1 /*
   2  * Copyright (c) 1999, 2011, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/systemDictionary.hpp"
  27 #include "classfile/vmSymbols.hpp"
  28 #include "compiler/compileBroker.hpp"
  29 #include "compiler/compileLog.hpp"
  30 #include "oops/objArrayKlass.hpp"
  31 #include "opto/addnode.hpp"
  32 #include "opto/callGenerator.hpp"
  33 #include "opto/cfgnode.hpp"
  34 #include "opto/idealKit.hpp"
  35 #include "opto/mulnode.hpp"
  36 #include "opto/parse.hpp"
  37 #include "opto/runtime.hpp"
  38 #include "opto/subnode.hpp"
  39 #include "prims/nativeLookup.hpp"
  40 #include "runtime/sharedRuntime.hpp"
  41 
  42 class LibraryIntrinsic : public InlineCallGenerator {
  43   // Extend the set of intrinsics known to the runtime:
  44  public:
  45  private:
  46   bool             _is_virtual;
  47   vmIntrinsics::ID _intrinsic_id;
  48 
  49  public:
  50   LibraryIntrinsic(ciMethod* m, bool is_virtual, vmIntrinsics::ID id)
  51     : InlineCallGenerator(m),
  52       _is_virtual(is_virtual),
  53       _intrinsic_id(id)
  54   {
  55   }
  56   virtual bool is_intrinsic() const { return true; }
  57   virtual bool is_virtual()   const { return _is_virtual; }
  58   virtual JVMState* generate(JVMState* jvms);
  59   vmIntrinsics::ID intrinsic_id() const { return _intrinsic_id; }
  60 };
  61 
  62 
  63 // Local helper class for LibraryIntrinsic:
  64 class LibraryCallKit : public GraphKit {
  65  private:
  66   LibraryIntrinsic* _intrinsic;   // the library intrinsic being called
  67 
  68  public:
  69   LibraryCallKit(JVMState* caller, LibraryIntrinsic* intrinsic)
  70     : GraphKit(caller),
  71       _intrinsic(intrinsic)
  72   {
  73   }
  74 
  75   ciMethod*         caller()    const    { return jvms()->method(); }
  76   int               bci()       const    { return jvms()->bci(); }
  77   LibraryIntrinsic* intrinsic() const    { return _intrinsic; }
  78   vmIntrinsics::ID  intrinsic_id() const { return _intrinsic->intrinsic_id(); }
  79   ciMethod*         callee()    const    { return _intrinsic->method(); }
  80   ciSignature*      signature() const    { return callee()->signature(); }
  81   int               arg_size()  const    { return callee()->arg_size(); }
  82 
  83   bool try_to_inline();
  84 
  85   // Helper functions to inline natives
  86   void push_result(RegionNode* region, PhiNode* value);
  87   Node* generate_guard(Node* test, RegionNode* region, float true_prob);
  88   Node* generate_slow_guard(Node* test, RegionNode* region);
  89   Node* generate_fair_guard(Node* test, RegionNode* region);
  90   Node* generate_negative_guard(Node* index, RegionNode* region,
  91                                 // resulting CastII of index:
  92                                 Node* *pos_index = NULL);
  93   Node* generate_nonpositive_guard(Node* index, bool never_negative,
  94                                    // resulting CastII of index:
  95                                    Node* *pos_index = NULL);
  96   Node* generate_limit_guard(Node* offset, Node* subseq_length,
  97                              Node* array_length,
  98                              RegionNode* region);
  99   Node* generate_current_thread(Node* &tls_output);
 100   address basictype2arraycopy(BasicType t, Node *src_offset, Node *dest_offset,
 101                               bool disjoint_bases, const char* &name, bool dest_uninitialized);
 102   Node* load_mirror_from_klass(Node* klass);
 103   Node* load_klass_from_mirror_common(Node* mirror, bool never_see_null,
 104                                       int nargs,
 105                                       RegionNode* region, int null_path,
 106                                       int offset);
 107   Node* load_klass_from_mirror(Node* mirror, bool never_see_null, int nargs,
 108                                RegionNode* region, int null_path) {
 109     int offset = java_lang_Class::klass_offset_in_bytes();
 110     return load_klass_from_mirror_common(mirror, never_see_null, nargs,
 111                                          region, null_path,
 112                                          offset);
 113   }
 114   Node* load_array_klass_from_mirror(Node* mirror, bool never_see_null,
 115                                      int nargs,
 116                                      RegionNode* region, int null_path) {
 117     int offset = java_lang_Class::array_klass_offset_in_bytes();
 118     return load_klass_from_mirror_common(mirror, never_see_null, nargs,
 119                                          region, null_path,
 120                                          offset);
 121   }
 122   Node* generate_access_flags_guard(Node* kls,
 123                                     int modifier_mask, int modifier_bits,
 124                                     RegionNode* region);
 125   Node* generate_interface_guard(Node* kls, RegionNode* region);
 126   Node* generate_array_guard(Node* kls, RegionNode* region) {
 127     return generate_array_guard_common(kls, region, false, false);
 128   }
 129   Node* generate_non_array_guard(Node* kls, RegionNode* region) {
 130     return generate_array_guard_common(kls, region, false, true);
 131   }
 132   Node* generate_objArray_guard(Node* kls, RegionNode* region) {
 133     return generate_array_guard_common(kls, region, true, false);
 134   }
 135   Node* generate_non_objArray_guard(Node* kls, RegionNode* region) {
 136     return generate_array_guard_common(kls, region, true, true);
 137   }
 138   Node* generate_array_guard_common(Node* kls, RegionNode* region,
 139                                     bool obj_array, bool not_array);
 140   Node* generate_virtual_guard(Node* obj_klass, RegionNode* slow_region);
 141   CallJavaNode* generate_method_call(vmIntrinsics::ID method_id,
 142                                      bool is_virtual = false, bool is_static = false);
 143   CallJavaNode* generate_method_call_static(vmIntrinsics::ID method_id) {
 144     return generate_method_call(method_id, false, true);
 145   }
 146   CallJavaNode* generate_method_call_virtual(vmIntrinsics::ID method_id) {
 147     return generate_method_call(method_id, true, false);
 148   }
 149 
 150   Node* make_string_method_node(int opcode, Node* str1, Node* cnt1, Node* str2, Node* cnt2);
 151   bool inline_string_compareTo();
 152   bool inline_string_indexOf();
 153   Node* string_indexOf(Node* string_object, ciTypeArray* target_array, jint offset, jint cache_i, jint md2_i);
 154   bool inline_string_equals();
 155   Node* pop_math_arg();
 156   bool runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName);
 157   bool inline_math_native(vmIntrinsics::ID id);
 158   bool inline_trig(vmIntrinsics::ID id);
 159   bool inline_trans(vmIntrinsics::ID id);
 160   bool inline_abs(vmIntrinsics::ID id);
 161   bool inline_sqrt(vmIntrinsics::ID id);
 162   bool inline_pow(vmIntrinsics::ID id);
 163   bool inline_exp(vmIntrinsics::ID id);
 164   bool inline_min_max(vmIntrinsics::ID id);
 165   Node* generate_min_max(vmIntrinsics::ID id, Node* x, Node* y);
 166   // This returns Type::AnyPtr, RawPtr, or OopPtr.
 167   int classify_unsafe_addr(Node* &base, Node* &offset);
 168   Node* make_unsafe_address(Node* base, Node* offset);
 169   // Helper for inline_unsafe_access.
 170   // Generates the guards that check whether the result of
 171   // Unsafe.getObject should be recorded in an SATB log buffer.
 172   void insert_g1_pre_barrier(Node* base_oop, Node* offset, Node* pre_val);
 173   bool inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile);
 174   bool inline_unsafe_prefetch(bool is_native_ptr, bool is_store, bool is_static);
 175   bool inline_unsafe_allocate();
 176   bool inline_unsafe_copyMemory();
 177   bool inline_native_currentThread();
 178   bool inline_native_time_funcs(bool isNano);
 179   bool inline_native_isInterrupted();
 180   bool inline_native_Class_query(vmIntrinsics::ID id);
 181   bool inline_native_subtype_check();
 182 
 183   bool inline_native_newArray();
 184   bool inline_native_getLength();
 185   bool inline_array_copyOf(bool is_copyOfRange);
 186   bool inline_array_equals();
 187   void copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark);
 188   bool inline_native_clone(bool is_virtual);
 189   bool inline_native_Reflection_getCallerClass();
 190   bool inline_native_AtomicLong_get();
 191   bool inline_native_AtomicLong_attemptUpdate();
 192   bool is_method_invoke_or_aux_frame(JVMState* jvms);
 193   // Helper function for inlining native object hash method
 194   bool inline_native_hashcode(bool is_virtual, bool is_static);
 195   bool inline_native_getClass();
 196 
 197   // Helper functions for inlining arraycopy
 198   bool inline_arraycopy();
 199   void generate_arraycopy(const TypePtr* adr_type,
 200                           BasicType basic_elem_type,
 201                           Node* src,  Node* src_offset,
 202                           Node* dest, Node* dest_offset,
 203                           Node* copy_length,
 204                           bool disjoint_bases = false,
 205                           bool length_never_negative = false,
 206                           RegionNode* slow_region = NULL);
 207   AllocateArrayNode* tightly_coupled_allocation(Node* ptr,
 208                                                 RegionNode* slow_region);
 209   void generate_clear_array(const TypePtr* adr_type,
 210                             Node* dest,
 211                             BasicType basic_elem_type,
 212                             Node* slice_off,
 213                             Node* slice_len,
 214                             Node* slice_end);
 215   bool generate_block_arraycopy(const TypePtr* adr_type,
 216                                 BasicType basic_elem_type,
 217                                 AllocateNode* alloc,
 218                                 Node* src,  Node* src_offset,
 219                                 Node* dest, Node* dest_offset,
 220                                 Node* dest_size, bool dest_uninitialized);
 221   void generate_slow_arraycopy(const TypePtr* adr_type,
 222                                Node* src,  Node* src_offset,
 223                                Node* dest, Node* dest_offset,
 224                                Node* copy_length, bool dest_uninitialized);
 225   Node* generate_checkcast_arraycopy(const TypePtr* adr_type,
 226                                      Node* dest_elem_klass,
 227                                      Node* src,  Node* src_offset,
 228                                      Node* dest, Node* dest_offset,
 229                                      Node* copy_length, bool dest_uninitialized);
 230   Node* generate_generic_arraycopy(const TypePtr* adr_type,
 231                                    Node* src,  Node* src_offset,
 232                                    Node* dest, Node* dest_offset,
 233                                    Node* copy_length, bool dest_uninitialized);
 234   void generate_unchecked_arraycopy(const TypePtr* adr_type,
 235                                     BasicType basic_elem_type,
 236                                     bool disjoint_bases,
 237                                     Node* src,  Node* src_offset,
 238                                     Node* dest, Node* dest_offset,
 239                                     Node* copy_length, bool dest_uninitialized);
 240   bool inline_unsafe_CAS(BasicType type);
 241   bool inline_unsafe_ordered_store(BasicType type);
 242   bool inline_fp_conversions(vmIntrinsics::ID id);
 243   bool inline_numberOfLeadingZeros(vmIntrinsics::ID id);
 244   bool inline_numberOfTrailingZeros(vmIntrinsics::ID id);
 245   bool inline_bitCount(vmIntrinsics::ID id);
 246   bool inline_reverseBytes(vmIntrinsics::ID id);
 247 
 248   bool inline_reference_get();
 249 };
 250 
 251 
 252 //---------------------------make_vm_intrinsic----------------------------
 253 CallGenerator* Compile::make_vm_intrinsic(ciMethod* m, bool is_virtual) {
 254   vmIntrinsics::ID id = m->intrinsic_id();
 255   assert(id != vmIntrinsics::_none, "must be a VM intrinsic");
 256 
 257   if (DisableIntrinsic[0] != '\0'
 258       && strstr(DisableIntrinsic, vmIntrinsics::name_at(id)) != NULL) {
 259     // disabled by a user request on the command line:
 260     // example: -XX:DisableIntrinsic=_hashCode,_getClass
 261     return NULL;
 262   }
 263 
 264   if (!m->is_loaded()) {
 265     // do not attempt to inline unloaded methods
 266     return NULL;
 267   }
 268 
 269   // Only a few intrinsics implement a virtual dispatch.
 270   // They are expensive calls which are also frequently overridden.
 271   if (is_virtual) {
 272     switch (id) {
 273     case vmIntrinsics::_hashCode:
 274     case vmIntrinsics::_clone:
 275       // OK, Object.hashCode and Object.clone intrinsics come in both flavors
 276       break;
 277     default:
 278       return NULL;
 279     }
 280   }
 281 
 282   // -XX:-InlineNatives disables nearly all intrinsics:
 283   if (!InlineNatives) {
 284     switch (id) {
 285     case vmIntrinsics::_indexOf:
 286     case vmIntrinsics::_compareTo:
 287     case vmIntrinsics::_equals:
 288     case vmIntrinsics::_equalsC:
 289       break;  // InlineNatives does not control String.compareTo
 290     default:
 291       return NULL;
 292     }
 293   }
 294 
 295   switch (id) {
 296   case vmIntrinsics::_compareTo:
 297     if (!SpecialStringCompareTo)  return NULL;
 298     break;
 299   case vmIntrinsics::_indexOf:
 300     if (!SpecialStringIndexOf)  return NULL;
 301     break;
 302   case vmIntrinsics::_equals:
 303     if (!SpecialStringEquals)  return NULL;
 304     break;
 305   case vmIntrinsics::_equalsC:
 306     if (!SpecialArraysEquals)  return NULL;
 307     break;
 308   case vmIntrinsics::_arraycopy:
 309     if (!InlineArrayCopy)  return NULL;
 310     break;
 311   case vmIntrinsics::_copyMemory:
 312     if (StubRoutines::unsafe_arraycopy() == NULL)  return NULL;
 313     if (!InlineArrayCopy)  return NULL;
 314     break;
 315   case vmIntrinsics::_hashCode:
 316     if (!InlineObjectHash)  return NULL;
 317     break;
 318   case vmIntrinsics::_clone:
 319   case vmIntrinsics::_copyOf:
 320   case vmIntrinsics::_copyOfRange:
 321     if (!InlineObjectCopy)  return NULL;
 322     // These also use the arraycopy intrinsic mechanism:
 323     if (!InlineArrayCopy)  return NULL;
 324     break;
 325   case vmIntrinsics::_checkIndex:
 326     // We do not intrinsify this.  The optimizer does fine with it.
 327     return NULL;
 328 
 329   case vmIntrinsics::_get_AtomicLong:
 330   case vmIntrinsics::_attemptUpdate:
 331     if (!InlineAtomicLong)  return NULL;
 332     break;
 333 
 334   case vmIntrinsics::_getCallerClass:
 335     if (!UseNewReflection)  return NULL;
 336     if (!InlineReflectionGetCallerClass)  return NULL;
 337     if (!JDK_Version::is_gte_jdk14x_version())  return NULL;
 338     break;
 339 
 340   case vmIntrinsics::_bitCount_i:
 341     if (!Matcher::has_match_rule(Op_PopCountI)) return NULL;
 342     break;
 343 
 344   case vmIntrinsics::_bitCount_l:
 345     if (!Matcher::has_match_rule(Op_PopCountL)) return NULL;
 346     break;
 347 
 348   case vmIntrinsics::_numberOfLeadingZeros_i:
 349     if (!Matcher::match_rule_supported(Op_CountLeadingZerosI)) return NULL;
 350     break;
 351 
 352   case vmIntrinsics::_numberOfLeadingZeros_l:
 353     if (!Matcher::match_rule_supported(Op_CountLeadingZerosL)) return NULL;
 354     break;
 355 
 356   case vmIntrinsics::_numberOfTrailingZeros_i:
 357     if (!Matcher::match_rule_supported(Op_CountTrailingZerosI)) return NULL;
 358     break;
 359 
 360   case vmIntrinsics::_numberOfTrailingZeros_l:
 361     if (!Matcher::match_rule_supported(Op_CountTrailingZerosL)) return NULL;
 362     break;
 363 
 364   case vmIntrinsics::_Reference_get:
 365     // It is only when G1 is enabled that we absolutely
 366     // need to use the intrinsic version of Reference.get()
 367     // so that the value in the referent field, if necessary,
 368     // can be registered by the pre-barrier code.
 369     if (!UseG1GC) return NULL;
 370     break;
 371 
 372  default:
 373     assert(id <= vmIntrinsics::LAST_COMPILER_INLINE, "caller responsibility");
 374     assert(id != vmIntrinsics::_Object_init && id != vmIntrinsics::_invoke, "enum out of order?");
 375     break;
 376   }
 377 
 378   // -XX:-InlineClassNatives disables natives from the Class class.
 379   // The flag applies to all reflective calls, notably Array.newArray
 380   // (visible to Java programmers as Array.newInstance).
 381   if (m->holder()->name() == ciSymbol::java_lang_Class() ||
 382       m->holder()->name() == ciSymbol::java_lang_reflect_Array()) {
 383     if (!InlineClassNatives)  return NULL;
 384   }
 385 
 386   // -XX:-InlineThreadNatives disables natives from the Thread class.
 387   if (m->holder()->name() == ciSymbol::java_lang_Thread()) {
 388     if (!InlineThreadNatives)  return NULL;
 389   }
 390 
 391   // -XX:-InlineMathNatives disables natives from the Math,Float and Double classes.
 392   if (m->holder()->name() == ciSymbol::java_lang_Math() ||
 393       m->holder()->name() == ciSymbol::java_lang_Float() ||
 394       m->holder()->name() == ciSymbol::java_lang_Double()) {
 395     if (!InlineMathNatives)  return NULL;
 396   }
 397 
 398   // -XX:-InlineUnsafeOps disables natives from the Unsafe class.
 399   if (m->holder()->name() == ciSymbol::sun_misc_Unsafe()) {
 400     if (!InlineUnsafeOps)  return NULL;
 401   }
 402 
 403   return new LibraryIntrinsic(m, is_virtual, (vmIntrinsics::ID) id);
 404 }
 405 
 406 //----------------------register_library_intrinsics-----------------------
 407 // Initialize this file's data structures, for each Compile instance.
 408 void Compile::register_library_intrinsics() {
 409   // Nothing to do here.
 410 }
 411 
 412 JVMState* LibraryIntrinsic::generate(JVMState* jvms) {
 413   LibraryCallKit kit(jvms, this);
 414   Compile* C = kit.C;
 415   int nodes = C->unique();
 416 #ifndef PRODUCT
 417   if ((PrintIntrinsics || PrintInlining NOT_PRODUCT( || PrintOptoInlining) ) && Verbose) {
 418     char buf[1000];
 419     const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
 420     tty->print_cr("Intrinsic %s", str);
 421   }
 422 #endif
 423 
 424   if (kit.try_to_inline()) {
 425     if (PrintIntrinsics || PrintInlining NOT_PRODUCT( || PrintOptoInlining) ) {
 426       CompileTask::print_inlining(kit.callee(), jvms->depth() - 1, kit.bci(), is_virtual() ? "(intrinsic, virtual)" : "(intrinsic)");
 427     }
 428     C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
 429     if (C->log()) {
 430       C->log()->elem("intrinsic id='%s'%s nodes='%d'",
 431                      vmIntrinsics::name_at(intrinsic_id()),
 432                      (is_virtual() ? " virtual='1'" : ""),
 433                      C->unique() - nodes);
 434     }
 435     return kit.transfer_exceptions_into_jvms();
 436   }
 437 
 438   // The intrinsic bailed out
 439   if (PrintIntrinsics || PrintInlining NOT_PRODUCT( || PrintOptoInlining) ) {
 440     const char* msg = is_virtual() ? "failed to inline (intrinsic, virtual)" : "failed to inline (intrinsic)";
 441     if (jvms->has_method()) {
 442       // Not a root compile.
 443       CompileTask::print_inlining(kit.callee(), jvms->depth() - 1, kit.bci(), msg);
 444     } else {
 445       // Root compile
 446       tty->print("Did not generate intrinsic %s%s at bci:%d in",
 447                vmIntrinsics::name_at(intrinsic_id()),
 448                (is_virtual() ? " (virtual)" : ""), kit.bci());
 449     }
 450   }
 451   C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
 452   return NULL;
 453 }
 454 
 455 bool LibraryCallKit::try_to_inline() {
 456   // Handle symbolic names for otherwise undistinguished boolean switches:
 457   const bool is_store       = true;
 458   const bool is_native_ptr  = true;
 459   const bool is_static      = true;
 460 
 461   if (!jvms()->has_method()) {
 462     // Root JVMState has a null method.
 463     assert(map()->memory()->Opcode() == Op_Parm, "");
 464     // Insert the memory aliasing node
 465     set_all_memory(reset_memory());
 466   }
 467   assert(merged_memory(), "");
 468 
 469   switch (intrinsic_id()) {
 470   case vmIntrinsics::_hashCode:
 471     return inline_native_hashcode(intrinsic()->is_virtual(), !is_static);
 472   case vmIntrinsics::_identityHashCode:
 473     return inline_native_hashcode(/*!virtual*/ false, is_static);
 474   case vmIntrinsics::_getClass:
 475     return inline_native_getClass();
 476 
 477   case vmIntrinsics::_dsin:
 478   case vmIntrinsics::_dcos:
 479   case vmIntrinsics::_dtan:
 480   case vmIntrinsics::_dabs:
 481   case vmIntrinsics::_datan2:
 482   case vmIntrinsics::_dsqrt:
 483   case vmIntrinsics::_dexp:
 484   case vmIntrinsics::_dlog:
 485   case vmIntrinsics::_dlog10:
 486   case vmIntrinsics::_dpow:
 487     return inline_math_native(intrinsic_id());
 488 
 489   case vmIntrinsics::_min:
 490   case vmIntrinsics::_max:
 491     return inline_min_max(intrinsic_id());
 492 
 493   case vmIntrinsics::_arraycopy:
 494     return inline_arraycopy();
 495 
 496   case vmIntrinsics::_compareTo:
 497     return inline_string_compareTo();
 498   case vmIntrinsics::_indexOf:
 499     return inline_string_indexOf();
 500   case vmIntrinsics::_equals:
 501     return inline_string_equals();
 502 
 503   case vmIntrinsics::_getObject:
 504     return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT, false);
 505   case vmIntrinsics::_getBoolean:
 506     return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN, false);
 507   case vmIntrinsics::_getByte:
 508     return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE, false);
 509   case vmIntrinsics::_getShort:
 510     return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT, false);
 511   case vmIntrinsics::_getChar:
 512     return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR, false);
 513   case vmIntrinsics::_getInt:
 514     return inline_unsafe_access(!is_native_ptr, !is_store, T_INT, false);
 515   case vmIntrinsics::_getLong:
 516     return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG, false);
 517   case vmIntrinsics::_getFloat:
 518     return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT, false);
 519   case vmIntrinsics::_getDouble:
 520     return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE, false);
 521 
 522   case vmIntrinsics::_putObject:
 523     return inline_unsafe_access(!is_native_ptr, is_store, T_OBJECT, false);
 524   case vmIntrinsics::_putBoolean:
 525     return inline_unsafe_access(!is_native_ptr, is_store, T_BOOLEAN, false);
 526   case vmIntrinsics::_putByte:
 527     return inline_unsafe_access(!is_native_ptr, is_store, T_BYTE, false);
 528   case vmIntrinsics::_putShort:
 529     return inline_unsafe_access(!is_native_ptr, is_store, T_SHORT, false);
 530   case vmIntrinsics::_putChar:
 531     return inline_unsafe_access(!is_native_ptr, is_store, T_CHAR, false);
 532   case vmIntrinsics::_putInt:
 533     return inline_unsafe_access(!is_native_ptr, is_store, T_INT, false);
 534   case vmIntrinsics::_putLong:
 535     return inline_unsafe_access(!is_native_ptr, is_store, T_LONG, false);
 536   case vmIntrinsics::_putFloat:
 537     return inline_unsafe_access(!is_native_ptr, is_store, T_FLOAT, false);
 538   case vmIntrinsics::_putDouble:
 539     return inline_unsafe_access(!is_native_ptr, is_store, T_DOUBLE, false);
 540 
 541   case vmIntrinsics::_getByte_raw:
 542     return inline_unsafe_access(is_native_ptr, !is_store, T_BYTE, false);
 543   case vmIntrinsics::_getShort_raw:
 544     return inline_unsafe_access(is_native_ptr, !is_store, T_SHORT, false);
 545   case vmIntrinsics::_getChar_raw:
 546     return inline_unsafe_access(is_native_ptr, !is_store, T_CHAR, false);
 547   case vmIntrinsics::_getInt_raw:
 548     return inline_unsafe_access(is_native_ptr, !is_store, T_INT, false);
 549   case vmIntrinsics::_getLong_raw:
 550     return inline_unsafe_access(is_native_ptr, !is_store, T_LONG, false);
 551   case vmIntrinsics::_getFloat_raw:
 552     return inline_unsafe_access(is_native_ptr, !is_store, T_FLOAT, false);
 553   case vmIntrinsics::_getDouble_raw:
 554     return inline_unsafe_access(is_native_ptr, !is_store, T_DOUBLE, false);
 555   case vmIntrinsics::_getAddress_raw:
 556     return inline_unsafe_access(is_native_ptr, !is_store, T_ADDRESS, false);
 557 
 558   case vmIntrinsics::_putByte_raw:
 559     return inline_unsafe_access(is_native_ptr, is_store, T_BYTE, false);
 560   case vmIntrinsics::_putShort_raw:
 561     return inline_unsafe_access(is_native_ptr, is_store, T_SHORT, false);
 562   case vmIntrinsics::_putChar_raw:
 563     return inline_unsafe_access(is_native_ptr, is_store, T_CHAR, false);
 564   case vmIntrinsics::_putInt_raw:
 565     return inline_unsafe_access(is_native_ptr, is_store, T_INT, false);
 566   case vmIntrinsics::_putLong_raw:
 567     return inline_unsafe_access(is_native_ptr, is_store, T_LONG, false);
 568   case vmIntrinsics::_putFloat_raw:
 569     return inline_unsafe_access(is_native_ptr, is_store, T_FLOAT, false);
 570   case vmIntrinsics::_putDouble_raw:
 571     return inline_unsafe_access(is_native_ptr, is_store, T_DOUBLE, false);
 572   case vmIntrinsics::_putAddress_raw:
 573     return inline_unsafe_access(is_native_ptr, is_store, T_ADDRESS, false);
 574 
 575   case vmIntrinsics::_getObjectVolatile:
 576     return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT, true);
 577   case vmIntrinsics::_getBooleanVolatile:
 578     return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN, true);
 579   case vmIntrinsics::_getByteVolatile:
 580     return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE, true);
 581   case vmIntrinsics::_getShortVolatile:
 582     return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT, true);
 583   case vmIntrinsics::_getCharVolatile:
 584     return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR, true);
 585   case vmIntrinsics::_getIntVolatile:
 586     return inline_unsafe_access(!is_native_ptr, !is_store, T_INT, true);
 587   case vmIntrinsics::_getLongVolatile:
 588     return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG, true);
 589   case vmIntrinsics::_getFloatVolatile:
 590     return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT, true);
 591   case vmIntrinsics::_getDoubleVolatile:
 592     return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE, true);
 593 
 594   case vmIntrinsics::_putObjectVolatile:
 595     return inline_unsafe_access(!is_native_ptr, is_store, T_OBJECT, true);
 596   case vmIntrinsics::_putBooleanVolatile:
 597     return inline_unsafe_access(!is_native_ptr, is_store, T_BOOLEAN, true);
 598   case vmIntrinsics::_putByteVolatile:
 599     return inline_unsafe_access(!is_native_ptr, is_store, T_BYTE, true);
 600   case vmIntrinsics::_putShortVolatile:
 601     return inline_unsafe_access(!is_native_ptr, is_store, T_SHORT, true);
 602   case vmIntrinsics::_putCharVolatile:
 603     return inline_unsafe_access(!is_native_ptr, is_store, T_CHAR, true);
 604   case vmIntrinsics::_putIntVolatile:
 605     return inline_unsafe_access(!is_native_ptr, is_store, T_INT, true);
 606   case vmIntrinsics::_putLongVolatile:
 607     return inline_unsafe_access(!is_native_ptr, is_store, T_LONG, true);
 608   case vmIntrinsics::_putFloatVolatile:
 609     return inline_unsafe_access(!is_native_ptr, is_store, T_FLOAT, true);
 610   case vmIntrinsics::_putDoubleVolatile:
 611     return inline_unsafe_access(!is_native_ptr, is_store, T_DOUBLE, true);
 612 
 613   case vmIntrinsics::_prefetchRead:
 614     return inline_unsafe_prefetch(!is_native_ptr, !is_store, !is_static);
 615   case vmIntrinsics::_prefetchWrite:
 616     return inline_unsafe_prefetch(!is_native_ptr, is_store, !is_static);
 617   case vmIntrinsics::_prefetchReadStatic:
 618     return inline_unsafe_prefetch(!is_native_ptr, !is_store, is_static);
 619   case vmIntrinsics::_prefetchWriteStatic:
 620     return inline_unsafe_prefetch(!is_native_ptr, is_store, is_static);
 621 
 622   case vmIntrinsics::_compareAndSwapObject:
 623     return inline_unsafe_CAS(T_OBJECT);
 624   case vmIntrinsics::_compareAndSwapInt:
 625     return inline_unsafe_CAS(T_INT);
 626   case vmIntrinsics::_compareAndSwapLong:
 627     return inline_unsafe_CAS(T_LONG);
 628 
 629   case vmIntrinsics::_putOrderedObject:
 630     return inline_unsafe_ordered_store(T_OBJECT);
 631   case vmIntrinsics::_putOrderedInt:
 632     return inline_unsafe_ordered_store(T_INT);
 633   case vmIntrinsics::_putOrderedLong:
 634     return inline_unsafe_ordered_store(T_LONG);
 635 
 636   case vmIntrinsics::_currentThread:
 637     return inline_native_currentThread();
 638   case vmIntrinsics::_isInterrupted:
 639     return inline_native_isInterrupted();
 640 
 641   case vmIntrinsics::_currentTimeMillis:
 642     return inline_native_time_funcs(false);
 643   case vmIntrinsics::_nanoTime:
 644     return inline_native_time_funcs(true);
 645   case vmIntrinsics::_allocateInstance:
 646     return inline_unsafe_allocate();
 647   case vmIntrinsics::_copyMemory:
 648     return inline_unsafe_copyMemory();
 649   case vmIntrinsics::_newArray:
 650     return inline_native_newArray();
 651   case vmIntrinsics::_getLength:
 652     return inline_native_getLength();
 653   case vmIntrinsics::_copyOf:
 654     return inline_array_copyOf(false);
 655   case vmIntrinsics::_copyOfRange:
 656     return inline_array_copyOf(true);
 657   case vmIntrinsics::_equalsC:
 658     return inline_array_equals();
 659   case vmIntrinsics::_clone:
 660     return inline_native_clone(intrinsic()->is_virtual());
 661 
 662   case vmIntrinsics::_isAssignableFrom:
 663     return inline_native_subtype_check();
 664 
 665   case vmIntrinsics::_isInstance:
 666   case vmIntrinsics::_getModifiers:
 667   case vmIntrinsics::_isInterface:
 668   case vmIntrinsics::_isArray:
 669   case vmIntrinsics::_isPrimitive:
 670   case vmIntrinsics::_getSuperclass:
 671   case vmIntrinsics::_getComponentType:
 672   case vmIntrinsics::_getClassAccessFlags:
 673     return inline_native_Class_query(intrinsic_id());
 674 
 675   case vmIntrinsics::_floatToRawIntBits:
 676   case vmIntrinsics::_floatToIntBits:
 677   case vmIntrinsics::_intBitsToFloat:
 678   case vmIntrinsics::_doubleToRawLongBits:
 679   case vmIntrinsics::_doubleToLongBits:
 680   case vmIntrinsics::_longBitsToDouble:
 681     return inline_fp_conversions(intrinsic_id());
 682 
 683   case vmIntrinsics::_numberOfLeadingZeros_i:
 684   case vmIntrinsics::_numberOfLeadingZeros_l:
 685     return inline_numberOfLeadingZeros(intrinsic_id());
 686 
 687   case vmIntrinsics::_numberOfTrailingZeros_i:
 688   case vmIntrinsics::_numberOfTrailingZeros_l:
 689     return inline_numberOfTrailingZeros(intrinsic_id());
 690 
 691   case vmIntrinsics::_bitCount_i:
 692   case vmIntrinsics::_bitCount_l:
 693     return inline_bitCount(intrinsic_id());
 694 
 695   case vmIntrinsics::_reverseBytes_i:
 696   case vmIntrinsics::_reverseBytes_l:
 697   case vmIntrinsics::_reverseBytes_s:
 698   case vmIntrinsics::_reverseBytes_c:
 699     return inline_reverseBytes((vmIntrinsics::ID) intrinsic_id());
 700 
 701   case vmIntrinsics::_get_AtomicLong:
 702     return inline_native_AtomicLong_get();
 703   case vmIntrinsics::_attemptUpdate:
 704     return inline_native_AtomicLong_attemptUpdate();
 705 
 706   case vmIntrinsics::_getCallerClass:
 707     return inline_native_Reflection_getCallerClass();
 708 
 709   case vmIntrinsics::_Reference_get:
 710     return inline_reference_get();
 711 
 712   default:
 713     // If you get here, it may be that someone has added a new intrinsic
 714     // to the list in vmSymbols.hpp without implementing it here.
 715 #ifndef PRODUCT
 716     if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
 717       tty->print_cr("*** Warning: Unimplemented intrinsic %s(%d)",
 718                     vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
 719     }
 720 #endif
 721     return false;
 722   }
 723 }
 724 
 725 //------------------------------push_result------------------------------
 726 // Helper function for finishing intrinsics.
 727 void LibraryCallKit::push_result(RegionNode* region, PhiNode* value) {
 728   record_for_igvn(region);
 729   set_control(_gvn.transform(region));
 730   BasicType value_type = value->type()->basic_type();
 731   push_node(value_type, _gvn.transform(value));
 732 }
 733 
 734 //------------------------------generate_guard---------------------------
 735 // Helper function for generating guarded fast-slow graph structures.
 736 // The given 'test', if true, guards a slow path.  If the test fails
 737 // then a fast path can be taken.  (We generally hope it fails.)
 738 // In all cases, GraphKit::control() is updated to the fast path.
 739 // The returned value represents the control for the slow path.
 740 // The return value is never 'top'; it is either a valid control
 741 // or NULL if it is obvious that the slow path can never be taken.
 742 // Also, if region and the slow control are not NULL, the slow edge
 743 // is appended to the region.
 744 Node* LibraryCallKit::generate_guard(Node* test, RegionNode* region, float true_prob) {
 745   if (stopped()) {
 746     // Already short circuited.
 747     return NULL;
 748   }
 749 
 750   // Build an if node and its projections.
 751   // If test is true we take the slow path, which we assume is uncommon.
 752   if (_gvn.type(test) == TypeInt::ZERO) {
 753     // The slow branch is never taken.  No need to build this guard.
 754     return NULL;
 755   }
 756 
 757   IfNode* iff = create_and_map_if(control(), test, true_prob, COUNT_UNKNOWN);
 758 
 759   Node* if_slow = _gvn.transform( new (C, 1) IfTrueNode(iff) );
 760   if (if_slow == top()) {
 761     // The slow branch is never taken.  No need to build this guard.
 762     return NULL;
 763   }
 764 
 765   if (region != NULL)
 766     region->add_req(if_slow);
 767 
 768   Node* if_fast = _gvn.transform( new (C, 1) IfFalseNode(iff) );
 769   set_control(if_fast);
 770 
 771   return if_slow;
 772 }
 773 
 774 inline Node* LibraryCallKit::generate_slow_guard(Node* test, RegionNode* region) {
 775   return generate_guard(test, region, PROB_UNLIKELY_MAG(3));
 776 }
 777 inline Node* LibraryCallKit::generate_fair_guard(Node* test, RegionNode* region) {
 778   return generate_guard(test, region, PROB_FAIR);
 779 }
 780 
 781 inline Node* LibraryCallKit::generate_negative_guard(Node* index, RegionNode* region,
 782                                                      Node* *pos_index) {
 783   if (stopped())
 784     return NULL;                // already stopped
 785   if (_gvn.type(index)->higher_equal(TypeInt::POS)) // [0,maxint]
 786     return NULL;                // index is already adequately typed
 787   Node* cmp_lt = _gvn.transform( new (C, 3) CmpINode(index, intcon(0)) );
 788   Node* bol_lt = _gvn.transform( new (C, 2) BoolNode(cmp_lt, BoolTest::lt) );
 789   Node* is_neg = generate_guard(bol_lt, region, PROB_MIN);
 790   if (is_neg != NULL && pos_index != NULL) {
 791     // Emulate effect of Parse::adjust_map_after_if.
 792     Node* ccast = new (C, 2) CastIINode(index, TypeInt::POS);
 793     ccast->set_req(0, control());
 794     (*pos_index) = _gvn.transform(ccast);
 795   }
 796   return is_neg;
 797 }
 798 
 799 inline Node* LibraryCallKit::generate_nonpositive_guard(Node* index, bool never_negative,
 800                                                         Node* *pos_index) {
 801   if (stopped())
 802     return NULL;                // already stopped
 803   if (_gvn.type(index)->higher_equal(TypeInt::POS1)) // [1,maxint]
 804     return NULL;                // index is already adequately typed
 805   Node* cmp_le = _gvn.transform( new (C, 3) CmpINode(index, intcon(0)) );
 806   BoolTest::mask le_or_eq = (never_negative ? BoolTest::eq : BoolTest::le);
 807   Node* bol_le = _gvn.transform( new (C, 2) BoolNode(cmp_le, le_or_eq) );
 808   Node* is_notp = generate_guard(bol_le, NULL, PROB_MIN);
 809   if (is_notp != NULL && pos_index != NULL) {
 810     // Emulate effect of Parse::adjust_map_after_if.
 811     Node* ccast = new (C, 2) CastIINode(index, TypeInt::POS1);
 812     ccast->set_req(0, control());
 813     (*pos_index) = _gvn.transform(ccast);
 814   }
 815   return is_notp;
 816 }
 817 
 818 // Make sure that 'position' is a valid limit index, in [0..length].
 819 // There are two equivalent plans for checking this:
 820 //   A. (offset + copyLength)  unsigned<=  arrayLength
 821 //   B. offset  <=  (arrayLength - copyLength)
 822 // We require that all of the values above, except for the sum and
 823 // difference, are already known to be non-negative.
 824 // Plan A is robust in the face of overflow, if offset and copyLength
 825 // are both hugely positive.
 826 //
 827 // Plan B is less direct and intuitive, but it does not overflow at
 828 // all, since the difference of two non-negatives is always
 829 // representable.  Whenever Java methods must perform the equivalent
 830 // check they generally use Plan B instead of Plan A.
 831 // For the moment we use Plan A.
 832 inline Node* LibraryCallKit::generate_limit_guard(Node* offset,
 833                                                   Node* subseq_length,
 834                                                   Node* array_length,
 835                                                   RegionNode* region) {
 836   if (stopped())
 837     return NULL;                // already stopped
 838   bool zero_offset = _gvn.type(offset) == TypeInt::ZERO;
 839   if (zero_offset && subseq_length->eqv_uncast(array_length))
 840     return NULL;                // common case of whole-array copy
 841   Node* last = subseq_length;
 842   if (!zero_offset)             // last += offset
 843     last = _gvn.transform( new (C, 3) AddINode(last, offset));
 844   Node* cmp_lt = _gvn.transform( new (C, 3) CmpUNode(array_length, last) );
 845   Node* bol_lt = _gvn.transform( new (C, 2) BoolNode(cmp_lt, BoolTest::lt) );
 846   Node* is_over = generate_guard(bol_lt, region, PROB_MIN);
 847   return is_over;
 848 }
 849 
 850 
 851 //--------------------------generate_current_thread--------------------
 852 Node* LibraryCallKit::generate_current_thread(Node* &tls_output) {
 853   ciKlass*    thread_klass = env()->Thread_klass();
 854   const Type* thread_type  = TypeOopPtr::make_from_klass(thread_klass)->cast_to_ptr_type(TypePtr::NotNull);
 855   Node* thread = _gvn.transform(new (C, 1) ThreadLocalNode());
 856   Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::threadObj_offset()));
 857   Node* threadObj = make_load(NULL, p, thread_type, T_OBJECT);
 858   tls_output = thread;
 859   return threadObj;
 860 }
 861 
 862 
 863 //------------------------------make_string_method_node------------------------
 864 // Helper method for String intrinsic finctions.
 865 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1, Node* cnt1, Node* str2, Node* cnt2) {
 866   const int value_offset  = java_lang_String::value_offset_in_bytes();
 867   const int count_offset  = java_lang_String::count_offset_in_bytes();
 868   const int offset_offset = java_lang_String::offset_offset_in_bytes();
 869 
 870   Node* no_ctrl = NULL;
 871 
 872   ciInstanceKlass* klass = env()->String_klass();
 873   const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(klass);
 874 
 875   const TypeAryPtr* value_type =
 876         TypeAryPtr::make(TypePtr::NotNull,
 877                          TypeAry::make(TypeInt::CHAR,TypeInt::POS),
 878                          ciTypeArrayKlass::make(T_CHAR), true, 0);
 879 
 880   // Get start addr of string and substring
 881   Node* str1_valuea  = basic_plus_adr(str1, str1, value_offset);
 882   Node* str1_value   = make_load(no_ctrl, str1_valuea, value_type, T_OBJECT, string_type->add_offset(value_offset));
 883   Node* str1_offseta = basic_plus_adr(str1, str1, offset_offset);
 884   Node* str1_offset  = make_load(no_ctrl, str1_offseta, TypeInt::INT, T_INT, string_type->add_offset(offset_offset));
 885   Node* str1_start   = array_element_address(str1_value, str1_offset, T_CHAR);
 886 
 887   Node* str2_valuea  = basic_plus_adr(str2, str2, value_offset);
 888   Node* str2_value   = make_load(no_ctrl, str2_valuea, value_type, T_OBJECT, string_type->add_offset(value_offset));
 889   Node* str2_offseta = basic_plus_adr(str2, str2, offset_offset);
 890   Node* str2_offset  = make_load(no_ctrl, str2_offseta, TypeInt::INT, T_INT, string_type->add_offset(offset_offset));
 891   Node* str2_start   = array_element_address(str2_value, str2_offset, T_CHAR);
 892 
 893   Node* result = NULL;
 894   switch (opcode) {
 895   case Op_StrIndexOf:
 896     result = new (C, 6) StrIndexOfNode(control(), memory(TypeAryPtr::CHARS),
 897                                        str1_start, cnt1, str2_start, cnt2);
 898     break;
 899   case Op_StrComp:
 900     result = new (C, 6) StrCompNode(control(), memory(TypeAryPtr::CHARS),
 901                                     str1_start, cnt1, str2_start, cnt2);
 902     break;
 903   case Op_StrEquals:
 904     result = new (C, 5) StrEqualsNode(control(), memory(TypeAryPtr::CHARS),
 905                                       str1_start, str2_start, cnt1);
 906     break;
 907   default:
 908     ShouldNotReachHere();
 909     return NULL;
 910   }
 911 
 912   // All these intrinsics have checks.
 913   C->set_has_split_ifs(true); // Has chance for split-if optimization
 914 
 915   return _gvn.transform(result);
 916 }
 917 
 918 //------------------------------inline_string_compareTo------------------------
 919 bool LibraryCallKit::inline_string_compareTo() {
 920 
 921   if (!Matcher::has_match_rule(Op_StrComp)) return false;
 922 
 923   const int value_offset = java_lang_String::value_offset_in_bytes();
 924   const int count_offset = java_lang_String::count_offset_in_bytes();
 925   const int offset_offset = java_lang_String::offset_offset_in_bytes();
 926 
 927   _sp += 2;
 928   Node *argument = pop();  // pop non-receiver first:  it was pushed second
 929   Node *receiver = pop();
 930 
 931   // Null check on self without removing any arguments.  The argument
 932   // null check technically happens in the wrong place, which can lead to
 933   // invalid stack traces when string compare is inlined into a method
 934   // which handles NullPointerExceptions.
 935   _sp += 2;
 936   receiver = do_null_check(receiver, T_OBJECT);
 937   argument = do_null_check(argument, T_OBJECT);
 938   _sp -= 2;
 939   if (stopped()) {
 940     return true;
 941   }
 942 
 943   ciInstanceKlass* klass = env()->String_klass();
 944   const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(klass);
 945   Node* no_ctrl = NULL;
 946 
 947   // Get counts for string and argument
 948   Node* receiver_cnta = basic_plus_adr(receiver, receiver, count_offset);
 949   Node* receiver_cnt  = make_load(no_ctrl, receiver_cnta, TypeInt::INT, T_INT, string_type->add_offset(count_offset));
 950 
 951   Node* argument_cnta = basic_plus_adr(argument, argument, count_offset);
 952   Node* argument_cnt  = make_load(no_ctrl, argument_cnta, TypeInt::INT, T_INT, string_type->add_offset(count_offset));
 953 
 954   Node* compare = make_string_method_node(Op_StrComp, receiver, receiver_cnt, argument, argument_cnt);
 955   push(compare);
 956   return true;
 957 }
 958 
 959 //------------------------------inline_string_equals------------------------
 960 bool LibraryCallKit::inline_string_equals() {
 961 
 962   if (!Matcher::has_match_rule(Op_StrEquals)) return false;
 963 
 964   const int value_offset = java_lang_String::value_offset_in_bytes();
 965   const int count_offset = java_lang_String::count_offset_in_bytes();
 966   const int offset_offset = java_lang_String::offset_offset_in_bytes();
 967 
 968   int nargs = 2;
 969   _sp += nargs;
 970   Node* argument = pop();  // pop non-receiver first:  it was pushed second
 971   Node* receiver = pop();
 972 
 973   // Null check on self without removing any arguments.  The argument
 974   // null check technically happens in the wrong place, which can lead to
 975   // invalid stack traces when string compare is inlined into a method
 976   // which handles NullPointerExceptions.
 977   _sp += nargs;
 978   receiver = do_null_check(receiver, T_OBJECT);
 979   //should not do null check for argument for String.equals(), because spec
 980   //allows to specify NULL as argument.
 981   _sp -= nargs;
 982 
 983   if (stopped()) {
 984     return true;
 985   }
 986 
 987   // paths (plus control) merge
 988   RegionNode* region = new (C, 5) RegionNode(5);
 989   Node* phi = new (C, 5) PhiNode(region, TypeInt::BOOL);
 990 
 991   // does source == target string?
 992   Node* cmp = _gvn.transform(new (C, 3) CmpPNode(receiver, argument));
 993   Node* bol = _gvn.transform(new (C, 2) BoolNode(cmp, BoolTest::eq));
 994 
 995   Node* if_eq = generate_slow_guard(bol, NULL);
 996   if (if_eq != NULL) {
 997     // receiver == argument
 998     phi->init_req(2, intcon(1));
 999     region->init_req(2, if_eq);
1000   }
1001 
1002   // get String klass for instanceOf
1003   ciInstanceKlass* klass = env()->String_klass();
1004 
1005   if (!stopped()) {
1006     _sp += nargs;          // gen_instanceof might do an uncommon trap
1007     Node* inst = gen_instanceof(argument, makecon(TypeKlassPtr::make(klass)));
1008     _sp -= nargs;
1009     Node* cmp  = _gvn.transform(new (C, 3) CmpINode(inst, intcon(1)));
1010     Node* bol  = _gvn.transform(new (C, 2) BoolNode(cmp, BoolTest::ne));
1011 
1012     Node* inst_false = generate_guard(bol, NULL, PROB_MIN);
1013     //instanceOf == true, fallthrough
1014 
1015     if (inst_false != NULL) {
1016       phi->init_req(3, intcon(0));
1017       region->init_req(3, inst_false);
1018     }
1019   }
1020 
1021   const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(klass);
1022 
1023   Node* no_ctrl = NULL;
1024   Node* receiver_cnt;
1025   Node* argument_cnt;
1026 
1027   if (!stopped()) {
1028     // Properly cast the argument to String
1029     argument = _gvn.transform(new (C, 2) CheckCastPPNode(control(), argument, string_type));
1030     // This path is taken only when argument's type is String:NotNull.
1031     argument = cast_not_null(argument, false);
1032 
1033     // Get counts for string and argument
1034     Node* receiver_cnta = basic_plus_adr(receiver, receiver, count_offset);
1035     receiver_cnt  = make_load(no_ctrl, receiver_cnta, TypeInt::INT, T_INT, string_type->add_offset(count_offset));
1036 
1037     Node* argument_cnta = basic_plus_adr(argument, argument, count_offset);
1038     argument_cnt  = make_load(no_ctrl, argument_cnta, TypeInt::INT, T_INT, string_type->add_offset(count_offset));
1039 
1040     // Check for receiver count != argument count
1041     Node* cmp = _gvn.transform( new(C, 3) CmpINode(receiver_cnt, argument_cnt) );
1042     Node* bol = _gvn.transform( new(C, 2) BoolNode(cmp, BoolTest::ne) );
1043     Node* if_ne = generate_slow_guard(bol, NULL);
1044     if (if_ne != NULL) {
1045       phi->init_req(4, intcon(0));
1046       region->init_req(4, if_ne);
1047     }
1048   }
1049 
1050   // Check for count == 0 is done by mach node StrEquals.
1051 
1052   if (!stopped()) {
1053     Node* equals = make_string_method_node(Op_StrEquals, receiver, receiver_cnt, argument, argument_cnt);
1054     phi->init_req(1, equals);
1055     region->init_req(1, control());
1056   }
1057 
1058   // post merge
1059   set_control(_gvn.transform(region));
1060   record_for_igvn(region);
1061 
1062   push(_gvn.transform(phi));
1063 
1064   return true;
1065 }
1066 
1067 //------------------------------inline_array_equals----------------------------
1068 bool LibraryCallKit::inline_array_equals() {
1069 
1070   if (!Matcher::has_match_rule(Op_AryEq)) return false;
1071 
1072   _sp += 2;
1073   Node *argument2 = pop();
1074   Node *argument1 = pop();
1075 
1076   Node* equals =
1077     _gvn.transform(new (C, 4) AryEqNode(control(), memory(TypeAryPtr::CHARS),
1078                                         argument1, argument2) );
1079   push(equals);
1080   return true;
1081 }
1082 
1083 // Java version of String.indexOf(constant string)
1084 // class StringDecl {
1085 //   StringDecl(char[] ca) {
1086 //     offset = 0;
1087 //     count = ca.length;
1088 //     value = ca;
1089 //   }
1090 //   int offset;
1091 //   int count;
1092 //   char[] value;
1093 // }
1094 //
1095 // static int string_indexOf_J(StringDecl string_object, char[] target_object,
1096 //                             int targetOffset, int cache_i, int md2) {
1097 //   int cache = cache_i;
1098 //   int sourceOffset = string_object.offset;
1099 //   int sourceCount = string_object.count;
1100 //   int targetCount = target_object.length;
1101 //
1102 //   int targetCountLess1 = targetCount - 1;
1103 //   int sourceEnd = sourceOffset + sourceCount - targetCountLess1;
1104 //
1105 //   char[] source = string_object.value;
1106 //   char[] target = target_object;
1107 //   int lastChar = target[targetCountLess1];
1108 //
1109 //  outer_loop:
1110 //   for (int i = sourceOffset; i < sourceEnd; ) {
1111 //     int src = source[i + targetCountLess1];
1112 //     if (src == lastChar) {
1113 //       // With random strings and a 4-character alphabet,
1114 //       // reverse matching at this point sets up 0.8% fewer
1115 //       // frames, but (paradoxically) makes 0.3% more probes.
1116 //       // Since those probes are nearer the lastChar probe,
1117 //       // there is may be a net D$ win with reverse matching.
1118 //       // But, reversing loop inhibits unroll of inner loop
1119 //       // for unknown reason.  So, does running outer loop from
1120 //       // (sourceOffset - targetCountLess1) to (sourceOffset + sourceCount)
1121 //       for (int j = 0; j < targetCountLess1; j++) {
1122 //         if (target[targetOffset + j] != source[i+j]) {
1123 //           if ((cache & (1 << source[i+j])) == 0) {
1124 //             if (md2 < j+1) {
1125 //               i += j+1;
1126 //               continue outer_loop;
1127 //             }
1128 //           }
1129 //           i += md2;
1130 //           continue outer_loop;
1131 //         }
1132 //       }
1133 //       return i - sourceOffset;
1134 //     }
1135 //     if ((cache & (1 << src)) == 0) {
1136 //       i += targetCountLess1;
1137 //     } // using "i += targetCount;" and an "else i++;" causes a jump to jump.
1138 //     i++;
1139 //   }
1140 //   return -1;
1141 // }
1142 
1143 //------------------------------string_indexOf------------------------
1144 Node* LibraryCallKit::string_indexOf(Node* string_object, ciTypeArray* target_array, jint targetOffset_i,
1145                                      jint cache_i, jint md2_i) {
1146 
1147   Node* no_ctrl  = NULL;
1148   float likely   = PROB_LIKELY(0.9);
1149   float unlikely = PROB_UNLIKELY(0.9);
1150 
1151   const int nargs = 2; // number of arguments to push back for uncommon trap in predicate
1152 
1153   const int value_offset  = java_lang_String::value_offset_in_bytes();
1154   const int count_offset  = java_lang_String::count_offset_in_bytes();
1155   const int offset_offset = java_lang_String::offset_offset_in_bytes();
1156 
1157   ciInstanceKlass* klass = env()->String_klass();
1158   const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(klass);
1159   const TypeAryPtr*  source_type = TypeAryPtr::make(TypePtr::NotNull, TypeAry::make(TypeInt::CHAR,TypeInt::POS), ciTypeArrayKlass::make(T_CHAR), true, 0);
1160 
1161   Node* sourceOffseta = basic_plus_adr(string_object, string_object, offset_offset);
1162   Node* sourceOffset  = make_load(no_ctrl, sourceOffseta, TypeInt::INT, T_INT, string_type->add_offset(offset_offset));
1163   Node* sourceCounta  = basic_plus_adr(string_object, string_object, count_offset);
1164   Node* sourceCount   = make_load(no_ctrl, sourceCounta, TypeInt::INT, T_INT, string_type->add_offset(count_offset));
1165   Node* sourcea       = basic_plus_adr(string_object, string_object, value_offset);
1166   Node* source        = make_load(no_ctrl, sourcea, source_type, T_OBJECT, string_type->add_offset(value_offset));
1167 
1168   Node* target = _gvn.transform( makecon(TypeOopPtr::make_from_constant(target_array, true)) );
1169   jint target_length = target_array->length();
1170   const TypeAry* target_array_type = TypeAry::make(TypeInt::CHAR, TypeInt::make(0, target_length, Type::WidenMin));
1171   const TypeAryPtr* target_type = TypeAryPtr::make(TypePtr::BotPTR, target_array_type, target_array->klass(), true, Type::OffsetBot);
1172 
1173   IdealKit kit(this, false, true);
1174 #define __ kit.
1175   Node* zero             = __ ConI(0);
1176   Node* one              = __ ConI(1);
1177   Node* cache            = __ ConI(cache_i);
1178   Node* md2              = __ ConI(md2_i);
1179   Node* lastChar         = __ ConI(target_array->char_at(target_length - 1));
1180   Node* targetCount      = __ ConI(target_length);
1181   Node* targetCountLess1 = __ ConI(target_length - 1);
1182   Node* targetOffset     = __ ConI(targetOffset_i);
1183   Node* sourceEnd        = __ SubI(__ AddI(sourceOffset, sourceCount), targetCountLess1);
1184 
1185   IdealVariable rtn(kit), i(kit), j(kit); __ declarations_done();
1186   Node* outer_loop = __ make_label(2 /* goto */);
1187   Node* return_    = __ make_label(1);
1188 
1189   __ set(rtn,__ ConI(-1));
1190   __ loop(this, nargs, i, sourceOffset, BoolTest::lt, sourceEnd); {
1191        Node* i2  = __ AddI(__ value(i), targetCountLess1);
1192        // pin to prohibit loading of "next iteration" value which may SEGV (rare)
1193        Node* src = load_array_element(__ ctrl(), source, i2, TypeAryPtr::CHARS);
1194        __ if_then(src, BoolTest::eq, lastChar, unlikely); {
1195          __ loop(this, nargs, j, zero, BoolTest::lt, targetCountLess1); {
1196               Node* tpj = __ AddI(targetOffset, __ value(j));
1197               Node* targ = load_array_element(no_ctrl, target, tpj, target_type);
1198               Node* ipj  = __ AddI(__ value(i), __ value(j));
1199               Node* src2 = load_array_element(no_ctrl, source, ipj, TypeAryPtr::CHARS);
1200               __ if_then(targ, BoolTest::ne, src2); {
1201                 __ if_then(__ AndI(cache, __ LShiftI(one, src2)), BoolTest::eq, zero); {
1202                   __ if_then(md2, BoolTest::lt, __ AddI(__ value(j), one)); {
1203                     __ increment(i, __ AddI(__ value(j), one));
1204                     __ goto_(outer_loop);
1205                   } __ end_if(); __ dead(j);
1206                 }__ end_if(); __ dead(j);
1207                 __ increment(i, md2);
1208                 __ goto_(outer_loop);
1209               }__ end_if();
1210               __ increment(j, one);
1211          }__ end_loop(); __ dead(j);
1212          __ set(rtn, __ SubI(__ value(i), sourceOffset)); __ dead(i);
1213          __ goto_(return_);
1214        }__ end_if();
1215        __ if_then(__ AndI(cache, __ LShiftI(one, src)), BoolTest::eq, zero, likely); {
1216          __ increment(i, targetCountLess1);
1217        }__ end_if();
1218        __ increment(i, one);
1219        __ bind(outer_loop);
1220   }__ end_loop(); __ dead(i);
1221   __ bind(return_);
1222 
1223   // Final sync IdealKit and GraphKit.
1224   final_sync(kit);
1225   Node* result = __ value(rtn);
1226 #undef __
1227   C->set_has_loops(true);
1228   return result;
1229 }
1230 
1231 //------------------------------inline_string_indexOf------------------------
1232 bool LibraryCallKit::inline_string_indexOf() {
1233 
1234   const int value_offset  = java_lang_String::value_offset_in_bytes();
1235   const int count_offset  = java_lang_String::count_offset_in_bytes();
1236   const int offset_offset = java_lang_String::offset_offset_in_bytes();
1237 
1238   _sp += 2;
1239   Node *argument = pop();  // pop non-receiver first:  it was pushed second
1240   Node *receiver = pop();
1241 
1242   Node* result;
1243   // Disable the use of pcmpestri until it can be guaranteed that
1244   // the load doesn't cross into the uncommited space.
1245   if (Matcher::has_match_rule(Op_StrIndexOf) &&
1246       UseSSE42Intrinsics) {
1247     // Generate SSE4.2 version of indexOf
1248     // We currently only have match rules that use SSE4.2
1249 
1250     // Null check on self without removing any arguments.  The argument
1251     // null check technically happens in the wrong place, which can lead to
1252     // invalid stack traces when string compare is inlined into a method
1253     // which handles NullPointerExceptions.
1254     _sp += 2;
1255     receiver = do_null_check(receiver, T_OBJECT);
1256     argument = do_null_check(argument, T_OBJECT);
1257     _sp -= 2;
1258 
1259     if (stopped()) {
1260       return true;
1261     }
1262 
1263     ciInstanceKlass* str_klass = env()->String_klass();
1264     const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(str_klass);
1265 
1266     // Make the merge point
1267     RegionNode* result_rgn = new (C, 4) RegionNode(4);
1268     Node*       result_phi = new (C, 4) PhiNode(result_rgn, TypeInt::INT);
1269     Node* no_ctrl  = NULL;
1270 
1271     // Get counts for string and substr
1272     Node* source_cnta = basic_plus_adr(receiver, receiver, count_offset);
1273     Node* source_cnt  = make_load(no_ctrl, source_cnta, TypeInt::INT, T_INT, string_type->add_offset(count_offset));
1274 
1275     Node* substr_cnta = basic_plus_adr(argument, argument, count_offset);
1276     Node* substr_cnt  = make_load(no_ctrl, substr_cnta, TypeInt::INT, T_INT, string_type->add_offset(count_offset));
1277 
1278     // Check for substr count > string count
1279     Node* cmp = _gvn.transform( new(C, 3) CmpINode(substr_cnt, source_cnt) );
1280     Node* bol = _gvn.transform( new(C, 2) BoolNode(cmp, BoolTest::gt) );
1281     Node* if_gt = generate_slow_guard(bol, NULL);
1282     if (if_gt != NULL) {
1283       result_phi->init_req(2, intcon(-1));
1284       result_rgn->init_req(2, if_gt);
1285     }
1286 
1287     if (!stopped()) {
1288       // Check for substr count == 0
1289       cmp = _gvn.transform( new(C, 3) CmpINode(substr_cnt, intcon(0)) );
1290       bol = _gvn.transform( new(C, 2) BoolNode(cmp, BoolTest::eq) );
1291       Node* if_zero = generate_slow_guard(bol, NULL);
1292       if (if_zero != NULL) {
1293         result_phi->init_req(3, intcon(0));
1294         result_rgn->init_req(3, if_zero);
1295       }
1296     }
1297 
1298     if (!stopped()) {
1299       result = make_string_method_node(Op_StrIndexOf, receiver, source_cnt, argument, substr_cnt);
1300       result_phi->init_req(1, result);
1301       result_rgn->init_req(1, control());
1302     }
1303     set_control(_gvn.transform(result_rgn));
1304     record_for_igvn(result_rgn);
1305     result = _gvn.transform(result_phi);
1306 
1307   } else { // Use LibraryCallKit::string_indexOf
1308     // don't intrinsify if argument isn't a constant string.
1309     if (!argument->is_Con()) {
1310      return false;
1311     }
1312     const TypeOopPtr* str_type = _gvn.type(argument)->isa_oopptr();
1313     if (str_type == NULL) {
1314       return false;
1315     }
1316     ciInstanceKlass* klass = env()->String_klass();
1317     ciObject* str_const = str_type->const_oop();
1318     if (str_const == NULL || str_const->klass() != klass) {
1319       return false;
1320     }
1321     ciInstance* str = str_const->as_instance();
1322     assert(str != NULL, "must be instance");
1323 
1324     ciObject* v = str->field_value_by_offset(value_offset).as_object();
1325     int       o = str->field_value_by_offset(offset_offset).as_int();
1326     int       c = str->field_value_by_offset(count_offset).as_int();
1327     ciTypeArray* pat = v->as_type_array(); // pattern (argument) character array
1328 
1329     // constant strings have no offset and count == length which
1330     // simplifies the resulting code somewhat so lets optimize for that.
1331     if (o != 0 || c != pat->length()) {
1332      return false;
1333     }
1334 
1335     // Null check on self without removing any arguments.  The argument
1336     // null check technically happens in the wrong place, which can lead to
1337     // invalid stack traces when string compare is inlined into a method
1338     // which handles NullPointerExceptions.
1339     _sp += 2;
1340     receiver = do_null_check(receiver, T_OBJECT);
1341     // No null check on the argument is needed since it's a constant String oop.
1342     _sp -= 2;
1343     if (stopped()) {
1344       return true;
1345     }
1346 
1347     // The null string as a pattern always returns 0 (match at beginning of string)
1348     if (c == 0) {
1349       push(intcon(0));
1350       return true;
1351     }
1352 
1353     // Generate default indexOf
1354     jchar lastChar = pat->char_at(o + (c - 1));
1355     int cache = 0;
1356     int i;
1357     for (i = 0; i < c - 1; i++) {
1358       assert(i < pat->length(), "out of range");
1359       cache |= (1 << (pat->char_at(o + i) & (sizeof(cache) * BitsPerByte - 1)));
1360     }
1361 
1362     int md2 = c;
1363     for (i = 0; i < c - 1; i++) {
1364       assert(i < pat->length(), "out of range");
1365       if (pat->char_at(o + i) == lastChar) {
1366         md2 = (c - 1) - i;
1367       }
1368     }
1369 
1370     result = string_indexOf(receiver, pat, o, cache, md2);
1371   }
1372 
1373   push(result);
1374   return true;
1375 }
1376 
1377 //--------------------------pop_math_arg--------------------------------
1378 // Pop a double argument to a math function from the stack
1379 // rounding it if necessary.
1380 Node * LibraryCallKit::pop_math_arg() {
1381   Node *arg = pop_pair();
1382   if( Matcher::strict_fp_requires_explicit_rounding && UseSSE<=1 )
1383     arg = _gvn.transform( new (C, 2) RoundDoubleNode(0, arg) );
1384   return arg;
1385 }
1386 
1387 //------------------------------inline_trig----------------------------------
1388 // Inline sin/cos/tan instructions, if possible.  If rounding is required, do
1389 // argument reduction which will turn into a fast/slow diamond.
1390 bool LibraryCallKit::inline_trig(vmIntrinsics::ID id) {
1391   _sp += arg_size();            // restore stack pointer
1392   Node* arg = pop_math_arg();
1393   Node* trig = NULL;
1394 
1395   switch (id) {
1396   case vmIntrinsics::_dsin:
1397     trig = _gvn.transform((Node*)new (C, 2) SinDNode(arg));
1398     break;
1399   case vmIntrinsics::_dcos:
1400     trig = _gvn.transform((Node*)new (C, 2) CosDNode(arg));
1401     break;
1402   case vmIntrinsics::_dtan:
1403     trig = _gvn.transform((Node*)new (C, 2) TanDNode(arg));
1404     break;
1405   default:
1406     assert(false, "bad intrinsic was passed in");
1407     return false;
1408   }
1409 
1410   // Rounding required?  Check for argument reduction!
1411   if( Matcher::strict_fp_requires_explicit_rounding ) {
1412 
1413     static const double     pi_4 =  0.7853981633974483;
1414     static const double neg_pi_4 = -0.7853981633974483;
1415     // pi/2 in 80-bit extended precision
1416     // static const unsigned char pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0x3f,0x00,0x00,0x00,0x00,0x00,0x00};
1417     // -pi/2 in 80-bit extended precision
1418     // static const unsigned char neg_pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0xbf,0x00,0x00,0x00,0x00,0x00,0x00};
1419     // Cutoff value for using this argument reduction technique
1420     //static const double    pi_2_minus_epsilon =  1.564660403643354;
1421     //static const double neg_pi_2_plus_epsilon = -1.564660403643354;
1422 
1423     // Pseudocode for sin:
1424     // if (x <= Math.PI / 4.0) {
1425     //   if (x >= -Math.PI / 4.0) return  fsin(x);
1426     //   if (x >= -Math.PI / 2.0) return -fcos(x + Math.PI / 2.0);
1427     // } else {
1428     //   if (x <=  Math.PI / 2.0) return  fcos(x - Math.PI / 2.0);
1429     // }
1430     // return StrictMath.sin(x);
1431 
1432     // Pseudocode for cos:
1433     // if (x <= Math.PI / 4.0) {
1434     //   if (x >= -Math.PI / 4.0) return  fcos(x);
1435     //   if (x >= -Math.PI / 2.0) return  fsin(x + Math.PI / 2.0);
1436     // } else {
1437     //   if (x <=  Math.PI / 2.0) return -fsin(x - Math.PI / 2.0);
1438     // }
1439     // return StrictMath.cos(x);
1440 
1441     // Actually, sticking in an 80-bit Intel value into C2 will be tough; it
1442     // requires a special machine instruction to load it.  Instead we'll try
1443     // the 'easy' case.  If we really need the extra range +/- PI/2 we'll
1444     // probably do the math inside the SIN encoding.
1445 
1446     // Make the merge point
1447     RegionNode *r = new (C, 3) RegionNode(3);
1448     Node *phi = new (C, 3) PhiNode(r,Type::DOUBLE);
1449 
1450     // Flatten arg so we need only 1 test
1451     Node *abs = _gvn.transform(new (C, 2) AbsDNode(arg));
1452     // Node for PI/4 constant
1453     Node *pi4 = makecon(TypeD::make(pi_4));
1454     // Check PI/4 : abs(arg)
1455     Node *cmp = _gvn.transform(new (C, 3) CmpDNode(pi4,abs));
1456     // Check: If PI/4 < abs(arg) then go slow
1457     Node *bol = _gvn.transform( new (C, 2) BoolNode( cmp, BoolTest::lt ) );
1458     // Branch either way
1459     IfNode *iff = create_and_xform_if(control(),bol, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
1460     set_control(opt_iff(r,iff));
1461 
1462     // Set fast path result
1463     phi->init_req(2,trig);
1464 
1465     // Slow path - non-blocking leaf call
1466     Node* call = NULL;
1467     switch (id) {
1468     case vmIntrinsics::_dsin:
1469       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
1470                                CAST_FROM_FN_PTR(address, SharedRuntime::dsin),
1471                                "Sin", NULL, arg, top());
1472       break;
1473     case vmIntrinsics::_dcos:
1474       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
1475                                CAST_FROM_FN_PTR(address, SharedRuntime::dcos),
1476                                "Cos", NULL, arg, top());
1477       break;
1478     case vmIntrinsics::_dtan:
1479       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
1480                                CAST_FROM_FN_PTR(address, SharedRuntime::dtan),
1481                                "Tan", NULL, arg, top());
1482       break;
1483     }
1484     assert(control()->in(0) == call, "");
1485     Node* slow_result = _gvn.transform(new (C, 1) ProjNode(call,TypeFunc::Parms));
1486     r->init_req(1,control());
1487     phi->init_req(1,slow_result);
1488 
1489     // Post-merge
1490     set_control(_gvn.transform(r));
1491     record_for_igvn(r);
1492     trig = _gvn.transform(phi);
1493 
1494     C->set_has_split_ifs(true); // Has chance for split-if optimization
1495   }
1496   // Push result back on JVM stack
1497   push_pair(trig);
1498   return true;
1499 }
1500 
1501 //------------------------------inline_sqrt-------------------------------------
1502 // Inline square root instruction, if possible.
1503 bool LibraryCallKit::inline_sqrt(vmIntrinsics::ID id) {
1504   assert(id == vmIntrinsics::_dsqrt, "Not square root");
1505   _sp += arg_size();        // restore stack pointer
1506   push_pair(_gvn.transform(new (C, 2) SqrtDNode(0, pop_math_arg())));
1507   return true;
1508 }
1509 
1510 //------------------------------inline_abs-------------------------------------
1511 // Inline absolute value instruction, if possible.
1512 bool LibraryCallKit::inline_abs(vmIntrinsics::ID id) {
1513   assert(id == vmIntrinsics::_dabs, "Not absolute value");
1514   _sp += arg_size();        // restore stack pointer
1515   push_pair(_gvn.transform(new (C, 2) AbsDNode(pop_math_arg())));
1516   return true;
1517 }
1518 
1519 //------------------------------inline_exp-------------------------------------
1520 // Inline exp instructions, if possible.  The Intel hardware only misses
1521 // really odd corner cases (+/- Infinity).  Just uncommon-trap them.
1522 bool LibraryCallKit::inline_exp(vmIntrinsics::ID id) {
1523   assert(id == vmIntrinsics::_dexp, "Not exp");
1524 
1525   // If this inlining ever returned NaN in the past, we do not intrinsify it
1526   // every again.  NaN results requires StrictMath.exp handling.
1527   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
1528 
1529   // Do not intrinsify on older platforms which lack cmove.
1530   if (ConditionalMoveLimit == 0)  return false;
1531 
1532   _sp += arg_size();        // restore stack pointer
1533   Node *x = pop_math_arg();
1534   Node *result = _gvn.transform(new (C, 2) ExpDNode(0,x));
1535 
1536   //-------------------
1537   //result=(result.isNaN())? StrictMath::exp():result;
1538   // Check: If isNaN() by checking result!=result? then go to Strict Math
1539   Node* cmpisnan = _gvn.transform(new (C, 3) CmpDNode(result,result));
1540   // Build the boolean node
1541   Node* bolisnum = _gvn.transform( new (C, 2) BoolNode(cmpisnan, BoolTest::eq) );
1542 
1543   { BuildCutout unless(this, bolisnum, PROB_STATIC_FREQUENT);
1544     // End the current control-flow path
1545     push_pair(x);
1546     // Math.exp intrinsic returned a NaN, which requires StrictMath.exp
1547     // to handle.  Recompile without intrinsifying Math.exp
1548     uncommon_trap(Deoptimization::Reason_intrinsic,
1549                   Deoptimization::Action_make_not_entrant);
1550   }
1551 
1552   C->set_has_split_ifs(true); // Has chance for split-if optimization
1553 
1554   push_pair(result);
1555 
1556   return true;
1557 }
1558 
1559 //------------------------------inline_pow-------------------------------------
1560 // Inline power instructions, if possible.
1561 bool LibraryCallKit::inline_pow(vmIntrinsics::ID id) {
1562   assert(id == vmIntrinsics::_dpow, "Not pow");
1563 
1564   // If this inlining ever returned NaN in the past, we do not intrinsify it
1565   // every again.  NaN results requires StrictMath.pow handling.
1566   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
1567 
1568   // Do not intrinsify on older platforms which lack cmove.
1569   if (ConditionalMoveLimit == 0)  return false;
1570 
1571   // Pseudocode for pow
1572   // if (x <= 0.0) {
1573   //   if ((double)((int)y)==y) { // if y is int
1574   //     result = ((1&(int)y)==0)?-DPow(abs(x), y):DPow(abs(x), y)
1575   //   } else {
1576   //     result = NaN;
1577   //   }
1578   // } else {
1579   //   result = DPow(x,y);
1580   // }
1581   // if (result != result)?  {
1582   //   uncommon_trap();
1583   // }
1584   // return result;
1585 
1586   _sp += arg_size();        // restore stack pointer
1587   Node* y = pop_math_arg();
1588   Node* x = pop_math_arg();
1589 
1590   Node *fast_result = _gvn.transform( new (C, 3) PowDNode(0, x, y) );
1591 
1592   // Short form: if not top-level (i.e., Math.pow but inlining Math.pow
1593   // inside of something) then skip the fancy tests and just check for
1594   // NaN result.
1595   Node *result = NULL;
1596   if( jvms()->depth() >= 1 ) {
1597     result = fast_result;
1598   } else {
1599 
1600     // Set the merge point for If node with condition of (x <= 0.0)
1601     // There are four possible paths to region node and phi node
1602     RegionNode *r = new (C, 4) RegionNode(4);
1603     Node *phi = new (C, 4) PhiNode(r, Type::DOUBLE);
1604 
1605     // Build the first if node: if (x <= 0.0)
1606     // Node for 0 constant
1607     Node *zeronode = makecon(TypeD::ZERO);
1608     // Check x:0
1609     Node *cmp = _gvn.transform(new (C, 3) CmpDNode(x, zeronode));
1610     // Check: If (x<=0) then go complex path
1611     Node *bol1 = _gvn.transform( new (C, 2) BoolNode( cmp, BoolTest::le ) );
1612     // Branch either way
1613     IfNode *if1 = create_and_xform_if(control(),bol1, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
1614     Node *opt_test = _gvn.transform(if1);
1615     //assert( opt_test->is_If(), "Expect an IfNode");
1616     IfNode *opt_if1 = (IfNode*)opt_test;
1617     // Fast path taken; set region slot 3
1618     Node *fast_taken = _gvn.transform( new (C, 1) IfFalseNode(opt_if1) );
1619     r->init_req(3,fast_taken); // Capture fast-control
1620 
1621     // Fast path not-taken, i.e. slow path
1622     Node *complex_path = _gvn.transform( new (C, 1) IfTrueNode(opt_if1) );
1623 
1624     // Set fast path result
1625     Node *fast_result = _gvn.transform( new (C, 3) PowDNode(0, y, x) );
1626     phi->init_req(3, fast_result);
1627 
1628     // Complex path
1629     // Build the second if node (if y is int)
1630     // Node for (int)y
1631     Node *inty = _gvn.transform( new (C, 2) ConvD2INode(y));
1632     // Node for (double)((int) y)
1633     Node *doubleinty= _gvn.transform( new (C, 2) ConvI2DNode(inty));
1634     // Check (double)((int) y) : y
1635     Node *cmpinty= _gvn.transform(new (C, 3) CmpDNode(doubleinty, y));
1636     // Check if (y isn't int) then go to slow path
1637 
1638     Node *bol2 = _gvn.transform( new (C, 2) BoolNode( cmpinty, BoolTest::ne ) );
1639     // Branch either way
1640     IfNode *if2 = create_and_xform_if(complex_path,bol2, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
1641     Node *slow_path = opt_iff(r,if2); // Set region path 2
1642 
1643     // Calculate DPow(abs(x), y)*(1 & (int)y)
1644     // Node for constant 1
1645     Node *conone = intcon(1);
1646     // 1& (int)y
1647     Node *signnode= _gvn.transform( new (C, 3) AndINode(conone, inty) );
1648     // zero node
1649     Node *conzero = intcon(0);
1650     // Check (1&(int)y)==0?
1651     Node *cmpeq1 = _gvn.transform(new (C, 3) CmpINode(signnode, conzero));
1652     // Check if (1&(int)y)!=0?, if so the result is negative
1653     Node *bol3 = _gvn.transform( new (C, 2) BoolNode( cmpeq1, BoolTest::ne ) );
1654     // abs(x)
1655     Node *absx=_gvn.transform( new (C, 2) AbsDNode(x));
1656     // abs(x)^y
1657     Node *absxpowy = _gvn.transform( new (C, 3) PowDNode(0, y, absx) );
1658     // -abs(x)^y
1659     Node *negabsxpowy = _gvn.transform(new (C, 2) NegDNode (absxpowy));
1660     // (1&(int)y)==1?-DPow(abs(x), y):DPow(abs(x), y)
1661     Node *signresult = _gvn.transform( CMoveNode::make(C, NULL, bol3, absxpowy, negabsxpowy, Type::DOUBLE));
1662     // Set complex path fast result
1663     phi->init_req(2, signresult);
1664 
1665     static const jlong nan_bits = CONST64(0x7ff8000000000000);
1666     Node *slow_result = makecon(TypeD::make(*(double*)&nan_bits)); // return NaN
1667     r->init_req(1,slow_path);
1668     phi->init_req(1,slow_result);
1669 
1670     // Post merge
1671     set_control(_gvn.transform(r));
1672     record_for_igvn(r);
1673     result=_gvn.transform(phi);
1674   }
1675 
1676   //-------------------
1677   //result=(result.isNaN())? uncommon_trap():result;
1678   // Check: If isNaN() by checking result!=result? then go to Strict Math
1679   Node* cmpisnan = _gvn.transform(new (C, 3) CmpDNode(result,result));
1680   // Build the boolean node
1681   Node* bolisnum = _gvn.transform( new (C, 2) BoolNode(cmpisnan, BoolTest::eq) );
1682 
1683   { BuildCutout unless(this, bolisnum, PROB_STATIC_FREQUENT);
1684     // End the current control-flow path
1685     push_pair(x);
1686     push_pair(y);
1687     // Math.pow intrinsic returned a NaN, which requires StrictMath.pow
1688     // to handle.  Recompile without intrinsifying Math.pow.
1689     uncommon_trap(Deoptimization::Reason_intrinsic,
1690                   Deoptimization::Action_make_not_entrant);
1691   }
1692 
1693   C->set_has_split_ifs(true); // Has chance for split-if optimization
1694 
1695   push_pair(result);
1696 
1697   return true;
1698 }
1699 
1700 //------------------------------inline_trans-------------------------------------
1701 // Inline transcendental instructions, if possible.  The Intel hardware gets
1702 // these right, no funny corner cases missed.
1703 bool LibraryCallKit::inline_trans(vmIntrinsics::ID id) {
1704   _sp += arg_size();        // restore stack pointer
1705   Node* arg = pop_math_arg();
1706   Node* trans = NULL;
1707 
1708   switch (id) {
1709   case vmIntrinsics::_dlog:
1710     trans = _gvn.transform((Node*)new (C, 2) LogDNode(arg));
1711     break;
1712   case vmIntrinsics::_dlog10:
1713     trans = _gvn.transform((Node*)new (C, 2) Log10DNode(arg));
1714     break;
1715   default:
1716     assert(false, "bad intrinsic was passed in");
1717     return false;
1718   }
1719 
1720   // Push result back on JVM stack
1721   push_pair(trans);
1722   return true;
1723 }
1724 
1725 //------------------------------runtime_math-----------------------------
1726 bool LibraryCallKit::runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName) {
1727   Node* a = NULL;
1728   Node* b = NULL;
1729 
1730   assert(call_type == OptoRuntime::Math_DD_D_Type() || call_type == OptoRuntime::Math_D_D_Type(),
1731          "must be (DD)D or (D)D type");
1732 
1733   // Inputs
1734   _sp += arg_size();        // restore stack pointer
1735   if (call_type == OptoRuntime::Math_DD_D_Type()) {
1736     b = pop_math_arg();
1737   }
1738   a = pop_math_arg();
1739 
1740   const TypePtr* no_memory_effects = NULL;
1741   Node* trig = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
1742                                  no_memory_effects,
1743                                  a, top(), b, b ? top() : NULL);
1744   Node* value = _gvn.transform(new (C, 1) ProjNode(trig, TypeFunc::Parms+0));
1745 #ifdef ASSERT
1746   Node* value_top = _gvn.transform(new (C, 1) ProjNode(trig, TypeFunc::Parms+1));
1747   assert(value_top == top(), "second value must be top");
1748 #endif
1749 
1750   push_pair(value);
1751   return true;
1752 }
1753 
1754 //------------------------------inline_math_native-----------------------------
1755 bool LibraryCallKit::inline_math_native(vmIntrinsics::ID id) {
1756   switch (id) {
1757     // These intrinsics are not properly supported on all hardware
1758   case vmIntrinsics::_dcos: return Matcher::has_match_rule(Op_CosD) ? inline_trig(id) :
1759     runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dcos), "COS");
1760   case vmIntrinsics::_dsin: return Matcher::has_match_rule(Op_SinD) ? inline_trig(id) :
1761     runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dsin), "SIN");
1762   case vmIntrinsics::_dtan: return Matcher::has_match_rule(Op_TanD) ? inline_trig(id) :
1763     runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dtan), "TAN");
1764 
1765   case vmIntrinsics::_dlog:   return Matcher::has_match_rule(Op_LogD) ? inline_trans(id) :
1766     runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dlog), "LOG");
1767   case vmIntrinsics::_dlog10: return Matcher::has_match_rule(Op_Log10D) ? inline_trans(id) :
1768     runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dlog10), "LOG10");
1769 
1770     // These intrinsics are supported on all hardware
1771   case vmIntrinsics::_dsqrt: return Matcher::has_match_rule(Op_SqrtD) ? inline_sqrt(id) : false;
1772   case vmIntrinsics::_dabs:  return Matcher::has_match_rule(Op_AbsD)  ? inline_abs(id)  : false;
1773 
1774     // These intrinsics don't work on X86.  The ad implementation doesn't
1775     // handle NaN's properly.  Instead of returning infinity, the ad
1776     // implementation returns a NaN on overflow. See bug: 6304089
1777     // Once the ad implementations are fixed, change the code below
1778     // to match the intrinsics above
1779 
1780   case vmIntrinsics::_dexp:  return
1781     runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dexp), "EXP");
1782   case vmIntrinsics::_dpow:  return
1783     runtime_math(OptoRuntime::Math_DD_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dpow), "POW");
1784 
1785    // These intrinsics are not yet correctly implemented
1786   case vmIntrinsics::_datan2:
1787     return false;
1788 
1789   default:
1790     ShouldNotReachHere();
1791     return false;
1792   }
1793 }
1794 
1795 static bool is_simple_name(Node* n) {
1796   return (n->req() == 1         // constant
1797           || (n->is_Type() && n->as_Type()->type()->singleton())
1798           || n->is_Proj()       // parameter or return value
1799           || n->is_Phi()        // local of some sort
1800           );
1801 }
1802 
1803 //----------------------------inline_min_max-----------------------------------
1804 bool LibraryCallKit::inline_min_max(vmIntrinsics::ID id) {
1805   push(generate_min_max(id, argument(0), argument(1)));
1806 
1807   return true;
1808 }
1809 
1810 Node*
1811 LibraryCallKit::generate_min_max(vmIntrinsics::ID id, Node* x0, Node* y0) {
1812   // These are the candidate return value:
1813   Node* xvalue = x0;
1814   Node* yvalue = y0;
1815 
1816   if (xvalue == yvalue) {
1817     return xvalue;
1818   }
1819 
1820   bool want_max = (id == vmIntrinsics::_max);
1821 
1822   const TypeInt* txvalue = _gvn.type(xvalue)->isa_int();
1823   const TypeInt* tyvalue = _gvn.type(yvalue)->isa_int();
1824   if (txvalue == NULL || tyvalue == NULL)  return top();
1825   // This is not really necessary, but it is consistent with a
1826   // hypothetical MaxINode::Value method:
1827   int widen = MAX2(txvalue->_widen, tyvalue->_widen);
1828 
1829   // %%% This folding logic should (ideally) be in a different place.
1830   // Some should be inside IfNode, and there to be a more reliable
1831   // transformation of ?: style patterns into cmoves.  We also want
1832   // more powerful optimizations around cmove and min/max.
1833 
1834   // Try to find a dominating comparison of these guys.
1835   // It can simplify the index computation for Arrays.copyOf
1836   // and similar uses of System.arraycopy.
1837   // First, compute the normalized version of CmpI(x, y).
1838   int   cmp_op = Op_CmpI;
1839   Node* xkey = xvalue;
1840   Node* ykey = yvalue;
1841   Node* ideal_cmpxy = _gvn.transform( new(C, 3) CmpINode(xkey, ykey) );
1842   if (ideal_cmpxy->is_Cmp()) {
1843     // E.g., if we have CmpI(length - offset, count),
1844     // it might idealize to CmpI(length, count + offset)
1845     cmp_op = ideal_cmpxy->Opcode();
1846     xkey = ideal_cmpxy->in(1);
1847     ykey = ideal_cmpxy->in(2);
1848   }
1849 
1850   // Start by locating any relevant comparisons.
1851   Node* start_from = (xkey->outcnt() < ykey->outcnt()) ? xkey : ykey;
1852   Node* cmpxy = NULL;
1853   Node* cmpyx = NULL;
1854   for (DUIterator_Fast kmax, k = start_from->fast_outs(kmax); k < kmax; k++) {
1855     Node* cmp = start_from->fast_out(k);
1856     if (cmp->outcnt() > 0 &&            // must have prior uses
1857         cmp->in(0) == NULL &&           // must be context-independent
1858         cmp->Opcode() == cmp_op) {      // right kind of compare
1859       if (cmp->in(1) == xkey && cmp->in(2) == ykey)  cmpxy = cmp;
1860       if (cmp->in(1) == ykey && cmp->in(2) == xkey)  cmpyx = cmp;
1861     }
1862   }
1863 
1864   const int NCMPS = 2;
1865   Node* cmps[NCMPS] = { cmpxy, cmpyx };
1866   int cmpn;
1867   for (cmpn = 0; cmpn < NCMPS; cmpn++) {
1868     if (cmps[cmpn] != NULL)  break;     // find a result
1869   }
1870   if (cmpn < NCMPS) {
1871     // Look for a dominating test that tells us the min and max.
1872     int depth = 0;                // Limit search depth for speed
1873     Node* dom = control();
1874     for (; dom != NULL; dom = IfNode::up_one_dom(dom, true)) {
1875       if (++depth >= 100)  break;
1876       Node* ifproj = dom;
1877       if (!ifproj->is_Proj())  continue;
1878       Node* iff = ifproj->in(0);
1879       if (!iff->is_If())  continue;
1880       Node* bol = iff->in(1);
1881       if (!bol->is_Bool())  continue;
1882       Node* cmp = bol->in(1);
1883       if (cmp == NULL)  continue;
1884       for (cmpn = 0; cmpn < NCMPS; cmpn++)
1885         if (cmps[cmpn] == cmp)  break;
1886       if (cmpn == NCMPS)  continue;
1887       BoolTest::mask btest = bol->as_Bool()->_test._test;
1888       if (ifproj->is_IfFalse())  btest = BoolTest(btest).negate();
1889       if (cmp->in(1) == ykey)    btest = BoolTest(btest).commute();
1890       // At this point, we know that 'x btest y' is true.
1891       switch (btest) {
1892       case BoolTest::eq:
1893         // They are proven equal, so we can collapse the min/max.
1894         // Either value is the answer.  Choose the simpler.
1895         if (is_simple_name(yvalue) && !is_simple_name(xvalue))
1896           return yvalue;
1897         return xvalue;
1898       case BoolTest::lt:          // x < y
1899       case BoolTest::le:          // x <= y
1900         return (want_max ? yvalue : xvalue);
1901       case BoolTest::gt:          // x > y
1902       case BoolTest::ge:          // x >= y
1903         return (want_max ? xvalue : yvalue);
1904       }
1905     }
1906   }
1907 
1908   // We failed to find a dominating test.
1909   // Let's pick a test that might GVN with prior tests.
1910   Node*          best_bol   = NULL;
1911   BoolTest::mask best_btest = BoolTest::illegal;
1912   for (cmpn = 0; cmpn < NCMPS; cmpn++) {
1913     Node* cmp = cmps[cmpn];
1914     if (cmp == NULL)  continue;
1915     for (DUIterator_Fast jmax, j = cmp->fast_outs(jmax); j < jmax; j++) {
1916       Node* bol = cmp->fast_out(j);
1917       if (!bol->is_Bool())  continue;
1918       BoolTest::mask btest = bol->as_Bool()->_test._test;
1919       if (btest == BoolTest::eq || btest == BoolTest::ne)  continue;
1920       if (cmp->in(1) == ykey)   btest = BoolTest(btest).commute();
1921       if (bol->outcnt() > (best_bol == NULL ? 0 : best_bol->outcnt())) {
1922         best_bol   = bol->as_Bool();
1923         best_btest = btest;
1924       }
1925     }
1926   }
1927 
1928   Node* answer_if_true  = NULL;
1929   Node* answer_if_false = NULL;
1930   switch (best_btest) {
1931   default:
1932     if (cmpxy == NULL)
1933       cmpxy = ideal_cmpxy;
1934     best_bol = _gvn.transform( new(C, 2) BoolNode(cmpxy, BoolTest::lt) );
1935     // and fall through:
1936   case BoolTest::lt:          // x < y
1937   case BoolTest::le:          // x <= y
1938     answer_if_true  = (want_max ? yvalue : xvalue);
1939     answer_if_false = (want_max ? xvalue : yvalue);
1940     break;
1941   case BoolTest::gt:          // x > y
1942   case BoolTest::ge:          // x >= y
1943     answer_if_true  = (want_max ? xvalue : yvalue);
1944     answer_if_false = (want_max ? yvalue : xvalue);
1945     break;
1946   }
1947 
1948   jint hi, lo;
1949   if (want_max) {
1950     // We can sharpen the minimum.
1951     hi = MAX2(txvalue->_hi, tyvalue->_hi);
1952     lo = MAX2(txvalue->_lo, tyvalue->_lo);
1953   } else {
1954     // We can sharpen the maximum.
1955     hi = MIN2(txvalue->_hi, tyvalue->_hi);
1956     lo = MIN2(txvalue->_lo, tyvalue->_lo);
1957   }
1958 
1959   // Use a flow-free graph structure, to avoid creating excess control edges
1960   // which could hinder other optimizations.
1961   // Since Math.min/max is often used with arraycopy, we want
1962   // tightly_coupled_allocation to be able to see beyond min/max expressions.
1963   Node* cmov = CMoveNode::make(C, NULL, best_bol,
1964                                answer_if_false, answer_if_true,
1965                                TypeInt::make(lo, hi, widen));
1966 
1967   return _gvn.transform(cmov);
1968 
1969   /*
1970   // This is not as desirable as it may seem, since Min and Max
1971   // nodes do not have a full set of optimizations.
1972   // And they would interfere, anyway, with 'if' optimizations
1973   // and with CMoveI canonical forms.
1974   switch (id) {
1975   case vmIntrinsics::_min:
1976     result_val = _gvn.transform(new (C, 3) MinINode(x,y)); break;
1977   case vmIntrinsics::_max:
1978     result_val = _gvn.transform(new (C, 3) MaxINode(x,y)); break;
1979   default:
1980     ShouldNotReachHere();
1981   }
1982   */
1983 }
1984 
1985 inline int
1986 LibraryCallKit::classify_unsafe_addr(Node* &base, Node* &offset) {
1987   const TypePtr* base_type = TypePtr::NULL_PTR;
1988   if (base != NULL)  base_type = _gvn.type(base)->isa_ptr();
1989   if (base_type == NULL) {
1990     // Unknown type.
1991     return Type::AnyPtr;
1992   } else if (base_type == TypePtr::NULL_PTR) {
1993     // Since this is a NULL+long form, we have to switch to a rawptr.
1994     base   = _gvn.transform( new (C, 2) CastX2PNode(offset) );
1995     offset = MakeConX(0);
1996     return Type::RawPtr;
1997   } else if (base_type->base() == Type::RawPtr) {
1998     return Type::RawPtr;
1999   } else if (base_type->isa_oopptr()) {
2000     // Base is never null => always a heap address.
2001     if (base_type->ptr() == TypePtr::NotNull) {
2002       return Type::OopPtr;
2003     }
2004     // Offset is small => always a heap address.
2005     const TypeX* offset_type = _gvn.type(offset)->isa_intptr_t();
2006     if (offset_type != NULL &&
2007         base_type->offset() == 0 &&     // (should always be?)
2008         offset_type->_lo >= 0 &&
2009         !MacroAssembler::needs_explicit_null_check(offset_type->_hi)) {
2010       return Type::OopPtr;
2011     }
2012     // Otherwise, it might either be oop+off or NULL+addr.
2013     return Type::AnyPtr;
2014   } else {
2015     // No information:
2016     return Type::AnyPtr;
2017   }
2018 }
2019 
2020 inline Node* LibraryCallKit::make_unsafe_address(Node* base, Node* offset) {
2021   int kind = classify_unsafe_addr(base, offset);
2022   if (kind == Type::RawPtr) {
2023     return basic_plus_adr(top(), base, offset);
2024   } else {
2025     return basic_plus_adr(base, offset);
2026   }
2027 }
2028 
2029 //-------------------inline_numberOfLeadingZeros_int/long-----------------------
2030 // inline int Integer.numberOfLeadingZeros(int)
2031 // inline int Long.numberOfLeadingZeros(long)
2032 bool LibraryCallKit::inline_numberOfLeadingZeros(vmIntrinsics::ID id) {
2033   assert(id == vmIntrinsics::_numberOfLeadingZeros_i || id == vmIntrinsics::_numberOfLeadingZeros_l, "not numberOfLeadingZeros");
2034   if (id == vmIntrinsics::_numberOfLeadingZeros_i && !Matcher::match_rule_supported(Op_CountLeadingZerosI)) return false;
2035   if (id == vmIntrinsics::_numberOfLeadingZeros_l && !Matcher::match_rule_supported(Op_CountLeadingZerosL)) return false;
2036   _sp += arg_size();  // restore stack pointer
2037   switch (id) {
2038   case vmIntrinsics::_numberOfLeadingZeros_i:
2039     push(_gvn.transform(new (C, 2) CountLeadingZerosINode(pop())));
2040     break;
2041   case vmIntrinsics::_numberOfLeadingZeros_l:
2042     push(_gvn.transform(new (C, 2) CountLeadingZerosLNode(pop_pair())));
2043     break;
2044   default:
2045     ShouldNotReachHere();
2046   }
2047   return true;
2048 }
2049 
2050 //-------------------inline_numberOfTrailingZeros_int/long----------------------
2051 // inline int Integer.numberOfTrailingZeros(int)
2052 // inline int Long.numberOfTrailingZeros(long)
2053 bool LibraryCallKit::inline_numberOfTrailingZeros(vmIntrinsics::ID id) {
2054   assert(id == vmIntrinsics::_numberOfTrailingZeros_i || id == vmIntrinsics::_numberOfTrailingZeros_l, "not numberOfTrailingZeros");
2055   if (id == vmIntrinsics::_numberOfTrailingZeros_i && !Matcher::match_rule_supported(Op_CountTrailingZerosI)) return false;
2056   if (id == vmIntrinsics::_numberOfTrailingZeros_l && !Matcher::match_rule_supported(Op_CountTrailingZerosL)) return false;
2057   _sp += arg_size();  // restore stack pointer
2058   switch (id) {
2059   case vmIntrinsics::_numberOfTrailingZeros_i:
2060     push(_gvn.transform(new (C, 2) CountTrailingZerosINode(pop())));
2061     break;
2062   case vmIntrinsics::_numberOfTrailingZeros_l:
2063     push(_gvn.transform(new (C, 2) CountTrailingZerosLNode(pop_pair())));
2064     break;
2065   default:
2066     ShouldNotReachHere();
2067   }
2068   return true;
2069 }
2070 
2071 //----------------------------inline_bitCount_int/long-----------------------
2072 // inline int Integer.bitCount(int)
2073 // inline int Long.bitCount(long)
2074 bool LibraryCallKit::inline_bitCount(vmIntrinsics::ID id) {
2075   assert(id == vmIntrinsics::_bitCount_i || id == vmIntrinsics::_bitCount_l, "not bitCount");
2076   if (id == vmIntrinsics::_bitCount_i && !Matcher::has_match_rule(Op_PopCountI)) return false;
2077   if (id == vmIntrinsics::_bitCount_l && !Matcher::has_match_rule(Op_PopCountL)) return false;
2078   _sp += arg_size();  // restore stack pointer
2079   switch (id) {
2080   case vmIntrinsics::_bitCount_i:
2081     push(_gvn.transform(new (C, 2) PopCountINode(pop())));
2082     break;
2083   case vmIntrinsics::_bitCount_l:
2084     push(_gvn.transform(new (C, 2) PopCountLNode(pop_pair())));
2085     break;
2086   default:
2087     ShouldNotReachHere();
2088   }
2089   return true;
2090 }
2091 
2092 //----------------------------inline_reverseBytes_int/long/char/short-------------------
2093 // inline Integer.reverseBytes(int)
2094 // inline Long.reverseBytes(long)
2095 // inline Character.reverseBytes(char)
2096 // inline Short.reverseBytes(short)
2097 bool LibraryCallKit::inline_reverseBytes(vmIntrinsics::ID id) {
2098   assert(id == vmIntrinsics::_reverseBytes_i || id == vmIntrinsics::_reverseBytes_l ||
2099          id == vmIntrinsics::_reverseBytes_c || id == vmIntrinsics::_reverseBytes_s,
2100          "not reverse Bytes");
2101   if (id == vmIntrinsics::_reverseBytes_i && !Matcher::has_match_rule(Op_ReverseBytesI))  return false;
2102   if (id == vmIntrinsics::_reverseBytes_l && !Matcher::has_match_rule(Op_ReverseBytesL))  return false;
2103   if (id == vmIntrinsics::_reverseBytes_c && !Matcher::has_match_rule(Op_ReverseBytesUS)) return false;
2104   if (id == vmIntrinsics::_reverseBytes_s && !Matcher::has_match_rule(Op_ReverseBytesS))  return false;
2105   _sp += arg_size();        // restore stack pointer
2106   switch (id) {
2107   case vmIntrinsics::_reverseBytes_i:
2108     push(_gvn.transform(new (C, 2) ReverseBytesINode(0, pop())));
2109     break;
2110   case vmIntrinsics::_reverseBytes_l:
2111     push_pair(_gvn.transform(new (C, 2) ReverseBytesLNode(0, pop_pair())));
2112     break;
2113   case vmIntrinsics::_reverseBytes_c:
2114     push(_gvn.transform(new (C, 2) ReverseBytesUSNode(0, pop())));
2115     break;
2116   case vmIntrinsics::_reverseBytes_s:
2117     push(_gvn.transform(new (C, 2) ReverseBytesSNode(0, pop())));
2118     break;
2119   default:
2120     ;
2121   }
2122   return true;
2123 }
2124 
2125 //----------------------------inline_unsafe_access----------------------------
2126 
2127 const static BasicType T_ADDRESS_HOLDER = T_LONG;
2128 
2129 // Helper that guards and inserts a G1 pre-barrier.
2130 void LibraryCallKit::insert_g1_pre_barrier(Node* base_oop, Node* offset, Node* pre_val) {
2131   assert(UseG1GC, "should not call this otherwise");
2132 
2133   // We could be accessing the referent field of a reference object. If so, when G1
2134   // is enabled, we need to log the value in the referent field in an SATB buffer.
2135   // This routine performs some compile time filters and generates suitable
2136   // runtime filters that guard the pre-barrier code.
2137 
2138   // Some compile time checks.
2139 
2140   // If offset is a constant, is it java_lang_ref_Reference::_reference_offset?
2141   const TypeX* otype = offset->find_intptr_t_type();
2142   if (otype != NULL && otype->is_con() &&
2143       otype->get_con() != java_lang_ref_Reference::referent_offset) {
2144     // Constant offset but not the reference_offset so just return
2145     return;
2146   }
2147 
2148   // We only need to generate the runtime guards for instances.
2149   const TypeOopPtr* btype = base_oop->bottom_type()->isa_oopptr();
2150   if (btype != NULL) {
2151     if (btype->isa_aryptr()) {
2152       // Array type so nothing to do
2153       return;
2154     }
2155 
2156     const TypeInstPtr* itype = btype->isa_instptr();
2157     if (itype != NULL) {
2158       // Can the klass of base_oop be statically determined
2159       // to be _not_ a sub-class of Reference?
2160       ciKlass* klass = itype->klass();
2161       if (klass->is_subtype_of(env()->Reference_klass()) &&
2162           !env()->Reference_klass()->is_subtype_of(klass)) {
2163         return;
2164       }
2165     }
2166   }
2167 
2168   // The compile time filters did not reject base_oop/offset so
2169   // we need to generate the following runtime filters
2170   //
2171   // if (offset == java_lang_ref_Reference::_reference_offset) {
2172   //   if (base != null) {
2173   //     if (instance_of(base, java.lang.ref.Reference)) {
2174   //       pre_barrier(_, pre_val, ...);
2175   //     }
2176   //   }
2177   // }
2178 
2179   float likely  = PROB_LIKELY(0.999);
2180   float unlikely  = PROB_UNLIKELY(0.999);
2181 
2182   IdealKit ideal(this);
2183 #define __ ideal.
2184 
2185   Node* referent_off = __ ConX(java_lang_ref_Reference::referent_offset);
2186 
2187   __ if_then(offset, BoolTest::eq, referent_off, unlikely); {
2188     __ if_then(base_oop, BoolTest::ne, null(), likely); {
2189 
2190       // Update graphKit memory and control from IdealKit.
2191       sync_kit(ideal);
2192 
2193       Node* ref_klass_con = makecon(TypeKlassPtr::make(env()->Reference_klass()));
2194       Node* is_instof = gen_instanceof(base_oop, ref_klass_con);
2195 
2196       // Update IdealKit memory and control from graphKit.
2197       __ sync_kit(this);
2198 
2199       Node* one = __ ConI(1);
2200 
2201       __ if_then(is_instof, BoolTest::eq, one, unlikely); {
2202 
2203         // Update graphKit from IdeakKit.
2204         sync_kit(ideal);
2205 
2206         // Use the pre-barrier to record the value in the referent field
2207         pre_barrier(false /* do_load */,
2208                     __ ctrl(),
2209                     NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
2210                     pre_val /* pre_val */,
2211                     T_OBJECT);
2212 
2213         // Update IdealKit from graphKit.
2214         __ sync_kit(this);
2215 
2216       } __ end_if(); // _ref_type != ref_none
2217     } __ end_if(); // base  != NULL
2218   } __ end_if(); // offset == referent_offset
2219 
2220   // Final sync IdealKit and GraphKit.
2221   final_sync(ideal);
2222 #undef __
2223 }
2224 
2225 
2226 // Interpret Unsafe.fieldOffset cookies correctly:
2227 extern jlong Unsafe_field_offset_to_byte_offset(jlong field_offset);
2228 
2229 bool LibraryCallKit::inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile) {
2230   if (callee()->is_static())  return false;  // caller must have the capability!
2231 
2232 #ifndef PRODUCT
2233   {
2234     ResourceMark rm;
2235     // Check the signatures.
2236     ciSignature* sig = signature();
2237 #ifdef ASSERT
2238     if (!is_store) {
2239       // Object getObject(Object base, int/long offset), etc.
2240       BasicType rtype = sig->return_type()->basic_type();
2241       if (rtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::getAddress_name())
2242           rtype = T_ADDRESS;  // it is really a C void*
2243       assert(rtype == type, "getter must return the expected value");
2244       if (!is_native_ptr) {
2245         assert(sig->count() == 2, "oop getter has 2 arguments");
2246         assert(sig->type_at(0)->basic_type() == T_OBJECT, "getter base is object");
2247         assert(sig->type_at(1)->basic_type() == T_LONG, "getter offset is correct");
2248       } else {
2249         assert(sig->count() == 1, "native getter has 1 argument");
2250         assert(sig->type_at(0)->basic_type() == T_LONG, "getter base is long");
2251       }
2252     } else {
2253       // void putObject(Object base, int/long offset, Object x), etc.
2254       assert(sig->return_type()->basic_type() == T_VOID, "putter must not return a value");
2255       if (!is_native_ptr) {
2256         assert(sig->count() == 3, "oop putter has 3 arguments");
2257         assert(sig->type_at(0)->basic_type() == T_OBJECT, "putter base is object");
2258         assert(sig->type_at(1)->basic_type() == T_LONG, "putter offset is correct");
2259       } else {
2260         assert(sig->count() == 2, "native putter has 2 arguments");
2261         assert(sig->type_at(0)->basic_type() == T_LONG, "putter base is long");
2262       }
2263       BasicType vtype = sig->type_at(sig->count()-1)->basic_type();
2264       if (vtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::putAddress_name())
2265         vtype = T_ADDRESS;  // it is really a C void*
2266       assert(vtype == type, "putter must accept the expected value");
2267     }
2268 #endif // ASSERT
2269  }
2270 #endif //PRODUCT
2271 
2272   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2273 
2274   int type_words = type2size[ (type == T_ADDRESS) ? T_LONG : type ];
2275 
2276   // Argument words:  "this" plus (oop/offset) or (lo/hi) args plus maybe 1 or 2 value words
2277   int nargs = 1 + (is_native_ptr ? 2 : 3) + (is_store ? type_words : 0);
2278 
2279   debug_only(int saved_sp = _sp);
2280   _sp += nargs;
2281 
2282   Node* val;
2283   debug_only(val = (Node*)(uintptr_t)-1);
2284 
2285 
2286   if (is_store) {
2287     // Get the value being stored.  (Pop it first; it was pushed last.)
2288     switch (type) {
2289     case T_DOUBLE:
2290     case T_LONG:
2291     case T_ADDRESS:
2292       val = pop_pair();
2293       break;
2294     default:
2295       val = pop();
2296     }
2297   }
2298 
2299   // Build address expression.  See the code in inline_unsafe_prefetch.
2300   Node *adr;
2301   Node *heap_base_oop = top();
2302   Node* offset = top();
2303 
2304   if (!is_native_ptr) {
2305     // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
2306     offset = pop_pair();
2307     // The base is either a Java object or a value produced by Unsafe.staticFieldBase
2308     Node* base   = pop();
2309     // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2310     // to be plain byte offsets, which are also the same as those accepted
2311     // by oopDesc::field_base.
2312     assert(Unsafe_field_offset_to_byte_offset(11) == 11,
2313            "fieldOffset must be byte-scaled");
2314     // 32-bit machines ignore the high half!
2315     offset = ConvL2X(offset);
2316     adr = make_unsafe_address(base, offset);
2317     heap_base_oop = base;
2318   } else {
2319     Node* ptr = pop_pair();
2320     // Adjust Java long to machine word:
2321     ptr = ConvL2X(ptr);
2322     adr = make_unsafe_address(NULL, ptr);
2323   }
2324 
2325   // Pop receiver last:  it was pushed first.
2326   Node *receiver = pop();
2327 
2328   assert(saved_sp == _sp, "must have correct argument count");
2329 
2330   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
2331 
2332   // First guess at the value type.
2333   const Type *value_type = Type::get_const_basic_type(type);
2334 
2335   // Try to categorize the address.  If it comes up as TypeJavaPtr::BOTTOM,
2336   // there was not enough information to nail it down.
2337   Compile::AliasType* alias_type = C->alias_type(adr_type);
2338   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
2339 
2340   // We will need memory barriers unless we can determine a unique
2341   // alias category for this reference.  (Note:  If for some reason
2342   // the barriers get omitted and the unsafe reference begins to "pollute"
2343   // the alias analysis of the rest of the graph, either Compile::can_alias
2344   // or Compile::must_alias will throw a diagnostic assert.)
2345   bool need_mem_bar = (alias_type->adr_type() == TypeOopPtr::BOTTOM);
2346 
2347   // If we are reading the value of the referent field of a Reference
2348   // object (either by using Unsafe directly or through reflection)
2349   // then, if G1 is enabled, we need to record the referent in an
2350   // SATB log buffer using the pre-barrier mechanism.
2351   bool need_read_barrier = UseG1GC && !is_native_ptr && !is_store &&
2352                            offset != top() && heap_base_oop != top();
2353 
2354   if (!is_store && type == T_OBJECT) {
2355     // Attempt to infer a sharper value type from the offset and base type.
2356     ciKlass* sharpened_klass = NULL;
2357 
2358     // See if it is an instance field, with an object type.
2359     if (alias_type->field() != NULL) {
2360       assert(!is_native_ptr, "native pointer op cannot use a java address");
2361       if (alias_type->field()->type()->is_klass()) {
2362         sharpened_klass = alias_type->field()->type()->as_klass();
2363       }
2364     }
2365 
2366     // See if it is a narrow oop array.
2367     if (adr_type->isa_aryptr()) {
2368       if (adr_type->offset() >= objArrayOopDesc::base_offset_in_bytes()) {
2369         const TypeOopPtr *elem_type = adr_type->is_aryptr()->elem()->isa_oopptr();
2370         if (elem_type != NULL) {
2371           sharpened_klass = elem_type->klass();
2372         }
2373       }
2374     }
2375 
2376     if (sharpened_klass != NULL) {
2377       const TypeOopPtr* tjp = TypeOopPtr::make_from_klass(sharpened_klass);
2378 
2379       // Sharpen the value type.
2380       value_type = tjp;
2381 
2382 #ifndef PRODUCT
2383       if (PrintIntrinsics || PrintInlining || PrintOptoInlining) {
2384         tty->print("  from base type:  ");   adr_type->dump();
2385         tty->print("  sharpened value: "); value_type->dump();
2386       }
2387 #endif
2388     }
2389   }
2390 
2391   // Null check on self without removing any arguments.  The argument
2392   // null check technically happens in the wrong place, which can lead to
2393   // invalid stack traces when the primitive is inlined into a method
2394   // which handles NullPointerExceptions.
2395   _sp += nargs;
2396   do_null_check(receiver, T_OBJECT);
2397   _sp -= nargs;
2398   if (stopped()) {
2399     return true;
2400   }
2401   // Heap pointers get a null-check from the interpreter,
2402   // as a courtesy.  However, this is not guaranteed by Unsafe,
2403   // and it is not possible to fully distinguish unintended nulls
2404   // from intended ones in this API.
2405 
2406   if (is_volatile) {
2407     // We need to emit leading and trailing CPU membars (see below) in
2408     // addition to memory membars when is_volatile. This is a little
2409     // too strong, but avoids the need to insert per-alias-type
2410     // volatile membars (for stores; compare Parse::do_put_xxx), which
2411     // we cannot do effectively here because we probably only have a
2412     // rough approximation of type.
2413     need_mem_bar = true;
2414     // For Stores, place a memory ordering barrier now.
2415     if (is_store)
2416       insert_mem_bar(Op_MemBarRelease);
2417   }
2418 
2419   // Memory barrier to prevent normal and 'unsafe' accesses from
2420   // bypassing each other.  Happens after null checks, so the
2421   // exception paths do not take memory state from the memory barrier,
2422   // so there's no problems making a strong assert about mixing users
2423   // of safe & unsafe memory.  Otherwise fails in a CTW of rt.jar
2424   // around 5701, class sun/reflect/UnsafeBooleanFieldAccessorImpl.
2425   if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
2426 
2427   if (!is_store) {
2428     Node* p = make_load(control(), adr, value_type, type, adr_type, is_volatile);
2429     // load value and push onto stack
2430     switch (type) {
2431     case T_BOOLEAN:
2432     case T_CHAR:
2433     case T_BYTE:
2434     case T_SHORT:
2435     case T_INT:
2436     case T_FLOAT:
2437       push(p);
2438       break;
2439     case T_OBJECT:
2440       if (need_read_barrier) {
2441         insert_g1_pre_barrier(heap_base_oop, offset, p);
2442       }
2443       push(p);
2444       break;
2445     case T_ADDRESS:
2446       // Cast to an int type.
2447       p = _gvn.transform( new (C, 2) CastP2XNode(NULL,p) );
2448       p = ConvX2L(p);
2449       push_pair(p);
2450       break;
2451     case T_DOUBLE:
2452     case T_LONG:
2453       push_pair( p );
2454       break;
2455     default: ShouldNotReachHere();
2456     }
2457   } else {
2458     // place effect of store into memory
2459     switch (type) {
2460     case T_DOUBLE:
2461       val = dstore_rounding(val);
2462       break;
2463     case T_ADDRESS:
2464       // Repackage the long as a pointer.
2465       val = ConvL2X(val);
2466       val = _gvn.transform( new (C, 2) CastX2PNode(val) );
2467       break;
2468     }
2469 
2470     if (type != T_OBJECT ) {
2471       (void) store_to_memory(control(), adr, val, type, adr_type, is_volatile);
2472     } else {
2473       // Possibly an oop being stored to Java heap or native memory
2474       if (!TypePtr::NULL_PTR->higher_equal(_gvn.type(heap_base_oop))) {
2475         // oop to Java heap.
2476         (void) store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type);
2477       } else {
2478         // We can't tell at compile time if we are storing in the Java heap or outside
2479         // of it. So we need to emit code to conditionally do the proper type of
2480         // store.
2481 
2482         IdealKit ideal(this);
2483 #define __ ideal.
2484         // QQQ who knows what probability is here??
2485         __ if_then(heap_base_oop, BoolTest::ne, null(), PROB_UNLIKELY(0.999)); {
2486           // Sync IdealKit and graphKit.
2487           sync_kit(ideal);
2488           Node* st = store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type);
2489           // Update IdealKit memory.
2490           __ sync_kit(this);
2491         } __ else_(); {
2492           __ store(__ ctrl(), adr, val, type, alias_type->index(), is_volatile);
2493         } __ end_if();
2494         // Final sync IdealKit and GraphKit.
2495         final_sync(ideal);
2496 #undef __
2497       }
2498     }
2499   }
2500 
2501   if (is_volatile) {
2502     if (!is_store)
2503       insert_mem_bar(Op_MemBarAcquire);
2504     else
2505       insert_mem_bar(Op_MemBarVolatile);
2506   }
2507 
2508   if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
2509 
2510   return true;
2511 }
2512 
2513 //----------------------------inline_unsafe_prefetch----------------------------
2514 
2515 bool LibraryCallKit::inline_unsafe_prefetch(bool is_native_ptr, bool is_store, bool is_static) {
2516 #ifndef PRODUCT
2517   {
2518     ResourceMark rm;
2519     // Check the signatures.
2520     ciSignature* sig = signature();
2521 #ifdef ASSERT
2522     // Object getObject(Object base, int/long offset), etc.
2523     BasicType rtype = sig->return_type()->basic_type();
2524     if (!is_native_ptr) {
2525       assert(sig->count() == 2, "oop prefetch has 2 arguments");
2526       assert(sig->type_at(0)->basic_type() == T_OBJECT, "prefetch base is object");
2527       assert(sig->type_at(1)->basic_type() == T_LONG, "prefetcha offset is correct");
2528     } else {
2529       assert(sig->count() == 1, "native prefetch has 1 argument");
2530       assert(sig->type_at(0)->basic_type() == T_LONG, "prefetch base is long");
2531     }
2532 #endif // ASSERT
2533   }
2534 #endif // !PRODUCT
2535 
2536   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2537 
2538   // Argument words:  "this" if not static, plus (oop/offset) or (lo/hi) args
2539   int nargs = (is_static ? 0 : 1) + (is_native_ptr ? 2 : 3);
2540 
2541   debug_only(int saved_sp = _sp);
2542   _sp += nargs;
2543 
2544   // Build address expression.  See the code in inline_unsafe_access.
2545   Node *adr;
2546   if (!is_native_ptr) {
2547     // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
2548     Node* offset = pop_pair();
2549     // The base is either a Java object or a value produced by Unsafe.staticFieldBase
2550     Node* base   = pop();
2551     // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2552     // to be plain byte offsets, which are also the same as those accepted
2553     // by oopDesc::field_base.
2554     assert(Unsafe_field_offset_to_byte_offset(11) == 11,
2555            "fieldOffset must be byte-scaled");
2556     // 32-bit machines ignore the high half!
2557     offset = ConvL2X(offset);
2558     adr = make_unsafe_address(base, offset);
2559   } else {
2560     Node* ptr = pop_pair();
2561     // Adjust Java long to machine word:
2562     ptr = ConvL2X(ptr);
2563     adr = make_unsafe_address(NULL, ptr);
2564   }
2565 
2566   if (is_static) {
2567     assert(saved_sp == _sp, "must have correct argument count");
2568   } else {
2569     // Pop receiver last:  it was pushed first.
2570     Node *receiver = pop();
2571     assert(saved_sp == _sp, "must have correct argument count");
2572 
2573     // Null check on self without removing any arguments.  The argument
2574     // null check technically happens in the wrong place, which can lead to
2575     // invalid stack traces when the primitive is inlined into a method
2576     // which handles NullPointerExceptions.
2577     _sp += nargs;
2578     do_null_check(receiver, T_OBJECT);
2579     _sp -= nargs;
2580     if (stopped()) {
2581       return true;
2582     }
2583   }
2584 
2585   // Generate the read or write prefetch
2586   Node *prefetch;
2587   if (is_store) {
2588     prefetch = new (C, 3) PrefetchWriteNode(i_o(), adr);
2589   } else {
2590     prefetch = new (C, 3) PrefetchReadNode(i_o(), adr);
2591   }
2592   prefetch->init_req(0, control());
2593   set_i_o(_gvn.transform(prefetch));
2594 
2595   return true;
2596 }
2597 
2598 //----------------------------inline_unsafe_CAS----------------------------
2599 
2600 bool LibraryCallKit::inline_unsafe_CAS(BasicType type) {
2601   // This basic scheme here is the same as inline_unsafe_access, but
2602   // differs in enough details that combining them would make the code
2603   // overly confusing.  (This is a true fact! I originally combined
2604   // them, but even I was confused by it!) As much code/comments as
2605   // possible are retained from inline_unsafe_access though to make
2606   // the correspondences clearer. - dl
2607 
2608   if (callee()->is_static())  return false;  // caller must have the capability!
2609 
2610 #ifndef PRODUCT
2611   {
2612     ResourceMark rm;
2613     // Check the signatures.
2614     ciSignature* sig = signature();
2615 #ifdef ASSERT
2616     BasicType rtype = sig->return_type()->basic_type();
2617     assert(rtype == T_BOOLEAN, "CAS must return boolean");
2618     assert(sig->count() == 4, "CAS has 4 arguments");
2619     assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object");
2620     assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long");
2621 #endif // ASSERT
2622   }
2623 #endif //PRODUCT
2624 
2625   // number of stack slots per value argument (1 or 2)
2626   int type_words = type2size[type];
2627 
2628   // Cannot inline wide CAS on machines that don't support it natively
2629   if (type2aelembytes(type) > BytesPerInt && !VM_Version::supports_cx8())
2630     return false;
2631 
2632   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2633 
2634   // Argument words:  "this" plus oop plus offset plus oldvalue plus newvalue;
2635   int nargs = 1 + 1 + 2  + type_words + type_words;
2636 
2637   // pop arguments: newval, oldval, offset, base, and receiver
2638   debug_only(int saved_sp = _sp);
2639   _sp += nargs;
2640   Node* newval   = (type_words == 1) ? pop() : pop_pair();
2641   Node* oldval   = (type_words == 1) ? pop() : pop_pair();
2642   Node *offset   = pop_pair();
2643   Node *base     = pop();
2644   Node *receiver = pop();
2645   assert(saved_sp == _sp, "must have correct argument count");
2646 
2647   //  Null check receiver.
2648   _sp += nargs;
2649   do_null_check(receiver, T_OBJECT);
2650   _sp -= nargs;
2651   if (stopped()) {
2652     return true;
2653   }
2654 
2655   // Build field offset expression.
2656   // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2657   // to be plain byte offsets, which are also the same as those accepted
2658   // by oopDesc::field_base.
2659   assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
2660   // 32-bit machines ignore the high half of long offsets
2661   offset = ConvL2X(offset);
2662   Node* adr = make_unsafe_address(base, offset);
2663   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
2664 
2665   // (Unlike inline_unsafe_access, there seems no point in trying
2666   // to refine types. Just use the coarse types here.
2667   const Type *value_type = Type::get_const_basic_type(type);
2668   Compile::AliasType* alias_type = C->alias_type(adr_type);
2669   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
2670   int alias_idx = C->get_alias_index(adr_type);
2671 
2672   // Memory-model-wise, a CAS acts like a little synchronized block,
2673   // so needs barriers on each side.  These don't translate into
2674   // actual barriers on most machines, but we still need rest of
2675   // compiler to respect ordering.
2676 
2677   insert_mem_bar(Op_MemBarRelease);
2678   insert_mem_bar(Op_MemBarCPUOrder);
2679 
2680   // 4984716: MemBars must be inserted before this
2681   //          memory node in order to avoid a false
2682   //          dependency which will confuse the scheduler.
2683   Node *mem = memory(alias_idx);
2684 
2685   // For now, we handle only those cases that actually exist: ints,
2686   // longs, and Object. Adding others should be straightforward.
2687   Node* cas;
2688   switch(type) {
2689   case T_INT:
2690     cas = _gvn.transform(new (C, 5) CompareAndSwapINode(control(), mem, adr, newval, oldval));
2691     break;
2692   case T_LONG:
2693     cas = _gvn.transform(new (C, 5) CompareAndSwapLNode(control(), mem, adr, newval, oldval));
2694     break;
2695   case T_OBJECT:
2696     // Transformation of a value which could be NULL pointer (CastPP #NULL)
2697     // could be delayed during Parse (for example, in adjust_map_after_if()).
2698     // Execute transformation here to avoid barrier generation in such case.
2699     if (_gvn.type(newval) == TypePtr::NULL_PTR)
2700       newval = _gvn.makecon(TypePtr::NULL_PTR);
2701 
2702     // Reference stores need a store barrier.
2703     // (They don't if CAS fails, but it isn't worth checking.)
2704     pre_barrier(true /* do_load*/,
2705                 control(), base, adr, alias_idx, newval, value_type->make_oopptr(),
2706                 NULL /* pre_val*/,
2707                 T_OBJECT);
2708 #ifdef _LP64
2709     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
2710       Node *newval_enc = _gvn.transform(new (C, 2) EncodePNode(newval, newval->bottom_type()->make_narrowoop()));
2711       Node *oldval_enc = _gvn.transform(new (C, 2) EncodePNode(oldval, oldval->bottom_type()->make_narrowoop()));
2712       cas = _gvn.transform(new (C, 5) CompareAndSwapNNode(control(), mem, adr,
2713                                                           newval_enc, oldval_enc));
2714     } else
2715 #endif
2716     {
2717       cas = _gvn.transform(new (C, 5) CompareAndSwapPNode(control(), mem, adr, newval, oldval));
2718     }
2719     post_barrier(control(), cas, base, adr, alias_idx, newval, T_OBJECT, true);
2720     break;
2721   default:
2722     ShouldNotReachHere();
2723     break;
2724   }
2725 
2726   // SCMemProjNodes represent the memory state of CAS. Their main
2727   // role is to prevent CAS nodes from being optimized away when their
2728   // results aren't used.
2729   Node* proj = _gvn.transform( new (C, 1) SCMemProjNode(cas));
2730   set_memory(proj, alias_idx);
2731 
2732   // Add the trailing membar surrounding the access
2733   insert_mem_bar(Op_MemBarCPUOrder);
2734   insert_mem_bar(Op_MemBarAcquire);
2735 
2736   push(cas);
2737   return true;
2738 }
2739 
2740 bool LibraryCallKit::inline_unsafe_ordered_store(BasicType type) {
2741   // This is another variant of inline_unsafe_access, differing in
2742   // that it always issues store-store ("release") barrier and ensures
2743   // store-atomicity (which only matters for "long").
2744 
2745   if (callee()->is_static())  return false;  // caller must have the capability!
2746 
2747 #ifndef PRODUCT
2748   {
2749     ResourceMark rm;
2750     // Check the signatures.
2751     ciSignature* sig = signature();
2752 #ifdef ASSERT
2753     BasicType rtype = sig->return_type()->basic_type();
2754     assert(rtype == T_VOID, "must return void");
2755     assert(sig->count() == 3, "has 3 arguments");
2756     assert(sig->type_at(0)->basic_type() == T_OBJECT, "base is object");
2757     assert(sig->type_at(1)->basic_type() == T_LONG, "offset is long");
2758 #endif // ASSERT
2759   }
2760 #endif //PRODUCT
2761 
2762   // number of stack slots per value argument (1 or 2)
2763   int type_words = type2size[type];
2764 
2765   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2766 
2767   // Argument words:  "this" plus oop plus offset plus value;
2768   int nargs = 1 + 1 + 2 + type_words;
2769 
2770   // pop arguments: val, offset, base, and receiver
2771   debug_only(int saved_sp = _sp);
2772   _sp += nargs;
2773   Node* val      = (type_words == 1) ? pop() : pop_pair();
2774   Node *offset   = pop_pair();
2775   Node *base     = pop();
2776   Node *receiver = pop();
2777   assert(saved_sp == _sp, "must have correct argument count");
2778 
2779   //  Null check receiver.
2780   _sp += nargs;
2781   do_null_check(receiver, T_OBJECT);
2782   _sp -= nargs;
2783   if (stopped()) {
2784     return true;
2785   }
2786 
2787   // Build field offset expression.
2788   assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
2789   // 32-bit machines ignore the high half of long offsets
2790   offset = ConvL2X(offset);
2791   Node* adr = make_unsafe_address(base, offset);
2792   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
2793   const Type *value_type = Type::get_const_basic_type(type);
2794   Compile::AliasType* alias_type = C->alias_type(adr_type);
2795 
2796   insert_mem_bar(Op_MemBarRelease);
2797   insert_mem_bar(Op_MemBarCPUOrder);
2798   // Ensure that the store is atomic for longs:
2799   bool require_atomic_access = true;
2800   Node* store;
2801   if (type == T_OBJECT) // reference stores need a store barrier.
2802     store = store_oop_to_unknown(control(), base, adr, adr_type, val, type);
2803   else {
2804     store = store_to_memory(control(), adr, val, type, adr_type, require_atomic_access);
2805   }
2806   insert_mem_bar(Op_MemBarCPUOrder);
2807   return true;
2808 }
2809 
2810 bool LibraryCallKit::inline_unsafe_allocate() {
2811   if (callee()->is_static())  return false;  // caller must have the capability!
2812   int nargs = 1 + 1;
2813   assert(signature()->size() == nargs-1, "alloc has 1 argument");
2814   null_check_receiver(callee());  // check then ignore argument(0)
2815   _sp += nargs;  // set original stack for use by uncommon_trap
2816   Node* cls = do_null_check(argument(1), T_OBJECT);
2817   _sp -= nargs;
2818   if (stopped())  return true;
2819 
2820   Node* kls = load_klass_from_mirror(cls, false, nargs, NULL, 0);
2821   _sp += nargs;  // set original stack for use by uncommon_trap
2822   kls = do_null_check(kls, T_OBJECT);
2823   _sp -= nargs;
2824   if (stopped())  return true;  // argument was like int.class
2825 
2826   // Note:  The argument might still be an illegal value like
2827   // Serializable.class or Object[].class.   The runtime will handle it.
2828   // But we must make an explicit check for initialization.
2829   Node* insp = basic_plus_adr(kls, in_bytes(instanceKlass::init_state_offset()));
2830   // Use T_BOOLEAN for instanceKlass::_init_state so the compiler
2831   // can generate code to load it as unsigned byte.
2832   Node* inst = make_load(NULL, insp, TypeInt::UBYTE, T_BOOLEAN);
2833   Node* bits = intcon(instanceKlass::fully_initialized);
2834   Node* test = _gvn.transform( new (C, 3) SubINode(inst, bits) );
2835   // The 'test' is non-zero if we need to take a slow path.
2836 
2837   Node* obj = new_instance(kls, test);
2838   push(obj);
2839 
2840   return true;
2841 }
2842 
2843 //------------------------inline_native_time_funcs--------------
2844 // inline code for System.currentTimeMillis() and System.nanoTime()
2845 // these have the same type and signature
2846 bool LibraryCallKit::inline_native_time_funcs(bool isNano) {
2847   address funcAddr = isNano ? CAST_FROM_FN_PTR(address, os::javaTimeNanos) :
2848                               CAST_FROM_FN_PTR(address, os::javaTimeMillis);
2849   const char * funcName = isNano ? "nanoTime" : "currentTimeMillis";
2850   const TypeFunc *tf = OptoRuntime::current_time_millis_Type();
2851   const TypePtr* no_memory_effects = NULL;
2852   Node* time = make_runtime_call(RC_LEAF, tf, funcAddr, funcName, no_memory_effects);
2853   Node* value = _gvn.transform(new (C, 1) ProjNode(time, TypeFunc::Parms+0));
2854 #ifdef ASSERT
2855   Node* value_top = _gvn.transform(new (C, 1) ProjNode(time, TypeFunc::Parms + 1));
2856   assert(value_top == top(), "second value must be top");
2857 #endif
2858   push_pair(value);
2859   return true;
2860 }
2861 
2862 //------------------------inline_native_currentThread------------------
2863 bool LibraryCallKit::inline_native_currentThread() {
2864   Node* junk = NULL;
2865   push(generate_current_thread(junk));
2866   return true;
2867 }
2868 
2869 //------------------------inline_native_isInterrupted------------------
2870 bool LibraryCallKit::inline_native_isInterrupted() {
2871   const int nargs = 1+1;  // receiver + boolean
2872   assert(nargs == arg_size(), "sanity");
2873   // Add a fast path to t.isInterrupted(clear_int):
2874   //   (t == Thread.current() && (!TLS._osthread._interrupted || !clear_int))
2875   //   ? TLS._osthread._interrupted : /*slow path:*/ t.isInterrupted(clear_int)
2876   // So, in the common case that the interrupt bit is false,
2877   // we avoid making a call into the VM.  Even if the interrupt bit
2878   // is true, if the clear_int argument is false, we avoid the VM call.
2879   // However, if the receiver is not currentThread, we must call the VM,
2880   // because there must be some locking done around the operation.
2881 
2882   // We only go to the fast case code if we pass two guards.
2883   // Paths which do not pass are accumulated in the slow_region.
2884   RegionNode* slow_region = new (C, 1) RegionNode(1);
2885   record_for_igvn(slow_region);
2886   RegionNode* result_rgn = new (C, 4) RegionNode(1+3); // fast1, fast2, slow
2887   PhiNode*    result_val = new (C, 4) PhiNode(result_rgn, TypeInt::BOOL);
2888   enum { no_int_result_path   = 1,
2889          no_clear_result_path = 2,
2890          slow_result_path     = 3
2891   };
2892 
2893   // (a) Receiving thread must be the current thread.
2894   Node* rec_thr = argument(0);
2895   Node* tls_ptr = NULL;
2896   Node* cur_thr = generate_current_thread(tls_ptr);
2897   Node* cmp_thr = _gvn.transform( new (C, 3) CmpPNode(cur_thr, rec_thr) );
2898   Node* bol_thr = _gvn.transform( new (C, 2) BoolNode(cmp_thr, BoolTest::ne) );
2899 
2900   bool known_current_thread = (_gvn.type(bol_thr) == TypeInt::ZERO);
2901   if (!known_current_thread)
2902     generate_slow_guard(bol_thr, slow_region);
2903 
2904   // (b) Interrupt bit on TLS must be false.
2905   Node* p = basic_plus_adr(top()/*!oop*/, tls_ptr, in_bytes(JavaThread::osthread_offset()));
2906   Node* osthread = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS);
2907   p = basic_plus_adr(top()/*!oop*/, osthread, in_bytes(OSThread::interrupted_offset()));
2908   // Set the control input on the field _interrupted read to prevent it floating up.
2909   Node* int_bit = make_load(control(), p, TypeInt::BOOL, T_INT);
2910   Node* cmp_bit = _gvn.transform( new (C, 3) CmpINode(int_bit, intcon(0)) );
2911   Node* bol_bit = _gvn.transform( new (C, 2) BoolNode(cmp_bit, BoolTest::ne) );
2912 
2913   IfNode* iff_bit = create_and_map_if(control(), bol_bit, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
2914 
2915   // First fast path:  if (!TLS._interrupted) return false;
2916   Node* false_bit = _gvn.transform( new (C, 1) IfFalseNode(iff_bit) );
2917   result_rgn->init_req(no_int_result_path, false_bit);
2918   result_val->init_req(no_int_result_path, intcon(0));
2919 
2920   // drop through to next case
2921   set_control( _gvn.transform(new (C, 1) IfTrueNode(iff_bit)) );
2922 
2923   // (c) Or, if interrupt bit is set and clear_int is false, use 2nd fast path.
2924   Node* clr_arg = argument(1);
2925   Node* cmp_arg = _gvn.transform( new (C, 3) CmpINode(clr_arg, intcon(0)) );
2926   Node* bol_arg = _gvn.transform( new (C, 2) BoolNode(cmp_arg, BoolTest::ne) );
2927   IfNode* iff_arg = create_and_map_if(control(), bol_arg, PROB_FAIR, COUNT_UNKNOWN);
2928 
2929   // Second fast path:  ... else if (!clear_int) return true;
2930   Node* false_arg = _gvn.transform( new (C, 1) IfFalseNode(iff_arg) );
2931   result_rgn->init_req(no_clear_result_path, false_arg);
2932   result_val->init_req(no_clear_result_path, intcon(1));
2933 
2934   // drop through to next case
2935   set_control( _gvn.transform(new (C, 1) IfTrueNode(iff_arg)) );
2936 
2937   // (d) Otherwise, go to the slow path.
2938   slow_region->add_req(control());
2939   set_control( _gvn.transform(slow_region) );
2940 
2941   if (stopped()) {
2942     // There is no slow path.
2943     result_rgn->init_req(slow_result_path, top());
2944     result_val->init_req(slow_result_path, top());
2945   } else {
2946     // non-virtual because it is a private non-static
2947     CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_isInterrupted);
2948 
2949     Node* slow_val = set_results_for_java_call(slow_call);
2950     // this->control() comes from set_results_for_java_call
2951 
2952     // If we know that the result of the slow call will be true, tell the optimizer!
2953     if (known_current_thread)  slow_val = intcon(1);
2954 
2955     Node* fast_io  = slow_call->in(TypeFunc::I_O);
2956     Node* fast_mem = slow_call->in(TypeFunc::Memory);
2957     // These two phis are pre-filled with copies of of the fast IO and Memory
2958     Node* io_phi   = PhiNode::make(result_rgn, fast_io,  Type::ABIO);
2959     Node* mem_phi  = PhiNode::make(result_rgn, fast_mem, Type::MEMORY, TypePtr::BOTTOM);
2960 
2961     result_rgn->init_req(slow_result_path, control());
2962     io_phi    ->init_req(slow_result_path, i_o());
2963     mem_phi   ->init_req(slow_result_path, reset_memory());
2964     result_val->init_req(slow_result_path, slow_val);
2965 
2966     set_all_memory( _gvn.transform(mem_phi) );
2967     set_i_o(        _gvn.transform(io_phi) );
2968   }
2969 
2970   push_result(result_rgn, result_val);
2971   C->set_has_split_ifs(true); // Has chance for split-if optimization
2972 
2973   return true;
2974 }
2975 
2976 //---------------------------load_mirror_from_klass----------------------------
2977 // Given a klass oop, load its java mirror (a java.lang.Class oop).
2978 Node* LibraryCallKit::load_mirror_from_klass(Node* klass) {
2979   Node* p = basic_plus_adr(klass, in_bytes(Klass::java_mirror_offset()));
2980   return make_load(NULL, p, TypeInstPtr::MIRROR, T_OBJECT);
2981 }
2982 
2983 //-----------------------load_klass_from_mirror_common-------------------------
2984 // Given a java mirror (a java.lang.Class oop), load its corresponding klass oop.
2985 // Test the klass oop for null (signifying a primitive Class like Integer.TYPE),
2986 // and branch to the given path on the region.
2987 // If never_see_null, take an uncommon trap on null, so we can optimistically
2988 // compile for the non-null case.
2989 // If the region is NULL, force never_see_null = true.
2990 Node* LibraryCallKit::load_klass_from_mirror_common(Node* mirror,
2991                                                     bool never_see_null,
2992                                                     int nargs,
2993                                                     RegionNode* region,
2994                                                     int null_path,
2995                                                     int offset) {
2996   if (region == NULL)  never_see_null = true;
2997   Node* p = basic_plus_adr(mirror, offset);
2998   const TypeKlassPtr*  kls_type = TypeKlassPtr::OBJECT_OR_NULL;
2999   Node* kls = _gvn.transform( LoadKlassNode::make(_gvn, immutable_memory(), p, TypeRawPtr::BOTTOM, kls_type) );
3000   _sp += nargs; // any deopt will start just before call to enclosing method
3001   Node* null_ctl = top();
3002   kls = null_check_oop(kls, &null_ctl, never_see_null);
3003   if (region != NULL) {
3004     // Set region->in(null_path) if the mirror is a primitive (e.g, int.class).
3005     region->init_req(null_path, null_ctl);
3006   } else {
3007     assert(null_ctl == top(), "no loose ends");
3008   }
3009   _sp -= nargs;
3010   return kls;
3011 }
3012 
3013 //--------------------(inline_native_Class_query helpers)---------------------
3014 // Use this for JVM_ACC_INTERFACE, JVM_ACC_IS_CLONEABLE, JVM_ACC_HAS_FINALIZER.
3015 // Fall through if (mods & mask) == bits, take the guard otherwise.
3016 Node* LibraryCallKit::generate_access_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region) {
3017   // Branch around if the given klass has the given modifier bit set.
3018   // Like generate_guard, adds a new path onto the region.
3019   Node* modp = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
3020   Node* mods = make_load(NULL, modp, TypeInt::INT, T_INT);
3021   Node* mask = intcon(modifier_mask);
3022   Node* bits = intcon(modifier_bits);
3023   Node* mbit = _gvn.transform( new (C, 3) AndINode(mods, mask) );
3024   Node* cmp  = _gvn.transform( new (C, 3) CmpINode(mbit, bits) );
3025   Node* bol  = _gvn.transform( new (C, 2) BoolNode(cmp, BoolTest::ne) );
3026   return generate_fair_guard(bol, region);
3027 }
3028 Node* LibraryCallKit::generate_interface_guard(Node* kls, RegionNode* region) {
3029   return generate_access_flags_guard(kls, JVM_ACC_INTERFACE, 0, region);
3030 }
3031 
3032 //-------------------------inline_native_Class_query-------------------
3033 bool LibraryCallKit::inline_native_Class_query(vmIntrinsics::ID id) {
3034   int nargs = 1+0;  // just the Class mirror, in most cases
3035   const Type* return_type = TypeInt::BOOL;
3036   Node* prim_return_value = top();  // what happens if it's a primitive class?
3037   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3038   bool expect_prim = false;     // most of these guys expect to work on refs
3039 
3040   enum { _normal_path = 1, _prim_path = 2, PATH_LIMIT };
3041 
3042   switch (id) {
3043   case vmIntrinsics::_isInstance:
3044     nargs = 1+1;  // the Class mirror, plus the object getting queried about
3045     // nothing is an instance of a primitive type
3046     prim_return_value = intcon(0);
3047     break;
3048   case vmIntrinsics::_getModifiers:
3049     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
3050     assert(is_power_of_2((int)JVM_ACC_WRITTEN_FLAGS+1), "change next line");
3051     return_type = TypeInt::make(0, JVM_ACC_WRITTEN_FLAGS, Type::WidenMin);
3052     break;
3053   case vmIntrinsics::_isInterface:
3054     prim_return_value = intcon(0);
3055     break;
3056   case vmIntrinsics::_isArray:
3057     prim_return_value = intcon(0);
3058     expect_prim = true;  // cf. ObjectStreamClass.getClassSignature
3059     break;
3060   case vmIntrinsics::_isPrimitive:
3061     prim_return_value = intcon(1);
3062     expect_prim = true;  // obviously
3063     break;
3064   case vmIntrinsics::_getSuperclass:
3065     prim_return_value = null();
3066     return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
3067     break;
3068   case vmIntrinsics::_getComponentType:
3069     prim_return_value = null();
3070     return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
3071     break;
3072   case vmIntrinsics::_getClassAccessFlags:
3073     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
3074     return_type = TypeInt::INT;  // not bool!  6297094
3075     break;
3076   default:
3077     ShouldNotReachHere();
3078   }
3079 
3080   Node* mirror =                      argument(0);
3081   Node* obj    = (nargs <= 1)? top(): argument(1);
3082 
3083   const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
3084   if (mirror_con == NULL)  return false;  // cannot happen?
3085 
3086 #ifndef PRODUCT
3087   if (PrintIntrinsics || PrintInlining || PrintOptoInlining) {
3088     ciType* k = mirror_con->java_mirror_type();
3089     if (k) {
3090       tty->print("Inlining %s on constant Class ", vmIntrinsics::name_at(intrinsic_id()));
3091       k->print_name();
3092       tty->cr();
3093     }
3094   }
3095 #endif
3096 
3097   // Null-check the mirror, and the mirror's klass ptr (in case it is a primitive).
3098   RegionNode* region = new (C, PATH_LIMIT) RegionNode(PATH_LIMIT);
3099   record_for_igvn(region);
3100   PhiNode* phi = new (C, PATH_LIMIT) PhiNode(region, return_type);
3101 
3102   // The mirror will never be null of Reflection.getClassAccessFlags, however
3103   // it may be null for Class.isInstance or Class.getModifiers. Throw a NPE
3104   // if it is. See bug 4774291.
3105 
3106   // For Reflection.getClassAccessFlags(), the null check occurs in
3107   // the wrong place; see inline_unsafe_access(), above, for a similar
3108   // situation.
3109   _sp += nargs;  // set original stack for use by uncommon_trap
3110   mirror = do_null_check(mirror, T_OBJECT);
3111   _sp -= nargs;
3112   // If mirror or obj is dead, only null-path is taken.
3113   if (stopped())  return true;
3114 
3115   if (expect_prim)  never_see_null = false;  // expect nulls (meaning prims)
3116 
3117   // Now load the mirror's klass metaobject, and null-check it.
3118   // Side-effects region with the control path if the klass is null.
3119   Node* kls = load_klass_from_mirror(mirror, never_see_null, nargs,
3120                                      region, _prim_path);
3121   // If kls is null, we have a primitive mirror.
3122   phi->init_req(_prim_path, prim_return_value);
3123   if (stopped()) { push_result(region, phi); return true; }
3124 
3125   Node* p;  // handy temp
3126   Node* null_ctl;
3127 
3128   // Now that we have the non-null klass, we can perform the real query.
3129   // For constant classes, the query will constant-fold in LoadNode::Value.
3130   Node* query_value = top();
3131   switch (id) {
3132   case vmIntrinsics::_isInstance:
3133     // nothing is an instance of a primitive type
3134     _sp += nargs;          // gen_instanceof might do an uncommon trap
3135     query_value = gen_instanceof(obj, kls);
3136     _sp -= nargs;
3137     break;
3138 
3139   case vmIntrinsics::_getModifiers:
3140     p = basic_plus_adr(kls, in_bytes(Klass::modifier_flags_offset()));
3141     query_value = make_load(NULL, p, TypeInt::INT, T_INT);
3142     break;
3143 
3144   case vmIntrinsics::_isInterface:
3145     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
3146     if (generate_interface_guard(kls, region) != NULL)
3147       // A guard was added.  If the guard is taken, it was an interface.
3148       phi->add_req(intcon(1));
3149     // If we fall through, it's a plain class.
3150     query_value = intcon(0);
3151     break;
3152 
3153   case vmIntrinsics::_isArray:
3154     // (To verify this code sequence, check the asserts in JVM_IsArrayClass.)
3155     if (generate_array_guard(kls, region) != NULL)
3156       // A guard was added.  If the guard is taken, it was an array.
3157       phi->add_req(intcon(1));
3158     // If we fall through, it's a plain class.
3159     query_value = intcon(0);
3160     break;
3161 
3162   case vmIntrinsics::_isPrimitive:
3163     query_value = intcon(0); // "normal" path produces false
3164     break;
3165 
3166   case vmIntrinsics::_getSuperclass:
3167     // The rules here are somewhat unfortunate, but we can still do better
3168     // with random logic than with a JNI call.
3169     // Interfaces store null or Object as _super, but must report null.
3170     // Arrays store an intermediate super as _super, but must report Object.
3171     // Other types can report the actual _super.
3172     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
3173     if (generate_interface_guard(kls, region) != NULL)
3174       // A guard was added.  If the guard is taken, it was an interface.
3175       phi->add_req(null());
3176     if (generate_array_guard(kls, region) != NULL)
3177       // A guard was added.  If the guard is taken, it was an array.
3178       phi->add_req(makecon(TypeInstPtr::make(env()->Object_klass()->java_mirror())));
3179     // If we fall through, it's a plain class.  Get its _super.
3180     p = basic_plus_adr(kls, in_bytes(Klass::super_offset()));
3181     kls = _gvn.transform( LoadKlassNode::make(_gvn, immutable_memory(), p, TypeRawPtr::BOTTOM, TypeKlassPtr::OBJECT_OR_NULL) );
3182     null_ctl = top();
3183     kls = null_check_oop(kls, &null_ctl);
3184     if (null_ctl != top()) {
3185       // If the guard is taken, Object.superClass is null (both klass and mirror).
3186       region->add_req(null_ctl);
3187       phi   ->add_req(null());
3188     }
3189     if (!stopped()) {
3190       query_value = load_mirror_from_klass(kls);
3191     }
3192     break;
3193 
3194   case vmIntrinsics::_getComponentType:
3195     if (generate_array_guard(kls, region) != NULL) {
3196       // Be sure to pin the oop load to the guard edge just created:
3197       Node* is_array_ctrl = region->in(region->req()-1);
3198       Node* cma = basic_plus_adr(kls, in_bytes(arrayKlass::component_mirror_offset()));
3199       Node* cmo = make_load(is_array_ctrl, cma, TypeInstPtr::MIRROR, T_OBJECT);
3200       phi->add_req(cmo);
3201     }
3202     query_value = null();  // non-array case is null
3203     break;
3204 
3205   case vmIntrinsics::_getClassAccessFlags:
3206     p = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
3207     query_value = make_load(NULL, p, TypeInt::INT, T_INT);
3208     break;
3209 
3210   default:
3211     ShouldNotReachHere();
3212   }
3213 
3214   // Fall-through is the normal case of a query to a real class.
3215   phi->init_req(1, query_value);
3216   region->init_req(1, control());
3217 
3218   push_result(region, phi);
3219   C->set_has_split_ifs(true); // Has chance for split-if optimization
3220 
3221   return true;
3222 }
3223 
3224 //--------------------------inline_native_subtype_check------------------------
3225 // This intrinsic takes the JNI calls out of the heart of
3226 // UnsafeFieldAccessorImpl.set, which improves Field.set, readObject, etc.
3227 bool LibraryCallKit::inline_native_subtype_check() {
3228   int nargs = 1+1;  // the Class mirror, plus the other class getting examined
3229 
3230   // Pull both arguments off the stack.
3231   Node* args[2];                // two java.lang.Class mirrors: superc, subc
3232   args[0] = argument(0);
3233   args[1] = argument(1);
3234   Node* klasses[2];             // corresponding Klasses: superk, subk
3235   klasses[0] = klasses[1] = top();
3236 
3237   enum {
3238     // A full decision tree on {superc is prim, subc is prim}:
3239     _prim_0_path = 1,           // {P,N} => false
3240                                 // {P,P} & superc!=subc => false
3241     _prim_same_path,            // {P,P} & superc==subc => true
3242     _prim_1_path,               // {N,P} => false
3243     _ref_subtype_path,          // {N,N} & subtype check wins => true
3244     _both_ref_path,             // {N,N} & subtype check loses => false
3245     PATH_LIMIT
3246   };
3247 
3248   RegionNode* region = new (C, PATH_LIMIT) RegionNode(PATH_LIMIT);
3249   Node*       phi    = new (C, PATH_LIMIT) PhiNode(region, TypeInt::BOOL);
3250   record_for_igvn(region);
3251 
3252   const TypePtr* adr_type = TypeRawPtr::BOTTOM;   // memory type of loads
3253   const TypeKlassPtr* kls_type = TypeKlassPtr::OBJECT_OR_NULL;
3254   int class_klass_offset = java_lang_Class::klass_offset_in_bytes();
3255 
3256   // First null-check both mirrors and load each mirror's klass metaobject.
3257   int which_arg;
3258   for (which_arg = 0; which_arg <= 1; which_arg++) {
3259     Node* arg = args[which_arg];
3260     _sp += nargs;  // set original stack for use by uncommon_trap
3261     arg = do_null_check(arg, T_OBJECT);
3262     _sp -= nargs;
3263     if (stopped())  break;
3264     args[which_arg] = _gvn.transform(arg);
3265 
3266     Node* p = basic_plus_adr(arg, class_klass_offset);
3267     Node* kls = LoadKlassNode::make(_gvn, immutable_memory(), p, adr_type, kls_type);
3268     klasses[which_arg] = _gvn.transform(kls);
3269   }
3270 
3271   // Having loaded both klasses, test each for null.
3272   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3273   for (which_arg = 0; which_arg <= 1; which_arg++) {
3274     Node* kls = klasses[which_arg];
3275     Node* null_ctl = top();
3276     _sp += nargs;  // set original stack for use by uncommon_trap
3277     kls = null_check_oop(kls, &null_ctl, never_see_null);
3278     _sp -= nargs;
3279     int prim_path = (which_arg == 0 ? _prim_0_path : _prim_1_path);
3280     region->init_req(prim_path, null_ctl);
3281     if (stopped())  break;
3282     klasses[which_arg] = kls;
3283   }
3284 
3285   if (!stopped()) {
3286     // now we have two reference types, in klasses[0..1]
3287     Node* subk   = klasses[1];  // the argument to isAssignableFrom
3288     Node* superk = klasses[0];  // the receiver
3289     region->set_req(_both_ref_path, gen_subtype_check(subk, superk));
3290     // now we have a successful reference subtype check
3291     region->set_req(_ref_subtype_path, control());
3292   }
3293 
3294   // If both operands are primitive (both klasses null), then
3295   // we must return true when they are identical primitives.
3296   // It is convenient to test this after the first null klass check.
3297   set_control(region->in(_prim_0_path)); // go back to first null check
3298   if (!stopped()) {
3299     // Since superc is primitive, make a guard for the superc==subc case.
3300     Node* cmp_eq = _gvn.transform( new (C, 3) CmpPNode(args[0], args[1]) );
3301     Node* bol_eq = _gvn.transform( new (C, 2) BoolNode(cmp_eq, BoolTest::eq) );
3302     generate_guard(bol_eq, region, PROB_FAIR);
3303     if (region->req() == PATH_LIMIT+1) {
3304       // A guard was added.  If the added guard is taken, superc==subc.
3305       region->swap_edges(PATH_LIMIT, _prim_same_path);
3306       region->del_req(PATH_LIMIT);
3307     }
3308     region->set_req(_prim_0_path, control()); // Not equal after all.
3309   }
3310 
3311   // these are the only paths that produce 'true':
3312   phi->set_req(_prim_same_path,   intcon(1));
3313   phi->set_req(_ref_subtype_path, intcon(1));
3314 
3315   // pull together the cases:
3316   assert(region->req() == PATH_LIMIT, "sane region");
3317   for (uint i = 1; i < region->req(); i++) {
3318     Node* ctl = region->in(i);
3319     if (ctl == NULL || ctl == top()) {
3320       region->set_req(i, top());
3321       phi   ->set_req(i, top());
3322     } else if (phi->in(i) == NULL) {
3323       phi->set_req(i, intcon(0)); // all other paths produce 'false'
3324     }
3325   }
3326 
3327   set_control(_gvn.transform(region));
3328   push(_gvn.transform(phi));
3329 
3330   return true;
3331 }
3332 
3333 //---------------------generate_array_guard_common------------------------
3334 Node* LibraryCallKit::generate_array_guard_common(Node* kls, RegionNode* region,
3335                                                   bool obj_array, bool not_array) {
3336   // If obj_array/non_array==false/false:
3337   // Branch around if the given klass is in fact an array (either obj or prim).
3338   // If obj_array/non_array==false/true:
3339   // Branch around if the given klass is not an array klass of any kind.
3340   // If obj_array/non_array==true/true:
3341   // Branch around if the kls is not an oop array (kls is int[], String, etc.)
3342   // If obj_array/non_array==true/false:
3343   // Branch around if the kls is an oop array (Object[] or subtype)
3344   //
3345   // Like generate_guard, adds a new path onto the region.
3346   jint  layout_con = 0;
3347   Node* layout_val = get_layout_helper(kls, layout_con);
3348   if (layout_val == NULL) {
3349     bool query = (obj_array
3350                   ? Klass::layout_helper_is_objArray(layout_con)
3351                   : Klass::layout_helper_is_javaArray(layout_con));
3352     if (query == not_array) {
3353       return NULL;                       // never a branch
3354     } else {                             // always a branch
3355       Node* always_branch = control();
3356       if (region != NULL)
3357         region->add_req(always_branch);
3358       set_control(top());
3359       return always_branch;
3360     }
3361   }
3362   // Now test the correct condition.
3363   jint  nval = (obj_array
3364                 ? ((jint)Klass::_lh_array_tag_type_value
3365                    <<    Klass::_lh_array_tag_shift)
3366                 : Klass::_lh_neutral_value);
3367   Node* cmp = _gvn.transform( new(C, 3) CmpINode(layout_val, intcon(nval)) );
3368   BoolTest::mask btest = BoolTest::lt;  // correct for testing is_[obj]array
3369   // invert the test if we are looking for a non-array
3370   if (not_array)  btest = BoolTest(btest).negate();
3371   Node* bol = _gvn.transform( new(C, 2) BoolNode(cmp, btest) );
3372   return generate_fair_guard(bol, region);
3373 }
3374 
3375 
3376 //-----------------------inline_native_newArray--------------------------
3377 bool LibraryCallKit::inline_native_newArray() {
3378   int nargs = 2;
3379   Node* mirror    = argument(0);
3380   Node* count_val = argument(1);
3381 
3382   _sp += nargs;  // set original stack for use by uncommon_trap
3383   mirror = do_null_check(mirror, T_OBJECT);
3384   _sp -= nargs;
3385   // If mirror or obj is dead, only null-path is taken.
3386   if (stopped())  return true;
3387 
3388   enum { _normal_path = 1, _slow_path = 2, PATH_LIMIT };
3389   RegionNode* result_reg = new(C, PATH_LIMIT) RegionNode(PATH_LIMIT);
3390   PhiNode*    result_val = new(C, PATH_LIMIT) PhiNode(result_reg,
3391                                                       TypeInstPtr::NOTNULL);
3392   PhiNode*    result_io  = new(C, PATH_LIMIT) PhiNode(result_reg, Type::ABIO);
3393   PhiNode*    result_mem = new(C, PATH_LIMIT) PhiNode(result_reg, Type::MEMORY,
3394                                                       TypePtr::BOTTOM);
3395 
3396   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3397   Node* klass_node = load_array_klass_from_mirror(mirror, never_see_null,
3398                                                   nargs,
3399                                                   result_reg, _slow_path);
3400   Node* normal_ctl   = control();
3401   Node* no_array_ctl = result_reg->in(_slow_path);
3402 
3403   // Generate code for the slow case.  We make a call to newArray().
3404   set_control(no_array_ctl);
3405   if (!stopped()) {
3406     // Either the input type is void.class, or else the
3407     // array klass has not yet been cached.  Either the
3408     // ensuing call will throw an exception, or else it
3409     // will cache the array klass for next time.
3410     PreserveJVMState pjvms(this);
3411     CallJavaNode* slow_call = generate_method_call_static(vmIntrinsics::_newArray);
3412     Node* slow_result = set_results_for_java_call(slow_call);
3413     // this->control() comes from set_results_for_java_call
3414     result_reg->set_req(_slow_path, control());
3415     result_val->set_req(_slow_path, slow_result);
3416     result_io ->set_req(_slow_path, i_o());
3417     result_mem->set_req(_slow_path, reset_memory());
3418   }
3419 
3420   set_control(normal_ctl);
3421   if (!stopped()) {
3422     // Normal case:  The array type has been cached in the java.lang.Class.
3423     // The following call works fine even if the array type is polymorphic.
3424     // It could be a dynamic mix of int[], boolean[], Object[], etc.
3425     Node* obj = new_array(klass_node, count_val, nargs);
3426     result_reg->init_req(_normal_path, control());
3427     result_val->init_req(_normal_path, obj);
3428     result_io ->init_req(_normal_path, i_o());
3429     result_mem->init_req(_normal_path, reset_memory());
3430   }
3431 
3432   // Return the combined state.
3433   set_i_o(        _gvn.transform(result_io)  );
3434   set_all_memory( _gvn.transform(result_mem) );
3435   push_result(result_reg, result_val);
3436   C->set_has_split_ifs(true); // Has chance for split-if optimization
3437 
3438   return true;
3439 }
3440 
3441 //----------------------inline_native_getLength--------------------------
3442 bool LibraryCallKit::inline_native_getLength() {
3443   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
3444 
3445   int nargs = 1;
3446   Node* array = argument(0);
3447 
3448   _sp += nargs;  // set original stack for use by uncommon_trap
3449   array = do_null_check(array, T_OBJECT);
3450   _sp -= nargs;
3451 
3452   // If array is dead, only null-path is taken.
3453   if (stopped())  return true;
3454 
3455   // Deoptimize if it is a non-array.
3456   Node* non_array = generate_non_array_guard(load_object_klass(array), NULL);
3457 
3458   if (non_array != NULL) {
3459     PreserveJVMState pjvms(this);
3460     set_control(non_array);
3461     _sp += nargs;  // push the arguments back on the stack
3462     uncommon_trap(Deoptimization::Reason_intrinsic,
3463                   Deoptimization::Action_maybe_recompile);
3464   }
3465 
3466   // If control is dead, only non-array-path is taken.
3467   if (stopped())  return true;
3468 
3469   // The works fine even if the array type is polymorphic.
3470   // It could be a dynamic mix of int[], boolean[], Object[], etc.
3471   push( load_array_length(array) );
3472 
3473   C->set_has_split_ifs(true); // Has chance for split-if optimization
3474 
3475   return true;
3476 }
3477 
3478 //------------------------inline_array_copyOf----------------------------
3479 bool LibraryCallKit::inline_array_copyOf(bool is_copyOfRange) {
3480   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
3481 
3482   // Restore the stack and pop off the arguments.
3483   int nargs = 3 + (is_copyOfRange? 1: 0);
3484   Node* original          = argument(0);
3485   Node* start             = is_copyOfRange? argument(1): intcon(0);
3486   Node* end               = is_copyOfRange? argument(2): argument(1);
3487   Node* array_type_mirror = is_copyOfRange? argument(3): argument(2);
3488 
3489   Node* newcopy;
3490 
3491   //set the original stack and the reexecute bit for the interpreter to reexecute
3492   //the bytecode that invokes Arrays.copyOf if deoptimization happens
3493   { PreserveReexecuteState preexecs(this);
3494     _sp += nargs;
3495     jvms()->set_should_reexecute(true);
3496 
3497     array_type_mirror = do_null_check(array_type_mirror, T_OBJECT);
3498     original          = do_null_check(original, T_OBJECT);
3499 
3500     // Check if a null path was taken unconditionally.
3501     if (stopped())  return true;
3502 
3503     Node* orig_length = load_array_length(original);
3504 
3505     Node* klass_node = load_klass_from_mirror(array_type_mirror, false, 0,
3506                                               NULL, 0);
3507     klass_node = do_null_check(klass_node, T_OBJECT);
3508 
3509     RegionNode* bailout = new (C, 1) RegionNode(1);
3510     record_for_igvn(bailout);
3511 
3512     // Despite the generic type of Arrays.copyOf, the mirror might be int, int[], etc.
3513     // Bail out if that is so.
3514     Node* not_objArray = generate_non_objArray_guard(klass_node, bailout);
3515     if (not_objArray != NULL) {
3516       // Improve the klass node's type from the new optimistic assumption:
3517       ciKlass* ak = ciArrayKlass::make(env()->Object_klass());
3518       const Type* akls = TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
3519       Node* cast = new (C, 2) CastPPNode(klass_node, akls);
3520       cast->init_req(0, control());
3521       klass_node = _gvn.transform(cast);
3522     }
3523 
3524     // Bail out if either start or end is negative.
3525     generate_negative_guard(start, bailout, &start);
3526     generate_negative_guard(end,   bailout, &end);
3527 
3528     Node* length = end;
3529     if (_gvn.type(start) != TypeInt::ZERO) {
3530       length = _gvn.transform( new (C, 3) SubINode(end, start) );
3531     }
3532 
3533     // Bail out if length is negative.
3534     // ...Not needed, since the new_array will throw the right exception.
3535     //generate_negative_guard(length, bailout, &length);
3536 
3537     if (bailout->req() > 1) {
3538       PreserveJVMState pjvms(this);
3539       set_control( _gvn.transform(bailout) );
3540       uncommon_trap(Deoptimization::Reason_intrinsic,
3541                     Deoptimization::Action_maybe_recompile);
3542     }
3543 
3544     if (!stopped()) {
3545 
3546       // How many elements will we copy from the original?
3547       // The answer is MinI(orig_length - start, length).
3548       Node* orig_tail = _gvn.transform( new(C, 3) SubINode(orig_length, start) );
3549       Node* moved = generate_min_max(vmIntrinsics::_min, orig_tail, length);
3550 
3551       newcopy = new_array(klass_node, length, 0);
3552 
3553       // Generate a direct call to the right arraycopy function(s).
3554       // We know the copy is disjoint but we might not know if the
3555       // oop stores need checking.
3556       // Extreme case:  Arrays.copyOf((Integer[])x, 10, String[].class).
3557       // This will fail a store-check if x contains any non-nulls.
3558       bool disjoint_bases = true;
3559       bool length_never_negative = true;
3560       generate_arraycopy(TypeAryPtr::OOPS, T_OBJECT,
3561                          original, start, newcopy, intcon(0), moved,
3562                          disjoint_bases, length_never_negative);
3563     }
3564   } //original reexecute and sp are set back here
3565 
3566   if(!stopped()) {
3567     push(newcopy);
3568   }
3569 
3570   C->set_has_split_ifs(true); // Has chance for split-if optimization
3571 
3572   return true;
3573 }
3574 
3575 
3576 //----------------------generate_virtual_guard---------------------------
3577 // Helper for hashCode and clone.  Peeks inside the vtable to avoid a call.
3578 Node* LibraryCallKit::generate_virtual_guard(Node* obj_klass,
3579                                              RegionNode* slow_region) {
3580   ciMethod* method = callee();
3581   int vtable_index = method->vtable_index();
3582   // Get the methodOop out of the appropriate vtable entry.
3583   int entry_offset  = (instanceKlass::vtable_start_offset() +
3584                      vtable_index*vtableEntry::size()) * wordSize +
3585                      vtableEntry::method_offset_in_bytes();
3586   Node* entry_addr  = basic_plus_adr(obj_klass, entry_offset);
3587   Node* target_call = make_load(NULL, entry_addr, TypeInstPtr::NOTNULL, T_OBJECT);
3588 
3589   // Compare the target method with the expected method (e.g., Object.hashCode).
3590   const TypeInstPtr* native_call_addr = TypeInstPtr::make(method);
3591 
3592   Node* native_call = makecon(native_call_addr);
3593   Node* chk_native  = _gvn.transform( new(C, 3) CmpPNode(target_call, native_call) );
3594   Node* test_native = _gvn.transform( new(C, 2) BoolNode(chk_native, BoolTest::ne) );
3595 
3596   return generate_slow_guard(test_native, slow_region);
3597 }
3598 
3599 //-----------------------generate_method_call----------------------------
3600 // Use generate_method_call to make a slow-call to the real
3601 // method if the fast path fails.  An alternative would be to
3602 // use a stub like OptoRuntime::slow_arraycopy_Java.
3603 // This only works for expanding the current library call,
3604 // not another intrinsic.  (E.g., don't use this for making an
3605 // arraycopy call inside of the copyOf intrinsic.)
3606 CallJavaNode*
3607 LibraryCallKit::generate_method_call(vmIntrinsics::ID method_id, bool is_virtual, bool is_static) {
3608   // When compiling the intrinsic method itself, do not use this technique.
3609   guarantee(callee() != C->method(), "cannot make slow-call to self");
3610 
3611   ciMethod* method = callee();
3612   // ensure the JVMS we have will be correct for this call
3613   guarantee(method_id == method->intrinsic_id(), "must match");
3614 
3615   const TypeFunc* tf = TypeFunc::make(method);
3616   int tfdc = tf->domain()->cnt();
3617   CallJavaNode* slow_call;
3618   if (is_static) {
3619     assert(!is_virtual, "");
3620     slow_call = new(C, tfdc) CallStaticJavaNode(tf,
3621                                 SharedRuntime::get_resolve_static_call_stub(),
3622                                 method, bci());
3623   } else if (is_virtual) {
3624     null_check_receiver(method);
3625     int vtable_index = methodOopDesc::invalid_vtable_index;
3626     if (UseInlineCaches) {
3627       // Suppress the vtable call
3628     } else {
3629       // hashCode and clone are not a miranda methods,
3630       // so the vtable index is fixed.
3631       // No need to use the linkResolver to get it.
3632        vtable_index = method->vtable_index();
3633     }
3634     slow_call = new(C, tfdc) CallDynamicJavaNode(tf,
3635                                 SharedRuntime::get_resolve_virtual_call_stub(),
3636                                 method, vtable_index, bci());
3637   } else {  // neither virtual nor static:  opt_virtual
3638     null_check_receiver(method);
3639     slow_call = new(C, tfdc) CallStaticJavaNode(tf,
3640                                 SharedRuntime::get_resolve_opt_virtual_call_stub(),
3641                                 method, bci());
3642     slow_call->set_optimized_virtual(true);
3643   }
3644   set_arguments_for_java_call(slow_call);
3645   set_edges_for_java_call(slow_call);
3646   return slow_call;
3647 }
3648 
3649 
3650 //------------------------------inline_native_hashcode--------------------
3651 // Build special case code for calls to hashCode on an object.
3652 bool LibraryCallKit::inline_native_hashcode(bool is_virtual, bool is_static) {
3653   assert(is_static == callee()->is_static(), "correct intrinsic selection");
3654   assert(!(is_virtual && is_static), "either virtual, special, or static");
3655 
3656   enum { _slow_path = 1, _fast_path, _null_path, PATH_LIMIT };
3657 
3658   RegionNode* result_reg = new(C, PATH_LIMIT) RegionNode(PATH_LIMIT);
3659   PhiNode*    result_val = new(C, PATH_LIMIT) PhiNode(result_reg,
3660                                                       TypeInt::INT);
3661   PhiNode*    result_io  = new(C, PATH_LIMIT) PhiNode(result_reg, Type::ABIO);
3662   PhiNode*    result_mem = new(C, PATH_LIMIT) PhiNode(result_reg, Type::MEMORY,
3663                                                       TypePtr::BOTTOM);
3664   Node* obj = NULL;
3665   if (!is_static) {
3666     // Check for hashing null object
3667     obj = null_check_receiver(callee());
3668     if (stopped())  return true;        // unconditionally null
3669     result_reg->init_req(_null_path, top());
3670     result_val->init_req(_null_path, top());
3671   } else {
3672     // Do a null check, and return zero if null.
3673     // System.identityHashCode(null) == 0
3674     obj = argument(0);
3675     Node* null_ctl = top();
3676     obj = null_check_oop(obj, &null_ctl);
3677     result_reg->init_req(_null_path, null_ctl);
3678     result_val->init_req(_null_path, _gvn.intcon(0));
3679   }
3680 
3681   // Unconditionally null?  Then return right away.
3682   if (stopped()) {
3683     set_control( result_reg->in(_null_path) );
3684     if (!stopped())
3685       push(      result_val ->in(_null_path) );
3686     return true;
3687   }
3688 
3689   // After null check, get the object's klass.
3690   Node* obj_klass = load_object_klass(obj);
3691 
3692   // This call may be virtual (invokevirtual) or bound (invokespecial).
3693   // For each case we generate slightly different code.
3694 
3695   // We only go to the fast case code if we pass a number of guards.  The
3696   // paths which do not pass are accumulated in the slow_region.
3697   RegionNode* slow_region = new (C, 1) RegionNode(1);
3698   record_for_igvn(slow_region);
3699 
3700   // If this is a virtual call, we generate a funny guard.  We pull out
3701   // the vtable entry corresponding to hashCode() from the target object.
3702   // If the target method which we are calling happens to be the native
3703   // Object hashCode() method, we pass the guard.  We do not need this
3704   // guard for non-virtual calls -- the caller is known to be the native
3705   // Object hashCode().
3706   if (is_virtual) {
3707     generate_virtual_guard(obj_klass, slow_region);
3708   }
3709 
3710   // Get the header out of the object, use LoadMarkNode when available
3711   Node* header_addr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
3712   Node* header = make_load(control(), header_addr, TypeX_X, TypeX_X->basic_type());
3713 
3714   // Test the header to see if it is unlocked.
3715   Node *lock_mask      = _gvn.MakeConX(markOopDesc::biased_lock_mask_in_place);
3716   Node *lmasked_header = _gvn.transform( new (C, 3) AndXNode(header, lock_mask) );
3717   Node *unlocked_val   = _gvn.MakeConX(markOopDesc::unlocked_value);
3718   Node *chk_unlocked   = _gvn.transform( new (C, 3) CmpXNode( lmasked_header, unlocked_val));
3719   Node *test_unlocked  = _gvn.transform( new (C, 2) BoolNode( chk_unlocked, BoolTest::ne) );
3720 
3721   generate_slow_guard(test_unlocked, slow_region);
3722 
3723   // Get the hash value and check to see that it has been properly assigned.
3724   // We depend on hash_mask being at most 32 bits and avoid the use of
3725   // hash_mask_in_place because it could be larger than 32 bits in a 64-bit
3726   // vm: see markOop.hpp.
3727   Node *hash_mask      = _gvn.intcon(markOopDesc::hash_mask);
3728   Node *hash_shift     = _gvn.intcon(markOopDesc::hash_shift);
3729   Node *hshifted_header= _gvn.transform( new (C, 3) URShiftXNode(header, hash_shift) );
3730   // This hack lets the hash bits live anywhere in the mark object now, as long
3731   // as the shift drops the relevant bits into the low 32 bits.  Note that
3732   // Java spec says that HashCode is an int so there's no point in capturing
3733   // an 'X'-sized hashcode (32 in 32-bit build or 64 in 64-bit build).
3734   hshifted_header      = ConvX2I(hshifted_header);
3735   Node *hash_val       = _gvn.transform( new (C, 3) AndINode(hshifted_header, hash_mask) );
3736 
3737   Node *no_hash_val    = _gvn.intcon(markOopDesc::no_hash);
3738   Node *chk_assigned   = _gvn.transform( new (C, 3) CmpINode( hash_val, no_hash_val));
3739   Node *test_assigned  = _gvn.transform( new (C, 2) BoolNode( chk_assigned, BoolTest::eq) );
3740 
3741   generate_slow_guard(test_assigned, slow_region);
3742 
3743   Node* init_mem = reset_memory();
3744   // fill in the rest of the null path:
3745   result_io ->init_req(_null_path, i_o());
3746   result_mem->init_req(_null_path, init_mem);
3747 
3748   result_val->init_req(_fast_path, hash_val);
3749   result_reg->init_req(_fast_path, control());
3750   result_io ->init_req(_fast_path, i_o());
3751   result_mem->init_req(_fast_path, init_mem);
3752 
3753   // Generate code for the slow case.  We make a call to hashCode().
3754   set_control(_gvn.transform(slow_region));
3755   if (!stopped()) {
3756     // No need for PreserveJVMState, because we're using up the present state.
3757     set_all_memory(init_mem);
3758     vmIntrinsics::ID hashCode_id = vmIntrinsics::_hashCode;
3759     if (is_static)   hashCode_id = vmIntrinsics::_identityHashCode;
3760     CallJavaNode* slow_call = generate_method_call(hashCode_id, is_virtual, is_static);
3761     Node* slow_result = set_results_for_java_call(slow_call);
3762     // this->control() comes from set_results_for_java_call
3763     result_reg->init_req(_slow_path, control());
3764     result_val->init_req(_slow_path, slow_result);
3765     result_io  ->set_req(_slow_path, i_o());
3766     result_mem ->set_req(_slow_path, reset_memory());
3767   }
3768 
3769   // Return the combined state.
3770   set_i_o(        _gvn.transform(result_io)  );
3771   set_all_memory( _gvn.transform(result_mem) );
3772   push_result(result_reg, result_val);
3773 
3774   return true;
3775 }
3776 
3777 //---------------------------inline_native_getClass----------------------------
3778 // Build special case code for calls to getClass on an object.
3779 bool LibraryCallKit::inline_native_getClass() {
3780   Node* obj = null_check_receiver(callee());
3781   if (stopped())  return true;
3782   push( load_mirror_from_klass(load_object_klass(obj)) );
3783   return true;
3784 }
3785 
3786 //-----------------inline_native_Reflection_getCallerClass---------------------
3787 // In the presence of deep enough inlining, getCallerClass() becomes a no-op.
3788 //
3789 // NOTE that this code must perform the same logic as
3790 // vframeStream::security_get_caller_frame in that it must skip
3791 // Method.invoke() and auxiliary frames.
3792 
3793 
3794 
3795 
3796 bool LibraryCallKit::inline_native_Reflection_getCallerClass() {
3797   ciMethod*       method = callee();
3798 
3799 #ifndef PRODUCT
3800   if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
3801     tty->print_cr("Attempting to inline sun.reflect.Reflection.getCallerClass");
3802   }
3803 #endif
3804 
3805   debug_only(int saved_sp = _sp);
3806 
3807   // Argument words:  (int depth)
3808   int nargs = 1;
3809 
3810   _sp += nargs;
3811   Node* caller_depth_node = pop();
3812 
3813   assert(saved_sp == _sp, "must have correct argument count");
3814 
3815   // The depth value must be a constant in order for the runtime call
3816   // to be eliminated.
3817   const TypeInt* caller_depth_type = _gvn.type(caller_depth_node)->isa_int();
3818   if (caller_depth_type == NULL || !caller_depth_type->is_con()) {
3819 #ifndef PRODUCT
3820     if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
3821       tty->print_cr("  Bailing out because caller depth was not a constant");
3822     }
3823 #endif
3824     return false;
3825   }
3826   // Note that the JVM state at this point does not include the
3827   // getCallerClass() frame which we are trying to inline. The
3828   // semantics of getCallerClass(), however, are that the "first"
3829   // frame is the getCallerClass() frame, so we subtract one from the
3830   // requested depth before continuing. We don't inline requests of
3831   // getCallerClass(0).
3832   int caller_depth = caller_depth_type->get_con() - 1;
3833   if (caller_depth < 0) {
3834 #ifndef PRODUCT
3835     if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
3836       tty->print_cr("  Bailing out because caller depth was %d", caller_depth);
3837     }
3838 #endif
3839     return false;
3840   }
3841 
3842   if (!jvms()->has_method()) {
3843 #ifndef PRODUCT
3844     if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
3845       tty->print_cr("  Bailing out because intrinsic was inlined at top level");
3846     }
3847 #endif
3848     return false;
3849   }
3850   int _depth = jvms()->depth();  // cache call chain depth
3851 
3852   // Walk back up the JVM state to find the caller at the required
3853   // depth. NOTE that this code must perform the same logic as
3854   // vframeStream::security_get_caller_frame in that it must skip
3855   // Method.invoke() and auxiliary frames. Note also that depth is
3856   // 1-based (1 is the bottom of the inlining).
3857   int inlining_depth = _depth;
3858   JVMState* caller_jvms = NULL;
3859 
3860   if (inlining_depth > 0) {
3861     caller_jvms = jvms();
3862     assert(caller_jvms = jvms()->of_depth(inlining_depth), "inlining_depth == our depth");
3863     do {
3864       // The following if-tests should be performed in this order
3865       if (is_method_invoke_or_aux_frame(caller_jvms)) {
3866         // Skip a Method.invoke() or auxiliary frame
3867       } else if (caller_depth > 0) {
3868         // Skip real frame
3869         --caller_depth;
3870       } else {
3871         // We're done: reached desired caller after skipping.
3872         break;
3873       }
3874       caller_jvms = caller_jvms->caller();
3875       --inlining_depth;
3876     } while (inlining_depth > 0);
3877   }
3878 
3879   if (inlining_depth == 0) {
3880 #ifndef PRODUCT
3881     if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
3882       tty->print_cr("  Bailing out because caller depth (%d) exceeded inlining depth (%d)", caller_depth_type->get_con(), _depth);
3883       tty->print_cr("  JVM state at this point:");
3884       for (int i = _depth; i >= 1; i--) {
3885         tty->print_cr("   %d) %s", i, jvms()->of_depth(i)->method()->name()->as_utf8());
3886       }
3887     }
3888 #endif
3889     return false; // Reached end of inlining
3890   }
3891 
3892   // Acquire method holder as java.lang.Class
3893   ciInstanceKlass* caller_klass  = caller_jvms->method()->holder();
3894   ciInstance*      caller_mirror = caller_klass->java_mirror();
3895   // Push this as a constant
3896   push(makecon(TypeInstPtr::make(caller_mirror)));
3897 #ifndef PRODUCT
3898   if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
3899     tty->print_cr("  Succeeded: caller = %s.%s, caller depth = %d, depth = %d", caller_klass->name()->as_utf8(), caller_jvms->method()->name()->as_utf8(), caller_depth_type->get_con(), _depth);
3900     tty->print_cr("  JVM state at this point:");
3901     for (int i = _depth; i >= 1; i--) {
3902       tty->print_cr("   %d) %s", i, jvms()->of_depth(i)->method()->name()->as_utf8());
3903     }
3904   }
3905 #endif
3906   return true;
3907 }
3908 
3909 // Helper routine for above
3910 bool LibraryCallKit::is_method_invoke_or_aux_frame(JVMState* jvms) {
3911   ciMethod* method = jvms->method();
3912 
3913   // Is this the Method.invoke method itself?
3914   if (method->intrinsic_id() == vmIntrinsics::_invoke)
3915     return true;
3916 
3917   // Is this a helper, defined somewhere underneath MethodAccessorImpl.
3918   ciKlass* k = method->holder();
3919   if (k->is_instance_klass()) {
3920     ciInstanceKlass* ik = k->as_instance_klass();
3921     for (; ik != NULL; ik = ik->super()) {
3922       if (ik->name() == ciSymbol::sun_reflect_MethodAccessorImpl() &&
3923           ik == env()->find_system_klass(ik->name())) {
3924         return true;
3925       }
3926     }
3927   }
3928   else if (method->is_method_handle_adapter()) {
3929     // This is an internal adapter frame from the MethodHandleCompiler -- skip it
3930     return true;
3931   }
3932 
3933   return false;
3934 }
3935 
3936 static int value_field_offset = -1;  // offset of the "value" field of AtomicLongCSImpl.  This is needed by
3937                                      // inline_native_AtomicLong_attemptUpdate() but it has no way of
3938                                      // computing it since there is no lookup field by name function in the
3939                                      // CI interface.  This is computed and set by inline_native_AtomicLong_get().
3940                                      // Using a static variable here is safe even if we have multiple compilation
3941                                      // threads because the offset is constant.  At worst the same offset will be
3942                                      // computed and  stored multiple
3943 
3944 bool LibraryCallKit::inline_native_AtomicLong_get() {
3945   // Restore the stack and pop off the argument
3946   _sp+=1;
3947   Node *obj = pop();
3948 
3949   // get the offset of the "value" field. Since the CI interfaces
3950   // does not provide a way to look up a field by name, we scan the bytecodes
3951   // to get the field index.  We expect the first 2 instructions of the method
3952   // to be:
3953   //    0 aload_0
3954   //    1 getfield "value"
3955   ciMethod* method = callee();
3956   if (value_field_offset == -1)
3957   {
3958     ciField* value_field;
3959     ciBytecodeStream iter(method);
3960     Bytecodes::Code bc = iter.next();
3961 
3962     if ((bc != Bytecodes::_aload_0) &&
3963               ((bc != Bytecodes::_aload) || (iter.get_index() != 0)))
3964       return false;
3965     bc = iter.next();
3966     if (bc != Bytecodes::_getfield)
3967       return false;
3968     bool ignore;
3969     value_field = iter.get_field(ignore);
3970     value_field_offset = value_field->offset_in_bytes();
3971   }
3972 
3973   // Null check without removing any arguments.
3974   _sp++;
3975   obj = do_null_check(obj, T_OBJECT);
3976   _sp--;
3977   // Check for locking null object
3978   if (stopped()) return true;
3979 
3980   Node *adr = basic_plus_adr(obj, obj, value_field_offset);
3981   const TypePtr *adr_type = _gvn.type(adr)->is_ptr();
3982   int alias_idx = C->get_alias_index(adr_type);
3983 
3984   Node *result = _gvn.transform(new (C, 3) LoadLLockedNode(control(), memory(alias_idx), adr));
3985 
3986   push_pair(result);
3987 
3988   return true;
3989 }
3990 
3991 bool LibraryCallKit::inline_native_AtomicLong_attemptUpdate() {
3992   // Restore the stack and pop off the arguments
3993   _sp+=5;
3994   Node *newVal = pop_pair();
3995   Node *oldVal = pop_pair();
3996   Node *obj = pop();
3997 
3998   // we need the offset of the "value" field which was computed when
3999   // inlining the get() method.  Give up if we don't have it.
4000   if (value_field_offset == -1)
4001     return false;
4002 
4003   // Null check without removing any arguments.
4004   _sp+=5;
4005   obj = do_null_check(obj, T_OBJECT);
4006   _sp-=5;
4007   // Check for locking null object
4008   if (stopped()) return true;
4009 
4010   Node *adr = basic_plus_adr(obj, obj, value_field_offset);
4011   const TypePtr *adr_type = _gvn.type(adr)->is_ptr();
4012   int alias_idx = C->get_alias_index(adr_type);
4013 
4014   Node *cas = _gvn.transform(new (C, 5) StoreLConditionalNode(control(), memory(alias_idx), adr, newVal, oldVal));
4015   Node *store_proj = _gvn.transform( new (C, 1) SCMemProjNode(cas));
4016   set_memory(store_proj, alias_idx);
4017   Node *bol = _gvn.transform( new (C, 2) BoolNode( cas, BoolTest::eq ) );
4018 
4019   Node *result;
4020   // CMove node is not used to be able fold a possible check code
4021   // after attemptUpdate() call. This code could be transformed
4022   // into CMove node by loop optimizations.
4023   {
4024     RegionNode *r = new (C, 3) RegionNode(3);
4025     result = new (C, 3) PhiNode(r, TypeInt::BOOL);
4026 
4027     Node *iff = create_and_xform_if(control(), bol, PROB_FAIR, COUNT_UNKNOWN);
4028     Node *iftrue = opt_iff(r, iff);
4029     r->init_req(1, iftrue);
4030     result->init_req(1, intcon(1));
4031     result->init_req(2, intcon(0));
4032 
4033     set_control(_gvn.transform(r));
4034     record_for_igvn(r);
4035 
4036     C->set_has_split_ifs(true); // Has chance for split-if optimization
4037   }
4038 
4039   push(_gvn.transform(result));
4040   return true;
4041 }
4042 
4043 bool LibraryCallKit::inline_fp_conversions(vmIntrinsics::ID id) {
4044   // restore the arguments
4045   _sp += arg_size();
4046 
4047   switch (id) {
4048   case vmIntrinsics::_floatToRawIntBits:
4049     push(_gvn.transform( new (C, 2) MoveF2INode(pop())));
4050     break;
4051 
4052   case vmIntrinsics::_intBitsToFloat:
4053     push(_gvn.transform( new (C, 2) MoveI2FNode(pop())));
4054     break;
4055 
4056   case vmIntrinsics::_doubleToRawLongBits:
4057     push_pair(_gvn.transform( new (C, 2) MoveD2LNode(pop_pair())));
4058     break;
4059 
4060   case vmIntrinsics::_longBitsToDouble:
4061     push_pair(_gvn.transform( new (C, 2) MoveL2DNode(pop_pair())));
4062     break;
4063 
4064   case vmIntrinsics::_doubleToLongBits: {
4065     Node* value = pop_pair();
4066 
4067     // two paths (plus control) merge in a wood
4068     RegionNode *r = new (C, 3) RegionNode(3);
4069     Node *phi = new (C, 3) PhiNode(r, TypeLong::LONG);
4070 
4071     Node *cmpisnan = _gvn.transform( new (C, 3) CmpDNode(value, value));
4072     // Build the boolean node
4073     Node *bolisnan = _gvn.transform( new (C, 2) BoolNode( cmpisnan, BoolTest::ne ) );
4074 
4075     // Branch either way.
4076     // NaN case is less traveled, which makes all the difference.
4077     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
4078     Node *opt_isnan = _gvn.transform(ifisnan);
4079     assert( opt_isnan->is_If(), "Expect an IfNode");
4080     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
4081     Node *iftrue = _gvn.transform( new (C, 1) IfTrueNode(opt_ifisnan) );
4082 
4083     set_control(iftrue);
4084 
4085     static const jlong nan_bits = CONST64(0x7ff8000000000000);
4086     Node *slow_result = longcon(nan_bits); // return NaN
4087     phi->init_req(1, _gvn.transform( slow_result ));
4088     r->init_req(1, iftrue);
4089 
4090     // Else fall through
4091     Node *iffalse = _gvn.transform( new (C, 1) IfFalseNode(opt_ifisnan) );
4092     set_control(iffalse);
4093 
4094     phi->init_req(2, _gvn.transform( new (C, 2) MoveD2LNode(value)));
4095     r->init_req(2, iffalse);
4096 
4097     // Post merge
4098     set_control(_gvn.transform(r));
4099     record_for_igvn(r);
4100 
4101     Node* result = _gvn.transform(phi);
4102     assert(result->bottom_type()->isa_long(), "must be");
4103     push_pair(result);
4104 
4105     C->set_has_split_ifs(true); // Has chance for split-if optimization
4106 
4107     break;
4108   }
4109 
4110   case vmIntrinsics::_floatToIntBits: {
4111     Node* value = pop();
4112 
4113     // two paths (plus control) merge in a wood
4114     RegionNode *r = new (C, 3) RegionNode(3);
4115     Node *phi = new (C, 3) PhiNode(r, TypeInt::INT);
4116 
4117     Node *cmpisnan = _gvn.transform( new (C, 3) CmpFNode(value, value));
4118     // Build the boolean node
4119     Node *bolisnan = _gvn.transform( new (C, 2) BoolNode( cmpisnan, BoolTest::ne ) );
4120 
4121     // Branch either way.
4122     // NaN case is less traveled, which makes all the difference.
4123     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
4124     Node *opt_isnan = _gvn.transform(ifisnan);
4125     assert( opt_isnan->is_If(), "Expect an IfNode");
4126     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
4127     Node *iftrue = _gvn.transform( new (C, 1) IfTrueNode(opt_ifisnan) );
4128 
4129     set_control(iftrue);
4130 
4131     static const jint nan_bits = 0x7fc00000;
4132     Node *slow_result = makecon(TypeInt::make(nan_bits)); // return NaN
4133     phi->init_req(1, _gvn.transform( slow_result ));
4134     r->init_req(1, iftrue);
4135 
4136     // Else fall through
4137     Node *iffalse = _gvn.transform( new (C, 1) IfFalseNode(opt_ifisnan) );
4138     set_control(iffalse);
4139 
4140     phi->init_req(2, _gvn.transform( new (C, 2) MoveF2INode(value)));
4141     r->init_req(2, iffalse);
4142 
4143     // Post merge
4144     set_control(_gvn.transform(r));
4145     record_for_igvn(r);
4146 
4147     Node* result = _gvn.transform(phi);
4148     assert(result->bottom_type()->isa_int(), "must be");
4149     push(result);
4150 
4151     C->set_has_split_ifs(true); // Has chance for split-if optimization
4152 
4153     break;
4154   }
4155 
4156   default:
4157     ShouldNotReachHere();
4158   }
4159 
4160   return true;
4161 }
4162 
4163 #ifdef _LP64
4164 #define XTOP ,top() /*additional argument*/
4165 #else  //_LP64
4166 #define XTOP        /*no additional argument*/
4167 #endif //_LP64
4168 
4169 //----------------------inline_unsafe_copyMemory-------------------------
4170 bool LibraryCallKit::inline_unsafe_copyMemory() {
4171   if (callee()->is_static())  return false;  // caller must have the capability!
4172   int nargs = 1 + 5 + 3;  // 5 args:  (src: ptr,off, dst: ptr,off, size)
4173   assert(signature()->size() == nargs-1, "copy has 5 arguments");
4174   null_check_receiver(callee());  // check then ignore argument(0)
4175   if (stopped())  return true;
4176 
4177   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
4178 
4179   Node* src_ptr = argument(1);
4180   Node* src_off = ConvL2X(argument(2));
4181   assert(argument(3)->is_top(), "2nd half of long");
4182   Node* dst_ptr = argument(4);
4183   Node* dst_off = ConvL2X(argument(5));
4184   assert(argument(6)->is_top(), "2nd half of long");
4185   Node* size    = ConvL2X(argument(7));
4186   assert(argument(8)->is_top(), "2nd half of long");
4187 
4188   assert(Unsafe_field_offset_to_byte_offset(11) == 11,
4189          "fieldOffset must be byte-scaled");
4190 
4191   Node* src = make_unsafe_address(src_ptr, src_off);
4192   Node* dst = make_unsafe_address(dst_ptr, dst_off);
4193 
4194   // Conservatively insert a memory barrier on all memory slices.
4195   // Do not let writes of the copy source or destination float below the copy.
4196   insert_mem_bar(Op_MemBarCPUOrder);
4197 
4198   // Call it.  Note that the length argument is not scaled.
4199   make_runtime_call(RC_LEAF|RC_NO_FP,
4200                     OptoRuntime::fast_arraycopy_Type(),
4201                     StubRoutines::unsafe_arraycopy(),
4202                     "unsafe_arraycopy",
4203                     TypeRawPtr::BOTTOM,
4204                     src, dst, size XTOP);
4205 
4206   // Do not let reads of the copy destination float above the copy.
4207   insert_mem_bar(Op_MemBarCPUOrder);
4208 
4209   return true;
4210 }
4211 
4212 //------------------------clone_coping-----------------------------------
4213 // Helper function for inline_native_clone.
4214 void LibraryCallKit::copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark) {
4215   assert(obj_size != NULL, "");
4216   Node* raw_obj = alloc_obj->in(1);
4217   assert(alloc_obj->is_CheckCastPP() && raw_obj->is_Proj() && raw_obj->in(0)->is_Allocate(), "");
4218 
4219   AllocateNode* alloc = NULL;
4220   if (ReduceBulkZeroing) {
4221     // We will be completely responsible for initializing this object -
4222     // mark Initialize node as complete.
4223     alloc = AllocateNode::Ideal_allocation(alloc_obj, &_gvn);
4224     // The object was just allocated - there should be no any stores!
4225     guarantee(alloc != NULL && alloc->maybe_set_complete(&_gvn), "");
4226     // Mark as complete_with_arraycopy so that on AllocateNode
4227     // expansion, we know this AllocateNode is initialized by an array
4228     // copy and a StoreStore barrier exists after the array copy.
4229     alloc->initialization()->set_complete_with_arraycopy();
4230   }
4231 
4232   // Copy the fastest available way.
4233   // TODO: generate fields copies for small objects instead.
4234   Node* src  = obj;
4235   Node* dest = alloc_obj;
4236   Node* size = _gvn.transform(obj_size);
4237 
4238   // Exclude the header but include array length to copy by 8 bytes words.
4239   // Can't use base_offset_in_bytes(bt) since basic type is unknown.
4240   int base_off = is_array ? arrayOopDesc::length_offset_in_bytes() :
4241                             instanceOopDesc::base_offset_in_bytes();
4242   // base_off:
4243   // 8  - 32-bit VM
4244   // 12 - 64-bit VM, compressed oops
4245   // 16 - 64-bit VM, normal oops
4246   if (base_off % BytesPerLong != 0) {
4247     assert(UseCompressedOops, "");
4248     if (is_array) {
4249       // Exclude length to copy by 8 bytes words.
4250       base_off += sizeof(int);
4251     } else {
4252       // Include klass to copy by 8 bytes words.
4253       base_off = instanceOopDesc::klass_offset_in_bytes();
4254     }
4255     assert(base_off % BytesPerLong == 0, "expect 8 bytes alignment");
4256   }
4257   src  = basic_plus_adr(src,  base_off);
4258   dest = basic_plus_adr(dest, base_off);
4259 
4260   // Compute the length also, if needed:
4261   Node* countx = size;
4262   countx = _gvn.transform( new (C, 3) SubXNode(countx, MakeConX(base_off)) );
4263   countx = _gvn.transform( new (C, 3) URShiftXNode(countx, intcon(LogBytesPerLong) ));
4264 
4265   const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
4266   bool disjoint_bases = true;
4267   generate_unchecked_arraycopy(raw_adr_type, T_LONG, disjoint_bases,
4268                                src, NULL, dest, NULL, countx,
4269                                /*dest_uninitialized*/true);
4270 
4271   // If necessary, emit some card marks afterwards.  (Non-arrays only.)
4272   if (card_mark) {
4273     assert(!is_array, "");
4274     // Put in store barrier for any and all oops we are sticking
4275     // into this object.  (We could avoid this if we could prove
4276     // that the object type contains no oop fields at all.)
4277     Node* no_particular_value = NULL;
4278     Node* no_particular_field = NULL;
4279     int raw_adr_idx = Compile::AliasIdxRaw;
4280     post_barrier(control(),
4281                  memory(raw_adr_type),
4282                  alloc_obj,
4283                  no_particular_field,
4284                  raw_adr_idx,
4285                  no_particular_value,
4286                  T_OBJECT,
4287                  false);
4288   }
4289 
4290   // Do not let reads from the cloned object float above the arraycopy.
4291   if (alloc != NULL) {
4292     // Do not let stores that initialize this object be reordered with
4293     // a subsequent store that would make this object accessible by
4294     // other threads.
4295     // Record what AllocateNode this StoreStore protects so that
4296     // escape analysis can go from the MemBarStoreStoreNode to the
4297     // AllocateNode and eliminate the MemBarStoreStoreNode if possible
4298     // based on the escape status of the AllocateNode.
4299     insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
4300   } else {
4301     insert_mem_bar(Op_MemBarCPUOrder);
4302   }
4303 }
4304 
4305 //------------------------inline_native_clone----------------------------
4306 // Here are the simple edge cases:
4307 //  null receiver => normal trap
4308 //  virtual and clone was overridden => slow path to out-of-line clone
4309 //  not cloneable or finalizer => slow path to out-of-line Object.clone
4310 //
4311 // The general case has two steps, allocation and copying.
4312 // Allocation has two cases, and uses GraphKit::new_instance or new_array.
4313 //
4314 // Copying also has two cases, oop arrays and everything else.
4315 // Oop arrays use arrayof_oop_arraycopy (same as System.arraycopy).
4316 // Everything else uses the tight inline loop supplied by CopyArrayNode.
4317 //
4318 // These steps fold up nicely if and when the cloned object's klass
4319 // can be sharply typed as an object array, a type array, or an instance.
4320 //
4321 bool LibraryCallKit::inline_native_clone(bool is_virtual) {
4322   int nargs = 1;
4323   PhiNode* result_val;
4324 
4325   //set the original stack and the reexecute bit for the interpreter to reexecute
4326   //the bytecode that invokes Object.clone if deoptimization happens
4327   { PreserveReexecuteState preexecs(this);
4328     jvms()->set_should_reexecute(true);
4329 
4330     //null_check_receiver will adjust _sp (push and pop)
4331     Node* obj = null_check_receiver(callee());
4332     if (stopped())  return true;
4333 
4334     _sp += nargs;
4335 
4336     Node* obj_klass = load_object_klass(obj);
4337     const TypeKlassPtr* tklass = _gvn.type(obj_klass)->isa_klassptr();
4338     const TypeOopPtr*   toop   = ((tklass != NULL)
4339                                 ? tklass->as_instance_type()
4340                                 : TypeInstPtr::NOTNULL);
4341 
4342     // Conservatively insert a memory barrier on all memory slices.
4343     // Do not let writes into the original float below the clone.
4344     insert_mem_bar(Op_MemBarCPUOrder);
4345 
4346     // paths into result_reg:
4347     enum {
4348       _slow_path = 1,     // out-of-line call to clone method (virtual or not)
4349       _objArray_path,     // plain array allocation, plus arrayof_oop_arraycopy
4350       _array_path,        // plain array allocation, plus arrayof_long_arraycopy
4351       _instance_path,     // plain instance allocation, plus arrayof_long_arraycopy
4352       PATH_LIMIT
4353     };
4354     RegionNode* result_reg = new(C, PATH_LIMIT) RegionNode(PATH_LIMIT);
4355     result_val             = new(C, PATH_LIMIT) PhiNode(result_reg,
4356                                                         TypeInstPtr::NOTNULL);
4357     PhiNode*    result_i_o = new(C, PATH_LIMIT) PhiNode(result_reg, Type::ABIO);
4358     PhiNode*    result_mem = new(C, PATH_LIMIT) PhiNode(result_reg, Type::MEMORY,
4359                                                         TypePtr::BOTTOM);
4360     record_for_igvn(result_reg);
4361 
4362     const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
4363     int raw_adr_idx = Compile::AliasIdxRaw;
4364 
4365     Node* array_ctl = generate_array_guard(obj_klass, (RegionNode*)NULL);
4366     if (array_ctl != NULL) {
4367       // It's an array.
4368       PreserveJVMState pjvms(this);
4369       set_control(array_ctl);
4370       Node* obj_length = load_array_length(obj);
4371       Node* obj_size  = NULL;
4372       Node* alloc_obj = new_array(obj_klass, obj_length, 0, &obj_size);
4373 
4374       if (!use_ReduceInitialCardMarks()) {
4375         // If it is an oop array, it requires very special treatment,
4376         // because card marking is required on each card of the array.
4377         Node* is_obja = generate_objArray_guard(obj_klass, (RegionNode*)NULL);
4378         if (is_obja != NULL) {
4379           PreserveJVMState pjvms2(this);
4380           set_control(is_obja);
4381           // Generate a direct call to the right arraycopy function(s).
4382           bool disjoint_bases = true;
4383           bool length_never_negative = true;
4384           generate_arraycopy(TypeAryPtr::OOPS, T_OBJECT,
4385                              obj, intcon(0), alloc_obj, intcon(0),
4386                              obj_length,
4387                              disjoint_bases, length_never_negative);
4388           result_reg->init_req(_objArray_path, control());
4389           result_val->init_req(_objArray_path, alloc_obj);
4390           result_i_o ->set_req(_objArray_path, i_o());
4391           result_mem ->set_req(_objArray_path, reset_memory());
4392         }
4393       }
4394       // Otherwise, there are no card marks to worry about.
4395       // (We can dispense with card marks if we know the allocation
4396       //  comes out of eden (TLAB)...  In fact, ReduceInitialCardMarks
4397       //  causes the non-eden paths to take compensating steps to
4398       //  simulate a fresh allocation, so that no further
4399       //  card marks are required in compiled code to initialize
4400       //  the object.)
4401 
4402       if (!stopped()) {
4403         copy_to_clone(obj, alloc_obj, obj_size, true, false);
4404 
4405         // Present the results of the copy.
4406         result_reg->init_req(_array_path, control());
4407         result_val->init_req(_array_path, alloc_obj);
4408         result_i_o ->set_req(_array_path, i_o());
4409         result_mem ->set_req(_array_path, reset_memory());
4410       }
4411     }
4412 
4413     // We only go to the instance fast case code if we pass a number of guards.
4414     // The paths which do not pass are accumulated in the slow_region.
4415     RegionNode* slow_region = new (C, 1) RegionNode(1);
4416     record_for_igvn(slow_region);
4417     if (!stopped()) {
4418       // It's an instance (we did array above).  Make the slow-path tests.
4419       // If this is a virtual call, we generate a funny guard.  We grab
4420       // the vtable entry corresponding to clone() from the target object.
4421       // If the target method which we are calling happens to be the
4422       // Object clone() method, we pass the guard.  We do not need this
4423       // guard for non-virtual calls; the caller is known to be the native
4424       // Object clone().
4425       if (is_virtual) {
4426         generate_virtual_guard(obj_klass, slow_region);
4427       }
4428 
4429       // The object must be cloneable and must not have a finalizer.
4430       // Both of these conditions may be checked in a single test.
4431       // We could optimize the cloneable test further, but we don't care.
4432       generate_access_flags_guard(obj_klass,
4433                                   // Test both conditions:
4434                                   JVM_ACC_IS_CLONEABLE | JVM_ACC_HAS_FINALIZER,
4435                                   // Must be cloneable but not finalizer:
4436                                   JVM_ACC_IS_CLONEABLE,
4437                                   slow_region);
4438     }
4439 
4440     if (!stopped()) {
4441       // It's an instance, and it passed the slow-path tests.
4442       PreserveJVMState pjvms(this);
4443       Node* obj_size  = NULL;
4444       Node* alloc_obj = new_instance(obj_klass, NULL, &obj_size);
4445 
4446       copy_to_clone(obj, alloc_obj, obj_size, false, !use_ReduceInitialCardMarks());
4447 
4448       // Present the results of the slow call.
4449       result_reg->init_req(_instance_path, control());
4450       result_val->init_req(_instance_path, alloc_obj);
4451       result_i_o ->set_req(_instance_path, i_o());
4452       result_mem ->set_req(_instance_path, reset_memory());
4453     }
4454 
4455     // Generate code for the slow case.  We make a call to clone().
4456     set_control(_gvn.transform(slow_region));
4457     if (!stopped()) {
4458       PreserveJVMState pjvms(this);
4459       CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_clone, is_virtual);
4460       Node* slow_result = set_results_for_java_call(slow_call);
4461       // this->control() comes from set_results_for_java_call
4462       result_reg->init_req(_slow_path, control());
4463       result_val->init_req(_slow_path, slow_result);
4464       result_i_o ->set_req(_slow_path, i_o());
4465       result_mem ->set_req(_slow_path, reset_memory());
4466     }
4467 
4468     // Return the combined state.
4469     set_control(    _gvn.transform(result_reg) );
4470     set_i_o(        _gvn.transform(result_i_o) );
4471     set_all_memory( _gvn.transform(result_mem) );
4472   } //original reexecute and sp are set back here
4473 
4474   push(_gvn.transform(result_val));
4475 
4476   return true;
4477 }
4478 
4479 //------------------------------basictype2arraycopy----------------------------
4480 address LibraryCallKit::basictype2arraycopy(BasicType t,
4481                                             Node* src_offset,
4482                                             Node* dest_offset,
4483                                             bool disjoint_bases,
4484                                             const char* &name,
4485                                             bool dest_uninitialized) {
4486   const TypeInt* src_offset_inttype  = gvn().find_int_type(src_offset);;
4487   const TypeInt* dest_offset_inttype = gvn().find_int_type(dest_offset);;
4488 
4489   bool aligned = false;
4490   bool disjoint = disjoint_bases;
4491 
4492   // if the offsets are the same, we can treat the memory regions as
4493   // disjoint, because either the memory regions are in different arrays,
4494   // or they are identical (which we can treat as disjoint.)  We can also
4495   // treat a copy with a destination index  less that the source index
4496   // as disjoint since a low->high copy will work correctly in this case.
4497   if (src_offset_inttype != NULL && src_offset_inttype->is_con() &&
4498       dest_offset_inttype != NULL && dest_offset_inttype->is_con()) {
4499     // both indices are constants
4500     int s_offs = src_offset_inttype->get_con();
4501     int d_offs = dest_offset_inttype->get_con();
4502     int element_size = type2aelembytes(t);
4503     aligned = ((arrayOopDesc::base_offset_in_bytes(t) + s_offs * element_size) % HeapWordSize == 0) &&
4504               ((arrayOopDesc::base_offset_in_bytes(t) + d_offs * element_size) % HeapWordSize == 0);
4505     if (s_offs >= d_offs)  disjoint = true;
4506   } else if (src_offset == dest_offset && src_offset != NULL) {
4507     // This can occur if the offsets are identical non-constants.
4508     disjoint = true;
4509   }
4510 
4511   return StubRoutines::select_arraycopy_function(t, aligned, disjoint, name, dest_uninitialized);
4512 }
4513 
4514 
4515 //------------------------------inline_arraycopy-----------------------
4516 bool LibraryCallKit::inline_arraycopy() {
4517   // Restore the stack and pop off the arguments.
4518   int nargs = 5;  // 2 oops, 3 ints, no size_t or long
4519   assert(callee()->signature()->size() == nargs, "copy has 5 arguments");
4520 
4521   Node *src         = argument(0);
4522   Node *src_offset  = argument(1);
4523   Node *dest        = argument(2);
4524   Node *dest_offset = argument(3);
4525   Node *length      = argument(4);
4526 
4527   // Compile time checks.  If any of these checks cannot be verified at compile time,
4528   // we do not make a fast path for this call.  Instead, we let the call remain as it
4529   // is.  The checks we choose to mandate at compile time are:
4530   //
4531   // (1) src and dest are arrays.
4532   const Type* src_type = src->Value(&_gvn);
4533   const Type* dest_type = dest->Value(&_gvn);
4534   const TypeAryPtr* top_src = src_type->isa_aryptr();
4535   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
4536   if (top_src  == NULL || top_src->klass()  == NULL ||
4537       top_dest == NULL || top_dest->klass() == NULL) {
4538     // Conservatively insert a memory barrier on all memory slices.
4539     // Do not let writes into the source float below the arraycopy.
4540     insert_mem_bar(Op_MemBarCPUOrder);
4541 
4542     // Call StubRoutines::generic_arraycopy stub.
4543     generate_arraycopy(TypeRawPtr::BOTTOM, T_CONFLICT,
4544                        src, src_offset, dest, dest_offset, length);
4545 
4546     // Do not let reads from the destination float above the arraycopy.
4547     // Since we cannot type the arrays, we don't know which slices
4548     // might be affected.  We could restrict this barrier only to those
4549     // memory slices which pertain to array elements--but don't bother.
4550     if (!InsertMemBarAfterArraycopy)
4551       // (If InsertMemBarAfterArraycopy, there is already one in place.)
4552       insert_mem_bar(Op_MemBarCPUOrder);
4553     return true;
4554   }
4555 
4556   // (2) src and dest arrays must have elements of the same BasicType
4557   // Figure out the size and type of the elements we will be copying.
4558   BasicType src_elem  =  top_src->klass()->as_array_klass()->element_type()->basic_type();
4559   BasicType dest_elem = top_dest->klass()->as_array_klass()->element_type()->basic_type();
4560   if (src_elem  == T_ARRAY)  src_elem  = T_OBJECT;
4561   if (dest_elem == T_ARRAY)  dest_elem = T_OBJECT;
4562 
4563   if (src_elem != dest_elem || dest_elem == T_VOID) {
4564     // The component types are not the same or are not recognized.  Punt.
4565     // (But, avoid the native method wrapper to JVM_ArrayCopy.)
4566     generate_slow_arraycopy(TypePtr::BOTTOM,
4567                             src, src_offset, dest, dest_offset, length,
4568                             /*dest_uninitialized*/false);
4569     return true;
4570   }
4571 
4572   //---------------------------------------------------------------------------
4573   // We will make a fast path for this call to arraycopy.
4574 
4575   // We have the following tests left to perform:
4576   //
4577   // (3) src and dest must not be null.
4578   // (4) src_offset must not be negative.
4579   // (5) dest_offset must not be negative.
4580   // (6) length must not be negative.
4581   // (7) src_offset + length must not exceed length of src.
4582   // (8) dest_offset + length must not exceed length of dest.
4583   // (9) each element of an oop array must be assignable
4584 
4585   RegionNode* slow_region = new (C, 1) RegionNode(1);
4586   record_for_igvn(slow_region);
4587 
4588   // (3) operands must not be null
4589   // We currently perform our null checks with the do_null_check routine.
4590   // This means that the null exceptions will be reported in the caller
4591   // rather than (correctly) reported inside of the native arraycopy call.
4592   // This should be corrected, given time.  We do our null check with the
4593   // stack pointer restored.
4594   _sp += nargs;
4595   src  = do_null_check(src,  T_ARRAY);
4596   dest = do_null_check(dest, T_ARRAY);
4597   _sp -= nargs;
4598 
4599   // (4) src_offset must not be negative.
4600   generate_negative_guard(src_offset, slow_region);
4601 
4602   // (5) dest_offset must not be negative.
4603   generate_negative_guard(dest_offset, slow_region);
4604 
4605   // (6) length must not be negative (moved to generate_arraycopy()).
4606   // generate_negative_guard(length, slow_region);
4607 
4608   // (7) src_offset + length must not exceed length of src.
4609   generate_limit_guard(src_offset, length,
4610                        load_array_length(src),
4611                        slow_region);
4612 
4613   // (8) dest_offset + length must not exceed length of dest.
4614   generate_limit_guard(dest_offset, length,
4615                        load_array_length(dest),
4616                        slow_region);
4617 
4618   // (9) each element of an oop array must be assignable
4619   // The generate_arraycopy subroutine checks this.
4620 
4621   // This is where the memory effects are placed:
4622   const TypePtr* adr_type = TypeAryPtr::get_array_body_type(dest_elem);
4623   generate_arraycopy(adr_type, dest_elem,
4624                      src, src_offset, dest, dest_offset, length,
4625                      false, false, slow_region);
4626 
4627   return true;
4628 }
4629 
4630 //-----------------------------generate_arraycopy----------------------
4631 // Generate an optimized call to arraycopy.
4632 // Caller must guard against non-arrays.
4633 // Caller must determine a common array basic-type for both arrays.
4634 // Caller must validate offsets against array bounds.
4635 // The slow_region has already collected guard failure paths
4636 // (such as out of bounds length or non-conformable array types).
4637 // The generated code has this shape, in general:
4638 //
4639 //     if (length == 0)  return   // via zero_path
4640 //     slowval = -1
4641 //     if (types unknown) {
4642 //       slowval = call generic copy loop
4643 //       if (slowval == 0)  return  // via checked_path
4644 //     } else if (indexes in bounds) {
4645 //       if ((is object array) && !(array type check)) {
4646 //         slowval = call checked copy loop
4647 //         if (slowval == 0)  return  // via checked_path
4648 //       } else {
4649 //         call bulk copy loop
4650 //         return  // via fast_path
4651 //       }
4652 //     }
4653 //     // adjust params for remaining work:
4654 //     if (slowval != -1) {
4655 //       n = -1^slowval; src_offset += n; dest_offset += n; length -= n
4656 //     }
4657 //   slow_region:
4658 //     call slow arraycopy(src, src_offset, dest, dest_offset, length)
4659 //     return  // via slow_call_path
4660 //
4661 // This routine is used from several intrinsics:  System.arraycopy,
4662 // Object.clone (the array subcase), and Arrays.copyOf[Range].
4663 //
4664 void
4665 LibraryCallKit::generate_arraycopy(const TypePtr* adr_type,
4666                                    BasicType basic_elem_type,
4667                                    Node* src,  Node* src_offset,
4668                                    Node* dest, Node* dest_offset,
4669                                    Node* copy_length,
4670                                    bool disjoint_bases,
4671                                    bool length_never_negative,
4672                                    RegionNode* slow_region) {
4673 
4674   if (slow_region == NULL) {
4675     slow_region = new(C,1) RegionNode(1);
4676     record_for_igvn(slow_region);
4677   }
4678 
4679   Node* original_dest      = dest;
4680   AllocateArrayNode* alloc = NULL;  // used for zeroing, if needed
4681   bool  dest_uninitialized = false;
4682 
4683   // See if this is the initialization of a newly-allocated array.
4684   // If so, we will take responsibility here for initializing it to zero.
4685   // (Note:  Because tightly_coupled_allocation performs checks on the
4686   // out-edges of the dest, we need to avoid making derived pointers
4687   // from it until we have checked its uses.)
4688   if (ReduceBulkZeroing
4689       && !ZeroTLAB              // pointless if already zeroed
4690       && basic_elem_type != T_CONFLICT // avoid corner case
4691       && !src->eqv_uncast(dest)
4692       && ((alloc = tightly_coupled_allocation(dest, slow_region))
4693           != NULL)
4694       && _gvn.find_int_con(alloc->in(AllocateNode::ALength), 1) > 0
4695       && alloc->maybe_set_complete(&_gvn)) {
4696     // "You break it, you buy it."
4697     InitializeNode* init = alloc->initialization();
4698     assert(init->is_complete(), "we just did this");
4699     init->set_complete_with_arraycopy();
4700     assert(dest->is_CheckCastPP(), "sanity");
4701     assert(dest->in(0)->in(0) == init, "dest pinned");
4702     adr_type = TypeRawPtr::BOTTOM;  // all initializations are into raw memory
4703     // From this point on, every exit path is responsible for
4704     // initializing any non-copied parts of the object to zero.
4705     // Also, if this flag is set we make sure that arraycopy interacts properly
4706     // with G1, eliding pre-barriers. See CR 6627983.
4707     dest_uninitialized = true;
4708   } else {
4709     // No zeroing elimination here.
4710     alloc             = NULL;
4711     //original_dest   = dest;
4712     //dest_uninitialized = false;
4713   }
4714 
4715   // Results are placed here:
4716   enum { fast_path        = 1,  // normal void-returning assembly stub
4717          checked_path     = 2,  // special assembly stub with cleanup
4718          slow_call_path   = 3,  // something went wrong; call the VM
4719          zero_path        = 4,  // bypass when length of copy is zero
4720          bcopy_path       = 5,  // copy primitive array by 64-bit blocks
4721          PATH_LIMIT       = 6
4722   };
4723   RegionNode* result_region = new(C, PATH_LIMIT) RegionNode(PATH_LIMIT);
4724   PhiNode*    result_i_o    = new(C, PATH_LIMIT) PhiNode(result_region, Type::ABIO);
4725   PhiNode*    result_memory = new(C, PATH_LIMIT) PhiNode(result_region, Type::MEMORY, adr_type);
4726   record_for_igvn(result_region);
4727   _gvn.set_type_bottom(result_i_o);
4728   _gvn.set_type_bottom(result_memory);
4729   assert(adr_type != TypePtr::BOTTOM, "must be RawMem or a T[] slice");
4730 
4731   // The slow_control path:
4732   Node* slow_control;
4733   Node* slow_i_o = i_o();
4734   Node* slow_mem = memory(adr_type);
4735   debug_only(slow_control = (Node*) badAddress);
4736 
4737   // Checked control path:
4738   Node* checked_control = top();
4739   Node* checked_mem     = NULL;
4740   Node* checked_i_o     = NULL;
4741   Node* checked_value   = NULL;
4742 
4743   if (basic_elem_type == T_CONFLICT) {
4744     assert(!dest_uninitialized, "");
4745     Node* cv = generate_generic_arraycopy(adr_type,
4746                                           src, src_offset, dest, dest_offset,
4747                                           copy_length, dest_uninitialized);
4748     if (cv == NULL)  cv = intcon(-1);  // failure (no stub available)
4749     checked_control = control();
4750     checked_i_o     = i_o();
4751     checked_mem     = memory(adr_type);
4752     checked_value   = cv;
4753     set_control(top());         // no fast path
4754   }
4755 
4756   Node* not_pos = generate_nonpositive_guard(copy_length, length_never_negative);
4757   if (not_pos != NULL) {
4758     PreserveJVMState pjvms(this);
4759     set_control(not_pos);
4760 
4761     // (6) length must not be negative.
4762     if (!length_never_negative) {
4763       generate_negative_guard(copy_length, slow_region);
4764     }
4765 
4766     // copy_length is 0.
4767     if (!stopped() && dest_uninitialized) {
4768       Node* dest_length = alloc->in(AllocateNode::ALength);
4769       if (copy_length->eqv_uncast(dest_length)
4770           || _gvn.find_int_con(dest_length, 1) <= 0) {
4771         // There is no zeroing to do. No need for a secondary raw memory barrier.
4772       } else {
4773         // Clear the whole thing since there are no source elements to copy.
4774         generate_clear_array(adr_type, dest, basic_elem_type,
4775                              intcon(0), NULL,
4776                              alloc->in(AllocateNode::AllocSize));
4777         // Use a secondary InitializeNode as raw memory barrier.
4778         // Currently it is needed only on this path since other
4779         // paths have stub or runtime calls as raw memory barriers.
4780         InitializeNode* init = insert_mem_bar_volatile(Op_Initialize,
4781                                                        Compile::AliasIdxRaw,
4782                                                        top())->as_Initialize();
4783         init->set_complete(&_gvn);  // (there is no corresponding AllocateNode)
4784       }
4785     }
4786 
4787     // Present the results of the fast call.
4788     result_region->init_req(zero_path, control());
4789     result_i_o   ->init_req(zero_path, i_o());
4790     result_memory->init_req(zero_path, memory(adr_type));
4791   }
4792 
4793   if (!stopped() && dest_uninitialized) {
4794     // We have to initialize the *uncopied* part of the array to zero.
4795     // The copy destination is the slice dest[off..off+len].  The other slices
4796     // are dest_head = dest[0..off] and dest_tail = dest[off+len..dest.length].
4797     Node* dest_size   = alloc->in(AllocateNode::AllocSize);
4798     Node* dest_length = alloc->in(AllocateNode::ALength);
4799     Node* dest_tail   = _gvn.transform( new(C,3) AddINode(dest_offset,
4800                                                           copy_length) );
4801 
4802     // If there is a head section that needs zeroing, do it now.
4803     if (find_int_con(dest_offset, -1) != 0) {
4804       generate_clear_array(adr_type, dest, basic_elem_type,
4805                            intcon(0), dest_offset,
4806                            NULL);
4807     }
4808 
4809     // Next, perform a dynamic check on the tail length.
4810     // It is often zero, and we can win big if we prove this.
4811     // There are two wins:  Avoid generating the ClearArray
4812     // with its attendant messy index arithmetic, and upgrade
4813     // the copy to a more hardware-friendly word size of 64 bits.
4814     Node* tail_ctl = NULL;
4815     if (!stopped() && !dest_tail->eqv_uncast(dest_length)) {
4816       Node* cmp_lt   = _gvn.transform( new(C,3) CmpINode(dest_tail, dest_length) );
4817       Node* bol_lt   = _gvn.transform( new(C,2) BoolNode(cmp_lt, BoolTest::lt) );
4818       tail_ctl = generate_slow_guard(bol_lt, NULL);
4819       assert(tail_ctl != NULL || !stopped(), "must be an outcome");
4820     }
4821 
4822     // At this point, let's assume there is no tail.
4823     if (!stopped() && alloc != NULL && basic_elem_type != T_OBJECT) {
4824       // There is no tail.  Try an upgrade to a 64-bit copy.
4825       bool didit = false;
4826       { PreserveJVMState pjvms(this);
4827         didit = generate_block_arraycopy(adr_type, basic_elem_type, alloc,
4828                                          src, src_offset, dest, dest_offset,
4829                                          dest_size, dest_uninitialized);
4830         if (didit) {
4831           // Present the results of the block-copying fast call.
4832           result_region->init_req(bcopy_path, control());
4833           result_i_o   ->init_req(bcopy_path, i_o());
4834           result_memory->init_req(bcopy_path, memory(adr_type));
4835         }
4836       }
4837       if (didit)
4838         set_control(top());     // no regular fast path
4839     }
4840 
4841     // Clear the tail, if any.
4842     if (tail_ctl != NULL) {
4843       Node* notail_ctl = stopped() ? NULL : control();
4844       set_control(tail_ctl);
4845       if (notail_ctl == NULL) {
4846         generate_clear_array(adr_type, dest, basic_elem_type,
4847                              dest_tail, NULL,
4848                              dest_size);
4849       } else {
4850         // Make a local merge.
4851         Node* done_ctl = new(C,3) RegionNode(3);
4852         Node* done_mem = new(C,3) PhiNode(done_ctl, Type::MEMORY, adr_type);
4853         done_ctl->init_req(1, notail_ctl);
4854         done_mem->init_req(1, memory(adr_type));
4855         generate_clear_array(adr_type, dest, basic_elem_type,
4856                              dest_tail, NULL,
4857                              dest_size);
4858         done_ctl->init_req(2, control());
4859         done_mem->init_req(2, memory(adr_type));
4860         set_control( _gvn.transform(done_ctl) );
4861         set_memory(  _gvn.transform(done_mem), adr_type );
4862       }
4863     }
4864   }
4865 
4866   BasicType copy_type = basic_elem_type;
4867   assert(basic_elem_type != T_ARRAY, "caller must fix this");
4868   if (!stopped() && copy_type == T_OBJECT) {
4869     // If src and dest have compatible element types, we can copy bits.
4870     // Types S[] and D[] are compatible if D is a supertype of S.
4871     //
4872     // If they are not, we will use checked_oop_disjoint_arraycopy,
4873     // which performs a fast optimistic per-oop check, and backs off
4874     // further to JVM_ArrayCopy on the first per-oop check that fails.
4875     // (Actually, we don't move raw bits only; the GC requires card marks.)
4876 
4877     // Get the klassOop for both src and dest
4878     Node* src_klass  = load_object_klass(src);
4879     Node* dest_klass = load_object_klass(dest);
4880 
4881     // Generate the subtype check.
4882     // This might fold up statically, or then again it might not.
4883     //
4884     // Non-static example:  Copying List<String>.elements to a new String[].
4885     // The backing store for a List<String> is always an Object[],
4886     // but its elements are always type String, if the generic types
4887     // are correct at the source level.
4888     //
4889     // Test S[] against D[], not S against D, because (probably)
4890     // the secondary supertype cache is less busy for S[] than S.
4891     // This usually only matters when D is an interface.
4892     Node* not_subtype_ctrl = gen_subtype_check(src_klass, dest_klass);
4893     // Plug failing path into checked_oop_disjoint_arraycopy
4894     if (not_subtype_ctrl != top()) {
4895       PreserveJVMState pjvms(this);
4896       set_control(not_subtype_ctrl);
4897       // (At this point we can assume disjoint_bases, since types differ.)
4898       int ek_offset = in_bytes(objArrayKlass::element_klass_offset());
4899       Node* p1 = basic_plus_adr(dest_klass, ek_offset);
4900       Node* n1 = LoadKlassNode::make(_gvn, immutable_memory(), p1, TypeRawPtr::BOTTOM);
4901       Node* dest_elem_klass = _gvn.transform(n1);
4902       Node* cv = generate_checkcast_arraycopy(adr_type,
4903                                               dest_elem_klass,
4904                                               src, src_offset, dest, dest_offset,
4905                                               ConvI2X(copy_length), dest_uninitialized);
4906       if (cv == NULL)  cv = intcon(-1);  // failure (no stub available)
4907       checked_control = control();
4908       checked_i_o     = i_o();
4909       checked_mem     = memory(adr_type);
4910       checked_value   = cv;
4911     }
4912     // At this point we know we do not need type checks on oop stores.
4913 
4914     // Let's see if we need card marks:
4915     if (alloc != NULL && use_ReduceInitialCardMarks()) {
4916       // If we do not need card marks, copy using the jint or jlong stub.
4917       copy_type = LP64_ONLY(UseCompressedOops ? T_INT : T_LONG) NOT_LP64(T_INT);
4918       assert(type2aelembytes(basic_elem_type) == type2aelembytes(copy_type),
4919              "sizes agree");
4920     }
4921   }
4922 
4923   if (!stopped()) {
4924     // Generate the fast path, if possible.
4925     PreserveJVMState pjvms(this);
4926     generate_unchecked_arraycopy(adr_type, copy_type, disjoint_bases,
4927                                  src, src_offset, dest, dest_offset,
4928                                  ConvI2X(copy_length), dest_uninitialized);
4929 
4930     // Present the results of the fast call.
4931     result_region->init_req(fast_path, control());
4932     result_i_o   ->init_req(fast_path, i_o());
4933     result_memory->init_req(fast_path, memory(adr_type));
4934   }
4935 
4936   // Here are all the slow paths up to this point, in one bundle:
4937   slow_control = top();
4938   if (slow_region != NULL)
4939     slow_control = _gvn.transform(slow_region);
4940   debug_only(slow_region = (RegionNode*)badAddress);
4941 
4942   set_control(checked_control);
4943   if (!stopped()) {
4944     // Clean up after the checked call.
4945     // The returned value is either 0 or -1^K,
4946     // where K = number of partially transferred array elements.
4947     Node* cmp = _gvn.transform( new(C, 3) CmpINode(checked_value, intcon(0)) );
4948     Node* bol = _gvn.transform( new(C, 2) BoolNode(cmp, BoolTest::eq) );
4949     IfNode* iff = create_and_map_if(control(), bol, PROB_MAX, COUNT_UNKNOWN);
4950 
4951     // If it is 0, we are done, so transfer to the end.
4952     Node* checks_done = _gvn.transform( new(C, 1) IfTrueNode(iff) );
4953     result_region->init_req(checked_path, checks_done);
4954     result_i_o   ->init_req(checked_path, checked_i_o);
4955     result_memory->init_req(checked_path, checked_mem);
4956 
4957     // If it is not zero, merge into the slow call.
4958     set_control( _gvn.transform( new(C, 1) IfFalseNode(iff) ));
4959     RegionNode* slow_reg2 = new(C, 3) RegionNode(3);
4960     PhiNode*    slow_i_o2 = new(C, 3) PhiNode(slow_reg2, Type::ABIO);
4961     PhiNode*    slow_mem2 = new(C, 3) PhiNode(slow_reg2, Type::MEMORY, adr_type);
4962     record_for_igvn(slow_reg2);
4963     slow_reg2  ->init_req(1, slow_control);
4964     slow_i_o2  ->init_req(1, slow_i_o);
4965     slow_mem2  ->init_req(1, slow_mem);
4966     slow_reg2  ->init_req(2, control());
4967     slow_i_o2  ->init_req(2, checked_i_o);
4968     slow_mem2  ->init_req(2, checked_mem);
4969 
4970     slow_control = _gvn.transform(slow_reg2);
4971     slow_i_o     = _gvn.transform(slow_i_o2);
4972     slow_mem     = _gvn.transform(slow_mem2);
4973 
4974     if (alloc != NULL) {
4975       // We'll restart from the very beginning, after zeroing the whole thing.
4976       // This can cause double writes, but that's OK since dest is brand new.
4977       // So we ignore the low 31 bits of the value returned from the stub.
4978     } else {
4979       // We must continue the copy exactly where it failed, or else
4980       // another thread might see the wrong number of writes to dest.
4981       Node* checked_offset = _gvn.transform( new(C, 3) XorINode(checked_value, intcon(-1)) );
4982       Node* slow_offset    = new(C, 3) PhiNode(slow_reg2, TypeInt::INT);
4983       slow_offset->init_req(1, intcon(0));
4984       slow_offset->init_req(2, checked_offset);
4985       slow_offset  = _gvn.transform(slow_offset);
4986 
4987       // Adjust the arguments by the conditionally incoming offset.
4988       Node* src_off_plus  = _gvn.transform( new(C, 3) AddINode(src_offset,  slow_offset) );
4989       Node* dest_off_plus = _gvn.transform( new(C, 3) AddINode(dest_offset, slow_offset) );
4990       Node* length_minus  = _gvn.transform( new(C, 3) SubINode(copy_length, slow_offset) );
4991 
4992       // Tweak the node variables to adjust the code produced below:
4993       src_offset  = src_off_plus;
4994       dest_offset = dest_off_plus;
4995       copy_length = length_minus;
4996     }
4997   }
4998 
4999   set_control(slow_control);
5000   if (!stopped()) {
5001     // Generate the slow path, if needed.
5002     PreserveJVMState pjvms(this);   // replace_in_map may trash the map
5003 
5004     set_memory(slow_mem, adr_type);
5005     set_i_o(slow_i_o);
5006 
5007     if (dest_uninitialized) {
5008       generate_clear_array(adr_type, dest, basic_elem_type,
5009                            intcon(0), NULL,
5010                            alloc->in(AllocateNode::AllocSize));
5011     }
5012 
5013     generate_slow_arraycopy(adr_type,
5014                             src, src_offset, dest, dest_offset,
5015                             copy_length, /*dest_uninitialized*/false);
5016 
5017     result_region->init_req(slow_call_path, control());
5018     result_i_o   ->init_req(slow_call_path, i_o());
5019     result_memory->init_req(slow_call_path, memory(adr_type));
5020   }
5021 
5022   // Remove unused edges.
5023   for (uint i = 1; i < result_region->req(); i++) {
5024     if (result_region->in(i) == NULL)
5025       result_region->init_req(i, top());
5026   }
5027 
5028   // Finished; return the combined state.
5029   set_control( _gvn.transform(result_region) );
5030   set_i_o(     _gvn.transform(result_i_o)    );
5031   set_memory(  _gvn.transform(result_memory), adr_type );
5032 
5033   // The memory edges above are precise in order to model effects around
5034   // array copies accurately to allow value numbering of field loads around
5035   // arraycopy.  Such field loads, both before and after, are common in Java
5036   // collections and similar classes involving header/array data structures.
5037   //
5038   // But with low number of register or when some registers are used or killed
5039   // by arraycopy calls it causes registers spilling on stack. See 6544710.
5040   // The next memory barrier is added to avoid it. If the arraycopy can be
5041   // optimized away (which it can, sometimes) then we can manually remove
5042   // the membar also.
5043   //
5044   // Do not let reads from the cloned object float above the arraycopy.
5045   if (alloc != NULL) {
5046     // Do not let stores that initialize this object be reordered with
5047     // a subsequent store that would make this object accessible by
5048     // other threads.
5049     // Record what AllocateNode this StoreStore protects so that
5050     // escape analysis can go from the MemBarStoreStoreNode to the
5051     // AllocateNode and eliminate the MemBarStoreStoreNode if possible
5052     // based on the escape status of the AllocateNode.
5053     insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
5054   } else if (InsertMemBarAfterArraycopy)
5055     insert_mem_bar(Op_MemBarCPUOrder);
5056 }
5057 
5058 
5059 // Helper function which determines if an arraycopy immediately follows
5060 // an allocation, with no intervening tests or other escapes for the object.
5061 AllocateArrayNode*
5062 LibraryCallKit::tightly_coupled_allocation(Node* ptr,
5063                                            RegionNode* slow_region) {
5064   if (stopped())             return NULL;  // no fast path
5065   if (C->AliasLevel() == 0)  return NULL;  // no MergeMems around
5066 
5067   AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(ptr, &_gvn);
5068   if (alloc == NULL)  return NULL;
5069 
5070   Node* rawmem = memory(Compile::AliasIdxRaw);
5071   // Is the allocation's memory state untouched?
5072   if (!(rawmem->is_Proj() && rawmem->in(0)->is_Initialize())) {
5073     // Bail out if there have been raw-memory effects since the allocation.
5074     // (Example:  There might have been a call or safepoint.)
5075     return NULL;
5076   }
5077   rawmem = rawmem->in(0)->as_Initialize()->memory(Compile::AliasIdxRaw);
5078   if (!(rawmem->is_Proj() && rawmem->in(0) == alloc)) {
5079     return NULL;
5080   }
5081 
5082   // There must be no unexpected observers of this allocation.
5083   for (DUIterator_Fast imax, i = ptr->fast_outs(imax); i < imax; i++) {
5084     Node* obs = ptr->fast_out(i);
5085     if (obs != this->map()) {
5086       return NULL;
5087     }
5088   }
5089 
5090   // This arraycopy must unconditionally follow the allocation of the ptr.
5091   Node* alloc_ctl = ptr->in(0);
5092   assert(just_allocated_object(alloc_ctl) == ptr, "most recent allo");
5093 
5094   Node* ctl = control();
5095   while (ctl != alloc_ctl) {
5096     // There may be guards which feed into the slow_region.
5097     // Any other control flow means that we might not get a chance
5098     // to finish initializing the allocated object.
5099     if ((ctl->is_IfFalse() || ctl->is_IfTrue()) && ctl->in(0)->is_If()) {
5100       IfNode* iff = ctl->in(0)->as_If();
5101       Node* not_ctl = iff->proj_out(1 - ctl->as_Proj()->_con);
5102       assert(not_ctl != NULL && not_ctl != ctl, "found alternate");
5103       if (slow_region != NULL && slow_region->find_edge(not_ctl) >= 1) {
5104         ctl = iff->in(0);       // This test feeds the known slow_region.
5105         continue;
5106       }
5107       // One more try:  Various low-level checks bottom out in
5108       // uncommon traps.  If the debug-info of the trap omits
5109       // any reference to the allocation, as we've already
5110       // observed, then there can be no objection to the trap.
5111       bool found_trap = false;
5112       for (DUIterator_Fast jmax, j = not_ctl->fast_outs(jmax); j < jmax; j++) {
5113         Node* obs = not_ctl->fast_out(j);
5114         if (obs->in(0) == not_ctl && obs->is_Call() &&
5115             (obs->as_Call()->entry_point() == SharedRuntime::uncommon_trap_blob()->entry_point())) {
5116           found_trap = true; break;
5117         }
5118       }
5119       if (found_trap) {
5120         ctl = iff->in(0);       // This test feeds a harmless uncommon trap.
5121         continue;
5122       }
5123     }
5124     return NULL;
5125   }
5126 
5127   // If we get this far, we have an allocation which immediately
5128   // precedes the arraycopy, and we can take over zeroing the new object.
5129   // The arraycopy will finish the initialization, and provide
5130   // a new control state to which we will anchor the destination pointer.
5131 
5132   return alloc;
5133 }
5134 
5135 // Helper for initialization of arrays, creating a ClearArray.
5136 // It writes zero bits in [start..end), within the body of an array object.
5137 // The memory effects are all chained onto the 'adr_type' alias category.
5138 //
5139 // Since the object is otherwise uninitialized, we are free
5140 // to put a little "slop" around the edges of the cleared area,
5141 // as long as it does not go back into the array's header,
5142 // or beyond the array end within the heap.
5143 //
5144 // The lower edge can be rounded down to the nearest jint and the
5145 // upper edge can be rounded up to the nearest MinObjAlignmentInBytes.
5146 //
5147 // Arguments:
5148 //   adr_type           memory slice where writes are generated
5149 //   dest               oop of the destination array
5150 //   basic_elem_type    element type of the destination
5151 //   slice_idx          array index of first element to store
5152 //   slice_len          number of elements to store (or NULL)
5153 //   dest_size          total size in bytes of the array object
5154 //
5155 // Exactly one of slice_len or dest_size must be non-NULL.
5156 // If dest_size is non-NULL, zeroing extends to the end of the object.
5157 // If slice_len is non-NULL, the slice_idx value must be a constant.
5158 void
5159 LibraryCallKit::generate_clear_array(const TypePtr* adr_type,
5160                                      Node* dest,
5161                                      BasicType basic_elem_type,
5162                                      Node* slice_idx,
5163                                      Node* slice_len,
5164                                      Node* dest_size) {
5165   // one or the other but not both of slice_len and dest_size:
5166   assert((slice_len != NULL? 1: 0) + (dest_size != NULL? 1: 0) == 1, "");
5167   if (slice_len == NULL)  slice_len = top();
5168   if (dest_size == NULL)  dest_size = top();
5169 
5170   // operate on this memory slice:
5171   Node* mem = memory(adr_type); // memory slice to operate on
5172 
5173   // scaling and rounding of indexes:
5174   int scale = exact_log2(type2aelembytes(basic_elem_type));
5175   int abase = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
5176   int clear_low = (-1 << scale) & (BytesPerInt  - 1);
5177   int bump_bit  = (-1 << scale) & BytesPerInt;
5178 
5179   // determine constant starts and ends
5180   const intptr_t BIG_NEG = -128;
5181   assert(BIG_NEG + 2*abase < 0, "neg enough");
5182   intptr_t slice_idx_con = (intptr_t) find_int_con(slice_idx, BIG_NEG);
5183   intptr_t slice_len_con = (intptr_t) find_int_con(slice_len, BIG_NEG);
5184   if (slice_len_con == 0) {
5185     return;                     // nothing to do here
5186   }
5187   intptr_t start_con = (abase + (slice_idx_con << scale)) & ~clear_low;
5188   intptr_t end_con   = find_intptr_t_con(dest_size, -1);
5189   if (slice_idx_con >= 0 && slice_len_con >= 0) {
5190     assert(end_con < 0, "not two cons");
5191     end_con = round_to(abase + ((slice_idx_con + slice_len_con) << scale),
5192                        BytesPerLong);
5193   }
5194 
5195   if (start_con >= 0 && end_con >= 0) {
5196     // Constant start and end.  Simple.
5197     mem = ClearArrayNode::clear_memory(control(), mem, dest,
5198                                        start_con, end_con, &_gvn);
5199   } else if (start_con >= 0 && dest_size != top()) {
5200     // Constant start, pre-rounded end after the tail of the array.
5201     Node* end = dest_size;
5202     mem = ClearArrayNode::clear_memory(control(), mem, dest,
5203                                        start_con, end, &_gvn);
5204   } else if (start_con >= 0 && slice_len != top()) {
5205     // Constant start, non-constant end.  End needs rounding up.
5206     // End offset = round_up(abase + ((slice_idx_con + slice_len) << scale), 8)
5207     intptr_t end_base  = abase + (slice_idx_con << scale);
5208     int      end_round = (-1 << scale) & (BytesPerLong  - 1);
5209     Node*    end       = ConvI2X(slice_len);
5210     if (scale != 0)
5211       end = _gvn.transform( new(C,3) LShiftXNode(end, intcon(scale) ));
5212     end_base += end_round;
5213     end = _gvn.transform( new(C,3) AddXNode(end, MakeConX(end_base)) );
5214     end = _gvn.transform( new(C,3) AndXNode(end, MakeConX(~end_round)) );
5215     mem = ClearArrayNode::clear_memory(control(), mem, dest,
5216                                        start_con, end, &_gvn);
5217   } else if (start_con < 0 && dest_size != top()) {
5218     // Non-constant start, pre-rounded end after the tail of the array.
5219     // This is almost certainly a "round-to-end" operation.
5220     Node* start = slice_idx;
5221     start = ConvI2X(start);
5222     if (scale != 0)
5223       start = _gvn.transform( new(C,3) LShiftXNode( start, intcon(scale) ));
5224     start = _gvn.transform( new(C,3) AddXNode(start, MakeConX(abase)) );
5225     if ((bump_bit | clear_low) != 0) {
5226       int to_clear = (bump_bit | clear_low);
5227       // Align up mod 8, then store a jint zero unconditionally
5228       // just before the mod-8 boundary.
5229       if (((abase + bump_bit) & ~to_clear) - bump_bit
5230           < arrayOopDesc::length_offset_in_bytes() + BytesPerInt) {
5231         bump_bit = 0;
5232         assert((abase & to_clear) == 0, "array base must be long-aligned");
5233       } else {
5234         // Bump 'start' up to (or past) the next jint boundary:
5235         start = _gvn.transform( new(C,3) AddXNode(start, MakeConX(bump_bit)) );
5236         assert((abase & clear_low) == 0, "array base must be int-aligned");
5237       }
5238       // Round bumped 'start' down to jlong boundary in body of array.
5239       start = _gvn.transform( new(C,3) AndXNode(start, MakeConX(~to_clear)) );
5240       if (bump_bit != 0) {
5241         // Store a zero to the immediately preceding jint:
5242         Node* x1 = _gvn.transform( new(C,3) AddXNode(start, MakeConX(-bump_bit)) );
5243         Node* p1 = basic_plus_adr(dest, x1);
5244         mem = StoreNode::make(_gvn, control(), mem, p1, adr_type, intcon(0), T_INT);
5245         mem = _gvn.transform(mem);
5246       }
5247     }
5248     Node* end = dest_size; // pre-rounded
5249     mem = ClearArrayNode::clear_memory(control(), mem, dest,
5250                                        start, end, &_gvn);
5251   } else {
5252     // Non-constant start, unrounded non-constant end.
5253     // (Nobody zeroes a random midsection of an array using this routine.)
5254     ShouldNotReachHere();       // fix caller
5255   }
5256 
5257   // Done.
5258   set_memory(mem, adr_type);
5259 }
5260 
5261 
5262 bool
5263 LibraryCallKit::generate_block_arraycopy(const TypePtr* adr_type,
5264                                          BasicType basic_elem_type,
5265                                          AllocateNode* alloc,
5266                                          Node* src,  Node* src_offset,
5267                                          Node* dest, Node* dest_offset,
5268                                          Node* dest_size, bool dest_uninitialized) {
5269   // See if there is an advantage from block transfer.
5270   int scale = exact_log2(type2aelembytes(basic_elem_type));
5271   if (scale >= LogBytesPerLong)
5272     return false;               // it is already a block transfer
5273 
5274   // Look at the alignment of the starting offsets.
5275   int abase = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
5276 
5277   intptr_t src_off_con  = (intptr_t) find_int_con(src_offset, -1);
5278   intptr_t dest_off_con = (intptr_t) find_int_con(dest_offset, -1);
5279   if (src_off_con < 0 || dest_off_con < 0)
5280     // At present, we can only understand constants.
5281     return false;
5282 
5283   intptr_t src_off  = abase + (src_off_con  << scale);
5284   intptr_t dest_off = abase + (dest_off_con << scale);
5285 
5286   if (((src_off | dest_off) & (BytesPerLong-1)) != 0) {
5287     // Non-aligned; too bad.
5288     // One more chance:  Pick off an initial 32-bit word.
5289     // This is a common case, since abase can be odd mod 8.
5290     if (((src_off | dest_off) & (BytesPerLong-1)) == BytesPerInt &&
5291         ((src_off ^ dest_off) & (BytesPerLong-1)) == 0) {
5292       Node* sptr = basic_plus_adr(src,  src_off);
5293       Node* dptr = basic_plus_adr(dest, dest_off);
5294       Node* sval = make_load(control(), sptr, TypeInt::INT, T_INT, adr_type);
5295       store_to_memory(control(), dptr, sval, T_INT, adr_type);
5296       src_off += BytesPerInt;
5297       dest_off += BytesPerInt;
5298     } else {
5299       return false;
5300     }
5301   }
5302   assert(src_off % BytesPerLong == 0, "");
5303   assert(dest_off % BytesPerLong == 0, "");
5304 
5305   // Do this copy by giant steps.
5306   Node* sptr  = basic_plus_adr(src,  src_off);
5307   Node* dptr  = basic_plus_adr(dest, dest_off);
5308   Node* countx = dest_size;
5309   countx = _gvn.transform( new (C, 3) SubXNode(countx, MakeConX(dest_off)) );
5310   countx = _gvn.transform( new (C, 3) URShiftXNode(countx, intcon(LogBytesPerLong)) );
5311 
5312   bool disjoint_bases = true;   // since alloc != NULL
5313   generate_unchecked_arraycopy(adr_type, T_LONG, disjoint_bases,
5314                                sptr, NULL, dptr, NULL, countx, dest_uninitialized);
5315 
5316   return true;
5317 }
5318 
5319 
5320 // Helper function; generates code for the slow case.
5321 // We make a call to a runtime method which emulates the native method,
5322 // but without the native wrapper overhead.
5323 void
5324 LibraryCallKit::generate_slow_arraycopy(const TypePtr* adr_type,
5325                                         Node* src,  Node* src_offset,
5326                                         Node* dest, Node* dest_offset,
5327                                         Node* copy_length, bool dest_uninitialized) {
5328   assert(!dest_uninitialized, "Invariant");
5329   Node* call = make_runtime_call(RC_NO_LEAF | RC_UNCOMMON,
5330                                  OptoRuntime::slow_arraycopy_Type(),
5331                                  OptoRuntime::slow_arraycopy_Java(),
5332                                  "slow_arraycopy", adr_type,
5333                                  src, src_offset, dest, dest_offset,
5334                                  copy_length);
5335 
5336   // Handle exceptions thrown by this fellow:
5337   make_slow_call_ex(call, env()->Throwable_klass(), false);
5338 }
5339 
5340 // Helper function; generates code for cases requiring runtime checks.
5341 Node*
5342 LibraryCallKit::generate_checkcast_arraycopy(const TypePtr* adr_type,
5343                                              Node* dest_elem_klass,
5344                                              Node* src,  Node* src_offset,
5345                                              Node* dest, Node* dest_offset,
5346                                              Node* copy_length, bool dest_uninitialized) {
5347   if (stopped())  return NULL;
5348 
5349   address copyfunc_addr = StubRoutines::checkcast_arraycopy(dest_uninitialized);
5350   if (copyfunc_addr == NULL) { // Stub was not generated, go slow path.
5351     return NULL;
5352   }
5353 
5354   // Pick out the parameters required to perform a store-check
5355   // for the target array.  This is an optimistic check.  It will
5356   // look in each non-null element's class, at the desired klass's
5357   // super_check_offset, for the desired klass.
5358   int sco_offset = in_bytes(Klass::super_check_offset_offset());
5359   Node* p3 = basic_plus_adr(dest_elem_klass, sco_offset);
5360   Node* n3 = new(C, 3) LoadINode(NULL, memory(p3), p3, _gvn.type(p3)->is_ptr());
5361   Node* check_offset = ConvI2X(_gvn.transform(n3));
5362   Node* check_value  = dest_elem_klass;
5363 
5364   Node* src_start  = array_element_address(src,  src_offset,  T_OBJECT);
5365   Node* dest_start = array_element_address(dest, dest_offset, T_OBJECT);
5366 
5367   // (We know the arrays are never conjoint, because their types differ.)
5368   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
5369                                  OptoRuntime::checkcast_arraycopy_Type(),
5370                                  copyfunc_addr, "checkcast_arraycopy", adr_type,
5371                                  // five arguments, of which two are
5372                                  // intptr_t (jlong in LP64)
5373                                  src_start, dest_start,
5374                                  copy_length XTOP,
5375                                  check_offset XTOP,
5376                                  check_value);
5377 
5378   return _gvn.transform(new (C, 1) ProjNode(call, TypeFunc::Parms));
5379 }
5380 
5381 
5382 // Helper function; generates code for cases requiring runtime checks.
5383 Node*
5384 LibraryCallKit::generate_generic_arraycopy(const TypePtr* adr_type,
5385                                            Node* src,  Node* src_offset,
5386                                            Node* dest, Node* dest_offset,
5387                                            Node* copy_length, bool dest_uninitialized) {
5388   assert(!dest_uninitialized, "Invariant");
5389   if (stopped())  return NULL;
5390   address copyfunc_addr = StubRoutines::generic_arraycopy();
5391   if (copyfunc_addr == NULL) { // Stub was not generated, go slow path.
5392     return NULL;
5393   }
5394 
5395   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
5396                     OptoRuntime::generic_arraycopy_Type(),
5397                     copyfunc_addr, "generic_arraycopy", adr_type,
5398                     src, src_offset, dest, dest_offset, copy_length);
5399 
5400   return _gvn.transform(new (C, 1) ProjNode(call, TypeFunc::Parms));
5401 }
5402 
5403 // Helper function; generates the fast out-of-line call to an arraycopy stub.
5404 void
5405 LibraryCallKit::generate_unchecked_arraycopy(const TypePtr* adr_type,
5406                                              BasicType basic_elem_type,
5407                                              bool disjoint_bases,
5408                                              Node* src,  Node* src_offset,
5409                                              Node* dest, Node* dest_offset,
5410                                              Node* copy_length, bool dest_uninitialized) {
5411   if (stopped())  return;               // nothing to do
5412 
5413   Node* src_start  = src;
5414   Node* dest_start = dest;
5415   if (src_offset != NULL || dest_offset != NULL) {
5416     assert(src_offset != NULL && dest_offset != NULL, "");
5417     src_start  = array_element_address(src,  src_offset,  basic_elem_type);
5418     dest_start = array_element_address(dest, dest_offset, basic_elem_type);
5419   }
5420 
5421   // Figure out which arraycopy runtime method to call.
5422   const char* copyfunc_name = "arraycopy";
5423   address     copyfunc_addr =
5424       basictype2arraycopy(basic_elem_type, src_offset, dest_offset,
5425                           disjoint_bases, copyfunc_name, dest_uninitialized);
5426 
5427   // Call it.  Note that the count_ix value is not scaled to a byte-size.
5428   make_runtime_call(RC_LEAF|RC_NO_FP,
5429                     OptoRuntime::fast_arraycopy_Type(),
5430                     copyfunc_addr, copyfunc_name, adr_type,
5431                     src_start, dest_start, copy_length XTOP);
5432 }
5433 
5434 //----------------------------inline_reference_get----------------------------
5435 
5436 bool LibraryCallKit::inline_reference_get() {
5437   const int nargs = 1; // self
5438 
5439   guarantee(java_lang_ref_Reference::referent_offset > 0,
5440             "should have already been set");
5441 
5442   int referent_offset = java_lang_ref_Reference::referent_offset;
5443 
5444   // Restore the stack and pop off the argument
5445   _sp += nargs;
5446   Node *reference_obj = pop();
5447 
5448   // Null check on self without removing any arguments.
5449   _sp += nargs;
5450   reference_obj = do_null_check(reference_obj, T_OBJECT);
5451   _sp -= nargs;;
5452 
5453   if (stopped()) return true;
5454 
5455   Node *adr = basic_plus_adr(reference_obj, reference_obj, referent_offset);
5456 
5457   ciInstanceKlass* klass = env()->Object_klass();
5458   const TypeOopPtr* object_type = TypeOopPtr::make_from_klass(klass);
5459 
5460   Node* no_ctrl = NULL;
5461   Node *result = make_load(no_ctrl, adr, object_type, T_OBJECT);
5462 
5463   // Use the pre-barrier to record the value in the referent field
5464   pre_barrier(false /* do_load */,
5465               control(),
5466               NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
5467               result /* pre_val */,
5468               T_OBJECT);
5469 
5470   push(result);
5471   return true;
5472 }
5473