1 /*
   2  * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "compiler/compileLog.hpp"
  27 #include "interpreter/linkResolver.hpp"
  28 #include "oops/method.hpp"
  29 #include "opto/addnode.hpp"
  30 #include "opto/castnode.hpp"
  31 #include "opto/idealGraphPrinter.hpp"
  32 #include "opto/locknode.hpp"
  33 #include "opto/memnode.hpp"
  34 #include "opto/parse.hpp"
  35 #include "opto/rootnode.hpp"
  36 #include "opto/runtime.hpp"
  37 #include "runtime/arguments.hpp"
  38 #include "runtime/handles.inline.hpp"
  39 #include "runtime/sharedRuntime.hpp"
  40 #include "utilities/copy.hpp"
  41 
  42 // Static array so we can figure out which bytecodes stop us from compiling
  43 // the most. Some of the non-static variables are needed in bytecodeInfo.cpp
  44 // and eventually should be encapsulated in a proper class (gri 8/18/98).
  45 
  46 int nodes_created              = 0;
  47 int methods_parsed             = 0;
  48 int methods_seen               = 0;
  49 int blocks_parsed              = 0;
  50 int blocks_seen                = 0;
  51 
  52 int explicit_null_checks_inserted = 0;
  53 int explicit_null_checks_elided   = 0;
  54 int all_null_checks_found         = 0, implicit_null_checks              = 0;
  55 int implicit_null_throws          = 0;
  56 
  57 int reclaim_idx  = 0;
  58 int reclaim_in   = 0;
  59 int reclaim_node = 0;
  60 
  61 #ifndef PRODUCT
  62 bool Parse::BytecodeParseHistogram::_initialized = false;
  63 uint Parse::BytecodeParseHistogram::_bytecodes_parsed [Bytecodes::number_of_codes];
  64 uint Parse::BytecodeParseHistogram::_nodes_constructed[Bytecodes::number_of_codes];
  65 uint Parse::BytecodeParseHistogram::_nodes_transformed[Bytecodes::number_of_codes];
  66 uint Parse::BytecodeParseHistogram::_new_values       [Bytecodes::number_of_codes];
  67 #endif
  68 
  69 //------------------------------print_statistics-------------------------------
  70 #ifndef PRODUCT
  71 void Parse::print_statistics() {
  72   tty->print_cr("--- Compiler Statistics ---");
  73   tty->print("Methods seen: %d  Methods parsed: %d", methods_seen, methods_parsed);
  74   tty->print("  Nodes created: %d", nodes_created);
  75   tty->cr();
  76   if (methods_seen != methods_parsed)
  77     tty->print_cr("Reasons for parse failures (NOT cumulative):");
  78   tty->print_cr("Blocks parsed: %d  Blocks seen: %d", blocks_parsed, blocks_seen);
  79 
  80   if( explicit_null_checks_inserted )
  81     tty->print_cr("%d original NULL checks - %d elided (%2d%%); optimizer leaves %d,", explicit_null_checks_inserted, explicit_null_checks_elided, (100*explicit_null_checks_elided)/explicit_null_checks_inserted, all_null_checks_found);
  82   if( all_null_checks_found )
  83     tty->print_cr("%d made implicit (%2d%%)", implicit_null_checks,
  84                   (100*implicit_null_checks)/all_null_checks_found);
  85   if( implicit_null_throws )
  86     tty->print_cr("%d implicit null exceptions at runtime",
  87                   implicit_null_throws);
  88 
  89   if( PrintParseStatistics && BytecodeParseHistogram::initialized() ) {
  90     BytecodeParseHistogram::print();
  91   }
  92 }
  93 #endif
  94 
  95 //------------------------------ON STACK REPLACEMENT---------------------------
  96 
  97 // Construct a node which can be used to get incoming state for
  98 // on stack replacement.
  99 Node *Parse::fetch_interpreter_state(int index,
 100                                      BasicType bt,
 101                                      Node *local_addrs,
 102                                      Node *local_addrs_base) {
 103   Node *mem = memory(Compile::AliasIdxRaw);
 104   Node *adr = basic_plus_adr( local_addrs_base, local_addrs, -index*wordSize );
 105   Node *ctl = control();
 106 
 107   // Very similar to LoadNode::make, except we handle un-aligned longs and
 108   // doubles on Sparc.  Intel can handle them just fine directly.
 109   Node *l;
 110   switch (bt) {                // Signature is flattened
 111   case T_INT:     l = new (C) LoadINode(ctl, mem, adr, TypeRawPtr::BOTTOM, TypeInt::INT,        MemNode::unordered); break;
 112   case T_FLOAT:   l = new (C) LoadFNode(ctl, mem, adr, TypeRawPtr::BOTTOM, Type::FLOAT,         MemNode::unordered); break;
 113   case T_ADDRESS: l = new (C) LoadPNode(ctl, mem, adr, TypeRawPtr::BOTTOM, TypeRawPtr::BOTTOM,  MemNode::unordered); break;
 114   case T_OBJECT:  l = new (C) LoadPNode(ctl, mem, adr, TypeRawPtr::BOTTOM, TypeInstPtr::BOTTOM, MemNode::unordered); break;
 115   case T_LONG:
 116   case T_DOUBLE: {
 117     // Since arguments are in reverse order, the argument address 'adr'
 118     // refers to the back half of the long/double.  Recompute adr.
 119     adr = basic_plus_adr(local_addrs_base, local_addrs, -(index+1)*wordSize);
 120     if (Matcher::misaligned_doubles_ok) {
 121       l = (bt == T_DOUBLE)
 122         ? (Node*)new (C) LoadDNode(ctl, mem, adr, TypeRawPtr::BOTTOM, Type::DOUBLE, MemNode::unordered)
 123         : (Node*)new (C) LoadLNode(ctl, mem, adr, TypeRawPtr::BOTTOM, TypeLong::LONG, MemNode::unordered);
 124     } else {
 125       l = (bt == T_DOUBLE)
 126         ? (Node*)new (C) LoadD_unalignedNode(ctl, mem, adr, TypeRawPtr::BOTTOM, MemNode::unordered)
 127         : (Node*)new (C) LoadL_unalignedNode(ctl, mem, adr, TypeRawPtr::BOTTOM, MemNode::unordered);
 128     }
 129     break;
 130   }
 131   default: ShouldNotReachHere();
 132   }
 133   return _gvn.transform(l);
 134 }
 135 
 136 // Helper routine to prevent the interpreter from handing
 137 // unexpected typestate to an OSR method.
 138 // The Node l is a value newly dug out of the interpreter frame.
 139 // The type is the type predicted by ciTypeFlow.  Note that it is
 140 // not a general type, but can only come from Type::get_typeflow_type.
 141 // The safepoint is a map which will feed an uncommon trap.
 142 Node* Parse::check_interpreter_type(Node* l, const Type* type,
 143                                     SafePointNode* &bad_type_exit) {
 144 
 145   const TypeOopPtr* tp = type->isa_oopptr();
 146 
 147   // TypeFlow may assert null-ness if a type appears unloaded.
 148   if (type == TypePtr::NULL_PTR ||
 149       (tp != NULL && !tp->klass()->is_loaded())) {
 150     // Value must be null, not a real oop.
 151     Node* chk = _gvn.transform( new (C) CmpPNode(l, null()) );
 152     Node* tst = _gvn.transform( new (C) BoolNode(chk, BoolTest::eq) );
 153     IfNode* iff = create_and_map_if(control(), tst, PROB_MAX, COUNT_UNKNOWN);
 154     set_control(_gvn.transform( new (C) IfTrueNode(iff) ));
 155     Node* bad_type = _gvn.transform( new (C) IfFalseNode(iff) );
 156     bad_type_exit->control()->add_req(bad_type);
 157     l = null();
 158   }
 159 
 160   // Typeflow can also cut off paths from the CFG, based on
 161   // types which appear unloaded, or call sites which appear unlinked.
 162   // When paths are cut off, values at later merge points can rise
 163   // toward more specific classes.  Make sure these specific classes
 164   // are still in effect.
 165   if (tp != NULL && tp->klass() != C->env()->Object_klass()) {
 166     // TypeFlow asserted a specific object type.  Value must have that type.
 167     Node* bad_type_ctrl = NULL;
 168     l = gen_checkcast(l, makecon(TypeKlassPtr::make(tp->klass())), &bad_type_ctrl);
 169     bad_type_exit->control()->add_req(bad_type_ctrl);
 170   }
 171 
 172   BasicType bt_l = _gvn.type(l)->basic_type();
 173   BasicType bt_t = type->basic_type();
 174   assert(_gvn.type(l)->higher_equal(type), "must constrain OSR typestate");
 175   return l;
 176 }
 177 
 178 // Helper routine which sets up elements of the initial parser map when
 179 // performing a parse for on stack replacement.  Add values into map.
 180 // The only parameter contains the address of a interpreter arguments.
 181 void Parse::load_interpreter_state(Node* osr_buf) {
 182   int index;
 183   int max_locals = jvms()->loc_size();
 184   int max_stack  = jvms()->stk_size();
 185 
 186 
 187   // Mismatch between method and jvms can occur since map briefly held
 188   // an OSR entry state (which takes up one RawPtr word).
 189   assert(max_locals == method()->max_locals(), "sanity");
 190   assert(max_stack  >= method()->max_stack(),  "sanity");
 191   assert((int)jvms()->endoff() == TypeFunc::Parms + max_locals + max_stack, "sanity");
 192   assert((int)jvms()->endoff() == (int)map()->req(), "sanity");
 193 
 194   // Find the start block.
 195   Block* osr_block = start_block();
 196   assert(osr_block->start() == osr_bci(), "sanity");
 197 
 198   // Set initial BCI.
 199   set_parse_bci(osr_block->start());
 200 
 201   // Set initial stack depth.
 202   set_sp(osr_block->start_sp());
 203 
 204   // Check bailouts.  We currently do not perform on stack replacement
 205   // of loops in catch blocks or loops which branch with a non-empty stack.
 206   if (sp() != 0) {
 207     C->record_method_not_compilable("OSR starts with non-empty stack");
 208     return;
 209   }
 210   // Do not OSR inside finally clauses:
 211   if (osr_block->has_trap_at(osr_block->start())) {
 212     C->record_method_not_compilable("OSR starts with an immediate trap");
 213     return;
 214   }
 215 
 216   // Commute monitors from interpreter frame to compiler frame.
 217   assert(jvms()->monitor_depth() == 0, "should be no active locks at beginning of osr");
 218   int mcnt = osr_block->flow()->monitor_count();
 219   Node *monitors_addr = basic_plus_adr(osr_buf, osr_buf, (max_locals+mcnt*2-1)*wordSize);
 220   for (index = 0; index < mcnt; index++) {
 221     // Make a BoxLockNode for the monitor.
 222     Node *box = _gvn.transform(new (C) BoxLockNode(next_monitor()));
 223 
 224 
 225     // Displaced headers and locked objects are interleaved in the
 226     // temp OSR buffer.  We only copy the locked objects out here.
 227     // Fetch the locked object from the OSR temp buffer and copy to our fastlock node.
 228     Node *lock_object = fetch_interpreter_state(index*2, T_OBJECT, monitors_addr, osr_buf);
 229     // Try and copy the displaced header to the BoxNode
 230     Node *displaced_hdr = fetch_interpreter_state((index*2) + 1, T_ADDRESS, monitors_addr, osr_buf);
 231 
 232 
 233     store_to_memory(control(), box, displaced_hdr, T_ADDRESS, Compile::AliasIdxRaw, MemNode::unordered);
 234 
 235     // Build a bogus FastLockNode (no code will be generated) and push the
 236     // monitor into our debug info.
 237     const FastLockNode *flock = _gvn.transform(new (C) FastLockNode( 0, lock_object, box ))->as_FastLock();
 238     map()->push_monitor(flock);
 239 
 240     // If the lock is our method synchronization lock, tuck it away in
 241     // _sync_lock for return and rethrow exit paths.
 242     if (index == 0 && method()->is_synchronized()) {
 243       _synch_lock = flock;
 244     }
 245   }
 246 
 247   // Use the raw liveness computation to make sure that unexpected
 248   // values don't propagate into the OSR frame.
 249   MethodLivenessResult live_locals = method()->liveness_at_bci(osr_bci());
 250   if (!live_locals.is_valid()) {
 251     // Degenerate or breakpointed method.
 252     C->record_method_not_compilable("OSR in empty or breakpointed method");
 253     return;
 254   }
 255 
 256   // Extract the needed locals from the interpreter frame.
 257   Node *locals_addr = basic_plus_adr(osr_buf, osr_buf, (max_locals-1)*wordSize);
 258 
 259   // find all the locals that the interpreter thinks contain live oops
 260   const BitMap live_oops = method()->live_local_oops_at_bci(osr_bci());
 261   for (index = 0; index < max_locals; index++) {
 262 
 263     if (!live_locals.at(index)) {
 264       continue;
 265     }
 266 
 267     const Type *type = osr_block->local_type_at(index);
 268 
 269     if (type->isa_oopptr() != NULL) {
 270 
 271       // 6403625: Verify that the interpreter oopMap thinks that the oop is live
 272       // else we might load a stale oop if the MethodLiveness disagrees with the
 273       // result of the interpreter. If the interpreter says it is dead we agree
 274       // by making the value go to top.
 275       //
 276 
 277       if (!live_oops.at(index)) {
 278         if (C->log() != NULL) {
 279           C->log()->elem("OSR_mismatch local_index='%d'",index);
 280         }
 281         set_local(index, null());
 282         // and ignore it for the loads
 283         continue;
 284       }
 285     }
 286 
 287     // Filter out TOP, HALF, and BOTTOM.  (Cf. ensure_phi.)
 288     if (type == Type::TOP || type == Type::HALF) {
 289       continue;
 290     }
 291     // If the type falls to bottom, then this must be a local that
 292     // is mixing ints and oops or some such.  Forcing it to top
 293     // makes it go dead.
 294     if (type == Type::BOTTOM) {
 295       continue;
 296     }
 297     // Construct code to access the appropriate local.
 298     BasicType bt = type->basic_type();
 299     if (type == TypePtr::NULL_PTR) {
 300       // Ptr types are mixed together with T_ADDRESS but NULL is
 301       // really for T_OBJECT types so correct it.
 302       bt = T_OBJECT;
 303     }
 304     Node *value = fetch_interpreter_state(index, bt, locals_addr, osr_buf);
 305     set_local(index, value);
 306   }
 307 
 308   // Extract the needed stack entries from the interpreter frame.
 309   for (index = 0; index < sp(); index++) {
 310     const Type *type = osr_block->stack_type_at(index);
 311     if (type != Type::TOP) {
 312       // Currently the compiler bails out when attempting to on stack replace
 313       // at a bci with a non-empty stack.  We should not reach here.
 314       ShouldNotReachHere();
 315     }
 316   }
 317 
 318   // End the OSR migration
 319   make_runtime_call(RC_LEAF, OptoRuntime::osr_end_Type(),
 320                     CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_end),
 321                     "OSR_migration_end", TypeRawPtr::BOTTOM,
 322                     osr_buf);
 323 
 324   // Now that the interpreter state is loaded, make sure it will match
 325   // at execution time what the compiler is expecting now:
 326   SafePointNode* bad_type_exit = clone_map();
 327   bad_type_exit->set_control(new (C) RegionNode(1));
 328 
 329   assert(osr_block->flow()->jsrs()->size() == 0, "should be no jsrs live at osr point");
 330   for (index = 0; index < max_locals; index++) {
 331     if (stopped())  break;
 332     Node* l = local(index);
 333     if (l->is_top())  continue;  // nothing here
 334     const Type *type = osr_block->local_type_at(index);
 335     if (type->isa_oopptr() != NULL) {
 336       if (!live_oops.at(index)) {
 337         // skip type check for dead oops
 338         continue;
 339       }
 340     }
 341     if (osr_block->flow()->local_type_at(index)->is_return_address()) {
 342       // In our current system it's illegal for jsr addresses to be
 343       // live into an OSR entry point because the compiler performs
 344       // inlining of jsrs.  ciTypeFlow has a bailout that detect this
 345       // case and aborts the compile if addresses are live into an OSR
 346       // entry point.  Because of that we can assume that any address
 347       // locals at the OSR entry point are dead.  Method liveness
 348       // isn't precise enought to figure out that they are dead in all
 349       // cases so simply skip checking address locals all
 350       // together. Any type check is guaranteed to fail since the
 351       // interpreter type is the result of a load which might have any
 352       // value and the expected type is a constant.
 353       continue;
 354     }
 355     set_local(index, check_interpreter_type(l, type, bad_type_exit));
 356   }
 357 
 358   for (index = 0; index < sp(); index++) {
 359     if (stopped())  break;
 360     Node* l = stack(index);
 361     if (l->is_top())  continue;  // nothing here
 362     const Type *type = osr_block->stack_type_at(index);
 363     set_stack(index, check_interpreter_type(l, type, bad_type_exit));
 364   }
 365 
 366   if (bad_type_exit->control()->req() > 1) {
 367     // Build an uncommon trap here, if any inputs can be unexpected.
 368     bad_type_exit->set_control(_gvn.transform( bad_type_exit->control() ));
 369     record_for_igvn(bad_type_exit->control());
 370     SafePointNode* types_are_good = map();
 371     set_map(bad_type_exit);
 372     // The unexpected type happens because a new edge is active
 373     // in the CFG, which typeflow had previously ignored.
 374     // E.g., Object x = coldAtFirst() && notReached()? "str": new Integer(123).
 375     // This x will be typed as Integer if notReached is not yet linked.
 376     // It could also happen due to a problem in ciTypeFlow analysis.
 377     uncommon_trap(Deoptimization::Reason_constraint,
 378                   Deoptimization::Action_reinterpret);
 379     set_map(types_are_good);
 380   }
 381 }
 382 
 383 //------------------------------Parse------------------------------------------
 384 // Main parser constructor.
 385 Parse::Parse(JVMState* caller, ciMethod* parse_method, float expected_uses, Parse* parent)
 386   : _exits(caller), _parent(parent)
 387 {
 388   // Init some variables
 389   _caller = caller;
 390   _method = parse_method;
 391   _expected_uses = expected_uses;
 392   _depth = 1 + (caller->has_method() ? caller->depth() : 0);
 393   _wrote_final = false;
 394   _wrote_volatile = false;
 395   _wrote_stable = false;
 396   _wrote_fields = false;
 397   _alloc_with_final = NULL;
 398   _entry_bci = InvocationEntryBci;
 399   _tf = NULL;
 400   _block = NULL;
 401   debug_only(_block_count = -1);
 402   debug_only(_blocks = (Block*)-1);
 403 #ifndef PRODUCT
 404   if (PrintCompilation || PrintOpto) {
 405     // Make sure I have an inline tree, so I can print messages about it.
 406     JVMState* ilt_caller = is_osr_parse() ? caller->caller() : caller;
 407     InlineTree::find_subtree_from_root(C->ilt(), ilt_caller, parse_method);
 408   }
 409   _max_switch_depth = 0;
 410   _est_switch_depth = 0;
 411 #endif
 412 
 413   _tf = TypeFunc::make(method());
 414   _iter.reset_to_method(method());
 415   _flow = method()->get_flow_analysis();
 416   if (_flow->failing()) {
 417     C->record_method_not_compilable_all_tiers(_flow->failure_reason());
 418   }
 419 
 420 #ifndef PRODUCT
 421   if (_flow->has_irreducible_entry()) {
 422     C->set_parsed_irreducible_loop(true);
 423   }
 424 #endif
 425 
 426   if (_expected_uses <= 0) {
 427     _prof_factor = 1;
 428   } else {
 429     float prof_total = parse_method->interpreter_invocation_count();
 430     if (prof_total <= _expected_uses) {
 431       _prof_factor = 1;
 432     } else {
 433       _prof_factor = _expected_uses / prof_total;
 434     }
 435   }
 436 
 437   CompileLog* log = C->log();
 438   if (log != NULL) {
 439     log->begin_head("parse method='%d' uses='%g'",
 440                     log->identify(parse_method), expected_uses);
 441     if (depth() == 1 && C->is_osr_compilation()) {
 442       log->print(" osr_bci='%d'", C->entry_bci());
 443     }
 444     log->stamp();
 445     log->end_head();
 446   }
 447 
 448   // Accumulate deoptimization counts.
 449   // (The range_check and store_check counts are checked elsewhere.)
 450   ciMethodData* md = method()->method_data();
 451   for (uint reason = 0; reason < md->trap_reason_limit(); reason++) {
 452     uint md_count = md->trap_count(reason);
 453     if (md_count != 0) {
 454       if (md_count == md->trap_count_limit())
 455         md_count += md->overflow_trap_count();
 456       uint total_count = C->trap_count(reason);
 457       uint old_count   = total_count;
 458       total_count += md_count;
 459       // Saturate the add if it overflows.
 460       if (total_count < old_count || total_count < md_count)
 461         total_count = (uint)-1;
 462       C->set_trap_count(reason, total_count);
 463       if (log != NULL)
 464         log->elem("observe trap='%s' count='%d' total='%d'",
 465                   Deoptimization::trap_reason_name(reason),
 466                   md_count, total_count);
 467     }
 468   }
 469   // Accumulate total sum of decompilations, also.
 470   C->set_decompile_count(C->decompile_count() + md->decompile_count());
 471 
 472   _count_invocations = C->do_count_invocations();
 473   _method_data_update = C->do_method_data_update();
 474 
 475   if (log != NULL && method()->has_exception_handlers()) {
 476     log->elem("observe that='has_exception_handlers'");
 477   }
 478 
 479   assert(method()->can_be_compiled(),       "Can not parse this method, cutout earlier");
 480   assert(method()->has_balanced_monitors(), "Can not parse unbalanced monitors, cutout earlier");
 481 
 482   // Always register dependence if JVMTI is enabled, because
 483   // either breakpoint setting or hotswapping of methods may
 484   // cause deoptimization.
 485   if (C->env()->jvmti_can_hotswap_or_post_breakpoint()) {
 486     C->dependencies()->assert_evol_method(method());
 487   }
 488 
 489   methods_seen++;
 490 
 491   // Do some special top-level things.
 492   if (depth() == 1 && C->is_osr_compilation()) {
 493     _entry_bci = C->entry_bci();
 494     _flow = method()->get_osr_flow_analysis(osr_bci());
 495     if (_flow->failing()) {
 496       C->record_method_not_compilable(_flow->failure_reason());
 497 #ifndef PRODUCT
 498       if (PrintOpto && (Verbose || WizardMode)) {
 499         tty->print_cr("OSR @%d type flow bailout: %s", _entry_bci, _flow->failure_reason());
 500         if (Verbose) {
 501           method()->print();
 502           method()->print_codes();
 503           _flow->print();
 504         }
 505       }
 506 #endif
 507     }
 508     _tf = C->tf();     // the OSR entry type is different
 509   }
 510 
 511 #ifdef ASSERT
 512   if (depth() == 1) {
 513     assert(C->is_osr_compilation() == this->is_osr_parse(), "OSR in sync");
 514     if (C->tf() != tf()) {
 515       MutexLockerEx ml(Compile_lock, Mutex::_no_safepoint_check_flag);
 516       assert(C->env()->system_dictionary_modification_counter_changed(),
 517              "Must invalidate if TypeFuncs differ");
 518     }
 519   } else {
 520     assert(!this->is_osr_parse(), "no recursive OSR");
 521   }
 522 #endif
 523 
 524   methods_parsed++;
 525 #ifndef PRODUCT
 526   // add method size here to guarantee that inlined methods are added too
 527   if (TimeCompiler)
 528     _total_bytes_compiled += method()->code_size();
 529 
 530   show_parse_info();
 531 #endif
 532 
 533   if (failing()) {
 534     if (log)  log->done("parse");
 535     return;
 536   }
 537 
 538   gvn().set_type(root(), root()->bottom_type());
 539   gvn().transform(top());
 540 
 541   // Import the results of the ciTypeFlow.
 542   init_blocks();
 543 
 544   // Merge point for all normal exits
 545   build_exits();
 546 
 547   // Setup the initial JVM state map.
 548   SafePointNode* entry_map = create_entry_map();
 549 
 550   // Check for bailouts during map initialization
 551   if (failing() || entry_map == NULL) {
 552     if (log)  log->done("parse");
 553     return;
 554   }
 555 
 556   Node_Notes* caller_nn = C->default_node_notes();
 557   // Collect debug info for inlined calls unless -XX:-DebugInlinedCalls.
 558   if (DebugInlinedCalls || depth() == 1) {
 559     C->set_default_node_notes(make_node_notes(caller_nn));
 560   }
 561 
 562   if (is_osr_parse()) {
 563     Node* osr_buf = entry_map->in(TypeFunc::Parms+0);
 564     entry_map->set_req(TypeFunc::Parms+0, top());
 565     set_map(entry_map);
 566     load_interpreter_state(osr_buf);
 567   } else {
 568     set_map(entry_map);
 569     do_method_entry();
 570   }
 571 
 572   // Check for bailouts during method entry.
 573   if (failing()) {
 574     if (log)  log->done("parse");
 575     C->set_default_node_notes(caller_nn);
 576     return;
 577   }
 578 
 579   entry_map = map();  // capture any changes performed by method setup code
 580   assert(jvms()->endoff() == map()->req(), "map matches JVMS layout");
 581 
 582   // We begin parsing as if we have just encountered a jump to the
 583   // method entry.
 584   Block* entry_block = start_block();
 585   assert(entry_block->start() == (is_osr_parse() ? osr_bci() : 0), "");
 586   set_map_clone(entry_map);
 587   merge_common(entry_block, entry_block->next_path_num());
 588 
 589 #ifndef PRODUCT
 590   BytecodeParseHistogram *parse_histogram_obj = new (C->env()->arena()) BytecodeParseHistogram(this, C);
 591   set_parse_histogram( parse_histogram_obj );
 592 #endif
 593 
 594   // Parse all the basic blocks.
 595   do_all_blocks();
 596 
 597   C->set_default_node_notes(caller_nn);
 598 
 599   // Check for bailouts during conversion to graph
 600   if (failing()) {
 601     if (log)  log->done("parse");
 602     return;
 603   }
 604 
 605   // Fix up all exiting control flow.
 606   set_map(entry_map);
 607   do_exits();
 608 
 609   if (log)  log->done("parse nodes='%d' live='%d' memory='%d'",
 610                       C->unique(), C->live_nodes(), C->node_arena()->used());
 611 }
 612 
 613 //---------------------------do_all_blocks-------------------------------------
 614 void Parse::do_all_blocks() {
 615   bool has_irreducible = flow()->has_irreducible_entry();
 616 
 617   // Walk over all blocks in Reverse Post-Order.
 618   while (true) {
 619     bool progress = false;
 620     for (int rpo = 0; rpo < block_count(); rpo++) {
 621       Block* block = rpo_at(rpo);
 622 
 623       if (block->is_parsed()) continue;
 624 
 625       if (!block->is_merged()) {
 626         // Dead block, no state reaches this block
 627         continue;
 628       }
 629 
 630       // Prepare to parse this block.
 631       load_state_from(block);
 632 
 633       if (stopped()) {
 634         // Block is dead.
 635         continue;
 636       }
 637 
 638       blocks_parsed++;
 639 
 640       progress = true;
 641       if (block->is_loop_head() || block->is_handler() || has_irreducible && !block->is_ready()) {
 642         // Not all preds have been parsed.  We must build phis everywhere.
 643         // (Note that dead locals do not get phis built, ever.)
 644         ensure_phis_everywhere();
 645 
 646         if (block->is_SEL_head() &&
 647             (UseLoopPredicate || LoopLimitCheck)) {
 648           // Add predicate to single entry (not irreducible) loop head.
 649           assert(!block->has_merged_backedge(), "only entry paths should be merged for now");
 650           // Need correct bci for predicate.
 651           // It is fine to set it here since do_one_block() will set it anyway.
 652           set_parse_bci(block->start());
 653           add_predicate();
 654           // Add new region for back branches.
 655           int edges = block->pred_count() - block->preds_parsed() + 1; // +1 for original region
 656           RegionNode *r = new (C) RegionNode(edges+1);
 657           _gvn.set_type(r, Type::CONTROL);
 658           record_for_igvn(r);
 659           r->init_req(edges, control());
 660           set_control(r);
 661           // Add new phis.
 662           ensure_phis_everywhere();
 663         }
 664 
 665         // Leave behind an undisturbed copy of the map, for future merges.
 666         set_map(clone_map());
 667       }
 668 
 669       if (control()->is_Region() && !block->is_loop_head() && !has_irreducible && !block->is_handler()) {
 670         // In the absence of irreducible loops, the Region and Phis
 671         // associated with a merge that doesn't involve a backedge can
 672         // be simplified now since the RPO parsing order guarantees
 673         // that any path which was supposed to reach here has already
 674         // been parsed or must be dead.
 675         Node* c = control();
 676         Node* result = _gvn.transform_no_reclaim(control());
 677         if (c != result && TraceOptoParse) {
 678           tty->print_cr("Block #%d replace %d with %d", block->rpo(), c->_idx, result->_idx);
 679         }
 680         if (result != top()) {
 681           record_for_igvn(result);
 682         }
 683       }
 684 
 685       // Parse the block.
 686       do_one_block();
 687 
 688       // Check for bailouts.
 689       if (failing())  return;
 690     }
 691 
 692     // with irreducible loops multiple passes might be necessary to parse everything
 693     if (!has_irreducible || !progress) {
 694       break;
 695     }
 696   }
 697 
 698   blocks_seen += block_count();
 699 
 700 #ifndef PRODUCT
 701   // Make sure there are no half-processed blocks remaining.
 702   // Every remaining unprocessed block is dead and may be ignored now.
 703   for (int rpo = 0; rpo < block_count(); rpo++) {
 704     Block* block = rpo_at(rpo);
 705     if (!block->is_parsed()) {
 706       if (TraceOptoParse) {
 707         tty->print_cr("Skipped dead block %d at bci:%d", rpo, block->start());
 708       }
 709       assert(!block->is_merged(), "no half-processed blocks");
 710     }
 711   }
 712 #endif
 713 }
 714 
 715 //-------------------------------build_exits----------------------------------
 716 // Build normal and exceptional exit merge points.
 717 void Parse::build_exits() {
 718   // make a clone of caller to prevent sharing of side-effects
 719   _exits.set_map(_exits.clone_map());
 720   _exits.clean_stack(_exits.sp());
 721   _exits.sync_jvms();
 722 
 723   RegionNode* region = new (C) RegionNode(1);
 724   record_for_igvn(region);
 725   gvn().set_type_bottom(region);
 726   _exits.set_control(region);
 727 
 728   // Note:  iophi and memphi are not transformed until do_exits.
 729   Node* iophi  = new (C) PhiNode(region, Type::ABIO);
 730   Node* memphi = new (C) PhiNode(region, Type::MEMORY, TypePtr::BOTTOM);
 731   gvn().set_type_bottom(iophi);
 732   gvn().set_type_bottom(memphi);
 733   _exits.set_i_o(iophi);
 734   _exits.set_all_memory(memphi);
 735 
 736   // Add a return value to the exit state.  (Do not push it yet.)
 737   if (tf()->range()->cnt() > TypeFunc::Parms) {
 738     const Type* ret_type = tf()->range()->field_at(TypeFunc::Parms);
 739     // Don't "bind" an unloaded return klass to the ret_phi. If the klass
 740     // becomes loaded during the subsequent parsing, the loaded and unloaded
 741     // types will not join when we transform and push in do_exits().
 742     const TypeOopPtr* ret_oop_type = ret_type->isa_oopptr();
 743     if (ret_oop_type && !ret_oop_type->klass()->is_loaded()) {
 744       ret_type = TypeOopPtr::BOTTOM;
 745     }
 746     int         ret_size = type2size[ret_type->basic_type()];
 747     Node*       ret_phi  = new (C) PhiNode(region, ret_type);
 748     gvn().set_type_bottom(ret_phi);
 749     _exits.ensure_stack(ret_size);
 750     assert((int)(tf()->range()->cnt() - TypeFunc::Parms) == ret_size, "good tf range");
 751     assert(method()->return_type()->size() == ret_size, "tf agrees w/ method");
 752     _exits.set_argument(0, ret_phi);  // here is where the parser finds it
 753     // Note:  ret_phi is not yet pushed, until do_exits.
 754   }
 755 }
 756 
 757 
 758 //----------------------------build_start_state-------------------------------
 759 // Construct a state which contains only the incoming arguments from an
 760 // unknown caller.  The method & bci will be NULL & InvocationEntryBci.
 761 JVMState* Compile::build_start_state(StartNode* start, const TypeFunc* tf) {
 762   int        arg_size = tf->domain()->cnt();
 763   int        max_size = MAX2(arg_size, (int)tf->range()->cnt());
 764   JVMState*  jvms     = new (this) JVMState(max_size - TypeFunc::Parms);
 765   SafePointNode* map  = new (this) SafePointNode(max_size, NULL);
 766   record_for_igvn(map);
 767   assert(arg_size == TypeFunc::Parms + (is_osr_compilation() ? 1 : method()->arg_size()), "correct arg_size");
 768   Node_Notes* old_nn = default_node_notes();
 769   if (old_nn != NULL && has_method()) {
 770     Node_Notes* entry_nn = old_nn->clone(this);
 771     JVMState* entry_jvms = new(this) JVMState(method(), old_nn->jvms());
 772     entry_jvms->set_offsets(0);
 773     entry_jvms->set_bci(entry_bci());
 774     entry_nn->set_jvms(entry_jvms);
 775     set_default_node_notes(entry_nn);
 776   }
 777   uint i;
 778   for (i = 0; i < (uint)arg_size; i++) {
 779     Node* parm = initial_gvn()->transform(new (this) ParmNode(start, i));
 780     map->init_req(i, parm);
 781     // Record all these guys for later GVN.
 782     record_for_igvn(parm);
 783   }
 784   for (; i < map->req(); i++) {
 785     map->init_req(i, top());
 786   }
 787   assert(jvms->argoff() == TypeFunc::Parms, "parser gets arguments here");
 788   set_default_node_notes(old_nn);
 789   map->set_jvms(jvms);
 790   jvms->set_map(map);
 791   return jvms;
 792 }
 793 
 794 //-----------------------------make_node_notes---------------------------------
 795 Node_Notes* Parse::make_node_notes(Node_Notes* caller_nn) {
 796   if (caller_nn == NULL)  return NULL;
 797   Node_Notes* nn = caller_nn->clone(C);
 798   JVMState* caller_jvms = nn->jvms();
 799   JVMState* jvms = new (C) JVMState(method(), caller_jvms);
 800   jvms->set_offsets(0);
 801   jvms->set_bci(_entry_bci);
 802   nn->set_jvms(jvms);
 803   return nn;
 804 }
 805 
 806 
 807 //--------------------------return_values--------------------------------------
 808 void Compile::return_values(JVMState* jvms) {
 809   GraphKit kit(jvms);
 810   Node* ret = new (this) ReturnNode(TypeFunc::Parms,
 811                              kit.control(),
 812                              kit.i_o(),
 813                              kit.reset_memory(),
 814                              kit.frameptr(),
 815                              kit.returnadr());
 816   // Add zero or 1 return values
 817   int ret_size = tf()->range()->cnt() - TypeFunc::Parms;
 818   if (ret_size > 0) {
 819     kit.inc_sp(-ret_size);  // pop the return value(s)
 820     kit.sync_jvms();
 821     ret->add_req(kit.argument(0));
 822     // Note:  The second dummy edge is not needed by a ReturnNode.
 823   }
 824   // bind it to root
 825   root()->add_req(ret);
 826   record_for_igvn(ret);
 827   initial_gvn()->transform_no_reclaim(ret);
 828 }
 829 
 830 //------------------------rethrow_exceptions-----------------------------------
 831 // Bind all exception states in the list into a single RethrowNode.
 832 void Compile::rethrow_exceptions(JVMState* jvms) {
 833   GraphKit kit(jvms);
 834   if (!kit.has_exceptions())  return;  // nothing to generate
 835   // Load my combined exception state into the kit, with all phis transformed:
 836   SafePointNode* ex_map = kit.combine_and_pop_all_exception_states();
 837   Node* ex_oop = kit.use_exception_state(ex_map);
 838   RethrowNode* exit = new (this) RethrowNode(kit.control(),
 839                                       kit.i_o(), kit.reset_memory(),
 840                                       kit.frameptr(), kit.returnadr(),
 841                                       // like a return but with exception input
 842                                       ex_oop);
 843   // bind to root
 844   root()->add_req(exit);
 845   record_for_igvn(exit);
 846   initial_gvn()->transform_no_reclaim(exit);
 847 }
 848 
 849 //---------------------------do_exceptions-------------------------------------
 850 // Process exceptions arising from the current bytecode.
 851 // Send caught exceptions to the proper handler within this method.
 852 // Unhandled exceptions feed into _exit.
 853 void Parse::do_exceptions() {
 854   if (!has_exceptions())  return;
 855 
 856   if (failing()) {
 857     // Pop them all off and throw them away.
 858     while (pop_exception_state() != NULL) ;
 859     return;
 860   }
 861 
 862   PreserveJVMState pjvms(this, false);
 863 
 864   SafePointNode* ex_map;
 865   while ((ex_map = pop_exception_state()) != NULL) {
 866     if (!method()->has_exception_handlers()) {
 867       // Common case:  Transfer control outward.
 868       // Doing it this early allows the exceptions to common up
 869       // even between adjacent method calls.
 870       throw_to_exit(ex_map);
 871     } else {
 872       // Have to look at the exception first.
 873       assert(stopped(), "catch_inline_exceptions trashes the map");
 874       catch_inline_exceptions(ex_map);
 875       stop_and_kill_map();      // we used up this exception state; kill it
 876     }
 877   }
 878 
 879   // We now return to our regularly scheduled program:
 880 }
 881 
 882 //---------------------------throw_to_exit-------------------------------------
 883 // Merge the given map into an exception exit from this method.
 884 // The exception exit will handle any unlocking of receiver.
 885 // The ex_oop must be saved within the ex_map, unlike merge_exception.
 886 void Parse::throw_to_exit(SafePointNode* ex_map) {
 887   // Pop the JVMS to (a copy of) the caller.
 888   GraphKit caller;
 889   caller.set_map_clone(_caller->map());
 890   caller.set_bci(_caller->bci());
 891   caller.set_sp(_caller->sp());
 892   // Copy out the standard machine state:
 893   for (uint i = 0; i < TypeFunc::Parms; i++) {
 894     caller.map()->set_req(i, ex_map->in(i));
 895   }
 896   // ...and the exception:
 897   Node*          ex_oop        = saved_ex_oop(ex_map);
 898   SafePointNode* caller_ex_map = caller.make_exception_state(ex_oop);
 899   // Finally, collect the new exception state in my exits:
 900   _exits.add_exception_state(caller_ex_map);
 901 }
 902 
 903 //------------------------------do_exits---------------------------------------
 904 void Parse::do_exits() {
 905   set_parse_bci(InvocationEntryBci);
 906 
 907   // Now peephole on the return bits
 908   Node* region = _exits.control();
 909   _exits.set_control(gvn().transform(region));
 910 
 911   Node* iophi = _exits.i_o();
 912   _exits.set_i_o(gvn().transform(iophi));
 913 
 914   // Figure out if we need to emit the trailing barrier. The barrier is only
 915   // needed in the constructors, and only in three cases:
 916   //
 917   // 1. The constructor wrote a final. The effects of all initializations
 918   //    must be committed to memory before any code after the constructor
 919   //    publishes the reference to the newly constructed object. Rather
 920   //    than wait for the publication, we simply block the writes here.
 921   //    Rather than put a barrier on only those writes which are required
 922   //    to complete, we force all writes to complete.
 923   //
 924   // 2. On PPC64, also add MemBarRelease for constructors which write
 925   //    volatile fields. As support_IRIW_for_not_multiple_copy_atomic_cpu
 926   //    is set on PPC64, no sync instruction is issued after volatile
 927   //    stores. We want to guarantee the same behavior as on platforms
 928   //    with total store order, although this is not required by the Java
 929   //    memory model. So as with finals, we add a barrier here.
 930   //
 931   // 3. Experimental VM option is used to force the barrier if any field
 932   //    was written out in the constructor.
 933   //
 934   // "All bets are off" unless the first publication occurs after a
 935   // normal return from the constructor.  We do not attempt to detect
 936   // such unusual early publications.  But no barrier is needed on
 937   // exceptional returns, since they cannot publish normally.
 938   //
 939   if (method()->is_initializer() &&
 940         (wrote_final() ||
 941            PPC64_ONLY(wrote_volatile() ||)
 942            (AlwaysSafeConstructors && wrote_fields()))) {
 943     _exits.insert_mem_bar(Op_MemBarRelease, alloc_with_final());
 944 #ifndef PRODUCT
 945     if (PrintOpto && (Verbose || WizardMode)) {
 946       method()->print_name();
 947       tty->print_cr(" writes finals and needs a memory barrier");
 948     }
 949 #endif
 950   }
 951 
 952   // Any method can write a @Stable field; insert memory barriers after
 953   // those also. If there is a predecessor allocation node, bind the
 954   // barrier there.
 955   if (wrote_stable()) {
 956     _exits.insert_mem_bar(Op_MemBarRelease, alloc_with_final());
 957 #ifndef PRODUCT
 958     if (PrintOpto && (Verbose || WizardMode)) {
 959       method()->print_name();
 960       tty->print_cr(" writes @Stable and needs a memory barrier");
 961     }
 962 #endif
 963   }
 964 
 965   for (MergeMemStream mms(_exits.merged_memory()); mms.next_non_empty(); ) {
 966     // transform each slice of the original memphi:
 967     mms.set_memory(_gvn.transform(mms.memory()));
 968   }
 969 
 970   if (tf()->range()->cnt() > TypeFunc::Parms) {
 971     const Type* ret_type = tf()->range()->field_at(TypeFunc::Parms);
 972     Node*       ret_phi  = _gvn.transform( _exits.argument(0) );
 973     assert(_exits.control()->is_top() || !_gvn.type(ret_phi)->empty(), "return value must be well defined");
 974     _exits.push_node(ret_type->basic_type(), ret_phi);
 975   }
 976 
 977   // Note:  Logic for creating and optimizing the ReturnNode is in Compile.
 978 
 979   // Unlock along the exceptional paths.
 980   // This is done late so that we can common up equivalent exceptions
 981   // (e.g., null checks) arising from multiple points within this method.
 982   // See GraphKit::add_exception_state, which performs the commoning.
 983   bool do_synch = method()->is_synchronized() && GenerateSynchronizationCode;
 984 
 985   // record exit from a method if compiled while Dtrace is turned on.
 986   if (do_synch || C->env()->dtrace_method_probes()) {
 987     // First move the exception list out of _exits:
 988     GraphKit kit(_exits.transfer_exceptions_into_jvms());
 989     SafePointNode* normal_map = kit.map();  // keep this guy safe
 990     // Now re-collect the exceptions into _exits:
 991     SafePointNode* ex_map;
 992     while ((ex_map = kit.pop_exception_state()) != NULL) {
 993       Node* ex_oop = kit.use_exception_state(ex_map);
 994       // Force the exiting JVM state to have this method at InvocationEntryBci.
 995       // The exiting JVM state is otherwise a copy of the calling JVMS.
 996       JVMState* caller = kit.jvms();
 997       JVMState* ex_jvms = caller->clone_shallow(C);
 998       ex_jvms->set_map(kit.clone_map());
 999       ex_jvms->map()->set_jvms(ex_jvms);
1000       ex_jvms->set_bci(   InvocationEntryBci);
1001       kit.set_jvms(ex_jvms);
1002       if (do_synch) {
1003         // Add on the synchronized-method box/object combo
1004         kit.map()->push_monitor(_synch_lock);
1005         // Unlock!
1006         kit.shared_unlock(_synch_lock->box_node(), _synch_lock->obj_node());
1007       }
1008       if (C->env()->dtrace_method_probes()) {
1009         kit.make_dtrace_method_exit(method());
1010       }
1011       // Done with exception-path processing.
1012       ex_map = kit.make_exception_state(ex_oop);
1013       assert(ex_jvms->same_calls_as(ex_map->jvms()), "sanity");
1014       // Pop the last vestige of this method:
1015       ex_map->set_jvms(caller->clone_shallow(C));
1016       ex_map->jvms()->set_map(ex_map);
1017       _exits.push_exception_state(ex_map);
1018     }
1019     assert(_exits.map() == normal_map, "keep the same return state");
1020   }
1021 
1022   {
1023     // Capture very early exceptions (receiver null checks) from caller JVMS
1024     GraphKit caller(_caller);
1025     SafePointNode* ex_map;
1026     while ((ex_map = caller.pop_exception_state()) != NULL) {
1027       _exits.add_exception_state(ex_map);
1028     }
1029   }
1030 }
1031 
1032 //-----------------------------create_entry_map-------------------------------
1033 // Initialize our parser map to contain the types at method entry.
1034 // For OSR, the map contains a single RawPtr parameter.
1035 // Initial monitor locking for sync. methods is performed by do_method_entry.
1036 SafePointNode* Parse::create_entry_map() {
1037   // Check for really stupid bail-out cases.
1038   uint len = TypeFunc::Parms + method()->max_locals() + method()->max_stack();
1039   if (len >= 32760) {
1040     C->record_method_not_compilable_all_tiers("too many local variables");
1041     return NULL;
1042   }
1043 
1044   // If this is an inlined method, we may have to do a receiver null check.
1045   if (_caller->has_method() && is_normal_parse() && !method()->is_static()) {
1046     GraphKit kit(_caller);
1047     kit.null_check_receiver_before_call(method());
1048     _caller = kit.transfer_exceptions_into_jvms();
1049     if (kit.stopped()) {
1050       _exits.add_exception_states_from(_caller);
1051       _exits.set_jvms(_caller);
1052       return NULL;
1053     }
1054   }
1055 
1056   assert(method() != NULL, "parser must have a method");
1057 
1058   // Create an initial safepoint to hold JVM state during parsing
1059   JVMState* jvms = new (C) JVMState(method(), _caller->has_method() ? _caller : NULL);
1060   set_map(new (C) SafePointNode(len, jvms));
1061   jvms->set_map(map());
1062   record_for_igvn(map());
1063   assert(jvms->endoff() == len, "correct jvms sizing");
1064 
1065   SafePointNode* inmap = _caller->map();
1066   assert(inmap != NULL, "must have inmap");
1067 
1068   uint i;
1069 
1070   // Pass thru the predefined input parameters.
1071   for (i = 0; i < TypeFunc::Parms; i++) {
1072     map()->init_req(i, inmap->in(i));
1073   }
1074 
1075   if (depth() == 1) {
1076     assert(map()->memory()->Opcode() == Op_Parm, "");
1077     // Insert the memory aliasing node
1078     set_all_memory(reset_memory());
1079   }
1080   assert(merged_memory(), "");
1081 
1082   // Now add the locals which are initially bound to arguments:
1083   uint arg_size = tf()->domain()->cnt();
1084   ensure_stack(arg_size - TypeFunc::Parms);  // OSR methods have funny args
1085   for (i = TypeFunc::Parms; i < arg_size; i++) {
1086     map()->init_req(i, inmap->argument(_caller, i - TypeFunc::Parms));
1087   }
1088 
1089   // Clear out the rest of the map (locals and stack)
1090   for (i = arg_size; i < len; i++) {
1091     map()->init_req(i, top());
1092   }
1093 
1094   SafePointNode* entry_map = stop();
1095   return entry_map;
1096 }
1097 
1098 //-----------------------------do_method_entry--------------------------------
1099 // Emit any code needed in the pseudo-block before BCI zero.
1100 // The main thing to do is lock the receiver of a synchronized method.
1101 void Parse::do_method_entry() {
1102   set_parse_bci(InvocationEntryBci); // Pseudo-BCP
1103   set_sp(0);                      // Java Stack Pointer
1104 
1105   NOT_PRODUCT( count_compiled_calls(true/*at_method_entry*/, false/*is_inline*/); )
1106 
1107   if (C->env()->dtrace_method_probes()) {
1108     make_dtrace_method_entry(method());
1109   }
1110 
1111   // If the method is synchronized, we need to construct a lock node, attach
1112   // it to the Start node, and pin it there.
1113   if (method()->is_synchronized()) {
1114     // Insert a FastLockNode right after the Start which takes as arguments
1115     // the current thread pointer, the "this" pointer & the address of the
1116     // stack slot pair used for the lock.  The "this" pointer is a projection
1117     // off the start node, but the locking spot has to be constructed by
1118     // creating a ConLNode of 0, and boxing it with a BoxLockNode.  The BoxLockNode
1119     // becomes the second argument to the FastLockNode call.  The
1120     // FastLockNode becomes the new control parent to pin it to the start.
1121 
1122     // Setup Object Pointer
1123     Node *lock_obj = NULL;
1124     if(method()->is_static()) {
1125       ciInstance* mirror = _method->holder()->java_mirror();
1126       const TypeInstPtr *t_lock = TypeInstPtr::make(mirror);
1127       lock_obj = makecon(t_lock);
1128     } else {                  // Else pass the "this" pointer,
1129       lock_obj = local(0);    // which is Parm0 from StartNode
1130     }
1131     // Clear out dead values from the debug info.
1132     kill_dead_locals();
1133     // Build the FastLockNode
1134     _synch_lock = shared_lock(lock_obj);
1135   }
1136 
1137   // Feed profiling data for parameters to the type system so it can
1138   // propagate it as speculative types
1139   record_profiled_parameters_for_speculation();
1140 
1141   if (depth() == 1) {
1142     increment_and_test_invocation_counter(Tier2CompileThreshold);
1143   }
1144 }
1145 
1146 //------------------------------init_blocks------------------------------------
1147 // Initialize our parser map to contain the types/monitors at method entry.
1148 void Parse::init_blocks() {
1149   // Create the blocks.
1150   _block_count = flow()->block_count();
1151   _blocks = NEW_RESOURCE_ARRAY(Block, _block_count);
1152   Copy::zero_to_bytes(_blocks, sizeof(Block)*_block_count);
1153 
1154   int rpo;
1155 
1156   // Initialize the structs.
1157   for (rpo = 0; rpo < block_count(); rpo++) {
1158     Block* block = rpo_at(rpo);
1159     block->init_node(this, rpo);
1160   }
1161 
1162   // Collect predecessor and successor information.
1163   for (rpo = 0; rpo < block_count(); rpo++) {
1164     Block* block = rpo_at(rpo);
1165     block->init_graph(this);
1166   }
1167 }
1168 
1169 //-------------------------------init_node-------------------------------------
1170 void Parse::Block::init_node(Parse* outer, int rpo) {
1171   _flow = outer->flow()->rpo_at(rpo);
1172   _pred_count = 0;
1173   _preds_parsed = 0;
1174   _count = 0;
1175   assert(pred_count() == 0 && preds_parsed() == 0, "sanity");
1176   assert(!(is_merged() || is_parsed() || is_handler() || has_merged_backedge()), "sanity");
1177   assert(_live_locals.size() == 0, "sanity");
1178 
1179   // entry point has additional predecessor
1180   if (flow()->is_start())  _pred_count++;
1181   assert(flow()->is_start() == (this == outer->start_block()), "");
1182 }
1183 
1184 //-------------------------------init_graph------------------------------------
1185 void Parse::Block::init_graph(Parse* outer) {
1186   // Create the successor list for this parser block.
1187   GrowableArray<ciTypeFlow::Block*>* tfs = flow()->successors();
1188   GrowableArray<ciTypeFlow::Block*>* tfe = flow()->exceptions();
1189   int ns = tfs->length();
1190   int ne = tfe->length();
1191   _num_successors = ns;
1192   _all_successors = ns+ne;
1193   _successors = (ns+ne == 0) ? NULL : NEW_RESOURCE_ARRAY(Block*, ns+ne);
1194   int p = 0;
1195   for (int i = 0; i < ns+ne; i++) {
1196     ciTypeFlow::Block* tf2 = (i < ns) ? tfs->at(i) : tfe->at(i-ns);
1197     Block* block2 = outer->rpo_at(tf2->rpo());
1198     _successors[i] = block2;
1199 
1200     // Accumulate pred info for the other block, too.
1201     if (i < ns) {
1202       block2->_pred_count++;
1203     } else {
1204       block2->_is_handler = true;
1205     }
1206 
1207     #ifdef ASSERT
1208     // A block's successors must be distinguishable by BCI.
1209     // That is, no bytecode is allowed to branch to two different
1210     // clones of the same code location.
1211     for (int j = 0; j < i; j++) {
1212       Block* block1 = _successors[j];
1213       if (block1 == block2)  continue;  // duplicates are OK
1214       assert(block1->start() != block2->start(), "successors have unique bcis");
1215     }
1216     #endif
1217   }
1218 
1219   // Note: We never call next_path_num along exception paths, so they
1220   // never get processed as "ready".  Also, the input phis of exception
1221   // handlers get specially processed, so that
1222 }
1223 
1224 //---------------------------successor_for_bci---------------------------------
1225 Parse::Block* Parse::Block::successor_for_bci(int bci) {
1226   for (int i = 0; i < all_successors(); i++) {
1227     Block* block2 = successor_at(i);
1228     if (block2->start() == bci)  return block2;
1229   }
1230   // We can actually reach here if ciTypeFlow traps out a block
1231   // due to an unloaded class, and concurrently with compilation the
1232   // class is then loaded, so that a later phase of the parser is
1233   // able to see more of the bytecode CFG.  Or, the flow pass and
1234   // the parser can have a minor difference of opinion about executability
1235   // of bytecodes.  For example, "obj.field = null" is executable even
1236   // if the field's type is an unloaded class; the flow pass used to
1237   // make a trap for such code.
1238   return NULL;
1239 }
1240 
1241 
1242 //-----------------------------stack_type_at-----------------------------------
1243 const Type* Parse::Block::stack_type_at(int i) const {
1244   return get_type(flow()->stack_type_at(i));
1245 }
1246 
1247 
1248 //-----------------------------local_type_at-----------------------------------
1249 const Type* Parse::Block::local_type_at(int i) const {
1250   // Make dead locals fall to bottom.
1251   if (_live_locals.size() == 0) {
1252     MethodLivenessResult live_locals = flow()->outer()->method()->liveness_at_bci(start());
1253     // This bitmap can be zero length if we saw a breakpoint.
1254     // In such cases, pretend they are all live.
1255     ((Block*)this)->_live_locals = live_locals;
1256   }
1257   if (_live_locals.size() > 0 && !_live_locals.at(i))
1258     return Type::BOTTOM;
1259 
1260   return get_type(flow()->local_type_at(i));
1261 }
1262 
1263 
1264 #ifndef PRODUCT
1265 
1266 //----------------------------name_for_bc--------------------------------------
1267 // helper method for BytecodeParseHistogram
1268 static const char* name_for_bc(int i) {
1269   return Bytecodes::is_defined(i) ? Bytecodes::name(Bytecodes::cast(i)) : "xxxunusedxxx";
1270 }
1271 
1272 //----------------------------BytecodeParseHistogram------------------------------------
1273 Parse::BytecodeParseHistogram::BytecodeParseHistogram(Parse *p, Compile *c) {
1274   _parser   = p;
1275   _compiler = c;
1276   if( ! _initialized ) { _initialized = true; reset(); }
1277 }
1278 
1279 //----------------------------current_count------------------------------------
1280 int Parse::BytecodeParseHistogram::current_count(BPHType bph_type) {
1281   switch( bph_type ) {
1282   case BPH_transforms: { return _parser->gvn().made_progress(); }
1283   case BPH_values:     { return _parser->gvn().made_new_values(); }
1284   default: { ShouldNotReachHere(); return 0; }
1285   }
1286 }
1287 
1288 //----------------------------initialized--------------------------------------
1289 bool Parse::BytecodeParseHistogram::initialized() { return _initialized; }
1290 
1291 //----------------------------reset--------------------------------------------
1292 void Parse::BytecodeParseHistogram::reset() {
1293   int i = Bytecodes::number_of_codes;
1294   while (i-- > 0) { _bytecodes_parsed[i] = 0; _nodes_constructed[i] = 0; _nodes_transformed[i] = 0; _new_values[i] = 0; }
1295 }
1296 
1297 //----------------------------set_initial_state--------------------------------
1298 // Record info when starting to parse one bytecode
1299 void Parse::BytecodeParseHistogram::set_initial_state( Bytecodes::Code bc ) {
1300   if( PrintParseStatistics && !_parser->is_osr_parse() ) {
1301     _initial_bytecode    = bc;
1302     _initial_node_count  = _compiler->unique();
1303     _initial_transforms  = current_count(BPH_transforms);
1304     _initial_values      = current_count(BPH_values);
1305   }
1306 }
1307 
1308 //----------------------------record_change--------------------------------
1309 // Record results of parsing one bytecode
1310 void Parse::BytecodeParseHistogram::record_change() {
1311   if( PrintParseStatistics && !_parser->is_osr_parse() ) {
1312     ++_bytecodes_parsed[_initial_bytecode];
1313     _nodes_constructed [_initial_bytecode] += (_compiler->unique() - _initial_node_count);
1314     _nodes_transformed [_initial_bytecode] += (current_count(BPH_transforms) - _initial_transforms);
1315     _new_values        [_initial_bytecode] += (current_count(BPH_values)     - _initial_values);
1316   }
1317 }
1318 
1319 
1320 //----------------------------print--------------------------------------------
1321 void Parse::BytecodeParseHistogram::print(float cutoff) {
1322   ResourceMark rm;
1323   // print profile
1324   int total  = 0;
1325   int i      = 0;
1326   for( i = 0; i < Bytecodes::number_of_codes; ++i ) { total += _bytecodes_parsed[i]; }
1327   int abs_sum = 0;
1328   tty->cr();   //0123456789012345678901234567890123456789012345678901234567890123456789
1329   tty->print_cr("Histogram of %d parsed bytecodes:", total);
1330   if( total == 0 ) { return; }
1331   tty->cr();
1332   tty->print_cr("absolute:  count of compiled bytecodes of this type");
1333   tty->print_cr("relative:  percentage contribution to compiled nodes");
1334   tty->print_cr("nodes   :  Average number of nodes constructed per bytecode");
1335   tty->print_cr("rnodes  :  Significance towards total nodes constructed, (nodes*relative)");
1336   tty->print_cr("transforms: Average amount of tranform progress per bytecode compiled");
1337   tty->print_cr("values  :  Average number of node values improved per bytecode");
1338   tty->print_cr("name    :  Bytecode name");
1339   tty->cr();
1340   tty->print_cr("  absolute  relative   nodes  rnodes  transforms  values   name");
1341   tty->print_cr("----------------------------------------------------------------------");
1342   while (--i > 0) {
1343     int       abs = _bytecodes_parsed[i];
1344     float     rel = abs * 100.0F / total;
1345     float   nodes = _bytecodes_parsed[i] == 0 ? 0 : (1.0F * _nodes_constructed[i])/_bytecodes_parsed[i];
1346     float  rnodes = _bytecodes_parsed[i] == 0 ? 0 :  rel * nodes;
1347     float  xforms = _bytecodes_parsed[i] == 0 ? 0 : (1.0F * _nodes_transformed[i])/_bytecodes_parsed[i];
1348     float  values = _bytecodes_parsed[i] == 0 ? 0 : (1.0F * _new_values       [i])/_bytecodes_parsed[i];
1349     if (cutoff <= rel) {
1350       tty->print_cr("%10d  %7.2f%%  %6.1f  %6.2f   %6.1f   %6.1f     %s", abs, rel, nodes, rnodes, xforms, values, name_for_bc(i));
1351       abs_sum += abs;
1352     }
1353   }
1354   tty->print_cr("----------------------------------------------------------------------");
1355   float rel_sum = abs_sum * 100.0F / total;
1356   tty->print_cr("%10d  %7.2f%%    (cutoff = %.2f%%)", abs_sum, rel_sum, cutoff);
1357   tty->print_cr("----------------------------------------------------------------------");
1358   tty->cr();
1359 }
1360 #endif
1361 
1362 //----------------------------load_state_from----------------------------------
1363 // Load block/map/sp.  But not do not touch iter/bci.
1364 void Parse::load_state_from(Block* block) {
1365   set_block(block);
1366   // load the block's JVM state:
1367   set_map(block->start_map());
1368   set_sp( block->start_sp());
1369 }
1370 
1371 
1372 //-----------------------------record_state------------------------------------
1373 void Parse::Block::record_state(Parse* p) {
1374   assert(!is_merged(), "can only record state once, on 1st inflow");
1375   assert(start_sp() == p->sp(), "stack pointer must agree with ciTypeFlow");
1376   set_start_map(p->stop());
1377 }
1378 
1379 
1380 //------------------------------do_one_block-----------------------------------
1381 void Parse::do_one_block() {
1382   if (TraceOptoParse) {
1383     Block *b = block();
1384     int ns = b->num_successors();
1385     int nt = b->all_successors();
1386 
1387     tty->print("Parsing block #%d at bci [%d,%d), successors: ",
1388                   block()->rpo(), block()->start(), block()->limit());
1389     for (int i = 0; i < nt; i++) {
1390       tty->print((( i < ns) ? " %d" : " %d(e)"), b->successor_at(i)->rpo());
1391     }
1392     if (b->is_loop_head()) tty->print("  lphd");
1393     tty->print_cr("");
1394   }
1395 
1396   assert(block()->is_merged(), "must be merged before being parsed");
1397   block()->mark_parsed();
1398   ++_blocks_parsed;
1399 
1400   // Set iterator to start of block.
1401   iter().reset_to_bci(block()->start());
1402 
1403   CompileLog* log = C->log();
1404 
1405   // Parse bytecodes
1406   while (!stopped() && !failing()) {
1407     iter().next();
1408 
1409     // Learn the current bci from the iterator:
1410     set_parse_bci(iter().cur_bci());
1411 
1412     if (bci() == block()->limit()) {
1413       // Do not walk into the next block until directed by do_all_blocks.
1414       merge(bci());
1415       break;
1416     }
1417     assert(bci() < block()->limit(), "bci still in block");
1418 
1419     if (log != NULL) {
1420       // Output an optional context marker, to help place actions
1421       // that occur during parsing of this BC.  If there is no log
1422       // output until the next context string, this context string
1423       // will be silently ignored.
1424       log->set_context("bc code='%d' bci='%d'", (int)bc(), bci());
1425     }
1426 
1427     if (block()->has_trap_at(bci())) {
1428       // We must respect the flow pass's traps, because it will refuse
1429       // to produce successors for trapping blocks.
1430       int trap_index = block()->flow()->trap_index();
1431       assert(trap_index != 0, "trap index must be valid");
1432       uncommon_trap(trap_index);
1433       break;
1434     }
1435 
1436     NOT_PRODUCT( parse_histogram()->set_initial_state(bc()); );
1437 
1438 #ifdef ASSERT
1439     int pre_bc_sp = sp();
1440     int inputs, depth;
1441     bool have_se = !stopped() && compute_stack_effects(inputs, depth);
1442     assert(!have_se || pre_bc_sp >= inputs, err_msg_res("have enough stack to execute this BC: pre_bc_sp=%d, inputs=%d", pre_bc_sp, inputs));
1443 #endif //ASSERT
1444 
1445     do_one_bytecode();
1446 
1447     assert(!have_se || stopped() || failing() || (sp() - pre_bc_sp) == depth,
1448            err_msg_res("incorrect depth prediction: sp=%d, pre_bc_sp=%d, depth=%d", sp(), pre_bc_sp, depth));
1449 
1450     do_exceptions();
1451 
1452     NOT_PRODUCT( parse_histogram()->record_change(); );
1453 
1454     if (log != NULL)
1455       log->clear_context();  // skip marker if nothing was printed
1456 
1457     // Fall into next bytecode.  Each bytecode normally has 1 sequential
1458     // successor which is typically made ready by visiting this bytecode.
1459     // If the successor has several predecessors, then it is a merge
1460     // point, starts a new basic block, and is handled like other basic blocks.
1461   }
1462 }
1463 
1464 
1465 //------------------------------merge------------------------------------------
1466 void Parse::set_parse_bci(int bci) {
1467   set_bci(bci);
1468   Node_Notes* nn = C->default_node_notes();
1469   if (nn == NULL)  return;
1470 
1471   // Collect debug info for inlined calls unless -XX:-DebugInlinedCalls.
1472   if (!DebugInlinedCalls && depth() > 1) {
1473     return;
1474   }
1475 
1476   // Update the JVMS annotation, if present.
1477   JVMState* jvms = nn->jvms();
1478   if (jvms != NULL && jvms->bci() != bci) {
1479     // Update the JVMS.
1480     jvms = jvms->clone_shallow(C);
1481     jvms->set_bci(bci);
1482     nn->set_jvms(jvms);
1483   }
1484 }
1485 
1486 //------------------------------merge------------------------------------------
1487 // Merge the current mapping into the basic block starting at bci
1488 void Parse::merge(int target_bci) {
1489   Block* target = successor_for_bci(target_bci);
1490   if (target == NULL) { handle_missing_successor(target_bci); return; }
1491   assert(!target->is_ready(), "our arrival must be expected");
1492   int pnum = target->next_path_num();
1493   merge_common(target, pnum);
1494 }
1495 
1496 //-------------------------merge_new_path--------------------------------------
1497 // Merge the current mapping into the basic block, using a new path
1498 void Parse::merge_new_path(int target_bci) {
1499   Block* target = successor_for_bci(target_bci);
1500   if (target == NULL) { handle_missing_successor(target_bci); return; }
1501   assert(!target->is_ready(), "new path into frozen graph");
1502   int pnum = target->add_new_path();
1503   merge_common(target, pnum);
1504 }
1505 
1506 //-------------------------merge_exception-------------------------------------
1507 // Merge the current mapping into the basic block starting at bci
1508 // The ex_oop must be pushed on the stack, unlike throw_to_exit.
1509 void Parse::merge_exception(int target_bci) {
1510   assert(sp() == 1, "must have only the throw exception on the stack");
1511   Block* target = successor_for_bci(target_bci);
1512   if (target == NULL) { handle_missing_successor(target_bci); return; }
1513   assert(target->is_handler(), "exceptions are handled by special blocks");
1514   int pnum = target->add_new_path();
1515   merge_common(target, pnum);
1516 }
1517 
1518 //--------------------handle_missing_successor---------------------------------
1519 void Parse::handle_missing_successor(int target_bci) {
1520 #ifndef PRODUCT
1521   Block* b = block();
1522   int trap_bci = b->flow()->has_trap()? b->flow()->trap_bci(): -1;
1523   tty->print_cr("### Missing successor at bci:%d for block #%d (trap_bci:%d)", target_bci, b->rpo(), trap_bci);
1524 #endif
1525   ShouldNotReachHere();
1526 }
1527 
1528 //--------------------------merge_common---------------------------------------
1529 void Parse::merge_common(Parse::Block* target, int pnum) {
1530   if (TraceOptoParse) {
1531     tty->print("Merging state at block #%d bci:%d", target->rpo(), target->start());
1532   }
1533 
1534   // Zap extra stack slots to top
1535   assert(sp() == target->start_sp(), "");
1536   clean_stack(sp());
1537 
1538   if (!target->is_merged()) {   // No prior mapping at this bci
1539     if (TraceOptoParse) { tty->print(" with empty state");  }
1540 
1541     // If this path is dead, do not bother capturing it as a merge.
1542     // It is "as if" we had 1 fewer predecessors from the beginning.
1543     if (stopped()) {
1544       if (TraceOptoParse)  tty->print_cr(", but path is dead and doesn't count");
1545       return;
1546     }
1547 
1548     // Record that a new block has been merged.
1549     ++_blocks_merged;
1550 
1551     // Make a region if we know there are multiple or unpredictable inputs.
1552     // (Also, if this is a plain fall-through, we might see another region,
1553     // which must not be allowed into this block's map.)
1554     if (pnum > PhiNode::Input         // Known multiple inputs.
1555         || target->is_handler()       // These have unpredictable inputs.
1556         || target->is_loop_head()     // Known multiple inputs
1557         || control()->is_Region()) {  // We must hide this guy.
1558 
1559       int current_bci = bci();
1560       set_parse_bci(target->start()); // Set target bci
1561       if (target->is_SEL_head()) {
1562         DEBUG_ONLY( target->mark_merged_backedge(block()); )
1563         if (target->start() == 0) {
1564           // Add loop predicate for the special case when
1565           // there are backbranches to the method entry.
1566           add_predicate();
1567         }
1568       }
1569       // Add a Region to start the new basic block.  Phis will be added
1570       // later lazily.
1571       int edges = target->pred_count();
1572       if (edges < pnum)  edges = pnum;  // might be a new path!
1573       RegionNode *r = new (C) RegionNode(edges+1);
1574       gvn().set_type(r, Type::CONTROL);
1575       record_for_igvn(r);
1576       // zap all inputs to NULL for debugging (done in Node(uint) constructor)
1577       // for (int j = 1; j < edges+1; j++) { r->init_req(j, NULL); }
1578       r->init_req(pnum, control());
1579       set_control(r);
1580       set_parse_bci(current_bci); // Restore bci
1581     }
1582 
1583     // Convert the existing Parser mapping into a mapping at this bci.
1584     store_state_to(target);
1585     assert(target->is_merged(), "do not come here twice");
1586 
1587   } else {                      // Prior mapping at this bci
1588     if (TraceOptoParse) {  tty->print(" with previous state"); }
1589 #ifdef ASSERT
1590     if (target->is_SEL_head()) {
1591       target->mark_merged_backedge(block());
1592     }
1593 #endif
1594     // We must not manufacture more phis if the target is already parsed.
1595     bool nophi = target->is_parsed();
1596 
1597     SafePointNode* newin = map();// Hang on to incoming mapping
1598     Block* save_block = block(); // Hang on to incoming block;
1599     load_state_from(target);    // Get prior mapping
1600 
1601     assert(newin->jvms()->locoff() == jvms()->locoff(), "JVMS layouts agree");
1602     assert(newin->jvms()->stkoff() == jvms()->stkoff(), "JVMS layouts agree");
1603     assert(newin->jvms()->monoff() == jvms()->monoff(), "JVMS layouts agree");
1604     assert(newin->jvms()->endoff() == jvms()->endoff(), "JVMS layouts agree");
1605 
1606     // Iterate over my current mapping and the old mapping.
1607     // Where different, insert Phi functions.
1608     // Use any existing Phi functions.
1609     assert(control()->is_Region(), "must be merging to a region");
1610     RegionNode* r = control()->as_Region();
1611 
1612     // Compute where to merge into
1613     // Merge incoming control path
1614     r->init_req(pnum, newin->control());
1615 
1616     if (pnum == 1) {            // Last merge for this Region?
1617       if (!block()->flow()->is_irreducible_entry()) {
1618         Node* result = _gvn.transform_no_reclaim(r);
1619         if (r != result && TraceOptoParse) {
1620           tty->print_cr("Block #%d replace %d with %d", block()->rpo(), r->_idx, result->_idx);
1621         }
1622       }
1623       record_for_igvn(r);
1624     }
1625 
1626     // Update all the non-control inputs to map:
1627     assert(TypeFunc::Parms == newin->jvms()->locoff(), "parser map should contain only youngest jvms");
1628     bool check_elide_phi = target->is_SEL_backedge(save_block);
1629     for (uint j = 1; j < newin->req(); j++) {
1630       Node* m = map()->in(j);   // Current state of target.
1631       Node* n = newin->in(j);   // Incoming change to target state.
1632       PhiNode* phi;
1633       if (m->is_Phi() && m->as_Phi()->region() == r)
1634         phi = m->as_Phi();
1635       else
1636         phi = NULL;
1637       if (m != n) {             // Different; must merge
1638         switch (j) {
1639         // Frame pointer and Return Address never changes
1640         case TypeFunc::FramePtr:// Drop m, use the original value
1641         case TypeFunc::ReturnAdr:
1642           break;
1643         case TypeFunc::Memory:  // Merge inputs to the MergeMem node
1644           assert(phi == NULL, "the merge contains phis, not vice versa");
1645           merge_memory_edges(n->as_MergeMem(), pnum, nophi);
1646           continue;
1647         default:                // All normal stuff
1648           if (phi == NULL) {
1649             const JVMState* jvms = map()->jvms();
1650             if (EliminateNestedLocks &&
1651                 jvms->is_mon(j) && jvms->is_monitor_box(j)) {
1652               // BoxLock nodes are not commoning.
1653               // Use old BoxLock node as merged box.
1654               assert(newin->jvms()->is_monitor_box(j), "sanity");
1655               // This assert also tests that nodes are BoxLock.
1656               assert(BoxLockNode::same_slot(n, m), "sanity");
1657               C->gvn_replace_by(n, m);
1658             } else if (!check_elide_phi || !target->can_elide_SEL_phi(j)) {
1659               phi = ensure_phi(j, nophi);
1660             }
1661           }
1662           break;
1663         }
1664       }
1665       // At this point, n might be top if:
1666       //  - there is no phi (because TypeFlow detected a conflict), or
1667       //  - the corresponding control edges is top (a dead incoming path)
1668       // It is a bug if we create a phi which sees a garbage value on a live path.
1669 
1670       if (phi != NULL) {
1671         assert(n != top() || r->in(pnum) == top(), "live value must not be garbage");
1672         assert(phi->region() == r, "");
1673         phi->set_req(pnum, n);  // Then add 'n' to the merge
1674         if (pnum == PhiNode::Input) {
1675           // Last merge for this Phi.
1676           // So far, Phis have had a reasonable type from ciTypeFlow.
1677           // Now _gvn will join that with the meet of current inputs.
1678           // BOTTOM is never permissible here, 'cause pessimistically
1679           // Phis of pointers cannot lose the basic pointer type.
1680           debug_only(const Type* bt1 = phi->bottom_type());
1681           assert(bt1 != Type::BOTTOM, "should not be building conflict phis");
1682           map()->set_req(j, _gvn.transform_no_reclaim(phi));
1683           debug_only(const Type* bt2 = phi->bottom_type());
1684           assert(bt2->higher_equal_speculative(bt1), "must be consistent with type-flow");
1685           record_for_igvn(phi);
1686         }
1687       }
1688     } // End of for all values to be merged
1689 
1690     if (pnum == PhiNode::Input &&
1691         !r->in(0)) {         // The occasional useless Region
1692       assert(control() == r, "");
1693       set_control(r->nonnull_req());
1694     }
1695 
1696     // newin has been subsumed into the lazy merge, and is now dead.
1697     set_block(save_block);
1698 
1699     stop();                     // done with this guy, for now
1700   }
1701 
1702   if (TraceOptoParse) {
1703     tty->print_cr(" on path %d", pnum);
1704   }
1705 
1706   // Done with this parser state.
1707   assert(stopped(), "");
1708 }
1709 
1710 
1711 //--------------------------merge_memory_edges---------------------------------
1712 void Parse::merge_memory_edges(MergeMemNode* n, int pnum, bool nophi) {
1713   // (nophi means we must not create phis, because we already parsed here)
1714   assert(n != NULL, "");
1715   // Merge the inputs to the MergeMems
1716   MergeMemNode* m = merged_memory();
1717 
1718   assert(control()->is_Region(), "must be merging to a region");
1719   RegionNode* r = control()->as_Region();
1720 
1721   PhiNode* base = NULL;
1722   MergeMemNode* remerge = NULL;
1723   for (MergeMemStream mms(m, n); mms.next_non_empty2(); ) {
1724     Node *p = mms.force_memory();
1725     Node *q = mms.memory2();
1726     if (mms.is_empty() && nophi) {
1727       // Trouble:  No new splits allowed after a loop body is parsed.
1728       // Instead, wire the new split into a MergeMem on the backedge.
1729       // The optimizer will sort it out, slicing the phi.
1730       if (remerge == NULL) {
1731         assert(base != NULL, "");
1732         assert(base->in(0) != NULL, "should not be xformed away");
1733         remerge = MergeMemNode::make(C, base->in(pnum));
1734         gvn().set_type(remerge, Type::MEMORY);
1735         base->set_req(pnum, remerge);
1736       }
1737       remerge->set_memory_at(mms.alias_idx(), q);
1738       continue;
1739     }
1740     assert(!q->is_MergeMem(), "");
1741     PhiNode* phi;
1742     if (p != q) {
1743       phi = ensure_memory_phi(mms.alias_idx(), nophi);
1744     } else {
1745       if (p->is_Phi() && p->as_Phi()->region() == r)
1746         phi = p->as_Phi();
1747       else
1748         phi = NULL;
1749     }
1750     // Insert q into local phi
1751     if (phi != NULL) {
1752       assert(phi->region() == r, "");
1753       p = phi;
1754       phi->set_req(pnum, q);
1755       if (mms.at_base_memory()) {
1756         base = phi;  // delay transforming it
1757       } else if (pnum == 1) {
1758         record_for_igvn(phi);
1759         p = _gvn.transform_no_reclaim(phi);
1760       }
1761       mms.set_memory(p);// store back through the iterator
1762     }
1763   }
1764   // Transform base last, in case we must fiddle with remerging.
1765   if (base != NULL && pnum == 1) {
1766     record_for_igvn(base);
1767     m->set_base_memory( _gvn.transform_no_reclaim(base) );
1768   }
1769 }
1770 
1771 
1772 //------------------------ensure_phis_everywhere-------------------------------
1773 void Parse::ensure_phis_everywhere() {
1774   ensure_phi(TypeFunc::I_O);
1775 
1776   // Ensure a phi on all currently known memories.
1777   for (MergeMemStream mms(merged_memory()); mms.next_non_empty(); ) {
1778     ensure_memory_phi(mms.alias_idx());
1779     debug_only(mms.set_memory());  // keep the iterator happy
1780   }
1781 
1782   // Note:  This is our only chance to create phis for memory slices.
1783   // If we miss a slice that crops up later, it will have to be
1784   // merged into the base-memory phi that we are building here.
1785   // Later, the optimizer will comb out the knot, and build separate
1786   // phi-loops for each memory slice that matters.
1787 
1788   // Monitors must nest nicely and not get confused amongst themselves.
1789   // Phi-ify everything up to the monitors, though.
1790   uint monoff = map()->jvms()->monoff();
1791   uint nof_monitors = map()->jvms()->nof_monitors();
1792 
1793   assert(TypeFunc::Parms == map()->jvms()->locoff(), "parser map should contain only youngest jvms");
1794   bool check_elide_phi = block()->is_SEL_head();
1795   for (uint i = TypeFunc::Parms; i < monoff; i++) {
1796     if (!check_elide_phi || !block()->can_elide_SEL_phi(i)) {
1797       ensure_phi(i);
1798     }
1799   }
1800 
1801   // Even monitors need Phis, though they are well-structured.
1802   // This is true for OSR methods, and also for the rare cases where
1803   // a monitor object is the subject of a replace_in_map operation.
1804   // See bugs 4426707 and 5043395.
1805   for (uint m = 0; m < nof_monitors; m++) {
1806     ensure_phi(map()->jvms()->monitor_obj_offset(m));
1807   }
1808 }
1809 
1810 
1811 //-----------------------------add_new_path------------------------------------
1812 // Add a previously unaccounted predecessor to this block.
1813 int Parse::Block::add_new_path() {
1814   // If there is no map, return the lowest unused path number.
1815   if (!is_merged())  return pred_count()+1;  // there will be a map shortly
1816 
1817   SafePointNode* map = start_map();
1818   if (!map->control()->is_Region())
1819     return pred_count()+1;  // there may be a region some day
1820   RegionNode* r = map->control()->as_Region();
1821 
1822   // Add new path to the region.
1823   uint pnum = r->req();
1824   r->add_req(NULL);
1825 
1826   for (uint i = 1; i < map->req(); i++) {
1827     Node* n = map->in(i);
1828     if (i == TypeFunc::Memory) {
1829       // Ensure a phi on all currently known memories.
1830       for (MergeMemStream mms(n->as_MergeMem()); mms.next_non_empty(); ) {
1831         Node* phi = mms.memory();
1832         if (phi->is_Phi() && phi->as_Phi()->region() == r) {
1833           assert(phi->req() == pnum, "must be same size as region");
1834           phi->add_req(NULL);
1835         }
1836       }
1837     } else {
1838       if (n->is_Phi() && n->as_Phi()->region() == r) {
1839         assert(n->req() == pnum, "must be same size as region");
1840         n->add_req(NULL);
1841       }
1842     }
1843   }
1844 
1845   return pnum;
1846 }
1847 
1848 //------------------------------ensure_phi-------------------------------------
1849 // Turn the idx'th entry of the current map into a Phi
1850 PhiNode *Parse::ensure_phi(int idx, bool nocreate) {
1851   SafePointNode* map = this->map();
1852   Node* region = map->control();
1853   assert(region->is_Region(), "");
1854 
1855   Node* o = map->in(idx);
1856   assert(o != NULL, "");
1857 
1858   if (o == top())  return NULL; // TOP always merges into TOP
1859 
1860   if (o->is_Phi() && o->as_Phi()->region() == region) {
1861     return o->as_Phi();
1862   }
1863 
1864   // Now use a Phi here for merging
1865   assert(!nocreate, "Cannot build a phi for a block already parsed.");
1866   const JVMState* jvms = map->jvms();
1867   const Type* t;
1868   if (jvms->is_loc(idx)) {
1869     t = block()->local_type_at(idx - jvms->locoff());
1870   } else if (jvms->is_stk(idx)) {
1871     t = block()->stack_type_at(idx - jvms->stkoff());
1872   } else if (jvms->is_mon(idx)) {
1873     assert(!jvms->is_monitor_box(idx), "no phis for boxes");
1874     t = TypeInstPtr::BOTTOM; // this is sufficient for a lock object
1875   } else if ((uint)idx < TypeFunc::Parms) {
1876     t = o->bottom_type();  // Type::RETURN_ADDRESS or such-like.
1877   } else {
1878     assert(false, "no type information for this phi");
1879   }
1880 
1881   // If the type falls to bottom, then this must be a local that
1882   // is mixing ints and oops or some such.  Forcing it to top
1883   // makes it go dead.
1884   if (t == Type::BOTTOM) {
1885     map->set_req(idx, top());
1886     return NULL;
1887   }
1888 
1889   // Do not create phis for top either.
1890   // A top on a non-null control flow must be an unused even after the.phi.
1891   if (t == Type::TOP || t == Type::HALF) {
1892     map->set_req(idx, top());
1893     return NULL;
1894   }
1895 
1896   PhiNode* phi = PhiNode::make(region, o, t);
1897   gvn().set_type(phi, t);
1898   if (C->do_escape_analysis()) record_for_igvn(phi);
1899   map->set_req(idx, phi);
1900   return phi;
1901 }
1902 
1903 //--------------------------ensure_memory_phi----------------------------------
1904 // Turn the idx'th slice of the current memory into a Phi
1905 PhiNode *Parse::ensure_memory_phi(int idx, bool nocreate) {
1906   MergeMemNode* mem = merged_memory();
1907   Node* region = control();
1908   assert(region->is_Region(), "");
1909 
1910   Node *o = (idx == Compile::AliasIdxBot)? mem->base_memory(): mem->memory_at(idx);
1911   assert(o != NULL && o != top(), "");
1912 
1913   PhiNode* phi;
1914   if (o->is_Phi() && o->as_Phi()->region() == region) {
1915     phi = o->as_Phi();
1916     if (phi == mem->base_memory() && idx >= Compile::AliasIdxRaw) {
1917       // clone the shared base memory phi to make a new memory split
1918       assert(!nocreate, "Cannot build a phi for a block already parsed.");
1919       const Type* t = phi->bottom_type();
1920       const TypePtr* adr_type = C->get_adr_type(idx);
1921       phi = phi->slice_memory(adr_type);
1922       gvn().set_type(phi, t);
1923     }
1924     return phi;
1925   }
1926 
1927   // Now use a Phi here for merging
1928   assert(!nocreate, "Cannot build a phi for a block already parsed.");
1929   const Type* t = o->bottom_type();
1930   const TypePtr* adr_type = C->get_adr_type(idx);
1931   phi = PhiNode::make(region, o, t, adr_type);
1932   gvn().set_type(phi, t);
1933   if (idx == Compile::AliasIdxBot)
1934     mem->set_base_memory(phi);
1935   else
1936     mem->set_memory_at(idx, phi);
1937   return phi;
1938 }
1939 
1940 //------------------------------call_register_finalizer-----------------------
1941 // Check the klass of the receiver and call register_finalizer if the
1942 // class need finalization.
1943 void Parse::call_register_finalizer() {
1944   Node* receiver = local(0);
1945   assert(receiver != NULL && receiver->bottom_type()->isa_instptr() != NULL,
1946          "must have non-null instance type");
1947 
1948   const TypeInstPtr *tinst = receiver->bottom_type()->isa_instptr();
1949   if (tinst != NULL && tinst->klass()->is_loaded() && !tinst->klass_is_exact()) {
1950     // The type isn't known exactly so see if CHA tells us anything.
1951     ciInstanceKlass* ik = tinst->klass()->as_instance_klass();
1952     if (!Dependencies::has_finalizable_subclass(ik)) {
1953       // No finalizable subclasses so skip the dynamic check.
1954       C->dependencies()->assert_has_no_finalizable_subclasses(ik);
1955       return;
1956     }
1957   }
1958 
1959   // Insert a dynamic test for whether the instance needs
1960   // finalization.  In general this will fold up since the concrete
1961   // class is often visible so the access flags are constant.
1962   Node* klass_addr = basic_plus_adr( receiver, receiver, oopDesc::klass_offset_in_bytes() );
1963   Node* klass = _gvn.transform( LoadKlassNode::make(_gvn, immutable_memory(), klass_addr, TypeInstPtr::KLASS) );
1964 
1965   Node* access_flags_addr = basic_plus_adr(klass, klass, in_bytes(Klass::access_flags_offset()));
1966   Node* access_flags = make_load(NULL, access_flags_addr, TypeInt::INT, T_INT, MemNode::unordered);
1967 
1968   Node* mask  = _gvn.transform(new (C) AndINode(access_flags, intcon(JVM_ACC_HAS_FINALIZER)));
1969   Node* check = _gvn.transform(new (C) CmpINode(mask, intcon(0)));
1970   Node* test  = _gvn.transform(new (C) BoolNode(check, BoolTest::ne));
1971 
1972   IfNode* iff = create_and_map_if(control(), test, PROB_MAX, COUNT_UNKNOWN);
1973 
1974   RegionNode* result_rgn = new (C) RegionNode(3);
1975   record_for_igvn(result_rgn);
1976 
1977   Node *skip_register = _gvn.transform(new (C) IfFalseNode(iff));
1978   result_rgn->init_req(1, skip_register);
1979 
1980   Node *needs_register = _gvn.transform(new (C) IfTrueNode(iff));
1981   set_control(needs_register);
1982   if (stopped()) {
1983     // There is no slow path.
1984     result_rgn->init_req(2, top());
1985   } else {
1986     Node *call = make_runtime_call(RC_NO_LEAF,
1987                                    OptoRuntime::register_finalizer_Type(),
1988                                    OptoRuntime::register_finalizer_Java(),
1989                                    NULL, TypePtr::BOTTOM,
1990                                    receiver);
1991     make_slow_call_ex(call, env()->Throwable_klass(), true);
1992 
1993     Node* fast_io  = call->in(TypeFunc::I_O);
1994     Node* fast_mem = call->in(TypeFunc::Memory);
1995     // These two phis are pre-filled with copies of of the fast IO and Memory
1996     Node* io_phi   = PhiNode::make(result_rgn, fast_io,  Type::ABIO);
1997     Node* mem_phi  = PhiNode::make(result_rgn, fast_mem, Type::MEMORY, TypePtr::BOTTOM);
1998 
1999     result_rgn->init_req(2, control());
2000     io_phi    ->init_req(2, i_o());
2001     mem_phi   ->init_req(2, reset_memory());
2002 
2003     set_all_memory( _gvn.transform(mem_phi) );
2004     set_i_o(        _gvn.transform(io_phi) );
2005   }
2006 
2007   set_control( _gvn.transform(result_rgn) );
2008 }
2009 
2010 //------------------------------return_current---------------------------------
2011 // Append current _map to _exit_return
2012 void Parse::return_current(Node* value) {
2013   if (RegisterFinalizersAtInit &&
2014       method()->intrinsic_id() == vmIntrinsics::_Object_init) {
2015     call_register_finalizer();
2016   }
2017 
2018   // Do not set_parse_bci, so that return goo is credited to the return insn.
2019   set_bci(InvocationEntryBci);
2020   if (method()->is_synchronized() && GenerateSynchronizationCode) {
2021     shared_unlock(_synch_lock->box_node(), _synch_lock->obj_node());
2022   }
2023   if (C->env()->dtrace_method_probes()) {
2024     make_dtrace_method_exit(method());
2025   }
2026   SafePointNode* exit_return = _exits.map();
2027   exit_return->in( TypeFunc::Control  )->add_req( control() );
2028   exit_return->in( TypeFunc::I_O      )->add_req( i_o    () );
2029   Node *mem = exit_return->in( TypeFunc::Memory   );
2030   for (MergeMemStream mms(mem->as_MergeMem(), merged_memory()); mms.next_non_empty2(); ) {
2031     if (mms.is_empty()) {
2032       // get a copy of the base memory, and patch just this one input
2033       const TypePtr* adr_type = mms.adr_type(C);
2034       Node* phi = mms.force_memory()->as_Phi()->slice_memory(adr_type);
2035       assert(phi->as_Phi()->region() == mms.base_memory()->in(0), "");
2036       gvn().set_type_bottom(phi);
2037       phi->del_req(phi->req()-1);  // prepare to re-patch
2038       mms.set_memory(phi);
2039     }
2040     mms.memory()->add_req(mms.memory2());
2041   }
2042 
2043   // frame pointer is always same, already captured
2044   if (value != NULL) {
2045     // If returning oops to an interface-return, there is a silent free
2046     // cast from oop to interface allowed by the Verifier.  Make it explicit
2047     // here.
2048     Node* phi = _exits.argument(0);
2049     const TypeInstPtr *tr = phi->bottom_type()->isa_instptr();
2050     if( tr && tr->klass()->is_loaded() &&
2051         tr->klass()->is_interface() ) {
2052       const TypeInstPtr *tp = value->bottom_type()->isa_instptr();
2053       if (tp && tp->klass()->is_loaded() &&
2054           !tp->klass()->is_interface()) {
2055         // sharpen the type eagerly; this eases certain assert checking
2056         if (tp->higher_equal(TypeInstPtr::NOTNULL))
2057           tr = tr->join_speculative(TypeInstPtr::NOTNULL)->is_instptr();
2058         value = _gvn.transform(new (C) CheckCastPPNode(0,value,tr));
2059       }
2060     }
2061     phi->add_req(value);
2062   }
2063 
2064   stop_and_kill_map();          // This CFG path dies here
2065 }
2066 
2067 
2068 //------------------------------add_safepoint----------------------------------
2069 void Parse::add_safepoint() {
2070   // See if we can avoid this safepoint.  No need for a SafePoint immediately
2071   // after a Call (except Leaf Call) or another SafePoint.
2072   Node *proj = control();
2073   bool add_poll_param = SafePointNode::needs_polling_address_input();
2074   uint parms = add_poll_param ? TypeFunc::Parms+1 : TypeFunc::Parms;
2075   if( proj->is_Proj() ) {
2076     Node *n0 = proj->in(0);
2077     if( n0->is_Catch() ) {
2078       n0 = n0->in(0)->in(0);
2079       assert( n0->is_Call(), "expect a call here" );
2080     }
2081     if( n0->is_Call() ) {
2082       if( n0->as_Call()->guaranteed_safepoint() )
2083         return;
2084     } else if( n0->is_SafePoint() && n0->req() >= parms ) {
2085       return;
2086     }
2087   }
2088 
2089   // Clear out dead values from the debug info.
2090   kill_dead_locals();
2091 
2092   // Clone the JVM State
2093   SafePointNode *sfpnt = new (C) SafePointNode(parms, NULL);
2094 
2095   // Capture memory state BEFORE a SafePoint.  Since we can block at a
2096   // SafePoint we need our GC state to be safe; i.e. we need all our current
2097   // write barriers (card marks) to not float down after the SafePoint so we
2098   // must read raw memory.  Likewise we need all oop stores to match the card
2099   // marks.  If deopt can happen, we need ALL stores (we need the correct JVM
2100   // state on a deopt).
2101 
2102   // We do not need to WRITE the memory state after a SafePoint.  The control
2103   // edge will keep card-marks and oop-stores from floating up from below a
2104   // SafePoint and our true dependency added here will keep them from floating
2105   // down below a SafePoint.
2106 
2107   // Clone the current memory state
2108   Node* mem = MergeMemNode::make(C, map()->memory());
2109 
2110   mem = _gvn.transform(mem);
2111 
2112   // Pass control through the safepoint
2113   sfpnt->init_req(TypeFunc::Control  , control());
2114   // Fix edges normally used by a call
2115   sfpnt->init_req(TypeFunc::I_O      , top() );
2116   sfpnt->init_req(TypeFunc::Memory   , mem   );
2117   sfpnt->init_req(TypeFunc::ReturnAdr, top() );
2118   sfpnt->init_req(TypeFunc::FramePtr , top() );
2119 
2120   // Create a node for the polling address
2121   if( add_poll_param ) {
2122     Node *polladr = ConPNode::make(C, (address)os::get_polling_page());
2123     sfpnt->init_req(TypeFunc::Parms+0, _gvn.transform(polladr));
2124   }
2125 
2126   // Fix up the JVM State edges
2127   add_safepoint_edges(sfpnt);
2128   Node *transformed_sfpnt = _gvn.transform(sfpnt);
2129   set_control(transformed_sfpnt);
2130 
2131   // Provide an edge from root to safepoint.  This makes the safepoint
2132   // appear useful until the parse has completed.
2133   if( OptoRemoveUseless && transformed_sfpnt->is_SafePoint() ) {
2134     assert(C->root() != NULL, "Expect parse is still valid");
2135     C->root()->add_prec(transformed_sfpnt);
2136   }
2137 }
2138 
2139 #ifndef PRODUCT
2140 //------------------------show_parse_info--------------------------------------
2141 void Parse::show_parse_info() {
2142   InlineTree* ilt = NULL;
2143   if (C->ilt() != NULL) {
2144     JVMState* caller_jvms = is_osr_parse() ? caller()->caller() : caller();
2145     ilt = InlineTree::find_subtree_from_root(C->ilt(), caller_jvms, method());
2146   }
2147   if (PrintCompilation && Verbose) {
2148     if (depth() == 1) {
2149       if( ilt->count_inlines() ) {
2150         tty->print("    __inlined %d (%d bytes)", ilt->count_inlines(),
2151                      ilt->count_inline_bcs());
2152         tty->cr();
2153       }
2154     } else {
2155       if (method()->is_synchronized())         tty->print("s");
2156       if (method()->has_exception_handlers())  tty->print("!");
2157       // Check this is not the final compiled version
2158       if (C->trap_can_recompile()) {
2159         tty->print("-");
2160       } else {
2161         tty->print(" ");
2162       }
2163       method()->print_short_name();
2164       if (is_osr_parse()) {
2165         tty->print(" @ %d", osr_bci());
2166       }
2167       tty->print(" (%d bytes)",method()->code_size());
2168       if (ilt->count_inlines()) {
2169         tty->print(" __inlined %d (%d bytes)", ilt->count_inlines(),
2170                    ilt->count_inline_bcs());
2171       }
2172       tty->cr();
2173     }
2174   }
2175   if (PrintOpto && (depth() == 1 || PrintOptoInlining)) {
2176     // Print that we succeeded; suppress this message on the first osr parse.
2177 
2178     if (method()->is_synchronized())         tty->print("s");
2179     if (method()->has_exception_handlers())  tty->print("!");
2180     // Check this is not the final compiled version
2181     if (C->trap_can_recompile() && depth() == 1) {
2182       tty->print("-");
2183     } else {
2184       tty->print(" ");
2185     }
2186     if( depth() != 1 ) { tty->print("   "); }  // missing compile count
2187     for (int i = 1; i < depth(); ++i) { tty->print("  "); }
2188     method()->print_short_name();
2189     if (is_osr_parse()) {
2190       tty->print(" @ %d", osr_bci());
2191     }
2192     if (ilt->caller_bci() != -1) {
2193       tty->print(" @ %d", ilt->caller_bci());
2194     }
2195     tty->print(" (%d bytes)",method()->code_size());
2196     if (ilt->count_inlines()) {
2197       tty->print(" __inlined %d (%d bytes)", ilt->count_inlines(),
2198                  ilt->count_inline_bcs());
2199     }
2200     tty->cr();
2201   }
2202 }
2203 
2204 
2205 //------------------------------dump-------------------------------------------
2206 // Dump information associated with the bytecodes of current _method
2207 void Parse::dump() {
2208   if( method() != NULL ) {
2209     // Iterate over bytecodes
2210     ciBytecodeStream iter(method());
2211     for( Bytecodes::Code bc = iter.next(); bc != ciBytecodeStream::EOBC() ; bc = iter.next() ) {
2212       dump_bci( iter.cur_bci() );
2213       tty->cr();
2214     }
2215   }
2216 }
2217 
2218 // Dump information associated with a byte code index, 'bci'
2219 void Parse::dump_bci(int bci) {
2220   // Output info on merge-points, cloning, and within _jsr..._ret
2221   // NYI
2222   tty->print(" bci:%d", bci);
2223 }
2224 
2225 #endif