1 /*
   2  * Copyright (c) 1998, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/systemDictionary.hpp"
  27 #include "classfile/vmSymbols.hpp"
  28 #include "code/codeCache.hpp"
  29 #include "code/compiledIC.hpp"
  30 #include "code/icBuffer.hpp"
  31 #include "code/nmethod.hpp"
  32 #include "code/pcDesc.hpp"
  33 #include "code/scopeDesc.hpp"
  34 #include "code/vtableStubs.hpp"
  35 #include "compiler/compileBroker.hpp"
  36 #include "compiler/oopMap.hpp"
  37 #include "gc/g1/g1SATBCardTableModRefBS.hpp"
  38 #include "gc/g1/heapRegion.hpp"
  39 #include "gc/shared/barrierSet.hpp"
  40 #include "gc/shared/collectedHeap.hpp"
  41 #include "gc/shared/gcLocker.inline.hpp"
  42 #include "interpreter/bytecode.hpp"
  43 #include "interpreter/interpreter.hpp"
  44 #include "interpreter/linkResolver.hpp"
  45 #include "memory/oopFactory.hpp"
  46 #include "oops/objArrayKlass.hpp"
  47 #include "oops/oop.inline.hpp"
  48 #include "opto/ad.hpp"
  49 #include "opto/addnode.hpp"
  50 #include "opto/callnode.hpp"
  51 #include "opto/cfgnode.hpp"
  52 #include "opto/graphKit.hpp"
  53 #include "opto/machnode.hpp"
  54 #include "opto/matcher.hpp"
  55 #include "opto/memnode.hpp"
  56 #include "opto/mulnode.hpp"
  57 #include "opto/runtime.hpp"
  58 #include "opto/subnode.hpp"
  59 #include "runtime/atomic.inline.hpp"
  60 #include "runtime/fprofiler.hpp"
  61 #include "runtime/handles.inline.hpp"
  62 #include "runtime/interfaceSupport.hpp"
  63 #include "runtime/javaCalls.hpp"
  64 #include "runtime/sharedRuntime.hpp"
  65 #include "runtime/signature.hpp"
  66 #include "runtime/threadCritical.hpp"
  67 #include "runtime/vframe.hpp"
  68 #include "runtime/vframeArray.hpp"
  69 #include "runtime/vframe_hp.hpp"
  70 #include "utilities/copy.hpp"
  71 #include "utilities/preserveException.hpp"
  72 
  73 
  74 // For debugging purposes:
  75 //  To force FullGCALot inside a runtime function, add the following two lines
  76 //
  77 //  Universe::release_fullgc_alot_dummy();
  78 //  MarkSweep::invoke(0, "Debugging");
  79 //
  80 // At command line specify the parameters: -XX:+FullGCALot -XX:FullGCALotStart=100000000
  81 
  82 
  83 
  84 
  85 // Compiled code entry points
  86 address OptoRuntime::_new_instance_Java                           = NULL;
  87 address OptoRuntime::_new_array_Java                              = NULL;
  88 address OptoRuntime::_new_array_nozero_Java                       = NULL;
  89 address OptoRuntime::_multianewarray2_Java                        = NULL;
  90 address OptoRuntime::_multianewarray3_Java                        = NULL;
  91 address OptoRuntime::_multianewarray4_Java                        = NULL;
  92 address OptoRuntime::_multianewarray5_Java                        = NULL;
  93 address OptoRuntime::_multianewarrayN_Java                        = NULL;
  94 address OptoRuntime::_g1_wb_pre_Java                              = NULL;
  95 address OptoRuntime::_g1_wb_post_Java                             = NULL;
  96 address OptoRuntime::_vtable_must_compile_Java                    = NULL;
  97 address OptoRuntime::_complete_monitor_locking_Java               = NULL;
  98 address OptoRuntime::_monitor_notify_Java                         = NULL;
  99 address OptoRuntime::_monitor_notifyAll_Java                      = NULL;
 100 address OptoRuntime::_rethrow_Java                                = NULL;
 101 
 102 address OptoRuntime::_slow_arraycopy_Java                         = NULL;
 103 address OptoRuntime::_register_finalizer_Java                     = NULL;
 104 
 105 ExceptionBlob* OptoRuntime::_exception_blob;
 106 
 107 // This should be called in an assertion at the start of OptoRuntime routines
 108 // which are entered from compiled code (all of them)
 109 #ifdef ASSERT
 110 static bool check_compiled_frame(JavaThread* thread) {
 111   assert(thread->last_frame().is_runtime_frame(), "cannot call runtime directly from compiled code");
 112   RegisterMap map(thread, false);
 113   frame caller = thread->last_frame().sender(&map);
 114   assert(caller.is_compiled_frame(), "not being called from compiled like code");
 115   return true;
 116 }
 117 #endif // ASSERT
 118 
 119 
 120 #define gen(env, var, type_func_gen, c_func, fancy_jump, pass_tls, save_arg_regs, return_pc) \
 121   var = generate_stub(env, type_func_gen, CAST_FROM_FN_PTR(address, c_func), #var, fancy_jump, pass_tls, save_arg_regs, return_pc); \
 122   if (var == NULL) { return false; }
 123 
 124 bool OptoRuntime::generate(ciEnv* env) {
 125 
 126   generate_exception_blob();
 127 
 128   // Note: tls: Means fetching the return oop out of the thread-local storage
 129   //
 130   //   variable/name                       type-function-gen              , runtime method                  ,fncy_jp, tls,save_args,retpc
 131   // -------------------------------------------------------------------------------------------------------------------------------
 132   gen(env, _new_instance_Java              , new_instance_Type            , new_instance_C                  ,    0 , true , false, false);
 133   gen(env, _new_array_Java                 , new_array_Type               , new_array_C                     ,    0 , true , false, false);
 134   gen(env, _new_array_nozero_Java          , new_array_Type               , new_array_nozero_C              ,    0 , true , false, false);
 135   gen(env, _multianewarray2_Java           , multianewarray2_Type         , multianewarray2_C               ,    0 , true , false, false);
 136   gen(env, _multianewarray3_Java           , multianewarray3_Type         , multianewarray3_C               ,    0 , true , false, false);
 137   gen(env, _multianewarray4_Java           , multianewarray4_Type         , multianewarray4_C               ,    0 , true , false, false);
 138   gen(env, _multianewarray5_Java           , multianewarray5_Type         , multianewarray5_C               ,    0 , true , false, false);
 139   gen(env, _multianewarrayN_Java           , multianewarrayN_Type         , multianewarrayN_C               ,    0 , true , false, false);
 140   gen(env, _g1_wb_pre_Java                 , g1_wb_pre_Type               , SharedRuntime::g1_wb_pre        ,    0 , false, false, false);
 141   gen(env, _g1_wb_post_Java                , g1_wb_post_Type              , SharedRuntime::g1_wb_post       ,    0 , false, false, false);
 142   gen(env, _complete_monitor_locking_Java  , complete_monitor_enter_Type  , SharedRuntime::complete_monitor_locking_C, 0, false, false, false);
 143   gen(env, _monitor_notify_Java            , monitor_notify_Type          , monitor_notify_C                ,    0 , false, false, false);
 144   gen(env, _monitor_notifyAll_Java         , monitor_notify_Type          , monitor_notifyAll_C             ,    0 , false, false, false);
 145   gen(env, _rethrow_Java                   , rethrow_Type                 , rethrow_C                       ,    2 , true , false, true );
 146 
 147   gen(env, _slow_arraycopy_Java            , slow_arraycopy_Type          , SharedRuntime::slow_arraycopy_C ,    0 , false, false, false);
 148   gen(env, _register_finalizer_Java        , register_finalizer_Type      , register_finalizer              ,    0 , false, false, false);
 149 
 150   return true;
 151 }
 152 
 153 #undef gen
 154 
 155 
 156 // Helper method to do generation of RunTimeStub's
 157 address OptoRuntime::generate_stub( ciEnv* env,
 158                                     TypeFunc_generator gen, address C_function,
 159                                     const char *name, int is_fancy_jump,
 160                                     bool pass_tls,
 161                                     bool save_argument_registers,
 162                                     bool return_pc ) {
 163   ResourceMark rm;
 164   Compile C( env, gen, C_function, name, is_fancy_jump, pass_tls, save_argument_registers, return_pc );
 165   return  C.stub_entry_point();
 166 }
 167 
 168 const char* OptoRuntime::stub_name(address entry) {
 169 #ifndef PRODUCT
 170   CodeBlob* cb = CodeCache::find_blob(entry);
 171   RuntimeStub* rs =(RuntimeStub *)cb;
 172   assert(rs != NULL && rs->is_runtime_stub(), "not a runtime stub");
 173   return rs->name();
 174 #else
 175   // Fast implementation for product mode (maybe it should be inlined too)
 176   return "runtime stub";
 177 #endif
 178 }
 179 
 180 
 181 //=============================================================================
 182 // Opto compiler runtime routines
 183 //=============================================================================
 184 
 185 
 186 //=============================allocation======================================
 187 // We failed the fast-path allocation.  Now we need to do a scavenge or GC
 188 // and try allocation again.
 189 
 190 void OptoRuntime::new_store_pre_barrier(JavaThread* thread) {
 191   // After any safepoint, just before going back to compiled code,
 192   // we inform the GC that we will be doing initializing writes to
 193   // this object in the future without emitting card-marks, so
 194   // GC may take any compensating steps.
 195   // NOTE: Keep this code consistent with GraphKit::store_barrier.
 196 
 197   oop new_obj = thread->vm_result();
 198   if (new_obj == NULL)  return;
 199 
 200   assert(Universe::heap()->can_elide_tlab_store_barriers(),
 201          "compiler must check this first");
 202   // GC may decide to give back a safer copy of new_obj.
 203   new_obj = Universe::heap()->new_store_pre_barrier(thread, new_obj);
 204   thread->set_vm_result(new_obj);
 205 }
 206 
 207 // object allocation
 208 JRT_BLOCK_ENTRY(void, OptoRuntime::new_instance_C(Klass* klass, JavaThread* thread))
 209   JRT_BLOCK;
 210 #ifndef PRODUCT
 211   SharedRuntime::_new_instance_ctr++;         // new instance requires GC
 212 #endif
 213   assert(check_compiled_frame(thread), "incorrect caller");
 214 
 215   // These checks are cheap to make and support reflective allocation.
 216   int lh = klass->layout_helper();
 217   if (Klass::layout_helper_needs_slow_path(lh)
 218       || !InstanceKlass::cast(klass)->is_initialized()) {
 219     KlassHandle kh(THREAD, klass);
 220     kh->check_valid_for_instantiation(false, THREAD);
 221     if (!HAS_PENDING_EXCEPTION) {
 222       InstanceKlass::cast(kh())->initialize(THREAD);
 223     }
 224     if (!HAS_PENDING_EXCEPTION) {
 225       klass = kh();
 226     } else {
 227       klass = NULL;
 228     }
 229   }
 230 
 231   if (klass != NULL) {
 232     // Scavenge and allocate an instance.
 233     oop result = InstanceKlass::cast(klass)->allocate_instance(THREAD);
 234     thread->set_vm_result(result);
 235 
 236     // Pass oops back through thread local storage.  Our apparent type to Java
 237     // is that we return an oop, but we can block on exit from this routine and
 238     // a GC can trash the oop in C's return register.  The generated stub will
 239     // fetch the oop from TLS after any possible GC.
 240   }
 241 
 242   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 243   JRT_BLOCK_END;
 244 
 245   if (GraphKit::use_ReduceInitialCardMarks()) {
 246     // inform GC that we won't do card marks for initializing writes.
 247     new_store_pre_barrier(thread);
 248   }
 249 JRT_END
 250 
 251 
 252 // array allocation
 253 JRT_BLOCK_ENTRY(void, OptoRuntime::new_array_C(Klass* array_type, int len, JavaThread *thread))
 254   JRT_BLOCK;
 255 #ifndef PRODUCT
 256   SharedRuntime::_new_array_ctr++;            // new array requires GC
 257 #endif
 258   assert(check_compiled_frame(thread), "incorrect caller");
 259 
 260   // Scavenge and allocate an instance.
 261   oop result;
 262 
 263   if (array_type->oop_is_typeArray()) {
 264     // The oopFactory likes to work with the element type.
 265     // (We could bypass the oopFactory, since it doesn't add much value.)
 266     BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
 267     result = oopFactory::new_typeArray(elem_type, len, THREAD);
 268   } else {
 269     // Although the oopFactory likes to work with the elem_type,
 270     // the compiler prefers the array_type, since it must already have
 271     // that latter value in hand for the fast path.
 272     Klass* elem_type = ObjArrayKlass::cast(array_type)->element_klass();
 273     result = oopFactory::new_objArray(elem_type, len, THREAD);
 274   }
 275 
 276   // Pass oops back through thread local storage.  Our apparent type to Java
 277   // is that we return an oop, but we can block on exit from this routine and
 278   // a GC can trash the oop in C's return register.  The generated stub will
 279   // fetch the oop from TLS after any possible GC.
 280   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 281   thread->set_vm_result(result);
 282   JRT_BLOCK_END;
 283 
 284   if (GraphKit::use_ReduceInitialCardMarks()) {
 285     // inform GC that we won't do card marks for initializing writes.
 286     new_store_pre_barrier(thread);
 287   }
 288 JRT_END
 289 
 290 // array allocation without zeroing
 291 JRT_BLOCK_ENTRY(void, OptoRuntime::new_array_nozero_C(Klass* array_type, int len, JavaThread *thread))
 292   JRT_BLOCK;
 293 #ifndef PRODUCT
 294   SharedRuntime::_new_array_ctr++;            // new array requires GC
 295 #endif
 296   assert(check_compiled_frame(thread), "incorrect caller");
 297 
 298   // Scavenge and allocate an instance.
 299   oop result;
 300 
 301   assert(array_type->oop_is_typeArray(), "should be called only for type array");
 302   // The oopFactory likes to work with the element type.
 303   BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
 304   result = oopFactory::new_typeArray_nozero(elem_type, len, THREAD);
 305 
 306   // Pass oops back through thread local storage.  Our apparent type to Java
 307   // is that we return an oop, but we can block on exit from this routine and
 308   // a GC can trash the oop in C's return register.  The generated stub will
 309   // fetch the oop from TLS after any possible GC.
 310   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 311   thread->set_vm_result(result);
 312   JRT_BLOCK_END;
 313 
 314   if (GraphKit::use_ReduceInitialCardMarks()) {
 315     // inform GC that we won't do card marks for initializing writes.
 316     new_store_pre_barrier(thread);
 317   }
 318 
 319   oop result = thread->vm_result();
 320   if ((len > 0) && (result != NULL) &&
 321       is_deoptimized_caller_frame(thread)) {
 322     // Zero array here if the caller is deoptimized.
 323     int size = ((typeArrayOop)result)->object_size();
 324     BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
 325     const size_t hs = arrayOopDesc::header_size(elem_type);
 326     // Align to next 8 bytes to avoid trashing arrays's length.
 327     const size_t aligned_hs = align_object_offset(hs);
 328     HeapWord* obj = (HeapWord*)result;
 329     if (aligned_hs > hs) {
 330       Copy::zero_to_words(obj+hs, aligned_hs-hs);
 331     }
 332     // Optimized zeroing.
 333     Copy::fill_to_aligned_words(obj+aligned_hs, size-aligned_hs);
 334   }
 335 
 336 JRT_END
 337 
 338 // Note: multianewarray for one dimension is handled inline by GraphKit::new_array.
 339 
 340 // multianewarray for 2 dimensions
 341 JRT_ENTRY(void, OptoRuntime::multianewarray2_C(Klass* elem_type, int len1, int len2, JavaThread *thread))
 342 #ifndef PRODUCT
 343   SharedRuntime::_multi2_ctr++;                // multianewarray for 1 dimension
 344 #endif
 345   assert(check_compiled_frame(thread), "incorrect caller");
 346   assert(elem_type->is_klass(), "not a class");
 347   jint dims[2];
 348   dims[0] = len1;
 349   dims[1] = len2;
 350   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(2, dims, THREAD);
 351   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 352   thread->set_vm_result(obj);
 353 JRT_END
 354 
 355 // multianewarray for 3 dimensions
 356 JRT_ENTRY(void, OptoRuntime::multianewarray3_C(Klass* elem_type, int len1, int len2, int len3, JavaThread *thread))
 357 #ifndef PRODUCT
 358   SharedRuntime::_multi3_ctr++;                // multianewarray for 1 dimension
 359 #endif
 360   assert(check_compiled_frame(thread), "incorrect caller");
 361   assert(elem_type->is_klass(), "not a class");
 362   jint dims[3];
 363   dims[0] = len1;
 364   dims[1] = len2;
 365   dims[2] = len3;
 366   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(3, dims, THREAD);
 367   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 368   thread->set_vm_result(obj);
 369 JRT_END
 370 
 371 // multianewarray for 4 dimensions
 372 JRT_ENTRY(void, OptoRuntime::multianewarray4_C(Klass* elem_type, int len1, int len2, int len3, int len4, JavaThread *thread))
 373 #ifndef PRODUCT
 374   SharedRuntime::_multi4_ctr++;                // multianewarray for 1 dimension
 375 #endif
 376   assert(check_compiled_frame(thread), "incorrect caller");
 377   assert(elem_type->is_klass(), "not a class");
 378   jint dims[4];
 379   dims[0] = len1;
 380   dims[1] = len2;
 381   dims[2] = len3;
 382   dims[3] = len4;
 383   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(4, dims, THREAD);
 384   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 385   thread->set_vm_result(obj);
 386 JRT_END
 387 
 388 // multianewarray for 5 dimensions
 389 JRT_ENTRY(void, OptoRuntime::multianewarray5_C(Klass* elem_type, int len1, int len2, int len3, int len4, int len5, JavaThread *thread))
 390 #ifndef PRODUCT
 391   SharedRuntime::_multi5_ctr++;                // multianewarray for 1 dimension
 392 #endif
 393   assert(check_compiled_frame(thread), "incorrect caller");
 394   assert(elem_type->is_klass(), "not a class");
 395   jint dims[5];
 396   dims[0] = len1;
 397   dims[1] = len2;
 398   dims[2] = len3;
 399   dims[3] = len4;
 400   dims[4] = len5;
 401   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(5, dims, THREAD);
 402   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 403   thread->set_vm_result(obj);
 404 JRT_END
 405 
 406 JRT_ENTRY(void, OptoRuntime::multianewarrayN_C(Klass* elem_type, arrayOopDesc* dims, JavaThread *thread))
 407   assert(check_compiled_frame(thread), "incorrect caller");
 408   assert(elem_type->is_klass(), "not a class");
 409   assert(oop(dims)->is_typeArray(), "not an array");
 410 
 411   ResourceMark rm;
 412   jint len = dims->length();
 413   assert(len > 0, "Dimensions array should contain data");
 414   jint *j_dims = typeArrayOop(dims)->int_at_addr(0);
 415   jint *c_dims = NEW_RESOURCE_ARRAY(jint, len);
 416   Copy::conjoint_jints_atomic(j_dims, c_dims, len);
 417 
 418   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(len, c_dims, THREAD);
 419   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 420   thread->set_vm_result(obj);
 421 JRT_END
 422 
 423 JRT_BLOCK_ENTRY(void, OptoRuntime::monitor_notify_C(oopDesc* obj, JavaThread *thread))
 424 
 425   // Very few notify/notifyAll operations find any threads on the waitset, so
 426   // the dominant fast-path is to simply return.
 427   // Relatedly, it's critical that notify/notifyAll be fast in order to
 428   // reduce lock hold times.
 429   if (!SafepointSynchronize::is_synchronizing()) {
 430     if (ObjectSynchronizer::quick_notify(obj, thread, false)) {
 431       return;
 432     }
 433   }
 434 
 435   // This is the case the fast-path above isn't provisioned to handle.
 436   // The fast-path is designed to handle frequently arising cases in an efficient manner.
 437   // (The fast-path is just a degenerate variant of the slow-path).
 438   // Perform the dreaded state transition and pass control into the slow-path.
 439   JRT_BLOCK;
 440   Handle h_obj(THREAD, obj);
 441   ObjectSynchronizer::notify(h_obj, CHECK);
 442   JRT_BLOCK_END;
 443 JRT_END
 444 
 445 JRT_BLOCK_ENTRY(void, OptoRuntime::monitor_notifyAll_C(oopDesc* obj, JavaThread *thread))
 446 
 447   if (!SafepointSynchronize::is_synchronizing() ) {
 448     if (ObjectSynchronizer::quick_notify(obj, thread, true)) {
 449       return;
 450     }
 451   }
 452 
 453   // This is the case the fast-path above isn't provisioned to handle.
 454   // The fast-path is designed to handle frequently arising cases in an efficient manner.
 455   // (The fast-path is just a degenerate variant of the slow-path).
 456   // Perform the dreaded state transition and pass control into the slow-path.
 457   JRT_BLOCK;
 458   Handle h_obj(THREAD, obj);
 459   ObjectSynchronizer::notifyall(h_obj, CHECK);
 460   JRT_BLOCK_END;
 461 JRT_END
 462 
 463 const TypeFunc *OptoRuntime::new_instance_Type() {
 464   // create input type (domain)
 465   const Type **fields = TypeTuple::fields(1);
 466   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated
 467   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
 468 
 469   // create result type (range)
 470   fields = TypeTuple::fields(1);
 471   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 472 
 473   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 474 
 475   return TypeFunc::make(domain, range);
 476 }
 477 
 478 
 479 const TypeFunc *OptoRuntime::athrow_Type() {
 480   // create input type (domain)
 481   const Type **fields = TypeTuple::fields(1);
 482   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated
 483   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
 484 
 485   // create result type (range)
 486   fields = TypeTuple::fields(0);
 487 
 488   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 489 
 490   return TypeFunc::make(domain, range);
 491 }
 492 
 493 
 494 const TypeFunc *OptoRuntime::new_array_Type() {
 495   // create input type (domain)
 496   const Type **fields = TypeTuple::fields(2);
 497   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
 498   fields[TypeFunc::Parms+1] = TypeInt::INT;       // array size
 499   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 500 
 501   // create result type (range)
 502   fields = TypeTuple::fields(1);
 503   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 504 
 505   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 506 
 507   return TypeFunc::make(domain, range);
 508 }
 509 
 510 const TypeFunc *OptoRuntime::multianewarray_Type(int ndim) {
 511   // create input type (domain)
 512   const int nargs = ndim + 1;
 513   const Type **fields = TypeTuple::fields(nargs);
 514   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
 515   for( int i = 1; i < nargs; i++ )
 516     fields[TypeFunc::Parms + i] = TypeInt::INT;       // array size
 517   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+nargs, fields);
 518 
 519   // create result type (range)
 520   fields = TypeTuple::fields(1);
 521   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 522   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 523 
 524   return TypeFunc::make(domain, range);
 525 }
 526 
 527 const TypeFunc *OptoRuntime::multianewarray2_Type() {
 528   return multianewarray_Type(2);
 529 }
 530 
 531 const TypeFunc *OptoRuntime::multianewarray3_Type() {
 532   return multianewarray_Type(3);
 533 }
 534 
 535 const TypeFunc *OptoRuntime::multianewarray4_Type() {
 536   return multianewarray_Type(4);
 537 }
 538 
 539 const TypeFunc *OptoRuntime::multianewarray5_Type() {
 540   return multianewarray_Type(5);
 541 }
 542 
 543 const TypeFunc *OptoRuntime::multianewarrayN_Type() {
 544   // create input type (domain)
 545   const Type **fields = TypeTuple::fields(2);
 546   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
 547   fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL;   // array of dim sizes
 548   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 549 
 550   // create result type (range)
 551   fields = TypeTuple::fields(1);
 552   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 553   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 554 
 555   return TypeFunc::make(domain, range);
 556 }
 557 
 558 const TypeFunc *OptoRuntime::g1_wb_pre_Type() {
 559   const Type **fields = TypeTuple::fields(2);
 560   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // original field value
 561   fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL; // thread
 562   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 563 
 564   // create result type (range)
 565   fields = TypeTuple::fields(0);
 566   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 567 
 568   return TypeFunc::make(domain, range);
 569 }
 570 
 571 const TypeFunc *OptoRuntime::g1_wb_post_Type() {
 572 
 573   const Type **fields = TypeTuple::fields(2);
 574   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL;  // Card addr
 575   fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL;  // thread
 576   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 577 
 578   // create result type (range)
 579   fields = TypeTuple::fields(0);
 580   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
 581 
 582   return TypeFunc::make(domain, range);
 583 }
 584 
 585 const TypeFunc *OptoRuntime::uncommon_trap_Type() {
 586   // create input type (domain)
 587   const Type **fields = TypeTuple::fields(1);
 588   fields[TypeFunc::Parms+0] = TypeInt::INT; // trap_reason (deopt reason and action)
 589   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
 590 
 591   // create result type (range)
 592   fields = TypeTuple::fields(0);
 593   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 594 
 595   return TypeFunc::make(domain, range);
 596 }
 597 
 598 //-----------------------------------------------------------------------------
 599 // Monitor Handling
 600 const TypeFunc *OptoRuntime::complete_monitor_enter_Type() {
 601   // create input type (domain)
 602   const Type **fields = TypeTuple::fields(2);
 603   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
 604   fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM;   // Address of stack location for lock
 605   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
 606 
 607   // create result type (range)
 608   fields = TypeTuple::fields(0);
 609 
 610   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
 611 
 612   return TypeFunc::make(domain,range);
 613 }
 614 
 615 
 616 //-----------------------------------------------------------------------------
 617 const TypeFunc *OptoRuntime::complete_monitor_exit_Type() {
 618   // create input type (domain)
 619   const Type **fields = TypeTuple::fields(3);
 620   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
 621   fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM;    // Address of stack location for lock - BasicLock
 622   fields[TypeFunc::Parms+2] = TypeRawPtr::BOTTOM;    // Thread pointer (Self)
 623   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+3, fields);
 624 
 625   // create result type (range)
 626   fields = TypeTuple::fields(0);
 627 
 628   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 629 
 630   return TypeFunc::make(domain, range);
 631 }
 632 
 633 const TypeFunc *OptoRuntime::monitor_notify_Type() {
 634   // create input type (domain)
 635   const Type **fields = TypeTuple::fields(1);
 636   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
 637   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
 638 
 639   // create result type (range)
 640   fields = TypeTuple::fields(0);
 641   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 642   return TypeFunc::make(domain, range);
 643 }
 644 
 645 const TypeFunc* OptoRuntime::flush_windows_Type() {
 646   // create input type (domain)
 647   const Type** fields = TypeTuple::fields(1);
 648   fields[TypeFunc::Parms+0] = NULL; // void
 649   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms, fields);
 650 
 651   // create result type
 652   fields = TypeTuple::fields(1);
 653   fields[TypeFunc::Parms+0] = NULL; // void
 654   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
 655 
 656   return TypeFunc::make(domain, range);
 657 }
 658 
 659 const TypeFunc* OptoRuntime::l2f_Type() {
 660   // create input type (domain)
 661   const Type **fields = TypeTuple::fields(2);
 662   fields[TypeFunc::Parms+0] = TypeLong::LONG;
 663   fields[TypeFunc::Parms+1] = Type::HALF;
 664   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 665 
 666   // create result type (range)
 667   fields = TypeTuple::fields(1);
 668   fields[TypeFunc::Parms+0] = Type::FLOAT;
 669   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 670 
 671   return TypeFunc::make(domain, range);
 672 }
 673 
 674 const TypeFunc* OptoRuntime::modf_Type() {
 675   const Type **fields = TypeTuple::fields(2);
 676   fields[TypeFunc::Parms+0] = Type::FLOAT;
 677   fields[TypeFunc::Parms+1] = Type::FLOAT;
 678   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 679 
 680   // create result type (range)
 681   fields = TypeTuple::fields(1);
 682   fields[TypeFunc::Parms+0] = Type::FLOAT;
 683 
 684   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 685 
 686   return TypeFunc::make(domain, range);
 687 }
 688 
 689 const TypeFunc *OptoRuntime::Math_D_D_Type() {
 690   // create input type (domain)
 691   const Type **fields = TypeTuple::fields(2);
 692   // Symbol* name of class to be loaded
 693   fields[TypeFunc::Parms+0] = Type::DOUBLE;
 694   fields[TypeFunc::Parms+1] = Type::HALF;
 695   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 696 
 697   // create result type (range)
 698   fields = TypeTuple::fields(2);
 699   fields[TypeFunc::Parms+0] = Type::DOUBLE;
 700   fields[TypeFunc::Parms+1] = Type::HALF;
 701   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
 702 
 703   return TypeFunc::make(domain, range);
 704 }
 705 
 706 const TypeFunc* OptoRuntime::Math_DD_D_Type() {
 707   const Type **fields = TypeTuple::fields(4);
 708   fields[TypeFunc::Parms+0] = Type::DOUBLE;
 709   fields[TypeFunc::Parms+1] = Type::HALF;
 710   fields[TypeFunc::Parms+2] = Type::DOUBLE;
 711   fields[TypeFunc::Parms+3] = Type::HALF;
 712   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+4, fields);
 713 
 714   // create result type (range)
 715   fields = TypeTuple::fields(2);
 716   fields[TypeFunc::Parms+0] = Type::DOUBLE;
 717   fields[TypeFunc::Parms+1] = Type::HALF;
 718   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
 719 
 720   return TypeFunc::make(domain, range);
 721 }
 722 
 723 //-------------- currentTimeMillis, currentTimeNanos, etc
 724 
 725 const TypeFunc* OptoRuntime::void_long_Type() {
 726   // create input type (domain)
 727   const Type **fields = TypeTuple::fields(0);
 728   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+0, fields);
 729 
 730   // create result type (range)
 731   fields = TypeTuple::fields(2);
 732   fields[TypeFunc::Parms+0] = TypeLong::LONG;
 733   fields[TypeFunc::Parms+1] = Type::HALF;
 734   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
 735 
 736   return TypeFunc::make(domain, range);
 737 }
 738 
 739 // arraycopy stub variations:
 740 enum ArrayCopyType {
 741   ac_fast,                      // void(ptr, ptr, size_t)
 742   ac_checkcast,                 //  int(ptr, ptr, size_t, size_t, ptr)
 743   ac_slow,                      // void(ptr, int, ptr, int, int)
 744   ac_generic                    //  int(ptr, int, ptr, int, int)
 745 };
 746 
 747 static const TypeFunc* make_arraycopy_Type(ArrayCopyType act) {
 748   // create input type (domain)
 749   int num_args      = (act == ac_fast ? 3 : 5);
 750   int num_size_args = (act == ac_fast ? 1 : act == ac_checkcast ? 2 : 0);
 751   int argcnt = num_args;
 752   LP64_ONLY(argcnt += num_size_args); // halfwords for lengths
 753   const Type** fields = TypeTuple::fields(argcnt);
 754   int argp = TypeFunc::Parms;
 755   fields[argp++] = TypePtr::NOTNULL;    // src
 756   if (num_size_args == 0) {
 757     fields[argp++] = TypeInt::INT;      // src_pos
 758   }
 759   fields[argp++] = TypePtr::NOTNULL;    // dest
 760   if (num_size_args == 0) {
 761     fields[argp++] = TypeInt::INT;      // dest_pos
 762     fields[argp++] = TypeInt::INT;      // length
 763   }
 764   while (num_size_args-- > 0) {
 765     fields[argp++] = TypeX_X;               // size in whatevers (size_t)
 766     LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length
 767   }
 768   if (act == ac_checkcast) {
 769     fields[argp++] = TypePtr::NOTNULL;  // super_klass
 770   }
 771   assert(argp == TypeFunc::Parms+argcnt, "correct decoding of act");
 772   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 773 
 774   // create result type if needed
 775   int retcnt = (act == ac_checkcast || act == ac_generic ? 1 : 0);
 776   fields = TypeTuple::fields(1);
 777   if (retcnt == 0)
 778     fields[TypeFunc::Parms+0] = NULL; // void
 779   else
 780     fields[TypeFunc::Parms+0] = TypeInt::INT; // status result, if needed
 781   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+retcnt, fields);
 782   return TypeFunc::make(domain, range);
 783 }
 784 
 785 const TypeFunc* OptoRuntime::fast_arraycopy_Type() {
 786   // This signature is simple:  Two base pointers and a size_t.
 787   return make_arraycopy_Type(ac_fast);
 788 }
 789 
 790 const TypeFunc* OptoRuntime::checkcast_arraycopy_Type() {
 791   // An extension of fast_arraycopy_Type which adds type checking.
 792   return make_arraycopy_Type(ac_checkcast);
 793 }
 794 
 795 const TypeFunc* OptoRuntime::slow_arraycopy_Type() {
 796   // This signature is exactly the same as System.arraycopy.
 797   // There are no intptr_t (int/long) arguments.
 798   return make_arraycopy_Type(ac_slow);
 799 }
 800 
 801 const TypeFunc* OptoRuntime::generic_arraycopy_Type() {
 802   // This signature is like System.arraycopy, except that it returns status.
 803   return make_arraycopy_Type(ac_generic);
 804 }
 805 
 806 
 807 const TypeFunc* OptoRuntime::array_fill_Type() {
 808   const Type** fields;
 809   int argp = TypeFunc::Parms;
 810   // create input type (domain): pointer, int, size_t
 811   fields = TypeTuple::fields(3 LP64_ONLY( + 1));
 812   fields[argp++] = TypePtr::NOTNULL;
 813   fields[argp++] = TypeInt::INT;
 814   fields[argp++] = TypeX_X;               // size in whatevers (size_t)
 815   LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length
 816   const TypeTuple *domain = TypeTuple::make(argp, fields);
 817 
 818   // create result type
 819   fields = TypeTuple::fields(1);
 820   fields[TypeFunc::Parms+0] = NULL; // void
 821   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
 822 
 823   return TypeFunc::make(domain, range);
 824 }
 825 
 826 // for aescrypt encrypt/decrypt operations, just three pointers returning void (length is constant)
 827 const TypeFunc* OptoRuntime::aescrypt_block_Type() {
 828   // create input type (domain)
 829   int num_args      = 3;
 830   if (Matcher::pass_original_key_for_aes()) {
 831     num_args = 4;
 832   }
 833   int argcnt = num_args;
 834   const Type** fields = TypeTuple::fields(argcnt);
 835   int argp = TypeFunc::Parms;
 836   fields[argp++] = TypePtr::NOTNULL;    // src
 837   fields[argp++] = TypePtr::NOTNULL;    // dest
 838   fields[argp++] = TypePtr::NOTNULL;    // k array
 839   if (Matcher::pass_original_key_for_aes()) {
 840     fields[argp++] = TypePtr::NOTNULL;    // original k array
 841   }
 842   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 843   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 844 
 845   // no result type needed
 846   fields = TypeTuple::fields(1);
 847   fields[TypeFunc::Parms+0] = NULL; // void
 848   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
 849   return TypeFunc::make(domain, range);
 850 }
 851 
 852 /**
 853  * int updateBytesCRC32(int crc, byte* b, int len)
 854  */
 855 const TypeFunc* OptoRuntime::updateBytesCRC32_Type() {
 856   // create input type (domain)
 857   int num_args      = 3;
 858   int argcnt = num_args;
 859   const Type** fields = TypeTuple::fields(argcnt);
 860   int argp = TypeFunc::Parms;
 861   fields[argp++] = TypeInt::INT;        // crc
 862   fields[argp++] = TypePtr::NOTNULL;    // src
 863   fields[argp++] = TypeInt::INT;        // len
 864   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 865   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 866 
 867   // result type needed
 868   fields = TypeTuple::fields(1);
 869   fields[TypeFunc::Parms+0] = TypeInt::INT; // crc result
 870   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
 871   return TypeFunc::make(domain, range);
 872 }
 873 
 874 /**
 875  * int updateBytesCRC32C(int crc, byte* buf, int len, int* table)
 876  */
 877 const TypeFunc* OptoRuntime::updateBytesCRC32C_Type() {
 878   // create input type (domain)
 879   int num_args      = 4;
 880   int argcnt = num_args;
 881   const Type** fields = TypeTuple::fields(argcnt);
 882   int argp = TypeFunc::Parms;
 883   fields[argp++] = TypeInt::INT;        // crc
 884   fields[argp++] = TypePtr::NOTNULL;    // buf
 885   fields[argp++] = TypeInt::INT;        // len
 886   fields[argp++] = TypePtr::NOTNULL;    // table
 887   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 888   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 889 
 890   // result type needed
 891   fields = TypeTuple::fields(1);
 892   fields[TypeFunc::Parms+0] = TypeInt::INT; // crc result
 893   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
 894   return TypeFunc::make(domain, range);
 895 }
 896 
 897 /**
 898 *  int updateBytesAdler32(int adler, bytes* b, int off, int len)
 899 */
 900 const TypeFunc* OptoRuntime::updateBytesAdler32_Type() {
 901   // create input type (domain)
 902   int num_args      = 3;
 903   int argcnt = num_args;
 904   const Type** fields = TypeTuple::fields(argcnt);
 905   int argp = TypeFunc::Parms;
 906   fields[argp++] = TypeInt::INT;        // crc
 907   fields[argp++] = TypePtr::NOTNULL;    // src + offset
 908   fields[argp++] = TypeInt::INT;        // len
 909   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 910   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 911 
 912   // result type needed
 913   fields = TypeTuple::fields(1);
 914   fields[TypeFunc::Parms+0] = TypeInt::INT; // crc result
 915   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
 916   return TypeFunc::make(domain, range);
 917 }
 918 
 919 // for cipherBlockChaining calls of aescrypt encrypt/decrypt, four pointers and a length, returning int
 920 const TypeFunc* OptoRuntime::cipherBlockChaining_aescrypt_Type() {
 921   // create input type (domain)
 922   int num_args      = 5;
 923   if (Matcher::pass_original_key_for_aes()) {
 924     num_args = 6;
 925   }
 926   int argcnt = num_args;
 927   const Type** fields = TypeTuple::fields(argcnt);
 928   int argp = TypeFunc::Parms;
 929   fields[argp++] = TypePtr::NOTNULL;    // src
 930   fields[argp++] = TypePtr::NOTNULL;    // dest
 931   fields[argp++] = TypePtr::NOTNULL;    // k array
 932   fields[argp++] = TypePtr::NOTNULL;    // r array
 933   fields[argp++] = TypeInt::INT;        // src len
 934   if (Matcher::pass_original_key_for_aes()) {
 935     fields[argp++] = TypePtr::NOTNULL;    // original k array
 936   }
 937   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 938   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 939 
 940   // returning cipher len (int)
 941   fields = TypeTuple::fields(1);
 942   fields[TypeFunc::Parms+0] = TypeInt::INT;
 943   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
 944   return TypeFunc::make(domain, range);
 945 }
 946 
 947 /*
 948  * void implCompress(byte[] buf, int ofs)
 949  */
 950 const TypeFunc* OptoRuntime::sha_implCompress_Type() {
 951   // create input type (domain)
 952   int num_args = 2;
 953   int argcnt = num_args;
 954   const Type** fields = TypeTuple::fields(argcnt);
 955   int argp = TypeFunc::Parms;
 956   fields[argp++] = TypePtr::NOTNULL; // buf
 957   fields[argp++] = TypePtr::NOTNULL; // state
 958   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 959   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 960 
 961   // no result type needed
 962   fields = TypeTuple::fields(1);
 963   fields[TypeFunc::Parms+0] = NULL; // void
 964   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
 965   return TypeFunc::make(domain, range);
 966 }
 967 
 968 /*
 969  * int implCompressMultiBlock(byte[] b, int ofs, int limit)
 970  */
 971 const TypeFunc* OptoRuntime::digestBase_implCompressMB_Type() {
 972   // create input type (domain)
 973   int num_args = 4;
 974   int argcnt = num_args;
 975   const Type** fields = TypeTuple::fields(argcnt);
 976   int argp = TypeFunc::Parms;
 977   fields[argp++] = TypePtr::NOTNULL; // buf
 978   fields[argp++] = TypePtr::NOTNULL; // state
 979   fields[argp++] = TypeInt::INT;     // ofs
 980   fields[argp++] = TypeInt::INT;     // limit
 981   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 982   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 983 
 984   // returning ofs (int)
 985   fields = TypeTuple::fields(1);
 986   fields[TypeFunc::Parms+0] = TypeInt::INT; // ofs
 987   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
 988   return TypeFunc::make(domain, range);
 989 }
 990 
 991 const TypeFunc* OptoRuntime::multiplyToLen_Type() {
 992   // create input type (domain)
 993   int num_args      = 6;
 994   int argcnt = num_args;
 995   const Type** fields = TypeTuple::fields(argcnt);
 996   int argp = TypeFunc::Parms;
 997   fields[argp++] = TypePtr::NOTNULL;    // x
 998   fields[argp++] = TypeInt::INT;        // xlen
 999   fields[argp++] = TypePtr::NOTNULL;    // y
1000   fields[argp++] = TypeInt::INT;        // ylen
1001   fields[argp++] = TypePtr::NOTNULL;    // z
1002   fields[argp++] = TypeInt::INT;        // zlen
1003   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1004   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1005 
1006   // no result type needed
1007   fields = TypeTuple::fields(1);
1008   fields[TypeFunc::Parms+0] = NULL;
1009   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1010   return TypeFunc::make(domain, range);
1011 }
1012 
1013 const TypeFunc* OptoRuntime::squareToLen_Type() {
1014   // create input type (domain)
1015   int num_args      = 4;
1016   int argcnt = num_args;
1017   const Type** fields = TypeTuple::fields(argcnt);
1018   int argp = TypeFunc::Parms;
1019   fields[argp++] = TypePtr::NOTNULL;    // x
1020   fields[argp++] = TypeInt::INT;        // len
1021   fields[argp++] = TypePtr::NOTNULL;    // z
1022   fields[argp++] = TypeInt::INT;        // zlen
1023   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1024   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1025 
1026   // no result type needed
1027   fields = TypeTuple::fields(1);
1028   fields[TypeFunc::Parms+0] = NULL;
1029   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1030   return TypeFunc::make(domain, range);
1031 }
1032 
1033 // for mulAdd calls, 2 pointers and 3 ints, returning int
1034 const TypeFunc* OptoRuntime::mulAdd_Type() {
1035   // create input type (domain)
1036   int num_args      = 5;
1037   int argcnt = num_args;
1038   const Type** fields = TypeTuple::fields(argcnt);
1039   int argp = TypeFunc::Parms;
1040   fields[argp++] = TypePtr::NOTNULL;    // out
1041   fields[argp++] = TypePtr::NOTNULL;    // in
1042   fields[argp++] = TypeInt::INT;        // offset
1043   fields[argp++] = TypeInt::INT;        // len
1044   fields[argp++] = TypeInt::INT;        // k
1045   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1046   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1047 
1048   // returning carry (int)
1049   fields = TypeTuple::fields(1);
1050   fields[TypeFunc::Parms+0] = TypeInt::INT;
1051   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
1052   return TypeFunc::make(domain, range);
1053 }
1054 
1055 const TypeFunc* OptoRuntime::montgomeryMultiply_Type() {
1056   // create input type (domain)
1057   int num_args      = 7;
1058   int argcnt = num_args;
1059   const Type** fields = TypeTuple::fields(argcnt);
1060   int argp = TypeFunc::Parms;
1061   fields[argp++] = TypePtr::NOTNULL;    // a
1062   fields[argp++] = TypePtr::NOTNULL;    // b
1063   fields[argp++] = TypePtr::NOTNULL;    // n
1064   fields[argp++] = TypeInt::INT;        // len
1065   fields[argp++] = TypeLong::LONG;      // inv
1066   fields[argp++] = Type::HALF;
1067   fields[argp++] = TypePtr::NOTNULL;    // result
1068   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1069   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1070 
1071   // result type needed
1072   fields = TypeTuple::fields(1);
1073   fields[TypeFunc::Parms+0] = TypePtr::NOTNULL;
1074 
1075   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1076   return TypeFunc::make(domain, range);
1077 }
1078 
1079 const TypeFunc* OptoRuntime::montgomerySquare_Type() {
1080   // create input type (domain)
1081   int num_args      = 6;
1082   int argcnt = num_args;
1083   const Type** fields = TypeTuple::fields(argcnt);
1084   int argp = TypeFunc::Parms;
1085   fields[argp++] = TypePtr::NOTNULL;    // a
1086   fields[argp++] = TypePtr::NOTNULL;    // n
1087   fields[argp++] = TypeInt::INT;        // len
1088   fields[argp++] = TypeLong::LONG;      // inv
1089   fields[argp++] = Type::HALF;
1090   fields[argp++] = TypePtr::NOTNULL;    // result
1091   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1092   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1093 
1094   // result type needed
1095   fields = TypeTuple::fields(1);
1096   fields[TypeFunc::Parms+0] = TypePtr::NOTNULL;
1097 
1098   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1099   return TypeFunc::make(domain, range);
1100 }
1101 
1102 // GHASH block processing
1103 const TypeFunc* OptoRuntime::ghash_processBlocks_Type() {
1104     int argcnt = 4;
1105 
1106     const Type** fields = TypeTuple::fields(argcnt);
1107     int argp = TypeFunc::Parms;
1108     fields[argp++] = TypePtr::NOTNULL;    // state
1109     fields[argp++] = TypePtr::NOTNULL;    // subkeyH
1110     fields[argp++] = TypePtr::NOTNULL;    // data
1111     fields[argp++] = TypeInt::INT;        // blocks
1112     assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1113     const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1114 
1115     // result type needed
1116     fields = TypeTuple::fields(1);
1117     fields[TypeFunc::Parms+0] = NULL; // void
1118     const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1119     return TypeFunc::make(domain, range);
1120 }
1121 
1122 //------------- Interpreter state access for on stack replacement
1123 const TypeFunc* OptoRuntime::osr_end_Type() {
1124   // create input type (domain)
1125   const Type **fields = TypeTuple::fields(1);
1126   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // OSR temp buf
1127   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
1128 
1129   // create result type
1130   fields = TypeTuple::fields(1);
1131   // fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // locked oop
1132   fields[TypeFunc::Parms+0] = NULL; // void
1133   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
1134   return TypeFunc::make(domain, range);
1135 }
1136 
1137 //-------------- methodData update helpers
1138 
1139 const TypeFunc* OptoRuntime::profile_receiver_type_Type() {
1140   // create input type (domain)
1141   const Type **fields = TypeTuple::fields(2);
1142   fields[TypeFunc::Parms+0] = TypeAryPtr::NOTNULL;    // methodData pointer
1143   fields[TypeFunc::Parms+1] = TypeInstPtr::BOTTOM;    // receiver oop
1144   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
1145 
1146   // create result type
1147   fields = TypeTuple::fields(1);
1148   fields[TypeFunc::Parms+0] = NULL; // void
1149   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
1150   return TypeFunc::make(domain,range);
1151 }
1152 
1153 JRT_LEAF(void, OptoRuntime::profile_receiver_type_C(DataLayout* data, oopDesc* receiver))
1154   if (receiver == NULL) return;
1155   Klass* receiver_klass = receiver->klass();
1156 
1157   intptr_t* mdp = ((intptr_t*)(data)) + DataLayout::header_size_in_cells();
1158   int empty_row = -1;           // free row, if any is encountered
1159 
1160   // ReceiverTypeData* vc = new ReceiverTypeData(mdp);
1161   for (uint row = 0; row < ReceiverTypeData::row_limit(); row++) {
1162     // if (vc->receiver(row) == receiver_klass)
1163     int receiver_off = ReceiverTypeData::receiver_cell_index(row);
1164     intptr_t row_recv = *(mdp + receiver_off);
1165     if (row_recv == (intptr_t) receiver_klass) {
1166       // vc->set_receiver_count(row, vc->receiver_count(row) + DataLayout::counter_increment);
1167       int count_off = ReceiverTypeData::receiver_count_cell_index(row);
1168       *(mdp + count_off) += DataLayout::counter_increment;
1169       return;
1170     } else if (row_recv == 0) {
1171       // else if (vc->receiver(row) == NULL)
1172       empty_row = (int) row;
1173     }
1174   }
1175 
1176   if (empty_row != -1) {
1177     int receiver_off = ReceiverTypeData::receiver_cell_index(empty_row);
1178     // vc->set_receiver(empty_row, receiver_klass);
1179     *(mdp + receiver_off) = (intptr_t) receiver_klass;
1180     // vc->set_receiver_count(empty_row, DataLayout::counter_increment);
1181     int count_off = ReceiverTypeData::receiver_count_cell_index(empty_row);
1182     *(mdp + count_off) = DataLayout::counter_increment;
1183   } else {
1184     // Receiver did not match any saved receiver and there is no empty row for it.
1185     // Increment total counter to indicate polymorphic case.
1186     intptr_t* count_p = (intptr_t*)(((uint8_t*)(data)) + in_bytes(CounterData::count_offset()));
1187     *count_p += DataLayout::counter_increment;
1188   }
1189 JRT_END
1190 
1191 //-------------------------------------------------------------------------------------
1192 // register policy
1193 
1194 bool OptoRuntime::is_callee_saved_register(MachRegisterNumbers reg) {
1195   assert(reg >= 0 && reg < _last_Mach_Reg, "must be a machine register");
1196   switch (register_save_policy[reg]) {
1197     case 'C': return false; //SOC
1198     case 'E': return true ; //SOE
1199     case 'N': return false; //NS
1200     case 'A': return false; //AS
1201   }
1202   ShouldNotReachHere();
1203   return false;
1204 }
1205 
1206 //-----------------------------------------------------------------------
1207 // Exceptions
1208 //
1209 
1210 static void trace_exception(oop exception_oop, address exception_pc, const char* msg) PRODUCT_RETURN;
1211 
1212 // The method is an entry that is always called by a C++ method not
1213 // directly from compiled code. Compiled code will call the C++ method following.
1214 // We can't allow async exception to be installed during  exception processing.
1215 JRT_ENTRY_NO_ASYNC(address, OptoRuntime::handle_exception_C_helper(JavaThread* thread, nmethod* &nm))
1216 
1217   // Do not confuse exception_oop with pending_exception. The exception_oop
1218   // is only used to pass arguments into the method. Not for general
1219   // exception handling.  DO NOT CHANGE IT to use pending_exception, since
1220   // the runtime stubs checks this on exit.
1221   assert(thread->exception_oop() != NULL, "exception oop is found");
1222   address handler_address = NULL;
1223 
1224   Handle exception(thread, thread->exception_oop());
1225   address pc = thread->exception_pc();
1226 
1227   // Clear out the exception oop and pc since looking up an
1228   // exception handler can cause class loading, which might throw an
1229   // exception and those fields are expected to be clear during
1230   // normal bytecode execution.
1231   thread->clear_exception_oop_and_pc();
1232 
1233   if (TraceExceptions) {
1234     trace_exception(exception(), pc, "");
1235   }
1236 
1237   // for AbortVMOnException flag
1238   NOT_PRODUCT(Exceptions::debug_check_abort(exception));
1239 
1240 #ifdef ASSERT
1241   if (!(exception->is_a(SystemDictionary::Throwable_klass()))) {
1242     // should throw an exception here
1243     ShouldNotReachHere();
1244   }
1245 #endif
1246 
1247   // new exception handling: this method is entered only from adapters
1248   // exceptions from compiled java methods are handled in compiled code
1249   // using rethrow node
1250 
1251   nm = CodeCache::find_nmethod(pc);
1252   assert(nm != NULL, "No NMethod found");
1253   if (nm->is_native_method()) {
1254     fatal("Native method should not have path to exception handling");
1255   } else {
1256     // we are switching to old paradigm: search for exception handler in caller_frame
1257     // instead in exception handler of caller_frame.sender()
1258 
1259     if (JvmtiExport::can_post_on_exceptions()) {
1260       // "Full-speed catching" is not necessary here,
1261       // since we're notifying the VM on every catch.
1262       // Force deoptimization and the rest of the lookup
1263       // will be fine.
1264       deoptimize_caller_frame(thread);
1265     }
1266 
1267     // Check the stack guard pages.  If enabled, look for handler in this frame;
1268     // otherwise, forcibly unwind the frame.
1269     //
1270     // 4826555: use default current sp for reguard_stack instead of &nm: it's more accurate.
1271     bool force_unwind = !thread->reguard_stack();
1272     bool deopting = false;
1273     if (nm->is_deopt_pc(pc)) {
1274       deopting = true;
1275       RegisterMap map(thread, false);
1276       frame deoptee = thread->last_frame().sender(&map);
1277       assert(deoptee.is_deoptimized_frame(), "must be deopted");
1278       // Adjust the pc back to the original throwing pc
1279       pc = deoptee.pc();
1280     }
1281 
1282     // If we are forcing an unwind because of stack overflow then deopt is
1283     // irrelevant since we are throwing the frame away anyway.
1284 
1285     if (deopting && !force_unwind) {
1286       handler_address = SharedRuntime::deopt_blob()->unpack_with_exception();
1287     } else {
1288 
1289       handler_address =
1290         force_unwind ? NULL : nm->handler_for_exception_and_pc(exception, pc);
1291 
1292       if (handler_address == NULL) {
1293         Handle original_exception(thread, exception());
1294         handler_address = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true);
1295         assert (handler_address != NULL, "must have compiled handler");
1296         // Update the exception cache only when the unwind was not forced
1297         // and there didn't happen another exception during the computation of the
1298         // compiled exception handler.
1299         if (!force_unwind && original_exception() == exception()) {
1300           nm->add_handler_for_exception_and_pc(exception,pc,handler_address);
1301         }
1302       } else {
1303         assert(handler_address == SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true), "Must be the same");
1304       }
1305     }
1306 
1307     thread->set_exception_pc(pc);
1308     thread->set_exception_handler_pc(handler_address);
1309 
1310     // Check if the exception PC is a MethodHandle call site.
1311     thread->set_is_method_handle_return(nm->is_method_handle_return(pc));
1312   }
1313 
1314   // Restore correct return pc.  Was saved above.
1315   thread->set_exception_oop(exception());
1316   return handler_address;
1317 
1318 JRT_END
1319 
1320 // We are entering here from exception_blob
1321 // If there is a compiled exception handler in this method, we will continue there;
1322 // otherwise we will unwind the stack and continue at the caller of top frame method
1323 // Note we enter without the usual JRT wrapper. We will call a helper routine that
1324 // will do the normal VM entry. We do it this way so that we can see if the nmethod
1325 // we looked up the handler for has been deoptimized in the meantime. If it has been
1326 // we must not use the handler and instead return the deopt blob.
1327 address OptoRuntime::handle_exception_C(JavaThread* thread) {
1328 //
1329 // We are in Java not VM and in debug mode we have a NoHandleMark
1330 //
1331 #ifndef PRODUCT
1332   SharedRuntime::_find_handler_ctr++;          // find exception handler
1333 #endif
1334   debug_only(NoHandleMark __hm;)
1335   nmethod* nm = NULL;
1336   address handler_address = NULL;
1337   {
1338     // Enter the VM
1339 
1340     ResetNoHandleMark rnhm;
1341     handler_address = handle_exception_C_helper(thread, nm);
1342   }
1343 
1344   // Back in java: Use no oops, DON'T safepoint
1345 
1346   // Now check to see if the handler we are returning is in a now
1347   // deoptimized frame
1348 
1349   if (nm != NULL) {
1350     RegisterMap map(thread, false);
1351     frame caller = thread->last_frame().sender(&map);
1352 #ifdef ASSERT
1353     assert(caller.is_compiled_frame(), "must be");
1354 #endif // ASSERT
1355     if (caller.is_deoptimized_frame()) {
1356       handler_address = SharedRuntime::deopt_blob()->unpack_with_exception();
1357     }
1358   }
1359   return handler_address;
1360 }
1361 
1362 //------------------------------rethrow----------------------------------------
1363 // We get here after compiled code has executed a 'RethrowNode'.  The callee
1364 // is either throwing or rethrowing an exception.  The callee-save registers
1365 // have been restored, synchronized objects have been unlocked and the callee
1366 // stack frame has been removed.  The return address was passed in.
1367 // Exception oop is passed as the 1st argument.  This routine is then called
1368 // from the stub.  On exit, we know where to jump in the caller's code.
1369 // After this C code exits, the stub will pop his frame and end in a jump
1370 // (instead of a return).  We enter the caller's default handler.
1371 //
1372 // This must be JRT_LEAF:
1373 //     - caller will not change its state as we cannot block on exit,
1374 //       therefore raw_exception_handler_for_return_address is all it takes
1375 //       to handle deoptimized blobs
1376 //
1377 // However, there needs to be a safepoint check in the middle!  So compiled
1378 // safepoints are completely watertight.
1379 //
1380 // Thus, it cannot be a leaf since it contains the No_GC_Verifier.
1381 //
1382 // *THIS IS NOT RECOMMENDED PROGRAMMING STYLE*
1383 //
1384 address OptoRuntime::rethrow_C(oopDesc* exception, JavaThread* thread, address ret_pc) {
1385 #ifndef PRODUCT
1386   SharedRuntime::_rethrow_ctr++;               // count rethrows
1387 #endif
1388   assert (exception != NULL, "should have thrown a NULLPointerException");
1389 #ifdef ASSERT
1390   if (!(exception->is_a(SystemDictionary::Throwable_klass()))) {
1391     // should throw an exception here
1392     ShouldNotReachHere();
1393   }
1394 #endif
1395 
1396   thread->set_vm_result(exception);
1397   // Frame not compiled (handles deoptimization blob)
1398   return SharedRuntime::raw_exception_handler_for_return_address(thread, ret_pc);
1399 }
1400 
1401 
1402 const TypeFunc *OptoRuntime::rethrow_Type() {
1403   // create input type (domain)
1404   const Type **fields = TypeTuple::fields(1);
1405   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop
1406   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields);
1407 
1408   // create result type (range)
1409   fields = TypeTuple::fields(1);
1410   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop
1411   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
1412 
1413   return TypeFunc::make(domain, range);
1414 }
1415 
1416 
1417 void OptoRuntime::deoptimize_caller_frame(JavaThread *thread, bool doit) {
1418   // Deoptimize the caller before continuing, as the compiled
1419   // exception handler table may not be valid.
1420   if (!StressCompiledExceptionHandlers && doit) {
1421     deoptimize_caller_frame(thread);
1422   }
1423 }
1424 
1425 void OptoRuntime::deoptimize_caller_frame(JavaThread *thread) {
1426   // Called from within the owner thread, so no need for safepoint
1427   RegisterMap reg_map(thread);
1428   frame stub_frame = thread->last_frame();
1429   assert(stub_frame.is_runtime_frame() || exception_blob()->contains(stub_frame.pc()), "sanity check");
1430   frame caller_frame = stub_frame.sender(&reg_map);
1431 
1432   // Deoptimize the caller frame.
1433   Deoptimization::deoptimize_frame(thread, caller_frame.id());
1434 }
1435 
1436 
1437 bool OptoRuntime::is_deoptimized_caller_frame(JavaThread *thread) {
1438   // Called from within the owner thread, so no need for safepoint
1439   RegisterMap reg_map(thread);
1440   frame stub_frame = thread->last_frame();
1441   assert(stub_frame.is_runtime_frame() || exception_blob()->contains(stub_frame.pc()), "sanity check");
1442   frame caller_frame = stub_frame.sender(&reg_map);
1443   return caller_frame.is_deoptimized_frame();
1444 }
1445 
1446 
1447 const TypeFunc *OptoRuntime::register_finalizer_Type() {
1448   // create input type (domain)
1449   const Type **fields = TypeTuple::fields(1);
1450   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // oop;          Receiver
1451   // // The JavaThread* is passed to each routine as the last argument
1452   // fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL;  // JavaThread *; Executing thread
1453   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields);
1454 
1455   // create result type (range)
1456   fields = TypeTuple::fields(0);
1457 
1458   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
1459 
1460   return TypeFunc::make(domain,range);
1461 }
1462 
1463 
1464 //-----------------------------------------------------------------------------
1465 // Dtrace support.  entry and exit probes have the same signature
1466 const TypeFunc *OptoRuntime::dtrace_method_entry_exit_Type() {
1467   // create input type (domain)
1468   const Type **fields = TypeTuple::fields(2);
1469   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage
1470   fields[TypeFunc::Parms+1] = TypeMetadataPtr::BOTTOM;  // Method*;    Method we are entering
1471   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
1472 
1473   // create result type (range)
1474   fields = TypeTuple::fields(0);
1475 
1476   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
1477 
1478   return TypeFunc::make(domain,range);
1479 }
1480 
1481 const TypeFunc *OptoRuntime::dtrace_object_alloc_Type() {
1482   // create input type (domain)
1483   const Type **fields = TypeTuple::fields(2);
1484   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage
1485   fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL;  // oop;    newly allocated object
1486 
1487   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
1488 
1489   // create result type (range)
1490   fields = TypeTuple::fields(0);
1491 
1492   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
1493 
1494   return TypeFunc::make(domain,range);
1495 }
1496 
1497 
1498 JRT_ENTRY_NO_ASYNC(void, OptoRuntime::register_finalizer(oopDesc* obj, JavaThread* thread))
1499   assert(obj->is_oop(), "must be a valid oop");
1500   assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
1501   InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
1502 JRT_END
1503 
1504 //-----------------------------------------------------------------------------
1505 
1506 NamedCounter * volatile OptoRuntime::_named_counters = NULL;
1507 
1508 //
1509 // dump the collected NamedCounters.
1510 //
1511 void OptoRuntime::print_named_counters() {
1512   int total_lock_count = 0;
1513   int eliminated_lock_count = 0;
1514 
1515   NamedCounter* c = _named_counters;
1516   while (c) {
1517     if (c->tag() == NamedCounter::LockCounter || c->tag() == NamedCounter::EliminatedLockCounter) {
1518       int count = c->count();
1519       if (count > 0) {
1520         bool eliminated = c->tag() == NamedCounter::EliminatedLockCounter;
1521         if (Verbose) {
1522           tty->print_cr("%d %s%s", count, c->name(), eliminated ? " (eliminated)" : "");
1523         }
1524         total_lock_count += count;
1525         if (eliminated) {
1526           eliminated_lock_count += count;
1527         }
1528       }
1529     } else if (c->tag() == NamedCounter::BiasedLockingCounter) {
1530       BiasedLockingCounters* blc = ((BiasedLockingNamedCounter*)c)->counters();
1531       if (blc->nonzero()) {
1532         tty->print_cr("%s", c->name());
1533         blc->print_on(tty);
1534       }
1535 #if INCLUDE_RTM_OPT
1536     } else if (c->tag() == NamedCounter::RTMLockingCounter) {
1537       RTMLockingCounters* rlc = ((RTMLockingNamedCounter*)c)->counters();
1538       if (rlc->nonzero()) {
1539         tty->print_cr("%s", c->name());
1540         rlc->print_on(tty);
1541       }
1542 #endif
1543     }
1544     c = c->next();
1545   }
1546   if (total_lock_count > 0) {
1547     tty->print_cr("dynamic locks: %d", total_lock_count);
1548     if (eliminated_lock_count) {
1549       tty->print_cr("eliminated locks: %d (%d%%)", eliminated_lock_count,
1550                     (int)(eliminated_lock_count * 100.0 / total_lock_count));
1551     }
1552   }
1553 }
1554 
1555 //
1556 //  Allocate a new NamedCounter.  The JVMState is used to generate the
1557 //  name which consists of method@line for the inlining tree.
1558 //
1559 
1560 NamedCounter* OptoRuntime::new_named_counter(JVMState* youngest_jvms, NamedCounter::CounterTag tag) {
1561   int max_depth = youngest_jvms->depth();
1562 
1563   // Visit scopes from youngest to oldest.
1564   bool first = true;
1565   stringStream st;
1566   for (int depth = max_depth; depth >= 1; depth--) {
1567     JVMState* jvms = youngest_jvms->of_depth(depth);
1568     ciMethod* m = jvms->has_method() ? jvms->method() : NULL;
1569     if (!first) {
1570       st.print(" ");
1571     } else {
1572       first = false;
1573     }
1574     int bci = jvms->bci();
1575     if (bci < 0) bci = 0;
1576     st.print("%s.%s@%d", m->holder()->name()->as_utf8(), m->name()->as_utf8(), bci);
1577     // To print linenumbers instead of bci use: m->line_number_from_bci(bci)
1578   }
1579   NamedCounter* c;
1580   if (tag == NamedCounter::BiasedLockingCounter) {
1581     c = new BiasedLockingNamedCounter(st.as_string());
1582   } else if (tag == NamedCounter::RTMLockingCounter) {
1583     c = new RTMLockingNamedCounter(st.as_string());
1584   } else {
1585     c = new NamedCounter(st.as_string(), tag);
1586   }
1587 
1588   // atomically add the new counter to the head of the list.  We only
1589   // add counters so this is safe.
1590   NamedCounter* head;
1591   do {
1592     c->set_next(NULL);
1593     head = _named_counters;
1594     c->set_next(head);
1595   } while (Atomic::cmpxchg_ptr(c, &_named_counters, head) != head);
1596   return c;
1597 }
1598 
1599 //-----------------------------------------------------------------------------
1600 // Non-product code
1601 #ifndef PRODUCT
1602 
1603 int trace_exception_counter = 0;
1604 static void trace_exception(oop exception_oop, address exception_pc, const char* msg) {
1605   ttyLocker ttyl;
1606   trace_exception_counter++;
1607   tty->print("%d [Exception (%s): ", trace_exception_counter, msg);
1608   exception_oop->print_value();
1609   tty->print(" in ");
1610   CodeBlob* blob = CodeCache::find_blob(exception_pc);
1611   if (blob->is_nmethod()) {
1612     nmethod* nm = blob->as_nmethod_or_null();
1613     nm->method()->print_value();
1614   } else if (blob->is_runtime_stub()) {
1615     tty->print("<runtime-stub>");
1616   } else {
1617     tty->print("<unknown>");
1618   }
1619   tty->print(" at " INTPTR_FORMAT,  p2i(exception_pc));
1620   tty->print_cr("]");
1621 }
1622 
1623 #endif  // PRODUCT
1624