroes_done = zeroes_needed;
3968         if (zsize > Matcher::init_array_short_size && ++big_init_gaps > 2)
3969           do_zeroing = false;   // leave the hole, next time
3970       }
3971     }
3972 
3973     // Collect the store and move on:
3974     st->set_req(MemNode::Memory, inits);
3975     inits = st;                 // put it on the linearized chain
3976     set_req(i, zmem);           // unhook from previous position
3977 
3978     if (zeroes_done == st_off)
3979       zeroes_done = next_init_off;
3980 
3981     assert(!do_zeroing || zeroes_done >= next_init_off, "don't miss any");
3982 
3983     #ifdef ASSERT
3984     // Various order invariants.  Weaker than stores_are_sane because
3985     // a large constant tile can be filled in by smaller non-constant stores.
3986     assert(st_off >= last_init_off, "inits do not reverse");
3987     last_init_off = st_off;
3988     const Type* val = NULL;
3989     if (st_size >= BytesPerInt &&
3990         (val = phase->type(st->in(MemNode::ValueIn)))->singleton() &&
3991         (int)val->basic_type() < (int)T_OBJECT) {
3992       assert(st_off >= last_tile_end, "tiles do not overlap");
3993       assert(st_off >= last_init_end, "tiles do not overwrite inits");
3994       last_tile_end = MAX2(last_tile_end, next_init_off);
3995     } else {
3996       intptr_t st_tile_end = align_size_up(next_init_off, BytesPerLong);
3997       assert(st_tile_end >= last_tile_end, "inits stay with tiles");
3998       assert(st_off      >= last_init_end, "inits do not overlap");
3999       last_init_end = next_init_off;  // it's a non-tile
4000     }
4001     #endif //ASSERT
4002   }
4003 
4004   remove_extra_zeroes();        // clear out all the zmems left over
4005   add_req(inits);
4006 
4007   if (!ZeroTLAB) {
4008     // If anything remains to be zeroed, zero it all now.
4009     zeroes_done = align_size_down(zeroes_done, BytesPerInt);
4010     // if it is the last unused 4 bytes of an instance, forget about it
4011     intptr_t size_limit = phase->find_intptr_t_con(size_in_bytes, max_jint);
4012     if (zeroes_done + BytesPerLong >= size_limit) {
4013       assert(allocation() != NULL, "");
4014       if (allocation()->Opcode() == Op_Allocate) {
4015         Node* klass_node = allocation()->in(AllocateNode::KlassNode);
4016         ciKlass* k = phase->type(klass_node)->is_klassptr()->klass();
4017         if (zeroes_done == k->layout_helper())
4018           zeroes_done = size_limit;
4019       }
4020     }
4021     if (zeroes_done < size_limit) {
4022       rawmem = ClearArrayNode::clear_memory(rawctl, rawmem, rawptr,
4023                                             zeroes_done, size_in_bytes, phase);
4024     }
4025   }
4026 
4027   set_complete(phase);
4028   return rawmem;
4029 }
4030 
4031 
4032 #ifdef ASSERT
4033 bool InitializeNode::stores_are_sane(PhaseTransform* phase) {
4034   if (is_complete())
4035     return true;                // stores could be anything at this point
4036   assert(allocation() != NULL, "must be present");
4037   intptr_t last_off = allocation()->minimum_header_size();
4038   for (uint i = InitializeNode::RawStores; i < req(); i++) {
4039     Node* st = in(i);
4040     intptr_t st_off = get_store_offset(st, phase);
4041     if (st_off < 0)  continue;  // ignore dead garbage
4042     if (last_off > st_off) {
4043       tty->print_cr("*** bad store offset at %d: %d > %d", i, last_off, st_off);
4044       this->dump(2);
4045       assert(false, "ascending store offsets");
4046       return false;
4047     }
4048     last_off = st_off + st->as_Store()->memory_size();
4049   }
4050   return true;
4051 }
4052 #endif //ASSERT
4053 
4054 
4055 
4056 
4057 //============================MergeMemNode=====================================
4058 //
4059 // SEMANTICS OF MEMORY MERGES:  A MergeMem is a memory state assembled from several
4060 // contributing store or call operations.  Each contributor provides the memory
4061 // state for a particular "alias type" (see Compile::alias_type).  For example,
4062 // if a MergeMem has an input X for alias category #6, then any memory reference
4063 // to alias category #6 may use X as its memory state input, as an exact equivalent
4064 // to using the MergeMem as a whole.
4065 //   Load<6>( MergeMem(<6>: X, ...), p ) <==> Load<6>(X,p)
4066 //
4067 // (Here, the <N> notation gives the index of the relevant adr_type.)
4068 //
4069 // In one special case (and more cases in the future), alias categories overlap.
4070 // The special alias category "Bot" (Compile::AliasIdxBot) includes all memory
4071 // states.  Therefore, if a MergeMem has only one contributing input W for Bot,
4072 // it is exactly equivalent to that state W:
4073 //   MergeMem(<Bot>: W) <==> W
4074 //
4075 // Usually, the merge has more than one input.  In that case, where inputs
4076 // overlap (i.e., one is Bot), the narrower alias type determines the memory
4077 // state for that type, and the wider alias type (Bot) fills in everywhere else:
4078 //   Load<5>( MergeMem(<Bot>: W, <6>: X), p ) <==> Load<5>(W,p)
4079 //   Load<6>( MergeMem(<Bot>: W, <6>: X), p ) <==> Load<6>(X,p)
4080 //
4081 // A merge can take a "wide" memory state as one of its narrow inputs.
4082 // This simply means that the merge observes out only the relevant parts of
4083 // the wide input.  That is, wide memory states arriving at narrow merge inputs
4084 // are implicitly "filtered" or "sliced" as necessary.  (This is rare.)
4085 //
4086 // These rules imply that MergeMem nodes may cascade (via their <Bot> links),
4087 // and that memory slices "leak through":
4088 //   MergeMem(<Bot>: MergeMem(<Bot>: W, <7>: Y)) <==> MergeMem(<Bot>: W, <7>: Y)
4089 //
4090 // But, in such a cascade, repeated memory slices can "block the leak":
4091 //   MergeMem(<Bot>: MergeMem(<Bot>: W, <7>: Y), <7>: Y') <==> MergeMem(<Bot>: W, <7>: Y')
4092 //
4093 // In the last example, Y is not part of the combined memory state of the
4094 // outermost MergeMem.  The system must, of course, prevent unschedulable
4095 // memory states from arising, so you can be sure that the state Y is somehow
4096 // a precursor to state Y'.
4097 //
4098 //
4099 // REPRESENTATION OF MEMORY MERGES: The indexes used to address the Node::in array
4100 // of each MergeMemNode array are exactly the numerical alias indexes, including
4101 // but not limited to AliasIdxTop, AliasIdxBot, and AliasIdxRaw.  The functions
4102 // Compile::alias_type (and kin) produce and manage these indexes.
4103 //
4104 // By convention, the value of in(AliasIdxTop) (i.e., in(1)) is always the top node.
4105 // (Note that this provides quick access to the top node inside MergeMem methods,
4106 // without the need to reach out via TLS to Compile::current.)
4107 //
4108 // As a consequence of what was just described, a MergeMem that represents a full
4109 // memory state has an edge in(AliasIdxBot) which is a "wide" memory state,
4110 // containing all alias categories.
4111 //
4112 // MergeMem nodes never (?) have control inputs, so in(0) is NULL.
4113 //
4114 // All other edges in(N) (including in(AliasIdxRaw), which is in(3)) are either
4115 // a memory state for the alias type <N>, or else the top node, meaning that
4116 // there is no particular input for that alias type.  Note that the length of
4117 // a MergeMem is variable, and may be extended at any time to accommodate new
4118 // memory states at larger alias indexes.  When merges grow, they are of course
4119 // filled with "top" in the unused in() positions.
4120 //
4121 // This use of top is named "empty_memory()", or "empty_mem" (no-memory) as a variable.
4122 // (Top was chosen because it works smoothly with passes like GCM.)
4123 //
4124 // For convenience, we hardwire the alias index for TypeRawPtr::BOTTOM.  (It is
4125 // the type of random VM bits like TLS references.)  Since it is always the
4126 // first non-Bot memory slice, some low-level loops use it to initialize an
4127 // index variable:  for (i = AliasIdxRaw; i < req(); i++).
4128 //
4129 //
4130 // ACCESSORS:  There is a special accessor MergeMemNode::base_memory which returns
4131 // the distinguished "wide" state.  The accessor MergeMemNode::memory_at(N) returns
4132 // the memory state for alias type <N>, or (if there is no particular slice at <N>,
4133 // it returns the base memory.  To prevent bugs, memory_at does not accept <Top>
4134 // or <Bot> indexes.  The iterator MergeMemStream provides robust iteration over
4135 // MergeMem nodes or pairs of such nodes, ensuring that the non-top edges are visited.
4136 //
4137 // %%%% We may get rid of base_memory as a separate accessor at some point; it isn't
4138 // really that different from the other memory inputs.  An abbreviation called
4139 // "bot_memory()" for "memory_at(AliasIdxBot)" would keep code tidy.
4140 //
4141 //
4142 // PARTIAL MEMORY STATES:  During optimization, MergeMem nodes may arise that represent
4143 // partial memory states.  When a Phi splits through a MergeMem, the copy of the Phi
4144 // that "emerges though" the base memory will be marked as excluding the alias types
4145 // of the other (narrow-memory) copies which "emerged through" the narrow edges:
4146 //
4147 //   Phi<Bot>(U, MergeMem(<Bot>: W, <8>: Y))
4148 //     ==Ideal=>  MergeMem(<Bot>: Phi<Bot-8>(U, W), Phi<8>(U, Y))
4149 //
4150 // This strange "subtraction" effect is necessary to ensure IGVN convergence.
4151 // (It is currently unimplemented.)  As you can see, the resulting merge is
4152 // actually a disjoint union of memory states, rather than an overlay.
4153 //
4154 
4155 //------------------------------MergeMemNode-----------------------------------
4156 Node* MergeMemNode::make_empty_memory() {
4157   Node* empty_memory = (Node*) Compile::current()->top();
4158   assert(empty_memory->is_top(), "correct sentinel identity");
4159   return empty_memory;
4160 }
4161 
4162 MergeMemNode::MergeMemNode(Node *new_base) : Node(1+Compile::AliasIdxRaw) {
4163   init_class_id(Class_MergeMem);
4164   // all inputs are nullified in Node::Node(int)
4165   // set_input(0, NULL);  // no control input
4166 
4167   // Initialize the edges uniformly to top, for starters.
4168   Node* empty_mem = make_empty_memory();
4169   for (uint i = Compile::AliasIdxTop; i < req(); i++) {
4170     init_req(i,empty_mem);
4171   }
4172   assert(empty_memory() == empty_mem, "");
4173 
4174   if( new_base != NULL && new_base->is_MergeMem() ) {
4175     MergeMemNode* mdef = new_base->as_MergeMem();
4176     assert(mdef->empty_memory() == empty_mem, "consistent sentinels");
4177     for (MergeMemStream mms(this, mdef); mms.next_non_empty2(); ) {
4178       mms.set_memory(mms.memory2());
4179     }
4180     assert(base_memory() == mdef->base_memory(), "");
4181   } else {
4182     set_base_memory(new_base);
4183   }
4184 }
4185 
4186 // Make a new, untransformed MergeMem with the same base as 'mem'.
4187 // If mem is itself a MergeMem, populate the result with the same edges.
4188 MergeMemNode* MergeMemNode::make(Compile* C, Node* mem) {
4189   return new(C) MergeMemNode(mem);
4190 }
4191 
4192 //------------------------------cmp--------------------------------------------
4193 uint MergeMemNode::hash() const { return NO_HASH; }
4194 uint MergeMemNode::cmp( const Node &n ) const {
4195   return (&n == this);          // Always fail except on self
4196 }
4197 
4198 //------------------------------Identity---------------------------------------
4199 Node* MergeMemNode::Identity(PhaseTransform *phase) {
4200   // Identity if this merge point does not record any interesting memory
4201   // disambiguations.
4202   Node* base_mem = base_memory();
4203   Node* empty_mem = empty_memory();
4204   if (base_mem != empty_mem) {  // Memory path is not dead?
4205     for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
4206       Node* mem = in(i);
4207       if (mem != empty_mem && mem != base_mem) {
4208         return this;            // Many memory splits; no change
4209       }
4210     }
4211   }
4212   return base_mem;              // No memory splits; ID on the one true input
4213 }
4214 
4215 //------------------------------Ideal------------------------------------------
4216 // This method is invoked recursively on chains of MergeMem nodes
4217 Node *MergeMemNode::Ideal(PhaseGVN *phase, bool can_reshape) {
4218   // Remove chain'd MergeMems
4219   //
4220   // This is delicate, because the each "in(i)" (i >= Raw) is interpreted
4221   // relative to the "in(Bot)".  Since we are patching both at the same time,
4222   // we have to be careful to read each "in(i)" relative to the old "in(Bot)",
4223   // but rewrite each "in(i)" relative to the new "in(Bot)".
4224   Node *progress = NULL;
4225 
4226 
4227   Node* old_base = base_memory();
4228   Node* empty_mem = empty_memory();
4229   if (old_base == empty_mem)
4230     return NULL; // Dead memory path.
4231 
4232   MergeMemNode* old_mbase;
4233   if (old_base != NULL && old_base->is_MergeMem())
4234     old_mbase = old_base->as_MergeMem();
4235   else
4236     old_mbase = NULL;
4237   Node* new_base = old_base;
4238 
4239   // simplify stacked MergeMems in base memory
4240   if (old_mbase)  new_base = old_mbase->base_memory();
4241 
4242   // the base memory might contribute new slices beyond my req()
4243   if (old_mbase)  grow_to_match(old_mbase);
4244 
4245   // Look carefully at the base node if it is a phi.
4246   PhiNode* phi_base;
4247   if (new_base != NULL && new_base->is_Phi())
4248     phi_base = new_base->as_Phi();
4249   else
4250     phi_base = NULL;
4251 
4252   Node*    phi_reg = NULL;
4253   uint     phi_len = (uint)-1;
4254   if (phi_base != NULL && !phi_base->is_copy()) {
4255     // do not examine phi if degraded to a copy
4256     phi_reg = phi_base->region();
4257     phi_len = phi_base->req();
4258     // see if the phi is unfinished
4259     for (uint i = 1; i < phi_len; i++) {
4260       if (phi_base->in(i) == NULL) {
4261         // incomplete phi; do not look at it yet!
4262         phi_reg = NULL;
4263         phi_len = (uint)-1;
4264         break;
4265       }
4266     }
4267   }
4268 
4269   // Note:  We do not call verify_sparse on entry, because inputs
4270   // can normalize to the base_memory via subsume_node or similar
4271   // mechanisms.  This method repairs that damage.
4272 
4273   assert(!old_mbase || old_mbase->is_empty_memory(empty_mem), "consistent sentinels");
4274 
4275   // Look at each slice.
4276   for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
4277     Node* old_in = in(i);
4278     // calculate the old memory value
4279     Node* old_mem = old_in;
4280     if (old_mem == empty_mem)  old_mem = old_base;
4281     assert(old_mem == memory_at(i), "");
4282 
4283     // maybe update (reslice) the old memory value
4284 
4285     // simplify stacked MergeMems
4286     Node* new_mem = old_mem;
4287     MergeMemNode* old_mmem;
4288     if (old_mem != NULL && old_mem->is_MergeMem())
4289       old_mmem = old_mem->as_MergeMem();
4290     else
4291       old_mmem = NULL;
4292     if (old_mmem == this) {
4293       // This can happen if loops break up and safepoints disappear.
4294       // A merge of BotPtr (default) with a RawPtr memory derived from a
4295       // safepoint can be rewritten to a merge of the same BotPtr with
4296       // the BotPtr phi coming into the loop.  If that phi disappears
4297       // also, we can end up with a self-loop of the mergemem.
4298       // In general, if loops degenerate and memory effects disappear,
4299       // a mergemem can be left looking at itself.  This simply means
4300       // that the mergemem's default should be used, since there is
4301       // no longer any apparent effect on this slice.
4302       // Note: If a memory slice is a MergeMem cycle, it is unreachable
4303       //       from start.  Update the input to TOP.
4304       new_mem = (new_base == this || new_base == empty_mem)? empty_mem : new_base;
4305     }
4306     else if (old_mmem != NULL) {
4307       new_mem = old_mmem->memory_at(i);
4308     }
4309     // else preceding memory was not a MergeMem
4310 
4311     // replace equivalent phis (unfortunately, they do not GVN together)
4312     if (new_mem != NULL && new_mem != new_base &&
4313         new_mem->req() == phi_len && new_mem->in(0) == phi_reg) {
4314       if (new_mem->is_Phi()) {
4315         PhiNode* phi_mem = new_mem->as_Phi();
4316         for (uint i = 1; i < phi_len; i++) {
4317           if (phi_base->in(i) != phi_mem->in(i)) {
4318             phi_mem = NULL;
4319             break;
4320           }
4321         }
4322         if (phi_mem != NULL) {
4323           // equivalent phi nodes; revert to the def
4324           new_mem = new_base;
4325         }
4326       }
4327     }
4328 
4329     // maybe store down a new value
4330     Node* new_in = new_mem;
4331     if (new_in == new_base)  new_in = empty_mem;
4332 
4333     if (new_in != old_in) {
4334       // Warning:  Do not combine this "if" with the previous "if"
4335       // A memory slice might have be be rewritten even if it is semantically
4336       // unchanged, if the base_memory value has changed.
4337       set_req(i, new_in);
4338       progress = this;          // Report progress
4339     }
4340   }
4341 
4342   if (new_base != old_base) {
4343     set_req(Compile::AliasIdxBot, new_base);
4344     // Don't use set_base_memory(new_base), because we need to update du.
4345     assert(base_memory() == new_base, "");
4346     progress = this;
4347   }
4348 
4349   if( base_memory() == this ) {
4350     // a self cycle indicates this memory path is dead
4351     set_req(Compile::AliasIdxBot, empty_mem);
4352   }
4353 
4354   // Resolve external cycles by calling Ideal on a MergeMem base_memory
4355   // Recursion must occur after the self cycle check above
4356   if( base_memory()->is_MergeMem() ) {
4357     MergeMemNode *new_mbase = base_memory()->as_MergeMem();
4358     Node *m = phase->transform(new_mbase);  // Rollup any cycles
4359     if( m != NULL && (m->is_top() ||
4360         m->is_MergeMem() && m->as_MergeMem()->base_memory() == empty_mem) ) {
4361       // propagate rollup of dead cycle to self
4362       set_req(Compile::AliasIdxBot, empty_mem);
4363     }
4364   }
4365 
4366   if( base_memory() == empty_mem ) {
4367     progress = this;
4368     // Cut inputs during Parse phase only.
4369     // During Optimize phase a dead MergeMem node will be subsumed by Top.
4370     if( !can_reshape ) {
4371       for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
4372         if( in(i) != empty_mem ) { set_req(i, empty_mem); }
4373       }
4374     }
4375   }
4376 
4377   if( !progress && base_memory()->is_Phi() && can_reshape ) {
4378     // Check if PhiNode::Ideal's "Split phis through memory merges"
4379     // transform should be attempted. Look for this->phi->this cycle.
4380     uint merge_width = req();
4381     if (merge_width > Compile::AliasIdxRaw) {
4382       PhiNode* phi = base_memory()->as_Phi();
4383       for( uint i = 1; i < phi->req(); ++i ) {// For all paths in
4384         if (phi->in(i) == this) {
4385           phase->is_IterGVN()->_worklist.push(phi);
4386           break;
4387         }
4388       }
4389     }
4390   }
4391 
4392   assert(progress || verify_sparse(), "please, no dups of base");
4393   return progress;
4394 }
4395 
4396 //-------------------------set_base_memory-------------------------------------
4397 void MergeMemNode::set_base_memory(Node *new_base) {
4398   Node* empty_mem = empty_memory();
4399   set_req(Compile::AliasIdxBot, new_base);
4400   assert(memory_at(req()) == new_base, "must set default memory");
4401   // Clear out other occurrences of new_base:
4402   if (new_base != empty_mem) {
4403     for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
4404       if (in(i) == new_base)  set_req(i, empty_mem);
4405     }
4406   }
4407 }
4408 
4409 //------------------------------out_RegMask------------------------------------
4410 const RegMask &MergeMemNode::out_RegMask() const {
4411   return RegMask::Empty;
4412 }
4413 
4414 //------------------------------dump_spec--------------------------------------
4415 #ifndef PRODUCT
4416 void MergeMemNode::dump_spec(outputStream *st) const {
4417   st->print(" {");
4418   Node* base_mem = base_memory();
4419   for( uint i = Compile::AliasIdxRaw; i < req(); i++ ) {
4420     Node* mem = memory_at(i);
4421     if (mem == base_mem) { st->print(" -"); continue; }
4422     st->print( " N%d:", mem->_idx );
4423     Compile::current()->get_adr_type(i)->dump_on(st);
4424   }
4425   st->print(" }");
4426 }
4427 #endif // !PRODUCT
4428 
4429 
4430 #ifdef ASSERT
4431 static bool might_be_same(Node* a, Node* b) {
4432   if (a == b)  return true;
4433   if (!(a->is_Phi() || b->is_Phi()))  return false;
4434   // phis shift around during optimization
4435   return true;  // pretty stupid...
4436 }
4437 
4438 // verify a narrow slice (either incoming or outgoing)
4439 static void verify_memory_slice(const MergeMemNode* m, int alias_idx, Node* n) {
4440   if (!VerifyAliases)       return;  // don't bother to verify unless requested
4441   if (is_error_reported())  return;  // muzzle asserts when debugging an error
4442   if (Node::in_dump())      return;  // muzzle asserts when printing
4443   assert(alias_idx >= Compile::AliasIdxRaw, "must not disturb base_memory or sentinel");
4444   assert(n != NULL, "");
4445   // Elide intervening MergeMem's
4446   while (n->is_MergeMem()) {
4447     n = n->as_MergeMem()->memory_at(alias_idx);
4448   }
4449   Compile* C = Compile::current();
4450   const TypePtr* n_adr_type = n->adr_type();
4451   if (n == m->empty_memory()) {
4452     // Implicit copy of base_memory()
4453   } else if (n_adr_type != TypePtr::BOTTOM) {
4454     assert(n_adr_type != NULL, "new memory must have a well-defined adr_type");
4455     assert(C->must_alias(n_adr_type, alias_idx), "new memory must match selected slice");
4456   } else {
4457     // A few places like make_runtime_call "know" that VM calls are narrow,
4458     // and can be used to update only the VM bits stored as TypeRawPtr::BOTTOM.
4459     bool expected_wide_mem = false;
4460     if (n == m->base_memory()) {
4461       expected_wide_mem = true;
4462     } else if (alias_idx == Compile::AliasIdxRaw ||
4463                n == m->memory_at(Compile::AliasIdxRaw)) {
4464       expected_wide_mem = true;
4465     } else if (!C->alias_type(alias_idx)->is_rewritable()) {
4466       // memory can "leak through" calls on channels that
4467       // are write-once.  Allow this also.
4468       expected_wide_mem = true;
4469     }
4470     assert(expected_wide_mem, "expected narrow slice replacement");
4471   }
4472 }
4473 #else // !ASSERT
4474 #define verify_memory_slice(m,i,n) (void)(0)  // PRODUCT version is no-op
4475 #endif
4476 
4477 
4478 //-----------------------------memory_at---------------------------------------
4479 Node* MergeMemNode::memory_at(uint alias_idx) const {
4480   assert(alias_idx >= Compile::AliasIdxRaw ||
4481          alias_idx == Compile::AliasIdxBot && Compile::current()->AliasLevel() == 0,
4482          "must avoid base_memory and AliasIdxTop");
4483 
4484   // Otherwise, it is a narrow slice.
4485   Node* n = alias_idx < req() ? in(alias_idx) : empty_memory();
4486   Compile *C = Compile::current();
4487   if (is_empty_memory(n)) {
4488     // the array is sparse; empty slots are the "top" node
4489     n = base_memory();
4490     assert(Node::in_dump()
4491            || n == NULL || n->bottom_type() == Type::TOP
4492            || n->adr_type() == NULL // address is TOP
4493            || n->adr_type() == TypePtr::BOTTOM
4494            || n->adr_type() == TypeRawPtr::BOTTOM
4495            || Compile::current()->AliasLevel() == 0,
4496            "must be a wide memory");
4497     // AliasLevel == 0 if we are organizing the memory states manually.
4498     // See verify_memory_slice for comments on TypeRawPtr::BOTTOM.
4499   } else {
4500     // make sure the stored slice is sane
4501     #ifdef ASSERT
4502     if (is_error_reported() || Node::in_dump()) {
4503     } else if (might_be_same(n, base_memory())) {
4504       // Give it a pass:  It is a mostly harmless repetition of the base.
4505       // This can arise normally from node subsumption during optimization.
4506     } else {
4507       verify_memory_slice(this, alias_idx, n);
4508     }
4509     #endif
4510   }
4511   return n;
4512 }
4513 
4514 //---------------------------set_memory_at-------------------------------------
4515 void MergeMemNode::set_memory_at(uint alias_idx, Node *n) {
4516   verify_memory_slice(this, alias_idx, n);
4517   Node* empty_mem = empty_memory();
4518   if (n == base_memory())  n = empty_mem;  // collapse default
4519   uint need_req = alias_idx+1;
4520   if (req() < need_req) {
4521     if (n == empty_mem)  return;  // already the default, so do not grow me
4522     // grow the sparse array
4523     do {
4524       add_req(empty_mem);
4525     } while (req() < need_req);
4526   }
4527   set_req( alias_idx, n );
4528 }
4529 
4530 
4531 
4532 //--------------------------iteration_setup------------------------------------
4533 void MergeMemNode::iteration_setup(const MergeMemNode* other) {
4534   if (other != NULL) {
4535     grow_to_match(other);
4536     // invariant:  the finite support of mm2 is within mm->req()
4537     #ifdef ASSERT
4538     for (uint i = req(); i < other->req(); i++) {
4539       assert(other->is_empty_memory(other->in(i)), "slice left uncovered");
4540     }
4541     #endif
4542   }
4543   // Replace spurious copies of base_memory by top.
4544   Node* base_mem = base_memory();
4545   if (base_mem != NULL && !base_mem->is_top()) {
4546     for (uint i = Compile::AliasIdxBot+1, imax = req(); i < imax; i++) {
4547       if (in(i) == base_mem)
4548         set_req(i, empty_memory());
4549     }
4550   }
4551 }
4552 
4553 //---------------------------grow_to_match-------------------------------------
4554 void MergeMemNode::grow_to_match(const MergeMemNode* other) {
4555   Node* empty_mem = empty_memory();
4556   assert(other->is_empty_memory(empty_mem), "consistent sentinels");
4557   // look for the finite support of the other memory
4558   for (uint i = other->req(); --i >= req(); ) {
4559     if (other->in(i) != empty_mem) {
4560       uint new_len = i+1;
4561       while (req() < new_len)  add_req(empty_mem);
4562       break;
4563     }
4564   }
4565 }
4566 
4567 //---------------------------verify_sparse-------------------------------------
4568 #ifndef PRODUCT
4569 bool MergeMemNode::verify_sparse() const {
4570   assert(is_empty_memory(make_empty_memory()), "sane sentinel");
4571   Node* base_mem = base_memory();
4572   // The following can happen in degenerate cases, since empty==top.
4573   if (is_empty_memory(base_mem))  return true;
4574   for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
4575     assert(in(i) != NULL, "sane slice");
4576     if (in(i) == base_mem)  return false;  // should have been the sentinel value!
4577   }
4578   return true;
4579 }
4580 
4581 bool MergeMemStream::match_memory(Node* mem, const MergeMemNode* mm, int idx) {
4582   Node* n;
4583   n = mm->in(idx);
4584   if (mem == n)  return true;  // might be empty_memory()
4585   n = (idx == Compile::AliasIdxBot)? mm->base_memory(): mm->memory_at(idx);
4586   if (mem == n)  return true;
4587   while (n->is_Phi() && (n = n->as_Phi()->is_copy()) != NULL) {
4588     if (mem == n)  return true;
4589     if (n == NULL)  break;
4590   }
4591   return false;
4592 }
4593 #endif // !PRODUCT