1 /*
   2  * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "libadt/vectset.hpp"
  27 #include "memory/allocation.inline.hpp"
  28 #include "opto/block.hpp"
  29 #include "opto/cfgnode.hpp"
  30 #include "opto/chaitin.hpp"
  31 #include "opto/loopnode.hpp"
  32 #include "opto/machnode.hpp"
  33 #include "opto/matcher.hpp"
  34 #include "opto/opcodes.hpp"
  35 #include "opto/rootnode.hpp"
  36 #include "utilities/copy.hpp"
  37 
  38 void Block_Array::grow( uint i ) {
  39   assert(i >= Max(), "must be an overflow");
  40   debug_only(_limit = i+1);
  41   if( i < _size )  return;
  42   if( !_size ) {
  43     _size = 1;
  44     _blocks = (Block**)_arena->Amalloc( _size * sizeof(Block*) );
  45     _blocks[0] = NULL;
  46   }
  47   uint old = _size;
  48   while( i >= _size ) _size <<= 1;      // Double to fit
  49   _blocks = (Block**)_arena->Arealloc( _blocks, old*sizeof(Block*),_size*sizeof(Block*));
  50   Copy::zero_to_bytes( &_blocks[old], (_size-old)*sizeof(Block*) );
  51 }
  52 
  53 void Block_List::remove(uint i) {
  54   assert(i < _cnt, "index out of bounds");
  55   Copy::conjoint_words_to_lower((HeapWord*)&_blocks[i+1], (HeapWord*)&_blocks[i], ((_cnt-i-1)*sizeof(Block*)));
  56   pop(); // shrink list by one block
  57 }
  58 
  59 void Block_List::insert(uint i, Block *b) {
  60   push(b); // grow list by one block
  61   Copy::conjoint_words_to_higher((HeapWord*)&_blocks[i], (HeapWord*)&_blocks[i+1], ((_cnt-i-1)*sizeof(Block*)));
  62   _blocks[i] = b;
  63 }
  64 
  65 #ifndef PRODUCT
  66 void Block_List::print() {
  67   for (uint i=0; i < size(); i++) {
  68     tty->print("B%d ", _blocks[i]->_pre_order);
  69   }
  70   tty->print("size = %d\n", size());
  71 }
  72 #endif
  73 
  74 uint Block::code_alignment() {
  75   // Check for Root block
  76   if (_pre_order == 0) return CodeEntryAlignment;
  77   // Check for Start block
  78   if (_pre_order == 1) return InteriorEntryAlignment;
  79   // Check for loop alignment
  80   if (has_loop_alignment()) return loop_alignment();
  81 
  82   return relocInfo::addr_unit(); // no particular alignment
  83 }
  84 
  85 uint Block::compute_loop_alignment() {
  86   Node *h = head();
  87   int unit_sz = relocInfo::addr_unit();
  88   if (h->is_Loop() && h->as_Loop()->is_inner_loop())  {
  89     // Pre- and post-loops have low trip count so do not bother with
  90     // NOPs for align loop head.  The constants are hidden from tuning
  91     // but only because my "divide by 4" heuristic surely gets nearly
  92     // all possible gain (a "do not align at all" heuristic has a
  93     // chance of getting a really tiny gain).
  94     if (h->is_CountedLoop() && (h->as_CountedLoop()->is_pre_loop() ||
  95                                 h->as_CountedLoop()->is_post_loop())) {
  96       return (OptoLoopAlignment > 4*unit_sz) ? (OptoLoopAlignment>>2) : unit_sz;
  97     }
  98     // Loops with low backedge frequency should not be aligned.
  99     Node *n = h->in(LoopNode::LoopBackControl)->in(0);
 100     if (n->is_MachIf() && n->as_MachIf()->_prob < 0.01) {
 101       return unit_sz; // Loop does not loop, more often than not!
 102     }
 103     return OptoLoopAlignment; // Otherwise align loop head
 104   }
 105 
 106   return unit_sz; // no particular alignment
 107 }
 108 
 109 // Compute the size of first 'inst_cnt' instructions in this block.
 110 // Return the number of instructions left to compute if the block has
 111 // less then 'inst_cnt' instructions. Stop, and return 0 if sum_size
 112 // exceeds OptoLoopAlignment.
 113 uint Block::compute_first_inst_size(uint& sum_size, uint inst_cnt,
 114                                     PhaseRegAlloc* ra) {
 115   uint last_inst = number_of_nodes();
 116   for( uint j = 0; j < last_inst && inst_cnt > 0; j++ ) {
 117     uint inst_size = get_node(j)->size(ra);
 118     if( inst_size > 0 ) {
 119       inst_cnt--;
 120       uint sz = sum_size + inst_size;
 121       if( sz <= (uint)OptoLoopAlignment ) {
 122         // Compute size of instructions which fit into fetch buffer only
 123         // since all inst_cnt instructions will not fit even if we align them.
 124         sum_size = sz;
 125       } else {
 126         return 0;
 127       }
 128     }
 129   }
 130   return inst_cnt;
 131 }
 132 
 133 uint Block::find_node( const Node *n ) const {
 134   for( uint i = 0; i < number_of_nodes(); i++ ) {
 135     if( get_node(i) == n )
 136       return i;
 137   }
 138   ShouldNotReachHere();
 139   return 0;
 140 }
 141 
 142 // Find and remove n from block list
 143 void Block::find_remove( const Node *n ) {
 144   remove_node(find_node(n));
 145 }
 146 
 147 bool Block::contains(const Node *n) const {
 148   return _nodes.contains(n);
 149 }
 150 
 151 // Return empty status of a block.  Empty blocks contain only the head, other
 152 // ideal nodes, and an optional trailing goto.
 153 int Block::is_Empty() const {
 154 
 155   // Root or start block is not considered empty
 156   if (head()->is_Root() || head()->is_Start()) {
 157     return not_empty;
 158   }
 159 
 160   int success_result = completely_empty;
 161   int end_idx = number_of_nodes() - 1;
 162 
 163   // Check for ending goto
 164   if ((end_idx > 0) && (get_node(end_idx)->is_MachGoto())) {
 165     success_result = empty_with_goto;
 166     end_idx--;
 167   }
 168 
 169   // Unreachable blocks are considered empty
 170   if (num_preds() <= 1) {
 171     return success_result;
 172   }
 173 
 174   // Ideal nodes are allowable in empty blocks: skip them  Only MachNodes
 175   // turn directly into code, because only MachNodes have non-trivial
 176   // emit() functions.
 177   while ((end_idx > 0) && !get_node(end_idx)->is_Mach()) {
 178     end_idx--;
 179   }
 180 
 181   // No room for any interesting instructions?
 182   if (end_idx == 0) {
 183     return success_result;
 184   }
 185 
 186   return not_empty;
 187 }
 188 
 189 // Return true if the block's code implies that it is likely to be
 190 // executed infrequently.  Check to see if the block ends in a Halt or
 191 // a low probability call.
 192 bool Block::has_uncommon_code() const {
 193   Node* en = end();
 194 
 195   if (en->is_MachGoto())
 196     en = en->in(0);
 197   if (en->is_Catch())
 198     en = en->in(0);
 199   if (en->is_MachProj() && en->in(0)->is_MachCall()) {
 200     MachCallNode* call = en->in(0)->as_MachCall();
 201     if (call->cnt() != COUNT_UNKNOWN && call->cnt() <= PROB_UNLIKELY_MAG(4)) {
 202       // This is true for slow-path stubs like new_{instance,array},
 203       // slow_arraycopy, complete_monitor_locking, uncommon_trap.
 204       // The magic number corresponds to the probability of an uncommon_trap,
 205       // even though it is a count not a probability.
 206       return true;
 207     }
 208   }
 209 
 210   int op = en->is_Mach() ? en->as_Mach()->ideal_Opcode() : en->Opcode();
 211   return op == Op_Halt;
 212 }
 213 
 214 // True if block is low enough frequency or guarded by a test which
 215 // mostly does not go here.
 216 bool PhaseCFG::is_uncommon(const Block* block) {
 217   // Initial blocks must never be moved, so are never uncommon.
 218   if (block->head()->is_Root() || block->head()->is_Start())  return false;
 219 
 220   // Check for way-low freq
 221   if(block->_freq < BLOCK_FREQUENCY(0.00001f) ) return true;
 222 
 223   // Look for code shape indicating uncommon_trap or slow path
 224   if (block->has_uncommon_code()) return true;
 225 
 226   const float epsilon = 0.05f;
 227   const float guard_factor = PROB_UNLIKELY_MAG(4) / (1.f - epsilon);
 228   uint uncommon_preds = 0;
 229   uint freq_preds = 0;
 230   uint uncommon_for_freq_preds = 0;
 231 
 232   for( uint i=1; i< block->num_preds(); i++ ) {
 233     Block* guard = get_block_for_node(block->pred(i));
 234     // Check to see if this block follows its guard 1 time out of 10000
 235     // or less.
 236     //
 237     // See list of magnitude-4 unlikely probabilities in cfgnode.hpp which
 238     // we intend to be "uncommon", such as slow-path TLE allocation,
 239     // predicted call failure, and uncommon trap triggers.
 240     //
 241     // Use an epsilon value of 5% to allow for variability in frequency
 242     // predictions and floating point calculations. The net effect is
 243     // that guard_factor is set to 9500.
 244     //
 245     // Ignore low-frequency blocks.
 246     // The next check is (guard->_freq < 1.e-5 * 9500.).
 247     if(guard->_freq*BLOCK_FREQUENCY(guard_factor) < BLOCK_FREQUENCY(0.00001f)) {
 248       uncommon_preds++;
 249     } else {
 250       freq_preds++;
 251       if(block->_freq < guard->_freq * guard_factor ) {
 252         uncommon_for_freq_preds++;
 253       }
 254     }
 255   }
 256   if( block->num_preds() > 1 &&
 257       // The block is uncommon if all preds are uncommon or
 258       (uncommon_preds == (block->num_preds()-1) ||
 259       // it is uncommon for all frequent preds.
 260        uncommon_for_freq_preds == freq_preds) ) {
 261     return true;
 262   }
 263   return false;
 264 }
 265 
 266 #ifndef PRODUCT
 267 void Block::dump_bidx(const Block* orig, outputStream* st) const {
 268   if (_pre_order) st->print("B%d",_pre_order);
 269   else st->print("N%d", head()->_idx);
 270 
 271   if (Verbose && orig != this) {
 272     // Dump the original block's idx
 273     st->print(" (");
 274     orig->dump_bidx(orig, st);
 275     st->print(")");
 276   }
 277 }
 278 
 279 void Block::dump_pred(const PhaseCFG* cfg, Block* orig, outputStream* st) const {
 280   if (is_connector()) {
 281     for (uint i=1; i<num_preds(); i++) {
 282       Block *p = cfg->get_block_for_node(pred(i));
 283       p->dump_pred(cfg, orig, st);
 284     }
 285   } else {
 286     dump_bidx(orig, st);
 287     st->print(" ");
 288   }
 289 }
 290 
 291 void Block::dump_head(const PhaseCFG* cfg, outputStream* st) const {
 292   // Print the basic block
 293   dump_bidx(this, st);
 294   st->print(": #\t");
 295 
 296   // Print the incoming CFG edges and the outgoing CFG edges
 297   for( uint i=0; i<_num_succs; i++ ) {
 298     non_connector_successor(i)->dump_bidx(_succs[i], st);
 299     st->print(" ");
 300   }
 301   st->print("<- ");
 302   if( head()->is_block_start() ) {
 303     for (uint i=1; i<num_preds(); i++) {
 304       Node *s = pred(i);
 305       if (cfg != NULL) {
 306         Block *p = cfg->get_block_for_node(s);
 307         p->dump_pred(cfg, p, st);
 308       } else {
 309         while (!s->is_block_start())
 310           s = s->in(0);
 311         st->print("N%d ", s->_idx );
 312       }
 313     }
 314   } else {
 315     st->print("BLOCK HEAD IS JUNK  ");
 316   }
 317 
 318   // Print loop, if any
 319   const Block *bhead = this;    // Head of self-loop
 320   Node *bh = bhead->head();
 321 
 322   if ((cfg != NULL) && bh->is_Loop() && !head()->is_Root()) {
 323     LoopNode *loop = bh->as_Loop();
 324     const Block *bx = cfg->get_block_for_node(loop->in(LoopNode::LoopBackControl));
 325     while (bx->is_connector()) {
 326       bx = cfg->get_block_for_node(bx->pred(1));
 327     }
 328     st->print("\tLoop: B%d-B%d ", bhead->_pre_order, bx->_pre_order);
 329     // Dump any loop-specific bits, especially for CountedLoops.
 330     loop->dump_spec(st);
 331   } else if (has_loop_alignment()) {
 332     st->print(" top-of-loop");
 333   }
 334   st->print(" Freq: %g",_freq);
 335   if( Verbose || WizardMode ) {
 336     st->print(" IDom: %d/#%d", _idom ? _idom->_pre_order : 0, _dom_depth);
 337     st->print(" RegPressure: %d",_reg_pressure);
 338     st->print(" IHRP Index: %d",_ihrp_index);
 339     st->print(" FRegPressure: %d",_freg_pressure);
 340     st->print(" FHRP Index: %d",_fhrp_index);
 341   }
 342   st->cr();
 343 }
 344 
 345 void Block::dump() const {
 346   dump(NULL);
 347 }
 348 
 349 void Block::dump(const PhaseCFG* cfg) const {
 350   dump_head(cfg);
 351   for (uint i=0; i< number_of_nodes(); i++) {
 352     get_node(i)->dump();
 353   }
 354   tty->print("\n");
 355 }
 356 #endif
 357 
 358 PhaseCFG::PhaseCFG(Arena* arena, RootNode* root, Matcher& matcher)
 359 : Phase(CFG)
 360 , _block_arena(arena)
 361 , _regalloc(NULL)
 362 , _scheduling_for_pressure(false)
 363 , _root(root)
 364 , _matcher(matcher)
 365 , _node_to_block_mapping(arena)
 366 , _node_latency(NULL)
 367 #ifndef PRODUCT
 368 , _trace_opto_pipelining(TraceOptoPipelining || C->method_has_option("TraceOptoPipelining"))
 369 #endif
 370 #ifdef ASSERT
 371 , _raw_oops(arena)
 372 #endif
 373 {
 374   ResourceMark rm;
 375   // I'll need a few machine-specific GotoNodes.  Make an Ideal GotoNode,
 376   // then Match it into a machine-specific Node.  Then clone the machine
 377   // Node on demand.
 378   Node *x = new GotoNode(NULL);
 379   x->init_req(0, x);
 380   _goto = matcher.match_tree(x);
 381   assert(_goto != NULL, "");
 382   _goto->set_req(0,_goto);
 383 
 384   // Build the CFG in Reverse Post Order
 385   _number_of_blocks = build_cfg();
 386   _root_block = get_block_for_node(_root);
 387 }
 388 
 389 // Build a proper looking CFG.  Make every block begin with either a StartNode
 390 // or a RegionNode.  Make every block end with either a Goto, If or Return.
 391 // The RootNode both starts and ends it's own block.  Do this with a recursive
 392 // backwards walk over the control edges.
 393 uint PhaseCFG::build_cfg() {
 394   Arena *a = Thread::current()->resource_area();
 395   VectorSet visited(a);
 396 
 397   // Allocate stack with enough space to avoid frequent realloc
 398   Node_Stack nstack(a, C->live_nodes() >> 1);
 399   nstack.push(_root, 0);
 400   uint sum = 0;                 // Counter for blocks
 401 
 402   while (nstack.is_nonempty()) {
 403     // node and in's index from stack's top
 404     // 'np' is _root (see above) or RegionNode, StartNode: we push on stack
 405     // only nodes which point to the start of basic block (see below).
 406     Node *np = nstack.node();
 407     // idx > 0, except for the first node (_root) pushed on stack
 408     // at the beginning when idx == 0.
 409     // We will use the condition (idx == 0) later to end the build.
 410     uint idx = nstack.index();
 411     Node *proj = np->in(idx);
 412     const Node *x = proj->is_block_proj();
 413     // Does the block end with a proper block-ending Node?  One of Return,
 414     // If or Goto? (This check should be done for visited nodes also).
 415     if (x == NULL) {                    // Does not end right...
 416       Node *g = _goto->clone(); // Force it to end in a Goto
 417       g->set_req(0, proj);
 418       np->set_req(idx, g);
 419       x = proj = g;
 420     }
 421     if (!visited.test_set(x->_idx)) { // Visit this block once
 422       // Skip any control-pinned middle'in stuff
 423       Node *p = proj;
 424       do {
 425         proj = p;                   // Update pointer to last Control
 426         p = p->in(0);               // Move control forward
 427       } while( !p->is_block_proj() &&
 428                !p->is_block_start() );
 429       // Make the block begin with one of Region or StartNode.
 430       if( !p->is_block_start() ) {
 431         RegionNode *r = new RegionNode( 2 );
 432         r->init_req(1, p);         // Insert RegionNode in the way
 433         proj->set_req(0, r);        // Insert RegionNode in the way
 434         p = r;
 435       }
 436       // 'p' now points to the start of this basic block
 437 
 438       // Put self in array of basic blocks
 439       Block *bb = new (_block_arena) Block(_block_arena, p);
 440       map_node_to_block(p, bb);
 441       map_node_to_block(x, bb);
 442       if( x != p ) {                // Only for root is x == p
 443         bb->push_node((Node*)x);
 444       }
 445       // Now handle predecessors
 446       ++sum;                        // Count 1 for self block
 447       uint cnt = bb->num_preds();
 448       for (int i = (cnt - 1); i > 0; i-- ) { // For all predecessors
 449         Node *prevproj = p->in(i);  // Get prior input
 450         assert( !prevproj->is_Con(), "dead input not removed" );
 451         // Check to see if p->in(i) is a "control-dependent" CFG edge -
 452         // i.e., it splits at the source (via an IF or SWITCH) and merges
 453         // at the destination (via a many-input Region).
 454         // This breaks critical edges.  The RegionNode to start the block
 455         // will be added when <p,i> is pulled off the node stack
 456         if ( cnt > 2 ) {             // Merging many things?
 457           assert( prevproj== bb->pred(i),"");
 458           if(prevproj->is_block_proj() != prevproj) { // Control-dependent edge?
 459             // Force a block on the control-dependent edge
 460             Node *g = _goto->clone();       // Force it to end in a Goto
 461             g->set_req(0,prevproj);
 462             p->set_req(i,g);
 463           }
 464         }
 465         nstack.push(p, i);  // 'p' is RegionNode or StartNode
 466       }
 467     } else { // Post-processing visited nodes
 468       nstack.pop();                 // remove node from stack
 469       // Check if it the fist node pushed on stack at the beginning.
 470       if (idx == 0) break;          // end of the build
 471       // Find predecessor basic block
 472       Block *pb = get_block_for_node(x);
 473       // Insert into nodes array, if not already there
 474       if (!has_block(proj)) {
 475         assert( x != proj, "" );
 476         // Map basic block of projection
 477         map_node_to_block(proj, pb);
 478         pb->push_node(proj);
 479       }
 480       // Insert self as a child of my predecessor block
 481       pb->_succs.map(pb->_num_succs++, get_block_for_node(np));
 482       assert( pb->get_node(pb->number_of_nodes() - pb->_num_succs)->is_block_proj(),
 483               "too many control users, not a CFG?" );
 484     }
 485   }
 486   // Return number of basic blocks for all children and self
 487   return sum;
 488 }
 489 
 490 // Inserts a goto & corresponding basic block between
 491 // block[block_no] and its succ_no'th successor block
 492 void PhaseCFG::insert_goto_at(uint block_no, uint succ_no) {
 493   // get block with block_no
 494   assert(block_no < number_of_blocks(), "illegal block number");
 495   Block* in  = get_block(block_no);
 496   // get successor block succ_no
 497   assert(succ_no < in->_num_succs, "illegal successor number");
 498   Block* out = in->_succs[succ_no];
 499   // Compute frequency of the new block. Do this before inserting
 500   // new block in case succ_prob() needs to infer the probability from
 501   // surrounding blocks.
 502   float freq = in->_freq * in->succ_prob(succ_no);
 503   // get ProjNode corresponding to the succ_no'th successor of the in block
 504   ProjNode* proj = in->get_node(in->number_of_nodes() - in->_num_succs + succ_no)->as_Proj();
 505   // create region for basic block
 506   RegionNode* region = new RegionNode(2);
 507   region->init_req(1, proj);
 508   // setup corresponding basic block
 509   Block* block = new (_block_arena) Block(_block_arena, region);
 510   map_node_to_block(region, block);
 511   C->regalloc()->set_bad(region->_idx);
 512   // add a goto node
 513   Node* gto = _goto->clone(); // get a new goto node
 514   gto->set_req(0, region);
 515   // add it to the basic block
 516   block->push_node(gto);
 517   map_node_to_block(gto, block);
 518   C->regalloc()->set_bad(gto->_idx);
 519   // hook up successor block
 520   block->_succs.map(block->_num_succs++, out);
 521   // remap successor's predecessors if necessary
 522   for (uint i = 1; i < out->num_preds(); i++) {
 523     if (out->pred(i) == proj) out->head()->set_req(i, gto);
 524   }
 525   // remap predecessor's successor to new block
 526   in->_succs.map(succ_no, block);
 527   // Set the frequency of the new block
 528   block->_freq = freq;
 529   // add new basic block to basic block list
 530   add_block_at(block_no + 1, block);
 531 }
 532 
 533 // Does this block end in a multiway branch that cannot have the default case
 534 // flipped for another case?
 535 static bool no_flip_branch(Block *b) {
 536   int branch_idx = b->number_of_nodes() - b->_num_succs-1;
 537   if (branch_idx < 1) {
 538     return false;
 539   }
 540   Node *branch = b->get_node(branch_idx);
 541   if (branch->is_Catch()) {
 542     return true;
 543   }
 544   if (branch->is_Mach()) {
 545     if (branch->is_MachNullCheck()) {
 546       return true;
 547     }
 548     int iop = branch->as_Mach()->ideal_Opcode();
 549     if (iop == Op_FastLock || iop == Op_FastUnlock) {
 550       return true;
 551     }
 552     // Don't flip if branch has an implicit check.
 553     if (branch->as_Mach()->is_TrapBasedCheckNode()) {
 554       return true;
 555     }
 556   }
 557   return false;
 558 }
 559 
 560 // Check for NeverBranch at block end.  This needs to become a GOTO to the
 561 // true target.  NeverBranch are treated as a conditional branch that always
 562 // goes the same direction for most of the optimizer and are used to give a
 563 // fake exit path to infinite loops.  At this late stage they need to turn
 564 // into Goto's so that when you enter the infinite loop you indeed hang.
 565 void PhaseCFG::convert_NeverBranch_to_Goto(Block *b) {
 566   // Find true target
 567   int end_idx = b->end_idx();
 568   int idx = b->get_node(end_idx+1)->as_Proj()->_con;
 569   Block *succ = b->_succs[idx];
 570   Node* gto = _goto->clone(); // get a new goto node
 571   gto->set_req(0, b->head());
 572   Node *bp = b->get_node(end_idx);
 573   b->map_node(gto, end_idx); // Slam over NeverBranch
 574   map_node_to_block(gto, b);
 575   C->regalloc()->set_bad(gto->_idx);
 576   b->pop_node();              // Yank projections
 577   b->pop_node();              // Yank projections
 578   b->_succs.map(0,succ);        // Map only successor
 579   b->_num_succs = 1;
 580   // remap successor's predecessors if necessary
 581   uint j;
 582   for( j = 1; j < succ->num_preds(); j++)
 583     if( succ->pred(j)->in(0) == bp )
 584       succ->head()->set_req(j, gto);
 585   // Kill alternate exit path
 586   Block *dead = b->_succs[1-idx];
 587   for( j = 1; j < dead->num_preds(); j++)
 588     if( dead->pred(j)->in(0) == bp )
 589       break;
 590   // Scan through block, yanking dead path from
 591   // all regions and phis.
 592   dead->head()->del_req(j);
 593   for( int k = 1; dead->get_node(k)->is_Phi(); k++ )
 594     dead->get_node(k)->del_req(j);
 595 }
 596 
 597 // Helper function to move block bx to the slot following b_index. Return
 598 // true if the move is successful, otherwise false
 599 bool PhaseCFG::move_to_next(Block* bx, uint b_index) {
 600   if (bx == NULL) return false;
 601 
 602   // Return false if bx is already scheduled.
 603   uint bx_index = bx->_pre_order;
 604   if ((bx_index <= b_index) && (get_block(bx_index) == bx)) {
 605     return false;
 606   }
 607 
 608   // Find the current index of block bx on the block list
 609   bx_index = b_index + 1;
 610   while (bx_index < number_of_blocks() && get_block(bx_index) != bx) {
 611     bx_index++;
 612   }
 613   assert(get_block(bx_index) == bx, "block not found");
 614 
 615   // If the previous block conditionally falls into bx, return false,
 616   // because moving bx will create an extra jump.
 617   for(uint k = 1; k < bx->num_preds(); k++ ) {
 618     Block* pred = get_block_for_node(bx->pred(k));
 619     if (pred == get_block(bx_index - 1)) {
 620       if (pred->_num_succs != 1) {
 621         return false;
 622       }
 623     }
 624   }
 625 
 626   // Reinsert bx just past block 'b'
 627   _blocks.remove(bx_index);
 628   _blocks.insert(b_index + 1, bx);
 629   return true;
 630 }
 631 
 632 // Move empty and uncommon blocks to the end.
 633 void PhaseCFG::move_to_end(Block *b, uint i) {
 634   int e = b->is_Empty();
 635   if (e != Block::not_empty) {
 636     if (e == Block::empty_with_goto) {
 637       // Remove the goto, but leave the block.
 638       b->pop_node();
 639     }
 640     // Mark this block as a connector block, which will cause it to be
 641     // ignored in certain functions such as non_connector_successor().
 642     b->set_connector();
 643   }
 644   // Move the empty block to the end, and don't recheck.
 645   _blocks.remove(i);
 646   _blocks.push(b);
 647 }
 648 
 649 // Set loop alignment for every block
 650 void PhaseCFG::set_loop_alignment() {
 651   uint last = number_of_blocks();
 652   assert(get_block(0) == get_root_block(), "");
 653 
 654   for (uint i = 1; i < last; i++) {
 655     Block* block = get_block(i);
 656     if (block->head()->is_Loop()) {
 657       block->set_loop_alignment(block);
 658     }
 659   }
 660 }
 661 
 662 // Make empty basic blocks to be "connector" blocks, Move uncommon blocks
 663 // to the end.
 664 void PhaseCFG::remove_empty_blocks() {
 665   // Move uncommon blocks to the end
 666   uint last = number_of_blocks();
 667   assert(get_block(0) == get_root_block(), "");
 668 
 669   for (uint i = 1; i < last; i++) {
 670     Block* block = get_block(i);
 671     if (block->is_connector()) {
 672       break;
 673     }
 674 
 675     // Check for NeverBranch at block end.  This needs to become a GOTO to the
 676     // true target.  NeverBranch are treated as a conditional branch that
 677     // always goes the same direction for most of the optimizer and are used
 678     // to give a fake exit path to infinite loops.  At this late stage they
 679     // need to turn into Goto's so that when you enter the infinite loop you
 680     // indeed hang.
 681     if (block->get_node(block->end_idx())->Opcode() == Op_NeverBranch) {
 682       convert_NeverBranch_to_Goto(block);
 683     }
 684 
 685     // Look for uncommon blocks and move to end.
 686     if (!C->do_freq_based_layout()) {
 687       if (is_uncommon(block)) {
 688         move_to_end(block, i);
 689         last--;                   // No longer check for being uncommon!
 690         if (no_flip_branch(block)) { // Fall-thru case must follow?
 691           // Find the fall-thru block
 692           block = get_block(i);
 693           move_to_end(block, i);
 694           last--;
 695         }
 696         // backup block counter post-increment
 697         i--;
 698       }
 699     }
 700   }
 701 
 702   // Move empty blocks to the end
 703   last = number_of_blocks();
 704   for (uint i = 1; i < last; i++) {
 705     Block* block = get_block(i);
 706     if (block->is_Empty() != Block::not_empty) {
 707       move_to_end(block, i);
 708       last--;
 709       i--;
 710     }
 711   } // End of for all blocks
 712 }
 713 
 714 Block *PhaseCFG::fixup_trap_based_check(Node *branch, Block *block, int block_pos, Block *bnext) {
 715   // Trap based checks must fall through to the successor with
 716   // PROB_ALWAYS.
 717   // They should be an If with 2 successors.
 718   assert(branch->is_MachIf(),   "must be If");
 719   assert(block->_num_succs == 2, "must have 2 successors");
 720 
 721   // Get the If node and the projection for the first successor.
 722   MachIfNode *iff   = block->get_node(block->number_of_nodes()-3)->as_MachIf();
 723   ProjNode   *proj0 = block->get_node(block->number_of_nodes()-2)->as_Proj();
 724   ProjNode   *proj1 = block->get_node(block->number_of_nodes()-1)->as_Proj();
 725   ProjNode   *projt = (proj0->Opcode() == Op_IfTrue)  ? proj0 : proj1;
 726   ProjNode   *projf = (proj0->Opcode() == Op_IfFalse) ? proj0 : proj1;
 727 
 728   // Assert that proj0 and succs[0] match up. Similarly for proj1 and succs[1].
 729   assert(proj0->raw_out(0) == block->_succs[0]->head(), "Mismatch successor 0");
 730   assert(proj1->raw_out(0) == block->_succs[1]->head(), "Mismatch successor 1");
 731 
 732   ProjNode *proj_always;
 733   ProjNode *proj_never;
 734   // We must negate the branch if the implicit check doesn't follow
 735   // the branch's TRUE path. Then, the new TRUE branch target will
 736   // be the old FALSE branch target.
 737   if (iff->_prob <= 2*PROB_NEVER) {   // There are small rounding errors.
 738     proj_never  = projt;
 739     proj_always = projf;
 740   } else {
 741     // We must negate the branch if the trap doesn't follow the
 742     // branch's TRUE path. Then, the new TRUE branch target will
 743     // be the old FALSE branch target.
 744     proj_never  = projf;
 745     proj_always = projt;
 746     iff->negate();
 747   }
 748   assert(iff->_prob <= 2*PROB_NEVER, "Trap based checks are expected to trap never!");
 749   // Map the successors properly
 750   block->_succs.map(0, get_block_for_node(proj_never ->raw_out(0)));   // The target of the trap.
 751   block->_succs.map(1, get_block_for_node(proj_always->raw_out(0)));   // The fall through target.
 752 
 753   if (block->get_node(block->number_of_nodes() - block->_num_succs + 1) != proj_always) {
 754     block->map_node(proj_never,  block->number_of_nodes() - block->_num_succs + 0);
 755     block->map_node(proj_always, block->number_of_nodes() - block->_num_succs + 1);
 756   }
 757 
 758   // Place the fall through block after this block.
 759   Block *bs1 = block->non_connector_successor(1);
 760   if (bs1 != bnext && move_to_next(bs1, block_pos)) {
 761     bnext = bs1;
 762   }
 763   // If the fall through block still is not the next block, insert a goto.
 764   if (bs1 != bnext) {
 765     insert_goto_at(block_pos, 1);
 766   }
 767   return bnext;
 768 }
 769 
 770 // Fix up the final control flow for basic blocks.
 771 void PhaseCFG::fixup_flow() {
 772   // Fixup final control flow for the blocks.  Remove jump-to-next
 773   // block. If neither arm of an IF follows the conditional branch, we
 774   // have to add a second jump after the conditional.  We place the
 775   // TRUE branch target in succs[0] for both GOTOs and IFs.
 776   for (uint i = 0; i < number_of_blocks(); i++) {
 777     Block* block = get_block(i);
 778     block->_pre_order = i;          // turn pre-order into block-index
 779 
 780     // Connector blocks need no further processing.
 781     if (block->is_connector()) {
 782       assert((i+1) == number_of_blocks() || get_block(i + 1)->is_connector(), "All connector blocks should sink to the end");
 783       continue;
 784     }
 785     assert(block->is_Empty() != Block::completely_empty, "Empty blocks should be connectors");
 786 
 787     Block* bnext = (i < number_of_blocks() - 1) ? get_block(i + 1) : NULL;
 788     Block* bs0 = block->non_connector_successor(0);
 789 
 790     // Check for multi-way branches where I cannot negate the test to
 791     // exchange the true and false targets.
 792     if (no_flip_branch(block)) {
 793       // Find fall through case - if must fall into its target.
 794       // Get the index of the branch's first successor.
 795       int branch_idx = block->number_of_nodes() - block->_num_succs;
 796 
 797       // The branch is 1 before the branch's first successor.
 798       Node *branch = block->get_node(branch_idx-1);
 799 
 800       // Handle no-flip branches which have implicit checks and which require
 801       // special block ordering and individual semantics of the 'fall through
 802       // case'.
 803       if ((TrapBasedNullChecks || TrapBasedRangeChecks) &&
 804           branch->is_Mach() && branch->as_Mach()->is_TrapBasedCheckNode()) {
 805         bnext = fixup_trap_based_check(branch, block, i, bnext);
 806       } else {
 807         // Else, default handling for no-flip branches
 808         for (uint j2 = 0; j2 < block->_num_succs; j2++) {
 809           const ProjNode* p = block->get_node(branch_idx + j2)->as_Proj();
 810           if (p->_con == 0) {
 811             // successor j2 is fall through case
 812             if (block->non_connector_successor(j2) != bnext) {
 813               // but it is not the next block => insert a goto
 814               insert_goto_at(i, j2);
 815             }
 816             // Put taken branch in slot 0
 817             if (j2 == 0 && block->_num_succs == 2) {
 818               // Flip targets in succs map
 819               Block *tbs0 = block->_succs[0];
 820               Block *tbs1 = block->_succs[1];
 821               block->_succs.map(0, tbs1);
 822               block->_succs.map(1, tbs0);
 823             }
 824             break;
 825           }
 826         }
 827       }
 828 
 829       // Remove all CatchProjs
 830       for (uint j = 0; j < block->_num_succs; j++) {
 831         block->pop_node();
 832       }
 833 
 834     } else if (block->_num_succs == 1) {
 835       // Block ends in a Goto?
 836       if (bnext == bs0) {
 837         // We fall into next block; remove the Goto
 838         block->pop_node();
 839       }
 840 
 841     } else if(block->_num_succs == 2) { // Block ends in a If?
 842       // Get opcode of 1st projection (matches _succs[0])
 843       // Note: Since this basic block has 2 exits, the last 2 nodes must
 844       //       be projections (in any order), the 3rd last node must be
 845       //       the IfNode (we have excluded other 2-way exits such as
 846       //       CatchNodes already).
 847       MachNode* iff   = block->get_node(block->number_of_nodes() - 3)->as_Mach();
 848       ProjNode* proj0 = block->get_node(block->number_of_nodes() - 2)->as_Proj();
 849       ProjNode* proj1 = block->get_node(block->number_of_nodes() - 1)->as_Proj();
 850 
 851       // Assert that proj0 and succs[0] match up. Similarly for proj1 and succs[1].
 852       assert(proj0->raw_out(0) == block->_succs[0]->head(), "Mismatch successor 0");
 853       assert(proj1->raw_out(0) == block->_succs[1]->head(), "Mismatch successor 1");
 854 
 855       Block* bs1 = block->non_connector_successor(1);
 856 
 857       // Check for neither successor block following the current
 858       // block ending in a conditional. If so, move one of the
 859       // successors after the current one, provided that the
 860       // successor was previously unscheduled, but moveable
 861       // (i.e., all paths to it involve a branch).
 862       if (!C->do_freq_based_layout() && bnext != bs0 && bnext != bs1) {
 863         // Choose the more common successor based on the probability
 864         // of the conditional branch.
 865         Block* bx = bs0;
 866         Block* by = bs1;
 867 
 868         // _prob is the probability of taking the true path. Make
 869         // p the probability of taking successor #1.
 870         float p = iff->as_MachIf()->_prob;
 871         if (proj0->Opcode() == Op_IfTrue) {
 872           p = 1.0 - p;
 873         }
 874 
 875         // Prefer successor #1 if p > 0.5
 876         if (p > PROB_FAIR) {
 877           bx = bs1;
 878           by = bs0;
 879         }
 880 
 881         // Attempt the more common successor first
 882         if (move_to_next(bx, i)) {
 883           bnext = bx;
 884         } else if (move_to_next(by, i)) {
 885           bnext = by;
 886         }
 887       }
 888 
 889       // Check for conditional branching the wrong way.  Negate
 890       // conditional, if needed, so it falls into the following block
 891       // and branches to the not-following block.
 892 
 893       // Check for the next block being in succs[0].  We are going to branch
 894       // to succs[0], so we want the fall-thru case as the next block in
 895       // succs[1].
 896       if (bnext == bs0) {
 897         // Fall-thru case in succs[0], so flip targets in succs map
 898         Block* tbs0 = block->_succs[0];
 899         Block* tbs1 = block->_succs[1];
 900         block->_succs.map(0, tbs1);
 901         block->_succs.map(1, tbs0);
 902         // Flip projection for each target
 903         ProjNode* tmp = proj0;
 904         proj0 = proj1;
 905         proj1 = tmp;
 906 
 907       } else if(bnext != bs1) {
 908         // Need a double-branch
 909         // The existing conditional branch need not change.
 910         // Add a unconditional branch to the false target.
 911         // Alas, it must appear in its own block and adding a
 912         // block this late in the game is complicated.  Sigh.
 913         insert_goto_at(i, 1);
 914       }
 915 
 916       // Make sure we TRUE branch to the target
 917       if (proj0->Opcode() == Op_IfFalse) {
 918         iff->as_MachIf()->negate();
 919       }
 920 
 921       block->pop_node();          // Remove IfFalse & IfTrue projections
 922       block->pop_node();
 923 
 924     } else {
 925       // Multi-exit block, e.g. a switch statement
 926       // But we don't need to do anything here
 927     }
 928   } // End of for all blocks
 929 }
 930 
 931 
 932 // postalloc_expand: Expand nodes after register allocation.
 933 //
 934 // postalloc_expand has to be called after register allocation, just
 935 // before output (i.e. scheduling). It only gets called if
 936 // Matcher::require_postalloc_expand is true.
 937 //
 938 // Background:
 939 //
 940 // Nodes that are expandend (one compound node requiring several
 941 // assembler instructions to be implemented split into two or more
 942 // non-compound nodes) after register allocation are not as nice as
 943 // the ones expanded before register allocation - they don't
 944 // participate in optimizations as global code motion. But after
 945 // register allocation we can expand nodes that use registers which
 946 // are not spillable or registers that are not allocated, because the
 947 // old compound node is simply replaced (in its location in the basic
 948 // block) by a new subgraph which does not contain compound nodes any
 949 // more. The scheduler called during output can later on process these
 950 // non-compound nodes.
 951 //
 952 // Implementation:
 953 //
 954 // Nodes requiring postalloc expand are specified in the ad file by using
 955 // a postalloc_expand statement instead of ins_encode. A postalloc_expand
 956 // contains a single call to an encoding, as does an ins_encode
 957 // statement. Instead of an emit() function a postalloc_expand() function
 958 // is generated that doesn't emit assembler but creates a new
 959 // subgraph. The code below calls this postalloc_expand function for each
 960 // node with the appropriate attribute. This function returns the new
 961 // nodes generated in an array passed in the call. The old node,
 962 // potential MachTemps before and potential Projs after it then get
 963 // disconnected and replaced by the new nodes. The instruction
 964 // generating the result has to be the last one in the array. In
 965 // general it is assumed that Projs after the node expanded are
 966 // kills. These kills are not required any more after expanding as
 967 // there are now explicitly visible def-use chains and the Projs are
 968 // removed. This does not hold for calls: They do not only have
 969 // kill-Projs but also Projs defining values. Therefore Projs after
 970 // the node expanded are removed for all but for calls. If a node is
 971 // to be reused, it must be added to the nodes list returned, and it
 972 // will be added again.
 973 //
 974 // Implementing the postalloc_expand function for a node in an enc_class
 975 // is rather tedious. It requires knowledge about many node details, as
 976 // the nodes and the subgraph must be hand crafted. To simplify this,
 977 // adlc generates some utility variables into the postalloc_expand function,
 978 // e.g., holding the operands as specified by the postalloc_expand encoding
 979 // specification, e.g.:
 980 //  * unsigned idx_<par_name>  holding the index of the node in the ins
 981 //  * Node *n_<par_name>       holding the node loaded from the ins
 982 //  * MachOpnd *op_<par_name>  holding the corresponding operand
 983 //
 984 // The ordering of operands can not be determined by looking at a
 985 // rule. Especially if a match rule matches several different trees,
 986 // several nodes are generated from one instruct specification with
 987 // different operand orderings. In this case the adlc generated
 988 // variables are the only way to access the ins and operands
 989 // deterministically.
 990 //
 991 // If assigning a register to a node that contains an oop, don't
 992 // forget to call ra_->set_oop() for the node.
 993 void PhaseCFG::postalloc_expand(PhaseRegAlloc* _ra) {
 994   GrowableArray <Node *> new_nodes(32); // Array with new nodes filled by postalloc_expand function of node.
 995   GrowableArray <Node *> remove(32);
 996   GrowableArray <Node *> succs(32);
 997   unsigned int max_idx = C->unique();   // Remember to distinguish new from old nodes.
 998   DEBUG_ONLY(bool foundNode = false);
 999 
1000   // for all blocks
1001   for (uint i = 0; i < number_of_blocks(); i++) {
1002     Block *b = _blocks[i];
1003     // For all instructions in the current block.
1004     for (uint j = 0; j < b->number_of_nodes(); j++) {
1005       Node *n = b->get_node(j);
1006       if (n->is_Mach() && n->as_Mach()->requires_postalloc_expand()) {
1007 #ifdef ASSERT
1008         if (TracePostallocExpand) {
1009           if (!foundNode) {
1010             foundNode = true;
1011             tty->print("POSTALLOC EXPANDING %d %s\n", C->compile_id(),
1012                        C->method() ? C->method()->name()->as_utf8() : C->stub_name());
1013           }
1014           tty->print("  postalloc expanding "); n->dump();
1015           if (Verbose) {
1016             tty->print("    with ins:\n");
1017             for (uint k = 0; k < n->len(); ++k) {
1018               if (n->in(k)) { tty->print("        "); n->in(k)->dump(); }
1019             }
1020           }
1021         }
1022 #endif
1023         new_nodes.clear();
1024         // Collect nodes that have to be removed from the block later on.
1025         uint req = n->req();
1026         remove.clear();
1027         for (uint k = 0; k < req; ++k) {
1028           if (n->in(k) && n->in(k)->is_MachTemp()) {
1029             remove.push(n->in(k)); // MachTemps which are inputs to the old node have to be removed.
1030             n->in(k)->del_req(0);
1031             j--;
1032           }
1033         }
1034 
1035         // Check whether we can allocate enough nodes. We set a fix limit for
1036         // the size of postalloc expands with this.
1037         uint unique_limit = C->unique() + 40;
1038         if (unique_limit >= _ra->node_regs_max_index()) {
1039           Compile::current()->record_failure("out of nodes in postalloc expand");
1040           return;
1041         }
1042 
1043         // Emit (i.e. generate new nodes).
1044         n->as_Mach()->postalloc_expand(&new_nodes, _ra);
1045 
1046         assert(C->unique() < unique_limit, "You allocated too many nodes in your postalloc expand.");
1047 
1048         // Disconnect the inputs of the old node.
1049         //
1050         // We reuse MachSpillCopy nodes. If we need to expand them, there
1051         // are many, so reusing pays off. If reused, the node already
1052         // has the new ins. n must be the last node on new_nodes list.
1053         if (!n->is_MachSpillCopy()) {
1054           for (int k = req - 1; k >= 0; --k) {
1055             n->del_req(k);
1056           }
1057         }
1058 
1059 #ifdef ASSERT
1060         // Check that all nodes have proper operands.
1061         for (int k = 0; k < new_nodes.length(); ++k) {
1062           if (new_nodes.at(k)->_idx < max_idx || !new_nodes.at(k)->is_Mach()) continue; // old node, Proj ...
1063           MachNode *m = new_nodes.at(k)->as_Mach();
1064           for (unsigned int l = 0; l < m->num_opnds(); ++l) {
1065             if (MachOper::notAnOper(m->_opnds[l])) {
1066               outputStream *os = tty;
1067               os->print("Node %s ", m->Name());
1068               os->print("has invalid opnd %d: %p\n", l, m->_opnds[l]);
1069               assert(0, "Invalid operands, see inline trace in hs_err_pid file.");
1070             }
1071           }
1072         }
1073 #endif
1074 
1075         // Collect succs of old node in remove (for projections) and in succs (for
1076         // all other nodes) do _not_ collect projections in remove (but in succs)
1077         // in case the node is a call. We need the projections for calls as they are
1078         // associated with registes (i.e. they are defs).
1079         succs.clear();
1080         for (DUIterator k = n->outs(); n->has_out(k); k++) {
1081           if (n->out(k)->is_Proj() && !n->is_MachCall() && !n->is_MachBranch()) {
1082             remove.push(n->out(k));
1083           } else {
1084             succs.push(n->out(k));
1085           }
1086         }
1087         // Replace old node n as input of its succs by last of the new nodes.
1088         for (int k = 0; k < succs.length(); ++k) {
1089           Node *succ = succs.at(k);
1090           for (uint l = 0; l < succ->req(); ++l) {
1091             if (succ->in(l) == n) {
1092               succ->set_req(l, new_nodes.at(new_nodes.length() - 1));
1093             }
1094           }
1095           for (uint l = succ->req(); l < succ->len(); ++l) {
1096             if (succ->in(l) == n) {
1097               succ->set_prec(l, new_nodes.at(new_nodes.length() - 1));
1098             }
1099           }
1100         }
1101 
1102         // Index of old node in block.
1103         uint index = b->find_node(n);
1104         // Insert new nodes into block and map them in nodes->blocks array
1105         // and remember last node in n2.
1106         Node *n2 = NULL;
1107         for (int k = 0; k < new_nodes.length(); ++k) {
1108           n2 = new_nodes.at(k);
1109           b->insert_node(n2, ++index);
1110           map_node_to_block(n2, b);
1111         }
1112 
1113         // Add old node n to remove and remove them all from block.
1114         remove.push(n);
1115         j--;
1116 #ifdef ASSERT
1117         if (TracePostallocExpand && Verbose) {
1118           tty->print("    removing:\n");
1119           for (int k = 0; k < remove.length(); ++k) {
1120             tty->print("        "); remove.at(k)->dump();
1121           }
1122           tty->print("    inserting:\n");
1123           for (int k = 0; k < new_nodes.length(); ++k) {
1124             tty->print("        "); new_nodes.at(k)->dump();
1125           }
1126         }
1127 #endif
1128         for (int k = 0; k < remove.length(); ++k) {
1129           if (b->contains(remove.at(k))) {
1130             b->find_remove(remove.at(k));
1131           } else {
1132             assert(remove.at(k)->is_Proj() && (remove.at(k)->in(0)->is_MachBranch()), "");
1133           }
1134         }
1135         // If anything has been inserted (n2 != NULL), continue after last node inserted.
1136         // This does not always work. Some postalloc expands don't insert any nodes, if they
1137         // do optimizations (e.g., max(x,x)). In this case we decrement j accordingly.
1138         j = n2 ? b->find_node(n2) : j;
1139       }
1140     }
1141   }
1142 
1143 #ifdef ASSERT
1144   if (foundNode) {
1145     tty->print("FINISHED %d %s\n", C->compile_id(),
1146                C->method() ? C->method()->name()->as_utf8() : C->stub_name());
1147     tty->flush();
1148   }
1149 #endif
1150 }
1151 
1152 
1153 //------------------------------dump-------------------------------------------
1154 #ifndef PRODUCT
1155 void PhaseCFG::_dump_cfg( const Node *end, VectorSet &visited  ) const {
1156   const Node *x = end->is_block_proj();
1157   assert( x, "not a CFG" );
1158 
1159   // Do not visit this block again
1160   if( visited.test_set(x->_idx) ) return;
1161 
1162   // Skip through this block
1163   const Node *p = x;
1164   do {
1165     p = p->in(0);               // Move control forward
1166     assert( !p->is_block_proj() || p->is_Root(), "not a CFG" );
1167   } while( !p->is_block_start() );
1168 
1169   // Recursively visit
1170   for (uint i = 1; i < p->req(); i++) {
1171     _dump_cfg(p->in(i), visited);
1172   }
1173 
1174   // Dump the block
1175   get_block_for_node(p)->dump(this);
1176 }
1177 
1178 void PhaseCFG::dump( ) const {
1179   tty->print("\n--- CFG --- %d BBs\n", number_of_blocks());
1180   if (_blocks.size()) {        // Did we do basic-block layout?
1181     for (uint i = 0; i < number_of_blocks(); i++) {
1182       const Block* block = get_block(i);
1183       block->dump(this);
1184     }
1185   } else {                      // Else do it with a DFS
1186     VectorSet visited(_block_arena);
1187     _dump_cfg(_root,visited);
1188   }
1189 }
1190 
1191 void PhaseCFG::dump_headers() {
1192   for (uint i = 0; i < number_of_blocks(); i++) {
1193     Block* block = get_block(i);
1194     if (block != NULL) {
1195       block->dump_head(this);
1196     }
1197   }
1198 }
1199 
1200 void PhaseCFG::verify() const {
1201 #ifdef ASSERT
1202   // Verify sane CFG
1203   for (uint i = 0; i < number_of_blocks(); i++) {
1204     Block* block = get_block(i);
1205     uint cnt = block->number_of_nodes();
1206     uint j;
1207     for (j = 0; j < cnt; j++)  {
1208       Node *n = block->get_node(j);
1209       assert(get_block_for_node(n) == block, "");
1210       if (j >= 1 && n->is_Mach() && n->as_Mach()->ideal_Opcode() == Op_CreateEx) {
1211         assert(j == 1 || block->get_node(j-1)->is_Phi(), "CreateEx must be first instruction in block");
1212       }
1213       for (uint k = 0; k < n->req(); k++) {
1214         Node *def = n->in(k);
1215         if (def && def != n) {
1216           assert(get_block_for_node(def) || def->is_Con(), "must have block; constants for debug info ok");
1217           // Verify that instructions in the block is in correct order.
1218           // Uses must follow their definition if they are at the same block.
1219           // Mostly done to check that MachSpillCopy nodes are placed correctly
1220           // when CreateEx node is moved in build_ifg_physical().
1221           if (get_block_for_node(def) == block && !(block->head()->is_Loop() && n->is_Phi()) &&
1222               // See (+++) comment in reg_split.cpp
1223               !(n->jvms() != NULL && n->jvms()->is_monitor_use(k))) {
1224             bool is_loop = false;
1225             if (n->is_Phi()) {
1226               for (uint l = 1; l < def->req(); l++) {
1227                 if (n == def->in(l)) {
1228                   is_loop = true;
1229                   break; // Some kind of loop
1230                 }
1231               }
1232             }
1233             assert(is_loop || block->find_node(def) < j, "uses must follow definitions");
1234           }
1235         }
1236       }
1237     }
1238 
1239     j = block->end_idx();
1240     Node* bp = (Node*)block->get_node(block->number_of_nodes() - 1)->is_block_proj();
1241     assert(bp, "last instruction must be a block proj");
1242     assert(bp == block->get_node(j), "wrong number of successors for this block");
1243     if (bp->is_Catch()) {
1244       while (block->get_node(--j)->is_MachProj()) {
1245         ;
1246       }
1247       assert(block->get_node(j)->is_MachCall(), "CatchProj must follow call");
1248     } else if (bp->is_Mach() && bp->as_Mach()->ideal_Opcode() == Op_If) {
1249       assert(block->_num_succs == 2, "Conditional branch must have two targets");
1250     }
1251   }
1252 #endif
1253 }
1254 #endif
1255 
1256 UnionFind::UnionFind( uint max ) : _cnt(max), _max(max), _indices(NEW_RESOURCE_ARRAY(uint,max)) {
1257   Copy::zero_to_bytes( _indices, sizeof(uint)*max );
1258 }
1259 
1260 void UnionFind::extend( uint from_idx, uint to_idx ) {
1261   _nesting.check();
1262   if( from_idx >= _max ) {
1263     uint size = 16;
1264     while( size <= from_idx ) size <<=1;
1265     _indices = REALLOC_RESOURCE_ARRAY( uint, _indices, _max, size );
1266     _max = size;
1267   }
1268   while( _cnt <= from_idx ) _indices[_cnt++] = 0;
1269   _indices[from_idx] = to_idx;
1270 }
1271 
1272 void UnionFind::reset( uint max ) {
1273   // Force the Union-Find mapping to be at least this large
1274   extend(max,0);
1275   // Initialize to be the ID mapping.
1276   for( uint i=0; i<max; i++ ) map(i,i);
1277 }
1278 
1279 // Straight out of Tarjan's union-find algorithm
1280 uint UnionFind::Find_compress( uint idx ) {
1281   uint cur  = idx;
1282   uint next = lookup(cur);
1283   while( next != cur ) {        // Scan chain of equivalences
1284     assert( next < cur, "always union smaller" );
1285     cur = next;                 // until find a fixed-point
1286     next = lookup(cur);
1287   }
1288   // Core of union-find algorithm: update chain of
1289   // equivalences to be equal to the root.
1290   while( idx != next ) {
1291     uint tmp = lookup(idx);
1292     map(idx, next);
1293     idx = tmp;
1294   }
1295   return idx;
1296 }
1297 
1298 // Like Find above, but no path compress, so bad asymptotic behavior
1299 uint UnionFind::Find_const( uint idx ) const {
1300   if( idx == 0 ) return idx;    // Ignore the zero idx
1301   // Off the end?  This can happen during debugging dumps
1302   // when data structures have not finished being updated.
1303   if( idx >= _max ) return idx;
1304   uint next = lookup(idx);
1305   while( next != idx ) {        // Scan chain of equivalences
1306     idx = next;                 // until find a fixed-point
1307     next = lookup(idx);
1308   }
1309   return next;
1310 }
1311 
1312 // union 2 sets together.
1313 void UnionFind::Union( uint idx1, uint idx2 ) {
1314   uint src = Find(idx1);
1315   uint dst = Find(idx2);
1316   assert( src, "" );
1317   assert( dst, "" );
1318   assert( src < _max, "oob" );
1319   assert( dst < _max, "oob" );
1320   assert( src < dst, "always union smaller" );
1321   map(dst,src);
1322 }
1323 
1324 #ifndef PRODUCT
1325 void Trace::dump( ) const {
1326   tty->print_cr("Trace (freq %f)", first_block()->_freq);
1327   for (Block *b = first_block(); b != NULL; b = next(b)) {
1328     tty->print("  B%d", b->_pre_order);
1329     if (b->head()->is_Loop()) {
1330       tty->print(" (L%d)", b->compute_loop_alignment());
1331     }
1332     if (b->has_loop_alignment()) {
1333       tty->print(" (T%d)", b->code_alignment());
1334     }
1335   }
1336   tty->cr();
1337 }
1338 
1339 void CFGEdge::dump( ) const {
1340   tty->print(" B%d  -->  B%d  Freq: %f  out:%3d%%  in:%3d%%  State: ",
1341              from()->_pre_order, to()->_pre_order, freq(), _from_pct, _to_pct);
1342   switch(state()) {
1343   case connected:
1344     tty->print("connected");
1345     break;
1346   case open:
1347     tty->print("open");
1348     break;
1349   case interior:
1350     tty->print("interior");
1351     break;
1352   }
1353   if (infrequent()) {
1354     tty->print("  infrequent");
1355   }
1356   tty->cr();
1357 }
1358 #endif
1359 
1360 // Comparison function for edges
1361 static int edge_order(CFGEdge **e0, CFGEdge **e1) {
1362   float freq0 = (*e0)->freq();
1363   float freq1 = (*e1)->freq();
1364   if (freq0 != freq1) {
1365     return freq0 > freq1 ? -1 : 1;
1366   }
1367 
1368   int dist0 = (*e0)->to()->_rpo - (*e0)->from()->_rpo;
1369   int dist1 = (*e1)->to()->_rpo - (*e1)->from()->_rpo;
1370 
1371   return dist1 - dist0;
1372 }
1373 
1374 // Comparison function for edges
1375 extern "C" int trace_frequency_order(const void *p0, const void *p1) {
1376   Trace *tr0 = *(Trace **) p0;
1377   Trace *tr1 = *(Trace **) p1;
1378   Block *b0 = tr0->first_block();
1379   Block *b1 = tr1->first_block();
1380 
1381   // The trace of connector blocks goes at the end;
1382   // we only expect one such trace
1383   if (b0->is_connector() != b1->is_connector()) {
1384     return b1->is_connector() ? -1 : 1;
1385   }
1386 
1387   // Pull more frequently executed blocks to the beginning
1388   float freq0 = b0->_freq;
1389   float freq1 = b1->_freq;
1390   if (freq0 != freq1) {
1391     return freq0 > freq1 ? -1 : 1;
1392   }
1393 
1394   int diff = tr0->first_block()->_rpo - tr1->first_block()->_rpo;
1395 
1396   return diff;
1397 }
1398 
1399 // Find edges of interest, i.e, those which can fall through. Presumes that
1400 // edges which don't fall through are of low frequency and can be generally
1401 // ignored.  Initialize the list of traces.
1402 void PhaseBlockLayout::find_edges() {
1403   // Walk the blocks, creating edges and Traces
1404   uint i;
1405   Trace *tr = NULL;
1406   for (i = 0; i < _cfg.number_of_blocks(); i++) {
1407     Block* b = _cfg.get_block(i);
1408     tr = new Trace(b, next, prev);
1409     traces[tr->id()] = tr;
1410 
1411     // All connector blocks should be at the end of the list
1412     if (b->is_connector()) break;
1413 
1414     // If this block and the next one have a one-to-one successor
1415     // predecessor relationship, simply append the next block
1416     int nfallthru = b->num_fall_throughs();
1417     while (nfallthru == 1 &&
1418            b->succ_fall_through(0)) {
1419       Block *n = b->_succs[0];
1420 
1421       // Skip over single-entry connector blocks, we don't want to
1422       // add them to the trace.
1423       while (n->is_connector() && n->num_preds() == 1) {
1424         n = n->_succs[0];
1425       }
1426 
1427       // We see a merge point, so stop search for the next block
1428       if (n->num_preds() != 1) break;
1429 
1430       i++;
1431       assert(n = _cfg.get_block(i), "expecting next block");
1432       tr->append(n);
1433       uf->map(n->_pre_order, tr->id());
1434       traces[n->_pre_order] = NULL;
1435       nfallthru = b->num_fall_throughs();
1436       b = n;
1437     }
1438 
1439     if (nfallthru > 0) {
1440       // Create a CFGEdge for each outgoing
1441       // edge that could be a fall-through.
1442       for (uint j = 0; j < b->_num_succs; j++ ) {
1443         if (b->succ_fall_through(j)) {
1444           Block *target = b->non_connector_successor(j);
1445           float freq = b->_freq * b->succ_prob(j);
1446           int from_pct = (int) ((100 * freq) / b->_freq);
1447           int to_pct = (int) ((100 * freq) / target->_freq);
1448           edges->append(new CFGEdge(b, target, freq, from_pct, to_pct));
1449         }
1450       }
1451     }
1452   }
1453 
1454   // Group connector blocks into one trace
1455   for (i++; i < _cfg.number_of_blocks(); i++) {
1456     Block *b = _cfg.get_block(i);
1457     assert(b->is_connector(), "connector blocks at the end");
1458     tr->append(b);
1459     uf->map(b->_pre_order, tr->id());
1460     traces[b->_pre_order] = NULL;
1461   }
1462 }
1463 
1464 // Union two traces together in uf, and null out the trace in the list
1465 void PhaseBlockLayout::union_traces(Trace* updated_trace, Trace* old_trace) {
1466   uint old_id = old_trace->id();
1467   uint updated_id = updated_trace->id();
1468 
1469   uint lo_id = updated_id;
1470   uint hi_id = old_id;
1471 
1472   // If from is greater than to, swap values to meet
1473   // UnionFind guarantee.
1474   if (updated_id > old_id) {
1475     lo_id = old_id;
1476     hi_id = updated_id;
1477 
1478     // Fix up the trace ids
1479     traces[lo_id] = traces[updated_id];
1480     updated_trace->set_id(lo_id);
1481   }
1482 
1483   // Union the lower with the higher and remove the pointer
1484   // to the higher.
1485   uf->Union(lo_id, hi_id);
1486   traces[hi_id] = NULL;
1487 }
1488 
1489 // Append traces together via the most frequently executed edges
1490 void PhaseBlockLayout::grow_traces() {
1491   // Order the edges, and drive the growth of Traces via the most
1492   // frequently executed edges.
1493   edges->sort(edge_order);
1494   for (int i = 0; i < edges->length(); i++) {
1495     CFGEdge *e = edges->at(i);
1496 
1497     if (e->state() != CFGEdge::open) continue;
1498 
1499     Block *src_block = e->from();
1500     Block *targ_block = e->to();
1501 
1502     // Don't grow traces along backedges?
1503     if (!BlockLayoutRotateLoops) {
1504       if (targ_block->_rpo <= src_block->_rpo) {
1505         targ_block->set_loop_alignment(targ_block);
1506         continue;
1507       }
1508     }
1509 
1510     Trace *src_trace = trace(src_block);
1511     Trace *targ_trace = trace(targ_block);
1512 
1513     // If the edge in question can join two traces at their ends,
1514     // append one trace to the other.
1515    if (src_trace->last_block() == src_block) {
1516       if (src_trace == targ_trace) {
1517         e->set_state(CFGEdge::interior);
1518         if (targ_trace->backedge(e)) {
1519           // Reset i to catch any newly eligible edge
1520           // (Or we could remember the first "open" edge, and reset there)
1521           i = 0;
1522         }
1523       } else if (targ_trace->first_block() == targ_block) {
1524         e->set_state(CFGEdge::connected);
1525         src_trace->append(targ_trace);
1526         union_traces(src_trace, targ_trace);
1527       }
1528     }
1529   }
1530 }
1531 
1532 // Embed one trace into another, if the fork or join points are sufficiently
1533 // balanced.
1534 void PhaseBlockLayout::merge_traces(bool fall_thru_only) {
1535   // Walk the edge list a another time, looking at unprocessed edges.
1536   // Fold in diamonds
1537   for (int i = 0; i < edges->length(); i++) {
1538     CFGEdge *e = edges->at(i);
1539 
1540     if (e->state() != CFGEdge::open) continue;
1541     if (fall_thru_only) {
1542       if (e->infrequent()) continue;
1543     }
1544 
1545     Block *src_block = e->from();
1546     Trace *src_trace = trace(src_block);
1547     bool src_at_tail = src_trace->last_block() == src_block;
1548 
1549     Block *targ_block  = e->to();
1550     Trace *targ_trace  = trace(targ_block);
1551     bool targ_at_start = targ_trace->first_block() == targ_block;
1552 
1553     if (src_trace == targ_trace) {
1554       // This may be a loop, but we can't do much about it.
1555       e->set_state(CFGEdge::interior);
1556       continue;
1557     }
1558 
1559     if (fall_thru_only) {
1560       // If the edge links the middle of two traces, we can't do anything.
1561       // Mark the edge and continue.
1562       if (!src_at_tail & !targ_at_start) {
1563         continue;
1564       }
1565 
1566       // Don't grow traces along backedges?
1567       if (!BlockLayoutRotateLoops && (targ_block->_rpo <= src_block->_rpo)) {
1568           continue;
1569       }
1570 
1571       // If both ends of the edge are available, why didn't we handle it earlier?
1572       assert(src_at_tail ^ targ_at_start, "Should have caught this edge earlier.");
1573 
1574       if (targ_at_start) {
1575         // Insert the "targ" trace in the "src" trace if the insertion point
1576         // is a two way branch.
1577         // Better profitability check possible, but may not be worth it.
1578         // Someday, see if the this "fork" has an associated "join";
1579         // then make a policy on merging this trace at the fork or join.
1580         // For example, other things being equal, it may be better to place this
1581         // trace at the join point if the "src" trace ends in a two-way, but
1582         // the insertion point is one-way.
1583         assert(src_block->num_fall_throughs() == 2, "unexpected diamond");
1584         e->set_state(CFGEdge::connected);
1585         src_trace->insert_after(src_block, targ_trace);
1586         union_traces(src_trace, targ_trace);
1587       } else if (src_at_tail) {
1588         if (src_trace != trace(_cfg.get_root_block())) {
1589           e->set_state(CFGEdge::connected);
1590           targ_trace->insert_before(targ_block, src_trace);
1591           union_traces(targ_trace, src_trace);
1592         }
1593       }
1594     } else if (e->state() == CFGEdge::open) {
1595       // Append traces, even without a fall-thru connection.
1596       // But leave root entry at the beginning of the block list.
1597       if (targ_trace != trace(_cfg.get_root_block())) {
1598         e->set_state(CFGEdge::connected);
1599         src_trace->append(targ_trace);
1600         union_traces(src_trace, targ_trace);
1601       }
1602     }
1603   }
1604 }
1605 
1606 // Order the sequence of the traces in some desirable way, and fixup the
1607 // jumps at the end of each block.
1608 void PhaseBlockLayout::reorder_traces(int count) {
1609   ResourceArea *area = Thread::current()->resource_area();
1610   Trace ** new_traces = NEW_ARENA_ARRAY(area, Trace *, count);
1611   Block_List worklist;
1612   int new_count = 0;
1613 
1614   // Compact the traces.
1615   for (int i = 0; i < count; i++) {
1616     Trace *tr = traces[i];
1617     if (tr != NULL) {
1618       new_traces[new_count++] = tr;
1619     }
1620   }
1621 
1622   // The entry block should be first on the new trace list.
1623   Trace *tr = trace(_cfg.get_root_block());
1624   assert(tr == new_traces[0], "entry trace misplaced");
1625 
1626   // Sort the new trace list by frequency
1627   qsort(new_traces + 1, new_count - 1, sizeof(new_traces[0]), trace_frequency_order);
1628 
1629   // Patch up the successor blocks
1630   _cfg.clear_blocks();
1631   for (int i = 0; i < new_count; i++) {
1632     Trace *tr = new_traces[i];
1633     if (tr != NULL) {
1634       tr->fixup_blocks(_cfg);
1635     }
1636   }
1637 }
1638 
1639 // Order basic blocks based on frequency
1640 PhaseBlockLayout::PhaseBlockLayout(PhaseCFG &cfg)
1641 : Phase(BlockLayout)
1642 , _cfg(cfg) {
1643   ResourceMark rm;
1644   ResourceArea *area = Thread::current()->resource_area();
1645 
1646   // List of traces
1647   int size = _cfg.number_of_blocks() + 1;
1648   traces = NEW_ARENA_ARRAY(area, Trace *, size);
1649   memset(traces, 0, size*sizeof(Trace*));
1650   next = NEW_ARENA_ARRAY(area, Block *, size);
1651   memset(next,   0, size*sizeof(Block *));
1652   prev = NEW_ARENA_ARRAY(area, Block *, size);
1653   memset(prev  , 0, size*sizeof(Block *));
1654 
1655   // List of edges
1656   edges = new GrowableArray<CFGEdge*>;
1657 
1658   // Mapping block index --> block_trace
1659   uf = new UnionFind(size);
1660   uf->reset(size);
1661 
1662   // Find edges and create traces.
1663   find_edges();
1664 
1665   // Grow traces at their ends via most frequent edges.
1666   grow_traces();
1667 
1668   // Merge one trace into another, but only at fall-through points.
1669   // This may make diamonds and other related shapes in a trace.
1670   merge_traces(true);
1671 
1672   // Run merge again, allowing two traces to be catenated, even if
1673   // one does not fall through into the other. This appends loosely
1674   // related traces to be near each other.
1675   merge_traces(false);
1676 
1677   // Re-order all the remaining traces by frequency
1678   reorder_traces(size);
1679 
1680   assert(_cfg.number_of_blocks() >= (uint) (size - 1), "number of blocks can not shrink");
1681 }
1682 
1683 
1684 // Edge e completes a loop in a trace. If the target block is head of the
1685 // loop, rotate the loop block so that the loop ends in a conditional branch.
1686 bool Trace::backedge(CFGEdge *e) {
1687   bool loop_rotated = false;
1688   Block *src_block  = e->from();
1689   Block *targ_block    = e->to();
1690 
1691   assert(last_block() == src_block, "loop discovery at back branch");
1692   if (first_block() == targ_block) {
1693     if (BlockLayoutRotateLoops && last_block()->num_fall_throughs() < 2) {
1694       // Find the last block in the trace that has a conditional
1695       // branch.
1696       Block *b;
1697       for (b = last_block(); b != NULL; b = prev(b)) {
1698         if (b->num_fall_throughs() == 2) {
1699           break;
1700         }
1701       }
1702 
1703       if (b != last_block() && b != NULL) {
1704         loop_rotated = true;
1705 
1706         // Rotate the loop by doing two-part linked-list surgery.
1707         append(first_block());
1708         break_loop_after(b);
1709       }
1710     }
1711 
1712     // Backbranch to the top of a trace
1713     // Scroll forward through the trace from the targ_block. If we find
1714     // a loop head before another loop top, use the the loop head alignment.
1715     for (Block *b = targ_block; b != NULL; b = next(b)) {
1716       if (b->has_loop_alignment()) {
1717         break;
1718       }
1719       if (b->head()->is_Loop()) {
1720         targ_block = b;
1721         break;
1722       }
1723     }
1724 
1725     first_block()->set_loop_alignment(targ_block);
1726 
1727   } else {
1728     // Backbranch into the middle of a trace
1729     targ_block->set_loop_alignment(targ_block);
1730   }
1731 
1732   return loop_rotated;
1733 }
1734 
1735 // push blocks onto the CFG list
1736 // ensure that blocks have the correct two-way branch sense
1737 void Trace::fixup_blocks(PhaseCFG &cfg) {
1738   Block *last = last_block();
1739   for (Block *b = first_block(); b != NULL; b = next(b)) {
1740     cfg.add_block(b);
1741     if (!b->is_connector()) {
1742       int nfallthru = b->num_fall_throughs();
1743       if (b != last) {
1744         if (nfallthru == 2) {
1745           // Ensure that the sense of the branch is correct
1746           Block *bnext = next(b);
1747           Block *bs0 = b->non_connector_successor(0);
1748 
1749           MachNode *iff = b->get_node(b->number_of_nodes() - 3)->as_Mach();
1750           ProjNode *proj0 = b->get_node(b->number_of_nodes() - 2)->as_Proj();
1751           ProjNode *proj1 = b->get_node(b->number_of_nodes() - 1)->as_Proj();
1752 
1753           if (bnext == bs0) {
1754             // Fall-thru case in succs[0], should be in succs[1]
1755 
1756             // Flip targets in _succs map
1757             Block *tbs0 = b->_succs[0];
1758             Block *tbs1 = b->_succs[1];
1759             b->_succs.map( 0, tbs1 );
1760             b->_succs.map( 1, tbs0 );
1761 
1762             // Flip projections to match targets
1763             b->map_node(proj1, b->number_of_nodes() - 2);
1764             b->map_node(proj0, b->number_of_nodes() - 1);
1765           }
1766         }
1767       }
1768     }
1769   }
1770 }