1 /*
   2  * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/macroAssembler.hpp"
  27 #include "asm/macroAssembler.inline.hpp"
  28 #include "ci/ciReplay.hpp"
  29 #include "classfile/systemDictionary.hpp"
  30 #include "code/exceptionHandlerTable.hpp"
  31 #include "code/nmethod.hpp"
  32 #include "compiler/compileBroker.hpp"
  33 #include "compiler/compileLog.hpp"
  34 #include "compiler/disassembler.hpp"
  35 #include "compiler/oopMap.hpp"
  36 #include "opto/addnode.hpp"
  37 #include "opto/block.hpp"
  38 #include "opto/c2compiler.hpp"
  39 #include "opto/callGenerator.hpp"
  40 #include "opto/callnode.hpp"
  41 #include "opto/cfgnode.hpp"
  42 #include "opto/chaitin.hpp"
  43 #include "opto/compile.hpp"
  44 #include "opto/connode.hpp"
  45 #include "opto/convertnode.hpp"
  46 #include "opto/divnode.hpp"
  47 #include "opto/escape.hpp"
  48 #include "opto/idealGraphPrinter.hpp"
  49 #include "opto/loopnode.hpp"
  50 #include "opto/machnode.hpp"
  51 #include "opto/macro.hpp"
  52 #include "opto/matcher.hpp"
  53 #include "opto/mathexactnode.hpp"
  54 #include "opto/memnode.hpp"
  55 #include "opto/mulnode.hpp"
  56 #include "opto/narrowptrnode.hpp"
  57 #include "opto/node.hpp"
  58 #include "opto/opcodes.hpp"
  59 #include "opto/output.hpp"
  60 #include "opto/parse.hpp"
  61 #include "opto/phaseX.hpp"
  62 #include "opto/rootnode.hpp"
  63 #include "opto/runtime.hpp"
  64 #include "opto/stringopts.hpp"
  65 #include "opto/type.hpp"
  66 #include "opto/vectornode.hpp"
  67 #include "runtime/arguments.hpp"
  68 #include "runtime/sharedRuntime.hpp"
  69 #include "runtime/signature.hpp"
  70 #include "runtime/stubRoutines.hpp"
  71 #include "runtime/timer.hpp"
  72 #include "utilities/copy.hpp"
  73 
  74 
  75 // -------------------- Compile::mach_constant_base_node -----------------------
  76 // Constant table base node singleton.
  77 MachConstantBaseNode* Compile::mach_constant_base_node() {
  78   if (_mach_constant_base_node == NULL) {
  79     _mach_constant_base_node = new MachConstantBaseNode();
  80     _mach_constant_base_node->add_req(C->root());
  81   }
  82   return _mach_constant_base_node;
  83 }
  84 
  85 
  86 /// Support for intrinsics.
  87 
  88 // Return the index at which m must be inserted (or already exists).
  89 // The sort order is by the address of the ciMethod, with is_virtual as minor key.
  90 int Compile::intrinsic_insertion_index(ciMethod* m, bool is_virtual) {
  91 #ifdef ASSERT
  92   for (int i = 1; i < _intrinsics->length(); i++) {
  93     CallGenerator* cg1 = _intrinsics->at(i-1);
  94     CallGenerator* cg2 = _intrinsics->at(i);
  95     assert(cg1->method() != cg2->method()
  96            ? cg1->method()     < cg2->method()
  97            : cg1->is_virtual() < cg2->is_virtual(),
  98            "compiler intrinsics list must stay sorted");
  99   }
 100 #endif
 101   // Binary search sorted list, in decreasing intervals [lo, hi].
 102   int lo = 0, hi = _intrinsics->length()-1;
 103   while (lo <= hi) {
 104     int mid = (uint)(hi + lo) / 2;
 105     ciMethod* mid_m = _intrinsics->at(mid)->method();
 106     if (m < mid_m) {
 107       hi = mid-1;
 108     } else if (m > mid_m) {
 109       lo = mid+1;
 110     } else {
 111       // look at minor sort key
 112       bool mid_virt = _intrinsics->at(mid)->is_virtual();
 113       if (is_virtual < mid_virt) {
 114         hi = mid-1;
 115       } else if (is_virtual > mid_virt) {
 116         lo = mid+1;
 117       } else {
 118         return mid;  // exact match
 119       }
 120     }
 121   }
 122   return lo;  // inexact match
 123 }
 124 
 125 void Compile::register_intrinsic(CallGenerator* cg) {
 126   if (_intrinsics == NULL) {
 127     _intrinsics = new (comp_arena())GrowableArray<CallGenerator*>(comp_arena(), 60, 0, NULL);
 128   }
 129   // This code is stolen from ciObjectFactory::insert.
 130   // Really, GrowableArray should have methods for
 131   // insert_at, remove_at, and binary_search.
 132   int len = _intrinsics->length();
 133   int index = intrinsic_insertion_index(cg->method(), cg->is_virtual());
 134   if (index == len) {
 135     _intrinsics->append(cg);
 136   } else {
 137 #ifdef ASSERT
 138     CallGenerator* oldcg = _intrinsics->at(index);
 139     assert(oldcg->method() != cg->method() || oldcg->is_virtual() != cg->is_virtual(), "don't register twice");
 140 #endif
 141     _intrinsics->append(_intrinsics->at(len-1));
 142     int pos;
 143     for (pos = len-2; pos >= index; pos--) {
 144       _intrinsics->at_put(pos+1,_intrinsics->at(pos));
 145     }
 146     _intrinsics->at_put(index, cg);
 147   }
 148   assert(find_intrinsic(cg->method(), cg->is_virtual()) == cg, "registration worked");
 149 }
 150 
 151 CallGenerator* Compile::find_intrinsic(ciMethod* m, bool is_virtual) {
 152   assert(m->is_loaded(), "don't try this on unloaded methods");
 153   if (_intrinsics != NULL) {
 154     int index = intrinsic_insertion_index(m, is_virtual);
 155     if (index < _intrinsics->length()
 156         && _intrinsics->at(index)->method() == m
 157         && _intrinsics->at(index)->is_virtual() == is_virtual) {
 158       return _intrinsics->at(index);
 159     }
 160   }
 161   // Lazily create intrinsics for intrinsic IDs well-known in the runtime.
 162   if (m->intrinsic_id() != vmIntrinsics::_none &&
 163       m->intrinsic_id() <= vmIntrinsics::LAST_COMPILER_INLINE) {
 164     CallGenerator* cg = make_vm_intrinsic(m, is_virtual);
 165     if (cg != NULL) {
 166       // Save it for next time:
 167       register_intrinsic(cg);
 168       return cg;
 169     } else {
 170       gather_intrinsic_statistics(m->intrinsic_id(), is_virtual, _intrinsic_disabled);
 171     }
 172   }
 173   return NULL;
 174 }
 175 
 176 // Compile:: register_library_intrinsics and make_vm_intrinsic are defined
 177 // in library_call.cpp.
 178 
 179 
 180 #ifndef PRODUCT
 181 // statistics gathering...
 182 
 183 juint  Compile::_intrinsic_hist_count[vmIntrinsics::ID_LIMIT] = {0};
 184 jubyte Compile::_intrinsic_hist_flags[vmIntrinsics::ID_LIMIT] = {0};
 185 
 186 bool Compile::gather_intrinsic_statistics(vmIntrinsics::ID id, bool is_virtual, int flags) {
 187   assert(id > vmIntrinsics::_none && id < vmIntrinsics::ID_LIMIT, "oob");
 188   int oflags = _intrinsic_hist_flags[id];
 189   assert(flags != 0, "what happened?");
 190   if (is_virtual) {
 191     flags |= _intrinsic_virtual;
 192   }
 193   bool changed = (flags != oflags);
 194   if ((flags & _intrinsic_worked) != 0) {
 195     juint count = (_intrinsic_hist_count[id] += 1);
 196     if (count == 1) {
 197       changed = true;           // first time
 198     }
 199     // increment the overall count also:
 200     _intrinsic_hist_count[vmIntrinsics::_none] += 1;
 201   }
 202   if (changed) {
 203     if (((oflags ^ flags) & _intrinsic_virtual) != 0) {
 204       // Something changed about the intrinsic's virtuality.
 205       if ((flags & _intrinsic_virtual) != 0) {
 206         // This is the first use of this intrinsic as a virtual call.
 207         if (oflags != 0) {
 208           // We already saw it as a non-virtual, so note both cases.
 209           flags |= _intrinsic_both;
 210         }
 211       } else if ((oflags & _intrinsic_both) == 0) {
 212         // This is the first use of this intrinsic as a non-virtual
 213         flags |= _intrinsic_both;
 214       }
 215     }
 216     _intrinsic_hist_flags[id] = (jubyte) (oflags | flags);
 217   }
 218   // update the overall flags also:
 219   _intrinsic_hist_flags[vmIntrinsics::_none] |= (jubyte) flags;
 220   return changed;
 221 }
 222 
 223 static char* format_flags(int flags, char* buf) {
 224   buf[0] = 0;
 225   if ((flags & Compile::_intrinsic_worked) != 0)    strcat(buf, ",worked");
 226   if ((flags & Compile::_intrinsic_failed) != 0)    strcat(buf, ",failed");
 227   if ((flags & Compile::_intrinsic_disabled) != 0)  strcat(buf, ",disabled");
 228   if ((flags & Compile::_intrinsic_virtual) != 0)   strcat(buf, ",virtual");
 229   if ((flags & Compile::_intrinsic_both) != 0)      strcat(buf, ",nonvirtual");
 230   if (buf[0] == 0)  strcat(buf, ",");
 231   assert(buf[0] == ',', "must be");
 232   return &buf[1];
 233 }
 234 
 235 void Compile::print_intrinsic_statistics() {
 236   char flagsbuf[100];
 237   ttyLocker ttyl;
 238   if (xtty != NULL)  xtty->head("statistics type='intrinsic'");
 239   tty->print_cr("Compiler intrinsic usage:");
 240   juint total = _intrinsic_hist_count[vmIntrinsics::_none];
 241   if (total == 0)  total = 1;  // avoid div0 in case of no successes
 242   #define PRINT_STAT_LINE(name, c, f) \
 243     tty->print_cr("  %4d (%4.1f%%) %s (%s)", (int)(c), ((c) * 100.0) / total, name, f);
 244   for (int index = 1 + (int)vmIntrinsics::_none; index < (int)vmIntrinsics::ID_LIMIT; index++) {
 245     vmIntrinsics::ID id = (vmIntrinsics::ID) index;
 246     int   flags = _intrinsic_hist_flags[id];
 247     juint count = _intrinsic_hist_count[id];
 248     if ((flags | count) != 0) {
 249       PRINT_STAT_LINE(vmIntrinsics::name_at(id), count, format_flags(flags, flagsbuf));
 250     }
 251   }
 252   PRINT_STAT_LINE("total", total, format_flags(_intrinsic_hist_flags[vmIntrinsics::_none], flagsbuf));
 253   if (xtty != NULL)  xtty->tail("statistics");
 254 }
 255 
 256 void Compile::print_statistics() {
 257   { ttyLocker ttyl;
 258     if (xtty != NULL)  xtty->head("statistics type='opto'");
 259     Parse::print_statistics();
 260     PhaseCCP::print_statistics();
 261     PhaseRegAlloc::print_statistics();
 262     Scheduling::print_statistics();
 263     PhasePeephole::print_statistics();
 264     PhaseIdealLoop::print_statistics();
 265     if (xtty != NULL)  xtty->tail("statistics");
 266   }
 267   if (_intrinsic_hist_flags[vmIntrinsics::_none] != 0) {
 268     // put this under its own <statistics> element.
 269     print_intrinsic_statistics();
 270   }
 271 }
 272 #endif //PRODUCT
 273 
 274 // Support for bundling info
 275 Bundle* Compile::node_bundling(const Node *n) {
 276   assert(valid_bundle_info(n), "oob");
 277   return &_node_bundling_base[n->_idx];
 278 }
 279 
 280 bool Compile::valid_bundle_info(const Node *n) {
 281   return (_node_bundling_limit > n->_idx);
 282 }
 283 
 284 
 285 void Compile::gvn_replace_by(Node* n, Node* nn) {
 286   for (DUIterator_Last imin, i = n->last_outs(imin); i >= imin; ) {
 287     Node* use = n->last_out(i);
 288     bool is_in_table = initial_gvn()->hash_delete(use);
 289     uint uses_found = 0;
 290     for (uint j = 0; j < use->len(); j++) {
 291       if (use->in(j) == n) {
 292         if (j < use->req())
 293           use->set_req(j, nn);
 294         else
 295           use->set_prec(j, nn);
 296         uses_found++;
 297       }
 298     }
 299     if (is_in_table) {
 300       // reinsert into table
 301       initial_gvn()->hash_find_insert(use);
 302     }
 303     record_for_igvn(use);
 304     i -= uses_found;    // we deleted 1 or more copies of this edge
 305   }
 306 }
 307 
 308 
 309 static inline bool not_a_node(const Node* n) {
 310   if (n == NULL)                   return true;
 311   if (((intptr_t)n & 1) != 0)      return true;  // uninitialized, etc.
 312   if (*(address*)n == badAddress)  return true;  // kill by Node::destruct
 313   return false;
 314 }
 315 
 316 // Identify all nodes that are reachable from below, useful.
 317 // Use breadth-first pass that records state in a Unique_Node_List,
 318 // recursive traversal is slower.
 319 void Compile::identify_useful_nodes(Unique_Node_List &useful) {
 320   int estimated_worklist_size = unique();
 321   useful.map( estimated_worklist_size, NULL );  // preallocate space
 322 
 323   // Initialize worklist
 324   if (root() != NULL)     { useful.push(root()); }
 325   // If 'top' is cached, declare it useful to preserve cached node
 326   if( cached_top_node() ) { useful.push(cached_top_node()); }
 327 
 328   // Push all useful nodes onto the list, breadthfirst
 329   for( uint next = 0; next < useful.size(); ++next ) {
 330     assert( next < unique(), "Unique useful nodes < total nodes");
 331     Node *n  = useful.at(next);
 332     uint max = n->len();
 333     for( uint i = 0; i < max; ++i ) {
 334       Node *m = n->in(i);
 335       if (not_a_node(m))  continue;
 336       useful.push(m);
 337     }
 338   }
 339 }
 340 
 341 // Update dead_node_list with any missing dead nodes using useful
 342 // list. Consider all non-useful nodes to be useless i.e., dead nodes.
 343 void Compile::update_dead_node_list(Unique_Node_List &useful) {
 344   uint max_idx = unique();
 345   VectorSet& useful_node_set = useful.member_set();
 346 
 347   for (uint node_idx = 0; node_idx < max_idx; node_idx++) {
 348     // If node with index node_idx is not in useful set,
 349     // mark it as dead in dead node list.
 350     if (! useful_node_set.test(node_idx) ) {
 351       record_dead_node(node_idx);
 352     }
 353   }
 354 }
 355 
 356 void Compile::remove_useless_late_inlines(GrowableArray<CallGenerator*>* inlines, Unique_Node_List &useful) {
 357   int shift = 0;
 358   for (int i = 0; i < inlines->length(); i++) {
 359     CallGenerator* cg = inlines->at(i);
 360     CallNode* call = cg->call_node();
 361     if (shift > 0) {
 362       inlines->at_put(i-shift, cg);
 363     }
 364     if (!useful.member(call)) {
 365       shift++;
 366     }
 367   }
 368   inlines->trunc_to(inlines->length()-shift);
 369 }
 370 
 371 // Disconnect all useless nodes by disconnecting those at the boundary.
 372 void Compile::remove_useless_nodes(Unique_Node_List &useful) {
 373   uint next = 0;
 374   while (next < useful.size()) {
 375     Node *n = useful.at(next++);
 376     if (n->is_SafePoint()) {
 377       // We're done with a parsing phase. Replaced nodes are not valid
 378       // beyond that point.
 379       n->as_SafePoint()->delete_replaced_nodes();
 380     }
 381     // Use raw traversal of out edges since this code removes out edges
 382     int max = n->outcnt();
 383     for (int j = 0; j < max; ++j) {
 384       Node* child = n->raw_out(j);
 385       if (! useful.member(child)) {
 386         assert(!child->is_top() || child != top(),
 387                "If top is cached in Compile object it is in useful list");
 388         // Only need to remove this out-edge to the useless node
 389         n->raw_del_out(j);
 390         --j;
 391         --max;
 392       }
 393     }
 394     if (n->outcnt() == 1 && n->has_special_unique_user()) {
 395       record_for_igvn(n->unique_out());
 396     }
 397   }
 398   // Remove useless macro and predicate opaq nodes
 399   for (int i = C->macro_count()-1; i >= 0; i--) {
 400     Node* n = C->macro_node(i);
 401     if (!useful.member(n)) {
 402       remove_macro_node(n);
 403     }
 404   }
 405   // Remove useless expensive node
 406   for (int i = C->expensive_count()-1; i >= 0; i--) {
 407     Node* n = C->expensive_node(i);
 408     if (!useful.member(n)) {
 409       remove_expensive_node(n);
 410     }
 411   }
 412   // clean up the late inline lists
 413   remove_useless_late_inlines(&_string_late_inlines, useful);
 414   remove_useless_late_inlines(&_boxing_late_inlines, useful);
 415   remove_useless_late_inlines(&_late_inlines, useful);
 416   debug_only(verify_graph_edges(true/*check for no_dead_code*/);)
 417 }
 418 
 419 //------------------------------frame_size_in_words-----------------------------
 420 // frame_slots in units of words
 421 int Compile::frame_size_in_words() const {
 422   // shift is 0 in LP32 and 1 in LP64
 423   const int shift = (LogBytesPerWord - LogBytesPerInt);
 424   int words = _frame_slots >> shift;
 425   assert( words << shift == _frame_slots, "frame size must be properly aligned in LP64" );
 426   return words;
 427 }
 428 
 429 // To bang the stack of this compiled method we use the stack size
 430 // that the interpreter would need in case of a deoptimization. This
 431 // removes the need to bang the stack in the deoptimization blob which
 432 // in turn simplifies stack overflow handling.
 433 int Compile::bang_size_in_bytes() const {
 434   return MAX2(frame_size_in_bytes() + os::extra_bang_size_in_bytes(), _interpreter_frame_size);
 435 }
 436 
 437 // ============================================================================
 438 //------------------------------CompileWrapper---------------------------------
 439 class CompileWrapper : public StackObj {
 440   Compile *const _compile;
 441  public:
 442   CompileWrapper(Compile* compile);
 443 
 444   ~CompileWrapper();
 445 };
 446 
 447 CompileWrapper::CompileWrapper(Compile* compile) : _compile(compile) {
 448   // the Compile* pointer is stored in the current ciEnv:
 449   ciEnv* env = compile->env();
 450   assert(env == ciEnv::current(), "must already be a ciEnv active");
 451   assert(env->compiler_data() == NULL, "compile already active?");
 452   env->set_compiler_data(compile);
 453   assert(compile == Compile::current(), "sanity");
 454 
 455   compile->set_type_dict(NULL);
 456   compile->set_clone_map(new Dict(cmpkey, hashkey, _compile->comp_arena()));
 457   compile->clone_map().set_clone_idx(0);
 458   compile->set_type_hwm(NULL);
 459   compile->set_type_last_size(0);
 460   compile->set_last_tf(NULL, NULL);
 461   compile->set_indexSet_arena(NULL);
 462   compile->set_indexSet_free_block_list(NULL);
 463   compile->init_type_arena();
 464   Type::Initialize(compile);
 465   _compile->set_scratch_buffer_blob(NULL);
 466   _compile->begin_method();
 467   _compile->clone_map().set_debug(_compile->has_method() && _compile->env()->dirset()->CloneMapDebugOption);
 468 }
 469 CompileWrapper::~CompileWrapper() {
 470   _compile->end_method();
 471   if (_compile->scratch_buffer_blob() != NULL)
 472     BufferBlob::free(_compile->scratch_buffer_blob());
 473   _compile->env()->set_compiler_data(NULL);
 474 }
 475 
 476 
 477 //----------------------------print_compile_messages---------------------------
 478 void Compile::print_compile_messages() {
 479 #ifndef PRODUCT
 480   // Check if recompiling
 481   if (_subsume_loads == false && PrintOpto) {
 482     // Recompiling without allowing machine instructions to subsume loads
 483     tty->print_cr("*********************************************************");
 484     tty->print_cr("** Bailout: Recompile without subsuming loads          **");
 485     tty->print_cr("*********************************************************");
 486   }
 487   if (_do_escape_analysis != DoEscapeAnalysis && PrintOpto) {
 488     // Recompiling without escape analysis
 489     tty->print_cr("*********************************************************");
 490     tty->print_cr("** Bailout: Recompile without escape analysis          **");
 491     tty->print_cr("*********************************************************");
 492   }
 493   if (_eliminate_boxing != EliminateAutoBox && PrintOpto) {
 494     // Recompiling without boxing elimination
 495     tty->print_cr("*********************************************************");
 496     tty->print_cr("** Bailout: Recompile without boxing elimination       **");
 497     tty->print_cr("*********************************************************");
 498   }
 499   if (env()->dirset()->BreakAtCompileOption) {
 500     // Open the debugger when compiling this method.
 501     tty->print("### Breaking when compiling: ");
 502     method()->print_short_name();
 503     tty->cr();
 504     BREAKPOINT;
 505   }
 506 
 507   if( PrintOpto ) {
 508     if (is_osr_compilation()) {
 509       tty->print("[OSR]%3d", _compile_id);
 510     } else {
 511       tty->print("%3d", _compile_id);
 512     }
 513   }
 514 #endif
 515 }
 516 
 517 
 518 //-----------------------init_scratch_buffer_blob------------------------------
 519 // Construct a temporary BufferBlob and cache it for this compile.
 520 void Compile::init_scratch_buffer_blob(int const_size) {
 521   // If there is already a scratch buffer blob allocated and the
 522   // constant section is big enough, use it.  Otherwise free the
 523   // current and allocate a new one.
 524   BufferBlob* blob = scratch_buffer_blob();
 525   if ((blob != NULL) && (const_size <= _scratch_const_size)) {
 526     // Use the current blob.
 527   } else {
 528     if (blob != NULL) {
 529       BufferBlob::free(blob);
 530     }
 531 
 532     ResourceMark rm;
 533     _scratch_const_size = const_size;
 534     int size = (MAX_inst_size + MAX_stubs_size + _scratch_const_size);
 535     blob = BufferBlob::create("Compile::scratch_buffer", size);
 536     // Record the buffer blob for next time.
 537     set_scratch_buffer_blob(blob);
 538     // Have we run out of code space?
 539     if (scratch_buffer_blob() == NULL) {
 540       // Let CompilerBroker disable further compilations.
 541       record_failure("Not enough space for scratch buffer in CodeCache");
 542       return;
 543     }
 544   }
 545 
 546   // Initialize the relocation buffers
 547   relocInfo* locs_buf = (relocInfo*) blob->content_end() - MAX_locs_size;
 548   set_scratch_locs_memory(locs_buf);
 549 }
 550 
 551 
 552 //-----------------------scratch_emit_size-------------------------------------
 553 // Helper function that computes size by emitting code
 554 uint Compile::scratch_emit_size(const Node* n) {
 555   // Start scratch_emit_size section.
 556   set_in_scratch_emit_size(true);
 557 
 558   // Emit into a trash buffer and count bytes emitted.
 559   // This is a pretty expensive way to compute a size,
 560   // but it works well enough if seldom used.
 561   // All common fixed-size instructions are given a size
 562   // method by the AD file.
 563   // Note that the scratch buffer blob and locs memory are
 564   // allocated at the beginning of the compile task, and
 565   // may be shared by several calls to scratch_emit_size.
 566   // The allocation of the scratch buffer blob is particularly
 567   // expensive, since it has to grab the code cache lock.
 568   BufferBlob* blob = this->scratch_buffer_blob();
 569   assert(blob != NULL, "Initialize BufferBlob at start");
 570   assert(blob->size() > MAX_inst_size, "sanity");
 571   relocInfo* locs_buf = scratch_locs_memory();
 572   address blob_begin = blob->content_begin();
 573   address blob_end   = (address)locs_buf;
 574   assert(blob->content_contains(blob_end), "sanity");
 575   CodeBuffer buf(blob_begin, blob_end - blob_begin);
 576   buf.initialize_consts_size(_scratch_const_size);
 577   buf.initialize_stubs_size(MAX_stubs_size);
 578   assert(locs_buf != NULL, "sanity");
 579   int lsize = MAX_locs_size / 3;
 580   buf.consts()->initialize_shared_locs(&locs_buf[lsize * 0], lsize);
 581   buf.insts()->initialize_shared_locs( &locs_buf[lsize * 1], lsize);
 582   buf.stubs()->initialize_shared_locs( &locs_buf[lsize * 2], lsize);
 583 
 584   // Do the emission.
 585 
 586   Label fakeL; // Fake label for branch instructions.
 587   Label*   saveL = NULL;
 588   uint save_bnum = 0;
 589   bool is_branch = n->is_MachBranch();
 590   if (is_branch) {
 591     MacroAssembler masm(&buf);
 592     masm.bind(fakeL);
 593     n->as_MachBranch()->save_label(&saveL, &save_bnum);
 594     n->as_MachBranch()->label_set(&fakeL, 0);
 595   }
 596   n->emit(buf, this->regalloc());
 597 
 598   // Emitting into the scratch buffer should not fail
 599   assert (!failing(), err_msg_res("Must not have pending failure. Reason is: %s", failure_reason()));
 600 
 601   if (is_branch) // Restore label.
 602     n->as_MachBranch()->label_set(saveL, save_bnum);
 603 
 604   // End scratch_emit_size section.
 605   set_in_scratch_emit_size(false);
 606 
 607   return buf.insts_size();
 608 }
 609 
 610 
 611 // ============================================================================
 612 //------------------------------Compile standard-------------------------------
 613 debug_only( int Compile::_debug_idx = 100000; )
 614 
 615 // Compile a method.  entry_bci is -1 for normal compilations and indicates
 616 // the continuation bci for on stack replacement.
 617 
 618 
 619 Compile::Compile( ciEnv* ci_env, C2Compiler* compiler, ciMethod* target, int osr_bci,
 620                   bool subsume_loads, bool do_escape_analysis, bool eliminate_boxing )
 621                 : Phase(Compiler),
 622                   _env(ci_env),
 623                   _log(ci_env->log()),
 624                   _compile_id(ci_env->compile_id()),
 625                   _save_argument_registers(false),
 626                   _stub_name(NULL),
 627                   _stub_function(NULL),
 628                   _stub_entry_point(NULL),
 629                   _method(target),
 630                   _entry_bci(osr_bci),
 631                   _initial_gvn(NULL),
 632                   _for_igvn(NULL),
 633                   _warm_calls(NULL),
 634                   _subsume_loads(subsume_loads),
 635                   _do_escape_analysis(do_escape_analysis),
 636                   _eliminate_boxing(eliminate_boxing),
 637                   _failure_reason(NULL),
 638                   _code_buffer("Compile::Fill_buffer"),
 639                   _orig_pc_slot(0),
 640                   _orig_pc_slot_offset_in_bytes(0),
 641                   _has_method_handle_invokes(false),
 642                   _mach_constant_base_node(NULL),
 643                   _node_bundling_limit(0),
 644                   _node_bundling_base(NULL),
 645                   _java_calls(0),
 646                   _inner_loops(0),
 647                   _scratch_const_size(-1),
 648                   _in_scratch_emit_size(false),
 649                   _dead_node_list(comp_arena()),
 650                   _dead_node_count(0),
 651 #ifndef PRODUCT
 652                   _trace_opto_output(ci_env->dirset()->TraceOptoOutputOption),
 653                   _in_dump_cnt(0),
 654                   _printer(IdealGraphPrinter::printer()),
 655 #endif
 656                   _congraph(NULL),
 657                   _comp_arena(mtCompiler),
 658                   _node_arena(mtCompiler),
 659                   _old_arena(mtCompiler),
 660                   _Compile_types(mtCompiler),
 661                   _replay_inline_data(NULL),
 662                   _late_inlines(comp_arena(), 2, 0, NULL),
 663                   _string_late_inlines(comp_arena(), 2, 0, NULL),
 664                   _boxing_late_inlines(comp_arena(), 2, 0, NULL),
 665                   _late_inlines_pos(0),
 666                   _number_of_mh_late_inlines(0),
 667                   _inlining_progress(false),
 668                   _inlining_incrementally(false),
 669                   _print_inlining_list(NULL),
 670                   _print_inlining_stream(NULL),
 671                   _print_inlining_idx(0),
 672                   _print_inlining_output(NULL),
 673                   _interpreter_frame_size(0),
 674                   _max_node_limit(MaxNodeLimit) {
 675   C = this;
 676 
 677   CompileWrapper cw(this);
 678 
 679   if (CITimeVerbose) {
 680     tty->print(" ");
 681     target->holder()->name()->print();
 682     tty->print(".");
 683     target->print_short_name();
 684     tty->print("  ");
 685   }
 686   TraceTime t1("Total compilation time", &_t_totalCompilation, CITime, CITimeVerbose);
 687   TraceTime t2(NULL, &_t_methodCompilation, CITime, false);
 688 
 689 #ifndef PRODUCT
 690   bool print_opto_assembly = env()->dirset()->PrintOptoAssemblyOption;
 691   if (!print_opto_assembly) {
 692     bool print_assembly = env()->dirset()->PrintAssemblyOption;
 693     if (print_assembly && !Disassembler::can_decode()) {
 694       tty->print_cr("PrintAssembly request changed to PrintOptoAssembly");
 695       print_opto_assembly = true;
 696     }
 697   }
 698   set_print_assembly(print_opto_assembly);
 699   set_parsed_irreducible_loop(false);
 700 
 701   if (env()->dirset()->ReplayInlineOption) {
 702     _replay_inline_data = ciReplay::load_inline_data(method(), entry_bci(), ci_env->comp_level());
 703   }
 704 #endif
 705   set_print_inlining(env()->dirset()->PrintInliningOption NOT_PRODUCT( || PrintOptoInlining));
 706   set_print_intrinsics(env()->dirset()->PrintIntrinsicsOption);
 707   set_has_irreducible_loop(true); // conservative until build_loop_tree() reset it
 708 
 709   if (ProfileTraps RTM_OPT_ONLY( || UseRTMLocking )) {
 710     // Make sure the method being compiled gets its own MDO,
 711     // so we can at least track the decompile_count().
 712     // Need MDO to record RTM code generation state.
 713     method()->ensure_method_data();
 714   }
 715 
 716   Init(::AliasLevel);
 717 
 718 
 719   print_compile_messages();
 720 
 721   _ilt = InlineTree::build_inline_tree_root();
 722 
 723   // Even if NO memory addresses are used, MergeMem nodes must have at least 1 slice
 724   assert(num_alias_types() >= AliasIdxRaw, "");
 725 
 726 #define MINIMUM_NODE_HASH  1023
 727   // Node list that Iterative GVN will start with
 728   Unique_Node_List for_igvn(comp_arena());
 729   set_for_igvn(&for_igvn);
 730 
 731   // GVN that will be run immediately on new nodes
 732   uint estimated_size = method()->code_size()*4+64;
 733   estimated_size = (estimated_size < MINIMUM_NODE_HASH ? MINIMUM_NODE_HASH : estimated_size);
 734   PhaseGVN gvn(node_arena(), estimated_size);
 735   set_initial_gvn(&gvn);
 736 
 737   print_inlining_init();
 738   { // Scope for timing the parser
 739     TracePhase tp("parse", &timers[_t_parser]);
 740 
 741     // Put top into the hash table ASAP.
 742     initial_gvn()->transform_no_reclaim(top());
 743 
 744     // Set up tf(), start(), and find a CallGenerator.
 745     CallGenerator* cg = NULL;
 746     if (is_osr_compilation()) {
 747       const TypeTuple *domain = StartOSRNode::osr_domain();
 748       const TypeTuple *range = TypeTuple::make_range(method()->signature());
 749       init_tf(TypeFunc::make(domain, range));
 750       StartNode* s = new StartOSRNode(root(), domain);
 751       initial_gvn()->set_type_bottom(s);
 752       init_start(s);
 753       cg = CallGenerator::for_osr(method(), entry_bci());
 754     } else {
 755       // Normal case.
 756       init_tf(TypeFunc::make(method()));
 757       StartNode* s = new StartNode(root(), tf()->domain());
 758       initial_gvn()->set_type_bottom(s);
 759       init_start(s);
 760       if (method()->intrinsic_id() == vmIntrinsics::_Reference_get && UseG1GC) {
 761         // With java.lang.ref.reference.get() we must go through the
 762         // intrinsic when G1 is enabled - even when get() is the root
 763         // method of the compile - so that, if necessary, the value in
 764         // the referent field of the reference object gets recorded by
 765         // the pre-barrier code.
 766         // Specifically, if G1 is enabled, the value in the referent
 767         // field is recorded by the G1 SATB pre barrier. This will
 768         // result in the referent being marked live and the reference
 769         // object removed from the list of discovered references during
 770         // reference processing.
 771         cg = find_intrinsic(method(), false);
 772       }
 773       if (cg == NULL) {
 774         float past_uses = method()->interpreter_invocation_count();
 775         float expected_uses = past_uses;
 776         cg = CallGenerator::for_inline(method(), expected_uses);
 777       }
 778     }
 779     if (failing())  return;
 780     if (cg == NULL) {
 781       record_method_not_compilable_all_tiers("cannot parse method");
 782       return;
 783     }
 784     JVMState* jvms = build_start_state(start(), tf());
 785     if ((jvms = cg->generate(jvms)) == NULL) {
 786       if (!failure_reason_is(C2Compiler::retry_class_loading_during_parsing())) {
 787         record_method_not_compilable("method parse failed");
 788       }
 789       return;
 790     }
 791     GraphKit kit(jvms);
 792 
 793     if (!kit.stopped()) {
 794       // Accept return values, and transfer control we know not where.
 795       // This is done by a special, unique ReturnNode bound to root.
 796       return_values(kit.jvms());
 797     }
 798 
 799     if (kit.has_exceptions()) {
 800       // Any exceptions that escape from this call must be rethrown
 801       // to whatever caller is dynamically above us on the stack.
 802       // This is done by a special, unique RethrowNode bound to root.
 803       rethrow_exceptions(kit.transfer_exceptions_into_jvms());
 804     }
 805 
 806     assert(IncrementalInline || (_late_inlines.length() == 0 && !has_mh_late_inlines()), "incremental inlining is off");
 807 
 808     if (_late_inlines.length() == 0 && !has_mh_late_inlines() && !failing() && has_stringbuilder()) {
 809       inline_string_calls(true);
 810     }
 811 
 812     if (failing())  return;
 813 
 814     print_method(PHASE_BEFORE_REMOVEUSELESS, 3);
 815 
 816     // Remove clutter produced by parsing.
 817     if (!failing()) {
 818       ResourceMark rm;
 819       PhaseRemoveUseless pru(initial_gvn(), &for_igvn);
 820     }
 821   }
 822 
 823   // Note:  Large methods are capped off in do_one_bytecode().
 824   if (failing())  return;
 825 
 826   // After parsing, node notes are no longer automagic.
 827   // They must be propagated by register_new_node_with_optimizer(),
 828   // clone(), or the like.
 829   set_default_node_notes(NULL);
 830 
 831   for (;;) {
 832     int successes = Inline_Warm();
 833     if (failing())  return;
 834     if (successes == 0)  break;
 835   }
 836 
 837   // Drain the list.
 838   Finish_Warm();
 839 #ifndef PRODUCT
 840   if (_printer && _printer->should_print(1)) {
 841     _printer->print_inlining(this);
 842   }
 843 #endif
 844 
 845   if (failing())  return;
 846   NOT_PRODUCT( verify_graph_edges(); )
 847 
 848   // Now optimize
 849   Optimize();
 850   if (failing())  return;
 851   NOT_PRODUCT( verify_graph_edges(); )
 852 
 853 #ifndef PRODUCT
 854   if (PrintIdeal) {
 855     ttyLocker ttyl;  // keep the following output all in one block
 856     // This output goes directly to the tty, not the compiler log.
 857     // To enable tools to match it up with the compilation activity,
 858     // be sure to tag this tty output with the compile ID.
 859     if (xtty != NULL) {
 860       xtty->head("ideal compile_id='%d'%s", compile_id(),
 861                  is_osr_compilation()    ? " compile_kind='osr'" :
 862                  "");
 863     }
 864     root()->dump(9999);
 865     if (xtty != NULL) {
 866       xtty->tail("ideal");
 867     }
 868   }
 869 #endif
 870 
 871   NOT_PRODUCT( verify_barriers(); )
 872 
 873   // Dump compilation data to replay it.
 874   if (env()->dirset()->DumpReplayOption) {
 875     env()->dump_replay_data(_compile_id);
 876   }
 877   if (env()->dirset()->DumpInlineOption && (ilt() != NULL)) {
 878     env()->dump_inline_data(_compile_id);
 879   }
 880 
 881   // Now that we know the size of all the monitors we can add a fixed slot
 882   // for the original deopt pc.
 883 
 884   _orig_pc_slot =  fixed_slots();
 885   int next_slot = _orig_pc_slot + (sizeof(address) / VMRegImpl::stack_slot_size);
 886   set_fixed_slots(next_slot);
 887 
 888   // Compute when to use implicit null checks. Used by matching trap based
 889   // nodes and NullCheck optimization.
 890   set_allowed_deopt_reasons();
 891 
 892   // Now generate code
 893   Code_Gen();
 894   if (failing())  return;
 895 
 896   // Check if we want to skip execution of all compiled code.
 897   {
 898 #ifndef PRODUCT
 899     if (OptoNoExecute) {
 900       record_method_not_compilable("+OptoNoExecute");  // Flag as failed
 901       return;
 902     }
 903 #endif
 904     TracePhase tp("install_code", &timers[_t_registerMethod]);
 905 
 906     if (is_osr_compilation()) {
 907       _code_offsets.set_value(CodeOffsets::Verified_Entry, 0);
 908       _code_offsets.set_value(CodeOffsets::OSR_Entry, _first_block_size);
 909     } else {
 910       _code_offsets.set_value(CodeOffsets::Verified_Entry, _first_block_size);
 911       _code_offsets.set_value(CodeOffsets::OSR_Entry, 0);
 912     }
 913 
 914     env()->register_method(_method, _entry_bci,
 915                            &_code_offsets,
 916                            _orig_pc_slot_offset_in_bytes,
 917                            code_buffer(),
 918                            frame_size_in_words(), _oop_map_set,
 919                            &_handler_table, &_inc_table,
 920                            compiler,
 921                            env()->comp_level(),
 922                            has_unsafe_access(),
 923                            SharedRuntime::is_wide_vector(max_vector_size()),
 924                            rtm_state()
 925                            );
 926 
 927     if (log() != NULL) // Print code cache state into compiler log
 928       log()->code_cache_state();
 929   }
 930 }
 931 
 932 //------------------------------Compile----------------------------------------
 933 // Compile a runtime stub
 934 Compile::Compile( ciEnv* ci_env,
 935                   TypeFunc_generator generator,
 936                   address stub_function,
 937                   const char *stub_name,
 938                   int is_fancy_jump,
 939                   bool pass_tls,
 940                   bool save_arg_registers,
 941                   bool return_pc )
 942   : Phase(Compiler),
 943     _env(ci_env),
 944     _log(ci_env->log()),
 945     _compile_id(0),
 946     _save_argument_registers(save_arg_registers),
 947     _method(NULL),
 948     _stub_name(stub_name),
 949     _stub_function(stub_function),
 950     _stub_entry_point(NULL),
 951     _entry_bci(InvocationEntryBci),
 952     _initial_gvn(NULL),
 953     _for_igvn(NULL),
 954     _warm_calls(NULL),
 955     _orig_pc_slot(0),
 956     _orig_pc_slot_offset_in_bytes(0),
 957     _subsume_loads(true),
 958     _do_escape_analysis(false),
 959     _eliminate_boxing(false),
 960     _failure_reason(NULL),
 961     _code_buffer("Compile::Fill_buffer"),
 962     _has_method_handle_invokes(false),
 963     _mach_constant_base_node(NULL),
 964     _node_bundling_limit(0),
 965     _node_bundling_base(NULL),
 966     _java_calls(0),
 967     _inner_loops(0),
 968 #ifndef PRODUCT
 969     _trace_opto_output(TraceOptoOutput),
 970     _in_dump_cnt(0),
 971     _printer(NULL),
 972 #endif
 973     _comp_arena(mtCompiler),
 974     _node_arena(mtCompiler),
 975     _old_arena(mtCompiler),
 976     _Compile_types(mtCompiler),
 977     _dead_node_list(comp_arena()),
 978     _dead_node_count(0),
 979     _congraph(NULL),
 980     _replay_inline_data(NULL),
 981     _number_of_mh_late_inlines(0),
 982     _inlining_progress(false),
 983     _inlining_incrementally(false),
 984     _print_inlining_list(NULL),
 985     _print_inlining_stream(NULL),
 986     _print_inlining_idx(0),
 987     _print_inlining_output(NULL),
 988     _allowed_reasons(0),
 989     _interpreter_frame_size(0),
 990     _max_node_limit(MaxNodeLimit) {
 991   C = this;
 992 
 993   TraceTime t1(NULL, &_t_totalCompilation, CITime, false);
 994   TraceTime t2(NULL, &_t_stubCompilation, CITime, false);
 995 
 996 #ifndef PRODUCT
 997   set_print_assembly(PrintFrameConverterAssembly);
 998   set_parsed_irreducible_loop(false);
 999 #endif
1000   set_has_irreducible_loop(false); // no loops
1001 
1002   CompileWrapper cw(this);
1003   Init(/*AliasLevel=*/ 0);
1004   init_tf((*generator)());
1005 
1006   {
1007     // The following is a dummy for the sake of GraphKit::gen_stub
1008     Unique_Node_List for_igvn(comp_arena());
1009     set_for_igvn(&for_igvn);  // not used, but some GraphKit guys push on this
1010     PhaseGVN gvn(Thread::current()->resource_area(),255);
1011     set_initial_gvn(&gvn);    // not significant, but GraphKit guys use it pervasively
1012     gvn.transform_no_reclaim(top());
1013 
1014     GraphKit kit;
1015     kit.gen_stub(stub_function, stub_name, is_fancy_jump, pass_tls, return_pc);
1016   }
1017 
1018   NOT_PRODUCT( verify_graph_edges(); )
1019   Code_Gen();
1020   if (failing())  return;
1021 
1022 
1023   // Entry point will be accessed using compile->stub_entry_point();
1024   if (code_buffer() == NULL) {
1025     Matcher::soft_match_failure();
1026   } else {
1027     if (PrintAssembly && (WizardMode || Verbose))
1028       tty->print_cr("### Stub::%s", stub_name);
1029 
1030     if (!failing()) {
1031       assert(_fixed_slots == 0, "no fixed slots used for runtime stubs");
1032 
1033       // Make the NMethod
1034       // For now we mark the frame as never safe for profile stackwalking
1035       RuntimeStub *rs = RuntimeStub::new_runtime_stub(stub_name,
1036                                                       code_buffer(),
1037                                                       CodeOffsets::frame_never_safe,
1038                                                       // _code_offsets.value(CodeOffsets::Frame_Complete),
1039                                                       frame_size_in_words(),
1040                                                       _oop_map_set,
1041                                                       save_arg_registers);
1042       assert(rs != NULL && rs->is_runtime_stub(), "sanity check");
1043 
1044       _stub_entry_point = rs->entry_point();
1045     }
1046   }
1047 }
1048 
1049 //------------------------------Init-------------------------------------------
1050 // Prepare for a single compilation
1051 void Compile::Init(int aliaslevel) {
1052   _unique  = 0;
1053   _regalloc = NULL;
1054 
1055   _tf      = NULL;  // filled in later
1056   _top     = NULL;  // cached later
1057   _matcher = NULL;  // filled in later
1058   _cfg     = NULL;  // filled in later
1059 
1060   set_24_bit_selection_and_mode(Use24BitFP, false);
1061 
1062   _node_note_array = NULL;
1063   _default_node_notes = NULL;
1064   DEBUG_ONLY( _modified_nodes = NULL; ) // Used in Optimize()
1065 
1066   _immutable_memory = NULL; // filled in at first inquiry
1067 
1068   // Globally visible Nodes
1069   // First set TOP to NULL to give safe behavior during creation of RootNode
1070   set_cached_top_node(NULL);
1071   set_root(new RootNode());
1072   // Now that you have a Root to point to, create the real TOP
1073   set_cached_top_node( new ConNode(Type::TOP) );
1074   set_recent_alloc(NULL, NULL);
1075 
1076   // Create Debug Information Recorder to record scopes, oopmaps, etc.
1077   env()->set_oop_recorder(new OopRecorder(env()->arena()));
1078   env()->set_debug_info(new DebugInformationRecorder(env()->oop_recorder()));
1079   env()->set_dependencies(new Dependencies(env()));
1080 
1081   _fixed_slots = 0;
1082   set_has_split_ifs(false);
1083   set_has_loops(has_method() && method()->has_loops()); // first approximation
1084   set_has_stringbuilder(false);
1085   set_has_boxed_value(false);
1086   _trap_can_recompile = false;  // no traps emitted yet
1087   _major_progress = true; // start out assuming good things will happen
1088   set_has_unsafe_access(false);
1089   set_max_vector_size(0);
1090   Copy::zero_to_bytes(_trap_hist, sizeof(_trap_hist));
1091   set_decompile_count(0);
1092 
1093   set_do_freq_based_layout(env()->dirset()->BlockLayoutByFrequencyOption);
1094   set_num_loop_opts(LoopOptsCount);
1095   set_do_inlining(Inline);
1096   set_max_inline_size(MaxInlineSize);
1097   set_freq_inline_size(FreqInlineSize);
1098   set_do_scheduling(OptoScheduling);
1099   set_do_count_invocations(false);
1100   set_do_method_data_update(false);
1101 
1102   set_do_vector_loop(false);
1103 
1104   bool do_vector = false;
1105   if (AllowVectorizeOnDemand) {
1106     if (has_method() && (env()->dirset()->VectorizeOption || env()->dirset()->VectorizeDebugOption)) {
1107       set_do_vector_loop(true);
1108     } else if (has_method() && method()->name() != 0 &&
1109                method()->intrinsic_id() == vmIntrinsics::_forEachRemaining) {
1110       set_do_vector_loop(true);
1111     }
1112 #ifndef PRODUCT
1113     if (do_vector_loop() && Verbose) {
1114       tty->print("Compile::Init: do vectorized loops (SIMD like) for method %s\n",  method()->name()->as_quoted_ascii());
1115     }
1116 #endif
1117   }
1118 
1119   set_age_code(has_method() && method()->profile_aging());
1120   set_rtm_state(NoRTM); // No RTM lock eliding by default
1121   _max_node_limit = env()->dirset()->MaxNodeLimitOption;
1122 
1123 #if INCLUDE_RTM_OPT
1124   if (UseRTMLocking && has_method() && (method()->method_data_or_null() != NULL)) {
1125     int rtm_state = method()->method_data()->rtm_state();
1126     if (method_has_option("NoRTMLockEliding") || ((rtm_state & NoRTM) != 0)) {
1127       // Don't generate RTM lock eliding code.
1128       set_rtm_state(NoRTM);
1129     } else if (method_has_option("UseRTMLockEliding") || ((rtm_state & UseRTM) != 0) || !UseRTMDeopt) {
1130       // Generate RTM lock eliding code without abort ratio calculation code.
1131       set_rtm_state(UseRTM);
1132     } else if (UseRTMDeopt) {
1133       // Generate RTM lock eliding code and include abort ratio calculation
1134       // code if UseRTMDeopt is on.
1135       set_rtm_state(ProfileRTM);
1136     }
1137   }
1138 #endif
1139   if (debug_info()->recording_non_safepoints()) {
1140     set_node_note_array(new(comp_arena()) GrowableArray<Node_Notes*>
1141                         (comp_arena(), 8, 0, NULL));
1142     set_default_node_notes(Node_Notes::make(this));
1143   }
1144 
1145   // // -- Initialize types before each compile --
1146   // // Update cached type information
1147   // if( _method && _method->constants() )
1148   //   Type::update_loaded_types(_method, _method->constants());
1149 
1150   // Init alias_type map.
1151   if (!_do_escape_analysis && aliaslevel == 3)
1152     aliaslevel = 2;  // No unique types without escape analysis
1153   _AliasLevel = aliaslevel;
1154   const int grow_ats = 16;
1155   _max_alias_types = grow_ats;
1156   _alias_types   = NEW_ARENA_ARRAY(comp_arena(), AliasType*, grow_ats);
1157   AliasType* ats = NEW_ARENA_ARRAY(comp_arena(), AliasType,  grow_ats);
1158   Copy::zero_to_bytes(ats, sizeof(AliasType)*grow_ats);
1159   {
1160     for (int i = 0; i < grow_ats; i++)  _alias_types[i] = &ats[i];
1161   }
1162   // Initialize the first few types.
1163   _alias_types[AliasIdxTop]->Init(AliasIdxTop, NULL);
1164   _alias_types[AliasIdxBot]->Init(AliasIdxBot, TypePtr::BOTTOM);
1165   _alias_types[AliasIdxRaw]->Init(AliasIdxRaw, TypeRawPtr::BOTTOM);
1166   _num_alias_types = AliasIdxRaw+1;
1167   // Zero out the alias type cache.
1168   Copy::zero_to_bytes(_alias_cache, sizeof(_alias_cache));
1169   // A NULL adr_type hits in the cache right away.  Preload the right answer.
1170   probe_alias_cache(NULL)->_index = AliasIdxTop;
1171 
1172   _intrinsics = NULL;
1173   _macro_nodes = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1174   _predicate_opaqs = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1175   _expensive_nodes = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1176   register_library_intrinsics();
1177 }
1178 
1179 //---------------------------init_start----------------------------------------
1180 // Install the StartNode on this compile object.
1181 void Compile::init_start(StartNode* s) {
1182   if (failing())
1183     return; // already failing
1184   assert(s == start(), "");
1185 }
1186 
1187 /**
1188  * Return the 'StartNode'. We must not have a pending failure, since the ideal graph
1189  * can be in an inconsistent state, i.e., we can get segmentation faults when traversing
1190  * the ideal graph.
1191  */
1192 StartNode* Compile::start() const {
1193   assert (!failing(), err_msg_res("Must not have pending failure. Reason is: %s", failure_reason()));
1194   for (DUIterator_Fast imax, i = root()->fast_outs(imax); i < imax; i++) {
1195     Node* start = root()->fast_out(i);
1196     if (start->is_Start()) {
1197       return start->as_Start();
1198     }
1199   }
1200   fatal("Did not find Start node!");
1201   return NULL;
1202 }
1203 
1204 //-------------------------------immutable_memory-------------------------------------
1205 // Access immutable memory
1206 Node* Compile::immutable_memory() {
1207   if (_immutable_memory != NULL) {
1208     return _immutable_memory;
1209   }
1210   StartNode* s = start();
1211   for (DUIterator_Fast imax, i = s->fast_outs(imax); true; i++) {
1212     Node *p = s->fast_out(i);
1213     if (p != s && p->as_Proj()->_con == TypeFunc::Memory) {
1214       _immutable_memory = p;
1215       return _immutable_memory;
1216     }
1217   }
1218   ShouldNotReachHere();
1219   return NULL;
1220 }
1221 
1222 //----------------------set_cached_top_node------------------------------------
1223 // Install the cached top node, and make sure Node::is_top works correctly.
1224 void Compile::set_cached_top_node(Node* tn) {
1225   if (tn != NULL)  verify_top(tn);
1226   Node* old_top = _top;
1227   _top = tn;
1228   // Calling Node::setup_is_top allows the nodes the chance to adjust
1229   // their _out arrays.
1230   if (_top != NULL)     _top->setup_is_top();
1231   if (old_top != NULL)  old_top->setup_is_top();
1232   assert(_top == NULL || top()->is_top(), "");
1233 }
1234 
1235 #ifdef ASSERT
1236 uint Compile::count_live_nodes_by_graph_walk() {
1237   Unique_Node_List useful(comp_arena());
1238   // Get useful node list by walking the graph.
1239   identify_useful_nodes(useful);
1240   return useful.size();
1241 }
1242 
1243 void Compile::print_missing_nodes() {
1244 
1245   // Return if CompileLog is NULL and PrintIdealNodeCount is false.
1246   if ((_log == NULL) && (! PrintIdealNodeCount)) {
1247     return;
1248   }
1249 
1250   // This is an expensive function. It is executed only when the user
1251   // specifies VerifyIdealNodeCount option or otherwise knows the
1252   // additional work that needs to be done to identify reachable nodes
1253   // by walking the flow graph and find the missing ones using
1254   // _dead_node_list.
1255 
1256   Unique_Node_List useful(comp_arena());
1257   // Get useful node list by walking the graph.
1258   identify_useful_nodes(useful);
1259 
1260   uint l_nodes = C->live_nodes();
1261   uint l_nodes_by_walk = useful.size();
1262 
1263   if (l_nodes != l_nodes_by_walk) {
1264     if (_log != NULL) {
1265       _log->begin_head("mismatched_nodes count='%d'", abs((int) (l_nodes - l_nodes_by_walk)));
1266       _log->stamp();
1267       _log->end_head();
1268     }
1269     VectorSet& useful_member_set = useful.member_set();
1270     int last_idx = l_nodes_by_walk;
1271     for (int i = 0; i < last_idx; i++) {
1272       if (useful_member_set.test(i)) {
1273         if (_dead_node_list.test(i)) {
1274           if (_log != NULL) {
1275             _log->elem("mismatched_node_info node_idx='%d' type='both live and dead'", i);
1276           }
1277           if (PrintIdealNodeCount) {
1278             // Print the log message to tty
1279               tty->print_cr("mismatched_node idx='%d' both live and dead'", i);
1280               useful.at(i)->dump();
1281           }
1282         }
1283       }
1284       else if (! _dead_node_list.test(i)) {
1285         if (_log != NULL) {
1286           _log->elem("mismatched_node_info node_idx='%d' type='neither live nor dead'", i);
1287         }
1288         if (PrintIdealNodeCount) {
1289           // Print the log message to tty
1290           tty->print_cr("mismatched_node idx='%d' type='neither live nor dead'", i);
1291         }
1292       }
1293     }
1294     if (_log != NULL) {
1295       _log->tail("mismatched_nodes");
1296     }
1297   }
1298 }
1299 void Compile::record_modified_node(Node* n) {
1300   if (_modified_nodes != NULL && !_inlining_incrementally &&
1301       n->outcnt() != 0 && !n->is_Con()) {
1302     _modified_nodes->push(n);
1303   }
1304 }
1305 
1306 void Compile::remove_modified_node(Node* n) {
1307   if (_modified_nodes != NULL) {
1308     _modified_nodes->remove(n);
1309   }
1310 }
1311 #endif
1312 
1313 #ifndef PRODUCT
1314 void Compile::verify_top(Node* tn) const {
1315   if (tn != NULL) {
1316     assert(tn->is_Con(), "top node must be a constant");
1317     assert(((ConNode*)tn)->type() == Type::TOP, "top node must have correct type");
1318     assert(tn->in(0) != NULL, "must have live top node");
1319   }
1320 }
1321 #endif
1322 
1323 
1324 ///-------------------Managing Per-Node Debug & Profile Info-------------------
1325 
1326 void Compile::grow_node_notes(GrowableArray<Node_Notes*>* arr, int grow_by) {
1327   guarantee(arr != NULL, "");
1328   int num_blocks = arr->length();
1329   if (grow_by < num_blocks)  grow_by = num_blocks;
1330   int num_notes = grow_by * _node_notes_block_size;
1331   Node_Notes* notes = NEW_ARENA_ARRAY(node_arena(), Node_Notes, num_notes);
1332   Copy::zero_to_bytes(notes, num_notes * sizeof(Node_Notes));
1333   while (num_notes > 0) {
1334     arr->append(notes);
1335     notes     += _node_notes_block_size;
1336     num_notes -= _node_notes_block_size;
1337   }
1338   assert(num_notes == 0, "exact multiple, please");
1339 }
1340 
1341 bool Compile::copy_node_notes_to(Node* dest, Node* source) {
1342   if (source == NULL || dest == NULL)  return false;
1343 
1344   if (dest->is_Con())
1345     return false;               // Do not push debug info onto constants.
1346 
1347 #ifdef ASSERT
1348   // Leave a bread crumb trail pointing to the original node:
1349   if (dest != NULL && dest != source && dest->debug_orig() == NULL) {
1350     dest->set_debug_orig(source);
1351   }
1352 #endif
1353 
1354   if (node_note_array() == NULL)
1355     return false;               // Not collecting any notes now.
1356 
1357   // This is a copy onto a pre-existing node, which may already have notes.
1358   // If both nodes have notes, do not overwrite any pre-existing notes.
1359   Node_Notes* source_notes = node_notes_at(source->_idx);
1360   if (source_notes == NULL || source_notes->is_clear())  return false;
1361   Node_Notes* dest_notes   = node_notes_at(dest->_idx);
1362   if (dest_notes == NULL || dest_notes->is_clear()) {
1363     return set_node_notes_at(dest->_idx, source_notes);
1364   }
1365 
1366   Node_Notes merged_notes = (*source_notes);
1367   // The order of operations here ensures that dest notes will win...
1368   merged_notes.update_from(dest_notes);
1369   return set_node_notes_at(dest->_idx, &merged_notes);
1370 }
1371 
1372 
1373 //--------------------------allow_range_check_smearing-------------------------
1374 // Gating condition for coalescing similar range checks.
1375 // Sometimes we try 'speculatively' replacing a series of a range checks by a
1376 // single covering check that is at least as strong as any of them.
1377 // If the optimization succeeds, the simplified (strengthened) range check
1378 // will always succeed.  If it fails, we will deopt, and then give up
1379 // on the optimization.
1380 bool Compile::allow_range_check_smearing() const {
1381   // If this method has already thrown a range-check,
1382   // assume it was because we already tried range smearing
1383   // and it failed.
1384   uint already_trapped = trap_count(Deoptimization::Reason_range_check);
1385   return !already_trapped;
1386 }
1387 
1388 
1389 //------------------------------flatten_alias_type-----------------------------
1390 const TypePtr *Compile::flatten_alias_type( const TypePtr *tj ) const {
1391   int offset = tj->offset();
1392   TypePtr::PTR ptr = tj->ptr();
1393 
1394   // Known instance (scalarizable allocation) alias only with itself.
1395   bool is_known_inst = tj->isa_oopptr() != NULL &&
1396                        tj->is_oopptr()->is_known_instance();
1397 
1398   // Process weird unsafe references.
1399   if (offset == Type::OffsetBot && (tj->isa_instptr() /*|| tj->isa_klassptr()*/)) {
1400     assert(InlineUnsafeOps, "indeterminate pointers come only from unsafe ops");
1401     assert(!is_known_inst, "scalarizable allocation should not have unsafe references");
1402     tj = TypeOopPtr::BOTTOM;
1403     ptr = tj->ptr();
1404     offset = tj->offset();
1405   }
1406 
1407   // Array pointers need some flattening
1408   const TypeAryPtr *ta = tj->isa_aryptr();
1409   if (ta && ta->is_stable()) {
1410     // Erase stability property for alias analysis.
1411     tj = ta = ta->cast_to_stable(false);
1412   }
1413   if( ta && is_known_inst ) {
1414     if ( offset != Type::OffsetBot &&
1415          offset > arrayOopDesc::length_offset_in_bytes() ) {
1416       offset = Type::OffsetBot; // Flatten constant access into array body only
1417       tj = ta = TypeAryPtr::make(ptr, ta->ary(), ta->klass(), true, offset, ta->instance_id());
1418     }
1419   } else if( ta && _AliasLevel >= 2 ) {
1420     // For arrays indexed by constant indices, we flatten the alias
1421     // space to include all of the array body.  Only the header, klass
1422     // and array length can be accessed un-aliased.
1423     if( offset != Type::OffsetBot ) {
1424       if( ta->const_oop() ) { // MethodData* or Method*
1425         offset = Type::OffsetBot;   // Flatten constant access into array body
1426         tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),ta->ary(),ta->klass(),false,offset);
1427       } else if( offset == arrayOopDesc::length_offset_in_bytes() ) {
1428         // range is OK as-is.
1429         tj = ta = TypeAryPtr::RANGE;
1430       } else if( offset == oopDesc::klass_offset_in_bytes() ) {
1431         tj = TypeInstPtr::KLASS; // all klass loads look alike
1432         ta = TypeAryPtr::RANGE; // generic ignored junk
1433         ptr = TypePtr::BotPTR;
1434       } else if( offset == oopDesc::mark_offset_in_bytes() ) {
1435         tj = TypeInstPtr::MARK;
1436         ta = TypeAryPtr::RANGE; // generic ignored junk
1437         ptr = TypePtr::BotPTR;
1438       } else {                  // Random constant offset into array body
1439         offset = Type::OffsetBot;   // Flatten constant access into array body
1440         tj = ta = TypeAryPtr::make(ptr,ta->ary(),ta->klass(),false,offset);
1441       }
1442     }
1443     // Arrays of fixed size alias with arrays of unknown size.
1444     if (ta->size() != TypeInt::POS) {
1445       const TypeAry *tary = TypeAry::make(ta->elem(), TypeInt::POS);
1446       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,ta->klass(),false,offset);
1447     }
1448     // Arrays of known objects become arrays of unknown objects.
1449     if (ta->elem()->isa_narrowoop() && ta->elem() != TypeNarrowOop::BOTTOM) {
1450       const TypeAry *tary = TypeAry::make(TypeNarrowOop::BOTTOM, ta->size());
1451       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,offset);
1452     }
1453     if (ta->elem()->isa_oopptr() && ta->elem() != TypeInstPtr::BOTTOM) {
1454       const TypeAry *tary = TypeAry::make(TypeInstPtr::BOTTOM, ta->size());
1455       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,offset);
1456     }
1457     // Arrays of bytes and of booleans both use 'bastore' and 'baload' so
1458     // cannot be distinguished by bytecode alone.
1459     if (ta->elem() == TypeInt::BOOL) {
1460       const TypeAry *tary = TypeAry::make(TypeInt::BYTE, ta->size());
1461       ciKlass* aklass = ciTypeArrayKlass::make(T_BYTE);
1462       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,aklass,false,offset);
1463     }
1464     // During the 2nd round of IterGVN, NotNull castings are removed.
1465     // Make sure the Bottom and NotNull variants alias the same.
1466     // Also, make sure exact and non-exact variants alias the same.
1467     if (ptr == TypePtr::NotNull || ta->klass_is_exact() || ta->speculative() != NULL) {
1468       tj = ta = TypeAryPtr::make(TypePtr::BotPTR,ta->ary(),ta->klass(),false,offset);
1469     }
1470   }
1471 
1472   // Oop pointers need some flattening
1473   const TypeInstPtr *to = tj->isa_instptr();
1474   if( to && _AliasLevel >= 2 && to != TypeOopPtr::BOTTOM ) {
1475     ciInstanceKlass *k = to->klass()->as_instance_klass();
1476     if( ptr == TypePtr::Constant ) {
1477       if (to->klass() != ciEnv::current()->Class_klass() ||
1478           offset < k->size_helper() * wordSize) {
1479         // No constant oop pointers (such as Strings); they alias with
1480         // unknown strings.
1481         assert(!is_known_inst, "not scalarizable allocation");
1482         tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,offset);
1483       }
1484     } else if( is_known_inst ) {
1485       tj = to; // Keep NotNull and klass_is_exact for instance type
1486     } else if( ptr == TypePtr::NotNull || to->klass_is_exact() ) {
1487       // During the 2nd round of IterGVN, NotNull castings are removed.
1488       // Make sure the Bottom and NotNull variants alias the same.
1489       // Also, make sure exact and non-exact variants alias the same.
1490       tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,offset);
1491     }
1492     if (to->speculative() != NULL) {
1493       tj = to = TypeInstPtr::make(to->ptr(),to->klass(),to->klass_is_exact(),to->const_oop(),to->offset(), to->instance_id());
1494     }
1495     // Canonicalize the holder of this field
1496     if (offset >= 0 && offset < instanceOopDesc::base_offset_in_bytes()) {
1497       // First handle header references such as a LoadKlassNode, even if the
1498       // object's klass is unloaded at compile time (4965979).
1499       if (!is_known_inst) { // Do it only for non-instance types
1500         tj = to = TypeInstPtr::make(TypePtr::BotPTR, env()->Object_klass(), false, NULL, offset);
1501       }
1502     } else if (offset < 0 || offset >= k->size_helper() * wordSize) {
1503       // Static fields are in the space above the normal instance
1504       // fields in the java.lang.Class instance.
1505       if (to->klass() != ciEnv::current()->Class_klass()) {
1506         to = NULL;
1507         tj = TypeOopPtr::BOTTOM;
1508         offset = tj->offset();
1509       }
1510     } else {
1511       ciInstanceKlass *canonical_holder = k->get_canonical_holder(offset);
1512       if (!k->equals(canonical_holder) || tj->offset() != offset) {
1513         if( is_known_inst ) {
1514           tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, true, NULL, offset, to->instance_id());
1515         } else {
1516           tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, false, NULL, offset);
1517         }
1518       }
1519     }
1520   }
1521 
1522   // Klass pointers to object array klasses need some flattening
1523   const TypeKlassPtr *tk = tj->isa_klassptr();
1524   if( tk ) {
1525     // If we are referencing a field within a Klass, we need
1526     // to assume the worst case of an Object.  Both exact and
1527     // inexact types must flatten to the same alias class so
1528     // use NotNull as the PTR.
1529     if ( offset == Type::OffsetBot || (offset >= 0 && (size_t)offset < sizeof(Klass)) ) {
1530 
1531       tj = tk = TypeKlassPtr::make(TypePtr::NotNull,
1532                                    TypeKlassPtr::OBJECT->klass(),
1533                                    offset);
1534     }
1535 
1536     ciKlass* klass = tk->klass();
1537     if( klass->is_obj_array_klass() ) {
1538       ciKlass* k = TypeAryPtr::OOPS->klass();
1539       if( !k || !k->is_loaded() )                  // Only fails for some -Xcomp runs
1540         k = TypeInstPtr::BOTTOM->klass();
1541       tj = tk = TypeKlassPtr::make( TypePtr::NotNull, k, offset );
1542     }
1543 
1544     // Check for precise loads from the primary supertype array and force them
1545     // to the supertype cache alias index.  Check for generic array loads from
1546     // the primary supertype array and also force them to the supertype cache
1547     // alias index.  Since the same load can reach both, we need to merge
1548     // these 2 disparate memories into the same alias class.  Since the
1549     // primary supertype array is read-only, there's no chance of confusion
1550     // where we bypass an array load and an array store.
1551     int primary_supers_offset = in_bytes(Klass::primary_supers_offset());
1552     if (offset == Type::OffsetBot ||
1553         (offset >= primary_supers_offset &&
1554          offset < (int)(primary_supers_offset + Klass::primary_super_limit() * wordSize)) ||
1555         offset == (int)in_bytes(Klass::secondary_super_cache_offset())) {
1556       offset = in_bytes(Klass::secondary_super_cache_offset());
1557       tj = tk = TypeKlassPtr::make( TypePtr::NotNull, tk->klass(), offset );
1558     }
1559   }
1560 
1561   // Flatten all Raw pointers together.
1562   if (tj->base() == Type::RawPtr)
1563     tj = TypeRawPtr::BOTTOM;
1564 
1565   if (tj->base() == Type::AnyPtr)
1566     tj = TypePtr::BOTTOM;      // An error, which the caller must check for.
1567 
1568   // Flatten all to bottom for now
1569   switch( _AliasLevel ) {
1570   case 0:
1571     tj = TypePtr::BOTTOM;
1572     break;
1573   case 1:                       // Flatten to: oop, static, field or array
1574     switch (tj->base()) {
1575     //case Type::AryPtr: tj = TypeAryPtr::RANGE;    break;
1576     case Type::RawPtr:   tj = TypeRawPtr::BOTTOM;   break;
1577     case Type::AryPtr:   // do not distinguish arrays at all
1578     case Type::InstPtr:  tj = TypeInstPtr::BOTTOM;  break;
1579     case Type::KlassPtr: tj = TypeKlassPtr::OBJECT; break;
1580     case Type::AnyPtr:   tj = TypePtr::BOTTOM;      break;  // caller checks it
1581     default: ShouldNotReachHere();
1582     }
1583     break;
1584   case 2:                       // No collapsing at level 2; keep all splits
1585   case 3:                       // No collapsing at level 3; keep all splits
1586     break;
1587   default:
1588     Unimplemented();
1589   }
1590 
1591   offset = tj->offset();
1592   assert( offset != Type::OffsetTop, "Offset has fallen from constant" );
1593 
1594   assert( (offset != Type::OffsetBot && tj->base() != Type::AryPtr) ||
1595           (offset == Type::OffsetBot && tj->base() == Type::AryPtr) ||
1596           (offset == Type::OffsetBot && tj == TypeOopPtr::BOTTOM) ||
1597           (offset == Type::OffsetBot && tj == TypePtr::BOTTOM) ||
1598           (offset == oopDesc::mark_offset_in_bytes() && tj->base() == Type::AryPtr) ||
1599           (offset == oopDesc::klass_offset_in_bytes() && tj->base() == Type::AryPtr) ||
1600           (offset == arrayOopDesc::length_offset_in_bytes() && tj->base() == Type::AryPtr)  ,
1601           "For oops, klasses, raw offset must be constant; for arrays the offset is never known" );
1602   assert( tj->ptr() != TypePtr::TopPTR &&
1603           tj->ptr() != TypePtr::AnyNull &&
1604           tj->ptr() != TypePtr::Null, "No imprecise addresses" );
1605 //    assert( tj->ptr() != TypePtr::Constant ||
1606 //            tj->base() == Type::RawPtr ||
1607 //            tj->base() == Type::KlassPtr, "No constant oop addresses" );
1608 
1609   return tj;
1610 }
1611 
1612 void Compile::AliasType::Init(int i, const TypePtr* at) {
1613   _index = i;
1614   _adr_type = at;
1615   _field = NULL;
1616   _element = NULL;
1617   _is_rewritable = true; // default
1618   const TypeOopPtr *atoop = (at != NULL) ? at->isa_oopptr() : NULL;
1619   if (atoop != NULL && atoop->is_known_instance()) {
1620     const TypeOopPtr *gt = atoop->cast_to_instance_id(TypeOopPtr::InstanceBot);
1621     _general_index = Compile::current()->get_alias_index(gt);
1622   } else {
1623     _general_index = 0;
1624   }
1625 }
1626 
1627 //---------------------------------print_on------------------------------------
1628 #ifndef PRODUCT
1629 void Compile::AliasType::print_on(outputStream* st) {
1630   if (index() < 10)
1631         st->print("@ <%d> ", index());
1632   else  st->print("@ <%d>",  index());
1633   st->print(is_rewritable() ? "   " : " RO");
1634   int offset = adr_type()->offset();
1635   if (offset == Type::OffsetBot)
1636         st->print(" +any");
1637   else  st->print(" +%-3d", offset);
1638   st->print(" in ");
1639   adr_type()->dump_on(st);
1640   const TypeOopPtr* tjp = adr_type()->isa_oopptr();
1641   if (field() != NULL && tjp) {
1642     if (tjp->klass()  != field()->holder() ||
1643         tjp->offset() != field()->offset_in_bytes()) {
1644       st->print(" != ");
1645       field()->print();
1646       st->print(" ***");
1647     }
1648   }
1649 }
1650 
1651 void print_alias_types() {
1652   Compile* C = Compile::current();
1653   tty->print_cr("--- Alias types, AliasIdxBot .. %d", C->num_alias_types()-1);
1654   for (int idx = Compile::AliasIdxBot; idx < C->num_alias_types(); idx++) {
1655     C->alias_type(idx)->print_on(tty);
1656     tty->cr();
1657   }
1658 }
1659 #endif
1660 
1661 
1662 //----------------------------probe_alias_cache--------------------------------
1663 Compile::AliasCacheEntry* Compile::probe_alias_cache(const TypePtr* adr_type) {
1664   intptr_t key = (intptr_t) adr_type;
1665   key ^= key >> logAliasCacheSize;
1666   return &_alias_cache[key & right_n_bits(logAliasCacheSize)];
1667 }
1668 
1669 
1670 //-----------------------------grow_alias_types--------------------------------
1671 void Compile::grow_alias_types() {
1672   const int old_ats  = _max_alias_types; // how many before?
1673   const int new_ats  = old_ats;          // how many more?
1674   const int grow_ats = old_ats+new_ats;  // how many now?
1675   _max_alias_types = grow_ats;
1676   _alias_types =  REALLOC_ARENA_ARRAY(comp_arena(), AliasType*, _alias_types, old_ats, grow_ats);
1677   AliasType* ats =    NEW_ARENA_ARRAY(comp_arena(), AliasType, new_ats);
1678   Copy::zero_to_bytes(ats, sizeof(AliasType)*new_ats);
1679   for (int i = 0; i < new_ats; i++)  _alias_types[old_ats+i] = &ats[i];
1680 }
1681 
1682 
1683 //--------------------------------find_alias_type------------------------------
1684 Compile::AliasType* Compile::find_alias_type(const TypePtr* adr_type, bool no_create, ciField* original_field) {
1685   if (_AliasLevel == 0)
1686     return alias_type(AliasIdxBot);
1687 
1688   AliasCacheEntry* ace = probe_alias_cache(adr_type);
1689   if (ace->_adr_type == adr_type) {
1690     return alias_type(ace->_index);
1691   }
1692 
1693   // Handle special cases.
1694   if (adr_type == NULL)             return alias_type(AliasIdxTop);
1695   if (adr_type == TypePtr::BOTTOM)  return alias_type(AliasIdxBot);
1696 
1697   // Do it the slow way.
1698   const TypePtr* flat = flatten_alias_type(adr_type);
1699 
1700 #ifdef ASSERT
1701   assert(flat == flatten_alias_type(flat), "idempotent");
1702   assert(flat != TypePtr::BOTTOM,     "cannot alias-analyze an untyped ptr");
1703   if (flat->isa_oopptr() && !flat->isa_klassptr()) {
1704     const TypeOopPtr* foop = flat->is_oopptr();
1705     // Scalarizable allocations have exact klass always.
1706     bool exact = !foop->klass_is_exact() || foop->is_known_instance();
1707     const TypePtr* xoop = foop->cast_to_exactness(exact)->is_ptr();
1708     assert(foop == flatten_alias_type(xoop), "exactness must not affect alias type");
1709   }
1710   assert(flat == flatten_alias_type(flat), "exact bit doesn't matter");
1711 #endif
1712 
1713   int idx = AliasIdxTop;
1714   for (int i = 0; i < num_alias_types(); i++) {
1715     if (alias_type(i)->adr_type() == flat) {
1716       idx = i;
1717       break;
1718     }
1719   }
1720 
1721   if (idx == AliasIdxTop) {
1722     if (no_create)  return NULL;
1723     // Grow the array if necessary.
1724     if (_num_alias_types == _max_alias_types)  grow_alias_types();
1725     // Add a new alias type.
1726     idx = _num_alias_types++;
1727     _alias_types[idx]->Init(idx, flat);
1728     if (flat == TypeInstPtr::KLASS)  alias_type(idx)->set_rewritable(false);
1729     if (flat == TypeAryPtr::RANGE)   alias_type(idx)->set_rewritable(false);
1730     if (flat->isa_instptr()) {
1731       if (flat->offset() == java_lang_Class::klass_offset_in_bytes()
1732           && flat->is_instptr()->klass() == env()->Class_klass())
1733         alias_type(idx)->set_rewritable(false);
1734     }
1735     if (flat->isa_aryptr()) {
1736 #ifdef ASSERT
1737       const int header_size_min  = arrayOopDesc::base_offset_in_bytes(T_BYTE);
1738       // (T_BYTE has the weakest alignment and size restrictions...)
1739       assert(flat->offset() < header_size_min, "array body reference must be OffsetBot");
1740 #endif
1741       if (flat->offset() == TypePtr::OffsetBot) {
1742         alias_type(idx)->set_element(flat->is_aryptr()->elem());
1743       }
1744     }
1745     if (flat->isa_klassptr()) {
1746       if (flat->offset() == in_bytes(Klass::super_check_offset_offset()))
1747         alias_type(idx)->set_rewritable(false);
1748       if (flat->offset() == in_bytes(Klass::modifier_flags_offset()))
1749         alias_type(idx)->set_rewritable(false);
1750       if (flat->offset() == in_bytes(Klass::access_flags_offset()))
1751         alias_type(idx)->set_rewritable(false);
1752       if (flat->offset() == in_bytes(Klass::java_mirror_offset()))
1753         alias_type(idx)->set_rewritable(false);
1754     }
1755     // %%% (We would like to finalize JavaThread::threadObj_offset(),
1756     // but the base pointer type is not distinctive enough to identify
1757     // references into JavaThread.)
1758 
1759     // Check for final fields.
1760     const TypeInstPtr* tinst = flat->isa_instptr();
1761     if (tinst && tinst->offset() >= instanceOopDesc::base_offset_in_bytes()) {
1762       ciField* field;
1763       if (tinst->const_oop() != NULL &&
1764           tinst->klass() == ciEnv::current()->Class_klass() &&
1765           tinst->offset() >= (tinst->klass()->as_instance_klass()->size_helper() * wordSize)) {
1766         // static field
1767         ciInstanceKlass* k = tinst->const_oop()->as_instance()->java_lang_Class_klass()->as_instance_klass();
1768         field = k->get_field_by_offset(tinst->offset(), true);
1769       } else {
1770         ciInstanceKlass *k = tinst->klass()->as_instance_klass();
1771         field = k->get_field_by_offset(tinst->offset(), false);
1772       }
1773       assert(field == NULL ||
1774              original_field == NULL ||
1775              (field->holder() == original_field->holder() &&
1776               field->offset() == original_field->offset() &&
1777               field->is_static() == original_field->is_static()), "wrong field?");
1778       // Set field() and is_rewritable() attributes.
1779       if (field != NULL)  alias_type(idx)->set_field(field);
1780     }
1781   }
1782 
1783   // Fill the cache for next time.
1784   ace->_adr_type = adr_type;
1785   ace->_index    = idx;
1786   assert(alias_type(adr_type) == alias_type(idx),  "type must be installed");
1787 
1788   // Might as well try to fill the cache for the flattened version, too.
1789   AliasCacheEntry* face = probe_alias_cache(flat);
1790   if (face->_adr_type == NULL) {
1791     face->_adr_type = flat;
1792     face->_index    = idx;
1793     assert(alias_type(flat) == alias_type(idx), "flat type must work too");
1794   }
1795 
1796   return alias_type(idx);
1797 }
1798 
1799 
1800 Compile::AliasType* Compile::alias_type(ciField* field) {
1801   const TypeOopPtr* t;
1802   if (field->is_static())
1803     t = TypeInstPtr::make(field->holder()->java_mirror());
1804   else
1805     t = TypeOopPtr::make_from_klass_raw(field->holder());
1806   AliasType* atp = alias_type(t->add_offset(field->offset_in_bytes()), field);
1807   assert((field->is_final() || field->is_stable()) == !atp->is_rewritable(), "must get the rewritable bits correct");
1808   return atp;
1809 }
1810 
1811 
1812 //------------------------------have_alias_type--------------------------------
1813 bool Compile::have_alias_type(const TypePtr* adr_type) {
1814   AliasCacheEntry* ace = probe_alias_cache(adr_type);
1815   if (ace->_adr_type == adr_type) {
1816     return true;
1817   }
1818 
1819   // Handle special cases.
1820   if (adr_type == NULL)             return true;
1821   if (adr_type == TypePtr::BOTTOM)  return true;
1822 
1823   return find_alias_type(adr_type, true, NULL) != NULL;
1824 }
1825 
1826 //-----------------------------must_alias--------------------------------------
1827 // True if all values of the given address type are in the given alias category.
1828 bool Compile::must_alias(const TypePtr* adr_type, int alias_idx) {
1829   if (alias_idx == AliasIdxBot)         return true;  // the universal category
1830   if (adr_type == NULL)                 return true;  // NULL serves as TypePtr::TOP
1831   if (alias_idx == AliasIdxTop)         return false; // the empty category
1832   if (adr_type->base() == Type::AnyPtr) return false; // TypePtr::BOTTOM or its twins
1833 
1834   // the only remaining possible overlap is identity
1835   int adr_idx = get_alias_index(adr_type);
1836   assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
1837   assert(adr_idx == alias_idx ||
1838          (alias_type(alias_idx)->adr_type() != TypeOopPtr::BOTTOM
1839           && adr_type                       != TypeOopPtr::BOTTOM),
1840          "should not be testing for overlap with an unsafe pointer");
1841   return adr_idx == alias_idx;
1842 }
1843 
1844 //------------------------------can_alias--------------------------------------
1845 // True if any values of the given address type are in the given alias category.
1846 bool Compile::can_alias(const TypePtr* adr_type, int alias_idx) {
1847   if (alias_idx == AliasIdxTop)         return false; // the empty category
1848   if (adr_type == NULL)                 return false; // NULL serves as TypePtr::TOP
1849   if (alias_idx == AliasIdxBot)         return true;  // the universal category
1850   if (adr_type->base() == Type::AnyPtr) return true;  // TypePtr::BOTTOM or its twins
1851 
1852   // the only remaining possible overlap is identity
1853   int adr_idx = get_alias_index(adr_type);
1854   assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
1855   return adr_idx == alias_idx;
1856 }
1857 
1858 
1859 
1860 //---------------------------pop_warm_call-------------------------------------
1861 WarmCallInfo* Compile::pop_warm_call() {
1862   WarmCallInfo* wci = _warm_calls;
1863   if (wci != NULL)  _warm_calls = wci->remove_from(wci);
1864   return wci;
1865 }
1866 
1867 //----------------------------Inline_Warm--------------------------------------
1868 int Compile::Inline_Warm() {
1869   // If there is room, try to inline some more warm call sites.
1870   // %%% Do a graph index compaction pass when we think we're out of space?
1871   if (!InlineWarmCalls)  return 0;
1872 
1873   int calls_made_hot = 0;
1874   int room_to_grow   = NodeCountInliningCutoff - unique();
1875   int amount_to_grow = MIN2(room_to_grow, (int)NodeCountInliningStep);
1876   int amount_grown   = 0;
1877   WarmCallInfo* call;
1878   while (amount_to_grow > 0 && (call = pop_warm_call()) != NULL) {
1879     int est_size = (int)call->size();
1880     if (est_size > (room_to_grow - amount_grown)) {
1881       // This one won't fit anyway.  Get rid of it.
1882       call->make_cold();
1883       continue;
1884     }
1885     call->make_hot();
1886     calls_made_hot++;
1887     amount_grown   += est_size;
1888     amount_to_grow -= est_size;
1889   }
1890 
1891   if (calls_made_hot > 0)  set_major_progress();
1892   return calls_made_hot;
1893 }
1894 
1895 
1896 //----------------------------Finish_Warm--------------------------------------
1897 void Compile::Finish_Warm() {
1898   if (!InlineWarmCalls)  return;
1899   if (failing())  return;
1900   if (warm_calls() == NULL)  return;
1901 
1902   // Clean up loose ends, if we are out of space for inlining.
1903   WarmCallInfo* call;
1904   while ((call = pop_warm_call()) != NULL) {
1905     call->make_cold();
1906   }
1907 }
1908 
1909 //---------------------cleanup_loop_predicates-----------------------
1910 // Remove the opaque nodes that protect the predicates so that all unused
1911 // checks and uncommon_traps will be eliminated from the ideal graph
1912 void Compile::cleanup_loop_predicates(PhaseIterGVN &igvn) {
1913   if (predicate_count()==0) return;
1914   for (int i = predicate_count(); i > 0; i--) {
1915     Node * n = predicate_opaque1_node(i-1);
1916     assert(n->Opcode() == Op_Opaque1, "must be");
1917     igvn.replace_node(n, n->in(1));
1918   }
1919   assert(predicate_count()==0, "should be clean!");
1920 }
1921 
1922 // StringOpts and late inlining of string methods
1923 void Compile::inline_string_calls(bool parse_time) {
1924   {
1925     // remove useless nodes to make the usage analysis simpler
1926     ResourceMark rm;
1927     PhaseRemoveUseless pru(initial_gvn(), for_igvn());
1928   }
1929 
1930   {
1931     ResourceMark rm;
1932     print_method(PHASE_BEFORE_STRINGOPTS, 3);
1933     PhaseStringOpts pso(initial_gvn(), for_igvn());
1934     print_method(PHASE_AFTER_STRINGOPTS, 3);
1935   }
1936 
1937   // now inline anything that we skipped the first time around
1938   if (!parse_time) {
1939     _late_inlines_pos = _late_inlines.length();
1940   }
1941 
1942   while (_string_late_inlines.length() > 0) {
1943     CallGenerator* cg = _string_late_inlines.pop();
1944     cg->do_late_inline();
1945     if (failing())  return;
1946   }
1947   _string_late_inlines.trunc_to(0);
1948 }
1949 
1950 // Late inlining of boxing methods
1951 void Compile::inline_boxing_calls(PhaseIterGVN& igvn) {
1952   if (_boxing_late_inlines.length() > 0) {
1953     assert(has_boxed_value(), "inconsistent");
1954 
1955     PhaseGVN* gvn = initial_gvn();
1956     set_inlining_incrementally(true);
1957 
1958     assert( igvn._worklist.size() == 0, "should be done with igvn" );
1959     for_igvn()->clear();
1960     gvn->replace_with(&igvn);
1961 
1962     _late_inlines_pos = _late_inlines.length();
1963 
1964     while (_boxing_late_inlines.length() > 0) {
1965       CallGenerator* cg = _boxing_late_inlines.pop();
1966       cg->do_late_inline();
1967       if (failing())  return;
1968     }
1969     _boxing_late_inlines.trunc_to(0);
1970 
1971     {
1972       ResourceMark rm;
1973       PhaseRemoveUseless pru(gvn, for_igvn());
1974     }
1975 
1976     igvn = PhaseIterGVN(gvn);
1977     igvn.optimize();
1978 
1979     set_inlining_progress(false);
1980     set_inlining_incrementally(false);
1981   }
1982 }
1983 
1984 void Compile::inline_incrementally_one(PhaseIterGVN& igvn) {
1985   assert(IncrementalInline, "incremental inlining should be on");
1986   PhaseGVN* gvn = initial_gvn();
1987 
1988   set_inlining_progress(false);
1989   for_igvn()->clear();
1990   gvn->replace_with(&igvn);
1991 
1992   {
1993     TracePhase tp("incrementalInline_inline", &timers[_t_incrInline_inline]);
1994     int i = 0;
1995     for (; i <_late_inlines.length() && !inlining_progress(); i++) {
1996       CallGenerator* cg = _late_inlines.at(i);
1997       _late_inlines_pos = i+1;
1998       cg->do_late_inline();
1999       if (failing())  return;
2000     }
2001     int j = 0;
2002     for (; i < _late_inlines.length(); i++, j++) {
2003       _late_inlines.at_put(j, _late_inlines.at(i));
2004     }
2005     _late_inlines.trunc_to(j);
2006   }
2007 
2008   {
2009     TracePhase tp("incrementalInline_pru", &timers[_t_incrInline_pru]);
2010     ResourceMark rm;
2011     PhaseRemoveUseless pru(gvn, for_igvn());
2012   }
2013 
2014   {
2015     TracePhase tp("incrementalInline_igvn", &timers[_t_incrInline_igvn]);
2016     igvn = PhaseIterGVN(gvn);
2017   }
2018 }
2019 
2020 // Perform incremental inlining until bound on number of live nodes is reached
2021 void Compile::inline_incrementally(PhaseIterGVN& igvn) {
2022   TracePhase tp("incrementalInline", &timers[_t_incrInline]);
2023 
2024   PhaseGVN* gvn = initial_gvn();
2025 
2026   set_inlining_incrementally(true);
2027   set_inlining_progress(true);
2028   uint low_live_nodes = 0;
2029 
2030   while(inlining_progress() && _late_inlines.length() > 0) {
2031 
2032     if (live_nodes() > (uint)LiveNodeCountInliningCutoff) {
2033       if (low_live_nodes < (uint)LiveNodeCountInliningCutoff * 8 / 10) {
2034         TracePhase tp("incrementalInline_ideal", &timers[_t_incrInline_ideal]);
2035         // PhaseIdealLoop is expensive so we only try it once we are
2036         // out of live nodes and we only try it again if the previous
2037         // helped got the number of nodes down significantly
2038         PhaseIdealLoop ideal_loop( igvn, false, true );
2039         if (failing())  return;
2040         low_live_nodes = live_nodes();
2041         _major_progress = true;
2042       }
2043 
2044       if (live_nodes() > (uint)LiveNodeCountInliningCutoff) {
2045         break;
2046       }
2047     }
2048 
2049     inline_incrementally_one(igvn);
2050 
2051     if (failing())  return;
2052 
2053     {
2054       TracePhase tp("incrementalInline_igvn", &timers[_t_incrInline_igvn]);
2055       igvn.optimize();
2056     }
2057 
2058     if (failing())  return;
2059   }
2060 
2061   assert( igvn._worklist.size() == 0, "should be done with igvn" );
2062 
2063   if (_string_late_inlines.length() > 0) {
2064     assert(has_stringbuilder(), "inconsistent");
2065     for_igvn()->clear();
2066     initial_gvn()->replace_with(&igvn);
2067 
2068     inline_string_calls(false);
2069 
2070     if (failing())  return;
2071 
2072     {
2073       TracePhase tp("incrementalInline_pru", &timers[_t_incrInline_pru]);
2074       ResourceMark rm;
2075       PhaseRemoveUseless pru(initial_gvn(), for_igvn());
2076     }
2077 
2078     {
2079       TracePhase tp("incrementalInline_igvn", &timers[_t_incrInline_igvn]);
2080       igvn = PhaseIterGVN(gvn);
2081       igvn.optimize();
2082     }
2083   }
2084 
2085   set_inlining_incrementally(false);
2086 }
2087 
2088 
2089 //------------------------------Optimize---------------------------------------
2090 // Given a graph, optimize it.
2091 void Compile::Optimize() {
2092   TracePhase tp("optimizer", &timers[_t_optimizer]);
2093 
2094 #ifndef PRODUCT
2095   if (env()->dirset()->BreakAtCompileOption) {
2096     BREAKPOINT;
2097   }
2098 
2099 #endif
2100 
2101   ResourceMark rm;
2102   int          loop_opts_cnt;
2103 
2104   print_inlining_reinit();
2105 
2106   NOT_PRODUCT( verify_graph_edges(); )
2107 
2108   print_method(PHASE_AFTER_PARSING);
2109 
2110  {
2111   // Iterative Global Value Numbering, including ideal transforms
2112   // Initialize IterGVN with types and values from parse-time GVN
2113   PhaseIterGVN igvn(initial_gvn());
2114 #ifdef ASSERT
2115   _modified_nodes = new (comp_arena()) Unique_Node_List(comp_arena());
2116 #endif
2117   {
2118     TracePhase tp("iterGVN", &timers[_t_iterGVN]);
2119     igvn.optimize();
2120   }
2121 
2122   print_method(PHASE_ITER_GVN1, 2);
2123 
2124   if (failing())  return;
2125 
2126   inline_incrementally(igvn);
2127 
2128   print_method(PHASE_INCREMENTAL_INLINE, 2);
2129 
2130   if (failing())  return;
2131 
2132   if (eliminate_boxing()) {
2133     // Inline valueOf() methods now.
2134     inline_boxing_calls(igvn);
2135 
2136     if (AlwaysIncrementalInline) {
2137       inline_incrementally(igvn);
2138     }
2139 
2140     print_method(PHASE_INCREMENTAL_BOXING_INLINE, 2);
2141 
2142     if (failing())  return;
2143   }
2144 
2145   // Remove the speculative part of types and clean up the graph from
2146   // the extra CastPP nodes whose only purpose is to carry them. Do
2147   // that early so that optimizations are not disrupted by the extra
2148   // CastPP nodes.
2149   remove_speculative_types(igvn);
2150 
2151   // No more new expensive nodes will be added to the list from here
2152   // so keep only the actual candidates for optimizations.
2153   cleanup_expensive_nodes(igvn);
2154 
2155   // Perform escape analysis
2156   if (_do_escape_analysis && ConnectionGraph::has_candidates(this)) {
2157     if (has_loops()) {
2158       // Cleanup graph (remove dead nodes).
2159       TracePhase tp("idealLoop", &timers[_t_idealLoop]);
2160       PhaseIdealLoop ideal_loop( igvn, false, true );
2161       if (major_progress()) print_method(PHASE_PHASEIDEAL_BEFORE_EA, 2);
2162       if (failing())  return;
2163     }
2164     ConnectionGraph::do_analysis(this, &igvn);
2165 
2166     if (failing())  return;
2167 
2168     // Optimize out fields loads from scalar replaceable allocations.
2169     igvn.optimize();
2170     print_method(PHASE_ITER_GVN_AFTER_EA, 2);
2171 
2172     if (failing())  return;
2173 
2174     if (congraph() != NULL && macro_count() > 0) {
2175       TracePhase tp("macroEliminate", &timers[_t_macroEliminate]);
2176       PhaseMacroExpand mexp(igvn);
2177       mexp.eliminate_macro_nodes();
2178       igvn.set_delay_transform(false);
2179 
2180       igvn.optimize();
2181       print_method(PHASE_ITER_GVN_AFTER_ELIMINATION, 2);
2182 
2183       if (failing())  return;
2184     }
2185   }
2186 
2187   // Loop transforms on the ideal graph.  Range Check Elimination,
2188   // peeling, unrolling, etc.
2189 
2190   // Set loop opts counter
2191   loop_opts_cnt = num_loop_opts();
2192   if((loop_opts_cnt > 0) && (has_loops() || has_split_ifs())) {
2193     {
2194       TracePhase tp("idealLoop", &timers[_t_idealLoop]);
2195       PhaseIdealLoop ideal_loop( igvn, true );
2196       loop_opts_cnt--;
2197       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP1, 2);
2198       if (failing())  return;
2199     }
2200     // Loop opts pass if partial peeling occurred in previous pass
2201     if(PartialPeelLoop && major_progress() && (loop_opts_cnt > 0)) {
2202       TracePhase tp("idealLoop", &timers[_t_idealLoop]);
2203       PhaseIdealLoop ideal_loop( igvn, false );
2204       loop_opts_cnt--;
2205       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP2, 2);
2206       if (failing())  return;
2207     }
2208     // Loop opts pass for loop-unrolling before CCP
2209     if(major_progress() && (loop_opts_cnt > 0)) {
2210       TracePhase tp("idealLoop", &timers[_t_idealLoop]);
2211       PhaseIdealLoop ideal_loop( igvn, false );
2212       loop_opts_cnt--;
2213       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP3, 2);
2214     }
2215     if (!failing()) {
2216       // Verify that last round of loop opts produced a valid graph
2217       TracePhase tp("idealLoopVerify", &timers[_t_idealLoopVerify]);
2218       PhaseIdealLoop::verify(igvn);
2219     }
2220   }
2221   if (failing())  return;
2222 
2223   // Conditional Constant Propagation;
2224   PhaseCCP ccp( &igvn );
2225   assert( true, "Break here to ccp.dump_nodes_and_types(_root,999,1)");
2226   {
2227     TracePhase tp("ccp", &timers[_t_ccp]);
2228     ccp.do_transform();
2229   }
2230   print_method(PHASE_CPP1, 2);
2231 
2232   assert( true, "Break here to ccp.dump_old2new_map()");
2233 
2234   // Iterative Global Value Numbering, including ideal transforms
2235   {
2236     TracePhase tp("iterGVN2", &timers[_t_iterGVN2]);
2237     igvn = ccp;
2238     igvn.optimize();
2239   }
2240 
2241   print_method(PHASE_ITER_GVN2, 2);
2242 
2243   if (failing())  return;
2244 
2245   // Loop transforms on the ideal graph.  Range Check Elimination,
2246   // peeling, unrolling, etc.
2247   if(loop_opts_cnt > 0) {
2248     debug_only( int cnt = 0; );
2249     while(major_progress() && (loop_opts_cnt > 0)) {
2250       TracePhase tp("idealLoop", &timers[_t_idealLoop]);
2251       assert( cnt++ < 40, "infinite cycle in loop optimization" );
2252       PhaseIdealLoop ideal_loop( igvn, true);
2253       loop_opts_cnt--;
2254       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP_ITERATIONS, 2);
2255       if (failing())  return;
2256     }
2257   }
2258 
2259   {
2260     // Verify that all previous optimizations produced a valid graph
2261     // at least to this point, even if no loop optimizations were done.
2262     TracePhase tp("idealLoopVerify", &timers[_t_idealLoopVerify]);
2263     PhaseIdealLoop::verify(igvn);
2264   }
2265 
2266   {
2267     TracePhase tp("macroExpand", &timers[_t_macroExpand]);
2268     PhaseMacroExpand  mex(igvn);
2269     if (mex.expand_macro_nodes()) {
2270       assert(failing(), "must bail out w/ explicit message");
2271       return;
2272     }
2273   }
2274 
2275   DEBUG_ONLY( _modified_nodes = NULL; )
2276  } // (End scope of igvn; run destructor if necessary for asserts.)
2277 
2278   process_print_inlining();
2279   // A method with only infinite loops has no edges entering loops from root
2280   {
2281     TracePhase tp("graphReshape", &timers[_t_graphReshaping]);
2282     if (final_graph_reshaping()) {
2283       assert(failing(), "must bail out w/ explicit message");
2284       return;
2285     }
2286   }
2287 
2288   print_method(PHASE_OPTIMIZE_FINISHED, 2);
2289 }
2290 
2291 
2292 //------------------------------Code_Gen---------------------------------------
2293 // Given a graph, generate code for it
2294 void Compile::Code_Gen() {
2295   if (failing()) {
2296     return;
2297   }
2298 
2299   // Perform instruction selection.  You might think we could reclaim Matcher
2300   // memory PDQ, but actually the Matcher is used in generating spill code.
2301   // Internals of the Matcher (including some VectorSets) must remain live
2302   // for awhile - thus I cannot reclaim Matcher memory lest a VectorSet usage
2303   // set a bit in reclaimed memory.
2304 
2305   // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
2306   // nodes.  Mapping is only valid at the root of each matched subtree.
2307   NOT_PRODUCT( verify_graph_edges(); )
2308 
2309   Matcher matcher;
2310   _matcher = &matcher;
2311   {
2312     TracePhase tp("matcher", &timers[_t_matcher]);
2313     matcher.match();
2314   }
2315   // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
2316   // nodes.  Mapping is only valid at the root of each matched subtree.
2317   NOT_PRODUCT( verify_graph_edges(); )
2318 
2319   // If you have too many nodes, or if matching has failed, bail out
2320   check_node_count(0, "out of nodes matching instructions");
2321   if (failing()) {
2322     return;
2323   }
2324 
2325   // Build a proper-looking CFG
2326   PhaseCFG cfg(node_arena(), root(), matcher);
2327   _cfg = &cfg;
2328   {
2329     TracePhase tp("scheduler", &timers[_t_scheduler]);
2330     bool success = cfg.do_global_code_motion();
2331     if (!success) {
2332       return;
2333     }
2334 
2335     print_method(PHASE_GLOBAL_CODE_MOTION, 2);
2336     NOT_PRODUCT( verify_graph_edges(); )
2337     debug_only( cfg.verify(); )
2338   }
2339 
2340   PhaseChaitin regalloc(unique(), cfg, matcher, false);
2341   _regalloc = &regalloc;
2342   {
2343     TracePhase tp("regalloc", &timers[_t_registerAllocation]);
2344     // Perform register allocation.  After Chaitin, use-def chains are
2345     // no longer accurate (at spill code) and so must be ignored.
2346     // Node->LRG->reg mappings are still accurate.
2347     _regalloc->Register_Allocate();
2348 
2349     // Bail out if the allocator builds too many nodes
2350     if (failing()) {
2351       return;
2352     }
2353   }
2354 
2355   // Prior to register allocation we kept empty basic blocks in case the
2356   // the allocator needed a place to spill.  After register allocation we
2357   // are not adding any new instructions.  If any basic block is empty, we
2358   // can now safely remove it.
2359   {
2360     TracePhase tp("blockOrdering", &timers[_t_blockOrdering]);
2361     cfg.remove_empty_blocks();
2362     if (do_freq_based_layout()) {
2363       PhaseBlockLayout layout(cfg);
2364     } else {
2365       cfg.set_loop_alignment();
2366     }
2367     cfg.fixup_flow();
2368   }
2369 
2370   // Apply peephole optimizations
2371   if( OptoPeephole ) {
2372     TracePhase tp("peephole", &timers[_t_peephole]);
2373     PhasePeephole peep( _regalloc, cfg);
2374     peep.do_transform();
2375   }
2376 
2377   // Do late expand if CPU requires this.
2378   if (Matcher::require_postalloc_expand) {
2379     TracePhase tp("postalloc_expand", &timers[_t_postalloc_expand]);
2380     cfg.postalloc_expand(_regalloc);
2381   }
2382 
2383   // Convert Nodes to instruction bits in a buffer
2384   {
2385     TraceTime tp("output", &timers[_t_output], CITime);
2386     Output();
2387   }
2388 
2389   print_method(PHASE_FINAL_CODE);
2390 
2391   // He's dead, Jim.
2392   _cfg     = (PhaseCFG*)0xdeadbeef;
2393   _regalloc = (PhaseChaitin*)0xdeadbeef;
2394 }
2395 
2396 
2397 //------------------------------dump_asm---------------------------------------
2398 // Dump formatted assembly
2399 #ifndef PRODUCT
2400 void Compile::dump_asm(int *pcs, uint pc_limit) {
2401   bool cut_short = false;
2402   tty->print_cr("#");
2403   tty->print("#  ");  _tf->dump();  tty->cr();
2404   tty->print_cr("#");
2405 
2406   // For all blocks
2407   int pc = 0x0;                 // Program counter
2408   char starts_bundle = ' ';
2409   _regalloc->dump_frame();
2410 
2411   Node *n = NULL;
2412   for (uint i = 0; i < _cfg->number_of_blocks(); i++) {
2413     if (VMThread::should_terminate()) {
2414       cut_short = true;
2415       break;
2416     }
2417     Block* block = _cfg->get_block(i);
2418     if (block->is_connector() && !Verbose) {
2419       continue;
2420     }
2421     n = block->head();
2422     if (pcs && n->_idx < pc_limit) {
2423       tty->print("%3.3x   ", pcs[n->_idx]);
2424     } else {
2425       tty->print("      ");
2426     }
2427     block->dump_head(_cfg);
2428     if (block->is_connector()) {
2429       tty->print_cr("        # Empty connector block");
2430     } else if (block->num_preds() == 2 && block->pred(1)->is_CatchProj() && block->pred(1)->as_CatchProj()->_con == CatchProjNode::fall_through_index) {
2431       tty->print_cr("        # Block is sole successor of call");
2432     }
2433 
2434     // For all instructions
2435     Node *delay = NULL;
2436     for (uint j = 0; j < block->number_of_nodes(); j++) {
2437       if (VMThread::should_terminate()) {
2438         cut_short = true;
2439         break;
2440       }
2441       n = block->get_node(j);
2442       if (valid_bundle_info(n)) {
2443         Bundle* bundle = node_bundling(n);
2444         if (bundle->used_in_unconditional_delay()) {
2445           delay = n;
2446           continue;
2447         }
2448         if (bundle->starts_bundle()) {
2449           starts_bundle = '+';
2450         }
2451       }
2452 
2453       if (WizardMode) {
2454         n->dump();
2455       }
2456 
2457       if( !n->is_Region() &&    // Dont print in the Assembly
2458           !n->is_Phi() &&       // a few noisely useless nodes
2459           !n->is_Proj() &&
2460           !n->is_MachTemp() &&
2461           !n->is_SafePointScalarObject() &&
2462           !n->is_Catch() &&     // Would be nice to print exception table targets
2463           !n->is_MergeMem() &&  // Not very interesting
2464           !n->is_top() &&       // Debug info table constants
2465           !(n->is_Con() && !n->is_Mach())// Debug info table constants
2466           ) {
2467         if (pcs && n->_idx < pc_limit)
2468           tty->print("%3.3x", pcs[n->_idx]);
2469         else
2470           tty->print("   ");
2471         tty->print(" %c ", starts_bundle);
2472         starts_bundle = ' ';
2473         tty->print("\t");
2474         n->format(_regalloc, tty);
2475         tty->cr();
2476       }
2477 
2478       // If we have an instruction with a delay slot, and have seen a delay,
2479       // then back up and print it
2480       if (valid_bundle_info(n) && node_bundling(n)->use_unconditional_delay()) {
2481         assert(delay != NULL, "no unconditional delay instruction");
2482         if (WizardMode) delay->dump();
2483 
2484         if (node_bundling(delay)->starts_bundle())
2485           starts_bundle = '+';
2486         if (pcs && n->_idx < pc_limit)
2487           tty->print("%3.3x", pcs[n->_idx]);
2488         else
2489           tty->print("   ");
2490         tty->print(" %c ", starts_bundle);
2491         starts_bundle = ' ';
2492         tty->print("\t");
2493         delay->format(_regalloc, tty);
2494         tty->cr();
2495         delay = NULL;
2496       }
2497 
2498       // Dump the exception table as well
2499       if( n->is_Catch() && (Verbose || WizardMode) ) {
2500         // Print the exception table for this offset
2501         _handler_table.print_subtable_for(pc);
2502       }
2503     }
2504 
2505     if (pcs && n->_idx < pc_limit)
2506       tty->print_cr("%3.3x", pcs[n->_idx]);
2507     else
2508       tty->cr();
2509 
2510     assert(cut_short || delay == NULL, "no unconditional delay branch");
2511 
2512   } // End of per-block dump
2513   tty->cr();
2514 
2515   if (cut_short)  tty->print_cr("*** disassembly is cut short ***");
2516 }
2517 #endif
2518 
2519 //------------------------------Final_Reshape_Counts---------------------------
2520 // This class defines counters to help identify when a method
2521 // may/must be executed using hardware with only 24-bit precision.
2522 struct Final_Reshape_Counts : public StackObj {
2523   int  _call_count;             // count non-inlined 'common' calls
2524   int  _float_count;            // count float ops requiring 24-bit precision
2525   int  _double_count;           // count double ops requiring more precision
2526   int  _java_call_count;        // count non-inlined 'java' calls
2527   int  _inner_loop_count;       // count loops which need alignment
2528   VectorSet _visited;           // Visitation flags
2529   Node_List _tests;             // Set of IfNodes & PCTableNodes
2530 
2531   Final_Reshape_Counts() :
2532     _call_count(0), _float_count(0), _double_count(0),
2533     _java_call_count(0), _inner_loop_count(0),
2534     _visited( Thread::current()->resource_area() ) { }
2535 
2536   void inc_call_count  () { _call_count  ++; }
2537   void inc_float_count () { _float_count ++; }
2538   void inc_double_count() { _double_count++; }
2539   void inc_java_call_count() { _java_call_count++; }
2540   void inc_inner_loop_count() { _inner_loop_count++; }
2541 
2542   int  get_call_count  () const { return _call_count  ; }
2543   int  get_float_count () const { return _float_count ; }
2544   int  get_double_count() const { return _double_count; }
2545   int  get_java_call_count() const { return _java_call_count; }
2546   int  get_inner_loop_count() const { return _inner_loop_count; }
2547 };
2548 
2549 #ifdef ASSERT
2550 static bool oop_offset_is_sane(const TypeInstPtr* tp) {
2551   ciInstanceKlass *k = tp->klass()->as_instance_klass();
2552   // Make sure the offset goes inside the instance layout.
2553   return k->contains_field_offset(tp->offset());
2554   // Note that OffsetBot and OffsetTop are very negative.
2555 }
2556 #endif
2557 
2558 // Eliminate trivially redundant StoreCMs and accumulate their
2559 // precedence edges.
2560 void Compile::eliminate_redundant_card_marks(Node* n) {
2561   assert(n->Opcode() == Op_StoreCM, "expected StoreCM");
2562   if (n->in(MemNode::Address)->outcnt() > 1) {
2563     // There are multiple users of the same address so it might be
2564     // possible to eliminate some of the StoreCMs
2565     Node* mem = n->in(MemNode::Memory);
2566     Node* adr = n->in(MemNode::Address);
2567     Node* val = n->in(MemNode::ValueIn);
2568     Node* prev = n;
2569     bool done = false;
2570     // Walk the chain of StoreCMs eliminating ones that match.  As
2571     // long as it's a chain of single users then the optimization is
2572     // safe.  Eliminating partially redundant StoreCMs would require
2573     // cloning copies down the other paths.
2574     while (mem->Opcode() == Op_StoreCM && mem->outcnt() == 1 && !done) {
2575       if (adr == mem->in(MemNode::Address) &&
2576           val == mem->in(MemNode::ValueIn)) {
2577         // redundant StoreCM
2578         if (mem->req() > MemNode::OopStore) {
2579           // Hasn't been processed by this code yet.
2580           n->add_prec(mem->in(MemNode::OopStore));
2581         } else {
2582           // Already converted to precedence edge
2583           for (uint i = mem->req(); i < mem->len(); i++) {
2584             // Accumulate any precedence edges
2585             if (mem->in(i) != NULL) {
2586               n->add_prec(mem->in(i));
2587             }
2588           }
2589           // Everything above this point has been processed.
2590           done = true;
2591         }
2592         // Eliminate the previous StoreCM
2593         prev->set_req(MemNode::Memory, mem->in(MemNode::Memory));
2594         assert(mem->outcnt() == 0, "should be dead");
2595         mem->disconnect_inputs(NULL, this);
2596       } else {
2597         prev = mem;
2598       }
2599       mem = prev->in(MemNode::Memory);
2600     }
2601   }
2602 }
2603 
2604 //------------------------------final_graph_reshaping_impl----------------------
2605 // Implement items 1-5 from final_graph_reshaping below.
2606 void Compile::final_graph_reshaping_impl( Node *n, Final_Reshape_Counts &frc) {
2607 
2608   if ( n->outcnt() == 0 ) return; // dead node
2609   uint nop = n->Opcode();
2610 
2611   // Check for 2-input instruction with "last use" on right input.
2612   // Swap to left input.  Implements item (2).
2613   if( n->req() == 3 &&          // two-input instruction
2614       n->in(1)->outcnt() > 1 && // left use is NOT a last use
2615       (!n->in(1)->is_Phi() || n->in(1)->in(2) != n) && // it is not data loop
2616       n->in(2)->outcnt() == 1 &&// right use IS a last use
2617       !n->in(2)->is_Con() ) {   // right use is not a constant
2618     // Check for commutative opcode
2619     switch( nop ) {
2620     case Op_AddI:  case Op_AddF:  case Op_AddD:  case Op_AddL:
2621     case Op_MaxI:  case Op_MinI:
2622     case Op_MulI:  case Op_MulF:  case Op_MulD:  case Op_MulL:
2623     case Op_AndL:  case Op_XorL:  case Op_OrL:
2624     case Op_AndI:  case Op_XorI:  case Op_OrI: {
2625       // Move "last use" input to left by swapping inputs
2626       n->swap_edges(1, 2);
2627       break;
2628     }
2629     default:
2630       break;
2631     }
2632   }
2633 
2634 #ifdef ASSERT
2635   if( n->is_Mem() ) {
2636     int alias_idx = get_alias_index(n->as_Mem()->adr_type());
2637     assert( n->in(0) != NULL || alias_idx != Compile::AliasIdxRaw ||
2638             // oop will be recorded in oop map if load crosses safepoint
2639             n->is_Load() && (n->as_Load()->bottom_type()->isa_oopptr() ||
2640                              LoadNode::is_immutable_value(n->in(MemNode::Address))),
2641             "raw memory operations should have control edge");
2642   }
2643 #endif
2644   // Count FPU ops and common calls, implements item (3)
2645   switch( nop ) {
2646   // Count all float operations that may use FPU
2647   case Op_AddF:
2648   case Op_SubF:
2649   case Op_MulF:
2650   case Op_DivF:
2651   case Op_NegF:
2652   case Op_ModF:
2653   case Op_ConvI2F:
2654   case Op_ConF:
2655   case Op_CmpF:
2656   case Op_CmpF3:
2657   // case Op_ConvL2F: // longs are split into 32-bit halves
2658     frc.inc_float_count();
2659     break;
2660 
2661   case Op_ConvF2D:
2662   case Op_ConvD2F:
2663     frc.inc_float_count();
2664     frc.inc_double_count();
2665     break;
2666 
2667   // Count all double operations that may use FPU
2668   case Op_AddD:
2669   case Op_SubD:
2670   case Op_MulD:
2671   case Op_DivD:
2672   case Op_NegD:
2673   case Op_ModD:
2674   case Op_ConvI2D:
2675   case Op_ConvD2I:
2676   // case Op_ConvL2D: // handled by leaf call
2677   // case Op_ConvD2L: // handled by leaf call
2678   case Op_ConD:
2679   case Op_CmpD:
2680   case Op_CmpD3:
2681     frc.inc_double_count();
2682     break;
2683   case Op_Opaque1:              // Remove Opaque Nodes before matching
2684   case Op_Opaque2:              // Remove Opaque Nodes before matching
2685   case Op_Opaque3:
2686     n->subsume_by(n->in(1), this);
2687     break;
2688   case Op_CallStaticJava:
2689   case Op_CallJava:
2690   case Op_CallDynamicJava:
2691     frc.inc_java_call_count(); // Count java call site;
2692   case Op_CallRuntime:
2693   case Op_CallLeaf:
2694   case Op_CallLeafNoFP: {
2695     assert( n->is_Call(), "" );
2696     CallNode *call = n->as_Call();
2697     // Count call sites where the FP mode bit would have to be flipped.
2698     // Do not count uncommon runtime calls:
2699     // uncommon_trap, _complete_monitor_locking, _complete_monitor_unlocking,
2700     // _new_Java, _new_typeArray, _new_objArray, _rethrow_Java, ...
2701     if( !call->is_CallStaticJava() || !call->as_CallStaticJava()->_name ) {
2702       frc.inc_call_count();   // Count the call site
2703     } else {                  // See if uncommon argument is shared
2704       Node *n = call->in(TypeFunc::Parms);
2705       int nop = n->Opcode();
2706       // Clone shared simple arguments to uncommon calls, item (1).
2707       if( n->outcnt() > 1 &&
2708           !n->is_Proj() &&
2709           nop != Op_CreateEx &&
2710           nop != Op_CheckCastPP &&
2711           nop != Op_DecodeN &&
2712           nop != Op_DecodeNKlass &&
2713           !n->is_Mem() ) {
2714         Node *x = n->clone();
2715         call->set_req( TypeFunc::Parms, x );
2716       }
2717     }
2718     break;
2719   }
2720 
2721   case Op_StoreD:
2722   case Op_LoadD:
2723   case Op_LoadD_unaligned:
2724     frc.inc_double_count();
2725     goto handle_mem;
2726   case Op_StoreF:
2727   case Op_LoadF:
2728     frc.inc_float_count();
2729     goto handle_mem;
2730 
2731   case Op_StoreCM:
2732     {
2733       // Convert OopStore dependence into precedence edge
2734       Node* prec = n->in(MemNode::OopStore);
2735       n->del_req(MemNode::OopStore);
2736       n->add_prec(prec);
2737       eliminate_redundant_card_marks(n);
2738     }
2739 
2740     // fall through
2741 
2742   case Op_StoreB:
2743   case Op_StoreC:
2744   case Op_StorePConditional:
2745   case Op_StoreI:
2746   case Op_StoreL:
2747   case Op_StoreIConditional:
2748   case Op_StoreLConditional:
2749   case Op_CompareAndSwapI:
2750   case Op_CompareAndSwapL:
2751   case Op_CompareAndSwapP:
2752   case Op_CompareAndSwapN:
2753   case Op_GetAndAddI:
2754   case Op_GetAndAddL:
2755   case Op_GetAndSetI:
2756   case Op_GetAndSetL:
2757   case Op_GetAndSetP:
2758   case Op_GetAndSetN:
2759   case Op_StoreP:
2760   case Op_StoreN:
2761   case Op_StoreNKlass:
2762   case Op_LoadB:
2763   case Op_LoadUB:
2764   case Op_LoadUS:
2765   case Op_LoadI:
2766   case Op_LoadKlass:
2767   case Op_LoadNKlass:
2768   case Op_LoadL:
2769   case Op_LoadL_unaligned:
2770   case Op_LoadPLocked:
2771   case Op_LoadP:
2772   case Op_LoadN:
2773   case Op_LoadRange:
2774   case Op_LoadS: {
2775   handle_mem:
2776 #ifdef ASSERT
2777     if( VerifyOptoOopOffsets ) {
2778       assert( n->is_Mem(), "" );
2779       MemNode *mem  = (MemNode*)n;
2780       // Check to see if address types have grounded out somehow.
2781       const TypeInstPtr *tp = mem->in(MemNode::Address)->bottom_type()->isa_instptr();
2782       assert( !tp || oop_offset_is_sane(tp), "" );
2783     }
2784 #endif
2785     break;
2786   }
2787 
2788   case Op_AddP: {               // Assert sane base pointers
2789     Node *addp = n->in(AddPNode::Address);
2790     assert( !addp->is_AddP() ||
2791             addp->in(AddPNode::Base)->is_top() || // Top OK for allocation
2792             addp->in(AddPNode::Base) == n->in(AddPNode::Base),
2793             "Base pointers must match" );
2794 #ifdef _LP64
2795     if ((UseCompressedOops || UseCompressedClassPointers) &&
2796         addp->Opcode() == Op_ConP &&
2797         addp == n->in(AddPNode::Base) &&
2798         n->in(AddPNode::Offset)->is_Con()) {
2799       // Use addressing with narrow klass to load with offset on x86.
2800       // On sparc loading 32-bits constant and decoding it have less
2801       // instructions (4) then load 64-bits constant (7).
2802       // Do this transformation here since IGVN will convert ConN back to ConP.
2803       const Type* t = addp->bottom_type();
2804       if (t->isa_oopptr() || t->isa_klassptr()) {
2805         Node* nn = NULL;
2806 
2807         int op = t->isa_oopptr() ? Op_ConN : Op_ConNKlass;
2808 
2809         // Look for existing ConN node of the same exact type.
2810         Node* r  = root();
2811         uint cnt = r->outcnt();
2812         for (uint i = 0; i < cnt; i++) {
2813           Node* m = r->raw_out(i);
2814           if (m!= NULL && m->Opcode() == op &&
2815               m->bottom_type()->make_ptr() == t) {
2816             nn = m;
2817             break;
2818           }
2819         }
2820         if (nn != NULL) {
2821           // Decode a narrow oop to match address
2822           // [R12 + narrow_oop_reg<<3 + offset]
2823           if (t->isa_oopptr()) {
2824             nn = new DecodeNNode(nn, t);
2825           } else {
2826             nn = new DecodeNKlassNode(nn, t);
2827           }
2828           n->set_req(AddPNode::Base, nn);
2829           n->set_req(AddPNode::Address, nn);
2830           if (addp->outcnt() == 0) {
2831             addp->disconnect_inputs(NULL, this);
2832           }
2833         }
2834       }
2835     }
2836 #endif
2837     break;
2838   }
2839 
2840   case Op_CastPP: {
2841     // Remove CastPP nodes to gain more freedom during scheduling but
2842     // keep the dependency they encode as control or precedence edges
2843     // (if control is set already) on memory operations. Some CastPP
2844     // nodes don't have a control (don't carry a dependency): skip
2845     // those.
2846     if (n->in(0) != NULL) {
2847       ResourceMark rm;
2848       Unique_Node_List wq;
2849       wq.push(n);
2850       for (uint next = 0; next < wq.size(); ++next) {
2851         Node *m = wq.at(next);
2852         for (DUIterator_Fast imax, i = m->fast_outs(imax); i < imax; i++) {
2853           Node* use = m->fast_out(i);
2854           if (use->is_Mem() || use->is_EncodeNarrowPtr()) {
2855             use->ensure_control_or_add_prec(n->in(0));
2856           } else if (use->in(0) == NULL) {
2857             switch(use->Opcode()) {
2858             case Op_AddP:
2859             case Op_DecodeN:
2860             case Op_DecodeNKlass:
2861             case Op_CheckCastPP:
2862             case Op_CastPP:
2863               wq.push(use);
2864               break;
2865             }
2866           }
2867         }
2868       }
2869     }
2870     const bool is_LP64 = LP64_ONLY(true) NOT_LP64(false);
2871     if (is_LP64 && n->in(1)->is_DecodeN() && Matcher::gen_narrow_oop_implicit_null_checks()) {
2872       Node* in1 = n->in(1);
2873       const Type* t = n->bottom_type();
2874       Node* new_in1 = in1->clone();
2875       new_in1->as_DecodeN()->set_type(t);
2876 
2877       if (!Matcher::narrow_oop_use_complex_address()) {
2878         //
2879         // x86, ARM and friends can handle 2 adds in addressing mode
2880         // and Matcher can fold a DecodeN node into address by using
2881         // a narrow oop directly and do implicit NULL check in address:
2882         //
2883         // [R12 + narrow_oop_reg<<3 + offset]
2884         // NullCheck narrow_oop_reg
2885         //
2886         // On other platforms (Sparc) we have to keep new DecodeN node and
2887         // use it to do implicit NULL check in address:
2888         //
2889         // decode_not_null narrow_oop_reg, base_reg
2890         // [base_reg + offset]
2891         // NullCheck base_reg
2892         //
2893         // Pin the new DecodeN node to non-null path on these platform (Sparc)
2894         // to keep the information to which NULL check the new DecodeN node
2895         // corresponds to use it as value in implicit_null_check().
2896         //
2897         new_in1->set_req(0, n->in(0));
2898       }
2899 
2900       n->subsume_by(new_in1, this);
2901       if (in1->outcnt() == 0) {
2902         in1->disconnect_inputs(NULL, this);
2903       }
2904     } else {
2905       n->subsume_by(n->in(1), this);
2906       if (n->outcnt() == 0) {
2907         n->disconnect_inputs(NULL, this);
2908       }
2909     }
2910     break;
2911   }
2912 #ifdef _LP64
2913   case Op_CmpP:
2914     // Do this transformation here to preserve CmpPNode::sub() and
2915     // other TypePtr related Ideal optimizations (for example, ptr nullness).
2916     if (n->in(1)->is_DecodeNarrowPtr() || n->in(2)->is_DecodeNarrowPtr()) {
2917       Node* in1 = n->in(1);
2918       Node* in2 = n->in(2);
2919       if (!in1->is_DecodeNarrowPtr()) {
2920         in2 = in1;
2921         in1 = n->in(2);
2922       }
2923       assert(in1->is_DecodeNarrowPtr(), "sanity");
2924 
2925       Node* new_in2 = NULL;
2926       if (in2->is_DecodeNarrowPtr()) {
2927         assert(in2->Opcode() == in1->Opcode(), "must be same node type");
2928         new_in2 = in2->in(1);
2929       } else if (in2->Opcode() == Op_ConP) {
2930         const Type* t = in2->bottom_type();
2931         if (t == TypePtr::NULL_PTR) {
2932           assert(in1->is_DecodeN(), "compare klass to null?");
2933           // Don't convert CmpP null check into CmpN if compressed
2934           // oops implicit null check is not generated.
2935           // This will allow to generate normal oop implicit null check.
2936           if (Matcher::gen_narrow_oop_implicit_null_checks())
2937             new_in2 = ConNode::make(TypeNarrowOop::NULL_PTR);
2938           //
2939           // This transformation together with CastPP transformation above
2940           // will generated code for implicit NULL checks for compressed oops.
2941           //
2942           // The original code after Optimize()
2943           //
2944           //    LoadN memory, narrow_oop_reg
2945           //    decode narrow_oop_reg, base_reg
2946           //    CmpP base_reg, NULL
2947           //    CastPP base_reg // NotNull
2948           //    Load [base_reg + offset], val_reg
2949           //
2950           // after these transformations will be
2951           //
2952           //    LoadN memory, narrow_oop_reg
2953           //    CmpN narrow_oop_reg, NULL
2954           //    decode_not_null narrow_oop_reg, base_reg
2955           //    Load [base_reg + offset], val_reg
2956           //
2957           // and the uncommon path (== NULL) will use narrow_oop_reg directly
2958           // since narrow oops can be used in debug info now (see the code in
2959           // final_graph_reshaping_walk()).
2960           //
2961           // At the end the code will be matched to
2962           // on x86:
2963           //
2964           //    Load_narrow_oop memory, narrow_oop_reg
2965           //    Load [R12 + narrow_oop_reg<<3 + offset], val_reg
2966           //    NullCheck narrow_oop_reg
2967           //
2968           // and on sparc:
2969           //
2970           //    Load_narrow_oop memory, narrow_oop_reg
2971           //    decode_not_null narrow_oop_reg, base_reg
2972           //    Load [base_reg + offset], val_reg
2973           //    NullCheck base_reg
2974           //
2975         } else if (t->isa_oopptr()) {
2976           new_in2 = ConNode::make(t->make_narrowoop());
2977         } else if (t->isa_klassptr()) {
2978           new_in2 = ConNode::make(t->make_narrowklass());
2979         }
2980       }
2981       if (new_in2 != NULL) {
2982         Node* cmpN = new CmpNNode(in1->in(1), new_in2);
2983         n->subsume_by(cmpN, this);
2984         if (in1->outcnt() == 0) {
2985           in1->disconnect_inputs(NULL, this);
2986         }
2987         if (in2->outcnt() == 0) {
2988           in2->disconnect_inputs(NULL, this);
2989         }
2990       }
2991     }
2992     break;
2993 
2994   case Op_DecodeN:
2995   case Op_DecodeNKlass:
2996     assert(!n->in(1)->is_EncodeNarrowPtr(), "should be optimized out");
2997     // DecodeN could be pinned when it can't be fold into
2998     // an address expression, see the code for Op_CastPP above.
2999     assert(n->in(0) == NULL || (UseCompressedOops && !Matcher::narrow_oop_use_complex_address()), "no control");
3000     break;
3001 
3002   case Op_EncodeP:
3003   case Op_EncodePKlass: {
3004     Node* in1 = n->in(1);
3005     if (in1->is_DecodeNarrowPtr()) {
3006       n->subsume_by(in1->in(1), this);
3007     } else if (in1->Opcode() == Op_ConP) {
3008       const Type* t = in1->bottom_type();
3009       if (t == TypePtr::NULL_PTR) {
3010         assert(t->isa_oopptr(), "null klass?");
3011         n->subsume_by(ConNode::make(TypeNarrowOop::NULL_PTR), this);
3012       } else if (t->isa_oopptr()) {
3013         n->subsume_by(ConNode::make(t->make_narrowoop()), this);
3014       } else if (t->isa_klassptr()) {
3015         n->subsume_by(ConNode::make(t->make_narrowklass()), this);
3016       }
3017     }
3018     if (in1->outcnt() == 0) {
3019       in1->disconnect_inputs(NULL, this);
3020     }
3021     break;
3022   }
3023 
3024   case Op_Proj: {
3025     if (OptimizeStringConcat) {
3026       ProjNode* p = n->as_Proj();
3027       if (p->_is_io_use) {
3028         // Separate projections were used for the exception path which
3029         // are normally removed by a late inline.  If it wasn't inlined
3030         // then they will hang around and should just be replaced with
3031         // the original one.
3032         Node* proj = NULL;
3033         // Replace with just one
3034         for (SimpleDUIterator i(p->in(0)); i.has_next(); i.next()) {
3035           Node *use = i.get();
3036           if (use->is_Proj() && p != use && use->as_Proj()->_con == p->_con) {
3037             proj = use;
3038             break;
3039           }
3040         }
3041         assert(proj != NULL, "must be found");
3042         p->subsume_by(proj, this);
3043       }
3044     }
3045     break;
3046   }
3047 
3048   case Op_Phi:
3049     if (n->as_Phi()->bottom_type()->isa_narrowoop() || n->as_Phi()->bottom_type()->isa_narrowklass()) {
3050       // The EncodeP optimization may create Phi with the same edges
3051       // for all paths. It is not handled well by Register Allocator.
3052       Node* unique_in = n->in(1);
3053       assert(unique_in != NULL, "");
3054       uint cnt = n->req();
3055       for (uint i = 2; i < cnt; i++) {
3056         Node* m = n->in(i);
3057         assert(m != NULL, "");
3058         if (unique_in != m)
3059           unique_in = NULL;
3060       }
3061       if (unique_in != NULL) {
3062         n->subsume_by(unique_in, this);
3063       }
3064     }
3065     break;
3066 
3067 #endif
3068 
3069   case Op_ModI:
3070     if (UseDivMod) {
3071       // Check if a%b and a/b both exist
3072       Node* d = n->find_similar(Op_DivI);
3073       if (d) {
3074         // Replace them with a fused divmod if supported
3075         if (Matcher::has_match_rule(Op_DivModI)) {
3076           DivModINode* divmod = DivModINode::make(n);
3077           d->subsume_by(divmod->div_proj(), this);
3078           n->subsume_by(divmod->mod_proj(), this);
3079         } else {
3080           // replace a%b with a-((a/b)*b)
3081           Node* mult = new MulINode(d, d->in(2));
3082           Node* sub  = new SubINode(d->in(1), mult);
3083           n->subsume_by(sub, this);
3084         }
3085       }
3086     }
3087     break;
3088 
3089   case Op_ModL:
3090     if (UseDivMod) {
3091       // Check if a%b and a/b both exist
3092       Node* d = n->find_similar(Op_DivL);
3093       if (d) {
3094         // Replace them with a fused divmod if supported
3095         if (Matcher::has_match_rule(Op_DivModL)) {
3096           DivModLNode* divmod = DivModLNode::make(n);
3097           d->subsume_by(divmod->div_proj(), this);
3098           n->subsume_by(divmod->mod_proj(), this);
3099         } else {
3100           // replace a%b with a-((a/b)*b)
3101           Node* mult = new MulLNode(d, d->in(2));
3102           Node* sub  = new SubLNode(d->in(1), mult);
3103           n->subsume_by(sub, this);
3104         }
3105       }
3106     }
3107     break;
3108 
3109   case Op_LoadVector:
3110   case Op_StoreVector:
3111     break;
3112 
3113   case Op_AddReductionVI:
3114   case Op_AddReductionVL:
3115   case Op_AddReductionVF:
3116   case Op_AddReductionVD:
3117   case Op_MulReductionVI:
3118   case Op_MulReductionVL:
3119   case Op_MulReductionVF:
3120   case Op_MulReductionVD:
3121     break;
3122 
3123   case Op_PackB:
3124   case Op_PackS:
3125   case Op_PackI:
3126   case Op_PackF:
3127   case Op_PackL:
3128   case Op_PackD:
3129     if (n->req()-1 > 2) {
3130       // Replace many operand PackNodes with a binary tree for matching
3131       PackNode* p = (PackNode*) n;
3132       Node* btp = p->binary_tree_pack(1, n->req());
3133       n->subsume_by(btp, this);
3134     }
3135     break;
3136   case Op_Loop:
3137   case Op_CountedLoop:
3138     if (n->as_Loop()->is_inner_loop()) {
3139       frc.inc_inner_loop_count();
3140     }
3141     break;
3142   case Op_LShiftI:
3143   case Op_RShiftI:
3144   case Op_URShiftI:
3145   case Op_LShiftL:
3146   case Op_RShiftL:
3147   case Op_URShiftL:
3148     if (Matcher::need_masked_shift_count) {
3149       // The cpu's shift instructions don't restrict the count to the
3150       // lower 5/6 bits. We need to do the masking ourselves.
3151       Node* in2 = n->in(2);
3152       juint mask = (n->bottom_type() == TypeInt::INT) ? (BitsPerInt - 1) : (BitsPerLong - 1);
3153       const TypeInt* t = in2->find_int_type();
3154       if (t != NULL && t->is_con()) {
3155         juint shift = t->get_con();
3156         if (shift > mask) { // Unsigned cmp
3157           n->set_req(2, ConNode::make(TypeInt::make(shift & mask)));
3158         }
3159       } else {
3160         if (t == NULL || t->_lo < 0 || t->_hi > (int)mask) {
3161           Node* shift = new AndINode(in2, ConNode::make(TypeInt::make(mask)));
3162           n->set_req(2, shift);
3163         }
3164       }
3165       if (in2->outcnt() == 0) { // Remove dead node
3166         in2->disconnect_inputs(NULL, this);
3167       }
3168     }
3169     break;
3170   case Op_MemBarStoreStore:
3171   case Op_MemBarRelease:
3172     // Break the link with AllocateNode: it is no longer useful and
3173     // confuses register allocation.
3174     if (n->req() > MemBarNode::Precedent) {
3175       n->set_req(MemBarNode::Precedent, top());
3176     }
3177     break;
3178   default:
3179     assert( !n->is_Call(), "" );
3180     assert( !n->is_Mem(), "" );
3181     assert( nop != Op_ProfileBoolean, "should be eliminated during IGVN");
3182     break;
3183   }
3184 
3185   // Collect CFG split points
3186   if (n->is_MultiBranch())
3187     frc._tests.push(n);
3188 }
3189 
3190 //------------------------------final_graph_reshaping_walk---------------------
3191 // Replacing Opaque nodes with their input in final_graph_reshaping_impl(),
3192 // requires that the walk visits a node's inputs before visiting the node.
3193 void Compile::final_graph_reshaping_walk( Node_Stack &nstack, Node *root, Final_Reshape_Counts &frc ) {
3194   ResourceArea *area = Thread::current()->resource_area();
3195   Unique_Node_List sfpt(area);
3196 
3197   frc._visited.set(root->_idx); // first, mark node as visited
3198   uint cnt = root->req();
3199   Node *n = root;
3200   uint  i = 0;
3201   while (true) {
3202     if (i < cnt) {
3203       // Place all non-visited non-null inputs onto stack
3204       Node* m = n->in(i);
3205       ++i;
3206       if (m != NULL && !frc._visited.test_set(m->_idx)) {
3207         if (m->is_SafePoint() && m->as_SafePoint()->jvms() != NULL) {
3208           // compute worst case interpreter size in case of a deoptimization
3209           update_interpreter_frame_size(m->as_SafePoint()->jvms()->interpreter_frame_size());
3210 
3211           sfpt.push(m);
3212         }
3213         cnt = m->req();
3214         nstack.push(n, i); // put on stack parent and next input's index
3215         n = m;
3216         i = 0;
3217       }
3218     } else {
3219       // Now do post-visit work
3220       final_graph_reshaping_impl( n, frc );
3221       if (nstack.is_empty())
3222         break;             // finished
3223       n = nstack.node();   // Get node from stack
3224       cnt = n->req();
3225       i = nstack.index();
3226       nstack.pop();        // Shift to the next node on stack
3227     }
3228   }
3229 
3230   // Skip next transformation if compressed oops are not used.
3231   if ((UseCompressedOops && !Matcher::gen_narrow_oop_implicit_null_checks()) ||
3232       (!UseCompressedOops && !UseCompressedClassPointers))
3233     return;
3234 
3235   // Go over safepoints nodes to skip DecodeN/DecodeNKlass nodes for debug edges.
3236   // It could be done for an uncommon traps or any safepoints/calls
3237   // if the DecodeN/DecodeNKlass node is referenced only in a debug info.
3238   while (sfpt.size() > 0) {
3239     n = sfpt.pop();
3240     JVMState *jvms = n->as_SafePoint()->jvms();
3241     assert(jvms != NULL, "sanity");
3242     int start = jvms->debug_start();
3243     int end   = n->req();
3244     bool is_uncommon = (n->is_CallStaticJava() &&
3245                         n->as_CallStaticJava()->uncommon_trap_request() != 0);
3246     for (int j = start; j < end; j++) {
3247       Node* in = n->in(j);
3248       if (in->is_DecodeNarrowPtr()) {
3249         bool safe_to_skip = true;
3250         if (!is_uncommon ) {
3251           // Is it safe to skip?
3252           for (uint i = 0; i < in->outcnt(); i++) {
3253             Node* u = in->raw_out(i);
3254             if (!u->is_SafePoint() ||
3255                  u->is_Call() && u->as_Call()->has_non_debug_use(n)) {
3256               safe_to_skip = false;
3257             }
3258           }
3259         }
3260         if (safe_to_skip) {
3261           n->set_req(j, in->in(1));
3262         }
3263         if (in->outcnt() == 0) {
3264           in->disconnect_inputs(NULL, this);
3265         }
3266       }
3267     }
3268   }
3269 }
3270 
3271 //------------------------------final_graph_reshaping--------------------------
3272 // Final Graph Reshaping.
3273 //
3274 // (1) Clone simple inputs to uncommon calls, so they can be scheduled late
3275 //     and not commoned up and forced early.  Must come after regular
3276 //     optimizations to avoid GVN undoing the cloning.  Clone constant
3277 //     inputs to Loop Phis; these will be split by the allocator anyways.
3278 //     Remove Opaque nodes.
3279 // (2) Move last-uses by commutative operations to the left input to encourage
3280 //     Intel update-in-place two-address operations and better register usage
3281 //     on RISCs.  Must come after regular optimizations to avoid GVN Ideal
3282 //     calls canonicalizing them back.
3283 // (3) Count the number of double-precision FP ops, single-precision FP ops
3284 //     and call sites.  On Intel, we can get correct rounding either by
3285 //     forcing singles to memory (requires extra stores and loads after each
3286 //     FP bytecode) or we can set a rounding mode bit (requires setting and
3287 //     clearing the mode bit around call sites).  The mode bit is only used
3288 //     if the relative frequency of single FP ops to calls is low enough.
3289 //     This is a key transform for SPEC mpeg_audio.
3290 // (4) Detect infinite loops; blobs of code reachable from above but not
3291 //     below.  Several of the Code_Gen algorithms fail on such code shapes,
3292 //     so we simply bail out.  Happens a lot in ZKM.jar, but also happens
3293 //     from time to time in other codes (such as -Xcomp finalizer loops, etc).
3294 //     Detection is by looking for IfNodes where only 1 projection is
3295 //     reachable from below or CatchNodes missing some targets.
3296 // (5) Assert for insane oop offsets in debug mode.
3297 
3298 bool Compile::final_graph_reshaping() {
3299   // an infinite loop may have been eliminated by the optimizer,
3300   // in which case the graph will be empty.
3301   if (root()->req() == 1) {
3302     record_method_not_compilable("trivial infinite loop");
3303     return true;
3304   }
3305 
3306   // Expensive nodes have their control input set to prevent the GVN
3307   // from freely commoning them. There's no GVN beyond this point so
3308   // no need to keep the control input. We want the expensive nodes to
3309   // be freely moved to the least frequent code path by gcm.
3310   assert(OptimizeExpensiveOps || expensive_count() == 0, "optimization off but list non empty?");
3311   for (int i = 0; i < expensive_count(); i++) {
3312     _expensive_nodes->at(i)->set_req(0, NULL);
3313   }
3314 
3315   Final_Reshape_Counts frc;
3316 
3317   // Visit everybody reachable!
3318   // Allocate stack of size C->unique()/2 to avoid frequent realloc
3319   Node_Stack nstack(live_nodes() >> 1);
3320   final_graph_reshaping_walk(nstack, root(), frc);
3321 
3322   // Check for unreachable (from below) code (i.e., infinite loops).
3323   for( uint i = 0; i < frc._tests.size(); i++ ) {
3324     MultiBranchNode *n = frc._tests[i]->as_MultiBranch();
3325     // Get number of CFG targets.
3326     // Note that PCTables include exception targets after calls.
3327     uint required_outcnt = n->required_outcnt();
3328     if (n->outcnt() != required_outcnt) {
3329       // Check for a few special cases.  Rethrow Nodes never take the
3330       // 'fall-thru' path, so expected kids is 1 less.
3331       if (n->is_PCTable() && n->in(0) && n->in(0)->in(0)) {
3332         if (n->in(0)->in(0)->is_Call()) {
3333           CallNode *call = n->in(0)->in(0)->as_Call();
3334           if (call->entry_point() == OptoRuntime::rethrow_stub()) {
3335             required_outcnt--;      // Rethrow always has 1 less kid
3336           } else if (call->req() > TypeFunc::Parms &&
3337                      call->is_CallDynamicJava()) {
3338             // Check for null receiver. In such case, the optimizer has
3339             // detected that the virtual call will always result in a null
3340             // pointer exception. The fall-through projection of this CatchNode
3341             // will not be populated.
3342             Node *arg0 = call->in(TypeFunc::Parms);
3343             if (arg0->is_Type() &&
3344                 arg0->as_Type()->type()->higher_equal(TypePtr::NULL_PTR)) {
3345               required_outcnt--;
3346             }
3347           } else if (call->entry_point() == OptoRuntime::new_array_Java() &&
3348                      call->req() > TypeFunc::Parms+1 &&
3349                      call->is_CallStaticJava()) {
3350             // Check for negative array length. In such case, the optimizer has
3351             // detected that the allocation attempt will always result in an
3352             // exception. There is no fall-through projection of this CatchNode .
3353             Node *arg1 = call->in(TypeFunc::Parms+1);
3354             if (arg1->is_Type() &&
3355                 arg1->as_Type()->type()->join(TypeInt::POS)->empty()) {
3356               required_outcnt--;
3357             }
3358           }
3359         }
3360       }
3361       // Recheck with a better notion of 'required_outcnt'
3362       if (n->outcnt() != required_outcnt) {
3363         record_method_not_compilable("malformed control flow");
3364         return true;            // Not all targets reachable!
3365       }
3366     }
3367     // Check that I actually visited all kids.  Unreached kids
3368     // must be infinite loops.
3369     for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++)
3370       if (!frc._visited.test(n->fast_out(j)->_idx)) {
3371         record_method_not_compilable("infinite loop");
3372         return true;            // Found unvisited kid; must be unreach
3373       }
3374   }
3375 
3376   // If original bytecodes contained a mixture of floats and doubles
3377   // check if the optimizer has made it homogenous, item (3).
3378   if( Use24BitFPMode && Use24BitFP && UseSSE == 0 &&
3379       frc.get_float_count() > 32 &&
3380       frc.get_double_count() == 0 &&
3381       (10 * frc.get_call_count() < frc.get_float_count()) ) {
3382     set_24_bit_selection_and_mode( false,  true );
3383   }
3384 
3385   set_java_calls(frc.get_java_call_count());
3386   set_inner_loops(frc.get_inner_loop_count());
3387 
3388   // No infinite loops, no reason to bail out.
3389   return false;
3390 }
3391 
3392 //-----------------------------too_many_traps----------------------------------
3393 // Report if there are too many traps at the current method and bci.
3394 // Return true if there was a trap, and/or PerMethodTrapLimit is exceeded.
3395 bool Compile::too_many_traps(ciMethod* method,
3396                              int bci,
3397                              Deoptimization::DeoptReason reason) {
3398   ciMethodData* md = method->method_data();
3399   if (md->is_empty()) {
3400     // Assume the trap has not occurred, or that it occurred only
3401     // because of a transient condition during start-up in the interpreter.
3402     return false;
3403   }
3404   ciMethod* m = Deoptimization::reason_is_speculate(reason) ? this->method() : NULL;
3405   if (md->has_trap_at(bci, m, reason) != 0) {
3406     // Assume PerBytecodeTrapLimit==0, for a more conservative heuristic.
3407     // Also, if there are multiple reasons, or if there is no per-BCI record,
3408     // assume the worst.
3409     if (log())
3410       log()->elem("observe trap='%s' count='%d'",
3411                   Deoptimization::trap_reason_name(reason),
3412                   md->trap_count(reason));
3413     return true;
3414   } else {
3415     // Ignore method/bci and see if there have been too many globally.
3416     return too_many_traps(reason, md);
3417   }
3418 }
3419 
3420 // Less-accurate variant which does not require a method and bci.
3421 bool Compile::too_many_traps(Deoptimization::DeoptReason reason,
3422                              ciMethodData* logmd) {
3423   if (trap_count(reason) >= Deoptimization::per_method_trap_limit(reason)) {
3424     // Too many traps globally.
3425     // Note that we use cumulative trap_count, not just md->trap_count.
3426     if (log()) {
3427       int mcount = (logmd == NULL)? -1: (int)logmd->trap_count(reason);
3428       log()->elem("observe trap='%s' count='0' mcount='%d' ccount='%d'",
3429                   Deoptimization::trap_reason_name(reason),
3430                   mcount, trap_count(reason));
3431     }
3432     return true;
3433   } else {
3434     // The coast is clear.
3435     return false;
3436   }
3437 }
3438 
3439 //--------------------------too_many_recompiles--------------------------------
3440 // Report if there are too many recompiles at the current method and bci.
3441 // Consults PerBytecodeRecompilationCutoff and PerMethodRecompilationCutoff.
3442 // Is not eager to return true, since this will cause the compiler to use
3443 // Action_none for a trap point, to avoid too many recompilations.
3444 bool Compile::too_many_recompiles(ciMethod* method,
3445                                   int bci,
3446                                   Deoptimization::DeoptReason reason) {
3447   ciMethodData* md = method->method_data();
3448   if (md->is_empty()) {
3449     // Assume the trap has not occurred, or that it occurred only
3450     // because of a transient condition during start-up in the interpreter.
3451     return false;
3452   }
3453   // Pick a cutoff point well within PerBytecodeRecompilationCutoff.
3454   uint bc_cutoff = (uint) PerBytecodeRecompilationCutoff / 8;
3455   uint m_cutoff  = (uint) PerMethodRecompilationCutoff / 2 + 1;  // not zero
3456   Deoptimization::DeoptReason per_bc_reason
3457     = Deoptimization::reason_recorded_per_bytecode_if_any(reason);
3458   ciMethod* m = Deoptimization::reason_is_speculate(reason) ? this->method() : NULL;
3459   if ((per_bc_reason == Deoptimization::Reason_none
3460        || md->has_trap_at(bci, m, reason) != 0)
3461       // The trap frequency measure we care about is the recompile count:
3462       && md->trap_recompiled_at(bci, m)
3463       && md->overflow_recompile_count() >= bc_cutoff) {
3464     // Do not emit a trap here if it has already caused recompilations.
3465     // Also, if there are multiple reasons, or if there is no per-BCI record,
3466     // assume the worst.
3467     if (log())
3468       log()->elem("observe trap='%s recompiled' count='%d' recompiles2='%d'",
3469                   Deoptimization::trap_reason_name(reason),
3470                   md->trap_count(reason),
3471                   md->overflow_recompile_count());
3472     return true;
3473   } else if (trap_count(reason) != 0
3474              && decompile_count() >= m_cutoff) {
3475     // Too many recompiles globally, and we have seen this sort of trap.
3476     // Use cumulative decompile_count, not just md->decompile_count.
3477     if (log())
3478       log()->elem("observe trap='%s' count='%d' mcount='%d' decompiles='%d' mdecompiles='%d'",
3479                   Deoptimization::trap_reason_name(reason),
3480                   md->trap_count(reason), trap_count(reason),
3481                   md->decompile_count(), decompile_count());
3482     return true;
3483   } else {
3484     // The coast is clear.
3485     return false;
3486   }
3487 }
3488 
3489 // Compute when not to trap. Used by matching trap based nodes and
3490 // NullCheck optimization.
3491 void Compile::set_allowed_deopt_reasons() {
3492   _allowed_reasons = 0;
3493   if (is_method_compilation()) {
3494     for (int rs = (int)Deoptimization::Reason_none+1; rs < Compile::trapHistLength; rs++) {
3495       assert(rs < BitsPerInt, "recode bit map");
3496       if (!too_many_traps((Deoptimization::DeoptReason) rs)) {
3497         _allowed_reasons |= nth_bit(rs);
3498       }
3499     }
3500   }
3501 }
3502 
3503 #ifndef PRODUCT
3504 //------------------------------verify_graph_edges---------------------------
3505 // Walk the Graph and verify that there is a one-to-one correspondence
3506 // between Use-Def edges and Def-Use edges in the graph.
3507 void Compile::verify_graph_edges(bool no_dead_code) {
3508   if (VerifyGraphEdges) {
3509     ResourceArea *area = Thread::current()->resource_area();
3510     Unique_Node_List visited(area);
3511     // Call recursive graph walk to check edges
3512     _root->verify_edges(visited);
3513     if (no_dead_code) {
3514       // Now make sure that no visited node is used by an unvisited node.
3515       bool dead_nodes = false;
3516       Unique_Node_List checked(area);
3517       while (visited.size() > 0) {
3518         Node* n = visited.pop();
3519         checked.push(n);
3520         for (uint i = 0; i < n->outcnt(); i++) {
3521           Node* use = n->raw_out(i);
3522           if (checked.member(use))  continue;  // already checked
3523           if (visited.member(use))  continue;  // already in the graph
3524           if (use->is_Con())        continue;  // a dead ConNode is OK
3525           // At this point, we have found a dead node which is DU-reachable.
3526           if (!dead_nodes) {
3527             tty->print_cr("*** Dead nodes reachable via DU edges:");
3528             dead_nodes = true;
3529           }
3530           use->dump(2);
3531           tty->print_cr("---");
3532           checked.push(use);  // No repeats; pretend it is now checked.
3533         }
3534       }
3535       assert(!dead_nodes, "using nodes must be reachable from root");
3536     }
3537   }
3538 }
3539 
3540 // Verify GC barriers consistency
3541 // Currently supported:
3542 // - G1 pre-barriers (see GraphKit::g1_write_barrier_pre())
3543 void Compile::verify_barriers() {
3544   if (UseG1GC) {
3545     // Verify G1 pre-barriers
3546     const int marking_offset = in_bytes(JavaThread::satb_mark_queue_offset() + PtrQueue::byte_offset_of_active());
3547 
3548     ResourceArea *area = Thread::current()->resource_area();
3549     Unique_Node_List visited(area);
3550     Node_List worklist(area);
3551     // We're going to walk control flow backwards starting from the Root
3552     worklist.push(_root);
3553     while (worklist.size() > 0) {
3554       Node* x = worklist.pop();
3555       if (x == NULL || x == top()) continue;
3556       if (visited.member(x)) {
3557         continue;
3558       } else {
3559         visited.push(x);
3560       }
3561 
3562       if (x->is_Region()) {
3563         for (uint i = 1; i < x->req(); i++) {
3564           worklist.push(x->in(i));
3565         }
3566       } else {
3567         worklist.push(x->in(0));
3568         // We are looking for the pattern:
3569         //                            /->ThreadLocal
3570         // If->Bool->CmpI->LoadB->AddP->ConL(marking_offset)
3571         //              \->ConI(0)
3572         // We want to verify that the If and the LoadB have the same control
3573         // See GraphKit::g1_write_barrier_pre()
3574         if (x->is_If()) {
3575           IfNode *iff = x->as_If();
3576           if (iff->in(1)->is_Bool() && iff->in(1)->in(1)->is_Cmp()) {
3577             CmpNode *cmp = iff->in(1)->in(1)->as_Cmp();
3578             if (cmp->Opcode() == Op_CmpI && cmp->in(2)->is_Con() && cmp->in(2)->bottom_type()->is_int()->get_con() == 0
3579                 && cmp->in(1)->is_Load()) {
3580               LoadNode* load = cmp->in(1)->as_Load();
3581               if (load->Opcode() == Op_LoadB && load->in(2)->is_AddP() && load->in(2)->in(2)->Opcode() == Op_ThreadLocal
3582                   && load->in(2)->in(3)->is_Con()
3583                   && load->in(2)->in(3)->bottom_type()->is_intptr_t()->get_con() == marking_offset) {
3584 
3585                 Node* if_ctrl = iff->in(0);
3586                 Node* load_ctrl = load->in(0);
3587 
3588                 if (if_ctrl != load_ctrl) {
3589                   // Skip possible CProj->NeverBranch in infinite loops
3590                   if ((if_ctrl->is_Proj() && if_ctrl->Opcode() == Op_CProj)
3591                       && (if_ctrl->in(0)->is_MultiBranch() && if_ctrl->in(0)->Opcode() == Op_NeverBranch)) {
3592                     if_ctrl = if_ctrl->in(0)->in(0);
3593                   }
3594                 }
3595                 assert(load_ctrl != NULL && if_ctrl == load_ctrl, "controls must match");
3596               }
3597             }
3598           }
3599         }
3600       }
3601     }
3602   }
3603 }
3604 
3605 #endif
3606 
3607 // The Compile object keeps track of failure reasons separately from the ciEnv.
3608 // This is required because there is not quite a 1-1 relation between the
3609 // ciEnv and its compilation task and the Compile object.  Note that one
3610 // ciEnv might use two Compile objects, if C2Compiler::compile_method decides
3611 // to backtrack and retry without subsuming loads.  Other than this backtracking
3612 // behavior, the Compile's failure reason is quietly copied up to the ciEnv
3613 // by the logic in C2Compiler.
3614 void Compile::record_failure(const char* reason) {
3615   if (log() != NULL) {
3616     log()->elem("failure reason='%s' phase='compile'", reason);
3617   }
3618   if (_failure_reason == NULL) {
3619     // Record the first failure reason.
3620     _failure_reason = reason;
3621   }
3622 
3623   if (!C->failure_reason_is(C2Compiler::retry_no_subsuming_loads())) {
3624     C->print_method(PHASE_FAILURE);
3625   }
3626   _root = NULL;  // flush the graph, too
3627 }
3628 
3629 Compile::TracePhase::TracePhase(const char* name, elapsedTimer* accumulator)
3630   : TraceTime(name, accumulator, CITime, CITimeVerbose),
3631     _phase_name(name), _dolog(CITimeVerbose)
3632 {
3633   if (_dolog) {
3634     C = Compile::current();
3635     _log = C->log();
3636   } else {
3637     C = NULL;
3638     _log = NULL;
3639   }
3640   if (_log != NULL) {
3641     _log->begin_head("phase name='%s' nodes='%d' live='%d'", _phase_name, C->unique(), C->live_nodes());
3642     _log->stamp();
3643     _log->end_head();
3644   }
3645 }
3646 
3647 Compile::TracePhase::~TracePhase() {
3648 
3649   C = Compile::current();
3650   if (_dolog) {
3651     _log = C->log();
3652   } else {
3653     _log = NULL;
3654   }
3655 
3656 #ifdef ASSERT
3657   if (PrintIdealNodeCount) {
3658     tty->print_cr("phase name='%s' nodes='%d' live='%d' live_graph_walk='%d'",
3659                   _phase_name, C->unique(), C->live_nodes(), C->count_live_nodes_by_graph_walk());
3660   }
3661 
3662   if (VerifyIdealNodeCount) {
3663     Compile::current()->print_missing_nodes();
3664   }
3665 #endif
3666 
3667   if (_log != NULL) {
3668     _log->done("phase name='%s' nodes='%d' live='%d'", _phase_name, C->unique(), C->live_nodes());
3669   }
3670 }
3671 
3672 //=============================================================================
3673 // Two Constant's are equal when the type and the value are equal.
3674 bool Compile::Constant::operator==(const Constant& other) {
3675   if (type()          != other.type()         )  return false;
3676   if (can_be_reused() != other.can_be_reused())  return false;
3677   // For floating point values we compare the bit pattern.
3678   switch (type()) {
3679   case T_FLOAT:   return (_v._value.i == other._v._value.i);
3680   case T_LONG:
3681   case T_DOUBLE:  return (_v._value.j == other._v._value.j);
3682   case T_OBJECT:
3683   case T_ADDRESS: return (_v._value.l == other._v._value.l);
3684   case T_VOID:    return (_v._value.l == other._v._value.l);  // jump-table entries
3685   case T_METADATA: return (_v._metadata == other._v._metadata);
3686   default: ShouldNotReachHere();
3687   }
3688   return false;
3689 }
3690 
3691 static int type_to_size_in_bytes(BasicType t) {
3692   switch (t) {
3693   case T_LONG:    return sizeof(jlong  );
3694   case T_FLOAT:   return sizeof(jfloat );
3695   case T_DOUBLE:  return sizeof(jdouble);
3696   case T_METADATA: return sizeof(Metadata*);
3697     // We use T_VOID as marker for jump-table entries (labels) which
3698     // need an internal word relocation.
3699   case T_VOID:
3700   case T_ADDRESS:
3701   case T_OBJECT:  return sizeof(jobject);
3702   }
3703 
3704   ShouldNotReachHere();
3705   return -1;
3706 }
3707 
3708 int Compile::ConstantTable::qsort_comparator(Constant* a, Constant* b) {
3709   // sort descending
3710   if (a->freq() > b->freq())  return -1;
3711   if (a->freq() < b->freq())  return  1;
3712   return 0;
3713 }
3714 
3715 void Compile::ConstantTable::calculate_offsets_and_size() {
3716   // First, sort the array by frequencies.
3717   _constants.sort(qsort_comparator);
3718 
3719 #ifdef ASSERT
3720   // Make sure all jump-table entries were sorted to the end of the
3721   // array (they have a negative frequency).
3722   bool found_void = false;
3723   for (int i = 0; i < _constants.length(); i++) {
3724     Constant con = _constants.at(i);
3725     if (con.type() == T_VOID)
3726       found_void = true;  // jump-tables
3727     else
3728       assert(!found_void, "wrong sorting");
3729   }
3730 #endif
3731 
3732   int offset = 0;
3733   for (int i = 0; i < _constants.length(); i++) {
3734     Constant* con = _constants.adr_at(i);
3735 
3736     // Align offset for type.
3737     int typesize = type_to_size_in_bytes(con->type());
3738     offset = align_size_up(offset, typesize);
3739     con->set_offset(offset);   // set constant's offset
3740 
3741     if (con->type() == T_VOID) {
3742       MachConstantNode* n = (MachConstantNode*) con->get_jobject();
3743       offset = offset + typesize * n->outcnt();  // expand jump-table
3744     } else {
3745       offset = offset + typesize;
3746     }
3747   }
3748 
3749   // Align size up to the next section start (which is insts; see
3750   // CodeBuffer::align_at_start).
3751   assert(_size == -1, "already set?");
3752   _size = align_size_up(offset, CodeEntryAlignment);
3753 }
3754 
3755 void Compile::ConstantTable::emit(CodeBuffer& cb) {
3756   MacroAssembler _masm(&cb);
3757   for (int i = 0; i < _constants.length(); i++) {
3758     Constant con = _constants.at(i);
3759     address constant_addr;
3760     switch (con.type()) {
3761     case T_LONG:   constant_addr = _masm.long_constant(  con.get_jlong()  ); break;
3762     case T_FLOAT:  constant_addr = _masm.float_constant( con.get_jfloat() ); break;
3763     case T_DOUBLE: constant_addr = _masm.double_constant(con.get_jdouble()); break;
3764     case T_OBJECT: {
3765       jobject obj = con.get_jobject();
3766       int oop_index = _masm.oop_recorder()->find_index(obj);
3767       constant_addr = _masm.address_constant((address) obj, oop_Relocation::spec(oop_index));
3768       break;
3769     }
3770     case T_ADDRESS: {
3771       address addr = (address) con.get_jobject();
3772       constant_addr = _masm.address_constant(addr);
3773       break;
3774     }
3775     // We use T_VOID as marker for jump-table entries (labels) which
3776     // need an internal word relocation.
3777     case T_VOID: {
3778       MachConstantNode* n = (MachConstantNode*) con.get_jobject();
3779       // Fill the jump-table with a dummy word.  The real value is
3780       // filled in later in fill_jump_table.
3781       address dummy = (address) n;
3782       constant_addr = _masm.address_constant(dummy);
3783       // Expand jump-table
3784       for (uint i = 1; i < n->outcnt(); i++) {
3785         address temp_addr = _masm.address_constant(dummy + i);
3786         assert(temp_addr, "consts section too small");
3787       }
3788       break;
3789     }
3790     case T_METADATA: {
3791       Metadata* obj = con.get_metadata();
3792       int metadata_index = _masm.oop_recorder()->find_index(obj);
3793       constant_addr = _masm.address_constant((address) obj, metadata_Relocation::spec(metadata_index));
3794       break;
3795     }
3796     default: ShouldNotReachHere();
3797     }
3798     assert(constant_addr, "consts section too small");
3799     assert((constant_addr - _masm.code()->consts()->start()) == con.offset(),
3800             err_msg_res("must be: %d == %d", (int) (constant_addr - _masm.code()->consts()->start()), (int)(con.offset())));
3801   }
3802 }
3803 
3804 int Compile::ConstantTable::find_offset(Constant& con) const {
3805   int idx = _constants.find(con);
3806   assert(idx != -1, "constant must be in constant table");
3807   int offset = _constants.at(idx).offset();
3808   assert(offset != -1, "constant table not emitted yet?");
3809   return offset;
3810 }
3811 
3812 void Compile::ConstantTable::add(Constant& con) {
3813   if (con.can_be_reused()) {
3814     int idx = _constants.find(con);
3815     if (idx != -1 && _constants.at(idx).can_be_reused()) {
3816       _constants.adr_at(idx)->inc_freq(con.freq());  // increase the frequency by the current value
3817       return;
3818     }
3819   }
3820   (void) _constants.append(con);
3821 }
3822 
3823 Compile::Constant Compile::ConstantTable::add(MachConstantNode* n, BasicType type, jvalue value) {
3824   Block* b = Compile::current()->cfg()->get_block_for_node(n);
3825   Constant con(type, value, b->_freq);
3826   add(con);
3827   return con;
3828 }
3829 
3830 Compile::Constant Compile::ConstantTable::add(Metadata* metadata) {
3831   Constant con(metadata);
3832   add(con);
3833   return con;
3834 }
3835 
3836 Compile::Constant Compile::ConstantTable::add(MachConstantNode* n, MachOper* oper) {
3837   jvalue value;
3838   BasicType type = oper->type()->basic_type();
3839   switch (type) {
3840   case T_LONG:    value.j = oper->constantL(); break;
3841   case T_FLOAT:   value.f = oper->constantF(); break;
3842   case T_DOUBLE:  value.d = oper->constantD(); break;
3843   case T_OBJECT:
3844   case T_ADDRESS: value.l = (jobject) oper->constant(); break;
3845   case T_METADATA: return add((Metadata*)oper->constant()); break;
3846   default: guarantee(false, err_msg_res("unhandled type: %s", type2name(type)));
3847   }
3848   return add(n, type, value);
3849 }
3850 
3851 Compile::Constant Compile::ConstantTable::add_jump_table(MachConstantNode* n) {
3852   jvalue value;
3853   // We can use the node pointer here to identify the right jump-table
3854   // as this method is called from Compile::Fill_buffer right before
3855   // the MachNodes are emitted and the jump-table is filled (means the
3856   // MachNode pointers do not change anymore).
3857   value.l = (jobject) n;
3858   Constant con(T_VOID, value, next_jump_table_freq(), false);  // Labels of a jump-table cannot be reused.
3859   add(con);
3860   return con;
3861 }
3862 
3863 void Compile::ConstantTable::fill_jump_table(CodeBuffer& cb, MachConstantNode* n, GrowableArray<Label*> labels) const {
3864   // If called from Compile::scratch_emit_size do nothing.
3865   if (Compile::current()->in_scratch_emit_size())  return;
3866 
3867   assert(labels.is_nonempty(), "must be");
3868   assert((uint) labels.length() == n->outcnt(), err_msg_res("must be equal: %d == %d", labels.length(), n->outcnt()));
3869 
3870   // Since MachConstantNode::constant_offset() also contains
3871   // table_base_offset() we need to subtract the table_base_offset()
3872   // to get the plain offset into the constant table.
3873   int offset = n->constant_offset() - table_base_offset();
3874 
3875   MacroAssembler _masm(&cb);
3876   address* jump_table_base = (address*) (_masm.code()->consts()->start() + offset);
3877 
3878   for (uint i = 0; i < n->outcnt(); i++) {
3879     address* constant_addr = &jump_table_base[i];
3880     assert(*constant_addr == (((address) n) + i), err_msg_res("all jump-table entries must contain adjusted node pointer: " INTPTR_FORMAT " == " INTPTR_FORMAT, p2i(*constant_addr), p2i(((address) n) + i)));
3881     *constant_addr = cb.consts()->target(*labels.at(i), (address) constant_addr);
3882     cb.consts()->relocate((address) constant_addr, relocInfo::internal_word_type);
3883   }
3884 }
3885 
3886 //----------------------------static_subtype_check-----------------------------
3887 // Shortcut important common cases when superklass is exact:
3888 // (0) superklass is java.lang.Object (can occur in reflective code)
3889 // (1) subklass is already limited to a subtype of superklass => always ok
3890 // (2) subklass does not overlap with superklass => always fail
3891 // (3) superklass has NO subtypes and we can check with a simple compare.
3892 int Compile::static_subtype_check(ciKlass* superk, ciKlass* subk) {
3893   if (StressReflectiveCode) {
3894     return SSC_full_test;       // Let caller generate the general case.
3895   }
3896 
3897   if (superk == env()->Object_klass()) {
3898     return SSC_always_true;     // (0) this test cannot fail
3899   }
3900 
3901   ciType* superelem = superk;
3902   if (superelem->is_array_klass())
3903     superelem = superelem->as_array_klass()->base_element_type();
3904 
3905   if (!subk->is_interface()) {  // cannot trust static interface types yet
3906     if (subk->is_subtype_of(superk)) {
3907       return SSC_always_true;   // (1) false path dead; no dynamic test needed
3908     }
3909     if (!(superelem->is_klass() && superelem->as_klass()->is_interface()) &&
3910         !superk->is_subtype_of(subk)) {
3911       return SSC_always_false;
3912     }
3913   }
3914 
3915   // If casting to an instance klass, it must have no subtypes
3916   if (superk->is_interface()) {
3917     // Cannot trust interfaces yet.
3918     // %%% S.B. superk->nof_implementors() == 1
3919   } else if (superelem->is_instance_klass()) {
3920     ciInstanceKlass* ik = superelem->as_instance_klass();
3921     if (!ik->has_subklass() && !ik->is_interface()) {
3922       if (!ik->is_final()) {
3923         // Add a dependency if there is a chance of a later subclass.
3924         dependencies()->assert_leaf_type(ik);
3925       }
3926       return SSC_easy_test;     // (3) caller can do a simple ptr comparison
3927     }
3928   } else {
3929     // A primitive array type has no subtypes.
3930     return SSC_easy_test;       // (3) caller can do a simple ptr comparison
3931   }
3932 
3933   return SSC_full_test;
3934 }
3935 
3936 Node* Compile::conv_I2X_index(PhaseGVN *phase, Node* idx, const TypeInt* sizetype) {
3937 #ifdef _LP64
3938   // The scaled index operand to AddP must be a clean 64-bit value.
3939   // Java allows a 32-bit int to be incremented to a negative
3940   // value, which appears in a 64-bit register as a large
3941   // positive number.  Using that large positive number as an
3942   // operand in pointer arithmetic has bad consequences.
3943   // On the other hand, 32-bit overflow is rare, and the possibility
3944   // can often be excluded, if we annotate the ConvI2L node with
3945   // a type assertion that its value is known to be a small positive
3946   // number.  (The prior range check has ensured this.)
3947   // This assertion is used by ConvI2LNode::Ideal.
3948   int index_max = max_jint - 1;  // array size is max_jint, index is one less
3949   if (sizetype != NULL)  index_max = sizetype->_hi - 1;
3950   const TypeLong* lidxtype = TypeLong::make(CONST64(0), index_max, Type::WidenMax);
3951   idx = phase->transform(new ConvI2LNode(idx, lidxtype));
3952 #endif
3953   return idx;
3954 }
3955 
3956 // The message about the current inlining is accumulated in
3957 // _print_inlining_stream and transfered into the _print_inlining_list
3958 // once we know whether inlining succeeds or not. For regular
3959 // inlining, messages are appended to the buffer pointed by
3960 // _print_inlining_idx in the _print_inlining_list. For late inlining,
3961 // a new buffer is added after _print_inlining_idx in the list. This
3962 // way we can update the inlining message for late inlining call site
3963 // when the inlining is attempted again.
3964 void Compile::print_inlining_init() {
3965   if (print_inlining() || print_intrinsics()) {
3966     _print_inlining_stream = new stringStream();
3967     _print_inlining_list = new (comp_arena())GrowableArray<PrintInliningBuffer>(comp_arena(), 1, 1, PrintInliningBuffer());
3968   }
3969 }
3970 
3971 void Compile::print_inlining_reinit() {
3972   if (print_inlining() || print_intrinsics()) {
3973     // Re allocate buffer when we change ResourceMark
3974     _print_inlining_stream = new stringStream();
3975   }
3976 }
3977 
3978 void Compile::print_inlining_reset() {
3979   _print_inlining_stream->reset();
3980 }
3981 
3982 void Compile::print_inlining_commit() {
3983   assert(print_inlining() || print_intrinsics(), "PrintInlining off?");
3984   // Transfer the message from _print_inlining_stream to the current
3985   // _print_inlining_list buffer and clear _print_inlining_stream.
3986   _print_inlining_list->at(_print_inlining_idx).ss()->write(_print_inlining_stream->as_string(), _print_inlining_stream->size());
3987   print_inlining_reset();
3988 }
3989 
3990 void Compile::print_inlining_push() {
3991   // Add new buffer to the _print_inlining_list at current position
3992   _print_inlining_idx++;
3993   _print_inlining_list->insert_before(_print_inlining_idx, PrintInliningBuffer());
3994 }
3995 
3996 Compile::PrintInliningBuffer& Compile::print_inlining_current() {
3997   return _print_inlining_list->at(_print_inlining_idx);
3998 }
3999 
4000 void Compile::print_inlining_update(CallGenerator* cg) {
4001   if (print_inlining() || print_intrinsics()) {
4002     if (!cg->is_late_inline()) {
4003       if (print_inlining_current().cg() != NULL) {
4004         print_inlining_push();
4005       }
4006       print_inlining_commit();
4007     } else {
4008       if (print_inlining_current().cg() != cg &&
4009           (print_inlining_current().cg() != NULL ||
4010            print_inlining_current().ss()->size() != 0)) {
4011         print_inlining_push();
4012       }
4013       print_inlining_commit();
4014       print_inlining_current().set_cg(cg);
4015     }
4016   }
4017 }
4018 
4019 void Compile::print_inlining_move_to(CallGenerator* cg) {
4020   // We resume inlining at a late inlining call site. Locate the
4021   // corresponding inlining buffer so that we can update it.
4022   if (print_inlining()) {
4023     for (int i = 0; i < _print_inlining_list->length(); i++) {
4024       if (_print_inlining_list->adr_at(i)->cg() == cg) {
4025         _print_inlining_idx = i;
4026         return;
4027       }
4028     }
4029     ShouldNotReachHere();
4030   }
4031 }
4032 
4033 void Compile::print_inlining_update_delayed(CallGenerator* cg) {
4034   if (print_inlining()) {
4035     assert(_print_inlining_stream->size() > 0, "missing inlining msg");
4036     assert(print_inlining_current().cg() == cg, "wrong entry");
4037     // replace message with new message
4038     _print_inlining_list->at_put(_print_inlining_idx, PrintInliningBuffer());
4039     print_inlining_commit();
4040     print_inlining_current().set_cg(cg);
4041   }
4042 }
4043 
4044 void Compile::print_inlining_assert_ready() {
4045   assert(!_print_inlining || _print_inlining_stream->size() == 0, "loosing data");
4046 }
4047 
4048 void Compile::process_print_inlining() {
4049   bool do_print_inlining = print_inlining() || print_intrinsics();
4050   if (do_print_inlining || log() != NULL) {
4051     // Print inlining message for candidates that we couldn't inline
4052     // for lack of space
4053     for (int i = 0; i < _late_inlines.length(); i++) {
4054       CallGenerator* cg = _late_inlines.at(i);
4055       if (!cg->is_mh_late_inline()) {
4056         const char* msg = "live nodes > LiveNodeCountInliningCutoff";
4057         if (do_print_inlining) {
4058           cg->print_inlining_late(msg);
4059         }
4060         log_late_inline_failure(cg, msg);
4061       }
4062     }
4063   }
4064   if (do_print_inlining) {
4065     ResourceMark rm;
4066     stringStream ss;
4067     for (int i = 0; i < _print_inlining_list->length(); i++) {
4068       ss.print("%s", _print_inlining_list->adr_at(i)->ss()->as_string());
4069     }
4070     size_t end = ss.size();
4071     _print_inlining_output = NEW_ARENA_ARRAY(comp_arena(), char, end+1);
4072     strncpy(_print_inlining_output, ss.base(), end+1);
4073     _print_inlining_output[end] = 0;
4074   }
4075 }
4076 
4077 void Compile::dump_print_inlining() {
4078   if (_print_inlining_output != NULL) {
4079     tty->print_raw(_print_inlining_output);
4080   }
4081 }
4082 
4083 void Compile::log_late_inline(CallGenerator* cg) {
4084   if (log() != NULL) {
4085     log()->head("late_inline method='%d'  inline_id='" JLONG_FORMAT "'", log()->identify(cg->method()),
4086                 cg->unique_id());
4087     JVMState* p = cg->call_node()->jvms();
4088     while (p != NULL) {
4089       log()->elem("jvms bci='%d' method='%d'", p->bci(), log()->identify(p->method()));
4090       p = p->caller();
4091     }
4092     log()->tail("late_inline");
4093   }
4094 }
4095 
4096 void Compile::log_late_inline_failure(CallGenerator* cg, const char* msg) {
4097   log_late_inline(cg);
4098   if (log() != NULL) {
4099     log()->inline_fail(msg);
4100   }
4101 }
4102 
4103 void Compile::log_inline_id(CallGenerator* cg) {
4104   if (log() != NULL) {
4105     // The LogCompilation tool needs a unique way to identify late
4106     // inline call sites. This id must be unique for this call site in
4107     // this compilation. Try to have it unique across compilations as
4108     // well because it can be convenient when grepping through the log
4109     // file.
4110     // Distinguish OSR compilations from others in case CICountOSR is
4111     // on.
4112     jlong id = ((jlong)unique()) + (((jlong)compile_id()) << 33) + (CICountOSR && is_osr_compilation() ? ((jlong)1) << 32 : 0);
4113     cg->set_unique_id(id);
4114     log()->elem("inline_id id='" JLONG_FORMAT "'", id);
4115   }
4116 }
4117 
4118 void Compile::log_inline_failure(const char* msg) {
4119   if (C->log() != NULL) {
4120     C->log()->inline_fail(msg);
4121   }
4122 }
4123 
4124 
4125 // Dump inlining replay data to the stream.
4126 // Don't change thread state and acquire any locks.
4127 void Compile::dump_inline_data(outputStream* out) {
4128   InlineTree* inl_tree = ilt();
4129   if (inl_tree != NULL) {
4130     out->print(" inline %d", inl_tree->count());
4131     inl_tree->dump_replay_data(out);
4132   }
4133 }
4134 
4135 int Compile::cmp_expensive_nodes(Node* n1, Node* n2) {
4136   if (n1->Opcode() < n2->Opcode())      return -1;
4137   else if (n1->Opcode() > n2->Opcode()) return 1;
4138 
4139   assert(n1->req() == n2->req(), err_msg_res("can't compare %s nodes: n1->req() = %d, n2->req() = %d", NodeClassNames[n1->Opcode()], n1->req(), n2->req()));
4140   for (uint i = 1; i < n1->req(); i++) {
4141     if (n1->in(i) < n2->in(i))      return -1;
4142     else if (n1->in(i) > n2->in(i)) return 1;
4143   }
4144 
4145   return 0;
4146 }
4147 
4148 int Compile::cmp_expensive_nodes(Node** n1p, Node** n2p) {
4149   Node* n1 = *n1p;
4150   Node* n2 = *n2p;
4151 
4152   return cmp_expensive_nodes(n1, n2);
4153 }
4154 
4155 void Compile::sort_expensive_nodes() {
4156   if (!expensive_nodes_sorted()) {
4157     _expensive_nodes->sort(cmp_expensive_nodes);
4158   }
4159 }
4160 
4161 bool Compile::expensive_nodes_sorted() const {
4162   for (int i = 1; i < _expensive_nodes->length(); i++) {
4163     if (cmp_expensive_nodes(_expensive_nodes->adr_at(i), _expensive_nodes->adr_at(i-1)) < 0) {
4164       return false;
4165     }
4166   }
4167   return true;
4168 }
4169 
4170 bool Compile::should_optimize_expensive_nodes(PhaseIterGVN &igvn) {
4171   if (_expensive_nodes->length() == 0) {
4172     return false;
4173   }
4174 
4175   assert(OptimizeExpensiveOps, "optimization off?");
4176 
4177   // Take this opportunity to remove dead nodes from the list
4178   int j = 0;
4179   for (int i = 0; i < _expensive_nodes->length(); i++) {
4180     Node* n = _expensive_nodes->at(i);
4181     if (!n->is_unreachable(igvn)) {
4182       assert(n->is_expensive(), "should be expensive");
4183       _expensive_nodes->at_put(j, n);
4184       j++;
4185     }
4186   }
4187   _expensive_nodes->trunc_to(j);
4188 
4189   // Then sort the list so that similar nodes are next to each other
4190   // and check for at least two nodes of identical kind with same data
4191   // inputs.
4192   sort_expensive_nodes();
4193 
4194   for (int i = 0; i < _expensive_nodes->length()-1; i++) {
4195     if (cmp_expensive_nodes(_expensive_nodes->adr_at(i), _expensive_nodes->adr_at(i+1)) == 0) {
4196       return true;
4197     }
4198   }
4199 
4200   return false;
4201 }
4202 
4203 void Compile::cleanup_expensive_nodes(PhaseIterGVN &igvn) {
4204   if (_expensive_nodes->length() == 0) {
4205     return;
4206   }
4207 
4208   assert(OptimizeExpensiveOps, "optimization off?");
4209 
4210   // Sort to bring similar nodes next to each other and clear the
4211   // control input of nodes for which there's only a single copy.
4212   sort_expensive_nodes();
4213 
4214   int j = 0;
4215   int identical = 0;
4216   int i = 0;
4217   bool modified = false;
4218   for (; i < _expensive_nodes->length()-1; i++) {
4219     assert(j <= i, "can't write beyond current index");
4220     if (_expensive_nodes->at(i)->Opcode() == _expensive_nodes->at(i+1)->Opcode()) {
4221       identical++;
4222       _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
4223       continue;
4224     }
4225     if (identical > 0) {
4226       _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
4227       identical = 0;
4228     } else {
4229       Node* n = _expensive_nodes->at(i);
4230       igvn.replace_input_of(n, 0, NULL);
4231       igvn.hash_insert(n);
4232       modified = true;
4233     }
4234   }
4235   if (identical > 0) {
4236     _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
4237   } else if (_expensive_nodes->length() >= 1) {
4238     Node* n = _expensive_nodes->at(i);
4239     igvn.replace_input_of(n, 0, NULL);
4240     igvn.hash_insert(n);
4241     modified = true;
4242   }
4243   _expensive_nodes->trunc_to(j);
4244   if (modified) {
4245     igvn.optimize();
4246   }
4247 }
4248 
4249 void Compile::add_expensive_node(Node * n) {
4250   assert(!_expensive_nodes->contains(n), "duplicate entry in expensive list");
4251   assert(n->is_expensive(), "expensive nodes with non-null control here only");
4252   assert(!n->is_CFG() && !n->is_Mem(), "no cfg or memory nodes here");
4253   if (OptimizeExpensiveOps) {
4254     _expensive_nodes->append(n);
4255   } else {
4256     // Clear control input and let IGVN optimize expensive nodes if
4257     // OptimizeExpensiveOps is off.
4258     n->set_req(0, NULL);
4259   }
4260 }
4261 
4262 /**
4263  * Remove the speculative part of types and clean up the graph
4264  */
4265 void Compile::remove_speculative_types(PhaseIterGVN &igvn) {
4266   if (UseTypeSpeculation) {
4267     Unique_Node_List worklist;
4268     worklist.push(root());
4269     int modified = 0;
4270     // Go over all type nodes that carry a speculative type, drop the
4271     // speculative part of the type and enqueue the node for an igvn
4272     // which may optimize it out.
4273     for (uint next = 0; next < worklist.size(); ++next) {
4274       Node *n  = worklist.at(next);
4275       if (n->is_Type()) {
4276         TypeNode* tn = n->as_Type();
4277         const Type* t = tn->type();
4278         const Type* t_no_spec = t->remove_speculative();
4279         if (t_no_spec != t) {
4280           bool in_hash = igvn.hash_delete(n);
4281           assert(in_hash, "node should be in igvn hash table");
4282           tn->set_type(t_no_spec);
4283           igvn.hash_insert(n);
4284           igvn._worklist.push(n); // give it a chance to go away
4285           modified++;
4286         }
4287       }
4288       uint max = n->len();
4289       for( uint i = 0; i < max; ++i ) {
4290         Node *m = n->in(i);
4291         if (not_a_node(m))  continue;
4292         worklist.push(m);
4293       }
4294     }
4295     // Drop the speculative part of all types in the igvn's type table
4296     igvn.remove_speculative_types();
4297     if (modified > 0) {
4298       igvn.optimize();
4299     }
4300 #ifdef ASSERT
4301     // Verify that after the IGVN is over no speculative type has resurfaced
4302     worklist.clear();
4303     worklist.push(root());
4304     for (uint next = 0; next < worklist.size(); ++next) {
4305       Node *n  = worklist.at(next);
4306       const Type* t = igvn.type_or_null(n);
4307       assert((t == NULL) || (t == t->remove_speculative()), "no more speculative types");
4308       if (n->is_Type()) {
4309         t = n->as_Type()->type();
4310         assert(t == t->remove_speculative(), "no more speculative types");
4311       }
4312       uint max = n->len();
4313       for( uint i = 0; i < max; ++i ) {
4314         Node *m = n->in(i);
4315         if (not_a_node(m))  continue;
4316         worklist.push(m);
4317       }
4318     }
4319     igvn.check_no_speculative_types();
4320 #endif
4321   }
4322 }
4323 
4324 // Auxiliary method to support randomized stressing/fuzzing.
4325 //
4326 // This method can be called the arbitrary number of times, with current count
4327 // as the argument. The logic allows selecting a single candidate from the
4328 // running list of candidates as follows:
4329 //    int count = 0;
4330 //    Cand* selected = null;
4331 //    while(cand = cand->next()) {
4332 //      if (randomized_select(++count)) {
4333 //        selected = cand;
4334 //      }
4335 //    }
4336 //
4337 // Including count equalizes the chances any candidate is "selected".
4338 // This is useful when we don't have the complete list of candidates to choose
4339 // from uniformly. In this case, we need to adjust the randomicity of the
4340 // selection, or else we will end up biasing the selection towards the latter
4341 // candidates.
4342 //
4343 // Quick back-envelope calculation shows that for the list of n candidates
4344 // the equal probability for the candidate to persist as "best" can be
4345 // achieved by replacing it with "next" k-th candidate with the probability
4346 // of 1/k. It can be easily shown that by the end of the run, the
4347 // probability for any candidate is converged to 1/n, thus giving the
4348 // uniform distribution among all the candidates.
4349 //
4350 // We don't care about the domain size as long as (RANDOMIZED_DOMAIN / count) is large.
4351 #define RANDOMIZED_DOMAIN_POW 29
4352 #define RANDOMIZED_DOMAIN (1 << RANDOMIZED_DOMAIN_POW)
4353 #define RANDOMIZED_DOMAIN_MASK ((1 << (RANDOMIZED_DOMAIN_POW + 1)) - 1)
4354 bool Compile::randomized_select(int count) {
4355   assert(count > 0, "only positive");
4356   return (os::random() & RANDOMIZED_DOMAIN_MASK) < (RANDOMIZED_DOMAIN / count);
4357 }
4358 
4359 CloneMap&     Compile::clone_map()                 { return _clone_map; }
4360 void          Compile::set_clone_map(Dict* d)      { _clone_map._dict = d; }
4361 
4362 void NodeCloneInfo::dump() const {
4363   tty->print(" {%d:%d} ", idx(), gen());
4364 }
4365 
4366 void CloneMap::clone(Node* old, Node* nnn, int gen) {
4367   uint64_t val = value(old->_idx);
4368   NodeCloneInfo cio(val);
4369   assert(val != 0, "old node should be in the map");
4370   NodeCloneInfo cin(cio.idx(), gen + cio.gen());
4371   insert(nnn->_idx, cin.get());
4372 #ifndef PRODUCT
4373   if (is_debug()) {
4374     tty->print_cr("CloneMap::clone inserted node %d info {%d:%d} into CloneMap", nnn->_idx, cin.idx(), cin.gen());
4375   }
4376 #endif
4377 }
4378 
4379 void CloneMap::verify_insert_and_clone(Node* old, Node* nnn, int gen) {
4380   NodeCloneInfo cio(value(old->_idx));
4381   if (cio.get() == 0) {
4382     cio.set(old->_idx, 0);
4383     insert(old->_idx, cio.get());
4384 #ifndef PRODUCT
4385     if (is_debug()) {
4386       tty->print_cr("CloneMap::verify_insert_and_clone inserted node %d info {%d:%d} into CloneMap", old->_idx, cio.idx(), cio.gen());
4387     }
4388 #endif
4389   }
4390   clone(old, nnn, gen);
4391 }
4392 
4393 int CloneMap::max_gen() const {
4394   int g = 0;
4395   DictI di(_dict);
4396   for(; di.test(); ++di) {
4397     int t = gen(di._key);
4398     if (g < t) {
4399       g = t;
4400 #ifndef PRODUCT
4401       if (is_debug()) {
4402         tty->print_cr("CloneMap::max_gen() update max=%d from %d", g, _2_node_idx_t(di._key));
4403       }
4404 #endif
4405     }
4406   }
4407   return g;
4408 }
4409 
4410 void CloneMap::dump(node_idx_t key) const {
4411   uint64_t val = value(key);
4412   if (val != 0) {
4413     NodeCloneInfo ni(val);
4414     ni.dump();
4415   }
4416 }