1 /*
   2  * Copyright (c) 2001, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "gc_implementation/shared/adaptiveSizePolicy.hpp"
  27 #include "gc_implementation/shared/gcPolicyCounters.hpp"
  28 #include "gc_implementation/shared/vmGCOperations.hpp"
  29 #include "memory/cardTableRS.hpp"
  30 #include "memory/collectorPolicy.hpp"
  31 #include "memory/gcLocker.inline.hpp"
  32 #include "memory/genCollectedHeap.hpp"
  33 #include "memory/generationSpec.hpp"
  34 #include "memory/space.hpp"
  35 #include "memory/universe.hpp"
  36 #include "runtime/arguments.hpp"
  37 #include "runtime/globals_extension.hpp"
  38 #include "runtime/handles.inline.hpp"
  39 #include "runtime/java.hpp"
  40 #include "runtime/thread.inline.hpp"
  41 #include "runtime/vmThread.hpp"
  42 #include "utilities/macros.hpp"
  43 #if INCLUDE_ALL_GCS
  44 #include "gc_implementation/concurrentMarkSweep/cmsAdaptiveSizePolicy.hpp"
  45 #include "gc_implementation/concurrentMarkSweep/cmsGCAdaptivePolicyCounters.hpp"
  46 #endif // INCLUDE_ALL_GCS
  47 
  48 // CollectorPolicy methods.
  49 
  50 void CollectorPolicy::initialize_flags() {
  51   if (MetaspaceSize > MaxMetaspaceSize) {
  52     MaxMetaspaceSize = MetaspaceSize;
  53   }
  54   MetaspaceSize = MAX2(min_alignment(), align_size_down_(MetaspaceSize, min_alignment()));
  55   // Don't increase Metaspace size limit above specified.
  56   MaxMetaspaceSize = align_size_down(MaxMetaspaceSize, max_alignment());
  57   if (MetaspaceSize > MaxMetaspaceSize) {
  58     MetaspaceSize = MaxMetaspaceSize;
  59   }
  60 
  61   MinMetaspaceExpansion = MAX2(min_alignment(), align_size_down_(MinMetaspaceExpansion, min_alignment()));
  62   MaxMetaspaceExpansion = MAX2(min_alignment(), align_size_down_(MaxMetaspaceExpansion, min_alignment()));
  63 
  64   MinHeapDeltaBytes = align_size_up(MinHeapDeltaBytes, min_alignment());
  65 
  66   assert(MetaspaceSize    % min_alignment() == 0, "metapace alignment");
  67   assert(MaxMetaspaceSize % max_alignment() == 0, "maximum metaspace alignment");
  68   if (MetaspaceSize < 256*K) {
  69     vm_exit_during_initialization("Too small initial Metaspace size");
  70   }
  71 }
  72 
  73 void CollectorPolicy::initialize_size_info() {
  74   // User inputs from -mx and ms are aligned
  75   set_initial_heap_byte_size(InitialHeapSize);
  76   if (initial_heap_byte_size() == 0) {
  77     set_initial_heap_byte_size(NewSize + OldSize);
  78   }
  79   set_initial_heap_byte_size(align_size_up(_initial_heap_byte_size,
  80                                            min_alignment()));
  81 
  82   set_min_heap_byte_size(Arguments::min_heap_size());
  83   if (min_heap_byte_size() == 0) {
  84     set_min_heap_byte_size(NewSize + OldSize);
  85   }
  86   set_min_heap_byte_size(align_size_up(_min_heap_byte_size,
  87                                        min_alignment()));
  88 
  89   set_max_heap_byte_size(align_size_up(MaxHeapSize, max_alignment()));
  90 
  91   // Check heap parameter properties
  92   if (initial_heap_byte_size() < M) {
  93     vm_exit_during_initialization("Too small initial heap");
  94   }
  95   // Check heap parameter properties
  96   if (min_heap_byte_size() < M) {
  97     vm_exit_during_initialization("Too small minimum heap");
  98   }
  99   if (initial_heap_byte_size() <= NewSize) {
 100      // make sure there is at least some room in old space
 101     vm_exit_during_initialization("Too small initial heap for new size specified");
 102   }
 103   if (max_heap_byte_size() < min_heap_byte_size()) {
 104     vm_exit_during_initialization("Incompatible minimum and maximum heap sizes specified");
 105   }
 106   if (initial_heap_byte_size() < min_heap_byte_size()) {
 107     vm_exit_during_initialization("Incompatible minimum and initial heap sizes specified");
 108   }
 109   if (max_heap_byte_size() < initial_heap_byte_size()) {
 110     vm_exit_during_initialization("Incompatible initial and maximum heap sizes specified");
 111   }
 112 
 113   if (PrintGCDetails && Verbose) {
 114     gclog_or_tty->print_cr("Minimum heap " SIZE_FORMAT "  Initial heap "
 115       SIZE_FORMAT "  Maximum heap " SIZE_FORMAT,
 116       min_heap_byte_size(), initial_heap_byte_size(), max_heap_byte_size());
 117   }
 118 }
 119 
 120 bool CollectorPolicy::use_should_clear_all_soft_refs(bool v) {
 121   bool result = _should_clear_all_soft_refs;
 122   set_should_clear_all_soft_refs(false);
 123   return result;
 124 }
 125 
 126 GenRemSet* CollectorPolicy::create_rem_set(MemRegion whole_heap,
 127                                            int max_covered_regions) {
 128   switch (rem_set_name()) {
 129   case GenRemSet::CardTable: {
 130     CardTableRS* res = new CardTableRS(whole_heap, max_covered_regions);
 131     return res;
 132   }
 133   default:
 134     guarantee(false, "unrecognized GenRemSet::Name");
 135     return NULL;
 136   }
 137 }
 138 
 139 void CollectorPolicy::cleared_all_soft_refs() {
 140   // If near gc overhear limit, continue to clear SoftRefs.  SoftRefs may
 141   // have been cleared in the last collection but if the gc overhear
 142   // limit continues to be near, SoftRefs should still be cleared.
 143   if (size_policy() != NULL) {
 144     _should_clear_all_soft_refs = size_policy()->gc_overhead_limit_near();
 145   }
 146   _all_soft_refs_clear = true;
 147 }
 148 
 149 
 150 // GenCollectorPolicy methods.
 151 
 152 size_t GenCollectorPolicy::scale_by_NewRatio_aligned(size_t base_size) {
 153   size_t x = base_size / (NewRatio+1);
 154   size_t new_gen_size = x > min_alignment() ?
 155                      align_size_down(x, min_alignment()) :
 156                      min_alignment();
 157   return new_gen_size;
 158 }
 159 
 160 size_t GenCollectorPolicy::bound_minus_alignment(size_t desired_size,
 161                                                  size_t maximum_size) {
 162   size_t alignment = min_alignment();
 163   size_t max_minus = maximum_size - alignment;
 164   return desired_size < max_minus ? desired_size : max_minus;
 165 }
 166 
 167 
 168 void GenCollectorPolicy::initialize_size_policy(size_t init_eden_size,
 169                                                 size_t init_promo_size,
 170                                                 size_t init_survivor_size) {
 171   const double max_gc_pause_sec = ((double) MaxGCPauseMillis)/1000.0;
 172   _size_policy = new AdaptiveSizePolicy(init_eden_size,
 173                                         init_promo_size,
 174                                         init_survivor_size,
 175                                         max_gc_pause_sec,
 176                                         GCTimeRatio);
 177 }
 178 
 179 size_t GenCollectorPolicy::compute_max_alignment() {
 180   // The card marking array and the offset arrays for old generations are
 181   // committed in os pages as well. Make sure they are entirely full (to
 182   // avoid partial page problems), e.g. if 512 bytes heap corresponds to 1
 183   // byte entry and the os page size is 4096, the maximum heap size should
 184   // be 512*4096 = 2MB aligned.
 185   size_t alignment = GenRemSet::max_alignment_constraint(rem_set_name());
 186 
 187   // Parallel GC does its own alignment of the generations to avoid requiring a
 188   // large page (256M on some platforms) for the permanent generation.  The
 189   // other collectors should also be updated to do their own alignment and then
 190   // this use of lcm() should be removed.
 191   if (UseLargePages && !UseParallelGC) {
 192       // in presence of large pages we have to make sure that our
 193       // alignment is large page aware
 194       alignment = lcm(os::large_page_size(), alignment);
 195   }
 196 
 197   return alignment;
 198 }
 199 
 200 void GenCollectorPolicy::initialize_flags() {
 201   // All sizes must be multiples of the generation granularity.
 202   set_min_alignment((uintx) Generation::GenGrain);
 203   set_max_alignment(compute_max_alignment());
 204   assert(max_alignment() >= min_alignment() &&
 205          max_alignment() % min_alignment() == 0,
 206          "invalid alignment constraints");
 207 
 208   CollectorPolicy::initialize_flags();
 209 
 210   // All generational heaps have a youngest gen; handle those flags here.
 211 
 212   // Adjust max size parameters
 213   if (NewSize > MaxNewSize) {
 214     MaxNewSize = NewSize;
 215   }
 216   NewSize = align_size_down(NewSize, min_alignment());
 217   MaxNewSize = align_size_down(MaxNewSize, min_alignment());
 218 
 219   // Check validity of heap flags
 220   assert(NewSize     % min_alignment() == 0, "eden space alignment");
 221   assert(MaxNewSize  % min_alignment() == 0, "survivor space alignment");
 222 
 223   if (NewSize < 3*min_alignment()) {
 224      // make sure there room for eden and two survivor spaces
 225     vm_exit_during_initialization("Too small new size specified");
 226   }
 227   if (SurvivorRatio < 1 || NewRatio < 1) {
 228     vm_exit_during_initialization("Invalid heap ratio specified");
 229   }
 230 }
 231 
 232 void TwoGenerationCollectorPolicy::initialize_flags() {
 233   GenCollectorPolicy::initialize_flags();
 234 
 235   OldSize = align_size_down(OldSize, min_alignment());
 236   if (NewSize + OldSize > MaxHeapSize) {
 237     MaxHeapSize = NewSize + OldSize;
 238   }
 239 
 240   if (FLAG_IS_CMDLINE(OldSize) && FLAG_IS_DEFAULT(NewSize)) {
 241     // NewRatio will be used later to set the young generation size so we use
 242     // it to calculate how big the heap should be based on the requested OldSize
 243     // and NewRatio.
 244     assert(NewRatio > 0, "NewRatio should have been set up earlier");
 245     size_t calculated_heapsize = (OldSize / NewRatio) * (NewRatio + 1);
 246 
 247     calculated_heapsize = align_size_up(calculated_heapsize, max_alignment());
 248     MaxHeapSize = calculated_heapsize;
 249     InitialHeapSize = calculated_heapsize;
 250   }
 251   MaxHeapSize = align_size_up(MaxHeapSize, max_alignment());
 252 
 253   always_do_update_barrier = UseConcMarkSweepGC;
 254 
 255   // Check validity of heap flags
 256   assert(OldSize     % min_alignment() == 0, "old space alignment");
 257   assert(MaxHeapSize % max_alignment() == 0, "maximum heap alignment");
 258 }
 259 
 260 // Values set on the command line win over any ergonomically
 261 // set command line parameters.
 262 // Ergonomic choice of parameters are done before this
 263 // method is called.  Values for command line parameters such as NewSize
 264 // and MaxNewSize feed those ergonomic choices into this method.
 265 // This method makes the final generation sizings consistent with
 266 // themselves and with overall heap sizings.
 267 // In the absence of explicitly set command line flags, policies
 268 // such as the use of NewRatio are used to size the generation.
 269 void GenCollectorPolicy::initialize_size_info() {
 270   CollectorPolicy::initialize_size_info();
 271 
 272   // min_alignment() is used for alignment within a generation.
 273   // There is additional alignment done down stream for some
 274   // collectors that sometimes causes unwanted rounding up of
 275   // generations sizes.
 276 
 277   // Determine maximum size of gen0
 278 
 279   size_t max_new_size = 0;
 280   if (FLAG_IS_CMDLINE(MaxNewSize) || FLAG_IS_ERGO(MaxNewSize)) {
 281     if (MaxNewSize < min_alignment()) {
 282       max_new_size = min_alignment();
 283     }
 284     if (MaxNewSize >= max_heap_byte_size()) {
 285       max_new_size = align_size_down(max_heap_byte_size() - min_alignment(),
 286                                      min_alignment());
 287       warning("MaxNewSize (" SIZE_FORMAT "k) is equal to or "
 288         "greater than the entire heap (" SIZE_FORMAT "k).  A "
 289         "new generation size of " SIZE_FORMAT "k will be used.",
 290         MaxNewSize/K, max_heap_byte_size()/K, max_new_size/K);
 291     } else {
 292       max_new_size = align_size_down(MaxNewSize, min_alignment());
 293     }
 294 
 295   // The case for FLAG_IS_ERGO(MaxNewSize) could be treated
 296   // specially at this point to just use an ergonomically set
 297   // MaxNewSize to set max_new_size.  For cases with small
 298   // heaps such a policy often did not work because the MaxNewSize
 299   // was larger than the entire heap.  The interpretation given
 300   // to ergonomically set flags is that the flags are set
 301   // by different collectors for their own special needs but
 302   // are not allowed to badly shape the heap.  This allows the
 303   // different collectors to decide what's best for themselves
 304   // without having to factor in the overall heap shape.  It
 305   // can be the case in the future that the collectors would
 306   // only make "wise" ergonomics choices and this policy could
 307   // just accept those choices.  The choices currently made are
 308   // not always "wise".
 309   } else {
 310     max_new_size = scale_by_NewRatio_aligned(max_heap_byte_size());
 311     // Bound the maximum size by NewSize below (since it historically
 312     // would have been NewSize and because the NewRatio calculation could
 313     // yield a size that is too small) and bound it by MaxNewSize above.
 314     // Ergonomics plays here by previously calculating the desired
 315     // NewSize and MaxNewSize.
 316     max_new_size = MIN2(MAX2(max_new_size, NewSize), MaxNewSize);
 317   }
 318   assert(max_new_size > 0, "All paths should set max_new_size");
 319 
 320   // Given the maximum gen0 size, determine the initial and
 321   // minimum gen0 sizes.
 322 
 323   if (max_heap_byte_size() == min_heap_byte_size()) {
 324     // The maximum and minimum heap sizes are the same so
 325     // the generations minimum and initial must be the
 326     // same as its maximum.
 327     set_min_gen0_size(max_new_size);
 328     set_initial_gen0_size(max_new_size);
 329     set_max_gen0_size(max_new_size);
 330   } else {
 331     size_t desired_new_size = 0;
 332     if (!FLAG_IS_DEFAULT(NewSize)) {
 333       // If NewSize is set ergonomically (for example by cms), it
 334       // would make sense to use it.  If it is used, also use it
 335       // to set the initial size.  Although there is no reason
 336       // the minimum size and the initial size have to be the same,
 337       // the current implementation gets into trouble during the calculation
 338       // of the tenured generation sizes if they are different.
 339       // Note that this makes the initial size and the minimum size
 340       // generally small compared to the NewRatio calculation.
 341       _min_gen0_size = NewSize;
 342       desired_new_size = NewSize;
 343       max_new_size = MAX2(max_new_size, NewSize);
 344     } else {
 345       // For the case where NewSize is the default, use NewRatio
 346       // to size the minimum and initial generation sizes.
 347       // Use the default NewSize as the floor for these values.  If
 348       // NewRatio is overly large, the resulting sizes can be too
 349       // small.
 350       _min_gen0_size = MAX2(scale_by_NewRatio_aligned(min_heap_byte_size()),
 351                           NewSize);
 352       desired_new_size =
 353         MAX2(scale_by_NewRatio_aligned(initial_heap_byte_size()),
 354              NewSize);
 355     }
 356 
 357     assert(_min_gen0_size > 0, "Sanity check");
 358     set_initial_gen0_size(desired_new_size);
 359     set_max_gen0_size(max_new_size);
 360 
 361     // At this point the desirable initial and minimum sizes have been
 362     // determined without regard to the maximum sizes.
 363 
 364     // Bound the sizes by the corresponding overall heap sizes.
 365     set_min_gen0_size(
 366       bound_minus_alignment(_min_gen0_size, min_heap_byte_size()));
 367     set_initial_gen0_size(
 368       bound_minus_alignment(_initial_gen0_size, initial_heap_byte_size()));
 369     set_max_gen0_size(
 370       bound_minus_alignment(_max_gen0_size, max_heap_byte_size()));
 371 
 372     // At this point all three sizes have been checked against the
 373     // maximum sizes but have not been checked for consistency
 374     // among the three.
 375 
 376     // Final check min <= initial <= max
 377     set_min_gen0_size(MIN2(_min_gen0_size, _max_gen0_size));
 378     set_initial_gen0_size(
 379       MAX2(MIN2(_initial_gen0_size, _max_gen0_size), _min_gen0_size));
 380     set_min_gen0_size(MIN2(_min_gen0_size, _initial_gen0_size));
 381   }
 382 
 383   if (PrintGCDetails && Verbose) {
 384     gclog_or_tty->print_cr("1: Minimum gen0 " SIZE_FORMAT "  Initial gen0 "
 385       SIZE_FORMAT "  Maximum gen0 " SIZE_FORMAT,
 386       min_gen0_size(), initial_gen0_size(), max_gen0_size());
 387   }
 388 }
 389 
 390 // Call this method during the sizing of the gen1 to make
 391 // adjustments to gen0 because of gen1 sizing policy.  gen0 initially has
 392 // the most freedom in sizing because it is done before the
 393 // policy for gen1 is applied.  Once gen1 policies have been applied,
 394 // there may be conflicts in the shape of the heap and this method
 395 // is used to make the needed adjustments.  The application of the
 396 // policies could be more sophisticated (iterative for example) but
 397 // keeping it simple also seems a worthwhile goal.
 398 bool TwoGenerationCollectorPolicy::adjust_gen0_sizes(size_t* gen0_size_ptr,
 399                                                      size_t* gen1_size_ptr,
 400                                                      const size_t heap_size,
 401                                                      const size_t min_gen1_size) {
 402   bool result = false;
 403 
 404   if ((*gen1_size_ptr + *gen0_size_ptr) > heap_size) {
 405     if ((heap_size < (*gen0_size_ptr + min_gen1_size)) &&
 406         (heap_size >= min_gen1_size + min_alignment())) {
 407       // Adjust gen0 down to accommodate min_gen1_size
 408       *gen0_size_ptr = heap_size - min_gen1_size;
 409       *gen0_size_ptr =
 410         MAX2((uintx)align_size_down(*gen0_size_ptr, min_alignment()),
 411              min_alignment());
 412       assert(*gen0_size_ptr > 0, "Min gen0 is too large");
 413       result = true;
 414     } else {
 415       *gen1_size_ptr = heap_size - *gen0_size_ptr;
 416       *gen1_size_ptr =
 417         MAX2((uintx)align_size_down(*gen1_size_ptr, min_alignment()),
 418                        min_alignment());
 419     }
 420   }
 421   return result;
 422 }
 423 
 424 // Minimum sizes of the generations may be different than
 425 // the initial sizes.  An inconsistently is permitted here
 426 // in the total size that can be specified explicitly by
 427 // command line specification of OldSize and NewSize and
 428 // also a command line specification of -Xms.  Issue a warning
 429 // but allow the values to pass.
 430 
 431 void TwoGenerationCollectorPolicy::initialize_size_info() {
 432   GenCollectorPolicy::initialize_size_info();
 433 
 434   // At this point the minimum, initial and maximum sizes
 435   // of the overall heap and of gen0 have been determined.
 436   // The maximum gen1 size can be determined from the maximum gen0
 437   // and maximum heap size since no explicit flags exits
 438   // for setting the gen1 maximum.
 439   _max_gen1_size = max_heap_byte_size() - _max_gen0_size;
 440   _max_gen1_size =
 441     MAX2((uintx)align_size_down(_max_gen1_size, min_alignment()),
 442          min_alignment());
 443   // If no explicit command line flag has been set for the
 444   // gen1 size, use what is left for gen1.
 445   if (FLAG_IS_DEFAULT(OldSize) || FLAG_IS_ERGO(OldSize)) {
 446     // The user has not specified any value or ergonomics
 447     // has chosen a value (which may or may not be consistent
 448     // with the overall heap size).  In either case make
 449     // the minimum, maximum and initial sizes consistent
 450     // with the gen0 sizes and the overall heap sizes.
 451     assert(min_heap_byte_size() > _min_gen0_size,
 452       "gen0 has an unexpected minimum size");
 453     set_min_gen1_size(min_heap_byte_size() - min_gen0_size());
 454     set_min_gen1_size(
 455       MAX2((uintx)align_size_down(_min_gen1_size, min_alignment()),
 456            min_alignment()));
 457     set_initial_gen1_size(initial_heap_byte_size() - initial_gen0_size());
 458     set_initial_gen1_size(
 459       MAX2((uintx)align_size_down(_initial_gen1_size, min_alignment()),
 460            min_alignment()));
 461 
 462   } else {
 463     // It's been explicitly set on the command line.  Use the
 464     // OldSize and then determine the consequences.
 465     set_min_gen1_size(OldSize);
 466     set_initial_gen1_size(OldSize);
 467 
 468     // If the user has explicitly set an OldSize that is inconsistent
 469     // with other command line flags, issue a warning.
 470     // The generation minimums and the overall heap mimimum should
 471     // be within one heap alignment.
 472     if ((_min_gen1_size + _min_gen0_size + min_alignment()) <
 473            min_heap_byte_size()) {
 474       warning("Inconsistency between minimum heap size and minimum "
 475           "generation sizes: using minimum heap = " SIZE_FORMAT,
 476           min_heap_byte_size());
 477     }
 478     if ((OldSize > _max_gen1_size)) {
 479       warning("Inconsistency between maximum heap size and maximum "
 480           "generation sizes: using maximum heap = " SIZE_FORMAT
 481           " -XX:OldSize flag is being ignored",
 482           max_heap_byte_size());
 483     }
 484     // If there is an inconsistency between the OldSize and the minimum and/or
 485     // initial size of gen0, since OldSize was explicitly set, OldSize wins.
 486     if (adjust_gen0_sizes(&_min_gen0_size, &_min_gen1_size,
 487                           min_heap_byte_size(), OldSize)) {
 488       if (PrintGCDetails && Verbose) {
 489         gclog_or_tty->print_cr("2: Minimum gen0 " SIZE_FORMAT "  Initial gen0 "
 490               SIZE_FORMAT "  Maximum gen0 " SIZE_FORMAT,
 491               min_gen0_size(), initial_gen0_size(), max_gen0_size());
 492       }
 493     }
 494     // Initial size
 495     if (adjust_gen0_sizes(&_initial_gen0_size, &_initial_gen1_size,
 496                          initial_heap_byte_size(), OldSize)) {
 497       if (PrintGCDetails && Verbose) {
 498         gclog_or_tty->print_cr("3: Minimum gen0 " SIZE_FORMAT "  Initial gen0 "
 499           SIZE_FORMAT "  Maximum gen0 " SIZE_FORMAT,
 500           min_gen0_size(), initial_gen0_size(), max_gen0_size());
 501       }
 502     }
 503   }
 504   // Enforce the maximum gen1 size.
 505   set_min_gen1_size(MIN2(_min_gen1_size, _max_gen1_size));
 506 
 507   // Check that min gen1 <= initial gen1 <= max gen1
 508   set_initial_gen1_size(MAX2(_initial_gen1_size, _min_gen1_size));
 509   set_initial_gen1_size(MIN2(_initial_gen1_size, _max_gen1_size));
 510 
 511   if (PrintGCDetails && Verbose) {
 512     gclog_or_tty->print_cr("Minimum gen1 " SIZE_FORMAT "  Initial gen1 "
 513       SIZE_FORMAT "  Maximum gen1 " SIZE_FORMAT,
 514       min_gen1_size(), initial_gen1_size(), max_gen1_size());
 515   }
 516 }
 517 
 518 HeapWord* GenCollectorPolicy::mem_allocate_work(size_t size,
 519                                         bool is_tlab,
 520                                         bool* gc_overhead_limit_was_exceeded) {
 521   GenCollectedHeap *gch = GenCollectedHeap::heap();
 522 
 523   debug_only(gch->check_for_valid_allocation_state());
 524   assert(gch->no_gc_in_progress(), "Allocation during gc not allowed");
 525 
 526   // In general gc_overhead_limit_was_exceeded should be false so
 527   // set it so here and reset it to true only if the gc time
 528   // limit is being exceeded as checked below.
 529   *gc_overhead_limit_was_exceeded = false;
 530 
 531   HeapWord* result = NULL;
 532 
 533   // Loop until the allocation is satisified,
 534   // or unsatisfied after GC.
 535   for (int try_count = 1; /* return or throw */; try_count += 1) {
 536     HandleMark hm; // discard any handles allocated in each iteration
 537 
 538     // First allocation attempt is lock-free.
 539     Generation *gen0 = gch->get_gen(0);
 540     assert(gen0->supports_inline_contig_alloc(),
 541       "Otherwise, must do alloc within heap lock");
 542     if (gen0->should_allocate(size, is_tlab)) {
 543       result = gen0->par_allocate(size, is_tlab);
 544       if (result != NULL) {
 545         assert(gch->is_in_reserved(result), "result not in heap");
 546         return result;
 547       }
 548     }
 549     unsigned int gc_count_before;  // read inside the Heap_lock locked region
 550     {
 551       MutexLocker ml(Heap_lock);
 552       if (PrintGC && Verbose) {
 553         gclog_or_tty->print_cr("TwoGenerationCollectorPolicy::mem_allocate_work:"
 554                       " attempting locked slow path allocation");
 555       }
 556       // Note that only large objects get a shot at being
 557       // allocated in later generations.
 558       bool first_only = ! should_try_older_generation_allocation(size);
 559 
 560       result = gch->attempt_allocation(size, is_tlab, first_only);
 561       if (result != NULL) {
 562         assert(gch->is_in_reserved(result), "result not in heap");
 563         return result;
 564       }
 565 
 566       if (GC_locker::is_active_and_needs_gc()) {
 567         if (is_tlab) {
 568           return NULL;  // Caller will retry allocating individual object
 569         }
 570         if (!gch->is_maximal_no_gc()) {
 571           // Try and expand heap to satisfy request
 572           result = expand_heap_and_allocate(size, is_tlab);
 573           // result could be null if we are out of space
 574           if (result != NULL) {
 575             return result;
 576           }
 577         }
 578 
 579         // If this thread is not in a jni critical section, we stall
 580         // the requestor until the critical section has cleared and
 581         // GC allowed. When the critical section clears, a GC is
 582         // initiated by the last thread exiting the critical section; so
 583         // we retry the allocation sequence from the beginning of the loop,
 584         // rather than causing more, now probably unnecessary, GC attempts.
 585         JavaThread* jthr = JavaThread::current();
 586         if (!jthr->in_critical()) {
 587           MutexUnlocker mul(Heap_lock);
 588           // Wait for JNI critical section to be exited
 589           GC_locker::stall_until_clear();
 590           continue;
 591         } else {
 592           if (CheckJNICalls) {
 593             fatal("Possible deadlock due to allocating while"
 594                   " in jni critical section");
 595           }
 596           return NULL;
 597         }
 598       }
 599 
 600       // Read the gc count while the heap lock is held.
 601       gc_count_before = Universe::heap()->total_collections();
 602     }
 603 
 604     VM_GenCollectForAllocation op(size,
 605                                   is_tlab,
 606                                   gc_count_before);
 607     VMThread::execute(&op);
 608     if (op.prologue_succeeded()) {
 609       result = op.result();
 610       if (op.gc_locked()) {
 611          assert(result == NULL, "must be NULL if gc_locked() is true");
 612          continue;  // retry and/or stall as necessary
 613       }
 614 
 615       // Allocation has failed and a collection
 616       // has been done.  If the gc time limit was exceeded the
 617       // this time, return NULL so that an out-of-memory
 618       // will be thrown.  Clear gc_overhead_limit_exceeded
 619       // so that the overhead exceeded does not persist.
 620 
 621       const bool limit_exceeded = size_policy()->gc_overhead_limit_exceeded();
 622       const bool softrefs_clear = all_soft_refs_clear();
 623 
 624       if (limit_exceeded && softrefs_clear) {
 625         *gc_overhead_limit_was_exceeded = true;
 626         size_policy()->set_gc_overhead_limit_exceeded(false);
 627         if (op.result() != NULL) {
 628           CollectedHeap::fill_with_object(op.result(), size);
 629         }
 630         return NULL;
 631       }
 632       assert(result == NULL || gch->is_in_reserved(result),
 633              "result not in heap");
 634       return result;
 635     }
 636 
 637     // Give a warning if we seem to be looping forever.
 638     if ((QueuedAllocationWarningCount > 0) &&
 639         (try_count % QueuedAllocationWarningCount == 0)) {
 640           warning("TwoGenerationCollectorPolicy::mem_allocate_work retries %d times \n\t"
 641                   " size=%d %s", try_count, size, is_tlab ? "(TLAB)" : "");
 642     }
 643   }
 644 }
 645 
 646 HeapWord* GenCollectorPolicy::expand_heap_and_allocate(size_t size,
 647                                                        bool   is_tlab) {
 648   GenCollectedHeap *gch = GenCollectedHeap::heap();
 649   HeapWord* result = NULL;
 650   for (int i = number_of_generations() - 1; i >= 0 && result == NULL; i--) {
 651     Generation *gen = gch->get_gen(i);
 652     if (gen->should_allocate(size, is_tlab)) {
 653       result = gen->expand_and_allocate(size, is_tlab);
 654     }
 655   }
 656   assert(result == NULL || gch->is_in_reserved(result), "result not in heap");
 657   return result;
 658 }
 659 
 660 HeapWord* GenCollectorPolicy::satisfy_failed_allocation(size_t size,
 661                                                         bool   is_tlab) {
 662   GenCollectedHeap *gch = GenCollectedHeap::heap();
 663   GCCauseSetter x(gch, GCCause::_allocation_failure);
 664   HeapWord* result = NULL;
 665 
 666   assert(size != 0, "Precondition violated");
 667   if (GC_locker::is_active_and_needs_gc()) {
 668     // GC locker is active; instead of a collection we will attempt
 669     // to expand the heap, if there's room for expansion.
 670     if (!gch->is_maximal_no_gc()) {
 671       result = expand_heap_and_allocate(size, is_tlab);
 672     }
 673     return result;   // could be null if we are out of space
 674   } else if (!gch->incremental_collection_will_fail(false /* don't consult_young */)) {
 675     // Do an incremental collection.
 676     gch->do_collection(false            /* full */,
 677                        false            /* clear_all_soft_refs */,
 678                        size             /* size */,
 679                        is_tlab          /* is_tlab */,
 680                        number_of_generations() - 1 /* max_level */);
 681   } else {
 682     if (Verbose && PrintGCDetails) {
 683       gclog_or_tty->print(" :: Trying full because partial may fail :: ");
 684     }
 685     // Try a full collection; see delta for bug id 6266275
 686     // for the original code and why this has been simplified
 687     // with from-space allocation criteria modified and
 688     // such allocation moved out of the safepoint path.
 689     gch->do_collection(true             /* full */,
 690                        false            /* clear_all_soft_refs */,
 691                        size             /* size */,
 692                        is_tlab          /* is_tlab */,
 693                        number_of_generations() - 1 /* max_level */);
 694   }
 695 
 696   result = gch->attempt_allocation(size, is_tlab, false /*first_only*/);
 697 
 698   if (result != NULL) {
 699     assert(gch->is_in_reserved(result), "result not in heap");
 700     return result;
 701   }
 702 
 703   // OK, collection failed, try expansion.
 704   result = expand_heap_and_allocate(size, is_tlab);
 705   if (result != NULL) {
 706     return result;
 707   }
 708 
 709   // If we reach this point, we're really out of memory. Try every trick
 710   // we can to reclaim memory. Force collection of soft references. Force
 711   // a complete compaction of the heap. Any additional methods for finding
 712   // free memory should be here, especially if they are expensive. If this
 713   // attempt fails, an OOM exception will be thrown.
 714   {
 715     IntFlagSetting flag_change(MarkSweepAlwaysCompactCount, 1); // Make sure the heap is fully compacted
 716 
 717     gch->do_collection(true             /* full */,
 718                        true             /* clear_all_soft_refs */,
 719                        size             /* size */,
 720                        is_tlab          /* is_tlab */,
 721                        number_of_generations() - 1 /* max_level */);
 722   }
 723 
 724   result = gch->attempt_allocation(size, is_tlab, false /* first_only */);
 725   if (result != NULL) {
 726     assert(gch->is_in_reserved(result), "result not in heap");
 727     return result;
 728   }
 729 
 730   assert(!should_clear_all_soft_refs(),
 731     "Flag should have been handled and cleared prior to this point");
 732 
 733   // What else?  We might try synchronous finalization later.  If the total
 734   // space available is large enough for the allocation, then a more
 735   // complete compaction phase than we've tried so far might be
 736   // appropriate.
 737   return NULL;
 738 }
 739 
 740 MetaWord* CollectorPolicy::satisfy_failed_metadata_allocation(
 741                                                  ClassLoaderData* loader_data,
 742                                                  size_t word_size,
 743                                                  Metaspace::MetadataType mdtype) {
 744   uint loop_count = 0;
 745   uint gc_count = 0;
 746   uint full_gc_count = 0;
 747 
 748   assert(!Heap_lock->owned_by_self(), "Should not be holding the Heap_lock");
 749 
 750   do {
 751     MetaWord* result = NULL;
 752     if (GC_locker::is_active_and_needs_gc()) {
 753       // If the GC_locker is active, just expand and allocate.
 754       // If that does not succeed, wait if this thread is not
 755       // in a critical section itself.
 756       result =
 757         loader_data->metaspace_non_null()->expand_and_allocate(word_size,
 758                                                                mdtype);
 759       if (result != NULL) {
 760         return result;
 761       }
 762       JavaThread* jthr = JavaThread::current();
 763       if (!jthr->in_critical()) {
 764         // Wait for JNI critical section to be exited
 765         GC_locker::stall_until_clear();
 766         // The GC invoked by the last thread leaving the critical
 767         // section will be a young collection and a full collection
 768         // is (currently) needed for unloading classes so continue
 769         // to the next iteration to get a full GC.
 770         continue;
 771       } else {
 772         if (CheckJNICalls) {
 773           fatal("Possible deadlock due to allocating while"
 774                 " in jni critical section");
 775         }
 776         return NULL;
 777       }
 778     }
 779 
 780     {  // Need lock to get self consistent gc_count's
 781       MutexLocker ml(Heap_lock);
 782       gc_count      = Universe::heap()->total_collections();
 783       full_gc_count = Universe::heap()->total_full_collections();
 784     }
 785 
 786     // Generate a VM operation
 787     VM_CollectForMetadataAllocation op(loader_data,
 788                                        word_size,
 789                                        mdtype,
 790                                        gc_count,
 791                                        full_gc_count,
 792                                        GCCause::_metadata_GC_threshold);
 793     VMThread::execute(&op);
 794 
 795     // If GC was locked out, try again.  Check
 796     // before checking success because the prologue
 797     // could have succeeded and the GC still have
 798     // been locked out.
 799     if (op.gc_locked()) {
 800       continue;
 801     }
 802 
 803     if (op.prologue_succeeded()) {
 804       return op.result();
 805     }
 806     loop_count++;
 807     if ((QueuedAllocationWarningCount > 0) &&
 808         (loop_count % QueuedAllocationWarningCount == 0)) {
 809       warning("satisfy_failed_metadata_allocation() retries %d times \n\t"
 810               " size=%d", loop_count, word_size);
 811     }
 812   } while (true);  // Until a GC is done
 813 }
 814 
 815 // Return true if any of the following is true:
 816 // . the allocation won't fit into the current young gen heap
 817 // . gc locker is occupied (jni critical section)
 818 // . heap memory is tight -- the most recent previous collection
 819 //   was a full collection because a partial collection (would
 820 //   have) failed and is likely to fail again
 821 bool GenCollectorPolicy::should_try_older_generation_allocation(
 822         size_t word_size) const {
 823   GenCollectedHeap* gch = GenCollectedHeap::heap();
 824   size_t gen0_capacity = gch->get_gen(0)->capacity_before_gc();
 825   return    (word_size > heap_word_size(gen0_capacity))
 826          || GC_locker::is_active_and_needs_gc()
 827          || gch->incremental_collection_failed();
 828 }
 829 
 830 
 831 //
 832 // MarkSweepPolicy methods
 833 //
 834 
 835 MarkSweepPolicy::MarkSweepPolicy() {
 836   initialize_all();
 837 }
 838 
 839 void MarkSweepPolicy::initialize_generations() {
 840   _generations = new GenerationSpecPtr[number_of_generations()];
 841   if (_generations == NULL)
 842     vm_exit_during_initialization("Unable to allocate gen spec");
 843 
 844   if (UseParNewGC) {
 845     _generations[0] = new GenerationSpec(Generation::ParNew, _initial_gen0_size, _max_gen0_size);
 846   } else {
 847     _generations[0] = new GenerationSpec(Generation::DefNew, _initial_gen0_size, _max_gen0_size);
 848   }
 849   _generations[1] = new GenerationSpec(Generation::MarkSweepCompact, _initial_gen1_size, _max_gen1_size);
 850 
 851   if (_generations[0] == NULL || _generations[1] == NULL)
 852     vm_exit_during_initialization("Unable to allocate gen spec");
 853 }
 854 
 855 void MarkSweepPolicy::initialize_gc_policy_counters() {
 856   // initialize the policy counters - 2 collectors, 3 generations
 857   if (UseParNewGC) {
 858     _gc_policy_counters = new GCPolicyCounters("ParNew:MSC", 2, 3);
 859   } else {
 860     _gc_policy_counters = new GCPolicyCounters("Copy:MSC", 2, 3);
 861   }
 862 }