1 /*
   2  * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/systemDictionary.hpp"
  27 #include "classfile/vmSymbols.hpp"
  28 #include "code/codeCache.hpp"
  29 #include "code/compiledIC.hpp"
  30 #include "code/codeCacheExtensions.hpp"
  31 #include "code/scopeDesc.hpp"
  32 #include "code/vtableStubs.hpp"
  33 #include "compiler/abstractCompiler.hpp"
  34 #include "compiler/compileBroker.hpp"
  35 #include "compiler/disassembler.hpp"
  36 #include "gc/shared/gcLocker.inline.hpp"
  37 #include "interpreter/interpreter.hpp"
  38 #include "interpreter/interpreterRuntime.hpp"
  39 #include "memory/universe.inline.hpp"
  40 #include "oops/oop.inline.hpp"
  41 #include "prims/forte.hpp"
  42 #include "prims/jvmtiExport.hpp"
  43 #include "prims/jvmtiRedefineClassesTrace.hpp"
  44 #include "prims/methodHandles.hpp"
  45 #include "prims/nativeLookup.hpp"
  46 #include "runtime/arguments.hpp"
  47 #include "runtime/atomic.inline.hpp"
  48 #include "runtime/biasedLocking.hpp"
  49 #include "runtime/handles.inline.hpp"
  50 #include "runtime/init.hpp"
  51 #include "runtime/interfaceSupport.hpp"
  52 #include "runtime/javaCalls.hpp"
  53 #include "runtime/sharedRuntime.hpp"
  54 #include "runtime/stubRoutines.hpp"
  55 #include "runtime/vframe.hpp"
  56 #include "runtime/vframeArray.hpp"
  57 #include "utilities/copy.hpp"
  58 #include "utilities/dtrace.hpp"
  59 #include "utilities/events.hpp"
  60 #include "utilities/hashtable.inline.hpp"
  61 #include "utilities/macros.hpp"
  62 #include "utilities/xmlstream.hpp"
  63 #ifdef COMPILER1
  64 #include "c1/c1_Runtime1.hpp"
  65 #endif
  66 
  67 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
  68 
  69 // Shared stub locations
  70 RuntimeStub*        SharedRuntime::_wrong_method_blob;
  71 RuntimeStub*        SharedRuntime::_wrong_method_abstract_blob;
  72 RuntimeStub*        SharedRuntime::_ic_miss_blob;
  73 RuntimeStub*        SharedRuntime::_resolve_opt_virtual_call_blob;
  74 RuntimeStub*        SharedRuntime::_resolve_virtual_call_blob;
  75 RuntimeStub*        SharedRuntime::_resolve_static_call_blob;
  76 
  77 DeoptimizationBlob* SharedRuntime::_deopt_blob;
  78 SafepointBlob*      SharedRuntime::_polling_page_vectors_safepoint_handler_blob;
  79 SafepointBlob*      SharedRuntime::_polling_page_safepoint_handler_blob;
  80 SafepointBlob*      SharedRuntime::_polling_page_return_handler_blob;
  81 
  82 #ifdef COMPILER2
  83 UncommonTrapBlob*   SharedRuntime::_uncommon_trap_blob;
  84 #endif // COMPILER2
  85 
  86 
  87 //----------------------------generate_stubs-----------------------------------
  88 void SharedRuntime::generate_stubs() {
  89   _wrong_method_blob                   = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method),          "wrong_method_stub");
  90   _wrong_method_abstract_blob          = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_abstract), "wrong_method_abstract_stub");
  91   _ic_miss_blob                        = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_ic_miss),  "ic_miss_stub");
  92   _resolve_opt_virtual_call_blob       = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_opt_virtual_call_C),   "resolve_opt_virtual_call");
  93   _resolve_virtual_call_blob           = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_virtual_call_C),       "resolve_virtual_call");
  94   _resolve_static_call_blob            = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_static_call_C),        "resolve_static_call");
  95 
  96 #ifdef COMPILER2
  97   // Vectors are generated only by C2.
  98   if (is_wide_vector(MaxVectorSize)) {
  99     _polling_page_vectors_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_VECTOR_LOOP);
 100   }
 101 #endif // COMPILER2
 102   _polling_page_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_LOOP);
 103   _polling_page_return_handler_blob    = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_RETURN);
 104 
 105   generate_deopt_blob();
 106 
 107 #ifdef COMPILER2
 108   generate_uncommon_trap_blob();
 109 #endif // COMPILER2
 110 }
 111 
 112 #include <math.h>
 113 
 114 // Implementation of SharedRuntime
 115 
 116 #ifndef PRODUCT
 117 // For statistics
 118 int SharedRuntime::_ic_miss_ctr = 0;
 119 int SharedRuntime::_wrong_method_ctr = 0;
 120 int SharedRuntime::_resolve_static_ctr = 0;
 121 int SharedRuntime::_resolve_virtual_ctr = 0;
 122 int SharedRuntime::_resolve_opt_virtual_ctr = 0;
 123 int SharedRuntime::_implicit_null_throws = 0;
 124 int SharedRuntime::_implicit_div0_throws = 0;
 125 int SharedRuntime::_throw_null_ctr = 0;
 126 
 127 int SharedRuntime::_nof_normal_calls = 0;
 128 int SharedRuntime::_nof_optimized_calls = 0;
 129 int SharedRuntime::_nof_inlined_calls = 0;
 130 int SharedRuntime::_nof_megamorphic_calls = 0;
 131 int SharedRuntime::_nof_static_calls = 0;
 132 int SharedRuntime::_nof_inlined_static_calls = 0;
 133 int SharedRuntime::_nof_interface_calls = 0;
 134 int SharedRuntime::_nof_optimized_interface_calls = 0;
 135 int SharedRuntime::_nof_inlined_interface_calls = 0;
 136 int SharedRuntime::_nof_megamorphic_interface_calls = 0;
 137 int SharedRuntime::_nof_removable_exceptions = 0;
 138 
 139 int SharedRuntime::_new_instance_ctr=0;
 140 int SharedRuntime::_new_array_ctr=0;
 141 int SharedRuntime::_multi1_ctr=0;
 142 int SharedRuntime::_multi2_ctr=0;
 143 int SharedRuntime::_multi3_ctr=0;
 144 int SharedRuntime::_multi4_ctr=0;
 145 int SharedRuntime::_multi5_ctr=0;
 146 int SharedRuntime::_mon_enter_stub_ctr=0;
 147 int SharedRuntime::_mon_exit_stub_ctr=0;
 148 int SharedRuntime::_mon_enter_ctr=0;
 149 int SharedRuntime::_mon_exit_ctr=0;
 150 int SharedRuntime::_partial_subtype_ctr=0;
 151 int SharedRuntime::_jbyte_array_copy_ctr=0;
 152 int SharedRuntime::_jshort_array_copy_ctr=0;
 153 int SharedRuntime::_jint_array_copy_ctr=0;
 154 int SharedRuntime::_jlong_array_copy_ctr=0;
 155 int SharedRuntime::_oop_array_copy_ctr=0;
 156 int SharedRuntime::_checkcast_array_copy_ctr=0;
 157 int SharedRuntime::_unsafe_array_copy_ctr=0;
 158 int SharedRuntime::_generic_array_copy_ctr=0;
 159 int SharedRuntime::_slow_array_copy_ctr=0;
 160 int SharedRuntime::_find_handler_ctr=0;
 161 int SharedRuntime::_rethrow_ctr=0;
 162 
 163 int     SharedRuntime::_ICmiss_index                    = 0;
 164 int     SharedRuntime::_ICmiss_count[SharedRuntime::maxICmiss_count];
 165 address SharedRuntime::_ICmiss_at[SharedRuntime::maxICmiss_count];
 166 
 167 
 168 void SharedRuntime::trace_ic_miss(address at) {
 169   for (int i = 0; i < _ICmiss_index; i++) {
 170     if (_ICmiss_at[i] == at) {
 171       _ICmiss_count[i]++;
 172       return;
 173     }
 174   }
 175   int index = _ICmiss_index++;
 176   if (_ICmiss_index >= maxICmiss_count) _ICmiss_index = maxICmiss_count - 1;
 177   _ICmiss_at[index] = at;
 178   _ICmiss_count[index] = 1;
 179 }
 180 
 181 void SharedRuntime::print_ic_miss_histogram() {
 182   if (ICMissHistogram) {
 183     tty->print_cr("IC Miss Histogram:");
 184     int tot_misses = 0;
 185     for (int i = 0; i < _ICmiss_index; i++) {
 186       tty->print_cr("  at: " INTPTR_FORMAT "  nof: %d", _ICmiss_at[i], _ICmiss_count[i]);
 187       tot_misses += _ICmiss_count[i];
 188     }
 189     tty->print_cr("Total IC misses: %7d", tot_misses);
 190   }
 191 }
 192 #endif // PRODUCT
 193 
 194 #if INCLUDE_ALL_GCS
 195 
 196 // G1 write-barrier pre: executed before a pointer store.
 197 JRT_LEAF(void, SharedRuntime::g1_wb_pre(oopDesc* orig, JavaThread *thread))
 198   if (orig == NULL) {
 199     assert(false, "should be optimized out");
 200     return;
 201   }
 202   assert(orig->is_oop(true /* ignore mark word */), "Error");
 203   // store the original value that was in the field reference
 204   thread->satb_mark_queue().enqueue(orig);
 205 JRT_END
 206 
 207 // G1 write-barrier post: executed after a pointer store.
 208 JRT_LEAF(void, SharedRuntime::g1_wb_post(void* card_addr, JavaThread* thread))
 209   thread->dirty_card_queue().enqueue(card_addr);
 210 JRT_END
 211 
 212 #endif // INCLUDE_ALL_GCS
 213 
 214 
 215 JRT_LEAF(jlong, SharedRuntime::lmul(jlong y, jlong x))
 216   return x * y;
 217 JRT_END
 218 
 219 
 220 JRT_LEAF(jlong, SharedRuntime::ldiv(jlong y, jlong x))
 221   if (x == min_jlong && y == CONST64(-1)) {
 222     return x;
 223   } else {
 224     return x / y;
 225   }
 226 JRT_END
 227 
 228 
 229 JRT_LEAF(jlong, SharedRuntime::lrem(jlong y, jlong x))
 230   if (x == min_jlong && y == CONST64(-1)) {
 231     return 0;
 232   } else {
 233     return x % y;
 234   }
 235 JRT_END
 236 
 237 
 238 const juint  float_sign_mask  = 0x7FFFFFFF;
 239 const juint  float_infinity   = 0x7F800000;
 240 const julong double_sign_mask = CONST64(0x7FFFFFFFFFFFFFFF);
 241 const julong double_infinity  = CONST64(0x7FF0000000000000);
 242 
 243 JRT_LEAF(jfloat, SharedRuntime::frem(jfloat  x, jfloat  y))
 244 #ifdef _WIN64
 245   // 64-bit Windows on amd64 returns the wrong values for
 246   // infinity operands.
 247   union { jfloat f; juint i; } xbits, ybits;
 248   xbits.f = x;
 249   ybits.f = y;
 250   // x Mod Infinity == x unless x is infinity
 251   if (((xbits.i & float_sign_mask) != float_infinity) &&
 252        ((ybits.i & float_sign_mask) == float_infinity) ) {
 253     return x;
 254   }
 255 #endif
 256   return ((jfloat)fmod((double)x,(double)y));
 257 JRT_END
 258 
 259 
 260 JRT_LEAF(jdouble, SharedRuntime::drem(jdouble x, jdouble y))
 261 #ifdef _WIN64
 262   union { jdouble d; julong l; } xbits, ybits;
 263   xbits.d = x;
 264   ybits.d = y;
 265   // x Mod Infinity == x unless x is infinity
 266   if (((xbits.l & double_sign_mask) != double_infinity) &&
 267        ((ybits.l & double_sign_mask) == double_infinity) ) {
 268     return x;
 269   }
 270 #endif
 271   return ((jdouble)fmod((double)x,(double)y));
 272 JRT_END
 273 
 274 #ifdef __SOFTFP__
 275 JRT_LEAF(jfloat, SharedRuntime::fadd(jfloat x, jfloat y))
 276   return x + y;
 277 JRT_END
 278 
 279 JRT_LEAF(jfloat, SharedRuntime::fsub(jfloat x, jfloat y))
 280   return x - y;
 281 JRT_END
 282 
 283 JRT_LEAF(jfloat, SharedRuntime::fmul(jfloat x, jfloat y))
 284   return x * y;
 285 JRT_END
 286 
 287 JRT_LEAF(jfloat, SharedRuntime::fdiv(jfloat x, jfloat y))
 288   return x / y;
 289 JRT_END
 290 
 291 JRT_LEAF(jdouble, SharedRuntime::dadd(jdouble x, jdouble y))
 292   return x + y;
 293 JRT_END
 294 
 295 JRT_LEAF(jdouble, SharedRuntime::dsub(jdouble x, jdouble y))
 296   return x - y;
 297 JRT_END
 298 
 299 JRT_LEAF(jdouble, SharedRuntime::dmul(jdouble x, jdouble y))
 300   return x * y;
 301 JRT_END
 302 
 303 JRT_LEAF(jdouble, SharedRuntime::ddiv(jdouble x, jdouble y))
 304   return x / y;
 305 JRT_END
 306 
 307 JRT_LEAF(jfloat, SharedRuntime::i2f(jint x))
 308   return (jfloat)x;
 309 JRT_END
 310 
 311 JRT_LEAF(jdouble, SharedRuntime::i2d(jint x))
 312   return (jdouble)x;
 313 JRT_END
 314 
 315 JRT_LEAF(jdouble, SharedRuntime::f2d(jfloat x))
 316   return (jdouble)x;
 317 JRT_END
 318 
 319 JRT_LEAF(int,  SharedRuntime::fcmpl(float x, float y))
 320   return x>y ? 1 : (x==y ? 0 : -1);  /* x<y or is_nan*/
 321 JRT_END
 322 
 323 JRT_LEAF(int,  SharedRuntime::fcmpg(float x, float y))
 324   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
 325 JRT_END
 326 
 327 JRT_LEAF(int,  SharedRuntime::dcmpl(double x, double y))
 328   return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan */
 329 JRT_END
 330 
 331 JRT_LEAF(int,  SharedRuntime::dcmpg(double x, double y))
 332   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
 333 JRT_END
 334 
 335 // Functions to return the opposite of the aeabi functions for nan.
 336 JRT_LEAF(int, SharedRuntime::unordered_fcmplt(float x, float y))
 337   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 338 JRT_END
 339 
 340 JRT_LEAF(int, SharedRuntime::unordered_dcmplt(double x, double y))
 341   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 342 JRT_END
 343 
 344 JRT_LEAF(int, SharedRuntime::unordered_fcmple(float x, float y))
 345   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 346 JRT_END
 347 
 348 JRT_LEAF(int, SharedRuntime::unordered_dcmple(double x, double y))
 349   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 350 JRT_END
 351 
 352 JRT_LEAF(int, SharedRuntime::unordered_fcmpge(float x, float y))
 353   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 354 JRT_END
 355 
 356 JRT_LEAF(int, SharedRuntime::unordered_dcmpge(double x, double y))
 357   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 358 JRT_END
 359 
 360 JRT_LEAF(int, SharedRuntime::unordered_fcmpgt(float x, float y))
 361   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 362 JRT_END
 363 
 364 JRT_LEAF(int, SharedRuntime::unordered_dcmpgt(double x, double y))
 365   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 366 JRT_END
 367 
 368 // Intrinsics make gcc generate code for these.
 369 float  SharedRuntime::fneg(float f)   {
 370   return -f;
 371 }
 372 
 373 double SharedRuntime::dneg(double f)  {
 374   return -f;
 375 }
 376 
 377 #endif // __SOFTFP__
 378 
 379 #if defined(__SOFTFP__) || defined(E500V2)
 380 // Intrinsics make gcc generate code for these.
 381 double SharedRuntime::dabs(double f)  {
 382   return (f <= (double)0.0) ? (double)0.0 - f : f;
 383 }
 384 
 385 #endif
 386 
 387 #if defined(__SOFTFP__) || defined(PPC32)
 388 double SharedRuntime::dsqrt(double f) {
 389   return sqrt(f);
 390 }
 391 #endif
 392 
 393 JRT_LEAF(jint, SharedRuntime::f2i(jfloat  x))
 394   if (g_isnan(x))
 395     return 0;
 396   if (x >= (jfloat) max_jint)
 397     return max_jint;
 398   if (x <= (jfloat) min_jint)
 399     return min_jint;
 400   return (jint) x;
 401 JRT_END
 402 
 403 
 404 JRT_LEAF(jlong, SharedRuntime::f2l(jfloat  x))
 405   if (g_isnan(x))
 406     return 0;
 407   if (x >= (jfloat) max_jlong)
 408     return max_jlong;
 409   if (x <= (jfloat) min_jlong)
 410     return min_jlong;
 411   return (jlong) x;
 412 JRT_END
 413 
 414 
 415 JRT_LEAF(jint, SharedRuntime::d2i(jdouble x))
 416   if (g_isnan(x))
 417     return 0;
 418   if (x >= (jdouble) max_jint)
 419     return max_jint;
 420   if (x <= (jdouble) min_jint)
 421     return min_jint;
 422   return (jint) x;
 423 JRT_END
 424 
 425 
 426 JRT_LEAF(jlong, SharedRuntime::d2l(jdouble x))
 427   if (g_isnan(x))
 428     return 0;
 429   if (x >= (jdouble) max_jlong)
 430     return max_jlong;
 431   if (x <= (jdouble) min_jlong)
 432     return min_jlong;
 433   return (jlong) x;
 434 JRT_END
 435 
 436 
 437 JRT_LEAF(jfloat, SharedRuntime::d2f(jdouble x))
 438   return (jfloat)x;
 439 JRT_END
 440 
 441 
 442 JRT_LEAF(jfloat, SharedRuntime::l2f(jlong x))
 443   return (jfloat)x;
 444 JRT_END
 445 
 446 
 447 JRT_LEAF(jdouble, SharedRuntime::l2d(jlong x))
 448   return (jdouble)x;
 449 JRT_END
 450 
 451 // Exception handling across interpreter/compiler boundaries
 452 //
 453 // exception_handler_for_return_address(...) returns the continuation address.
 454 // The continuation address is the entry point of the exception handler of the
 455 // previous frame depending on the return address.
 456 
 457 address SharedRuntime::raw_exception_handler_for_return_address(JavaThread* thread, address return_address) {
 458   assert(frame::verify_return_pc(return_address), err_msg("must be a return address: " INTPTR_FORMAT, return_address));
 459   assert(thread->frames_to_pop_failed_realloc() == 0 || Interpreter::contains(return_address), "missed frames to pop?");
 460 
 461   // Reset method handle flag.
 462   thread->set_is_method_handle_return(false);
 463 
 464   // The fastest case first
 465   CodeBlob* blob = CodeCache::find_blob(return_address);
 466   nmethod* nm = (blob != NULL) ? blob->as_nmethod_or_null() : NULL;
 467   if (nm != NULL) {
 468     // Set flag if return address is a method handle call site.
 469     thread->set_is_method_handle_return(nm->is_method_handle_return(return_address));
 470     // native nmethods don't have exception handlers
 471     assert(!nm->is_native_method(), "no exception handler");
 472     assert(nm->header_begin() != nm->exception_begin(), "no exception handler");
 473     if (nm->is_deopt_pc(return_address)) {
 474       // If we come here because of a stack overflow, the stack may be
 475       // unguarded. Reguard the stack otherwise if we return to the
 476       // deopt blob and the stack bang causes a stack overflow we
 477       // crash.
 478       bool guard_pages_enabled = thread->stack_yellow_zone_enabled();
 479       if (!guard_pages_enabled) guard_pages_enabled = thread->reguard_stack();
 480       assert(guard_pages_enabled, "stack banging in deopt blob may cause crash");
 481       return SharedRuntime::deopt_blob()->unpack_with_exception();
 482     } else {
 483       return nm->exception_begin();
 484     }
 485   }
 486 
 487   // Entry code
 488   if (StubRoutines::returns_to_call_stub(return_address)) {
 489     return StubRoutines::catch_exception_entry();
 490   }
 491   // Interpreted code
 492   if (Interpreter::contains(return_address)) {
 493     return Interpreter::rethrow_exception_entry();
 494   }
 495 
 496   guarantee(blob == NULL || !blob->is_runtime_stub(), "caller should have skipped stub");
 497   guarantee(!VtableStubs::contains(return_address), "NULL exceptions in vtables should have been handled already!");
 498 
 499 #ifndef PRODUCT
 500   { ResourceMark rm;
 501     tty->print_cr("No exception handler found for exception at " INTPTR_FORMAT " - potential problems:", return_address);
 502     tty->print_cr("a) exception happened in (new?) code stubs/buffers that is not handled here");
 503     tty->print_cr("b) other problem");
 504   }
 505 #endif // PRODUCT
 506 
 507   ShouldNotReachHere();
 508   return NULL;
 509 }
 510 
 511 
 512 JRT_LEAF(address, SharedRuntime::exception_handler_for_return_address(JavaThread* thread, address return_address))
 513   return raw_exception_handler_for_return_address(thread, return_address);
 514 JRT_END
 515 
 516 
 517 address SharedRuntime::get_poll_stub(address pc) {
 518   address stub;
 519   // Look up the code blob
 520   CodeBlob *cb = CodeCache::find_blob(pc);
 521 
 522   // Should be an nmethod
 523   assert(cb && cb->is_nmethod(), "safepoint polling: pc must refer to an nmethod");
 524 
 525   // Look up the relocation information
 526   assert(((nmethod*)cb)->is_at_poll_or_poll_return(pc),
 527     "safepoint polling: type must be poll");
 528 
 529   assert(((NativeInstruction*)pc)->is_safepoint_poll(),
 530     "Only polling locations are used for safepoint");
 531 
 532   bool at_poll_return = ((nmethod*)cb)->is_at_poll_return(pc);
 533   bool has_wide_vectors = ((nmethod*)cb)->has_wide_vectors();
 534   if (at_poll_return) {
 535     assert(SharedRuntime::polling_page_return_handler_blob() != NULL,
 536            "polling page return stub not created yet");
 537     stub = SharedRuntime::polling_page_return_handler_blob()->entry_point();
 538   } else if (has_wide_vectors) {
 539     assert(SharedRuntime::polling_page_vectors_safepoint_handler_blob() != NULL,
 540            "polling page vectors safepoint stub not created yet");
 541     stub = SharedRuntime::polling_page_vectors_safepoint_handler_blob()->entry_point();
 542   } else {
 543     assert(SharedRuntime::polling_page_safepoint_handler_blob() != NULL,
 544            "polling page safepoint stub not created yet");
 545     stub = SharedRuntime::polling_page_safepoint_handler_blob()->entry_point();
 546   }
 547 #ifndef PRODUCT
 548   if (TraceSafepoint) {
 549     char buf[256];
 550     jio_snprintf(buf, sizeof(buf),
 551                  "... found polling page %s exception at pc = "
 552                  INTPTR_FORMAT ", stub =" INTPTR_FORMAT,
 553                  at_poll_return ? "return" : "loop",
 554                  (intptr_t)pc, (intptr_t)stub);
 555     tty->print_raw_cr(buf);
 556   }
 557 #endif // PRODUCT
 558   return stub;
 559 }
 560 
 561 
 562 oop SharedRuntime::retrieve_receiver( Symbol* sig, frame caller ) {
 563   assert(caller.is_interpreted_frame(), "");
 564   int args_size = ArgumentSizeComputer(sig).size() + 1;
 565   assert(args_size <= caller.interpreter_frame_expression_stack_size(), "receiver must be on interpreter stack");
 566   oop result = cast_to_oop(*caller.interpreter_frame_tos_at(args_size - 1));
 567   assert(Universe::heap()->is_in(result) && result->is_oop(), "receiver must be an oop");
 568   return result;
 569 }
 570 
 571 
 572 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Handle h_exception) {
 573   if (JvmtiExport::can_post_on_exceptions()) {
 574     vframeStream vfst(thread, true);
 575     methodHandle method = methodHandle(thread, vfst.method());
 576     address bcp = method()->bcp_from(vfst.bci());
 577     JvmtiExport::post_exception_throw(thread, method(), bcp, h_exception());
 578   }
 579   Exceptions::_throw(thread, __FILE__, __LINE__, h_exception);
 580 }
 581 
 582 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Symbol* name, const char *message) {
 583   Handle h_exception = Exceptions::new_exception(thread, name, message);
 584   throw_and_post_jvmti_exception(thread, h_exception);
 585 }
 586 
 587 // The interpreter code to call this tracing function is only
 588 // called/generated when TraceRedefineClasses has the right bits
 589 // set. Since obsolete methods are never compiled, we don't have
 590 // to modify the compilers to generate calls to this function.
 591 //
 592 JRT_LEAF(int, SharedRuntime::rc_trace_method_entry(
 593     JavaThread* thread, Method* method))
 594   assert(RC_TRACE_IN_RANGE(0x00001000, 0x00002000), "wrong call");
 595 
 596   if (method->is_obsolete()) {
 597     // We are calling an obsolete method, but this is not necessarily
 598     // an error. Our method could have been redefined just after we
 599     // fetched the Method* from the constant pool.
 600 
 601     // RC_TRACE macro has an embedded ResourceMark
 602     RC_TRACE_WITH_THREAD(0x00001000, thread,
 603                          ("calling obsolete method '%s'",
 604                           method->name_and_sig_as_C_string()));
 605     if (RC_TRACE_ENABLED(0x00002000)) {
 606       // this option is provided to debug calls to obsolete methods
 607       guarantee(false, "faulting at call to an obsolete method.");
 608     }
 609   }
 610   return 0;
 611 JRT_END
 612 
 613 // ret_pc points into caller; we are returning caller's exception handler
 614 // for given exception
 615 address SharedRuntime::compute_compiled_exc_handler(nmethod* nm, address ret_pc, Handle& exception,
 616                                                     bool force_unwind, bool top_frame_only) {
 617   assert(nm != NULL, "must exist");
 618   ResourceMark rm;
 619 
 620   ScopeDesc* sd = nm->scope_desc_at(ret_pc);
 621   // determine handler bci, if any
 622   EXCEPTION_MARK;
 623 
 624   int handler_bci = -1;
 625   int scope_depth = 0;
 626   if (!force_unwind) {
 627     int bci = sd->bci();
 628     bool recursive_exception = false;
 629     do {
 630       bool skip_scope_increment = false;
 631       // exception handler lookup
 632       KlassHandle ek (THREAD, exception->klass());
 633       methodHandle mh(THREAD, sd->method());
 634       handler_bci = Method::fast_exception_handler_bci_for(mh, ek, bci, THREAD);
 635       if (HAS_PENDING_EXCEPTION) {
 636         recursive_exception = true;
 637         // We threw an exception while trying to find the exception handler.
 638         // Transfer the new exception to the exception handle which will
 639         // be set into thread local storage, and do another lookup for an
 640         // exception handler for this exception, this time starting at the
 641         // BCI of the exception handler which caused the exception to be
 642         // thrown (bugs 4307310 and 4546590). Set "exception" reference
 643         // argument to ensure that the correct exception is thrown (4870175).
 644         exception = Handle(THREAD, PENDING_EXCEPTION);
 645         CLEAR_PENDING_EXCEPTION;
 646         if (handler_bci >= 0) {
 647           bci = handler_bci;
 648           handler_bci = -1;
 649           skip_scope_increment = true;
 650         }
 651       }
 652       else {
 653         recursive_exception = false;
 654       }
 655       if (!top_frame_only && handler_bci < 0 && !skip_scope_increment) {
 656         sd = sd->sender();
 657         if (sd != NULL) {
 658           bci = sd->bci();
 659         }
 660         ++scope_depth;
 661       }
 662     } while (recursive_exception || (!top_frame_only && handler_bci < 0 && sd != NULL));
 663   }
 664 
 665   // found handling method => lookup exception handler
 666   int catch_pco = ret_pc - nm->code_begin();
 667 
 668   ExceptionHandlerTable table(nm);
 669   HandlerTableEntry *t = table.entry_for(catch_pco, handler_bci, scope_depth);
 670   if (t == NULL && (nm->is_compiled_by_c1() || handler_bci != -1)) {
 671     // Allow abbreviated catch tables.  The idea is to allow a method
 672     // to materialize its exceptions without committing to the exact
 673     // routing of exceptions.  In particular this is needed for adding
 674     // a synthetic handler to unlock monitors when inlining
 675     // synchronized methods since the unlock path isn't represented in
 676     // the bytecodes.
 677     t = table.entry_for(catch_pco, -1, 0);
 678   }
 679 
 680 #ifdef COMPILER1
 681   if (t == NULL && nm->is_compiled_by_c1()) {
 682     assert(nm->unwind_handler_begin() != NULL, "");
 683     return nm->unwind_handler_begin();
 684   }
 685 #endif
 686 
 687   if (t == NULL) {
 688     tty->print_cr("MISSING EXCEPTION HANDLER for pc " INTPTR_FORMAT " and handler bci %d", ret_pc, handler_bci);
 689     tty->print_cr("   Exception:");
 690     exception->print();
 691     tty->cr();
 692     tty->print_cr(" Compiled exception table :");
 693     table.print();
 694     nm->print_code();
 695     guarantee(false, "missing exception handler");
 696     return NULL;
 697   }
 698 
 699   return nm->code_begin() + t->pco();
 700 }
 701 
 702 JRT_ENTRY(void, SharedRuntime::throw_AbstractMethodError(JavaThread* thread))
 703   // These errors occur only at call sites
 704   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_AbstractMethodError());
 705 JRT_END
 706 
 707 JRT_ENTRY(void, SharedRuntime::throw_IncompatibleClassChangeError(JavaThread* thread))
 708   // These errors occur only at call sites
 709   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IncompatibleClassChangeError(), "vtable stub");
 710 JRT_END
 711 
 712 JRT_ENTRY(void, SharedRuntime::throw_ArithmeticException(JavaThread* thread))
 713   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
 714 JRT_END
 715 
 716 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException(JavaThread* thread))
 717   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
 718 JRT_END
 719 
 720 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException_at_call(JavaThread* thread))
 721   // This entry point is effectively only used for NullPointerExceptions which occur at inline
 722   // cache sites (when the callee activation is not yet set up) so we are at a call site
 723   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
 724 JRT_END
 725 
 726 JRT_ENTRY(void, SharedRuntime::throw_StackOverflowError(JavaThread* thread))
 727   // We avoid using the normal exception construction in this case because
 728   // it performs an upcall to Java, and we're already out of stack space.
 729   Klass* k = SystemDictionary::StackOverflowError_klass();
 730   oop exception_oop = InstanceKlass::cast(k)->allocate_instance(CHECK);
 731   Handle exception (thread, exception_oop);
 732   if (StackTraceInThrowable) {
 733     java_lang_Throwable::fill_in_stack_trace(exception);
 734   }
 735   // Increment counter for hs_err file reporting
 736   Atomic::inc(&Exceptions::_stack_overflow_errors);
 737   throw_and_post_jvmti_exception(thread, exception);
 738 JRT_END
 739 
 740 address SharedRuntime::continuation_for_implicit_exception(JavaThread* thread,
 741                                                            address pc,
 742                                                            SharedRuntime::ImplicitExceptionKind exception_kind)
 743 {
 744   address target_pc = NULL;
 745 
 746   if (Interpreter::contains(pc)) {
 747 #ifdef CC_INTERP
 748     // C++ interpreter doesn't throw implicit exceptions
 749     ShouldNotReachHere();
 750 #else
 751     switch (exception_kind) {
 752       case IMPLICIT_NULL:           return Interpreter::throw_NullPointerException_entry();
 753       case IMPLICIT_DIVIDE_BY_ZERO: return Interpreter::throw_ArithmeticException_entry();
 754       case STACK_OVERFLOW:          return Interpreter::throw_StackOverflowError_entry();
 755       default:                      ShouldNotReachHere();
 756     }
 757 #endif // !CC_INTERP
 758   } else {
 759     switch (exception_kind) {
 760       case STACK_OVERFLOW: {
 761         // Stack overflow only occurs upon frame setup; the callee is
 762         // going to be unwound. Dispatch to a shared runtime stub
 763         // which will cause the StackOverflowError to be fabricated
 764         // and processed.
 765         // Stack overflow should never occur during deoptimization:
 766         // the compiled method bangs the stack by as much as the
 767         // interpreter would need in case of a deoptimization. The
 768         // deoptimization blob and uncommon trap blob bang the stack
 769         // in a debug VM to verify the correctness of the compiled
 770         // method stack banging.
 771         assert(thread->deopt_mark() == NULL, "no stack overflow from deopt blob/uncommon trap");
 772         Events::log_exception(thread, "StackOverflowError at " INTPTR_FORMAT, pc);
 773         return StubRoutines::throw_StackOverflowError_entry();
 774       }
 775 
 776       case IMPLICIT_NULL: {
 777         if (VtableStubs::contains(pc)) {
 778           // We haven't yet entered the callee frame. Fabricate an
 779           // exception and begin dispatching it in the caller. Since
 780           // the caller was at a call site, it's safe to destroy all
 781           // caller-saved registers, as these entry points do.
 782           VtableStub* vt_stub = VtableStubs::stub_containing(pc);
 783 
 784           // If vt_stub is NULL, then return NULL to signal handler to report the SEGV error.
 785           if (vt_stub == NULL) return NULL;
 786 
 787           if (vt_stub->is_abstract_method_error(pc)) {
 788             assert(!vt_stub->is_vtable_stub(), "should never see AbstractMethodErrors from vtable-type VtableStubs");
 789             Events::log_exception(thread, "AbstractMethodError at " INTPTR_FORMAT, pc);
 790             return StubRoutines::throw_AbstractMethodError_entry();
 791           } else {
 792             Events::log_exception(thread, "NullPointerException at vtable entry " INTPTR_FORMAT, pc);
 793             return StubRoutines::throw_NullPointerException_at_call_entry();
 794           }
 795         } else {
 796           CodeBlob* cb = CodeCache::find_blob(pc);
 797 
 798           // If code blob is NULL, then return NULL to signal handler to report the SEGV error.
 799           if (cb == NULL) return NULL;
 800 
 801           // Exception happened in CodeCache. Must be either:
 802           // 1. Inline-cache check in C2I handler blob,
 803           // 2. Inline-cache check in nmethod, or
 804           // 3. Implicit null exception in nmethod
 805 
 806           if (!cb->is_nmethod()) {
 807             bool is_in_blob = cb->is_adapter_blob() || cb->is_method_handles_adapter_blob();
 808             if (!is_in_blob) {
 809               cb->print();
 810               fatal(err_msg("exception happened outside interpreter, nmethods and vtable stubs at pc " INTPTR_FORMAT, pc));
 811             }
 812             Events::log_exception(thread, "NullPointerException in code blob at " INTPTR_FORMAT, pc);
 813             // There is no handler here, so we will simply unwind.
 814             return StubRoutines::throw_NullPointerException_at_call_entry();
 815           }
 816 
 817           // Otherwise, it's an nmethod.  Consult its exception handlers.
 818           nmethod* nm = (nmethod*)cb;
 819           if (nm->inlinecache_check_contains(pc)) {
 820             // exception happened inside inline-cache check code
 821             // => the nmethod is not yet active (i.e., the frame
 822             // is not set up yet) => use return address pushed by
 823             // caller => don't push another return address
 824             Events::log_exception(thread, "NullPointerException in IC check " INTPTR_FORMAT, pc);
 825             return StubRoutines::throw_NullPointerException_at_call_entry();
 826           }
 827 
 828           if (nm->method()->is_method_handle_intrinsic()) {
 829             // exception happened inside MH dispatch code, similar to a vtable stub
 830             Events::log_exception(thread, "NullPointerException in MH adapter " INTPTR_FORMAT, pc);
 831             return StubRoutines::throw_NullPointerException_at_call_entry();
 832           }
 833 
 834 #ifndef PRODUCT
 835           _implicit_null_throws++;
 836 #endif
 837           target_pc = nm->continuation_for_implicit_exception(pc);
 838           // If there's an unexpected fault, target_pc might be NULL,
 839           // in which case we want to fall through into the normal
 840           // error handling code.
 841         }
 842 
 843         break; // fall through
 844       }
 845 
 846 
 847       case IMPLICIT_DIVIDE_BY_ZERO: {
 848         nmethod* nm = CodeCache::find_nmethod(pc);
 849         guarantee(nm != NULL, "must have containing nmethod for implicit division-by-zero exceptions");
 850 #ifndef PRODUCT
 851         _implicit_div0_throws++;
 852 #endif
 853         target_pc = nm->continuation_for_implicit_exception(pc);
 854         // If there's an unexpected fault, target_pc might be NULL,
 855         // in which case we want to fall through into the normal
 856         // error handling code.
 857         break; // fall through
 858       }
 859 
 860       default: ShouldNotReachHere();
 861     }
 862 
 863     assert(exception_kind == IMPLICIT_NULL || exception_kind == IMPLICIT_DIVIDE_BY_ZERO, "wrong implicit exception kind");
 864 
 865     // for AbortVMOnException flag
 866     NOT_PRODUCT(Exceptions::debug_check_abort("java.lang.NullPointerException"));
 867     if (exception_kind == IMPLICIT_NULL) {
 868       Events::log_exception(thread, "Implicit null exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, pc, target_pc);
 869     } else {
 870       Events::log_exception(thread, "Implicit division by zero exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, pc, target_pc);
 871     }
 872     return target_pc;
 873   }
 874 
 875   ShouldNotReachHere();
 876   return NULL;
 877 }
 878 
 879 
 880 /**
 881  * Throws an java/lang/UnsatisfiedLinkError.  The address of this method is
 882  * installed in the native function entry of all native Java methods before
 883  * they get linked to their actual native methods.
 884  *
 885  * \note
 886  * This method actually never gets called!  The reason is because
 887  * the interpreter's native entries call NativeLookup::lookup() which
 888  * throws the exception when the lookup fails.  The exception is then
 889  * caught and forwarded on the return from NativeLookup::lookup() call
 890  * before the call to the native function.  This might change in the future.
 891  */
 892 JNI_ENTRY(void*, throw_unsatisfied_link_error(JNIEnv* env, ...))
 893 {
 894   // We return a bad value here to make sure that the exception is
 895   // forwarded before we look at the return value.
 896   THROW_(vmSymbols::java_lang_UnsatisfiedLinkError(), (void*)badJNIHandle);
 897 }
 898 JNI_END
 899 
 900 address SharedRuntime::native_method_throw_unsatisfied_link_error_entry() {
 901   return CAST_FROM_FN_PTR(address, &throw_unsatisfied_link_error);
 902 }
 903 
 904 
 905 #ifndef PRODUCT
 906 JRT_ENTRY(intptr_t, SharedRuntime::trace_bytecode(JavaThread* thread, intptr_t preserve_this_value, intptr_t tos, intptr_t tos2))
 907   const frame f = thread->last_frame();
 908   assert(f.is_interpreted_frame(), "must be an interpreted frame");
 909 #ifndef PRODUCT
 910   methodHandle mh(THREAD, f.interpreter_frame_method());
 911   BytecodeTracer::trace(mh, f.interpreter_frame_bcp(), tos, tos2);
 912 #endif // !PRODUCT
 913   return preserve_this_value;
 914 JRT_END
 915 #endif // !PRODUCT
 916 
 917 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::register_finalizer(JavaThread* thread, oopDesc* obj))
 918   assert(obj->is_oop(), "must be a valid oop");
 919   assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
 920   InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
 921 JRT_END
 922 
 923 
 924 jlong SharedRuntime::get_java_tid(Thread* thread) {
 925   if (thread != NULL) {
 926     if (thread->is_Java_thread()) {
 927       oop obj = ((JavaThread*)thread)->threadObj();
 928       return (obj == NULL) ? 0 : java_lang_Thread::thread_id(obj);
 929     }
 930   }
 931   return 0;
 932 }
 933 
 934 /**
 935  * This function ought to be a void function, but cannot be because
 936  * it gets turned into a tail-call on sparc, which runs into dtrace bug
 937  * 6254741.  Once that is fixed we can remove the dummy return value.
 938  */
 939 int SharedRuntime::dtrace_object_alloc(oopDesc* o, int size) {
 940   return dtrace_object_alloc_base(Thread::current(), o, size);
 941 }
 942 
 943 int SharedRuntime::dtrace_object_alloc_base(Thread* thread, oopDesc* o, int size) {
 944   assert(DTraceAllocProbes, "wrong call");
 945   Klass* klass = o->klass();
 946   Symbol* name = klass->name();
 947   HOTSPOT_OBJECT_ALLOC(
 948                    get_java_tid(thread),
 949                    (char *) name->bytes(), name->utf8_length(), size * HeapWordSize);
 950   return 0;
 951 }
 952 
 953 JRT_LEAF(int, SharedRuntime::dtrace_method_entry(
 954     JavaThread* thread, Method* method))
 955   assert(DTraceMethodProbes, "wrong call");
 956   Symbol* kname = method->klass_name();
 957   Symbol* name = method->name();
 958   Symbol* sig = method->signature();
 959   HOTSPOT_METHOD_ENTRY(
 960       get_java_tid(thread),
 961       (char *) kname->bytes(), kname->utf8_length(),
 962       (char *) name->bytes(), name->utf8_length(),
 963       (char *) sig->bytes(), sig->utf8_length());
 964   return 0;
 965 JRT_END
 966 
 967 JRT_LEAF(int, SharedRuntime::dtrace_method_exit(
 968     JavaThread* thread, Method* method))
 969   assert(DTraceMethodProbes, "wrong call");
 970   Symbol* kname = method->klass_name();
 971   Symbol* name = method->name();
 972   Symbol* sig = method->signature();
 973   HOTSPOT_METHOD_RETURN(
 974       get_java_tid(thread),
 975       (char *) kname->bytes(), kname->utf8_length(),
 976       (char *) name->bytes(), name->utf8_length(),
 977       (char *) sig->bytes(), sig->utf8_length());
 978   return 0;
 979 JRT_END
 980 
 981 
 982 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode)
 983 // for a call current in progress, i.e., arguments has been pushed on stack
 984 // put callee has not been invoked yet.  Used by: resolve virtual/static,
 985 // vtable updates, etc.  Caller frame must be compiled.
 986 Handle SharedRuntime::find_callee_info(JavaThread* thread, Bytecodes::Code& bc, CallInfo& callinfo, TRAPS) {
 987   ResourceMark rm(THREAD);
 988 
 989   // last java frame on stack (which includes native call frames)
 990   vframeStream vfst(thread, true);  // Do not skip and javaCalls
 991 
 992   return find_callee_info_helper(thread, vfst, bc, callinfo, THREAD);
 993 }
 994 
 995 
 996 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode
 997 // for a call current in progress, i.e., arguments has been pushed on stack
 998 // but callee has not been invoked yet.  Caller frame must be compiled.
 999 Handle SharedRuntime::find_callee_info_helper(JavaThread* thread,
1000                                               vframeStream& vfst,
1001                                               Bytecodes::Code& bc,
1002                                               CallInfo& callinfo, TRAPS) {
1003   Handle receiver;
1004   Handle nullHandle;  //create a handy null handle for exception returns
1005 
1006   assert(!vfst.at_end(), "Java frame must exist");
1007 
1008   // Find caller and bci from vframe
1009   methodHandle caller(THREAD, vfst.method());
1010   int          bci   = vfst.bci();
1011 
1012   // Find bytecode
1013   Bytecode_invoke bytecode(caller, bci);
1014   bc = bytecode.invoke_code();
1015   int bytecode_index = bytecode.index();
1016 
1017   // Find receiver for non-static call
1018   if (bc != Bytecodes::_invokestatic &&
1019       bc != Bytecodes::_invokedynamic &&
1020       bc != Bytecodes::_invokehandle) {
1021     // This register map must be update since we need to find the receiver for
1022     // compiled frames. The receiver might be in a register.
1023     RegisterMap reg_map2(thread);
1024     frame stubFrame   = thread->last_frame();
1025     // Caller-frame is a compiled frame
1026     frame callerFrame = stubFrame.sender(&reg_map2);
1027 
1028     methodHandle callee = bytecode.static_target(CHECK_(nullHandle));
1029     if (callee.is_null()) {
1030       THROW_(vmSymbols::java_lang_NoSuchMethodException(), nullHandle);
1031     }
1032     // Retrieve from a compiled argument list
1033     receiver = Handle(THREAD, callerFrame.retrieve_receiver(&reg_map2));
1034 
1035     if (receiver.is_null()) {
1036       THROW_(vmSymbols::java_lang_NullPointerException(), nullHandle);
1037     }
1038   }
1039 
1040   // Resolve method. This is parameterized by bytecode.
1041   constantPoolHandle constants(THREAD, caller->constants());
1042   assert(receiver.is_null() || receiver->is_oop(), "wrong receiver");
1043   LinkResolver::resolve_invoke(callinfo, receiver, constants, bytecode_index, bc, CHECK_(nullHandle));
1044 
1045 #ifdef ASSERT
1046   // Check that the receiver klass is of the right subtype and that it is initialized for virtual calls
1047   if (bc != Bytecodes::_invokestatic && bc != Bytecodes::_invokedynamic && bc != Bytecodes::_invokehandle) {
1048     assert(receiver.not_null(), "should have thrown exception");
1049     KlassHandle receiver_klass(THREAD, receiver->klass());
1050     Klass* rk = constants->klass_ref_at(bytecode_index, CHECK_(nullHandle));
1051                             // klass is already loaded
1052     KlassHandle static_receiver_klass(THREAD, rk);
1053     // Method handle invokes might have been optimized to a direct call
1054     // so don't check for the receiver class.
1055     // FIXME this weakens the assert too much
1056     methodHandle callee = callinfo.selected_method();
1057     assert(receiver_klass->is_subtype_of(static_receiver_klass()) ||
1058            callee->is_method_handle_intrinsic() ||
1059            callee->is_compiled_lambda_form(),
1060            "actual receiver must be subclass of static receiver klass");
1061     if (receiver_klass->oop_is_instance()) {
1062       if (InstanceKlass::cast(receiver_klass())->is_not_initialized()) {
1063         tty->print_cr("ERROR: Klass not yet initialized!!");
1064         receiver_klass()->print();
1065       }
1066       assert(!InstanceKlass::cast(receiver_klass())->is_not_initialized(), "receiver_klass must be initialized");
1067     }
1068   }
1069 #endif
1070 
1071   return receiver;
1072 }
1073 
1074 methodHandle SharedRuntime::find_callee_method(JavaThread* thread, TRAPS) {
1075   ResourceMark rm(THREAD);
1076   // We need first to check if any Java activations (compiled, interpreted)
1077   // exist on the stack since last JavaCall.  If not, we need
1078   // to get the target method from the JavaCall wrapper.
1079   vframeStream vfst(thread, true);  // Do not skip any javaCalls
1080   methodHandle callee_method;
1081   if (vfst.at_end()) {
1082     // No Java frames were found on stack since we did the JavaCall.
1083     // Hence the stack can only contain an entry_frame.  We need to
1084     // find the target method from the stub frame.
1085     RegisterMap reg_map(thread, false);
1086     frame fr = thread->last_frame();
1087     assert(fr.is_runtime_frame(), "must be a runtimeStub");
1088     fr = fr.sender(&reg_map);
1089     assert(fr.is_entry_frame(), "must be");
1090     // fr is now pointing to the entry frame.
1091     callee_method = methodHandle(THREAD, fr.entry_frame_call_wrapper()->callee_method());
1092     assert(fr.entry_frame_call_wrapper()->receiver() == NULL || !callee_method->is_static(), "non-null receiver for static call??");
1093   } else {
1094     Bytecodes::Code bc;
1095     CallInfo callinfo;
1096     find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(methodHandle()));
1097     callee_method = callinfo.selected_method();
1098   }
1099   assert(callee_method()->is_method(), "must be");
1100   return callee_method;
1101 }
1102 
1103 // Resolves a call.
1104 methodHandle SharedRuntime::resolve_helper(JavaThread *thread,
1105                                            bool is_virtual,
1106                                            bool is_optimized, TRAPS) {
1107   methodHandle callee_method;
1108   callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
1109   if (JvmtiExport::can_hotswap_or_post_breakpoint()) {
1110     int retry_count = 0;
1111     while (!HAS_PENDING_EXCEPTION && callee_method->is_old() &&
1112            callee_method->method_holder() != SystemDictionary::Object_klass()) {
1113       // If has a pending exception then there is no need to re-try to
1114       // resolve this method.
1115       // If the method has been redefined, we need to try again.
1116       // Hack: we have no way to update the vtables of arrays, so don't
1117       // require that java.lang.Object has been updated.
1118 
1119       // It is very unlikely that method is redefined more than 100 times
1120       // in the middle of resolve. If it is looping here more than 100 times
1121       // means then there could be a bug here.
1122       guarantee((retry_count++ < 100),
1123                 "Could not resolve to latest version of redefined method");
1124       // method is redefined in the middle of resolve so re-try.
1125       callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
1126     }
1127   }
1128   return callee_method;
1129 }
1130 
1131 // Resolves a call.  The compilers generate code for calls that go here
1132 // and are patched with the real destination of the call.
1133 methodHandle SharedRuntime::resolve_sub_helper(JavaThread *thread,
1134                                            bool is_virtual,
1135                                            bool is_optimized, TRAPS) {
1136 
1137   ResourceMark rm(thread);
1138   RegisterMap cbl_map(thread, false);
1139   frame caller_frame = thread->last_frame().sender(&cbl_map);
1140 
1141   CodeBlob* caller_cb = caller_frame.cb();
1142   guarantee(caller_cb != NULL && caller_cb->is_nmethod(), "must be called from nmethod");
1143   nmethod* caller_nm = caller_cb->as_nmethod_or_null();
1144 
1145   // make sure caller is not getting deoptimized
1146   // and removed before we are done with it.
1147   // CLEANUP - with lazy deopt shouldn't need this lock
1148   nmethodLocker caller_lock(caller_nm);
1149 
1150   // determine call info & receiver
1151   // note: a) receiver is NULL for static calls
1152   //       b) an exception is thrown if receiver is NULL for non-static calls
1153   CallInfo call_info;
1154   Bytecodes::Code invoke_code = Bytecodes::_illegal;
1155   Handle receiver = find_callee_info(thread, invoke_code,
1156                                      call_info, CHECK_(methodHandle()));
1157   methodHandle callee_method = call_info.selected_method();
1158 
1159   assert((!is_virtual && invoke_code == Bytecodes::_invokestatic ) ||
1160          (!is_virtual && invoke_code == Bytecodes::_invokehandle ) ||
1161          (!is_virtual && invoke_code == Bytecodes::_invokedynamic) ||
1162          ( is_virtual && invoke_code != Bytecodes::_invokestatic ), "inconsistent bytecode");
1163 
1164   assert(caller_nm->is_alive(), "It should be alive");
1165 
1166 #ifndef PRODUCT
1167   // tracing/debugging/statistics
1168   int *addr = (is_optimized) ? (&_resolve_opt_virtual_ctr) :
1169                 (is_virtual) ? (&_resolve_virtual_ctr) :
1170                                (&_resolve_static_ctr);
1171   Atomic::inc(addr);
1172 
1173   if (TraceCallFixup) {
1174     ResourceMark rm(thread);
1175     tty->print("resolving %s%s (%s) call to",
1176       (is_optimized) ? "optimized " : "", (is_virtual) ? "virtual" : "static",
1177       Bytecodes::name(invoke_code));
1178     callee_method->print_short_name(tty);
1179     tty->print_cr(" at pc: " INTPTR_FORMAT " to code: " INTPTR_FORMAT, caller_frame.pc(), callee_method->code());
1180   }
1181 #endif
1182 
1183   // JSR 292 key invariant:
1184   // If the resolved method is a MethodHandle invoke target, the call
1185   // site must be a MethodHandle call site, because the lambda form might tail-call
1186   // leaving the stack in a state unknown to either caller or callee
1187   // TODO detune for now but we might need it again
1188 //  assert(!callee_method->is_compiled_lambda_form() ||
1189 //         caller_nm->is_method_handle_return(caller_frame.pc()), "must be MH call site");
1190 
1191   // Compute entry points. This might require generation of C2I converter
1192   // frames, so we cannot be holding any locks here. Furthermore, the
1193   // computation of the entry points is independent of patching the call.  We
1194   // always return the entry-point, but we only patch the stub if the call has
1195   // not been deoptimized.  Return values: For a virtual call this is an
1196   // (cached_oop, destination address) pair. For a static call/optimized
1197   // virtual this is just a destination address.
1198 
1199   StaticCallInfo static_call_info;
1200   CompiledICInfo virtual_call_info;
1201 
1202   // Make sure the callee nmethod does not get deoptimized and removed before
1203   // we are done patching the code.
1204   nmethod* callee_nm = callee_method->code();
1205   if (callee_nm != NULL && !callee_nm->is_in_use()) {
1206     // Patch call site to C2I adapter if callee nmethod is deoptimized or unloaded.
1207     callee_nm = NULL;
1208   }
1209   nmethodLocker nl_callee(callee_nm);
1210 #ifdef ASSERT
1211   address dest_entry_point = callee_nm == NULL ? 0 : callee_nm->entry_point(); // used below
1212 #endif
1213 
1214   if (is_virtual) {
1215     assert(receiver.not_null() || invoke_code == Bytecodes::_invokehandle, "sanity check");
1216     bool static_bound = call_info.resolved_method()->can_be_statically_bound();
1217     KlassHandle h_klass(THREAD, invoke_code == Bytecodes::_invokehandle ? NULL : receiver->klass());
1218     CompiledIC::compute_monomorphic_entry(callee_method, h_klass,
1219                      is_optimized, static_bound, virtual_call_info,
1220                      CHECK_(methodHandle()));
1221   } else {
1222     // static call
1223     CompiledStaticCall::compute_entry(callee_method, static_call_info);
1224   }
1225 
1226   // grab lock, check for deoptimization and potentially patch caller
1227   {
1228     MutexLocker ml_patch(CompiledIC_lock);
1229 
1230     // Lock blocks for safepoint during which both nmethods can change state.
1231 
1232     // Now that we are ready to patch if the Method* was redefined then
1233     // don't update call site and let the caller retry.
1234     // Don't update call site if callee nmethod was unloaded or deoptimized.
1235     // Don't update call site if callee nmethod was replaced by an other nmethod
1236     // which may happen when multiply alive nmethod (tiered compilation)
1237     // will be supported.
1238     if (!callee_method->is_old() &&
1239         (callee_nm == NULL || callee_nm->is_in_use() && (callee_method->code() == callee_nm))) {
1240 #ifdef ASSERT
1241       // We must not try to patch to jump to an already unloaded method.
1242       if (dest_entry_point != 0) {
1243         CodeBlob* cb = CodeCache::find_blob(dest_entry_point);
1244         assert((cb != NULL) && cb->is_nmethod() && (((nmethod*)cb) == callee_nm),
1245                "should not call unloaded nmethod");
1246       }
1247 #endif
1248       if (is_virtual) {
1249         CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc());
1250         if (inline_cache->is_clean()) {
1251           inline_cache->set_to_monomorphic(virtual_call_info);
1252         }
1253       } else {
1254         CompiledStaticCall* ssc = compiledStaticCall_before(caller_frame.pc());
1255         if (ssc->is_clean()) ssc->set(static_call_info);
1256       }
1257     }
1258 
1259   } // unlock CompiledIC_lock
1260 
1261   return callee_method;
1262 }
1263 
1264 
1265 // Inline caches exist only in compiled code
1266 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_ic_miss(JavaThread* thread))
1267 #ifdef ASSERT
1268   RegisterMap reg_map(thread, false);
1269   frame stub_frame = thread->last_frame();
1270   assert(stub_frame.is_runtime_frame(), "sanity check");
1271   frame caller_frame = stub_frame.sender(&reg_map);
1272   assert(!caller_frame.is_interpreted_frame() && !caller_frame.is_entry_frame(), "unexpected frame");
1273 #endif /* ASSERT */
1274 
1275   methodHandle callee_method;
1276   JRT_BLOCK
1277     callee_method = SharedRuntime::handle_ic_miss_helper(thread, CHECK_NULL);
1278     // Return Method* through TLS
1279     thread->set_vm_result_2(callee_method());
1280   JRT_BLOCK_END
1281   // return compiled code entry point after potential safepoints
1282   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1283   return callee_method->verified_code_entry();
1284 JRT_END
1285 
1286 
1287 // Handle call site that has been made non-entrant
1288 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method(JavaThread* thread))
1289   // 6243940 We might end up in here if the callee is deoptimized
1290   // as we race to call it.  We don't want to take a safepoint if
1291   // the caller was interpreted because the caller frame will look
1292   // interpreted to the stack walkers and arguments are now
1293   // "compiled" so it is much better to make this transition
1294   // invisible to the stack walking code. The i2c path will
1295   // place the callee method in the callee_target. It is stashed
1296   // there because if we try and find the callee by normal means a
1297   // safepoint is possible and have trouble gc'ing the compiled args.
1298   RegisterMap reg_map(thread, false);
1299   frame stub_frame = thread->last_frame();
1300   assert(stub_frame.is_runtime_frame(), "sanity check");
1301   frame caller_frame = stub_frame.sender(&reg_map);
1302 
1303   if (caller_frame.is_interpreted_frame() ||
1304       caller_frame.is_entry_frame()) {
1305     Method* callee = thread->callee_target();
1306     guarantee(callee != NULL && callee->is_method(), "bad handshake");
1307     thread->set_vm_result_2(callee);
1308     thread->set_callee_target(NULL);
1309     return callee->get_c2i_entry();
1310   }
1311 
1312   // Must be compiled to compiled path which is safe to stackwalk
1313   methodHandle callee_method;
1314   JRT_BLOCK
1315     // Force resolving of caller (if we called from compiled frame)
1316     callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_NULL);
1317     thread->set_vm_result_2(callee_method());
1318   JRT_BLOCK_END
1319   // return compiled code entry point after potential safepoints
1320   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1321   return callee_method->verified_code_entry();
1322 JRT_END
1323 
1324 // Handle abstract method call
1325 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_abstract(JavaThread* thread))
1326   return StubRoutines::throw_AbstractMethodError_entry();
1327 JRT_END
1328 
1329 
1330 // resolve a static call and patch code
1331 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_static_call_C(JavaThread *thread ))
1332   methodHandle callee_method;
1333   JRT_BLOCK
1334     callee_method = SharedRuntime::resolve_helper(thread, false, false, CHECK_NULL);
1335     thread->set_vm_result_2(callee_method());
1336   JRT_BLOCK_END
1337   // return compiled code entry point after potential safepoints
1338   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1339   return callee_method->verified_code_entry();
1340 JRT_END
1341 
1342 
1343 // resolve virtual call and update inline cache to monomorphic
1344 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_virtual_call_C(JavaThread *thread ))
1345   methodHandle callee_method;
1346   JRT_BLOCK
1347     callee_method = SharedRuntime::resolve_helper(thread, true, false, CHECK_NULL);
1348     thread->set_vm_result_2(callee_method());
1349   JRT_BLOCK_END
1350   // return compiled code entry point after potential safepoints
1351   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1352   return callee_method->verified_code_entry();
1353 JRT_END
1354 
1355 
1356 // Resolve a virtual call that can be statically bound (e.g., always
1357 // monomorphic, so it has no inline cache).  Patch code to resolved target.
1358 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_opt_virtual_call_C(JavaThread *thread))
1359   methodHandle callee_method;
1360   JRT_BLOCK
1361     callee_method = SharedRuntime::resolve_helper(thread, true, true, CHECK_NULL);
1362     thread->set_vm_result_2(callee_method());
1363   JRT_BLOCK_END
1364   // return compiled code entry point after potential safepoints
1365   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1366   return callee_method->verified_code_entry();
1367 JRT_END
1368 
1369 
1370 
1371 
1372 
1373 methodHandle SharedRuntime::handle_ic_miss_helper(JavaThread *thread, TRAPS) {
1374   ResourceMark rm(thread);
1375   CallInfo call_info;
1376   Bytecodes::Code bc;
1377 
1378   // receiver is NULL for static calls. An exception is thrown for NULL
1379   // receivers for non-static calls
1380   Handle receiver = find_callee_info(thread, bc, call_info,
1381                                      CHECK_(methodHandle()));
1382   // Compiler1 can produce virtual call sites that can actually be statically bound
1383   // If we fell thru to below we would think that the site was going megamorphic
1384   // when in fact the site can never miss. Worse because we'd think it was megamorphic
1385   // we'd try and do a vtable dispatch however methods that can be statically bound
1386   // don't have vtable entries (vtable_index < 0) and we'd blow up. So we force a
1387   // reresolution of the  call site (as if we did a handle_wrong_method and not an
1388   // plain ic_miss) and the site will be converted to an optimized virtual call site
1389   // never to miss again. I don't believe C2 will produce code like this but if it
1390   // did this would still be the correct thing to do for it too, hence no ifdef.
1391   //
1392   if (call_info.resolved_method()->can_be_statically_bound()) {
1393     methodHandle callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_(methodHandle()));
1394     if (TraceCallFixup) {
1395       RegisterMap reg_map(thread, false);
1396       frame caller_frame = thread->last_frame().sender(&reg_map);
1397       ResourceMark rm(thread);
1398       tty->print("converting IC miss to reresolve (%s) call to", Bytecodes::name(bc));
1399       callee_method->print_short_name(tty);
1400       tty->print_cr(" from pc: " INTPTR_FORMAT, caller_frame.pc());
1401       tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1402     }
1403     return callee_method;
1404   }
1405 
1406   methodHandle callee_method = call_info.selected_method();
1407 
1408   bool should_be_mono = false;
1409 
1410 #ifndef PRODUCT
1411   Atomic::inc(&_ic_miss_ctr);
1412 
1413   // Statistics & Tracing
1414   if (TraceCallFixup) {
1415     ResourceMark rm(thread);
1416     tty->print("IC miss (%s) call to", Bytecodes::name(bc));
1417     callee_method->print_short_name(tty);
1418     tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1419   }
1420 
1421   if (ICMissHistogram) {
1422     MutexLocker m(VMStatistic_lock);
1423     RegisterMap reg_map(thread, false);
1424     frame f = thread->last_frame().real_sender(&reg_map);// skip runtime stub
1425     // produce statistics under the lock
1426     trace_ic_miss(f.pc());
1427   }
1428 #endif
1429 
1430   // install an event collector so that when a vtable stub is created the
1431   // profiler can be notified via a DYNAMIC_CODE_GENERATED event. The
1432   // event can't be posted when the stub is created as locks are held
1433   // - instead the event will be deferred until the event collector goes
1434   // out of scope.
1435   JvmtiDynamicCodeEventCollector event_collector;
1436 
1437   // Update inline cache to megamorphic. Skip update if we are called from interpreted.
1438   { MutexLocker ml_patch (CompiledIC_lock);
1439     RegisterMap reg_map(thread, false);
1440     frame caller_frame = thread->last_frame().sender(&reg_map);
1441     CodeBlob* cb = caller_frame.cb();
1442     if (cb->is_nmethod()) {
1443       CompiledIC* inline_cache = CompiledIC_before(((nmethod*)cb), caller_frame.pc());
1444       bool should_be_mono = false;
1445       if (inline_cache->is_optimized()) {
1446         if (TraceCallFixup) {
1447           ResourceMark rm(thread);
1448           tty->print("OPTIMIZED IC miss (%s) call to", Bytecodes::name(bc));
1449           callee_method->print_short_name(tty);
1450           tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1451         }
1452         should_be_mono = true;
1453       } else if (inline_cache->is_icholder_call()) {
1454         CompiledICHolder* ic_oop = inline_cache->cached_icholder();
1455         if (ic_oop != NULL) {
1456 
1457           if (receiver()->klass() == ic_oop->holder_klass()) {
1458             // This isn't a real miss. We must have seen that compiled code
1459             // is now available and we want the call site converted to a
1460             // monomorphic compiled call site.
1461             // We can't assert for callee_method->code() != NULL because it
1462             // could have been deoptimized in the meantime
1463             if (TraceCallFixup) {
1464               ResourceMark rm(thread);
1465               tty->print("FALSE IC miss (%s) converting to compiled call to", Bytecodes::name(bc));
1466               callee_method->print_short_name(tty);
1467               tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1468             }
1469             should_be_mono = true;
1470           }
1471         }
1472       }
1473 
1474       if (should_be_mono) {
1475 
1476         // We have a path that was monomorphic but was going interpreted
1477         // and now we have (or had) a compiled entry. We correct the IC
1478         // by using a new icBuffer.
1479         CompiledICInfo info;
1480         KlassHandle receiver_klass(THREAD, receiver()->klass());
1481         inline_cache->compute_monomorphic_entry(callee_method,
1482                                                 receiver_klass,
1483                                                 inline_cache->is_optimized(),
1484                                                 false,
1485                                                 info, CHECK_(methodHandle()));
1486         inline_cache->set_to_monomorphic(info);
1487       } else if (!inline_cache->is_megamorphic() && !inline_cache->is_clean()) {
1488         // Potential change to megamorphic
1489         bool successful = inline_cache->set_to_megamorphic(&call_info, bc, CHECK_(methodHandle()));
1490         if (!successful) {
1491           inline_cache->set_to_clean();
1492         }
1493       } else {
1494         // Either clean or megamorphic
1495       }
1496     }
1497   } // Release CompiledIC_lock
1498 
1499   return callee_method;
1500 }
1501 
1502 //
1503 // Resets a call-site in compiled code so it will get resolved again.
1504 // This routines handles both virtual call sites, optimized virtual call
1505 // sites, and static call sites. Typically used to change a call sites
1506 // destination from compiled to interpreted.
1507 //
1508 methodHandle SharedRuntime::reresolve_call_site(JavaThread *thread, TRAPS) {
1509   ResourceMark rm(thread);
1510   RegisterMap reg_map(thread, false);
1511   frame stub_frame = thread->last_frame();
1512   assert(stub_frame.is_runtime_frame(), "must be a runtimeStub");
1513   frame caller = stub_frame.sender(&reg_map);
1514 
1515   // Do nothing if the frame isn't a live compiled frame.
1516   // nmethod could be deoptimized by the time we get here
1517   // so no update to the caller is needed.
1518 
1519   if (caller.is_compiled_frame() && !caller.is_deoptimized_frame()) {
1520 
1521     address pc = caller.pc();
1522 
1523     // Default call_addr is the location of the "basic" call.
1524     // Determine the address of the call we a reresolving. With
1525     // Inline Caches we will always find a recognizable call.
1526     // With Inline Caches disabled we may or may not find a
1527     // recognizable call. We will always find a call for static
1528     // calls and for optimized virtual calls. For vanilla virtual
1529     // calls it depends on the state of the UseInlineCaches switch.
1530     //
1531     // With Inline Caches disabled we can get here for a virtual call
1532     // for two reasons:
1533     //   1 - calling an abstract method. The vtable for abstract methods
1534     //       will run us thru handle_wrong_method and we will eventually
1535     //       end up in the interpreter to throw the ame.
1536     //   2 - a racing deoptimization. We could be doing a vanilla vtable
1537     //       call and between the time we fetch the entry address and
1538     //       we jump to it the target gets deoptimized. Similar to 1
1539     //       we will wind up in the interprter (thru a c2i with c2).
1540     //
1541     address call_addr = NULL;
1542     {
1543       // Get call instruction under lock because another thread may be
1544       // busy patching it.
1545       MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
1546       // Location of call instruction
1547       if (NativeCall::is_call_before(pc)) {
1548         NativeCall *ncall = nativeCall_before(pc);
1549         call_addr = ncall->instruction_address();
1550       }
1551     }
1552 
1553     // Check for static or virtual call
1554     bool is_static_call = false;
1555     nmethod* caller_nm = CodeCache::find_nmethod(pc);
1556     // Make sure nmethod doesn't get deoptimized and removed until
1557     // this is done with it.
1558     // CLEANUP - with lazy deopt shouldn't need this lock
1559     nmethodLocker nmlock(caller_nm);
1560 
1561     if (call_addr != NULL) {
1562       RelocIterator iter(caller_nm, call_addr, call_addr+1);
1563       int ret = iter.next(); // Get item
1564       if (ret) {
1565         assert(iter.addr() == call_addr, "must find call");
1566         if (iter.type() == relocInfo::static_call_type) {
1567           is_static_call = true;
1568         } else {
1569           assert(iter.type() == relocInfo::virtual_call_type ||
1570                  iter.type() == relocInfo::opt_virtual_call_type
1571                 , "unexpected relocInfo. type");
1572         }
1573       } else {
1574         assert(!UseInlineCaches, "relocation info. must exist for this address");
1575       }
1576 
1577       // Cleaning the inline cache will force a new resolve. This is more robust
1578       // than directly setting it to the new destination, since resolving of calls
1579       // is always done through the same code path. (experience shows that it
1580       // leads to very hard to track down bugs, if an inline cache gets updated
1581       // to a wrong method). It should not be performance critical, since the
1582       // resolve is only done once.
1583 
1584       MutexLocker ml(CompiledIC_lock);
1585       if (is_static_call) {
1586         CompiledStaticCall* ssc= compiledStaticCall_at(call_addr);
1587         ssc->set_to_clean();
1588       } else {
1589         // compiled, dispatched call (which used to call an interpreted method)
1590         CompiledIC* inline_cache = CompiledIC_at(caller_nm, call_addr);
1591         inline_cache->set_to_clean();
1592       }
1593     }
1594 
1595   }
1596 
1597   methodHandle callee_method = find_callee_method(thread, CHECK_(methodHandle()));
1598 
1599 
1600 #ifndef PRODUCT
1601   Atomic::inc(&_wrong_method_ctr);
1602 
1603   if (TraceCallFixup) {
1604     ResourceMark rm(thread);
1605     tty->print("handle_wrong_method reresolving call to");
1606     callee_method->print_short_name(tty);
1607     tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1608   }
1609 #endif
1610 
1611   return callee_method;
1612 }
1613 
1614 #ifdef ASSERT
1615 void SharedRuntime::check_member_name_argument_is_last_argument(methodHandle method,
1616                                                                 const BasicType* sig_bt,
1617                                                                 const VMRegPair* regs) {
1618   ResourceMark rm;
1619   const int total_args_passed = method->size_of_parameters();
1620   const VMRegPair*    regs_with_member_name = regs;
1621         VMRegPair* regs_without_member_name = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed - 1);
1622 
1623   const int member_arg_pos = total_args_passed - 1;
1624   assert(member_arg_pos >= 0 && member_arg_pos < total_args_passed, "oob");
1625   assert(sig_bt[member_arg_pos] == T_OBJECT, "dispatch argument must be an object");
1626 
1627   const bool is_outgoing = method->is_method_handle_intrinsic();
1628   int comp_args_on_stack = java_calling_convention(sig_bt, regs_without_member_name, total_args_passed - 1, is_outgoing);
1629 
1630   for (int i = 0; i < member_arg_pos; i++) {
1631     VMReg a =    regs_with_member_name[i].first();
1632     VMReg b = regs_without_member_name[i].first();
1633     assert(a->value() == b->value(), err_msg_res("register allocation mismatch: a=%d, b=%d", a->value(), b->value()));
1634   }
1635   assert(regs_with_member_name[member_arg_pos].first()->is_valid(), "bad member arg");
1636 }
1637 #endif
1638 
1639 // ---------------------------------------------------------------------------
1640 // We are calling the interpreter via a c2i. Normally this would mean that
1641 // we were called by a compiled method. However we could have lost a race
1642 // where we went int -> i2c -> c2i and so the caller could in fact be
1643 // interpreted. If the caller is compiled we attempt to patch the caller
1644 // so he no longer calls into the interpreter.
1645 IRT_LEAF(void, SharedRuntime::fixup_callers_callsite(Method* method, address caller_pc))
1646   Method* moop(method);
1647 
1648   address entry_point = moop->from_compiled_entry();
1649 
1650   // It's possible that deoptimization can occur at a call site which hasn't
1651   // been resolved yet, in which case this function will be called from
1652   // an nmethod that has been patched for deopt and we can ignore the
1653   // request for a fixup.
1654   // Also it is possible that we lost a race in that from_compiled_entry
1655   // is now back to the i2c in that case we don't need to patch and if
1656   // we did we'd leap into space because the callsite needs to use
1657   // "to interpreter" stub in order to load up the Method*. Don't
1658   // ask me how I know this...
1659 
1660   CodeBlob* cb = CodeCache::find_blob(caller_pc);
1661   if (!cb->is_nmethod() || entry_point == moop->get_c2i_entry()) {
1662     return;
1663   }
1664 
1665   // The check above makes sure this is a nmethod.
1666   nmethod* nm = cb->as_nmethod_or_null();
1667   assert(nm, "must be");
1668 
1669   // Get the return PC for the passed caller PC.
1670   address return_pc = caller_pc + frame::pc_return_offset;
1671 
1672   // There is a benign race here. We could be attempting to patch to a compiled
1673   // entry point at the same time the callee is being deoptimized. If that is
1674   // the case then entry_point may in fact point to a c2i and we'd patch the
1675   // call site with the same old data. clear_code will set code() to NULL
1676   // at the end of it. If we happen to see that NULL then we can skip trying
1677   // to patch. If we hit the window where the callee has a c2i in the
1678   // from_compiled_entry and the NULL isn't present yet then we lose the race
1679   // and patch the code with the same old data. Asi es la vida.
1680 
1681   if (moop->code() == NULL) return;
1682 
1683   if (nm->is_in_use()) {
1684 
1685     // Expect to find a native call there (unless it was no-inline cache vtable dispatch)
1686     MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
1687     if (NativeCall::is_call_before(return_pc)) {
1688       NativeCall *call = nativeCall_before(return_pc);
1689       //
1690       // bug 6281185. We might get here after resolving a call site to a vanilla
1691       // virtual call. Because the resolvee uses the verified entry it may then
1692       // see compiled code and attempt to patch the site by calling us. This would
1693       // then incorrectly convert the call site to optimized and its downhill from
1694       // there. If you're lucky you'll get the assert in the bugid, if not you've
1695       // just made a call site that could be megamorphic into a monomorphic site
1696       // for the rest of its life! Just another racing bug in the life of
1697       // fixup_callers_callsite ...
1698       //
1699       RelocIterator iter(nm, call->instruction_address(), call->next_instruction_address());
1700       iter.next();
1701       assert(iter.has_current(), "must have a reloc at java call site");
1702       relocInfo::relocType typ = iter.reloc()->type();
1703       if (typ != relocInfo::static_call_type &&
1704            typ != relocInfo::opt_virtual_call_type &&
1705            typ != relocInfo::static_stub_type) {
1706         return;
1707       }
1708       address destination = call->destination();
1709       if (destination != entry_point) {
1710         CodeBlob* callee = CodeCache::find_blob(destination);
1711         // callee == cb seems weird. It means calling interpreter thru stub.
1712         if (callee == cb || callee->is_adapter_blob()) {
1713           // static call or optimized virtual
1714           if (TraceCallFixup) {
1715             tty->print("fixup callsite           at " INTPTR_FORMAT " to compiled code for", caller_pc);
1716             moop->print_short_name(tty);
1717             tty->print_cr(" to " INTPTR_FORMAT, entry_point);
1718           }
1719           call->set_destination_mt_safe(entry_point);
1720         } else {
1721           if (TraceCallFixup) {
1722             tty->print("failed to fixup callsite at " INTPTR_FORMAT " to compiled code for", caller_pc);
1723             moop->print_short_name(tty);
1724             tty->print_cr(" to " INTPTR_FORMAT, entry_point);
1725           }
1726           // assert is too strong could also be resolve destinations.
1727           // assert(InlineCacheBuffer::contains(destination) || VtableStubs::contains(destination), "must be");
1728         }
1729       } else {
1730           if (TraceCallFixup) {
1731             tty->print("already patched callsite at " INTPTR_FORMAT " to compiled code for", caller_pc);
1732             moop->print_short_name(tty);
1733             tty->print_cr(" to " INTPTR_FORMAT, entry_point);
1734           }
1735       }
1736     }
1737   }
1738 IRT_END
1739 
1740 
1741 // same as JVM_Arraycopy, but called directly from compiled code
1742 JRT_ENTRY(void, SharedRuntime::slow_arraycopy_C(oopDesc* src,  jint src_pos,
1743                                                 oopDesc* dest, jint dest_pos,
1744                                                 jint length,
1745                                                 JavaThread* thread)) {
1746 #ifndef PRODUCT
1747   _slow_array_copy_ctr++;
1748 #endif
1749   // Check if we have null pointers
1750   if (src == NULL || dest == NULL) {
1751     THROW(vmSymbols::java_lang_NullPointerException());
1752   }
1753   // Do the copy.  The casts to arrayOop are necessary to the copy_array API,
1754   // even though the copy_array API also performs dynamic checks to ensure
1755   // that src and dest are truly arrays (and are conformable).
1756   // The copy_array mechanism is awkward and could be removed, but
1757   // the compilers don't call this function except as a last resort,
1758   // so it probably doesn't matter.
1759   src->klass()->copy_array((arrayOopDesc*)src, src_pos,
1760                                         (arrayOopDesc*)dest, dest_pos,
1761                                         length, thread);
1762 }
1763 JRT_END
1764 
1765 char* SharedRuntime::generate_class_cast_message(
1766     JavaThread* thread, const char* objName) {
1767 
1768   // Get target class name from the checkcast instruction
1769   vframeStream vfst(thread, true);
1770   assert(!vfst.at_end(), "Java frame must exist");
1771   Bytecode_checkcast cc(vfst.method(), vfst.method()->bcp_from(vfst.bci()));
1772   Klass* targetKlass = vfst.method()->constants()->klass_at(
1773     cc.index(), thread);
1774   return generate_class_cast_message(objName, targetKlass->external_name());
1775 }
1776 
1777 char* SharedRuntime::generate_class_cast_message(
1778     const char* objName, const char* targetKlassName, const char* desc) {
1779   size_t msglen = strlen(objName) + strlen(desc) + strlen(targetKlassName) + 1;
1780 
1781   char* message = NEW_RESOURCE_ARRAY(char, msglen);
1782   if (NULL == message) {
1783     // Shouldn't happen, but don't cause even more problems if it does
1784     message = const_cast<char*>(objName);
1785   } else {
1786     jio_snprintf(message, msglen, "%s%s%s", objName, desc, targetKlassName);
1787   }
1788   return message;
1789 }
1790 
1791 JRT_LEAF(void, SharedRuntime::reguard_yellow_pages())
1792   (void) JavaThread::current()->reguard_stack();
1793 JRT_END
1794 
1795 
1796 // Handles the uncommon case in locking, i.e., contention or an inflated lock.
1797 JRT_BLOCK_ENTRY(void, SharedRuntime::complete_monitor_locking_C(oopDesc* _obj, BasicLock* lock, JavaThread* thread))
1798   // Disable ObjectSynchronizer::quick_enter() in default config
1799   // until JDK-8077392 is resolved.
1800   if ((SyncFlags & 256) != 0 && !SafepointSynchronize::is_synchronizing()) {
1801     // Only try quick_enter() if we're not trying to reach a safepoint
1802     // so that the calling thread reaches the safepoint more quickly.
1803     if (ObjectSynchronizer::quick_enter(_obj, thread, lock)) return;
1804   }
1805   // NO_ASYNC required because an async exception on the state transition destructor
1806   // would leave you with the lock held and it would never be released.
1807   // The normal monitorenter NullPointerException is thrown without acquiring a lock
1808   // and the model is that an exception implies the method failed.
1809   JRT_BLOCK_NO_ASYNC
1810   oop obj(_obj);
1811   if (PrintBiasedLockingStatistics) {
1812     Atomic::inc(BiasedLocking::slow_path_entry_count_addr());
1813   }
1814   Handle h_obj(THREAD, obj);
1815   if (UseBiasedLocking) {
1816     // Retry fast entry if bias is revoked to avoid unnecessary inflation
1817     ObjectSynchronizer::fast_enter(h_obj, lock, true, CHECK);
1818   } else {
1819     ObjectSynchronizer::slow_enter(h_obj, lock, CHECK);
1820   }
1821   assert(!HAS_PENDING_EXCEPTION, "Should have no exception here");
1822   JRT_BLOCK_END
1823 JRT_END
1824 
1825 // Handles the uncommon cases of monitor unlocking in compiled code
1826 JRT_LEAF(void, SharedRuntime::complete_monitor_unlocking_C(oopDesc* _obj, BasicLock* lock, JavaThread * THREAD))
1827    oop obj(_obj);
1828   assert(JavaThread::current() == THREAD, "invariant");
1829   // I'm not convinced we need the code contained by MIGHT_HAVE_PENDING anymore
1830   // testing was unable to ever fire the assert that guarded it so I have removed it.
1831   assert(!HAS_PENDING_EXCEPTION, "Do we need code below anymore?");
1832 #undef MIGHT_HAVE_PENDING
1833 #ifdef MIGHT_HAVE_PENDING
1834   // Save and restore any pending_exception around the exception mark.
1835   // While the slow_exit must not throw an exception, we could come into
1836   // this routine with one set.
1837   oop pending_excep = NULL;
1838   const char* pending_file;
1839   int pending_line;
1840   if (HAS_PENDING_EXCEPTION) {
1841     pending_excep = PENDING_EXCEPTION;
1842     pending_file  = THREAD->exception_file();
1843     pending_line  = THREAD->exception_line();
1844     CLEAR_PENDING_EXCEPTION;
1845   }
1846 #endif /* MIGHT_HAVE_PENDING */
1847 
1848   {
1849     // Exit must be non-blocking, and therefore no exceptions can be thrown.
1850     EXCEPTION_MARK;
1851     ObjectSynchronizer::slow_exit(obj, lock, THREAD);
1852   }
1853 
1854 #ifdef MIGHT_HAVE_PENDING
1855   if (pending_excep != NULL) {
1856     THREAD->set_pending_exception(pending_excep, pending_file, pending_line);
1857   }
1858 #endif /* MIGHT_HAVE_PENDING */
1859 JRT_END
1860 
1861 #ifndef PRODUCT
1862 
1863 void SharedRuntime::print_statistics() {
1864   ttyLocker ttyl;
1865   if (xtty != NULL)  xtty->head("statistics type='SharedRuntime'");
1866 
1867   if (_throw_null_ctr) tty->print_cr("%5d implicit null throw", _throw_null_ctr);
1868 
1869   SharedRuntime::print_ic_miss_histogram();
1870 
1871   if (CountRemovableExceptions) {
1872     if (_nof_removable_exceptions > 0) {
1873       Unimplemented(); // this counter is not yet incremented
1874       tty->print_cr("Removable exceptions: %d", _nof_removable_exceptions);
1875     }
1876   }
1877 
1878   // Dump the JRT_ENTRY counters
1879   if (_new_instance_ctr) tty->print_cr("%5d new instance requires GC", _new_instance_ctr);
1880   if (_new_array_ctr) tty->print_cr("%5d new array requires GC", _new_array_ctr);
1881   if (_multi1_ctr) tty->print_cr("%5d multianewarray 1 dim", _multi1_ctr);
1882   if (_multi2_ctr) tty->print_cr("%5d multianewarray 2 dim", _multi2_ctr);
1883   if (_multi3_ctr) tty->print_cr("%5d multianewarray 3 dim", _multi3_ctr);
1884   if (_multi4_ctr) tty->print_cr("%5d multianewarray 4 dim", _multi4_ctr);
1885   if (_multi5_ctr) tty->print_cr("%5d multianewarray 5 dim", _multi5_ctr);
1886 
1887   tty->print_cr("%5d inline cache miss in compiled", _ic_miss_ctr);
1888   tty->print_cr("%5d wrong method", _wrong_method_ctr);
1889   tty->print_cr("%5d unresolved static call site", _resolve_static_ctr);
1890   tty->print_cr("%5d unresolved virtual call site", _resolve_virtual_ctr);
1891   tty->print_cr("%5d unresolved opt virtual call site", _resolve_opt_virtual_ctr);
1892 
1893   if (_mon_enter_stub_ctr) tty->print_cr("%5d monitor enter stub", _mon_enter_stub_ctr);
1894   if (_mon_exit_stub_ctr) tty->print_cr("%5d monitor exit stub", _mon_exit_stub_ctr);
1895   if (_mon_enter_ctr) tty->print_cr("%5d monitor enter slow", _mon_enter_ctr);
1896   if (_mon_exit_ctr) tty->print_cr("%5d monitor exit slow", _mon_exit_ctr);
1897   if (_partial_subtype_ctr) tty->print_cr("%5d slow partial subtype", _partial_subtype_ctr);
1898   if (_jbyte_array_copy_ctr) tty->print_cr("%5d byte array copies", _jbyte_array_copy_ctr);
1899   if (_jshort_array_copy_ctr) tty->print_cr("%5d short array copies", _jshort_array_copy_ctr);
1900   if (_jint_array_copy_ctr) tty->print_cr("%5d int array copies", _jint_array_copy_ctr);
1901   if (_jlong_array_copy_ctr) tty->print_cr("%5d long array copies", _jlong_array_copy_ctr);
1902   if (_oop_array_copy_ctr) tty->print_cr("%5d oop array copies", _oop_array_copy_ctr);
1903   if (_checkcast_array_copy_ctr) tty->print_cr("%5d checkcast array copies", _checkcast_array_copy_ctr);
1904   if (_unsafe_array_copy_ctr) tty->print_cr("%5d unsafe array copies", _unsafe_array_copy_ctr);
1905   if (_generic_array_copy_ctr) tty->print_cr("%5d generic array copies", _generic_array_copy_ctr);
1906   if (_slow_array_copy_ctr) tty->print_cr("%5d slow array copies", _slow_array_copy_ctr);
1907   if (_find_handler_ctr) tty->print_cr("%5d find exception handler", _find_handler_ctr);
1908   if (_rethrow_ctr) tty->print_cr("%5d rethrow handler", _rethrow_ctr);
1909 
1910   AdapterHandlerLibrary::print_statistics();
1911 
1912   if (xtty != NULL)  xtty->tail("statistics");
1913 }
1914 
1915 inline double percent(int x, int y) {
1916   return 100.0 * x / MAX2(y, 1);
1917 }
1918 
1919 class MethodArityHistogram {
1920  public:
1921   enum { MAX_ARITY = 256 };
1922  private:
1923   static int _arity_histogram[MAX_ARITY];     // histogram of #args
1924   static int _size_histogram[MAX_ARITY];      // histogram of arg size in words
1925   static int _max_arity;                      // max. arity seen
1926   static int _max_size;                       // max. arg size seen
1927 
1928   static void add_method_to_histogram(nmethod* nm) {
1929     Method* m = nm->method();
1930     ArgumentCount args(m->signature());
1931     int arity   = args.size() + (m->is_static() ? 0 : 1);
1932     int argsize = m->size_of_parameters();
1933     arity   = MIN2(arity, MAX_ARITY-1);
1934     argsize = MIN2(argsize, MAX_ARITY-1);
1935     int count = nm->method()->compiled_invocation_count();
1936     _arity_histogram[arity]  += count;
1937     _size_histogram[argsize] += count;
1938     _max_arity = MAX2(_max_arity, arity);
1939     _max_size  = MAX2(_max_size, argsize);
1940   }
1941 
1942   void print_histogram_helper(int n, int* histo, const char* name) {
1943     const int N = MIN2(5, n);
1944     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
1945     double sum = 0;
1946     double weighted_sum = 0;
1947     int i;
1948     for (i = 0; i <= n; i++) { sum += histo[i]; weighted_sum += i*histo[i]; }
1949     double rest = sum;
1950     double percent = sum / 100;
1951     for (i = 0; i <= N; i++) {
1952       rest -= histo[i];
1953       tty->print_cr("%4d: %7d (%5.1f%%)", i, histo[i], histo[i] / percent);
1954     }
1955     tty->print_cr("rest: %7d (%5.1f%%))", (int)rest, rest / percent);
1956     tty->print_cr("(avg. %s = %3.1f, max = %d)", name, weighted_sum / sum, n);
1957   }
1958 
1959   void print_histogram() {
1960     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
1961     print_histogram_helper(_max_arity, _arity_histogram, "arity");
1962     tty->print_cr("\nSame for parameter size (in words):");
1963     print_histogram_helper(_max_size, _size_histogram, "size");
1964     tty->cr();
1965   }
1966 
1967  public:
1968   MethodArityHistogram() {
1969     MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
1970     _max_arity = _max_size = 0;
1971     for (int i = 0; i < MAX_ARITY; i++) _arity_histogram[i] = _size_histogram[i] = 0;
1972     CodeCache::nmethods_do(add_method_to_histogram);
1973     print_histogram();
1974   }
1975 };
1976 
1977 int MethodArityHistogram::_arity_histogram[MethodArityHistogram::MAX_ARITY];
1978 int MethodArityHistogram::_size_histogram[MethodArityHistogram::MAX_ARITY];
1979 int MethodArityHistogram::_max_arity;
1980 int MethodArityHistogram::_max_size;
1981 
1982 void SharedRuntime::print_call_statistics(int comp_total) {
1983   tty->print_cr("Calls from compiled code:");
1984   int total  = _nof_normal_calls + _nof_interface_calls + _nof_static_calls;
1985   int mono_c = _nof_normal_calls - _nof_optimized_calls - _nof_megamorphic_calls;
1986   int mono_i = _nof_interface_calls - _nof_optimized_interface_calls - _nof_megamorphic_interface_calls;
1987   tty->print_cr("\t%9d   (%4.1f%%) total non-inlined   ", total, percent(total, total));
1988   tty->print_cr("\t%9d   (%4.1f%%) virtual calls       ", _nof_normal_calls, percent(_nof_normal_calls, total));
1989   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_calls, percent(_nof_inlined_calls, _nof_normal_calls));
1990   tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_calls, percent(_nof_optimized_calls, _nof_normal_calls));
1991   tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_c, percent(mono_c, _nof_normal_calls));
1992   tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_calls, percent(_nof_megamorphic_calls, _nof_normal_calls));
1993   tty->print_cr("\t%9d   (%4.1f%%) interface calls     ", _nof_interface_calls, percent(_nof_interface_calls, total));
1994   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_interface_calls, percent(_nof_inlined_interface_calls, _nof_interface_calls));
1995   tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_interface_calls, percent(_nof_optimized_interface_calls, _nof_interface_calls));
1996   tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_i, percent(mono_i, _nof_interface_calls));
1997   tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_interface_calls, percent(_nof_megamorphic_interface_calls, _nof_interface_calls));
1998   tty->print_cr("\t%9d   (%4.1f%%) static/special calls", _nof_static_calls, percent(_nof_static_calls, total));
1999   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_static_calls, percent(_nof_inlined_static_calls, _nof_static_calls));
2000   tty->cr();
2001   tty->print_cr("Note 1: counter updates are not MT-safe.");
2002   tty->print_cr("Note 2: %% in major categories are relative to total non-inlined calls;");
2003   tty->print_cr("        %% in nested categories are relative to their category");
2004   tty->print_cr("        (and thus add up to more than 100%% with inlining)");
2005   tty->cr();
2006 
2007   MethodArityHistogram h;
2008 }
2009 #endif
2010 
2011 
2012 // A simple wrapper class around the calling convention information
2013 // that allows sharing of adapters for the same calling convention.
2014 class AdapterFingerPrint : public CHeapObj<mtCode> {
2015  private:
2016   enum {
2017     _basic_type_bits = 4,
2018     _basic_type_mask = right_n_bits(_basic_type_bits),
2019     _basic_types_per_int = BitsPerInt / _basic_type_bits,
2020     _compact_int_count = 3
2021   };
2022   // TO DO:  Consider integrating this with a more global scheme for compressing signatures.
2023   // For now, 4 bits per components (plus T_VOID gaps after double/long) is not excessive.
2024 
2025   union {
2026     int  _compact[_compact_int_count];
2027     int* _fingerprint;
2028   } _value;
2029   int _length; // A negative length indicates the fingerprint is in the compact form,
2030                // Otherwise _value._fingerprint is the array.
2031 
2032   // Remap BasicTypes that are handled equivalently by the adapters.
2033   // These are correct for the current system but someday it might be
2034   // necessary to make this mapping platform dependent.
2035   static int adapter_encoding(BasicType in) {
2036     switch (in) {
2037       case T_BOOLEAN:
2038       case T_BYTE:
2039       case T_SHORT:
2040       case T_CHAR:
2041         // There are all promoted to T_INT in the calling convention
2042         return T_INT;
2043 
2044       case T_OBJECT:
2045       case T_ARRAY:
2046         // In other words, we assume that any register good enough for
2047         // an int or long is good enough for a managed pointer.
2048 #ifdef _LP64
2049         return T_LONG;
2050 #else
2051         return T_INT;
2052 #endif
2053 
2054       case T_INT:
2055       case T_LONG:
2056       case T_FLOAT:
2057       case T_DOUBLE:
2058       case T_VOID:
2059         return in;
2060 
2061       default:
2062         ShouldNotReachHere();
2063         return T_CONFLICT;
2064     }
2065   }
2066 
2067  public:
2068   AdapterFingerPrint(int total_args_passed, BasicType* sig_bt) {
2069     // The fingerprint is based on the BasicType signature encoded
2070     // into an array of ints with eight entries per int.
2071     int* ptr;
2072     int len = (total_args_passed + (_basic_types_per_int-1)) / _basic_types_per_int;
2073     if (len <= _compact_int_count) {
2074       assert(_compact_int_count == 3, "else change next line");
2075       _value._compact[0] = _value._compact[1] = _value._compact[2] = 0;
2076       // Storing the signature encoded as signed chars hits about 98%
2077       // of the time.
2078       _length = -len;
2079       ptr = _value._compact;
2080     } else {
2081       _length = len;
2082       _value._fingerprint = NEW_C_HEAP_ARRAY(int, _length, mtCode);
2083       ptr = _value._fingerprint;
2084     }
2085 
2086     // Now pack the BasicTypes with 8 per int
2087     int sig_index = 0;
2088     for (int index = 0; index < len; index++) {
2089       int value = 0;
2090       for (int byte = 0; byte < _basic_types_per_int; byte++) {
2091         int bt = ((sig_index < total_args_passed)
2092                   ? adapter_encoding(sig_bt[sig_index++])
2093                   : 0);
2094         assert((bt & _basic_type_mask) == bt, "must fit in 4 bits");
2095         value = (value << _basic_type_bits) | bt;
2096       }
2097       ptr[index] = value;
2098     }
2099   }
2100 
2101   ~AdapterFingerPrint() {
2102     if (_length > 0) {
2103       FREE_C_HEAP_ARRAY(int, _value._fingerprint);
2104     }
2105   }
2106 
2107   int value(int index) {
2108     if (_length < 0) {
2109       return _value._compact[index];
2110     }
2111     return _value._fingerprint[index];
2112   }
2113   int length() {
2114     if (_length < 0) return -_length;
2115     return _length;
2116   }
2117 
2118   bool is_compact() {
2119     return _length <= 0;
2120   }
2121 
2122   unsigned int compute_hash() {
2123     int hash = 0;
2124     for (int i = 0; i < length(); i++) {
2125       int v = value(i);
2126       hash = (hash << 8) ^ v ^ (hash >> 5);
2127     }
2128     return (unsigned int)hash;
2129   }
2130 
2131   const char* as_string() {
2132     stringStream st;
2133     st.print("0x");
2134     for (int i = 0; i < length(); i++) {
2135       st.print("%08x", value(i));
2136     }
2137     return st.as_string();
2138   }
2139 
2140   bool equals(AdapterFingerPrint* other) {
2141     if (other->_length != _length) {
2142       return false;
2143     }
2144     if (_length < 0) {
2145       assert(_compact_int_count == 3, "else change next line");
2146       return _value._compact[0] == other->_value._compact[0] &&
2147              _value._compact[1] == other->_value._compact[1] &&
2148              _value._compact[2] == other->_value._compact[2];
2149     } else {
2150       for (int i = 0; i < _length; i++) {
2151         if (_value._fingerprint[i] != other->_value._fingerprint[i]) {
2152           return false;
2153         }
2154       }
2155     }
2156     return true;
2157   }
2158 };
2159 
2160 
2161 // A hashtable mapping from AdapterFingerPrints to AdapterHandlerEntries
2162 class AdapterHandlerTable : public BasicHashtable<mtCode> {
2163   friend class AdapterHandlerTableIterator;
2164 
2165  private:
2166 
2167 #ifndef PRODUCT
2168   static int _lookups; // number of calls to lookup
2169   static int _buckets; // number of buckets checked
2170   static int _equals;  // number of buckets checked with matching hash
2171   static int _hits;    // number of successful lookups
2172   static int _compact; // number of equals calls with compact signature
2173 #endif
2174 
2175   AdapterHandlerEntry* bucket(int i) {
2176     return (AdapterHandlerEntry*)BasicHashtable<mtCode>::bucket(i);
2177   }
2178 
2179  public:
2180   AdapterHandlerTable()
2181     : BasicHashtable<mtCode>(293, sizeof(AdapterHandlerEntry)) { }
2182 
2183   // Create a new entry suitable for insertion in the table
2184   AdapterHandlerEntry* new_entry(AdapterFingerPrint* fingerprint, address i2c_entry, address c2i_entry, address c2i_unverified_entry) {
2185     AdapterHandlerEntry* entry = (AdapterHandlerEntry*)BasicHashtable<mtCode>::new_entry(fingerprint->compute_hash());
2186     entry->init(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
2187     return entry;
2188   }
2189 
2190   // Insert an entry into the table
2191   void add(AdapterHandlerEntry* entry) {
2192     int index = hash_to_index(entry->hash());
2193     add_entry(index, entry);
2194   }
2195 
2196   void free_entry(AdapterHandlerEntry* entry) {
2197     entry->deallocate();
2198     BasicHashtable<mtCode>::free_entry(entry);
2199   }
2200 
2201   // Find a entry with the same fingerprint if it exists
2202   AdapterHandlerEntry* lookup(int total_args_passed, BasicType* sig_bt) {
2203     NOT_PRODUCT(_lookups++);
2204     AdapterFingerPrint fp(total_args_passed, sig_bt);
2205     unsigned int hash = fp.compute_hash();
2206     int index = hash_to_index(hash);
2207     for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
2208       NOT_PRODUCT(_buckets++);
2209       if (e->hash() == hash) {
2210         NOT_PRODUCT(_equals++);
2211         if (fp.equals(e->fingerprint())) {
2212 #ifndef PRODUCT
2213           if (fp.is_compact()) _compact++;
2214           _hits++;
2215 #endif
2216           return e;
2217         }
2218       }
2219     }
2220     return NULL;
2221   }
2222 
2223 #ifndef PRODUCT
2224   void print_statistics() {
2225     ResourceMark rm;
2226     int longest = 0;
2227     int empty = 0;
2228     int total = 0;
2229     int nonempty = 0;
2230     for (int index = 0; index < table_size(); index++) {
2231       int count = 0;
2232       for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
2233         count++;
2234       }
2235       if (count != 0) nonempty++;
2236       if (count == 0) empty++;
2237       if (count > longest) longest = count;
2238       total += count;
2239     }
2240     tty->print_cr("AdapterHandlerTable: empty %d longest %d total %d average %f",
2241                   empty, longest, total, total / (double)nonempty);
2242     tty->print_cr("AdapterHandlerTable: lookups %d buckets %d equals %d hits %d compact %d",
2243                   _lookups, _buckets, _equals, _hits, _compact);
2244   }
2245 #endif
2246 };
2247 
2248 
2249 #ifndef PRODUCT
2250 
2251 int AdapterHandlerTable::_lookups;
2252 int AdapterHandlerTable::_buckets;
2253 int AdapterHandlerTable::_equals;
2254 int AdapterHandlerTable::_hits;
2255 int AdapterHandlerTable::_compact;
2256 
2257 #endif
2258 
2259 class AdapterHandlerTableIterator : public StackObj {
2260  private:
2261   AdapterHandlerTable* _table;
2262   int _index;
2263   AdapterHandlerEntry* _current;
2264 
2265   void scan() {
2266     while (_index < _table->table_size()) {
2267       AdapterHandlerEntry* a = _table->bucket(_index);
2268       _index++;
2269       if (a != NULL) {
2270         _current = a;
2271         return;
2272       }
2273     }
2274   }
2275 
2276  public:
2277   AdapterHandlerTableIterator(AdapterHandlerTable* table): _table(table), _index(0), _current(NULL) {
2278     scan();
2279   }
2280   bool has_next() {
2281     return _current != NULL;
2282   }
2283   AdapterHandlerEntry* next() {
2284     if (_current != NULL) {
2285       AdapterHandlerEntry* result = _current;
2286       _current = _current->next();
2287       if (_current == NULL) scan();
2288       return result;
2289     } else {
2290       return NULL;
2291     }
2292   }
2293 };
2294 
2295 
2296 // ---------------------------------------------------------------------------
2297 // Implementation of AdapterHandlerLibrary
2298 AdapterHandlerTable* AdapterHandlerLibrary::_adapters = NULL;
2299 AdapterHandlerEntry* AdapterHandlerLibrary::_abstract_method_handler = NULL;
2300 const int AdapterHandlerLibrary_size = 16*K;
2301 BufferBlob* AdapterHandlerLibrary::_buffer = NULL;
2302 
2303 BufferBlob* AdapterHandlerLibrary::buffer_blob() {
2304   // Should be called only when AdapterHandlerLibrary_lock is active.
2305   if (_buffer == NULL) // Initialize lazily
2306       _buffer = BufferBlob::create("adapters", AdapterHandlerLibrary_size);
2307   return _buffer;
2308 }
2309 
2310 extern "C" void unexpected_adapter_call() {
2311   ShouldNotCallThis();
2312 }
2313 
2314 void AdapterHandlerLibrary::initialize() {
2315   if (_adapters != NULL) return;
2316   _adapters = new AdapterHandlerTable();
2317 
2318   if (!CodeCacheExtensions::skip_compiler_support()) {
2319     // Create a special handler for abstract methods.  Abstract methods
2320     // are never compiled so an i2c entry is somewhat meaningless, but
2321     // throw AbstractMethodError just in case.
2322     // Pass wrong_method_abstract for the c2i transitions to return
2323     // AbstractMethodError for invalid invocations.
2324     address wrong_method_abstract = SharedRuntime::get_handle_wrong_method_abstract_stub();
2325     _abstract_method_handler = AdapterHandlerLibrary::new_entry(new AdapterFingerPrint(0, NULL),
2326                                                                 StubRoutines::throw_AbstractMethodError_entry(),
2327                                                                 wrong_method_abstract, wrong_method_abstract);
2328   } else {
2329     // Adapters are not supposed to be used.
2330     // Generate a special one to cause an error if used (and store this
2331     // singleton in place of the useless _abstract_method_error adapter).
2332     address entry = (address) &unexpected_adapter_call;
2333     _abstract_method_handler = AdapterHandlerLibrary::new_entry(new AdapterFingerPrint(0, NULL),
2334                                                                 entry,
2335                                                                 entry,
2336                                                                 entry);
2337 
2338   }
2339 }
2340 
2341 AdapterHandlerEntry* AdapterHandlerLibrary::new_entry(AdapterFingerPrint* fingerprint,
2342                                                       address i2c_entry,
2343                                                       address c2i_entry,
2344                                                       address c2i_unverified_entry) {
2345   return _adapters->new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
2346 }
2347 
2348 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter(methodHandle method) {
2349   // Use customized signature handler.  Need to lock around updates to
2350   // the AdapterHandlerTable (it is not safe for concurrent readers
2351   // and a single writer: this could be fixed if it becomes a
2352   // problem).
2353 
2354   ResourceMark rm;
2355 
2356   NOT_PRODUCT(int insts_size);
2357   AdapterBlob* new_adapter = NULL;
2358   AdapterHandlerEntry* entry = NULL;
2359   AdapterFingerPrint* fingerprint = NULL;
2360   {
2361     MutexLocker mu(AdapterHandlerLibrary_lock);
2362     // make sure data structure is initialized
2363     initialize();
2364 
2365     if (CodeCacheExtensions::skip_compiler_support()) {
2366       // adapters are useless and should not be used, including the
2367       // abstract_method_handler. However, some callers check that
2368       // an adapter was installed.
2369       // Return the singleton adapter, stored into _abstract_method_handler
2370       // and modified to cause an error if we ever call it.
2371       return _abstract_method_handler;
2372     }
2373 
2374     if (method->is_abstract()) {
2375       return _abstract_method_handler;
2376     }
2377 
2378     // Fill in the signature array, for the calling-convention call.
2379     int total_args_passed = method->size_of_parameters(); // All args on stack
2380 
2381     BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
2382     VMRegPair* regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
2383     int i = 0;
2384     if (!method->is_static())  // Pass in receiver first
2385       sig_bt[i++] = T_OBJECT;
2386     for (SignatureStream ss(method->signature()); !ss.at_return_type(); ss.next()) {
2387       sig_bt[i++] = ss.type();  // Collect remaining bits of signature
2388       if (ss.type() == T_LONG || ss.type() == T_DOUBLE)
2389         sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
2390     }
2391     assert(i == total_args_passed, "");
2392 
2393     // Lookup method signature's fingerprint
2394     entry = _adapters->lookup(total_args_passed, sig_bt);
2395 
2396 #ifdef ASSERT
2397     AdapterHandlerEntry* shared_entry = NULL;
2398     // Start adapter sharing verification only after the VM is booted.
2399     if (VerifyAdapterSharing && (entry != NULL)) {
2400       shared_entry = entry;
2401       entry = NULL;
2402     }
2403 #endif
2404 
2405     if (entry != NULL) {
2406       return entry;
2407     }
2408 
2409     // Get a description of the compiled java calling convention and the largest used (VMReg) stack slot usage
2410     int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, false);
2411 
2412     // Make a C heap allocated version of the fingerprint to store in the adapter
2413     fingerprint = new AdapterFingerPrint(total_args_passed, sig_bt);
2414 
2415     // StubRoutines::code2() is initialized after this function can be called. As a result,
2416     // VerifyAdapterCalls and VerifyAdapterSharing can fail if we re-use code that generated
2417     // prior to StubRoutines::code2() being set. Checks refer to checks generated in an I2C
2418     // stub that ensure that an I2C stub is called from an interpreter frame.
2419     bool contains_all_checks = StubRoutines::code2() != NULL;
2420 
2421     // Create I2C & C2I handlers
2422     BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache
2423     if (buf != NULL) {
2424       CodeBuffer buffer(buf);
2425       short buffer_locs[20];
2426       buffer.insts()->initialize_shared_locs((relocInfo*)buffer_locs,
2427                                              sizeof(buffer_locs)/sizeof(relocInfo));
2428 
2429       MacroAssembler _masm(&buffer);
2430       entry = SharedRuntime::generate_i2c2i_adapters(&_masm,
2431                                                      total_args_passed,
2432                                                      comp_args_on_stack,
2433                                                      sig_bt,
2434                                                      regs,
2435                                                      fingerprint);
2436 #ifdef ASSERT
2437       if (VerifyAdapterSharing) {
2438         if (shared_entry != NULL) {
2439           assert(shared_entry->compare_code(buf->code_begin(), buffer.insts_size()), "code must match");
2440           // Release the one just created and return the original
2441           _adapters->free_entry(entry);
2442           return shared_entry;
2443         } else  {
2444           entry->save_code(buf->code_begin(), buffer.insts_size());
2445         }
2446       }
2447 #endif
2448 
2449       new_adapter = AdapterBlob::create(&buffer);
2450       NOT_PRODUCT(insts_size = buffer.insts_size());
2451     }
2452     if (new_adapter == NULL) {
2453       // CodeCache is full, disable compilation
2454       // Ought to log this but compile log is only per compile thread
2455       // and we're some non descript Java thread.
2456       return NULL; // Out of CodeCache space
2457     }
2458     entry->relocate(new_adapter->content_begin());
2459 #ifndef PRODUCT
2460     // debugging suppport
2461     if (PrintAdapterHandlers || PrintStubCode) {
2462       ttyLocker ttyl;
2463       entry->print_adapter_on(tty);
2464       tty->print_cr("i2c argument handler #%d for: %s %s %s (%d bytes generated)",
2465                     _adapters->number_of_entries(), (method->is_static() ? "static" : "receiver"),
2466                     method->signature()->as_C_string(), fingerprint->as_string(), insts_size);
2467       tty->print_cr("c2i argument handler starts at %p", entry->get_c2i_entry());
2468       if (Verbose || PrintStubCode) {
2469         address first_pc = entry->base_address();
2470         if (first_pc != NULL) {
2471           Disassembler::decode(first_pc, first_pc + insts_size);
2472           tty->cr();
2473         }
2474       }
2475     }
2476 #endif
2477     // Add the entry only if the entry contains all required checks (see sharedRuntime_xxx.cpp)
2478     // The checks are inserted only if -XX:+VerifyAdapterCalls is specified.
2479     if (contains_all_checks || !VerifyAdapterCalls) {
2480       _adapters->add(entry);
2481     }
2482   }
2483   // Outside of the lock
2484   if (new_adapter != NULL) {
2485     char blob_id[256];
2486     jio_snprintf(blob_id,
2487                  sizeof(blob_id),
2488                  "%s(%s)@" PTR_FORMAT,
2489                  new_adapter->name(),
2490                  fingerprint->as_string(),
2491                  new_adapter->content_begin());
2492     Forte::register_stub(blob_id, new_adapter->content_begin(), new_adapter->content_end());
2493 
2494     if (JvmtiExport::should_post_dynamic_code_generated()) {
2495       JvmtiExport::post_dynamic_code_generated(blob_id, new_adapter->content_begin(), new_adapter->content_end());
2496     }
2497   }
2498   return entry;
2499 }
2500 
2501 address AdapterHandlerEntry::base_address() {
2502   address base = _i2c_entry;
2503   if (base == NULL)  base = _c2i_entry;
2504   assert(base <= _c2i_entry || _c2i_entry == NULL, "");
2505   assert(base <= _c2i_unverified_entry || _c2i_unverified_entry == NULL, "");
2506   return base;
2507 }
2508 
2509 void AdapterHandlerEntry::relocate(address new_base) {
2510   address old_base = base_address();
2511   assert(old_base != NULL, "");
2512   ptrdiff_t delta = new_base - old_base;
2513   if (_i2c_entry != NULL)
2514     _i2c_entry += delta;
2515   if (_c2i_entry != NULL)
2516     _c2i_entry += delta;
2517   if (_c2i_unverified_entry != NULL)
2518     _c2i_unverified_entry += delta;
2519   assert(base_address() == new_base, "");
2520 }
2521 
2522 
2523 void AdapterHandlerEntry::deallocate() {
2524   delete _fingerprint;
2525 #ifdef ASSERT
2526   if (_saved_code) FREE_C_HEAP_ARRAY(unsigned char, _saved_code);
2527 #endif
2528 }
2529 
2530 
2531 #ifdef ASSERT
2532 // Capture the code before relocation so that it can be compared
2533 // against other versions.  If the code is captured after relocation
2534 // then relative instructions won't be equivalent.
2535 void AdapterHandlerEntry::save_code(unsigned char* buffer, int length) {
2536   _saved_code = NEW_C_HEAP_ARRAY(unsigned char, length, mtCode);
2537   _saved_code_length = length;
2538   memcpy(_saved_code, buffer, length);
2539 }
2540 
2541 
2542 bool AdapterHandlerEntry::compare_code(unsigned char* buffer, int length) {
2543   if (length != _saved_code_length) {
2544     return false;
2545   }
2546 
2547   return (memcmp(buffer, _saved_code, length) == 0) ? true : false;
2548 }
2549 #endif
2550 
2551 
2552 /**
2553  * Create a native wrapper for this native method.  The wrapper converts the
2554  * Java-compiled calling convention to the native convention, handles
2555  * arguments, and transitions to native.  On return from the native we transition
2556  * back to java blocking if a safepoint is in progress.
2557  */
2558 void AdapterHandlerLibrary::create_native_wrapper(methodHandle method) {
2559   ResourceMark rm;
2560   nmethod* nm = NULL;
2561 
2562   assert(method->is_native(), "must be native");
2563   assert(method->is_method_handle_intrinsic() ||
2564          method->has_native_function(), "must have something valid to call!");
2565 
2566   {
2567     // Perform the work while holding the lock, but perform any printing outside the lock
2568     MutexLocker mu(AdapterHandlerLibrary_lock);
2569     // See if somebody beat us to it
2570     nm = method->code();
2571     if (nm != NULL) {
2572       return;
2573     }
2574 
2575     const int compile_id = CompileBroker::assign_compile_id(method, CompileBroker::standard_entry_bci);
2576     assert(compile_id > 0, "Must generate native wrapper");
2577 
2578 
2579     ResourceMark rm;
2580     BufferBlob*  buf = buffer_blob(); // the temporary code buffer in CodeCache
2581     if (buf != NULL) {
2582       CodeBuffer buffer(buf);
2583       double locs_buf[20];
2584       buffer.insts()->initialize_shared_locs((relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
2585       MacroAssembler _masm(&buffer);
2586 
2587       // Fill in the signature array, for the calling-convention call.
2588       const int total_args_passed = method->size_of_parameters();
2589 
2590       BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
2591       VMRegPair*   regs = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
2592       int i=0;
2593       if (!method->is_static())  // Pass in receiver first
2594         sig_bt[i++] = T_OBJECT;
2595       SignatureStream ss(method->signature());
2596       for (; !ss.at_return_type(); ss.next()) {
2597         sig_bt[i++] = ss.type();  // Collect remaining bits of signature
2598         if (ss.type() == T_LONG || ss.type() == T_DOUBLE)
2599           sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
2600       }
2601       assert(i == total_args_passed, "");
2602       BasicType ret_type = ss.type();
2603 
2604       // Now get the compiled-Java layout as input (or output) arguments.
2605       // NOTE: Stubs for compiled entry points of method handle intrinsics
2606       // are just trampolines so the argument registers must be outgoing ones.
2607       const bool is_outgoing = method->is_method_handle_intrinsic();
2608       int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, is_outgoing);
2609 
2610       // Generate the compiled-to-native wrapper code
2611       nm = SharedRuntime::generate_native_wrapper(&_masm, method, compile_id, sig_bt, regs, ret_type);
2612 
2613       if (nm != NULL) {
2614         method->set_code(method, nm);
2615       }
2616     }
2617   } // Unlock AdapterHandlerLibrary_lock
2618 
2619 
2620   // Install the generated code.
2621   if (nm != NULL) {
2622     if (PrintCompilation) {
2623       ttyLocker ttyl;
2624       CompileTask::print(tty, nm, method->is_static() ? "(static)" : "");
2625     }
2626     nm->post_compiled_method_load_event();
2627   }
2628 }
2629 
2630 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::block_for_jni_critical(JavaThread* thread))
2631   assert(thread == JavaThread::current(), "must be");
2632   // The code is about to enter a JNI lazy critical native method and
2633   // _needs_gc is true, so if this thread is already in a critical
2634   // section then just return, otherwise this thread should block
2635   // until needs_gc has been cleared.
2636   if (thread->in_critical()) {
2637     return;
2638   }
2639   // Lock and unlock a critical section to give the system a chance to block
2640   GC_locker::lock_critical(thread);
2641   GC_locker::unlock_critical(thread);
2642 JRT_END
2643 
2644 // -------------------------------------------------------------------------
2645 // Java-Java calling convention
2646 // (what you use when Java calls Java)
2647 
2648 //------------------------------name_for_receiver----------------------------------
2649 // For a given signature, return the VMReg for parameter 0.
2650 VMReg SharedRuntime::name_for_receiver() {
2651   VMRegPair regs;
2652   BasicType sig_bt = T_OBJECT;
2653   (void) java_calling_convention(&sig_bt, &regs, 1, true);
2654   // Return argument 0 register.  In the LP64 build pointers
2655   // take 2 registers, but the VM wants only the 'main' name.
2656   return regs.first();
2657 }
2658 
2659 VMRegPair *SharedRuntime::find_callee_arguments(Symbol* sig, bool has_receiver, bool has_appendix, int* arg_size) {
2660   // This method is returning a data structure allocating as a
2661   // ResourceObject, so do not put any ResourceMarks in here.
2662   char *s = sig->as_C_string();
2663   int len = (int)strlen(s);
2664   s++; len--;                   // Skip opening paren
2665   char *t = s+len;
2666   while (*(--t) != ')');      // Find close paren
2667 
2668   BasicType *sig_bt = NEW_RESOURCE_ARRAY(BasicType, 256);
2669   VMRegPair *regs = NEW_RESOURCE_ARRAY(VMRegPair, 256);
2670   int cnt = 0;
2671   if (has_receiver) {
2672     sig_bt[cnt++] = T_OBJECT; // Receiver is argument 0; not in signature
2673   }
2674 
2675   while (s < t) {
2676     switch (*s++) {            // Switch on signature character
2677     case 'B': sig_bt[cnt++] = T_BYTE;    break;
2678     case 'C': sig_bt[cnt++] = T_CHAR;    break;
2679     case 'D': sig_bt[cnt++] = T_DOUBLE;  sig_bt[cnt++] = T_VOID; break;
2680     case 'F': sig_bt[cnt++] = T_FLOAT;   break;
2681     case 'I': sig_bt[cnt++] = T_INT;     break;
2682     case 'J': sig_bt[cnt++] = T_LONG;    sig_bt[cnt++] = T_VOID; break;
2683     case 'S': sig_bt[cnt++] = T_SHORT;   break;
2684     case 'Z': sig_bt[cnt++] = T_BOOLEAN; break;
2685     case 'V': sig_bt[cnt++] = T_VOID;    break;
2686     case 'L':                   // Oop
2687       while (*s++ != ';');   // Skip signature
2688       sig_bt[cnt++] = T_OBJECT;
2689       break;
2690     case '[': {                 // Array
2691       do {                      // Skip optional size
2692         while (*s >= '0' && *s <= '9') s++;
2693       } while (*s++ == '[');   // Nested arrays?
2694       // Skip element type
2695       if (s[-1] == 'L')
2696         while (*s++ != ';'); // Skip signature
2697       sig_bt[cnt++] = T_ARRAY;
2698       break;
2699     }
2700     default : ShouldNotReachHere();
2701     }
2702   }
2703 
2704   if (has_appendix) {
2705     sig_bt[cnt++] = T_OBJECT;
2706   }
2707 
2708   assert(cnt < 256, "grow table size");
2709 
2710   int comp_args_on_stack;
2711   comp_args_on_stack = java_calling_convention(sig_bt, regs, cnt, true);
2712 
2713   // the calling convention doesn't count out_preserve_stack_slots so
2714   // we must add that in to get "true" stack offsets.
2715 
2716   if (comp_args_on_stack) {
2717     for (int i = 0; i < cnt; i++) {
2718       VMReg reg1 = regs[i].first();
2719       if (reg1->is_stack()) {
2720         // Yuck
2721         reg1 = reg1->bias(out_preserve_stack_slots());
2722       }
2723       VMReg reg2 = regs[i].second();
2724       if (reg2->is_stack()) {
2725         // Yuck
2726         reg2 = reg2->bias(out_preserve_stack_slots());
2727       }
2728       regs[i].set_pair(reg2, reg1);
2729     }
2730   }
2731 
2732   // results
2733   *arg_size = cnt;
2734   return regs;
2735 }
2736 
2737 // OSR Migration Code
2738 //
2739 // This code is used convert interpreter frames into compiled frames.  It is
2740 // called from very start of a compiled OSR nmethod.  A temp array is
2741 // allocated to hold the interesting bits of the interpreter frame.  All
2742 // active locks are inflated to allow them to move.  The displaced headers and
2743 // active interpreter locals are copied into the temp buffer.  Then we return
2744 // back to the compiled code.  The compiled code then pops the current
2745 // interpreter frame off the stack and pushes a new compiled frame.  Then it
2746 // copies the interpreter locals and displaced headers where it wants.
2747 // Finally it calls back to free the temp buffer.
2748 //
2749 // All of this is done NOT at any Safepoint, nor is any safepoint or GC allowed.
2750 
2751 JRT_LEAF(intptr_t*, SharedRuntime::OSR_migration_begin( JavaThread *thread) )
2752 
2753   //
2754   // This code is dependent on the memory layout of the interpreter local
2755   // array and the monitors. On all of our platforms the layout is identical
2756   // so this code is shared. If some platform lays the their arrays out
2757   // differently then this code could move to platform specific code or
2758   // the code here could be modified to copy items one at a time using
2759   // frame accessor methods and be platform independent.
2760 
2761   frame fr = thread->last_frame();
2762   assert(fr.is_interpreted_frame(), "");
2763   assert(fr.interpreter_frame_expression_stack_size()==0, "only handle empty stacks");
2764 
2765   // Figure out how many monitors are active.
2766   int active_monitor_count = 0;
2767   for (BasicObjectLock *kptr = fr.interpreter_frame_monitor_end();
2768        kptr < fr.interpreter_frame_monitor_begin();
2769        kptr = fr.next_monitor_in_interpreter_frame(kptr) ) {
2770     if (kptr->obj() != NULL) active_monitor_count++;
2771   }
2772 
2773   // QQQ we could place number of active monitors in the array so that compiled code
2774   // could double check it.
2775 
2776   Method* moop = fr.interpreter_frame_method();
2777   int max_locals = moop->max_locals();
2778   // Allocate temp buffer, 1 word per local & 2 per active monitor
2779   int buf_size_words = max_locals + active_monitor_count*2;
2780   intptr_t *buf = NEW_C_HEAP_ARRAY(intptr_t,buf_size_words, mtCode);
2781 
2782   // Copy the locals.  Order is preserved so that loading of longs works.
2783   // Since there's no GC I can copy the oops blindly.
2784   assert(sizeof(HeapWord)==sizeof(intptr_t), "fix this code");
2785   Copy::disjoint_words((HeapWord*)fr.interpreter_frame_local_at(max_locals-1),
2786                        (HeapWord*)&buf[0],
2787                        max_locals);
2788 
2789   // Inflate locks.  Copy the displaced headers.  Be careful, there can be holes.
2790   int i = max_locals;
2791   for (BasicObjectLock *kptr2 = fr.interpreter_frame_monitor_end();
2792        kptr2 < fr.interpreter_frame_monitor_begin();
2793        kptr2 = fr.next_monitor_in_interpreter_frame(kptr2) ) {
2794     if (kptr2->obj() != NULL) {         // Avoid 'holes' in the monitor array
2795       BasicLock *lock = kptr2->lock();
2796       // Inflate so the displaced header becomes position-independent
2797       if (lock->displaced_header()->is_unlocked())
2798         ObjectSynchronizer::inflate_helper(kptr2->obj());
2799       // Now the displaced header is free to move
2800       buf[i++] = (intptr_t)lock->displaced_header();
2801       buf[i++] = cast_from_oop<intptr_t>(kptr2->obj());
2802     }
2803   }
2804   assert(i - max_locals == active_monitor_count*2, "found the expected number of monitors");
2805 
2806   return buf;
2807 JRT_END
2808 
2809 JRT_LEAF(void, SharedRuntime::OSR_migration_end( intptr_t* buf) )
2810   FREE_C_HEAP_ARRAY(intptr_t, buf);
2811 JRT_END
2812 
2813 bool AdapterHandlerLibrary::contains(CodeBlob* b) {
2814   AdapterHandlerTableIterator iter(_adapters);
2815   while (iter.has_next()) {
2816     AdapterHandlerEntry* a = iter.next();
2817     if (b == CodeCache::find_blob(a->get_i2c_entry())) return true;
2818   }
2819   return false;
2820 }
2821 
2822 void AdapterHandlerLibrary::print_handler_on(outputStream* st, CodeBlob* b) {
2823   AdapterHandlerTableIterator iter(_adapters);
2824   while (iter.has_next()) {
2825     AdapterHandlerEntry* a = iter.next();
2826     if (b == CodeCache::find_blob(a->get_i2c_entry())) {
2827       st->print("Adapter for signature: ");
2828       a->print_adapter_on(tty);
2829       return;
2830     }
2831   }
2832   assert(false, "Should have found handler");
2833 }
2834 
2835 void AdapterHandlerEntry::print_adapter_on(outputStream* st) const {
2836   st->print_cr("AHE@" INTPTR_FORMAT ": %s i2c: " INTPTR_FORMAT " c2i: " INTPTR_FORMAT " c2iUV: " INTPTR_FORMAT,
2837                (intptr_t) this, fingerprint()->as_string(),
2838                get_i2c_entry(), get_c2i_entry(), get_c2i_unverified_entry());
2839 
2840 }
2841 
2842 #ifndef PRODUCT
2843 
2844 void AdapterHandlerLibrary::print_statistics() {
2845   _adapters->print_statistics();
2846 }
2847 
2848 #endif /* PRODUCT */