1 /*
   2  * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/macroAssembler.hpp"
  27 #include "asm/macroAssembler.inline.hpp"
  28 #include "ci/ciReplay.hpp"
  29 #include "classfile/systemDictionary.hpp"
  30 #include "code/exceptionHandlerTable.hpp"
  31 #include "code/nmethod.hpp"
  32 #include "compiler/compileBroker.hpp"
  33 #include "compiler/compileLog.hpp"
  34 #include "compiler/disassembler.hpp"
  35 #include "compiler/oopMap.hpp"
  36 #include "opto/addnode.hpp"
  37 #include "opto/block.hpp"
  38 #include "opto/c2compiler.hpp"
  39 #include "opto/callGenerator.hpp"
  40 #include "opto/callnode.hpp"
  41 #include "opto/cfgnode.hpp"
  42 #include "opto/chaitin.hpp"
  43 #include "opto/compile.hpp"
  44 #include "opto/connode.hpp"
  45 #include "opto/convertnode.hpp"
  46 #include "opto/divnode.hpp"
  47 #include "opto/escape.hpp"
  48 #include "opto/idealGraphPrinter.hpp"
  49 #include "opto/loopnode.hpp"
  50 #include "opto/machnode.hpp"
  51 #include "opto/macro.hpp"
  52 #include "opto/matcher.hpp"
  53 #include "opto/mathexactnode.hpp"
  54 #include "opto/memnode.hpp"
  55 #include "opto/mulnode.hpp"
  56 #include "opto/narrowptrnode.hpp"
  57 #include "opto/node.hpp"
  58 #include "opto/opcodes.hpp"
  59 #include "opto/output.hpp"
  60 #include "opto/parse.hpp"
  61 #include "opto/phaseX.hpp"
  62 #include "opto/rootnode.hpp"
  63 #include "opto/runtime.hpp"
  64 #include "opto/stringopts.hpp"
  65 #include "opto/type.hpp"
  66 #include "opto/vectornode.hpp"
  67 #include "runtime/arguments.hpp"
  68 #include "runtime/sharedRuntime.hpp"
  69 #include "runtime/signature.hpp"
  70 #include "runtime/stubRoutines.hpp"
  71 #include "runtime/timer.hpp"
  72 #include "utilities/copy.hpp"
  73 
  74 
  75 // -------------------- Compile::mach_constant_base_node -----------------------
  76 // Constant table base node singleton.
  77 MachConstantBaseNode* Compile::mach_constant_base_node() {
  78   if (_mach_constant_base_node == NULL) {
  79     _mach_constant_base_node = new MachConstantBaseNode();
  80     _mach_constant_base_node->add_req(C->root());
  81   }
  82   return _mach_constant_base_node;
  83 }
  84 
  85 
  86 /// Support for intrinsics.
  87 
  88 // Return the index at which m must be inserted (or already exists).
  89 // The sort order is by the address of the ciMethod, with is_virtual as minor key.
  90 int Compile::intrinsic_insertion_index(ciMethod* m, bool is_virtual) {
  91 #ifdef ASSERT
  92   for (int i = 1; i < _intrinsics->length(); i++) {
  93     CallGenerator* cg1 = _intrinsics->at(i-1);
  94     CallGenerator* cg2 = _intrinsics->at(i);
  95     assert(cg1->method() != cg2->method()
  96            ? cg1->method()     < cg2->method()
  97            : cg1->is_virtual() < cg2->is_virtual(),
  98            "compiler intrinsics list must stay sorted");
  99   }
 100 #endif
 101   // Binary search sorted list, in decreasing intervals [lo, hi].
 102   int lo = 0, hi = _intrinsics->length()-1;
 103   while (lo <= hi) {
 104     int mid = (uint)(hi + lo) / 2;
 105     ciMethod* mid_m = _intrinsics->at(mid)->method();
 106     if (m < mid_m) {
 107       hi = mid-1;
 108     } else if (m > mid_m) {
 109       lo = mid+1;
 110     } else {
 111       // look at minor sort key
 112       bool mid_virt = _intrinsics->at(mid)->is_virtual();
 113       if (is_virtual < mid_virt) {
 114         hi = mid-1;
 115       } else if (is_virtual > mid_virt) {
 116         lo = mid+1;
 117       } else {
 118         return mid;  // exact match
 119       }
 120     }
 121   }
 122   return lo;  // inexact match
 123 }
 124 
 125 void Compile::register_intrinsic(CallGenerator* cg) {
 126   if (_intrinsics == NULL) {
 127     _intrinsics = new (comp_arena())GrowableArray<CallGenerator*>(comp_arena(), 60, 0, NULL);
 128   }
 129   // This code is stolen from ciObjectFactory::insert.
 130   // Really, GrowableArray should have methods for
 131   // insert_at, remove_at, and binary_search.
 132   int len = _intrinsics->length();
 133   int index = intrinsic_insertion_index(cg->method(), cg->is_virtual());
 134   if (index == len) {
 135     _intrinsics->append(cg);
 136   } else {
 137 #ifdef ASSERT
 138     CallGenerator* oldcg = _intrinsics->at(index);
 139     assert(oldcg->method() != cg->method() || oldcg->is_virtual() != cg->is_virtual(), "don't register twice");
 140 #endif
 141     _intrinsics->append(_intrinsics->at(len-1));
 142     int pos;
 143     for (pos = len-2; pos >= index; pos--) {
 144       _intrinsics->at_put(pos+1,_intrinsics->at(pos));
 145     }
 146     _intrinsics->at_put(index, cg);
 147   }
 148   assert(find_intrinsic(cg->method(), cg->is_virtual()) == cg, "registration worked");
 149 }
 150 
 151 CallGenerator* Compile::find_intrinsic(ciMethod* m, bool is_virtual) {
 152   assert(m->is_loaded(), "don't try this on unloaded methods");
 153   if (_intrinsics != NULL) {
 154     int index = intrinsic_insertion_index(m, is_virtual);
 155     if (index < _intrinsics->length()
 156         && _intrinsics->at(index)->method() == m
 157         && _intrinsics->at(index)->is_virtual() == is_virtual) {
 158       return _intrinsics->at(index);
 159     }
 160   }
 161   // Lazily create intrinsics for intrinsic IDs well-known in the runtime.
 162   if (m->intrinsic_id() != vmIntrinsics::_none &&
 163       m->intrinsic_id() <= vmIntrinsics::LAST_COMPILER_INLINE) {
 164     CallGenerator* cg = make_vm_intrinsic(m, is_virtual);
 165     if (cg != NULL) {
 166       // Save it for next time:
 167       register_intrinsic(cg);
 168       return cg;
 169     } else {
 170       gather_intrinsic_statistics(m->intrinsic_id(), is_virtual, _intrinsic_disabled);
 171     }
 172   }
 173   return NULL;
 174 }
 175 
 176 // Compile:: register_library_intrinsics and make_vm_intrinsic are defined
 177 // in library_call.cpp.
 178 
 179 
 180 #ifndef PRODUCT
 181 // statistics gathering...
 182 
 183 juint  Compile::_intrinsic_hist_count[vmIntrinsics::ID_LIMIT] = {0};
 184 jubyte Compile::_intrinsic_hist_flags[vmIntrinsics::ID_LIMIT] = {0};
 185 
 186 bool Compile::gather_intrinsic_statistics(vmIntrinsics::ID id, bool is_virtual, int flags) {
 187   assert(id > vmIntrinsics::_none && id < vmIntrinsics::ID_LIMIT, "oob");
 188   int oflags = _intrinsic_hist_flags[id];
 189   assert(flags != 0, "what happened?");
 190   if (is_virtual) {
 191     flags |= _intrinsic_virtual;
 192   }
 193   bool changed = (flags != oflags);
 194   if ((flags & _intrinsic_worked) != 0) {
 195     juint count = (_intrinsic_hist_count[id] += 1);
 196     if (count == 1) {
 197       changed = true;           // first time
 198     }
 199     // increment the overall count also:
 200     _intrinsic_hist_count[vmIntrinsics::_none] += 1;
 201   }
 202   if (changed) {
 203     if (((oflags ^ flags) & _intrinsic_virtual) != 0) {
 204       // Something changed about the intrinsic's virtuality.
 205       if ((flags & _intrinsic_virtual) != 0) {
 206         // This is the first use of this intrinsic as a virtual call.
 207         if (oflags != 0) {
 208           // We already saw it as a non-virtual, so note both cases.
 209           flags |= _intrinsic_both;
 210         }
 211       } else if ((oflags & _intrinsic_both) == 0) {
 212         // This is the first use of this intrinsic as a non-virtual
 213         flags |= _intrinsic_both;
 214       }
 215     }
 216     _intrinsic_hist_flags[id] = (jubyte) (oflags | flags);
 217   }
 218   // update the overall flags also:
 219   _intrinsic_hist_flags[vmIntrinsics::_none] |= (jubyte) flags;
 220   return changed;
 221 }
 222 
 223 static char* format_flags(int flags, char* buf) {
 224   buf[0] = 0;
 225   if ((flags & Compile::_intrinsic_worked) != 0)    strcat(buf, ",worked");
 226   if ((flags & Compile::_intrinsic_failed) != 0)    strcat(buf, ",failed");
 227   if ((flags & Compile::_intrinsic_disabled) != 0)  strcat(buf, ",disabled");
 228   if ((flags & Compile::_intrinsic_virtual) != 0)   strcat(buf, ",virtual");
 229   if ((flags & Compile::_intrinsic_both) != 0)      strcat(buf, ",nonvirtual");
 230   if (buf[0] == 0)  strcat(buf, ",");
 231   assert(buf[0] == ',', "must be");
 232   return &buf[1];
 233 }
 234 
 235 void Compile::print_intrinsic_statistics() {
 236   char flagsbuf[100];
 237   ttyLocker ttyl;
 238   if (xtty != NULL)  xtty->head("statistics type='intrinsic'");
 239   tty->print_cr("Compiler intrinsic usage:");
 240   juint total = _intrinsic_hist_count[vmIntrinsics::_none];
 241   if (total == 0)  total = 1;  // avoid div0 in case of no successes
 242   #define PRINT_STAT_LINE(name, c, f) \
 243     tty->print_cr("  %4d (%4.1f%%) %s (%s)", (int)(c), ((c) * 100.0) / total, name, f);
 244   for (int index = 1 + (int)vmIntrinsics::_none; index < (int)vmIntrinsics::ID_LIMIT; index++) {
 245     vmIntrinsics::ID id = (vmIntrinsics::ID) index;
 246     int   flags = _intrinsic_hist_flags[id];
 247     juint count = _intrinsic_hist_count[id];
 248     if ((flags | count) != 0) {
 249       PRINT_STAT_LINE(vmIntrinsics::name_at(id), count, format_flags(flags, flagsbuf));
 250     }
 251   }
 252   PRINT_STAT_LINE("total", total, format_flags(_intrinsic_hist_flags[vmIntrinsics::_none], flagsbuf));
 253   if (xtty != NULL)  xtty->tail("statistics");
 254 }
 255 
 256 void Compile::print_statistics() {
 257   { ttyLocker ttyl;
 258     if (xtty != NULL)  xtty->head("statistics type='opto'");
 259     Parse::print_statistics();
 260     PhaseCCP::print_statistics();
 261     PhaseRegAlloc::print_statistics();
 262     Scheduling::print_statistics();
 263     PhasePeephole::print_statistics();
 264     PhaseIdealLoop::print_statistics();
 265     if (xtty != NULL)  xtty->tail("statistics");
 266   }
 267   if (_intrinsic_hist_flags[vmIntrinsics::_none] != 0) {
 268     // put this under its own <statistics> element.
 269     print_intrinsic_statistics();
 270   }
 271 }
 272 #endif //PRODUCT
 273 
 274 // Support for bundling info
 275 Bundle* Compile::node_bundling(const Node *n) {
 276   assert(valid_bundle_info(n), "oob");
 277   return &_node_bundling_base[n->_idx];
 278 }
 279 
 280 bool Compile::valid_bundle_info(const Node *n) {
 281   return (_node_bundling_limit > n->_idx);
 282 }
 283 
 284 
 285 void Compile::gvn_replace_by(Node* n, Node* nn) {
 286   for (DUIterator_Last imin, i = n->last_outs(imin); i >= imin; ) {
 287     Node* use = n->last_out(i);
 288     bool is_in_table = initial_gvn()->hash_delete(use);
 289     uint uses_found = 0;
 290     for (uint j = 0; j < use->len(); j++) {
 291       if (use->in(j) == n) {
 292         if (j < use->req())
 293           use->set_req(j, nn);
 294         else
 295           use->set_prec(j, nn);
 296         uses_found++;
 297       }
 298     }
 299     if (is_in_table) {
 300       // reinsert into table
 301       initial_gvn()->hash_find_insert(use);
 302     }
 303     record_for_igvn(use);
 304     i -= uses_found;    // we deleted 1 or more copies of this edge
 305   }
 306 }
 307 
 308 
 309 static inline bool not_a_node(const Node* n) {
 310   if (n == NULL)                   return true;
 311   if (((intptr_t)n & 1) != 0)      return true;  // uninitialized, etc.
 312   if (*(address*)n == badAddress)  return true;  // kill by Node::destruct
 313   return false;
 314 }
 315 
 316 // Identify all nodes that are reachable from below, useful.
 317 // Use breadth-first pass that records state in a Unique_Node_List,
 318 // recursive traversal is slower.
 319 void Compile::identify_useful_nodes(Unique_Node_List &useful) {
 320   int estimated_worklist_size = live_nodes();
 321   useful.map( estimated_worklist_size, NULL );  // preallocate space
 322 
 323   // Initialize worklist
 324   if (root() != NULL)     { useful.push(root()); }
 325   // If 'top' is cached, declare it useful to preserve cached node
 326   if( cached_top_node() ) { useful.push(cached_top_node()); }
 327 
 328   // Push all useful nodes onto the list, breadthfirst
 329   for( uint next = 0; next < useful.size(); ++next ) {
 330     assert( next < unique(), "Unique useful nodes < total nodes");
 331     Node *n  = useful.at(next);
 332     uint max = n->len();
 333     for( uint i = 0; i < max; ++i ) {
 334       Node *m = n->in(i);
 335       if (not_a_node(m))  continue;
 336       useful.push(m);
 337     }
 338   }
 339 }
 340 
 341 // Update dead_node_list with any missing dead nodes using useful
 342 // list. Consider all non-useful nodes to be useless i.e., dead nodes.
 343 void Compile::update_dead_node_list(Unique_Node_List &useful) {
 344   uint max_idx = unique();
 345   VectorSet& useful_node_set = useful.member_set();
 346 
 347   for (uint node_idx = 0; node_idx < max_idx; node_idx++) {
 348     // If node with index node_idx is not in useful set,
 349     // mark it as dead in dead node list.
 350     if (! useful_node_set.test(node_idx) ) {
 351       record_dead_node(node_idx);
 352     }
 353   }
 354 }
 355 
 356 void Compile::remove_useless_late_inlines(GrowableArray<CallGenerator*>* inlines, Unique_Node_List &useful) {
 357   int shift = 0;
 358   for (int i = 0; i < inlines->length(); i++) {
 359     CallGenerator* cg = inlines->at(i);
 360     CallNode* call = cg->call_node();
 361     if (shift > 0) {
 362       inlines->at_put(i-shift, cg);
 363     }
 364     if (!useful.member(call)) {
 365       shift++;
 366     }
 367   }
 368   inlines->trunc_to(inlines->length()-shift);
 369 }
 370 
 371 // Disconnect all useless nodes by disconnecting those at the boundary.
 372 void Compile::remove_useless_nodes(Unique_Node_List &useful) {
 373   uint next = 0;
 374   while (next < useful.size()) {
 375     Node *n = useful.at(next++);
 376     if (n->is_SafePoint()) {
 377       // We're done with a parsing phase. Replaced nodes are not valid
 378       // beyond that point.
 379       n->as_SafePoint()->delete_replaced_nodes();
 380     }
 381     // Use raw traversal of out edges since this code removes out edges
 382     int max = n->outcnt();
 383     for (int j = 0; j < max; ++j) {
 384       Node* child = n->raw_out(j);
 385       if (! useful.member(child)) {
 386         assert(!child->is_top() || child != top(),
 387                "If top is cached in Compile object it is in useful list");
 388         // Only need to remove this out-edge to the useless node
 389         n->raw_del_out(j);
 390         --j;
 391         --max;
 392       }
 393     }
 394     if (n->outcnt() == 1 && n->has_special_unique_user()) {
 395       record_for_igvn(n->unique_out());
 396     }
 397   }
 398   // Remove useless macro and predicate opaq nodes
 399   for (int i = C->macro_count()-1; i >= 0; i--) {
 400     Node* n = C->macro_node(i);
 401     if (!useful.member(n)) {
 402       remove_macro_node(n);
 403     }
 404   }
 405   // Remove useless expensive node
 406   for (int i = C->expensive_count()-1; i >= 0; i--) {
 407     Node* n = C->expensive_node(i);
 408     if (!useful.member(n)) {
 409       remove_expensive_node(n);
 410     }
 411   }
 412   // clean up the late inline lists
 413   remove_useless_late_inlines(&_string_late_inlines, useful);
 414   remove_useless_late_inlines(&_boxing_late_inlines, useful);
 415   remove_useless_late_inlines(&_late_inlines, useful);
 416   debug_only(verify_graph_edges(true/*check for no_dead_code*/);)
 417 }
 418 
 419 //------------------------------frame_size_in_words-----------------------------
 420 // frame_slots in units of words
 421 int Compile::frame_size_in_words() const {
 422   // shift is 0 in LP32 and 1 in LP64
 423   const int shift = (LogBytesPerWord - LogBytesPerInt);
 424   int words = _frame_slots >> shift;
 425   assert( words << shift == _frame_slots, "frame size must be properly aligned in LP64" );
 426   return words;
 427 }
 428 
 429 // To bang the stack of this compiled method we use the stack size
 430 // that the interpreter would need in case of a deoptimization. This
 431 // removes the need to bang the stack in the deoptimization blob which
 432 // in turn simplifies stack overflow handling.
 433 int Compile::bang_size_in_bytes() const {
 434   return MAX2(frame_size_in_bytes() + os::extra_bang_size_in_bytes(), _interpreter_frame_size);
 435 }
 436 
 437 // ============================================================================
 438 //------------------------------CompileWrapper---------------------------------
 439 class CompileWrapper : public StackObj {
 440   Compile *const _compile;
 441  public:
 442   CompileWrapper(Compile* compile);
 443 
 444   ~CompileWrapper();
 445 };
 446 
 447 CompileWrapper::CompileWrapper(Compile* compile) : _compile(compile) {
 448   // the Compile* pointer is stored in the current ciEnv:
 449   ciEnv* env = compile->env();
 450   assert(env == ciEnv::current(), "must already be a ciEnv active");
 451   assert(env->compiler_data() == NULL, "compile already active?");
 452   env->set_compiler_data(compile);
 453   assert(compile == Compile::current(), "sanity");
 454 
 455   compile->set_type_dict(NULL);
 456   compile->set_clone_map(new Dict(cmpkey, hashkey, _compile->comp_arena()));
 457   compile->clone_map().set_clone_idx(0);
 458   compile->set_type_hwm(NULL);
 459   compile->set_type_last_size(0);
 460   compile->set_last_tf(NULL, NULL);
 461   compile->set_indexSet_arena(NULL);
 462   compile->set_indexSet_free_block_list(NULL);
 463   compile->init_type_arena();
 464   Type::Initialize(compile);
 465   _compile->set_scratch_buffer_blob(NULL);
 466   _compile->begin_method();
 467   _compile->clone_map().set_debug(_compile->has_method() && _compile->directive()->CloneMapDebugOption);
 468 }
 469 CompileWrapper::~CompileWrapper() {
 470   _compile->end_method();
 471   if (_compile->scratch_buffer_blob() != NULL)
 472     BufferBlob::free(_compile->scratch_buffer_blob());
 473   _compile->env()->set_compiler_data(NULL);
 474 }
 475 
 476 
 477 //----------------------------print_compile_messages---------------------------
 478 void Compile::print_compile_messages() {
 479 #ifndef PRODUCT
 480   // Check if recompiling
 481   if (_subsume_loads == false && PrintOpto) {
 482     // Recompiling without allowing machine instructions to subsume loads
 483     tty->print_cr("*********************************************************");
 484     tty->print_cr("** Bailout: Recompile without subsuming loads          **");
 485     tty->print_cr("*********************************************************");
 486   }
 487   if (_do_escape_analysis != DoEscapeAnalysis && PrintOpto) {
 488     // Recompiling without escape analysis
 489     tty->print_cr("*********************************************************");
 490     tty->print_cr("** Bailout: Recompile without escape analysis          **");
 491     tty->print_cr("*********************************************************");
 492   }
 493   if (_eliminate_boxing != EliminateAutoBox && PrintOpto) {
 494     // Recompiling without boxing elimination
 495     tty->print_cr("*********************************************************");
 496     tty->print_cr("** Bailout: Recompile without boxing elimination       **");
 497     tty->print_cr("*********************************************************");
 498   }
 499   if (C->directive()->BreakAtCompileOption) {
 500     // Open the debugger when compiling this method.
 501     tty->print("### Breaking when compiling: ");
 502     method()->print_short_name();
 503     tty->cr();
 504     BREAKPOINT;
 505   }
 506 
 507   if( PrintOpto ) {
 508     if (is_osr_compilation()) {
 509       tty->print("[OSR]%3d", _compile_id);
 510     } else {
 511       tty->print("%3d", _compile_id);
 512     }
 513   }
 514 #endif
 515 }
 516 
 517 
 518 //-----------------------init_scratch_buffer_blob------------------------------
 519 // Construct a temporary BufferBlob and cache it for this compile.
 520 void Compile::init_scratch_buffer_blob(int const_size) {
 521   // If there is already a scratch buffer blob allocated and the
 522   // constant section is big enough, use it.  Otherwise free the
 523   // current and allocate a new one.
 524   BufferBlob* blob = scratch_buffer_blob();
 525   if ((blob != NULL) && (const_size <= _scratch_const_size)) {
 526     // Use the current blob.
 527   } else {
 528     if (blob != NULL) {
 529       BufferBlob::free(blob);
 530     }
 531 
 532     ResourceMark rm;
 533     _scratch_const_size = const_size;
 534     int size = (MAX_inst_size + MAX_stubs_size + _scratch_const_size);
 535     blob = BufferBlob::create("Compile::scratch_buffer", size);
 536     // Record the buffer blob for next time.
 537     set_scratch_buffer_blob(blob);
 538     // Have we run out of code space?
 539     if (scratch_buffer_blob() == NULL) {
 540       // Let CompilerBroker disable further compilations.
 541       record_failure("Not enough space for scratch buffer in CodeCache");
 542       return;
 543     }
 544   }
 545 
 546   // Initialize the relocation buffers
 547   relocInfo* locs_buf = (relocInfo*) blob->content_end() - MAX_locs_size;
 548   set_scratch_locs_memory(locs_buf);
 549 }
 550 
 551 
 552 //-----------------------scratch_emit_size-------------------------------------
 553 // Helper function that computes size by emitting code
 554 uint Compile::scratch_emit_size(const Node* n) {
 555   // Start scratch_emit_size section.
 556   set_in_scratch_emit_size(true);
 557 
 558   // Emit into a trash buffer and count bytes emitted.
 559   // This is a pretty expensive way to compute a size,
 560   // but it works well enough if seldom used.
 561   // All common fixed-size instructions are given a size
 562   // method by the AD file.
 563   // Note that the scratch buffer blob and locs memory are
 564   // allocated at the beginning of the compile task, and
 565   // may be shared by several calls to scratch_emit_size.
 566   // The allocation of the scratch buffer blob is particularly
 567   // expensive, since it has to grab the code cache lock.
 568   BufferBlob* blob = this->scratch_buffer_blob();
 569   assert(blob != NULL, "Initialize BufferBlob at start");
 570   assert(blob->size() > MAX_inst_size, "sanity");
 571   relocInfo* locs_buf = scratch_locs_memory();
 572   address blob_begin = blob->content_begin();
 573   address blob_end   = (address)locs_buf;
 574   assert(blob->content_contains(blob_end), "sanity");
 575   CodeBuffer buf(blob_begin, blob_end - blob_begin);
 576   buf.initialize_consts_size(_scratch_const_size);
 577   buf.initialize_stubs_size(MAX_stubs_size);
 578   assert(locs_buf != NULL, "sanity");
 579   int lsize = MAX_locs_size / 3;
 580   buf.consts()->initialize_shared_locs(&locs_buf[lsize * 0], lsize);
 581   buf.insts()->initialize_shared_locs( &locs_buf[lsize * 1], lsize);
 582   buf.stubs()->initialize_shared_locs( &locs_buf[lsize * 2], lsize);
 583 
 584   // Do the emission.
 585 
 586   Label fakeL; // Fake label for branch instructions.
 587   Label*   saveL = NULL;
 588   uint save_bnum = 0;
 589   bool is_branch = n->is_MachBranch();
 590   if (is_branch) {
 591     MacroAssembler masm(&buf);
 592     masm.bind(fakeL);
 593     n->as_MachBranch()->save_label(&saveL, &save_bnum);
 594     n->as_MachBranch()->label_set(&fakeL, 0);
 595   }
 596   n->emit(buf, this->regalloc());
 597 
 598   // Emitting into the scratch buffer should not fail
 599   assert (!failing(), "Must not have pending failure. Reason is: %s", failure_reason());
 600 
 601   if (is_branch) // Restore label.
 602     n->as_MachBranch()->label_set(saveL, save_bnum);
 603 
 604   // End scratch_emit_size section.
 605   set_in_scratch_emit_size(false);
 606 
 607   return buf.insts_size();
 608 }
 609 
 610 
 611 // ============================================================================
 612 //------------------------------Compile standard-------------------------------
 613 debug_only( int Compile::_debug_idx = 100000; )
 614 
 615 // Compile a method.  entry_bci is -1 for normal compilations and indicates
 616 // the continuation bci for on stack replacement.
 617 
 618 
 619 Compile::Compile( ciEnv* ci_env, C2Compiler* compiler, ciMethod* target, int osr_bci,
 620                   bool subsume_loads, bool do_escape_analysis, bool eliminate_boxing, DirectiveSet* directive)
 621                 : Phase(Compiler),
 622                   _env(ci_env),
 623                   _directive(directive),
 624                   _log(ci_env->log()),
 625                   _compile_id(ci_env->compile_id()),
 626                   _save_argument_registers(false),
 627                   _stub_name(NULL),
 628                   _stub_function(NULL),
 629                   _stub_entry_point(NULL),
 630                   _method(target),
 631                   _entry_bci(osr_bci),
 632                   _initial_gvn(NULL),
 633                   _for_igvn(NULL),
 634                   _warm_calls(NULL),
 635                   _subsume_loads(subsume_loads),
 636                   _do_escape_analysis(do_escape_analysis),
 637                   _eliminate_boxing(eliminate_boxing),
 638                   _failure_reason(NULL),
 639                   _code_buffer("Compile::Fill_buffer"),
 640                   _orig_pc_slot(0),
 641                   _orig_pc_slot_offset_in_bytes(0),
 642                   _has_method_handle_invokes(false),
 643                   _mach_constant_base_node(NULL),
 644                   _node_bundling_limit(0),
 645                   _node_bundling_base(NULL),
 646                   _java_calls(0),
 647                   _inner_loops(0),
 648                   _scratch_const_size(-1),
 649                   _in_scratch_emit_size(false),
 650                   _dead_node_list(comp_arena()),
 651                   _dead_node_count(0),
 652 #ifndef PRODUCT
 653                   _trace_opto_output(directive->TraceOptoOutputOption),
 654                   _in_dump_cnt(0),
 655                   _printer(IdealGraphPrinter::printer()),
 656 #endif
 657                   _congraph(NULL),
 658                   _comp_arena(mtCompiler),
 659                   _node_arena(mtCompiler),
 660                   _old_arena(mtCompiler),
 661                   _Compile_types(mtCompiler),
 662                   _replay_inline_data(NULL),
 663                   _late_inlines(comp_arena(), 2, 0, NULL),
 664                   _string_late_inlines(comp_arena(), 2, 0, NULL),
 665                   _boxing_late_inlines(comp_arena(), 2, 0, NULL),
 666                   _late_inlines_pos(0),
 667                   _number_of_mh_late_inlines(0),
 668                   _inlining_progress(false),
 669                   _inlining_incrementally(false),
 670                   _print_inlining_list(NULL),
 671                   _print_inlining_stream(NULL),
 672                   _print_inlining_idx(0),
 673                   _print_inlining_output(NULL),
 674                   _interpreter_frame_size(0),
 675                   _max_node_limit(MaxNodeLimit),
 676                   _has_reserved_stack_access(target->has_reserved_stack_access()) {
 677   C = this;
 678 #ifndef PRODUCT
 679   if (_printer != NULL) {
 680     _printer->set_compile(this);
 681   }
 682 #endif
 683   CompileWrapper cw(this);
 684 
 685   if (CITimeVerbose) {
 686     tty->print(" ");
 687     target->holder()->name()->print();
 688     tty->print(".");
 689     target->print_short_name();
 690     tty->print("  ");
 691   }
 692   TraceTime t1("Total compilation time", &_t_totalCompilation, CITime, CITimeVerbose);
 693   TraceTime t2(NULL, &_t_methodCompilation, CITime, false);
 694 
 695 #ifndef PRODUCT
 696   bool print_opto_assembly = directive->PrintOptoAssemblyOption;
 697   if (!print_opto_assembly) {
 698     bool print_assembly = directive->PrintAssemblyOption;
 699     if (print_assembly && !Disassembler::can_decode()) {
 700       tty->print_cr("PrintAssembly request changed to PrintOptoAssembly");
 701       print_opto_assembly = true;
 702     }
 703   }
 704   set_print_assembly(print_opto_assembly);
 705   set_parsed_irreducible_loop(false);
 706 
 707   if (directive->ReplayInlineOption) {
 708     _replay_inline_data = ciReplay::load_inline_data(method(), entry_bci(), ci_env->comp_level());
 709   }
 710 #endif
 711   set_print_inlining(directive->PrintInliningOption || PrintOptoInlining);
 712   set_print_intrinsics(directive->PrintIntrinsicsOption);
 713   set_has_irreducible_loop(true); // conservative until build_loop_tree() reset it
 714 
 715   if (ProfileTraps RTM_OPT_ONLY( || UseRTMLocking )) {
 716     // Make sure the method being compiled gets its own MDO,
 717     // so we can at least track the decompile_count().
 718     // Need MDO to record RTM code generation state.
 719     method()->ensure_method_data();
 720   }
 721 
 722   Init(::AliasLevel);
 723 
 724 
 725   print_compile_messages();
 726 
 727   _ilt = InlineTree::build_inline_tree_root();
 728 
 729   // Even if NO memory addresses are used, MergeMem nodes must have at least 1 slice
 730   assert(num_alias_types() >= AliasIdxRaw, "");
 731 
 732 #define MINIMUM_NODE_HASH  1023
 733   // Node list that Iterative GVN will start with
 734   Unique_Node_List for_igvn(comp_arena());
 735   set_for_igvn(&for_igvn);
 736 
 737   // GVN that will be run immediately on new nodes
 738   uint estimated_size = method()->code_size()*4+64;
 739   estimated_size = (estimated_size < MINIMUM_NODE_HASH ? MINIMUM_NODE_HASH : estimated_size);
 740   PhaseGVN gvn(node_arena(), estimated_size);
 741   set_initial_gvn(&gvn);
 742 
 743   print_inlining_init();
 744   { // Scope for timing the parser
 745     TracePhase tp("parse", &timers[_t_parser]);
 746 
 747     // Put top into the hash table ASAP.
 748     initial_gvn()->transform_no_reclaim(top());
 749 
 750     // Set up tf(), start(), and find a CallGenerator.
 751     CallGenerator* cg = NULL;
 752     if (is_osr_compilation()) {
 753       const TypeTuple *domain = StartOSRNode::osr_domain();
 754       const TypeTuple *range = TypeTuple::make_range(method()->signature());
 755       init_tf(TypeFunc::make(domain, range));
 756       StartNode* s = new StartOSRNode(root(), domain);
 757       initial_gvn()->set_type_bottom(s);
 758       init_start(s);
 759       cg = CallGenerator::for_osr(method(), entry_bci());
 760     } else {
 761       // Normal case.
 762       init_tf(TypeFunc::make(method()));
 763       StartNode* s = new StartNode(root(), tf()->domain());
 764       initial_gvn()->set_type_bottom(s);
 765       init_start(s);
 766       if (method()->intrinsic_id() == vmIntrinsics::_Reference_get && UseG1GC) {
 767         // With java.lang.ref.reference.get() we must go through the
 768         // intrinsic when G1 is enabled - even when get() is the root
 769         // method of the compile - so that, if necessary, the value in
 770         // the referent field of the reference object gets recorded by
 771         // the pre-barrier code.
 772         // Specifically, if G1 is enabled, the value in the referent
 773         // field is recorded by the G1 SATB pre barrier. This will
 774         // result in the referent being marked live and the reference
 775         // object removed from the list of discovered references during
 776         // reference processing.
 777         cg = find_intrinsic(method(), false);
 778       }
 779       if (cg == NULL) {
 780         float past_uses = method()->interpreter_invocation_count();
 781         float expected_uses = past_uses;
 782         cg = CallGenerator::for_inline(method(), expected_uses);
 783       }
 784     }
 785     if (failing())  return;
 786     if (cg == NULL) {
 787       record_method_not_compilable_all_tiers("cannot parse method");
 788       return;
 789     }
 790     JVMState* jvms = build_start_state(start(), tf());
 791     if ((jvms = cg->generate(jvms)) == NULL) {
 792       if (!failure_reason_is(C2Compiler::retry_class_loading_during_parsing())) {
 793         record_method_not_compilable("method parse failed");
 794       }
 795       return;
 796     }
 797     GraphKit kit(jvms);
 798 
 799     if (!kit.stopped()) {
 800       // Accept return values, and transfer control we know not where.
 801       // This is done by a special, unique ReturnNode bound to root.
 802       return_values(kit.jvms());
 803     }
 804 
 805     if (kit.has_exceptions()) {
 806       // Any exceptions that escape from this call must be rethrown
 807       // to whatever caller is dynamically above us on the stack.
 808       // This is done by a special, unique RethrowNode bound to root.
 809       rethrow_exceptions(kit.transfer_exceptions_into_jvms());
 810     }
 811 
 812     assert(IncrementalInline || (_late_inlines.length() == 0 && !has_mh_late_inlines()), "incremental inlining is off");
 813 
 814     if (_late_inlines.length() == 0 && !has_mh_late_inlines() && !failing() && has_stringbuilder()) {
 815       inline_string_calls(true);
 816     }
 817 
 818     if (failing())  return;
 819 
 820     print_method(PHASE_BEFORE_REMOVEUSELESS, 3);
 821 
 822     // Remove clutter produced by parsing.
 823     if (!failing()) {
 824       ResourceMark rm;
 825       PhaseRemoveUseless pru(initial_gvn(), &for_igvn);
 826     }
 827   }
 828 
 829   // Note:  Large methods are capped off in do_one_bytecode().
 830   if (failing())  return;
 831 
 832   // After parsing, node notes are no longer automagic.
 833   // They must be propagated by register_new_node_with_optimizer(),
 834   // clone(), or the like.
 835   set_default_node_notes(NULL);
 836 
 837   for (;;) {
 838     int successes = Inline_Warm();
 839     if (failing())  return;
 840     if (successes == 0)  break;
 841   }
 842 
 843   // Drain the list.
 844   Finish_Warm();
 845 #ifndef PRODUCT
 846   if (_printer && _printer->should_print(1)) {
 847     _printer->print_inlining();
 848   }
 849 #endif
 850 
 851   if (failing())  return;
 852   NOT_PRODUCT( verify_graph_edges(); )
 853 
 854   // Now optimize
 855   Optimize();
 856   if (failing())  return;
 857   NOT_PRODUCT( verify_graph_edges(); )
 858 
 859 #ifndef PRODUCT
 860   if (PrintIdeal) {
 861     ttyLocker ttyl;  // keep the following output all in one block
 862     // This output goes directly to the tty, not the compiler log.
 863     // To enable tools to match it up with the compilation activity,
 864     // be sure to tag this tty output with the compile ID.
 865     if (xtty != NULL) {
 866       xtty->head("ideal compile_id='%d'%s", compile_id(),
 867                  is_osr_compilation()    ? " compile_kind='osr'" :
 868                  "");
 869     }
 870     root()->dump(9999);
 871     if (xtty != NULL) {
 872       xtty->tail("ideal");
 873     }
 874   }
 875 #endif
 876 
 877   NOT_PRODUCT( verify_barriers(); )
 878 
 879   // Dump compilation data to replay it.
 880   if (directive->DumpReplayOption) {
 881     env()->dump_replay_data(_compile_id);
 882   }
 883   if (directive->DumpInlineOption && (ilt() != NULL)) {
 884     env()->dump_inline_data(_compile_id);
 885   }
 886 
 887   // Now that we know the size of all the monitors we can add a fixed slot
 888   // for the original deopt pc.
 889 
 890   _orig_pc_slot =  fixed_slots();
 891   int next_slot = _orig_pc_slot + (sizeof(address) / VMRegImpl::stack_slot_size);
 892   set_fixed_slots(next_slot);
 893 
 894   // Compute when to use implicit null checks. Used by matching trap based
 895   // nodes and NullCheck optimization.
 896   set_allowed_deopt_reasons();
 897 
 898   // Now generate code
 899   Code_Gen();
 900   if (failing())  return;
 901 
 902   // Check if we want to skip execution of all compiled code.
 903   {
 904 #ifndef PRODUCT
 905     if (OptoNoExecute) {
 906       record_method_not_compilable("+OptoNoExecute");  // Flag as failed
 907       return;
 908     }
 909 #endif
 910     TracePhase tp("install_code", &timers[_t_registerMethod]);
 911 
 912     if (is_osr_compilation()) {
 913       _code_offsets.set_value(CodeOffsets::Verified_Entry, 0);
 914       _code_offsets.set_value(CodeOffsets::OSR_Entry, _first_block_size);
 915     } else {
 916       _code_offsets.set_value(CodeOffsets::Verified_Entry, _first_block_size);
 917       _code_offsets.set_value(CodeOffsets::OSR_Entry, 0);
 918     }
 919 
 920     env()->register_method(_method, _entry_bci,
 921                            &_code_offsets,
 922                            _orig_pc_slot_offset_in_bytes,
 923                            code_buffer(),
 924                            frame_size_in_words(), _oop_map_set,
 925                            &_handler_table, &_inc_table,
 926                            compiler,
 927                            has_unsafe_access(),
 928                            SharedRuntime::is_wide_vector(max_vector_size()),
 929                            _directive,
 930                            rtm_state()
 931                            );
 932 
 933     if (log() != NULL) // Print code cache state into compiler log
 934       log()->code_cache_state();
 935   }
 936 }
 937 
 938 //------------------------------Compile----------------------------------------
 939 // Compile a runtime stub
 940 Compile::Compile( ciEnv* ci_env,
 941                   TypeFunc_generator generator,
 942                   address stub_function,
 943                   const char *stub_name,
 944                   int is_fancy_jump,
 945                   bool pass_tls,
 946                   bool save_arg_registers,
 947                   bool return_pc,
 948                   DirectiveSet* directive)
 949   : Phase(Compiler),
 950     _env(ci_env),
 951     _directive(directive),
 952     _log(ci_env->log()),
 953     _compile_id(0),
 954     _save_argument_registers(save_arg_registers),
 955     _method(NULL),
 956     _stub_name(stub_name),
 957     _stub_function(stub_function),
 958     _stub_entry_point(NULL),
 959     _entry_bci(InvocationEntryBci),
 960     _initial_gvn(NULL),
 961     _for_igvn(NULL),
 962     _warm_calls(NULL),
 963     _orig_pc_slot(0),
 964     _orig_pc_slot_offset_in_bytes(0),
 965     _subsume_loads(true),
 966     _do_escape_analysis(false),
 967     _eliminate_boxing(false),
 968     _failure_reason(NULL),
 969     _code_buffer("Compile::Fill_buffer"),
 970     _has_method_handle_invokes(false),
 971     _mach_constant_base_node(NULL),
 972     _node_bundling_limit(0),
 973     _node_bundling_base(NULL),
 974     _java_calls(0),
 975     _inner_loops(0),
 976 #ifndef PRODUCT
 977     _trace_opto_output(TraceOptoOutput),
 978     _in_dump_cnt(0),
 979     _printer(NULL),
 980 #endif
 981     _comp_arena(mtCompiler),
 982     _node_arena(mtCompiler),
 983     _old_arena(mtCompiler),
 984     _Compile_types(mtCompiler),
 985     _dead_node_list(comp_arena()),
 986     _dead_node_count(0),
 987     _congraph(NULL),
 988     _replay_inline_data(NULL),
 989     _number_of_mh_late_inlines(0),
 990     _inlining_progress(false),
 991     _inlining_incrementally(false),
 992     _print_inlining_list(NULL),
 993     _print_inlining_stream(NULL),
 994     _print_inlining_idx(0),
 995     _print_inlining_output(NULL),
 996     _allowed_reasons(0),
 997     _interpreter_frame_size(0),
 998     _max_node_limit(MaxNodeLimit) {
 999   C = this;
1000 
1001   TraceTime t1(NULL, &_t_totalCompilation, CITime, false);
1002   TraceTime t2(NULL, &_t_stubCompilation, CITime, false);
1003 
1004 #ifndef PRODUCT
1005   set_print_assembly(PrintFrameConverterAssembly);
1006   set_parsed_irreducible_loop(false);
1007 #endif
1008   set_has_irreducible_loop(false); // no loops
1009 
1010   CompileWrapper cw(this);
1011   Init(/*AliasLevel=*/ 0);
1012   init_tf((*generator)());
1013 
1014   {
1015     // The following is a dummy for the sake of GraphKit::gen_stub
1016     Unique_Node_List for_igvn(comp_arena());
1017     set_for_igvn(&for_igvn);  // not used, but some GraphKit guys push on this
1018     PhaseGVN gvn(Thread::current()->resource_area(),255);
1019     set_initial_gvn(&gvn);    // not significant, but GraphKit guys use it pervasively
1020     gvn.transform_no_reclaim(top());
1021 
1022     GraphKit kit;
1023     kit.gen_stub(stub_function, stub_name, is_fancy_jump, pass_tls, return_pc);
1024   }
1025 
1026   NOT_PRODUCT( verify_graph_edges(); )
1027   Code_Gen();
1028   if (failing())  return;
1029 
1030 
1031   // Entry point will be accessed using compile->stub_entry_point();
1032   if (code_buffer() == NULL) {
1033     Matcher::soft_match_failure();
1034   } else {
1035     if (PrintAssembly && (WizardMode || Verbose))
1036       tty->print_cr("### Stub::%s", stub_name);
1037 
1038     if (!failing()) {
1039       assert(_fixed_slots == 0, "no fixed slots used for runtime stubs");
1040 
1041       // Make the NMethod
1042       // For now we mark the frame as never safe for profile stackwalking
1043       RuntimeStub *rs = RuntimeStub::new_runtime_stub(stub_name,
1044                                                       code_buffer(),
1045                                                       CodeOffsets::frame_never_safe,
1046                                                       // _code_offsets.value(CodeOffsets::Frame_Complete),
1047                                                       frame_size_in_words(),
1048                                                       _oop_map_set,
1049                                                       save_arg_registers);
1050       assert(rs != NULL && rs->is_runtime_stub(), "sanity check");
1051 
1052       _stub_entry_point = rs->entry_point();
1053     }
1054   }
1055 }
1056 
1057 //------------------------------Init-------------------------------------------
1058 // Prepare for a single compilation
1059 void Compile::Init(int aliaslevel) {
1060   _unique  = 0;
1061   _regalloc = NULL;
1062 
1063   _tf      = NULL;  // filled in later
1064   _top     = NULL;  // cached later
1065   _matcher = NULL;  // filled in later
1066   _cfg     = NULL;  // filled in later
1067 
1068   set_24_bit_selection_and_mode(Use24BitFP, false);
1069 
1070   _node_note_array = NULL;
1071   _default_node_notes = NULL;
1072   DEBUG_ONLY( _modified_nodes = NULL; ) // Used in Optimize()
1073 
1074   _immutable_memory = NULL; // filled in at first inquiry
1075 
1076   // Globally visible Nodes
1077   // First set TOP to NULL to give safe behavior during creation of RootNode
1078   set_cached_top_node(NULL);
1079   set_root(new RootNode());
1080   // Now that you have a Root to point to, create the real TOP
1081   set_cached_top_node( new ConNode(Type::TOP) );
1082   set_recent_alloc(NULL, NULL);
1083 
1084   // Create Debug Information Recorder to record scopes, oopmaps, etc.
1085   env()->set_oop_recorder(new OopRecorder(env()->arena()));
1086   env()->set_debug_info(new DebugInformationRecorder(env()->oop_recorder()));
1087   env()->set_dependencies(new Dependencies(env()));
1088 
1089   _fixed_slots = 0;
1090   set_has_split_ifs(false);
1091   set_has_loops(has_method() && method()->has_loops()); // first approximation
1092   set_has_stringbuilder(false);
1093   set_has_boxed_value(false);
1094   _trap_can_recompile = false;  // no traps emitted yet
1095   _major_progress = true; // start out assuming good things will happen
1096   set_has_unsafe_access(false);
1097   set_max_vector_size(0);
1098   Copy::zero_to_bytes(_trap_hist, sizeof(_trap_hist));
1099   set_decompile_count(0);
1100 
1101   set_do_freq_based_layout(_directive->BlockLayoutByFrequencyOption);
1102   set_num_loop_opts(LoopOptsCount);
1103   set_do_inlining(Inline);
1104   set_max_inline_size(MaxInlineSize);
1105   set_freq_inline_size(FreqInlineSize);
1106   set_do_scheduling(OptoScheduling);
1107   set_do_count_invocations(false);
1108   set_do_method_data_update(false);
1109 
1110   set_do_vector_loop(false);
1111 
1112   if (AllowVectorizeOnDemand) {
1113     if (has_method() && (_directive->VectorizeOption || _directive->VectorizeDebugOption)) {
1114       set_do_vector_loop(true);
1115       NOT_PRODUCT(if (do_vector_loop() && Verbose) {tty->print("Compile::Init: do vectorized loops (SIMD like) for method %s\n",  method()->name()->as_quoted_ascii());})
1116     } else if (has_method() && method()->name() != 0 &&
1117                method()->intrinsic_id() == vmIntrinsics::_forEachRemaining) {
1118       set_do_vector_loop(true);
1119     }
1120   }
1121   set_use_cmove(UseCMoveUnconditionally /* || do_vector_loop()*/); //TODO: consider do_vector_loop() mandate use_cmove unconditionally
1122   NOT_PRODUCT(if (use_cmove() && Verbose && has_method()) {tty->print("Compile::Init: use CMove without profitability tests for method %s\n",  method()->name()->as_quoted_ascii());})
1123 
1124   set_age_code(has_method() && method()->profile_aging());
1125   set_rtm_state(NoRTM); // No RTM lock eliding by default
1126   _max_node_limit = _directive->MaxNodeLimitOption;
1127 
1128 #if INCLUDE_RTM_OPT
1129   if (UseRTMLocking && has_method() && (method()->method_data_or_null() != NULL)) {
1130     int rtm_state = method()->method_data()->rtm_state();
1131     if (method_has_option("NoRTMLockEliding") || ((rtm_state & NoRTM) != 0)) {
1132       // Don't generate RTM lock eliding code.
1133       set_rtm_state(NoRTM);
1134     } else if (method_has_option("UseRTMLockEliding") || ((rtm_state & UseRTM) != 0) || !UseRTMDeopt) {
1135       // Generate RTM lock eliding code without abort ratio calculation code.
1136       set_rtm_state(UseRTM);
1137     } else if (UseRTMDeopt) {
1138       // Generate RTM lock eliding code and include abort ratio calculation
1139       // code if UseRTMDeopt is on.
1140       set_rtm_state(ProfileRTM);
1141     }
1142   }
1143 #endif
1144   if (debug_info()->recording_non_safepoints()) {
1145     set_node_note_array(new(comp_arena()) GrowableArray<Node_Notes*>
1146                         (comp_arena(), 8, 0, NULL));
1147     set_default_node_notes(Node_Notes::make(this));
1148   }
1149 
1150   // // -- Initialize types before each compile --
1151   // // Update cached type information
1152   // if( _method && _method->constants() )
1153   //   Type::update_loaded_types(_method, _method->constants());
1154 
1155   // Init alias_type map.
1156   if (!_do_escape_analysis && aliaslevel == 3)
1157     aliaslevel = 2;  // No unique types without escape analysis
1158   _AliasLevel = aliaslevel;
1159   const int grow_ats = 16;
1160   _max_alias_types = grow_ats;
1161   _alias_types   = NEW_ARENA_ARRAY(comp_arena(), AliasType*, grow_ats);
1162   AliasType* ats = NEW_ARENA_ARRAY(comp_arena(), AliasType,  grow_ats);
1163   Copy::zero_to_bytes(ats, sizeof(AliasType)*grow_ats);
1164   {
1165     for (int i = 0; i < grow_ats; i++)  _alias_types[i] = &ats[i];
1166   }
1167   // Initialize the first few types.
1168   _alias_types[AliasIdxTop]->Init(AliasIdxTop, NULL);
1169   _alias_types[AliasIdxBot]->Init(AliasIdxBot, TypePtr::BOTTOM);
1170   _alias_types[AliasIdxRaw]->Init(AliasIdxRaw, TypeRawPtr::BOTTOM);
1171   _num_alias_types = AliasIdxRaw+1;
1172   // Zero out the alias type cache.
1173   Copy::zero_to_bytes(_alias_cache, sizeof(_alias_cache));
1174   // A NULL adr_type hits in the cache right away.  Preload the right answer.
1175   probe_alias_cache(NULL)->_index = AliasIdxTop;
1176 
1177   _intrinsics = NULL;
1178   _macro_nodes = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1179   _predicate_opaqs = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1180   _expensive_nodes = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1181   register_library_intrinsics();
1182 }
1183 
1184 //---------------------------init_start----------------------------------------
1185 // Install the StartNode on this compile object.
1186 void Compile::init_start(StartNode* s) {
1187   if (failing())
1188     return; // already failing
1189   assert(s == start(), "");
1190 }
1191 
1192 /**
1193  * Return the 'StartNode'. We must not have a pending failure, since the ideal graph
1194  * can be in an inconsistent state, i.e., we can get segmentation faults when traversing
1195  * the ideal graph.
1196  */
1197 StartNode* Compile::start() const {
1198   assert (!failing(), "Must not have pending failure. Reason is: %s", failure_reason());
1199   for (DUIterator_Fast imax, i = root()->fast_outs(imax); i < imax; i++) {
1200     Node* start = root()->fast_out(i);
1201     if (start->is_Start()) {
1202       return start->as_Start();
1203     }
1204   }
1205   fatal("Did not find Start node!");
1206   return NULL;
1207 }
1208 
1209 //-------------------------------immutable_memory-------------------------------------
1210 // Access immutable memory
1211 Node* Compile::immutable_memory() {
1212   if (_immutable_memory != NULL) {
1213     return _immutable_memory;
1214   }
1215   StartNode* s = start();
1216   for (DUIterator_Fast imax, i = s->fast_outs(imax); true; i++) {
1217     Node *p = s->fast_out(i);
1218     if (p != s && p->as_Proj()->_con == TypeFunc::Memory) {
1219       _immutable_memory = p;
1220       return _immutable_memory;
1221     }
1222   }
1223   ShouldNotReachHere();
1224   return NULL;
1225 }
1226 
1227 //----------------------set_cached_top_node------------------------------------
1228 // Install the cached top node, and make sure Node::is_top works correctly.
1229 void Compile::set_cached_top_node(Node* tn) {
1230   if (tn != NULL)  verify_top(tn);
1231   Node* old_top = _top;
1232   _top = tn;
1233   // Calling Node::setup_is_top allows the nodes the chance to adjust
1234   // their _out arrays.
1235   if (_top != NULL)     _top->setup_is_top();
1236   if (old_top != NULL)  old_top->setup_is_top();
1237   assert(_top == NULL || top()->is_top(), "");
1238 }
1239 
1240 #ifdef ASSERT
1241 uint Compile::count_live_nodes_by_graph_walk() {
1242   Unique_Node_List useful(comp_arena());
1243   // Get useful node list by walking the graph.
1244   identify_useful_nodes(useful);
1245   return useful.size();
1246 }
1247 
1248 void Compile::print_missing_nodes() {
1249 
1250   // Return if CompileLog is NULL and PrintIdealNodeCount is false.
1251   if ((_log == NULL) && (! PrintIdealNodeCount)) {
1252     return;
1253   }
1254 
1255   // This is an expensive function. It is executed only when the user
1256   // specifies VerifyIdealNodeCount option or otherwise knows the
1257   // additional work that needs to be done to identify reachable nodes
1258   // by walking the flow graph and find the missing ones using
1259   // _dead_node_list.
1260 
1261   Unique_Node_List useful(comp_arena());
1262   // Get useful node list by walking the graph.
1263   identify_useful_nodes(useful);
1264 
1265   uint l_nodes = C->live_nodes();
1266   uint l_nodes_by_walk = useful.size();
1267 
1268   if (l_nodes != l_nodes_by_walk) {
1269     if (_log != NULL) {
1270       _log->begin_head("mismatched_nodes count='%d'", abs((int) (l_nodes - l_nodes_by_walk)));
1271       _log->stamp();
1272       _log->end_head();
1273     }
1274     VectorSet& useful_member_set = useful.member_set();
1275     int last_idx = l_nodes_by_walk;
1276     for (int i = 0; i < last_idx; i++) {
1277       if (useful_member_set.test(i)) {
1278         if (_dead_node_list.test(i)) {
1279           if (_log != NULL) {
1280             _log->elem("mismatched_node_info node_idx='%d' type='both live and dead'", i);
1281           }
1282           if (PrintIdealNodeCount) {
1283             // Print the log message to tty
1284               tty->print_cr("mismatched_node idx='%d' both live and dead'", i);
1285               useful.at(i)->dump();
1286           }
1287         }
1288       }
1289       else if (! _dead_node_list.test(i)) {
1290         if (_log != NULL) {
1291           _log->elem("mismatched_node_info node_idx='%d' type='neither live nor dead'", i);
1292         }
1293         if (PrintIdealNodeCount) {
1294           // Print the log message to tty
1295           tty->print_cr("mismatched_node idx='%d' type='neither live nor dead'", i);
1296         }
1297       }
1298     }
1299     if (_log != NULL) {
1300       _log->tail("mismatched_nodes");
1301     }
1302   }
1303 }
1304 void Compile::record_modified_node(Node* n) {
1305   if (_modified_nodes != NULL && !_inlining_incrementally &&
1306       n->outcnt() != 0 && !n->is_Con()) {
1307     _modified_nodes->push(n);
1308   }
1309 }
1310 
1311 void Compile::remove_modified_node(Node* n) {
1312   if (_modified_nodes != NULL) {
1313     _modified_nodes->remove(n);
1314   }
1315 }
1316 #endif
1317 
1318 #ifndef PRODUCT
1319 void Compile::verify_top(Node* tn) const {
1320   if (tn != NULL) {
1321     assert(tn->is_Con(), "top node must be a constant");
1322     assert(((ConNode*)tn)->type() == Type::TOP, "top node must have correct type");
1323     assert(tn->in(0) != NULL, "must have live top node");
1324   }
1325 }
1326 #endif
1327 
1328 
1329 ///-------------------Managing Per-Node Debug & Profile Info-------------------
1330 
1331 void Compile::grow_node_notes(GrowableArray<Node_Notes*>* arr, int grow_by) {
1332   guarantee(arr != NULL, "");
1333   int num_blocks = arr->length();
1334   if (grow_by < num_blocks)  grow_by = num_blocks;
1335   int num_notes = grow_by * _node_notes_block_size;
1336   Node_Notes* notes = NEW_ARENA_ARRAY(node_arena(), Node_Notes, num_notes);
1337   Copy::zero_to_bytes(notes, num_notes * sizeof(Node_Notes));
1338   while (num_notes > 0) {
1339     arr->append(notes);
1340     notes     += _node_notes_block_size;
1341     num_notes -= _node_notes_block_size;
1342   }
1343   assert(num_notes == 0, "exact multiple, please");
1344 }
1345 
1346 bool Compile::copy_node_notes_to(Node* dest, Node* source) {
1347   if (source == NULL || dest == NULL)  return false;
1348 
1349   if (dest->is_Con())
1350     return false;               // Do not push debug info onto constants.
1351 
1352 #ifdef ASSERT
1353   // Leave a bread crumb trail pointing to the original node:
1354   if (dest != NULL && dest != source && dest->debug_orig() == NULL) {
1355     dest->set_debug_orig(source);
1356   }
1357 #endif
1358 
1359   if (node_note_array() == NULL)
1360     return false;               // Not collecting any notes now.
1361 
1362   // This is a copy onto a pre-existing node, which may already have notes.
1363   // If both nodes have notes, do not overwrite any pre-existing notes.
1364   Node_Notes* source_notes = node_notes_at(source->_idx);
1365   if (source_notes == NULL || source_notes->is_clear())  return false;
1366   Node_Notes* dest_notes   = node_notes_at(dest->_idx);
1367   if (dest_notes == NULL || dest_notes->is_clear()) {
1368     return set_node_notes_at(dest->_idx, source_notes);
1369   }
1370 
1371   Node_Notes merged_notes = (*source_notes);
1372   // The order of operations here ensures that dest notes will win...
1373   merged_notes.update_from(dest_notes);
1374   return set_node_notes_at(dest->_idx, &merged_notes);
1375 }
1376 
1377 
1378 //--------------------------allow_range_check_smearing-------------------------
1379 // Gating condition for coalescing similar range checks.
1380 // Sometimes we try 'speculatively' replacing a series of a range checks by a
1381 // single covering check that is at least as strong as any of them.
1382 // If the optimization succeeds, the simplified (strengthened) range check
1383 // will always succeed.  If it fails, we will deopt, and then give up
1384 // on the optimization.
1385 bool Compile::allow_range_check_smearing() const {
1386   // If this method has already thrown a range-check,
1387   // assume it was because we already tried range smearing
1388   // and it failed.
1389   uint already_trapped = trap_count(Deoptimization::Reason_range_check);
1390   return !already_trapped;
1391 }
1392 
1393 
1394 //------------------------------flatten_alias_type-----------------------------
1395 const TypePtr *Compile::flatten_alias_type( const TypePtr *tj ) const {
1396   int offset = tj->offset();
1397   TypePtr::PTR ptr = tj->ptr();
1398 
1399   // Known instance (scalarizable allocation) alias only with itself.
1400   bool is_known_inst = tj->isa_oopptr() != NULL &&
1401                        tj->is_oopptr()->is_known_instance();
1402 
1403   // Process weird unsafe references.
1404   if (offset == Type::OffsetBot && (tj->isa_instptr() /*|| tj->isa_klassptr()*/)) {
1405     assert(InlineUnsafeOps, "indeterminate pointers come only from unsafe ops");
1406     assert(!is_known_inst, "scalarizable allocation should not have unsafe references");
1407     tj = TypeOopPtr::BOTTOM;
1408     ptr = tj->ptr();
1409     offset = tj->offset();
1410   }
1411 
1412   // Array pointers need some flattening
1413   const TypeAryPtr *ta = tj->isa_aryptr();
1414   if (ta && ta->is_stable()) {
1415     // Erase stability property for alias analysis.
1416     tj = ta = ta->cast_to_stable(false);
1417   }
1418   if( ta && is_known_inst ) {
1419     if ( offset != Type::OffsetBot &&
1420          offset > arrayOopDesc::length_offset_in_bytes() ) {
1421       offset = Type::OffsetBot; // Flatten constant access into array body only
1422       tj = ta = TypeAryPtr::make(ptr, ta->ary(), ta->klass(), true, offset, ta->instance_id());
1423     }
1424   } else if( ta && _AliasLevel >= 2 ) {
1425     // For arrays indexed by constant indices, we flatten the alias
1426     // space to include all of the array body.  Only the header, klass
1427     // and array length can be accessed un-aliased.
1428     if( offset != Type::OffsetBot ) {
1429       if( ta->const_oop() ) { // MethodData* or Method*
1430         offset = Type::OffsetBot;   // Flatten constant access into array body
1431         tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),ta->ary(),ta->klass(),false,offset);
1432       } else if( offset == arrayOopDesc::length_offset_in_bytes() ) {
1433         // range is OK as-is.
1434         tj = ta = TypeAryPtr::RANGE;
1435       } else if( offset == oopDesc::klass_offset_in_bytes() ) {
1436         tj = TypeInstPtr::KLASS; // all klass loads look alike
1437         ta = TypeAryPtr::RANGE; // generic ignored junk
1438         ptr = TypePtr::BotPTR;
1439       } else if( offset == oopDesc::mark_offset_in_bytes() ) {
1440         tj = TypeInstPtr::MARK;
1441         ta = TypeAryPtr::RANGE; // generic ignored junk
1442         ptr = TypePtr::BotPTR;
1443       } else {                  // Random constant offset into array body
1444         offset = Type::OffsetBot;   // Flatten constant access into array body
1445         tj = ta = TypeAryPtr::make(ptr,ta->ary(),ta->klass(),false,offset);
1446       }
1447     }
1448     // Arrays of fixed size alias with arrays of unknown size.
1449     if (ta->size() != TypeInt::POS) {
1450       const TypeAry *tary = TypeAry::make(ta->elem(), TypeInt::POS);
1451       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,ta->klass(),false,offset);
1452     }
1453     // Arrays of known objects become arrays of unknown objects.
1454     if (ta->elem()->isa_narrowoop() && ta->elem() != TypeNarrowOop::BOTTOM) {
1455       const TypeAry *tary = TypeAry::make(TypeNarrowOop::BOTTOM, ta->size());
1456       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,offset);
1457     }
1458     if (ta->elem()->isa_oopptr() && ta->elem() != TypeInstPtr::BOTTOM) {
1459       const TypeAry *tary = TypeAry::make(TypeInstPtr::BOTTOM, ta->size());
1460       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,offset);
1461     }
1462     // Arrays of bytes and of booleans both use 'bastore' and 'baload' so
1463     // cannot be distinguished by bytecode alone.
1464     if (ta->elem() == TypeInt::BOOL) {
1465       const TypeAry *tary = TypeAry::make(TypeInt::BYTE, ta->size());
1466       ciKlass* aklass = ciTypeArrayKlass::make(T_BYTE);
1467       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,aklass,false,offset);
1468     }
1469     // During the 2nd round of IterGVN, NotNull castings are removed.
1470     // Make sure the Bottom and NotNull variants alias the same.
1471     // Also, make sure exact and non-exact variants alias the same.
1472     if (ptr == TypePtr::NotNull || ta->klass_is_exact() || ta->speculative() != NULL) {
1473       tj = ta = TypeAryPtr::make(TypePtr::BotPTR,ta->ary(),ta->klass(),false,offset);
1474     }
1475   }
1476 
1477   // Oop pointers need some flattening
1478   const TypeInstPtr *to = tj->isa_instptr();
1479   if( to && _AliasLevel >= 2 && to != TypeOopPtr::BOTTOM ) {
1480     ciInstanceKlass *k = to->klass()->as_instance_klass();
1481     if( ptr == TypePtr::Constant ) {
1482       if (to->klass() != ciEnv::current()->Class_klass() ||
1483           offset < k->size_helper() * wordSize) {
1484         // No constant oop pointers (such as Strings); they alias with
1485         // unknown strings.
1486         assert(!is_known_inst, "not scalarizable allocation");
1487         tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,offset);
1488       }
1489     } else if( is_known_inst ) {
1490       tj = to; // Keep NotNull and klass_is_exact for instance type
1491     } else if( ptr == TypePtr::NotNull || to->klass_is_exact() ) {
1492       // During the 2nd round of IterGVN, NotNull castings are removed.
1493       // Make sure the Bottom and NotNull variants alias the same.
1494       // Also, make sure exact and non-exact variants alias the same.
1495       tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,offset);
1496     }
1497     if (to->speculative() != NULL) {
1498       tj = to = TypeInstPtr::make(to->ptr(),to->klass(),to->klass_is_exact(),to->const_oop(),to->offset(), to->instance_id());
1499     }
1500     // Canonicalize the holder of this field
1501     if (offset >= 0 && offset < instanceOopDesc::base_offset_in_bytes()) {
1502       // First handle header references such as a LoadKlassNode, even if the
1503       // object's klass is unloaded at compile time (4965979).
1504       if (!is_known_inst) { // Do it only for non-instance types
1505         tj = to = TypeInstPtr::make(TypePtr::BotPTR, env()->Object_klass(), false, NULL, offset);
1506       }
1507     } else if (offset < 0 || offset >= k->size_helper() * wordSize) {
1508       // Static fields are in the space above the normal instance
1509       // fields in the java.lang.Class instance.
1510       if (to->klass() != ciEnv::current()->Class_klass()) {
1511         to = NULL;
1512         tj = TypeOopPtr::BOTTOM;
1513         offset = tj->offset();
1514       }
1515     } else {
1516       ciInstanceKlass *canonical_holder = k->get_canonical_holder(offset);
1517       if (!k->equals(canonical_holder) || tj->offset() != offset) {
1518         if( is_known_inst ) {
1519           tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, true, NULL, offset, to->instance_id());
1520         } else {
1521           tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, false, NULL, offset);
1522         }
1523       }
1524     }
1525   }
1526 
1527   // Klass pointers to object array klasses need some flattening
1528   const TypeKlassPtr *tk = tj->isa_klassptr();
1529   if( tk ) {
1530     // If we are referencing a field within a Klass, we need
1531     // to assume the worst case of an Object.  Both exact and
1532     // inexact types must flatten to the same alias class so
1533     // use NotNull as the PTR.
1534     if ( offset == Type::OffsetBot || (offset >= 0 && (size_t)offset < sizeof(Klass)) ) {
1535 
1536       tj = tk = TypeKlassPtr::make(TypePtr::NotNull,
1537                                    TypeKlassPtr::OBJECT->klass(),
1538                                    offset);
1539     }
1540 
1541     ciKlass* klass = tk->klass();
1542     if( klass->is_obj_array_klass() ) {
1543       ciKlass* k = TypeAryPtr::OOPS->klass();
1544       if( !k || !k->is_loaded() )                  // Only fails for some -Xcomp runs
1545         k = TypeInstPtr::BOTTOM->klass();
1546       tj = tk = TypeKlassPtr::make( TypePtr::NotNull, k, offset );
1547     }
1548 
1549     // Check for precise loads from the primary supertype array and force them
1550     // to the supertype cache alias index.  Check for generic array loads from
1551     // the primary supertype array and also force them to the supertype cache
1552     // alias index.  Since the same load can reach both, we need to merge
1553     // these 2 disparate memories into the same alias class.  Since the
1554     // primary supertype array is read-only, there's no chance of confusion
1555     // where we bypass an array load and an array store.
1556     int primary_supers_offset = in_bytes(Klass::primary_supers_offset());
1557     if (offset == Type::OffsetBot ||
1558         (offset >= primary_supers_offset &&
1559          offset < (int)(primary_supers_offset + Klass::primary_super_limit() * wordSize)) ||
1560         offset == (int)in_bytes(Klass::secondary_super_cache_offset())) {
1561       offset = in_bytes(Klass::secondary_super_cache_offset());
1562       tj = tk = TypeKlassPtr::make( TypePtr::NotNull, tk->klass(), offset );
1563     }
1564   }
1565 
1566   // Flatten all Raw pointers together.
1567   if (tj->base() == Type::RawPtr)
1568     tj = TypeRawPtr::BOTTOM;
1569 
1570   if (tj->base() == Type::AnyPtr)
1571     tj = TypePtr::BOTTOM;      // An error, which the caller must check for.
1572 
1573   // Flatten all to bottom for now
1574   switch( _AliasLevel ) {
1575   case 0:
1576     tj = TypePtr::BOTTOM;
1577     break;
1578   case 1:                       // Flatten to: oop, static, field or array
1579     switch (tj->base()) {
1580     //case Type::AryPtr: tj = TypeAryPtr::RANGE;    break;
1581     case Type::RawPtr:   tj = TypeRawPtr::BOTTOM;   break;
1582     case Type::AryPtr:   // do not distinguish arrays at all
1583     case Type::InstPtr:  tj = TypeInstPtr::BOTTOM;  break;
1584     case Type::KlassPtr: tj = TypeKlassPtr::OBJECT; break;
1585     case Type::AnyPtr:   tj = TypePtr::BOTTOM;      break;  // caller checks it
1586     default: ShouldNotReachHere();
1587     }
1588     break;
1589   case 2:                       // No collapsing at level 2; keep all splits
1590   case 3:                       // No collapsing at level 3; keep all splits
1591     break;
1592   default:
1593     Unimplemented();
1594   }
1595 
1596   offset = tj->offset();
1597   assert( offset != Type::OffsetTop, "Offset has fallen from constant" );
1598 
1599   assert( (offset != Type::OffsetBot && tj->base() != Type::AryPtr) ||
1600           (offset == Type::OffsetBot && tj->base() == Type::AryPtr) ||
1601           (offset == Type::OffsetBot && tj == TypeOopPtr::BOTTOM) ||
1602           (offset == Type::OffsetBot && tj == TypePtr::BOTTOM) ||
1603           (offset == oopDesc::mark_offset_in_bytes() && tj->base() == Type::AryPtr) ||
1604           (offset == oopDesc::klass_offset_in_bytes() && tj->base() == Type::AryPtr) ||
1605           (offset == arrayOopDesc::length_offset_in_bytes() && tj->base() == Type::AryPtr)  ,
1606           "For oops, klasses, raw offset must be constant; for arrays the offset is never known" );
1607   assert( tj->ptr() != TypePtr::TopPTR &&
1608           tj->ptr() != TypePtr::AnyNull &&
1609           tj->ptr() != TypePtr::Null, "No imprecise addresses" );
1610 //    assert( tj->ptr() != TypePtr::Constant ||
1611 //            tj->base() == Type::RawPtr ||
1612 //            tj->base() == Type::KlassPtr, "No constant oop addresses" );
1613 
1614   return tj;
1615 }
1616 
1617 void Compile::AliasType::Init(int i, const TypePtr* at) {
1618   _index = i;
1619   _adr_type = at;
1620   _field = NULL;
1621   _element = NULL;
1622   _is_rewritable = true; // default
1623   const TypeOopPtr *atoop = (at != NULL) ? at->isa_oopptr() : NULL;
1624   if (atoop != NULL && atoop->is_known_instance()) {
1625     const TypeOopPtr *gt = atoop->cast_to_instance_id(TypeOopPtr::InstanceBot);
1626     _general_index = Compile::current()->get_alias_index(gt);
1627   } else {
1628     _general_index = 0;
1629   }
1630 }
1631 
1632 //---------------------------------print_on------------------------------------
1633 #ifndef PRODUCT
1634 void Compile::AliasType::print_on(outputStream* st) {
1635   if (index() < 10)
1636         st->print("@ <%d> ", index());
1637   else  st->print("@ <%d>",  index());
1638   st->print(is_rewritable() ? "   " : " RO");
1639   int offset = adr_type()->offset();
1640   if (offset == Type::OffsetBot)
1641         st->print(" +any");
1642   else  st->print(" +%-3d", offset);
1643   st->print(" in ");
1644   adr_type()->dump_on(st);
1645   const TypeOopPtr* tjp = adr_type()->isa_oopptr();
1646   if (field() != NULL && tjp) {
1647     if (tjp->klass()  != field()->holder() ||
1648         tjp->offset() != field()->offset_in_bytes()) {
1649       st->print(" != ");
1650       field()->print();
1651       st->print(" ***");
1652     }
1653   }
1654 }
1655 
1656 void print_alias_types() {
1657   Compile* C = Compile::current();
1658   tty->print_cr("--- Alias types, AliasIdxBot .. %d", C->num_alias_types()-1);
1659   for (int idx = Compile::AliasIdxBot; idx < C->num_alias_types(); idx++) {
1660     C->alias_type(idx)->print_on(tty);
1661     tty->cr();
1662   }
1663 }
1664 #endif
1665 
1666 
1667 //----------------------------probe_alias_cache--------------------------------
1668 Compile::AliasCacheEntry* Compile::probe_alias_cache(const TypePtr* adr_type) {
1669   intptr_t key = (intptr_t) adr_type;
1670   key ^= key >> logAliasCacheSize;
1671   return &_alias_cache[key & right_n_bits(logAliasCacheSize)];
1672 }
1673 
1674 
1675 //-----------------------------grow_alias_types--------------------------------
1676 void Compile::grow_alias_types() {
1677   const int old_ats  = _max_alias_types; // how many before?
1678   const int new_ats  = old_ats;          // how many more?
1679   const int grow_ats = old_ats+new_ats;  // how many now?
1680   _max_alias_types = grow_ats;
1681   _alias_types =  REALLOC_ARENA_ARRAY(comp_arena(), AliasType*, _alias_types, old_ats, grow_ats);
1682   AliasType* ats =    NEW_ARENA_ARRAY(comp_arena(), AliasType, new_ats);
1683   Copy::zero_to_bytes(ats, sizeof(AliasType)*new_ats);
1684   for (int i = 0; i < new_ats; i++)  _alias_types[old_ats+i] = &ats[i];
1685 }
1686 
1687 
1688 //--------------------------------find_alias_type------------------------------
1689 Compile::AliasType* Compile::find_alias_type(const TypePtr* adr_type, bool no_create, ciField* original_field) {
1690   if (_AliasLevel == 0)
1691     return alias_type(AliasIdxBot);
1692 
1693   AliasCacheEntry* ace = probe_alias_cache(adr_type);
1694   if (ace->_adr_type == adr_type) {
1695     return alias_type(ace->_index);
1696   }
1697 
1698   // Handle special cases.
1699   if (adr_type == NULL)             return alias_type(AliasIdxTop);
1700   if (adr_type == TypePtr::BOTTOM)  return alias_type(AliasIdxBot);
1701 
1702   // Do it the slow way.
1703   const TypePtr* flat = flatten_alias_type(adr_type);
1704 
1705 #ifdef ASSERT
1706   assert(flat == flatten_alias_type(flat), "idempotent");
1707   assert(flat != TypePtr::BOTTOM,     "cannot alias-analyze an untyped ptr");
1708   if (flat->isa_oopptr() && !flat->isa_klassptr()) {
1709     const TypeOopPtr* foop = flat->is_oopptr();
1710     // Scalarizable allocations have exact klass always.
1711     bool exact = !foop->klass_is_exact() || foop->is_known_instance();
1712     const TypePtr* xoop = foop->cast_to_exactness(exact)->is_ptr();
1713     assert(foop == flatten_alias_type(xoop), "exactness must not affect alias type");
1714   }
1715   assert(flat == flatten_alias_type(flat), "exact bit doesn't matter");
1716 #endif
1717 
1718   int idx = AliasIdxTop;
1719   for (int i = 0; i < num_alias_types(); i++) {
1720     if (alias_type(i)->adr_type() == flat) {
1721       idx = i;
1722       break;
1723     }
1724   }
1725 
1726   if (idx == AliasIdxTop) {
1727     if (no_create)  return NULL;
1728     // Grow the array if necessary.
1729     if (_num_alias_types == _max_alias_types)  grow_alias_types();
1730     // Add a new alias type.
1731     idx = _num_alias_types++;
1732     _alias_types[idx]->Init(idx, flat);
1733     if (flat == TypeInstPtr::KLASS)  alias_type(idx)->set_rewritable(false);
1734     if (flat == TypeAryPtr::RANGE)   alias_type(idx)->set_rewritable(false);
1735     if (flat->isa_instptr()) {
1736       if (flat->offset() == java_lang_Class::klass_offset_in_bytes()
1737           && flat->is_instptr()->klass() == env()->Class_klass())
1738         alias_type(idx)->set_rewritable(false);
1739     }
1740     if (flat->isa_aryptr()) {
1741 #ifdef ASSERT
1742       const int header_size_min  = arrayOopDesc::base_offset_in_bytes(T_BYTE);
1743       // (T_BYTE has the weakest alignment and size restrictions...)
1744       assert(flat->offset() < header_size_min, "array body reference must be OffsetBot");
1745 #endif
1746       if (flat->offset() == TypePtr::OffsetBot) {
1747         alias_type(idx)->set_element(flat->is_aryptr()->elem());
1748       }
1749     }
1750     if (flat->isa_klassptr()) {
1751       if (flat->offset() == in_bytes(Klass::super_check_offset_offset()))
1752         alias_type(idx)->set_rewritable(false);
1753       if (flat->offset() == in_bytes(Klass::modifier_flags_offset()))
1754         alias_type(idx)->set_rewritable(false);
1755       if (flat->offset() == in_bytes(Klass::access_flags_offset()))
1756         alias_type(idx)->set_rewritable(false);
1757       if (flat->offset() == in_bytes(Klass::java_mirror_offset()))
1758         alias_type(idx)->set_rewritable(false);
1759     }
1760     // %%% (We would like to finalize JavaThread::threadObj_offset(),
1761     // but the base pointer type is not distinctive enough to identify
1762     // references into JavaThread.)
1763 
1764     // Check for final fields.
1765     const TypeInstPtr* tinst = flat->isa_instptr();
1766     if (tinst && tinst->offset() >= instanceOopDesc::base_offset_in_bytes()) {
1767       ciField* field;
1768       if (tinst->const_oop() != NULL &&
1769           tinst->klass() == ciEnv::current()->Class_klass() &&
1770           tinst->offset() >= (tinst->klass()->as_instance_klass()->size_helper() * wordSize)) {
1771         // static field
1772         ciInstanceKlass* k = tinst->const_oop()->as_instance()->java_lang_Class_klass()->as_instance_klass();
1773         field = k->get_field_by_offset(tinst->offset(), true);
1774       } else {
1775         ciInstanceKlass *k = tinst->klass()->as_instance_klass();
1776         field = k->get_field_by_offset(tinst->offset(), false);
1777       }
1778       assert(field == NULL ||
1779              original_field == NULL ||
1780              (field->holder() == original_field->holder() &&
1781               field->offset() == original_field->offset() &&
1782               field->is_static() == original_field->is_static()), "wrong field?");
1783       // Set field() and is_rewritable() attributes.
1784       if (field != NULL)  alias_type(idx)->set_field(field);
1785     }
1786   }
1787 
1788   // Fill the cache for next time.
1789   ace->_adr_type = adr_type;
1790   ace->_index    = idx;
1791   assert(alias_type(adr_type) == alias_type(idx),  "type must be installed");
1792 
1793   // Might as well try to fill the cache for the flattened version, too.
1794   AliasCacheEntry* face = probe_alias_cache(flat);
1795   if (face->_adr_type == NULL) {
1796     face->_adr_type = flat;
1797     face->_index    = idx;
1798     assert(alias_type(flat) == alias_type(idx), "flat type must work too");
1799   }
1800 
1801   return alias_type(idx);
1802 }
1803 
1804 
1805 Compile::AliasType* Compile::alias_type(ciField* field) {
1806   const TypeOopPtr* t;
1807   if (field->is_static())
1808     t = TypeInstPtr::make(field->holder()->java_mirror());
1809   else
1810     t = TypeOopPtr::make_from_klass_raw(field->holder());
1811   AliasType* atp = alias_type(t->add_offset(field->offset_in_bytes()), field);
1812   assert((field->is_final() || field->is_stable()) == !atp->is_rewritable(), "must get the rewritable bits correct");
1813   return atp;
1814 }
1815 
1816 
1817 //------------------------------have_alias_type--------------------------------
1818 bool Compile::have_alias_type(const TypePtr* adr_type) {
1819   AliasCacheEntry* ace = probe_alias_cache(adr_type);
1820   if (ace->_adr_type == adr_type) {
1821     return true;
1822   }
1823 
1824   // Handle special cases.
1825   if (adr_type == NULL)             return true;
1826   if (adr_type == TypePtr::BOTTOM)  return true;
1827 
1828   return find_alias_type(adr_type, true, NULL) != NULL;
1829 }
1830 
1831 //-----------------------------must_alias--------------------------------------
1832 // True if all values of the given address type are in the given alias category.
1833 bool Compile::must_alias(const TypePtr* adr_type, int alias_idx) {
1834   if (alias_idx == AliasIdxBot)         return true;  // the universal category
1835   if (adr_type == NULL)                 return true;  // NULL serves as TypePtr::TOP
1836   if (alias_idx == AliasIdxTop)         return false; // the empty category
1837   if (adr_type->base() == Type::AnyPtr) return false; // TypePtr::BOTTOM or its twins
1838 
1839   // the only remaining possible overlap is identity
1840   int adr_idx = get_alias_index(adr_type);
1841   assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
1842   assert(adr_idx == alias_idx ||
1843          (alias_type(alias_idx)->adr_type() != TypeOopPtr::BOTTOM
1844           && adr_type                       != TypeOopPtr::BOTTOM),
1845          "should not be testing for overlap with an unsafe pointer");
1846   return adr_idx == alias_idx;
1847 }
1848 
1849 //------------------------------can_alias--------------------------------------
1850 // True if any values of the given address type are in the given alias category.
1851 bool Compile::can_alias(const TypePtr* adr_type, int alias_idx) {
1852   if (alias_idx == AliasIdxTop)         return false; // the empty category
1853   if (adr_type == NULL)                 return false; // NULL serves as TypePtr::TOP
1854   if (alias_idx == AliasIdxBot)         return true;  // the universal category
1855   if (adr_type->base() == Type::AnyPtr) return true;  // TypePtr::BOTTOM or its twins
1856 
1857   // the only remaining possible overlap is identity
1858   int adr_idx = get_alias_index(adr_type);
1859   assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
1860   return adr_idx == alias_idx;
1861 }
1862 
1863 
1864 
1865 //---------------------------pop_warm_call-------------------------------------
1866 WarmCallInfo* Compile::pop_warm_call() {
1867   WarmCallInfo* wci = _warm_calls;
1868   if (wci != NULL)  _warm_calls = wci->remove_from(wci);
1869   return wci;
1870 }
1871 
1872 //----------------------------Inline_Warm--------------------------------------
1873 int Compile::Inline_Warm() {
1874   // If there is room, try to inline some more warm call sites.
1875   // %%% Do a graph index compaction pass when we think we're out of space?
1876   if (!InlineWarmCalls)  return 0;
1877 
1878   int calls_made_hot = 0;
1879   int room_to_grow   = NodeCountInliningCutoff - unique();
1880   int amount_to_grow = MIN2(room_to_grow, (int)NodeCountInliningStep);
1881   int amount_grown   = 0;
1882   WarmCallInfo* call;
1883   while (amount_to_grow > 0 && (call = pop_warm_call()) != NULL) {
1884     int est_size = (int)call->size();
1885     if (est_size > (room_to_grow - amount_grown)) {
1886       // This one won't fit anyway.  Get rid of it.
1887       call->make_cold();
1888       continue;
1889     }
1890     call->make_hot();
1891     calls_made_hot++;
1892     amount_grown   += est_size;
1893     amount_to_grow -= est_size;
1894   }
1895 
1896   if (calls_made_hot > 0)  set_major_progress();
1897   return calls_made_hot;
1898 }
1899 
1900 
1901 //----------------------------Finish_Warm--------------------------------------
1902 void Compile::Finish_Warm() {
1903   if (!InlineWarmCalls)  return;
1904   if (failing())  return;
1905   if (warm_calls() == NULL)  return;
1906 
1907   // Clean up loose ends, if we are out of space for inlining.
1908   WarmCallInfo* call;
1909   while ((call = pop_warm_call()) != NULL) {
1910     call->make_cold();
1911   }
1912 }
1913 
1914 //---------------------cleanup_loop_predicates-----------------------
1915 // Remove the opaque nodes that protect the predicates so that all unused
1916 // checks and uncommon_traps will be eliminated from the ideal graph
1917 void Compile::cleanup_loop_predicates(PhaseIterGVN &igvn) {
1918   if (predicate_count()==0) return;
1919   for (int i = predicate_count(); i > 0; i--) {
1920     Node * n = predicate_opaque1_node(i-1);
1921     assert(n->Opcode() == Op_Opaque1, "must be");
1922     igvn.replace_node(n, n->in(1));
1923   }
1924   assert(predicate_count()==0, "should be clean!");
1925 }
1926 
1927 // StringOpts and late inlining of string methods
1928 void Compile::inline_string_calls(bool parse_time) {
1929   {
1930     // remove useless nodes to make the usage analysis simpler
1931     ResourceMark rm;
1932     PhaseRemoveUseless pru(initial_gvn(), for_igvn());
1933   }
1934 
1935   {
1936     ResourceMark rm;
1937     print_method(PHASE_BEFORE_STRINGOPTS, 3);
1938     PhaseStringOpts pso(initial_gvn(), for_igvn());
1939     print_method(PHASE_AFTER_STRINGOPTS, 3);
1940   }
1941 
1942   // now inline anything that we skipped the first time around
1943   if (!parse_time) {
1944     _late_inlines_pos = _late_inlines.length();
1945   }
1946 
1947   while (_string_late_inlines.length() > 0) {
1948     CallGenerator* cg = _string_late_inlines.pop();
1949     cg->do_late_inline();
1950     if (failing())  return;
1951   }
1952   _string_late_inlines.trunc_to(0);
1953 }
1954 
1955 // Late inlining of boxing methods
1956 void Compile::inline_boxing_calls(PhaseIterGVN& igvn) {
1957   if (_boxing_late_inlines.length() > 0) {
1958     assert(has_boxed_value(), "inconsistent");
1959 
1960     PhaseGVN* gvn = initial_gvn();
1961     set_inlining_incrementally(true);
1962 
1963     assert( igvn._worklist.size() == 0, "should be done with igvn" );
1964     for_igvn()->clear();
1965     gvn->replace_with(&igvn);
1966 
1967     _late_inlines_pos = _late_inlines.length();
1968 
1969     while (_boxing_late_inlines.length() > 0) {
1970       CallGenerator* cg = _boxing_late_inlines.pop();
1971       cg->do_late_inline();
1972       if (failing())  return;
1973     }
1974     _boxing_late_inlines.trunc_to(0);
1975 
1976     {
1977       ResourceMark rm;
1978       PhaseRemoveUseless pru(gvn, for_igvn());
1979     }
1980 
1981     igvn = PhaseIterGVN(gvn);
1982     igvn.optimize();
1983 
1984     set_inlining_progress(false);
1985     set_inlining_incrementally(false);
1986   }
1987 }
1988 
1989 void Compile::inline_incrementally_one(PhaseIterGVN& igvn) {
1990   assert(IncrementalInline, "incremental inlining should be on");
1991   PhaseGVN* gvn = initial_gvn();
1992 
1993   set_inlining_progress(false);
1994   for_igvn()->clear();
1995   gvn->replace_with(&igvn);
1996 
1997   {
1998     TracePhase tp("incrementalInline_inline", &timers[_t_incrInline_inline]);
1999     int i = 0;
2000     for (; i <_late_inlines.length() && !inlining_progress(); i++) {
2001       CallGenerator* cg = _late_inlines.at(i);
2002       _late_inlines_pos = i+1;
2003       cg->do_late_inline();
2004       if (failing())  return;
2005     }
2006     int j = 0;
2007     for (; i < _late_inlines.length(); i++, j++) {
2008       _late_inlines.at_put(j, _late_inlines.at(i));
2009     }
2010     _late_inlines.trunc_to(j);
2011   }
2012 
2013   {
2014     TracePhase tp("incrementalInline_pru", &timers[_t_incrInline_pru]);
2015     ResourceMark rm;
2016     PhaseRemoveUseless pru(gvn, for_igvn());
2017   }
2018 
2019   {
2020     TracePhase tp("incrementalInline_igvn", &timers[_t_incrInline_igvn]);
2021     igvn = PhaseIterGVN(gvn);
2022   }
2023 }
2024 
2025 // Perform incremental inlining until bound on number of live nodes is reached
2026 void Compile::inline_incrementally(PhaseIterGVN& igvn) {
2027   TracePhase tp("incrementalInline", &timers[_t_incrInline]);
2028 
2029   PhaseGVN* gvn = initial_gvn();
2030 
2031   set_inlining_incrementally(true);
2032   set_inlining_progress(true);
2033   uint low_live_nodes = 0;
2034 
2035   while(inlining_progress() && _late_inlines.length() > 0) {
2036 
2037     if (live_nodes() > (uint)LiveNodeCountInliningCutoff) {
2038       if (low_live_nodes < (uint)LiveNodeCountInliningCutoff * 8 / 10) {
2039         TracePhase tp("incrementalInline_ideal", &timers[_t_incrInline_ideal]);
2040         // PhaseIdealLoop is expensive so we only try it once we are
2041         // out of live nodes and we only try it again if the previous
2042         // helped got the number of nodes down significantly
2043         PhaseIdealLoop ideal_loop( igvn, false, true );
2044         if (failing())  return;
2045         low_live_nodes = live_nodes();
2046         _major_progress = true;
2047       }
2048 
2049       if (live_nodes() > (uint)LiveNodeCountInliningCutoff) {
2050         break;
2051       }
2052     }
2053 
2054     inline_incrementally_one(igvn);
2055 
2056     if (failing())  return;
2057 
2058     {
2059       TracePhase tp("incrementalInline_igvn", &timers[_t_incrInline_igvn]);
2060       igvn.optimize();
2061     }
2062 
2063     if (failing())  return;
2064   }
2065 
2066   assert( igvn._worklist.size() == 0, "should be done with igvn" );
2067 
2068   if (_string_late_inlines.length() > 0) {
2069     assert(has_stringbuilder(), "inconsistent");
2070     for_igvn()->clear();
2071     initial_gvn()->replace_with(&igvn);
2072 
2073     inline_string_calls(false);
2074 
2075     if (failing())  return;
2076 
2077     {
2078       TracePhase tp("incrementalInline_pru", &timers[_t_incrInline_pru]);
2079       ResourceMark rm;
2080       PhaseRemoveUseless pru(initial_gvn(), for_igvn());
2081     }
2082 
2083     {
2084       TracePhase tp("incrementalInline_igvn", &timers[_t_incrInline_igvn]);
2085       igvn = PhaseIterGVN(gvn);
2086       igvn.optimize();
2087     }
2088   }
2089 
2090   set_inlining_incrementally(false);
2091 }
2092 
2093 
2094 //------------------------------Optimize---------------------------------------
2095 // Given a graph, optimize it.
2096 void Compile::Optimize() {
2097   TracePhase tp("optimizer", &timers[_t_optimizer]);
2098 
2099 #ifndef PRODUCT
2100   if (_directive->BreakAtCompileOption) {
2101     BREAKPOINT;
2102   }
2103 
2104 #endif
2105 
2106   ResourceMark rm;
2107   int          loop_opts_cnt;
2108 
2109   print_inlining_reinit();
2110 
2111   NOT_PRODUCT( verify_graph_edges(); )
2112 
2113   print_method(PHASE_AFTER_PARSING);
2114 
2115  {
2116   // Iterative Global Value Numbering, including ideal transforms
2117   // Initialize IterGVN with types and values from parse-time GVN
2118   PhaseIterGVN igvn(initial_gvn());
2119 #ifdef ASSERT
2120   _modified_nodes = new (comp_arena()) Unique_Node_List(comp_arena());
2121 #endif
2122   {
2123     TracePhase tp("iterGVN", &timers[_t_iterGVN]);
2124     igvn.optimize();
2125   }
2126 
2127   print_method(PHASE_ITER_GVN1, 2);
2128 
2129   if (failing())  return;
2130 
2131   inline_incrementally(igvn);
2132 
2133   print_method(PHASE_INCREMENTAL_INLINE, 2);
2134 
2135   if (failing())  return;
2136 
2137   if (eliminate_boxing()) {
2138     // Inline valueOf() methods now.
2139     inline_boxing_calls(igvn);
2140 
2141     if (AlwaysIncrementalInline) {
2142       inline_incrementally(igvn);
2143     }
2144 
2145     print_method(PHASE_INCREMENTAL_BOXING_INLINE, 2);
2146 
2147     if (failing())  return;
2148   }
2149 
2150   // Remove the speculative part of types and clean up the graph from
2151   // the extra CastPP nodes whose only purpose is to carry them. Do
2152   // that early so that optimizations are not disrupted by the extra
2153   // CastPP nodes.
2154   remove_speculative_types(igvn);
2155 
2156   // No more new expensive nodes will be added to the list from here
2157   // so keep only the actual candidates for optimizations.
2158   cleanup_expensive_nodes(igvn);
2159 
2160   if (!failing() && RenumberLiveNodes && live_nodes() + NodeLimitFudgeFactor < unique()) {
2161     Compile::TracePhase tp("", &timers[_t_renumberLive]);
2162     initial_gvn()->replace_with(&igvn);
2163     for_igvn()->clear();
2164     Unique_Node_List new_worklist(C->comp_arena());
2165     {
2166       ResourceMark rm;
2167       PhaseRenumberLive prl = PhaseRenumberLive(initial_gvn(), for_igvn(), &new_worklist);
2168     }
2169     set_for_igvn(&new_worklist);
2170     igvn = PhaseIterGVN(initial_gvn());
2171     igvn.optimize();
2172   }
2173 
2174   // Perform escape analysis
2175   if (_do_escape_analysis && ConnectionGraph::has_candidates(this)) {
2176     if (has_loops()) {
2177       // Cleanup graph (remove dead nodes).
2178       TracePhase tp("idealLoop", &timers[_t_idealLoop]);
2179       PhaseIdealLoop ideal_loop( igvn, false, true );
2180       if (major_progress()) print_method(PHASE_PHASEIDEAL_BEFORE_EA, 2);
2181       if (failing())  return;
2182     }
2183     ConnectionGraph::do_analysis(this, &igvn);
2184 
2185     if (failing())  return;
2186 
2187     // Optimize out fields loads from scalar replaceable allocations.
2188     igvn.optimize();
2189     print_method(PHASE_ITER_GVN_AFTER_EA, 2);
2190 
2191     if (failing())  return;
2192 
2193     if (congraph() != NULL && macro_count() > 0) {
2194       TracePhase tp("macroEliminate", &timers[_t_macroEliminate]);
2195       PhaseMacroExpand mexp(igvn);
2196       mexp.eliminate_macro_nodes();
2197       igvn.set_delay_transform(false);
2198 
2199       igvn.optimize();
2200       print_method(PHASE_ITER_GVN_AFTER_ELIMINATION, 2);
2201 
2202       if (failing())  return;
2203     }
2204   }
2205 
2206   // Loop transforms on the ideal graph.  Range Check Elimination,
2207   // peeling, unrolling, etc.
2208 
2209   // Set loop opts counter
2210   loop_opts_cnt = num_loop_opts();
2211   if((loop_opts_cnt > 0) && (has_loops() || has_split_ifs())) {
2212     {
2213       TracePhase tp("idealLoop", &timers[_t_idealLoop]);
2214       PhaseIdealLoop ideal_loop( igvn, true );
2215       loop_opts_cnt--;
2216       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP1, 2);
2217       if (failing())  return;
2218     }
2219     // Loop opts pass if partial peeling occurred in previous pass
2220     if(PartialPeelLoop && major_progress() && (loop_opts_cnt > 0)) {
2221       TracePhase tp("idealLoop", &timers[_t_idealLoop]);
2222       PhaseIdealLoop ideal_loop( igvn, false );
2223       loop_opts_cnt--;
2224       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP2, 2);
2225       if (failing())  return;
2226     }
2227     // Loop opts pass for loop-unrolling before CCP
2228     if(major_progress() && (loop_opts_cnt > 0)) {
2229       TracePhase tp("idealLoop", &timers[_t_idealLoop]);
2230       PhaseIdealLoop ideal_loop( igvn, false );
2231       loop_opts_cnt--;
2232       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP3, 2);
2233     }
2234     if (!failing()) {
2235       // Verify that last round of loop opts produced a valid graph
2236       TracePhase tp("idealLoopVerify", &timers[_t_idealLoopVerify]);
2237       PhaseIdealLoop::verify(igvn);
2238     }
2239   }
2240   if (failing())  return;
2241 
2242   // Conditional Constant Propagation;
2243   PhaseCCP ccp( &igvn );
2244   assert( true, "Break here to ccp.dump_nodes_and_types(_root,999,1)");
2245   {
2246     TracePhase tp("ccp", &timers[_t_ccp]);
2247     ccp.do_transform();
2248   }
2249   print_method(PHASE_CPP1, 2);
2250 
2251   assert( true, "Break here to ccp.dump_old2new_map()");
2252 
2253   // Iterative Global Value Numbering, including ideal transforms
2254   {
2255     TracePhase tp("iterGVN2", &timers[_t_iterGVN2]);
2256     igvn = ccp;
2257     igvn.optimize();
2258   }
2259 
2260   print_method(PHASE_ITER_GVN2, 2);
2261 
2262   if (failing())  return;
2263 
2264   // Loop transforms on the ideal graph.  Range Check Elimination,
2265   // peeling, unrolling, etc.
2266   if(loop_opts_cnt > 0) {
2267     debug_only( int cnt = 0; );
2268     while(major_progress() && (loop_opts_cnt > 0)) {
2269       TracePhase tp("idealLoop", &timers[_t_idealLoop]);
2270       assert( cnt++ < 40, "infinite cycle in loop optimization" );
2271       PhaseIdealLoop ideal_loop( igvn, true);
2272       loop_opts_cnt--;
2273       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP_ITERATIONS, 2);
2274       if (failing())  return;
2275     }
2276   }
2277   // Ensure that major progress is now clear
2278   C->clear_major_progress();
2279 
2280   {
2281     // Verify that all previous optimizations produced a valid graph
2282     // at least to this point, even if no loop optimizations were done.
2283     TracePhase tp("idealLoopVerify", &timers[_t_idealLoopVerify]);
2284     PhaseIdealLoop::verify(igvn);
2285   }
2286 
2287   {
2288     TracePhase tp("macroExpand", &timers[_t_macroExpand]);
2289     PhaseMacroExpand  mex(igvn);
2290     if (mex.expand_macro_nodes()) {
2291       assert(failing(), "must bail out w/ explicit message");
2292       return;
2293     }
2294   }
2295 
2296   DEBUG_ONLY( _modified_nodes = NULL; )
2297  } // (End scope of igvn; run destructor if necessary for asserts.)
2298 
2299  process_print_inlining();
2300  // A method with only infinite loops has no edges entering loops from root
2301  {
2302    TracePhase tp("graphReshape", &timers[_t_graphReshaping]);
2303    if (final_graph_reshaping()) {
2304      assert(failing(), "must bail out w/ explicit message");
2305      return;
2306    }
2307  }
2308 
2309  print_method(PHASE_OPTIMIZE_FINISHED, 2);
2310 }
2311 
2312 
2313 //------------------------------Code_Gen---------------------------------------
2314 // Given a graph, generate code for it
2315 void Compile::Code_Gen() {
2316   if (failing()) {
2317     return;
2318   }
2319 
2320   // Perform instruction selection.  You might think we could reclaim Matcher
2321   // memory PDQ, but actually the Matcher is used in generating spill code.
2322   // Internals of the Matcher (including some VectorSets) must remain live
2323   // for awhile - thus I cannot reclaim Matcher memory lest a VectorSet usage
2324   // set a bit in reclaimed memory.
2325 
2326   // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
2327   // nodes.  Mapping is only valid at the root of each matched subtree.
2328   NOT_PRODUCT( verify_graph_edges(); )
2329 
2330   Matcher matcher;
2331   _matcher = &matcher;
2332   {
2333     TracePhase tp("matcher", &timers[_t_matcher]);
2334     matcher.match();
2335   }
2336   // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
2337   // nodes.  Mapping is only valid at the root of each matched subtree.
2338   NOT_PRODUCT( verify_graph_edges(); )
2339 
2340   // If you have too many nodes, or if matching has failed, bail out
2341   check_node_count(0, "out of nodes matching instructions");
2342   if (failing()) {
2343     return;
2344   }
2345 
2346   // Build a proper-looking CFG
2347   PhaseCFG cfg(node_arena(), root(), matcher);
2348   _cfg = &cfg;
2349   {
2350     TracePhase tp("scheduler", &timers[_t_scheduler]);
2351     bool success = cfg.do_global_code_motion();
2352     if (!success) {
2353       return;
2354     }
2355 
2356     print_method(PHASE_GLOBAL_CODE_MOTION, 2);
2357     NOT_PRODUCT( verify_graph_edges(); )
2358     debug_only( cfg.verify(); )
2359   }
2360 
2361   PhaseChaitin regalloc(unique(), cfg, matcher, false);
2362   _regalloc = &regalloc;
2363   {
2364     TracePhase tp("regalloc", &timers[_t_registerAllocation]);
2365     // Perform register allocation.  After Chaitin, use-def chains are
2366     // no longer accurate (at spill code) and so must be ignored.
2367     // Node->LRG->reg mappings are still accurate.
2368     _regalloc->Register_Allocate();
2369 
2370     // Bail out if the allocator builds too many nodes
2371     if (failing()) {
2372       return;
2373     }
2374   }
2375 
2376   // Prior to register allocation we kept empty basic blocks in case the
2377   // the allocator needed a place to spill.  After register allocation we
2378   // are not adding any new instructions.  If any basic block is empty, we
2379   // can now safely remove it.
2380   {
2381     TracePhase tp("blockOrdering", &timers[_t_blockOrdering]);
2382     cfg.remove_empty_blocks();
2383     if (do_freq_based_layout()) {
2384       PhaseBlockLayout layout(cfg);
2385     } else {
2386       cfg.set_loop_alignment();
2387     }
2388     cfg.fixup_flow();
2389   }
2390 
2391   // Apply peephole optimizations
2392   if( OptoPeephole ) {
2393     TracePhase tp("peephole", &timers[_t_peephole]);
2394     PhasePeephole peep( _regalloc, cfg);
2395     peep.do_transform();
2396   }
2397 
2398   // Do late expand if CPU requires this.
2399   if (Matcher::require_postalloc_expand) {
2400     TracePhase tp("postalloc_expand", &timers[_t_postalloc_expand]);
2401     cfg.postalloc_expand(_regalloc);
2402   }
2403 
2404   // Convert Nodes to instruction bits in a buffer
2405   {
2406     TraceTime tp("output", &timers[_t_output], CITime);
2407     Output();
2408   }
2409 
2410   print_method(PHASE_FINAL_CODE);
2411 
2412   // He's dead, Jim.
2413   _cfg     = (PhaseCFG*)0xdeadbeef;
2414   _regalloc = (PhaseChaitin*)0xdeadbeef;
2415 }
2416 
2417 
2418 //------------------------------dump_asm---------------------------------------
2419 // Dump formatted assembly
2420 #ifndef PRODUCT
2421 void Compile::dump_asm(int *pcs, uint pc_limit) {
2422   bool cut_short = false;
2423   tty->print_cr("#");
2424   tty->print("#  ");  _tf->dump();  tty->cr();
2425   tty->print_cr("#");
2426 
2427   // For all blocks
2428   int pc = 0x0;                 // Program counter
2429   char starts_bundle = ' ';
2430   _regalloc->dump_frame();
2431 
2432   Node *n = NULL;
2433   for (uint i = 0; i < _cfg->number_of_blocks(); i++) {
2434     if (VMThread::should_terminate()) {
2435       cut_short = true;
2436       break;
2437     }
2438     Block* block = _cfg->get_block(i);
2439     if (block->is_connector() && !Verbose) {
2440       continue;
2441     }
2442     n = block->head();
2443     if (pcs && n->_idx < pc_limit) {
2444       tty->print("%3.3x   ", pcs[n->_idx]);
2445     } else {
2446       tty->print("      ");
2447     }
2448     block->dump_head(_cfg);
2449     if (block->is_connector()) {
2450       tty->print_cr("        # Empty connector block");
2451     } else if (block->num_preds() == 2 && block->pred(1)->is_CatchProj() && block->pred(1)->as_CatchProj()->_con == CatchProjNode::fall_through_index) {
2452       tty->print_cr("        # Block is sole successor of call");
2453     }
2454 
2455     // For all instructions
2456     Node *delay = NULL;
2457     for (uint j = 0; j < block->number_of_nodes(); j++) {
2458       if (VMThread::should_terminate()) {
2459         cut_short = true;
2460         break;
2461       }
2462       n = block->get_node(j);
2463       if (valid_bundle_info(n)) {
2464         Bundle* bundle = node_bundling(n);
2465         if (bundle->used_in_unconditional_delay()) {
2466           delay = n;
2467           continue;
2468         }
2469         if (bundle->starts_bundle()) {
2470           starts_bundle = '+';
2471         }
2472       }
2473 
2474       if (WizardMode) {
2475         n->dump();
2476       }
2477 
2478       if( !n->is_Region() &&    // Dont print in the Assembly
2479           !n->is_Phi() &&       // a few noisely useless nodes
2480           !n->is_Proj() &&
2481           !n->is_MachTemp() &&
2482           !n->is_SafePointScalarObject() &&
2483           !n->is_Catch() &&     // Would be nice to print exception table targets
2484           !n->is_MergeMem() &&  // Not very interesting
2485           !n->is_top() &&       // Debug info table constants
2486           !(n->is_Con() && !n->is_Mach())// Debug info table constants
2487           ) {
2488         if (pcs && n->_idx < pc_limit)
2489           tty->print("%3.3x", pcs[n->_idx]);
2490         else
2491           tty->print("   ");
2492         tty->print(" %c ", starts_bundle);
2493         starts_bundle = ' ';
2494         tty->print("\t");
2495         n->format(_regalloc, tty);
2496         tty->cr();
2497       }
2498 
2499       // If we have an instruction with a delay slot, and have seen a delay,
2500       // then back up and print it
2501       if (valid_bundle_info(n) && node_bundling(n)->use_unconditional_delay()) {
2502         assert(delay != NULL, "no unconditional delay instruction");
2503         if (WizardMode) delay->dump();
2504 
2505         if (node_bundling(delay)->starts_bundle())
2506           starts_bundle = '+';
2507         if (pcs && n->_idx < pc_limit)
2508           tty->print("%3.3x", pcs[n->_idx]);
2509         else
2510           tty->print("   ");
2511         tty->print(" %c ", starts_bundle);
2512         starts_bundle = ' ';
2513         tty->print("\t");
2514         delay->format(_regalloc, tty);
2515         tty->cr();
2516         delay = NULL;
2517       }
2518 
2519       // Dump the exception table as well
2520       if( n->is_Catch() && (Verbose || WizardMode) ) {
2521         // Print the exception table for this offset
2522         _handler_table.print_subtable_for(pc);
2523       }
2524     }
2525 
2526     if (pcs && n->_idx < pc_limit)
2527       tty->print_cr("%3.3x", pcs[n->_idx]);
2528     else
2529       tty->cr();
2530 
2531     assert(cut_short || delay == NULL, "no unconditional delay branch");
2532 
2533   } // End of per-block dump
2534   tty->cr();
2535 
2536   if (cut_short)  tty->print_cr("*** disassembly is cut short ***");
2537 }
2538 #endif
2539 
2540 //------------------------------Final_Reshape_Counts---------------------------
2541 // This class defines counters to help identify when a method
2542 // may/must be executed using hardware with only 24-bit precision.
2543 struct Final_Reshape_Counts : public StackObj {
2544   int  _call_count;             // count non-inlined 'common' calls
2545   int  _float_count;            // count float ops requiring 24-bit precision
2546   int  _double_count;           // count double ops requiring more precision
2547   int  _java_call_count;        // count non-inlined 'java' calls
2548   int  _inner_loop_count;       // count loops which need alignment
2549   VectorSet _visited;           // Visitation flags
2550   Node_List _tests;             // Set of IfNodes & PCTableNodes
2551 
2552   Final_Reshape_Counts() :
2553     _call_count(0), _float_count(0), _double_count(0),
2554     _java_call_count(0), _inner_loop_count(0),
2555     _visited( Thread::current()->resource_area() ) { }
2556 
2557   void inc_call_count  () { _call_count  ++; }
2558   void inc_float_count () { _float_count ++; }
2559   void inc_double_count() { _double_count++; }
2560   void inc_java_call_count() { _java_call_count++; }
2561   void inc_inner_loop_count() { _inner_loop_count++; }
2562 
2563   int  get_call_count  () const { return _call_count  ; }
2564   int  get_float_count () const { return _float_count ; }
2565   int  get_double_count() const { return _double_count; }
2566   int  get_java_call_count() const { return _java_call_count; }
2567   int  get_inner_loop_count() const { return _inner_loop_count; }
2568 };
2569 
2570 #ifdef ASSERT
2571 static bool oop_offset_is_sane(const TypeInstPtr* tp) {
2572   ciInstanceKlass *k = tp->klass()->as_instance_klass();
2573   // Make sure the offset goes inside the instance layout.
2574   return k->contains_field_offset(tp->offset());
2575   // Note that OffsetBot and OffsetTop are very negative.
2576 }
2577 #endif
2578 
2579 // Eliminate trivially redundant StoreCMs and accumulate their
2580 // precedence edges.
2581 void Compile::eliminate_redundant_card_marks(Node* n) {
2582   assert(n->Opcode() == Op_StoreCM, "expected StoreCM");
2583   if (n->in(MemNode::Address)->outcnt() > 1) {
2584     // There are multiple users of the same address so it might be
2585     // possible to eliminate some of the StoreCMs
2586     Node* mem = n->in(MemNode::Memory);
2587     Node* adr = n->in(MemNode::Address);
2588     Node* val = n->in(MemNode::ValueIn);
2589     Node* prev = n;
2590     bool done = false;
2591     // Walk the chain of StoreCMs eliminating ones that match.  As
2592     // long as it's a chain of single users then the optimization is
2593     // safe.  Eliminating partially redundant StoreCMs would require
2594     // cloning copies down the other paths.
2595     while (mem->Opcode() == Op_StoreCM && mem->outcnt() == 1 && !done) {
2596       if (adr == mem->in(MemNode::Address) &&
2597           val == mem->in(MemNode::ValueIn)) {
2598         // redundant StoreCM
2599         if (mem->req() > MemNode::OopStore) {
2600           // Hasn't been processed by this code yet.
2601           n->add_prec(mem->in(MemNode::OopStore));
2602         } else {
2603           // Already converted to precedence edge
2604           for (uint i = mem->req(); i < mem->len(); i++) {
2605             // Accumulate any precedence edges
2606             if (mem->in(i) != NULL) {
2607               n->add_prec(mem->in(i));
2608             }
2609           }
2610           // Everything above this point has been processed.
2611           done = true;
2612         }
2613         // Eliminate the previous StoreCM
2614         prev->set_req(MemNode::Memory, mem->in(MemNode::Memory));
2615         assert(mem->outcnt() == 0, "should be dead");
2616         mem->disconnect_inputs(NULL, this);
2617       } else {
2618         prev = mem;
2619       }
2620       mem = prev->in(MemNode::Memory);
2621     }
2622   }
2623 }
2624 
2625 //------------------------------final_graph_reshaping_impl----------------------
2626 // Implement items 1-5 from final_graph_reshaping below.
2627 void Compile::final_graph_reshaping_impl( Node *n, Final_Reshape_Counts &frc) {
2628 
2629   if ( n->outcnt() == 0 ) return; // dead node
2630   uint nop = n->Opcode();
2631 
2632   // Check for 2-input instruction with "last use" on right input.
2633   // Swap to left input.  Implements item (2).
2634   if( n->req() == 3 &&          // two-input instruction
2635       n->in(1)->outcnt() > 1 && // left use is NOT a last use
2636       (!n->in(1)->is_Phi() || n->in(1)->in(2) != n) && // it is not data loop
2637       n->in(2)->outcnt() == 1 &&// right use IS a last use
2638       !n->in(2)->is_Con() ) {   // right use is not a constant
2639     // Check for commutative opcode
2640     switch( nop ) {
2641     case Op_AddI:  case Op_AddF:  case Op_AddD:  case Op_AddL:
2642     case Op_MaxI:  case Op_MinI:
2643     case Op_MulI:  case Op_MulF:  case Op_MulD:  case Op_MulL:
2644     case Op_AndL:  case Op_XorL:  case Op_OrL:
2645     case Op_AndI:  case Op_XorI:  case Op_OrI: {
2646       // Move "last use" input to left by swapping inputs
2647       n->swap_edges(1, 2);
2648       break;
2649     }
2650     default:
2651       break;
2652     }
2653   }
2654 
2655 #ifdef ASSERT
2656   if( n->is_Mem() ) {
2657     int alias_idx = get_alias_index(n->as_Mem()->adr_type());
2658     assert( n->in(0) != NULL || alias_idx != Compile::AliasIdxRaw ||
2659             // oop will be recorded in oop map if load crosses safepoint
2660             n->is_Load() && (n->as_Load()->bottom_type()->isa_oopptr() ||
2661                              LoadNode::is_immutable_value(n->in(MemNode::Address))),
2662             "raw memory operations should have control edge");
2663   }
2664 #endif
2665   // Count FPU ops and common calls, implements item (3)
2666   switch( nop ) {
2667   // Count all float operations that may use FPU
2668   case Op_AddF:
2669   case Op_SubF:
2670   case Op_MulF:
2671   case Op_DivF:
2672   case Op_NegF:
2673   case Op_ModF:
2674   case Op_ConvI2F:
2675   case Op_ConF:
2676   case Op_CmpF:
2677   case Op_CmpF3:
2678   // case Op_ConvL2F: // longs are split into 32-bit halves
2679     frc.inc_float_count();
2680     break;
2681 
2682   case Op_ConvF2D:
2683   case Op_ConvD2F:
2684     frc.inc_float_count();
2685     frc.inc_double_count();
2686     break;
2687 
2688   // Count all double operations that may use FPU
2689   case Op_AddD:
2690   case Op_SubD:
2691   case Op_MulD:
2692   case Op_DivD:
2693   case Op_NegD:
2694   case Op_ModD:
2695   case Op_ConvI2D:
2696   case Op_ConvD2I:
2697   // case Op_ConvL2D: // handled by leaf call
2698   // case Op_ConvD2L: // handled by leaf call
2699   case Op_ConD:
2700   case Op_CmpD:
2701   case Op_CmpD3:
2702     frc.inc_double_count();
2703     break;
2704   case Op_Opaque1:              // Remove Opaque Nodes before matching
2705   case Op_Opaque2:              // Remove Opaque Nodes before matching
2706   case Op_Opaque3:
2707     n->subsume_by(n->in(1), this);
2708     break;
2709   case Op_CallStaticJava:
2710   case Op_CallJava:
2711   case Op_CallDynamicJava:
2712     frc.inc_java_call_count(); // Count java call site;
2713   case Op_CallRuntime:
2714   case Op_CallLeaf:
2715   case Op_CallLeafNoFP: {
2716     assert( n->is_Call(), "" );
2717     CallNode *call = n->as_Call();
2718     // Count call sites where the FP mode bit would have to be flipped.
2719     // Do not count uncommon runtime calls:
2720     // uncommon_trap, _complete_monitor_locking, _complete_monitor_unlocking,
2721     // _new_Java, _new_typeArray, _new_objArray, _rethrow_Java, ...
2722     if( !call->is_CallStaticJava() || !call->as_CallStaticJava()->_name ) {
2723       frc.inc_call_count();   // Count the call site
2724     } else {                  // See if uncommon argument is shared
2725       Node *n = call->in(TypeFunc::Parms);
2726       int nop = n->Opcode();
2727       // Clone shared simple arguments to uncommon calls, item (1).
2728       if( n->outcnt() > 1 &&
2729           !n->is_Proj() &&
2730           nop != Op_CreateEx &&
2731           nop != Op_CheckCastPP &&
2732           nop != Op_DecodeN &&
2733           nop != Op_DecodeNKlass &&
2734           !n->is_Mem() ) {
2735         Node *x = n->clone();
2736         call->set_req( TypeFunc::Parms, x );
2737       }
2738     }
2739     break;
2740   }
2741 
2742   case Op_StoreD:
2743   case Op_LoadD:
2744   case Op_LoadD_unaligned:
2745     frc.inc_double_count();
2746     goto handle_mem;
2747   case Op_StoreF:
2748   case Op_LoadF:
2749     frc.inc_float_count();
2750     goto handle_mem;
2751 
2752   case Op_StoreCM:
2753     {
2754       // Convert OopStore dependence into precedence edge
2755       Node* prec = n->in(MemNode::OopStore);
2756       n->del_req(MemNode::OopStore);
2757       n->add_prec(prec);
2758       eliminate_redundant_card_marks(n);
2759     }
2760 
2761     // fall through
2762 
2763   case Op_StoreB:
2764   case Op_StoreC:
2765   case Op_StorePConditional:
2766   case Op_StoreI:
2767   case Op_StoreL:
2768   case Op_StoreIConditional:
2769   case Op_StoreLConditional:
2770   case Op_CompareAndSwapI:
2771   case Op_CompareAndSwapL:
2772   case Op_CompareAndSwapP:
2773   case Op_CompareAndSwapN:
2774   case Op_GetAndAddI:
2775   case Op_GetAndAddL:
2776   case Op_GetAndSetI:
2777   case Op_GetAndSetL:
2778   case Op_GetAndSetP:
2779   case Op_GetAndSetN:
2780   case Op_StoreP:
2781   case Op_StoreN:
2782   case Op_StoreNKlass:
2783   case Op_LoadB:
2784   case Op_LoadUB:
2785   case Op_LoadUS:
2786   case Op_LoadI:
2787   case Op_LoadKlass:
2788   case Op_LoadNKlass:
2789   case Op_LoadL:
2790   case Op_LoadL_unaligned:
2791   case Op_LoadPLocked:
2792   case Op_LoadP:
2793   case Op_LoadN:
2794   case Op_LoadRange:
2795   case Op_LoadS: {
2796   handle_mem:
2797 #ifdef ASSERT
2798     if( VerifyOptoOopOffsets ) {
2799       assert( n->is_Mem(), "" );
2800       MemNode *mem  = (MemNode*)n;
2801       // Check to see if address types have grounded out somehow.
2802       const TypeInstPtr *tp = mem->in(MemNode::Address)->bottom_type()->isa_instptr();
2803       assert( !tp || oop_offset_is_sane(tp), "" );
2804     }
2805 #endif
2806     break;
2807   }
2808 
2809   case Op_AddP: {               // Assert sane base pointers
2810     Node *addp = n->in(AddPNode::Address);
2811     assert( !addp->is_AddP() ||
2812             addp->in(AddPNode::Base)->is_top() || // Top OK for allocation
2813             addp->in(AddPNode::Base) == n->in(AddPNode::Base),
2814             "Base pointers must match" );
2815 #ifdef _LP64
2816     if ((UseCompressedOops || UseCompressedClassPointers) &&
2817         addp->Opcode() == Op_ConP &&
2818         addp == n->in(AddPNode::Base) &&
2819         n->in(AddPNode::Offset)->is_Con()) {
2820       // Use addressing with narrow klass to load with offset on x86.
2821       // On sparc loading 32-bits constant and decoding it have less
2822       // instructions (4) then load 64-bits constant (7).
2823       // Do this transformation here since IGVN will convert ConN back to ConP.
2824       const Type* t = addp->bottom_type();
2825       if (t->isa_oopptr() || t->isa_klassptr()) {
2826         Node* nn = NULL;
2827 
2828         int op = t->isa_oopptr() ? Op_ConN : Op_ConNKlass;
2829 
2830         // Look for existing ConN node of the same exact type.
2831         Node* r  = root();
2832         uint cnt = r->outcnt();
2833         for (uint i = 0; i < cnt; i++) {
2834           Node* m = r->raw_out(i);
2835           if (m!= NULL && m->Opcode() == op &&
2836               m->bottom_type()->make_ptr() == t) {
2837             nn = m;
2838             break;
2839           }
2840         }
2841         if (nn != NULL) {
2842           // Decode a narrow oop to match address
2843           // [R12 + narrow_oop_reg<<3 + offset]
2844           if (t->isa_oopptr()) {
2845             nn = new DecodeNNode(nn, t);
2846           } else {
2847             nn = new DecodeNKlassNode(nn, t);
2848           }
2849           n->set_req(AddPNode::Base, nn);
2850           n->set_req(AddPNode::Address, nn);
2851           if (addp->outcnt() == 0) {
2852             addp->disconnect_inputs(NULL, this);
2853           }
2854         }
2855       }
2856     }
2857 #endif
2858     break;
2859   }
2860 
2861   case Op_CastPP: {
2862     // Remove CastPP nodes to gain more freedom during scheduling but
2863     // keep the dependency they encode as control or precedence edges
2864     // (if control is set already) on memory operations. Some CastPP
2865     // nodes don't have a control (don't carry a dependency): skip
2866     // those.
2867     if (n->in(0) != NULL) {
2868       ResourceMark rm;
2869       Unique_Node_List wq;
2870       wq.push(n);
2871       for (uint next = 0; next < wq.size(); ++next) {
2872         Node *m = wq.at(next);
2873         for (DUIterator_Fast imax, i = m->fast_outs(imax); i < imax; i++) {
2874           Node* use = m->fast_out(i);
2875           if (use->is_Mem() || use->is_EncodeNarrowPtr()) {
2876             use->ensure_control_or_add_prec(n->in(0));
2877           } else {
2878             switch(use->Opcode()) {
2879             case Op_AddP:
2880             case Op_DecodeN:
2881             case Op_DecodeNKlass:
2882             case Op_CheckCastPP:
2883             case Op_CastPP:
2884               wq.push(use);
2885               break;
2886             }
2887           }
2888         }
2889       }
2890     }
2891     const bool is_LP64 = LP64_ONLY(true) NOT_LP64(false);
2892     if (is_LP64 && n->in(1)->is_DecodeN() && Matcher::gen_narrow_oop_implicit_null_checks()) {
2893       Node* in1 = n->in(1);
2894       const Type* t = n->bottom_type();
2895       Node* new_in1 = in1->clone();
2896       new_in1->as_DecodeN()->set_type(t);
2897 
2898       if (!Matcher::narrow_oop_use_complex_address()) {
2899         //
2900         // x86, ARM and friends can handle 2 adds in addressing mode
2901         // and Matcher can fold a DecodeN node into address by using
2902         // a narrow oop directly and do implicit NULL check in address:
2903         //
2904         // [R12 + narrow_oop_reg<<3 + offset]
2905         // NullCheck narrow_oop_reg
2906         //
2907         // On other platforms (Sparc) we have to keep new DecodeN node and
2908         // use it to do implicit NULL check in address:
2909         //
2910         // decode_not_null narrow_oop_reg, base_reg
2911         // [base_reg + offset]
2912         // NullCheck base_reg
2913         //
2914         // Pin the new DecodeN node to non-null path on these platform (Sparc)
2915         // to keep the information to which NULL check the new DecodeN node
2916         // corresponds to use it as value in implicit_null_check().
2917         //
2918         new_in1->set_req(0, n->in(0));
2919       }
2920 
2921       n->subsume_by(new_in1, this);
2922       if (in1->outcnt() == 0) {
2923         in1->disconnect_inputs(NULL, this);
2924       }
2925     } else {
2926       n->subsume_by(n->in(1), this);
2927       if (n->outcnt() == 0) {
2928         n->disconnect_inputs(NULL, this);
2929       }
2930     }
2931     break;
2932   }
2933 #ifdef _LP64
2934   case Op_CmpP:
2935     // Do this transformation here to preserve CmpPNode::sub() and
2936     // other TypePtr related Ideal optimizations (for example, ptr nullness).
2937     if (n->in(1)->is_DecodeNarrowPtr() || n->in(2)->is_DecodeNarrowPtr()) {
2938       Node* in1 = n->in(1);
2939       Node* in2 = n->in(2);
2940       if (!in1->is_DecodeNarrowPtr()) {
2941         in2 = in1;
2942         in1 = n->in(2);
2943       }
2944       assert(in1->is_DecodeNarrowPtr(), "sanity");
2945 
2946       Node* new_in2 = NULL;
2947       if (in2->is_DecodeNarrowPtr()) {
2948         assert(in2->Opcode() == in1->Opcode(), "must be same node type");
2949         new_in2 = in2->in(1);
2950       } else if (in2->Opcode() == Op_ConP) {
2951         const Type* t = in2->bottom_type();
2952         if (t == TypePtr::NULL_PTR) {
2953           assert(in1->is_DecodeN(), "compare klass to null?");
2954           // Don't convert CmpP null check into CmpN if compressed
2955           // oops implicit null check is not generated.
2956           // This will allow to generate normal oop implicit null check.
2957           if (Matcher::gen_narrow_oop_implicit_null_checks())
2958             new_in2 = ConNode::make(TypeNarrowOop::NULL_PTR);
2959           //
2960           // This transformation together with CastPP transformation above
2961           // will generated code for implicit NULL checks for compressed oops.
2962           //
2963           // The original code after Optimize()
2964           //
2965           //    LoadN memory, narrow_oop_reg
2966           //    decode narrow_oop_reg, base_reg
2967           //    CmpP base_reg, NULL
2968           //    CastPP base_reg // NotNull
2969           //    Load [base_reg + offset], val_reg
2970           //
2971           // after these transformations will be
2972           //
2973           //    LoadN memory, narrow_oop_reg
2974           //    CmpN narrow_oop_reg, NULL
2975           //    decode_not_null narrow_oop_reg, base_reg
2976           //    Load [base_reg + offset], val_reg
2977           //
2978           // and the uncommon path (== NULL) will use narrow_oop_reg directly
2979           // since narrow oops can be used in debug info now (see the code in
2980           // final_graph_reshaping_walk()).
2981           //
2982           // At the end the code will be matched to
2983           // on x86:
2984           //
2985           //    Load_narrow_oop memory, narrow_oop_reg
2986           //    Load [R12 + narrow_oop_reg<<3 + offset], val_reg
2987           //    NullCheck narrow_oop_reg
2988           //
2989           // and on sparc:
2990           //
2991           //    Load_narrow_oop memory, narrow_oop_reg
2992           //    decode_not_null narrow_oop_reg, base_reg
2993           //    Load [base_reg + offset], val_reg
2994           //    NullCheck base_reg
2995           //
2996         } else if (t->isa_oopptr()) {
2997           new_in2 = ConNode::make(t->make_narrowoop());
2998         } else if (t->isa_klassptr()) {
2999           new_in2 = ConNode::make(t->make_narrowklass());
3000         }
3001       }
3002       if (new_in2 != NULL) {
3003         Node* cmpN = new CmpNNode(in1->in(1), new_in2);
3004         n->subsume_by(cmpN, this);
3005         if (in1->outcnt() == 0) {
3006           in1->disconnect_inputs(NULL, this);
3007         }
3008         if (in2->outcnt() == 0) {
3009           in2->disconnect_inputs(NULL, this);
3010         }
3011       }
3012     }
3013     break;
3014 
3015   case Op_DecodeN:
3016   case Op_DecodeNKlass:
3017     assert(!n->in(1)->is_EncodeNarrowPtr(), "should be optimized out");
3018     // DecodeN could be pinned when it can't be fold into
3019     // an address expression, see the code for Op_CastPP above.
3020     assert(n->in(0) == NULL || (UseCompressedOops && !Matcher::narrow_oop_use_complex_address()), "no control");
3021     break;
3022 
3023   case Op_EncodeP:
3024   case Op_EncodePKlass: {
3025     Node* in1 = n->in(1);
3026     if (in1->is_DecodeNarrowPtr()) {
3027       n->subsume_by(in1->in(1), this);
3028     } else if (in1->Opcode() == Op_ConP) {
3029       const Type* t = in1->bottom_type();
3030       if (t == TypePtr::NULL_PTR) {
3031         assert(t->isa_oopptr(), "null klass?");
3032         n->subsume_by(ConNode::make(TypeNarrowOop::NULL_PTR), this);
3033       } else if (t->isa_oopptr()) {
3034         n->subsume_by(ConNode::make(t->make_narrowoop()), this);
3035       } else if (t->isa_klassptr()) {
3036         n->subsume_by(ConNode::make(t->make_narrowklass()), this);
3037       }
3038     }
3039     if (in1->outcnt() == 0) {
3040       in1->disconnect_inputs(NULL, this);
3041     }
3042     break;
3043   }
3044 
3045   case Op_Proj: {
3046     if (OptimizeStringConcat) {
3047       ProjNode* p = n->as_Proj();
3048       if (p->_is_io_use) {
3049         // Separate projections were used for the exception path which
3050         // are normally removed by a late inline.  If it wasn't inlined
3051         // then they will hang around and should just be replaced with
3052         // the original one.
3053         Node* proj = NULL;
3054         // Replace with just one
3055         for (SimpleDUIterator i(p->in(0)); i.has_next(); i.next()) {
3056           Node *use = i.get();
3057           if (use->is_Proj() && p != use && use->as_Proj()->_con == p->_con) {
3058             proj = use;
3059             break;
3060           }
3061         }
3062         assert(proj != NULL, "must be found");
3063         p->subsume_by(proj, this);
3064       }
3065     }
3066     break;
3067   }
3068 
3069   case Op_Phi:
3070     if (n->as_Phi()->bottom_type()->isa_narrowoop() || n->as_Phi()->bottom_type()->isa_narrowklass()) {
3071       // The EncodeP optimization may create Phi with the same edges
3072       // for all paths. It is not handled well by Register Allocator.
3073       Node* unique_in = n->in(1);
3074       assert(unique_in != NULL, "");
3075       uint cnt = n->req();
3076       for (uint i = 2; i < cnt; i++) {
3077         Node* m = n->in(i);
3078         assert(m != NULL, "");
3079         if (unique_in != m)
3080           unique_in = NULL;
3081       }
3082       if (unique_in != NULL) {
3083         n->subsume_by(unique_in, this);
3084       }
3085     }
3086     break;
3087 
3088 #endif
3089 
3090   case Op_ModI:
3091     if (UseDivMod) {
3092       // Check if a%b and a/b both exist
3093       Node* d = n->find_similar(Op_DivI);
3094       if (d) {
3095         // Replace them with a fused divmod if supported
3096         if (Matcher::has_match_rule(Op_DivModI)) {
3097           DivModINode* divmod = DivModINode::make(n);
3098           d->subsume_by(divmod->div_proj(), this);
3099           n->subsume_by(divmod->mod_proj(), this);
3100         } else {
3101           // replace a%b with a-((a/b)*b)
3102           Node* mult = new MulINode(d, d->in(2));
3103           Node* sub  = new SubINode(d->in(1), mult);
3104           n->subsume_by(sub, this);
3105         }
3106       }
3107     }
3108     break;
3109 
3110   case Op_ModL:
3111     if (UseDivMod) {
3112       // Check if a%b and a/b both exist
3113       Node* d = n->find_similar(Op_DivL);
3114       if (d) {
3115         // Replace them with a fused divmod if supported
3116         if (Matcher::has_match_rule(Op_DivModL)) {
3117           DivModLNode* divmod = DivModLNode::make(n);
3118           d->subsume_by(divmod->div_proj(), this);
3119           n->subsume_by(divmod->mod_proj(), this);
3120         } else {
3121           // replace a%b with a-((a/b)*b)
3122           Node* mult = new MulLNode(d, d->in(2));
3123           Node* sub  = new SubLNode(d->in(1), mult);
3124           n->subsume_by(sub, this);
3125         }
3126       }
3127     }
3128     break;
3129 
3130   case Op_LoadVector:
3131   case Op_StoreVector:
3132     break;
3133 
3134   case Op_AddReductionVI:
3135   case Op_AddReductionVL:
3136   case Op_AddReductionVF:
3137   case Op_AddReductionVD:
3138   case Op_MulReductionVI:
3139   case Op_MulReductionVL:
3140   case Op_MulReductionVF:
3141   case Op_MulReductionVD:
3142     break;
3143 
3144   case Op_PackB:
3145   case Op_PackS:
3146   case Op_PackI:
3147   case Op_PackF:
3148   case Op_PackL:
3149   case Op_PackD:
3150     if (n->req()-1 > 2) {
3151       // Replace many operand PackNodes with a binary tree for matching
3152       PackNode* p = (PackNode*) n;
3153       Node* btp = p->binary_tree_pack(1, n->req());
3154       n->subsume_by(btp, this);
3155     }
3156     break;
3157   case Op_Loop:
3158   case Op_CountedLoop:
3159     if (n->as_Loop()->is_inner_loop()) {
3160       frc.inc_inner_loop_count();
3161     }
3162     break;
3163   case Op_LShiftI:
3164   case Op_RShiftI:
3165   case Op_URShiftI:
3166   case Op_LShiftL:
3167   case Op_RShiftL:
3168   case Op_URShiftL:
3169     if (Matcher::need_masked_shift_count) {
3170       // The cpu's shift instructions don't restrict the count to the
3171       // lower 5/6 bits. We need to do the masking ourselves.
3172       Node* in2 = n->in(2);
3173       juint mask = (n->bottom_type() == TypeInt::INT) ? (BitsPerInt - 1) : (BitsPerLong - 1);
3174       const TypeInt* t = in2->find_int_type();
3175       if (t != NULL && t->is_con()) {
3176         juint shift = t->get_con();
3177         if (shift > mask) { // Unsigned cmp
3178           n->set_req(2, ConNode::make(TypeInt::make(shift & mask)));
3179         }
3180       } else {
3181         if (t == NULL || t->_lo < 0 || t->_hi > (int)mask) {
3182           Node* shift = new AndINode(in2, ConNode::make(TypeInt::make(mask)));
3183           n->set_req(2, shift);
3184         }
3185       }
3186       if (in2->outcnt() == 0) { // Remove dead node
3187         in2->disconnect_inputs(NULL, this);
3188       }
3189     }
3190     break;
3191   case Op_MemBarStoreStore:
3192   case Op_MemBarRelease:
3193     // Break the link with AllocateNode: it is no longer useful and
3194     // confuses register allocation.
3195     if (n->req() > MemBarNode::Precedent) {
3196       n->set_req(MemBarNode::Precedent, top());
3197     }
3198     break;
3199   case Op_RangeCheck: {
3200     RangeCheckNode* rc = n->as_RangeCheck();
3201     Node* iff = new IfNode(rc->in(0), rc->in(1), rc->_prob, rc->_fcnt);
3202     n->subsume_by(iff, this);
3203     frc._tests.push(iff);
3204     break;
3205   }
3206   default:
3207     assert( !n->is_Call(), "" );
3208     assert( !n->is_Mem(), "" );
3209     assert( nop != Op_ProfileBoolean, "should be eliminated during IGVN");
3210     break;
3211   }
3212 
3213   // Collect CFG split points
3214   if (n->is_MultiBranch() && !n->is_RangeCheck()) {
3215     frc._tests.push(n);
3216   }
3217 }
3218 
3219 //------------------------------final_graph_reshaping_walk---------------------
3220 // Replacing Opaque nodes with their input in final_graph_reshaping_impl(),
3221 // requires that the walk visits a node's inputs before visiting the node.
3222 void Compile::final_graph_reshaping_walk( Node_Stack &nstack, Node *root, Final_Reshape_Counts &frc ) {
3223   ResourceArea *area = Thread::current()->resource_area();
3224   Unique_Node_List sfpt(area);
3225 
3226   frc._visited.set(root->_idx); // first, mark node as visited
3227   uint cnt = root->req();
3228   Node *n = root;
3229   uint  i = 0;
3230   while (true) {
3231     if (i < cnt) {
3232       // Place all non-visited non-null inputs onto stack
3233       Node* m = n->in(i);
3234       ++i;
3235       if (m != NULL && !frc._visited.test_set(m->_idx)) {
3236         if (m->is_SafePoint() && m->as_SafePoint()->jvms() != NULL) {
3237           // compute worst case interpreter size in case of a deoptimization
3238           update_interpreter_frame_size(m->as_SafePoint()->jvms()->interpreter_frame_size());
3239 
3240           sfpt.push(m);
3241         }
3242         cnt = m->req();
3243         nstack.push(n, i); // put on stack parent and next input's index
3244         n = m;
3245         i = 0;
3246       }
3247     } else {
3248       // Now do post-visit work
3249       final_graph_reshaping_impl( n, frc );
3250       if (nstack.is_empty())
3251         break;             // finished
3252       n = nstack.node();   // Get node from stack
3253       cnt = n->req();
3254       i = nstack.index();
3255       nstack.pop();        // Shift to the next node on stack
3256     }
3257   }
3258 
3259   // Skip next transformation if compressed oops are not used.
3260   if ((UseCompressedOops && !Matcher::gen_narrow_oop_implicit_null_checks()) ||
3261       (!UseCompressedOops && !UseCompressedClassPointers))
3262     return;
3263 
3264   // Go over safepoints nodes to skip DecodeN/DecodeNKlass nodes for debug edges.
3265   // It could be done for an uncommon traps or any safepoints/calls
3266   // if the DecodeN/DecodeNKlass node is referenced only in a debug info.
3267   while (sfpt.size() > 0) {
3268     n = sfpt.pop();
3269     JVMState *jvms = n->as_SafePoint()->jvms();
3270     assert(jvms != NULL, "sanity");
3271     int start = jvms->debug_start();
3272     int end   = n->req();
3273     bool is_uncommon = (n->is_CallStaticJava() &&
3274                         n->as_CallStaticJava()->uncommon_trap_request() != 0);
3275     for (int j = start; j < end; j++) {
3276       Node* in = n->in(j);
3277       if (in->is_DecodeNarrowPtr()) {
3278         bool safe_to_skip = true;
3279         if (!is_uncommon ) {
3280           // Is it safe to skip?
3281           for (uint i = 0; i < in->outcnt(); i++) {
3282             Node* u = in->raw_out(i);
3283             if (!u->is_SafePoint() ||
3284                  u->is_Call() && u->as_Call()->has_non_debug_use(n)) {
3285               safe_to_skip = false;
3286             }
3287           }
3288         }
3289         if (safe_to_skip) {
3290           n->set_req(j, in->in(1));
3291         }
3292         if (in->outcnt() == 0) {
3293           in->disconnect_inputs(NULL, this);
3294         }
3295       }
3296     }
3297   }
3298 }
3299 
3300 //------------------------------final_graph_reshaping--------------------------
3301 // Final Graph Reshaping.
3302 //
3303 // (1) Clone simple inputs to uncommon calls, so they can be scheduled late
3304 //     and not commoned up and forced early.  Must come after regular
3305 //     optimizations to avoid GVN undoing the cloning.  Clone constant
3306 //     inputs to Loop Phis; these will be split by the allocator anyways.
3307 //     Remove Opaque nodes.
3308 // (2) Move last-uses by commutative operations to the left input to encourage
3309 //     Intel update-in-place two-address operations and better register usage
3310 //     on RISCs.  Must come after regular optimizations to avoid GVN Ideal
3311 //     calls canonicalizing them back.
3312 // (3) Count the number of double-precision FP ops, single-precision FP ops
3313 //     and call sites.  On Intel, we can get correct rounding either by
3314 //     forcing singles to memory (requires extra stores and loads after each
3315 //     FP bytecode) or we can set a rounding mode bit (requires setting and
3316 //     clearing the mode bit around call sites).  The mode bit is only used
3317 //     if the relative frequency of single FP ops to calls is low enough.
3318 //     This is a key transform for SPEC mpeg_audio.
3319 // (4) Detect infinite loops; blobs of code reachable from above but not
3320 //     below.  Several of the Code_Gen algorithms fail on such code shapes,
3321 //     so we simply bail out.  Happens a lot in ZKM.jar, but also happens
3322 //     from time to time in other codes (such as -Xcomp finalizer loops, etc).
3323 //     Detection is by looking for IfNodes where only 1 projection is
3324 //     reachable from below or CatchNodes missing some targets.
3325 // (5) Assert for insane oop offsets in debug mode.
3326 
3327 bool Compile::final_graph_reshaping() {
3328   // an infinite loop may have been eliminated by the optimizer,
3329   // in which case the graph will be empty.
3330   if (root()->req() == 1) {
3331     record_method_not_compilable("trivial infinite loop");
3332     return true;
3333   }
3334 
3335   // Expensive nodes have their control input set to prevent the GVN
3336   // from freely commoning them. There's no GVN beyond this point so
3337   // no need to keep the control input. We want the expensive nodes to
3338   // be freely moved to the least frequent code path by gcm.
3339   assert(OptimizeExpensiveOps || expensive_count() == 0, "optimization off but list non empty?");
3340   for (int i = 0; i < expensive_count(); i++) {
3341     _expensive_nodes->at(i)->set_req(0, NULL);
3342   }
3343 
3344   Final_Reshape_Counts frc;
3345 
3346   // Visit everybody reachable!
3347   // Allocate stack of size C->live_nodes()/2 to avoid frequent realloc
3348   Node_Stack nstack(live_nodes() >> 1);
3349   final_graph_reshaping_walk(nstack, root(), frc);
3350 
3351   // Check for unreachable (from below) code (i.e., infinite loops).
3352   for( uint i = 0; i < frc._tests.size(); i++ ) {
3353     MultiBranchNode *n = frc._tests[i]->as_MultiBranch();
3354     // Get number of CFG targets.
3355     // Note that PCTables include exception targets after calls.
3356     uint required_outcnt = n->required_outcnt();
3357     if (n->outcnt() != required_outcnt) {
3358       // Check for a few special cases.  Rethrow Nodes never take the
3359       // 'fall-thru' path, so expected kids is 1 less.
3360       if (n->is_PCTable() && n->in(0) && n->in(0)->in(0)) {
3361         if (n->in(0)->in(0)->is_Call()) {
3362           CallNode *call = n->in(0)->in(0)->as_Call();
3363           if (call->entry_point() == OptoRuntime::rethrow_stub()) {
3364             required_outcnt--;      // Rethrow always has 1 less kid
3365           } else if (call->req() > TypeFunc::Parms &&
3366                      call->is_CallDynamicJava()) {
3367             // Check for null receiver. In such case, the optimizer has
3368             // detected that the virtual call will always result in a null
3369             // pointer exception. The fall-through projection of this CatchNode
3370             // will not be populated.
3371             Node *arg0 = call->in(TypeFunc::Parms);
3372             if (arg0->is_Type() &&
3373                 arg0->as_Type()->type()->higher_equal(TypePtr::NULL_PTR)) {
3374               required_outcnt--;
3375             }
3376           } else if (call->entry_point() == OptoRuntime::new_array_Java() &&
3377                      call->req() > TypeFunc::Parms+1 &&
3378                      call->is_CallStaticJava()) {
3379             // Check for negative array length. In such case, the optimizer has
3380             // detected that the allocation attempt will always result in an
3381             // exception. There is no fall-through projection of this CatchNode .
3382             Node *arg1 = call->in(TypeFunc::Parms+1);
3383             if (arg1->is_Type() &&
3384                 arg1->as_Type()->type()->join(TypeInt::POS)->empty()) {
3385               required_outcnt--;
3386             }
3387           }
3388         }
3389       }
3390       // Recheck with a better notion of 'required_outcnt'
3391       if (n->outcnt() != required_outcnt) {
3392         record_method_not_compilable("malformed control flow");
3393         return true;            // Not all targets reachable!
3394       }
3395     }
3396     // Check that I actually visited all kids.  Unreached kids
3397     // must be infinite loops.
3398     for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++)
3399       if (!frc._visited.test(n->fast_out(j)->_idx)) {
3400         record_method_not_compilable("infinite loop");
3401         return true;            // Found unvisited kid; must be unreach
3402       }
3403   }
3404 
3405   // If original bytecodes contained a mixture of floats and doubles
3406   // check if the optimizer has made it homogenous, item (3).
3407   if( Use24BitFPMode && Use24BitFP && UseSSE == 0 &&
3408       frc.get_float_count() > 32 &&
3409       frc.get_double_count() == 0 &&
3410       (10 * frc.get_call_count() < frc.get_float_count()) ) {
3411     set_24_bit_selection_and_mode( false,  true );
3412   }
3413 
3414   set_java_calls(frc.get_java_call_count());
3415   set_inner_loops(frc.get_inner_loop_count());
3416 
3417   // No infinite loops, no reason to bail out.
3418   return false;
3419 }
3420 
3421 //-----------------------------too_many_traps----------------------------------
3422 // Report if there are too many traps at the current method and bci.
3423 // Return true if there was a trap, and/or PerMethodTrapLimit is exceeded.
3424 bool Compile::too_many_traps(ciMethod* method,
3425                              int bci,
3426                              Deoptimization::DeoptReason reason) {
3427   ciMethodData* md = method->method_data();
3428   if (md->is_empty()) {
3429     // Assume the trap has not occurred, or that it occurred only
3430     // because of a transient condition during start-up in the interpreter.
3431     return false;
3432   }
3433   ciMethod* m = Deoptimization::reason_is_speculate(reason) ? this->method() : NULL;
3434   if (md->has_trap_at(bci, m, reason) != 0) {
3435     // Assume PerBytecodeTrapLimit==0, for a more conservative heuristic.
3436     // Also, if there are multiple reasons, or if there is no per-BCI record,
3437     // assume the worst.
3438     if (log())
3439       log()->elem("observe trap='%s' count='%d'",
3440                   Deoptimization::trap_reason_name(reason),
3441                   md->trap_count(reason));
3442     return true;
3443   } else {
3444     // Ignore method/bci and see if there have been too many globally.
3445     return too_many_traps(reason, md);
3446   }
3447 }
3448 
3449 // Less-accurate variant which does not require a method and bci.
3450 bool Compile::too_many_traps(Deoptimization::DeoptReason reason,
3451                              ciMethodData* logmd) {
3452   if (trap_count(reason) >= Deoptimization::per_method_trap_limit(reason)) {
3453     // Too many traps globally.
3454     // Note that we use cumulative trap_count, not just md->trap_count.
3455     if (log()) {
3456       int mcount = (logmd == NULL)? -1: (int)logmd->trap_count(reason);
3457       log()->elem("observe trap='%s' count='0' mcount='%d' ccount='%d'",
3458                   Deoptimization::trap_reason_name(reason),
3459                   mcount, trap_count(reason));
3460     }
3461     return true;
3462   } else {
3463     // The coast is clear.
3464     return false;
3465   }
3466 }
3467 
3468 //--------------------------too_many_recompiles--------------------------------
3469 // Report if there are too many recompiles at the current method and bci.
3470 // Consults PerBytecodeRecompilationCutoff and PerMethodRecompilationCutoff.
3471 // Is not eager to return true, since this will cause the compiler to use
3472 // Action_none for a trap point, to avoid too many recompilations.
3473 bool Compile::too_many_recompiles(ciMethod* method,
3474                                   int bci,
3475                                   Deoptimization::DeoptReason reason) {
3476   ciMethodData* md = method->method_data();
3477   if (md->is_empty()) {
3478     // Assume the trap has not occurred, or that it occurred only
3479     // because of a transient condition during start-up in the interpreter.
3480     return false;
3481   }
3482   // Pick a cutoff point well within PerBytecodeRecompilationCutoff.
3483   uint bc_cutoff = (uint) PerBytecodeRecompilationCutoff / 8;
3484   uint m_cutoff  = (uint) PerMethodRecompilationCutoff / 2 + 1;  // not zero
3485   Deoptimization::DeoptReason per_bc_reason
3486     = Deoptimization::reason_recorded_per_bytecode_if_any(reason);
3487   ciMethod* m = Deoptimization::reason_is_speculate(reason) ? this->method() : NULL;
3488   if ((per_bc_reason == Deoptimization::Reason_none
3489        || md->has_trap_at(bci, m, reason) != 0)
3490       // The trap frequency measure we care about is the recompile count:
3491       && md->trap_recompiled_at(bci, m)
3492       && md->overflow_recompile_count() >= bc_cutoff) {
3493     // Do not emit a trap here if it has already caused recompilations.
3494     // Also, if there are multiple reasons, or if there is no per-BCI record,
3495     // assume the worst.
3496     if (log())
3497       log()->elem("observe trap='%s recompiled' count='%d' recompiles2='%d'",
3498                   Deoptimization::trap_reason_name(reason),
3499                   md->trap_count(reason),
3500                   md->overflow_recompile_count());
3501     return true;
3502   } else if (trap_count(reason) != 0
3503              && decompile_count() >= m_cutoff) {
3504     // Too many recompiles globally, and we have seen this sort of trap.
3505     // Use cumulative decompile_count, not just md->decompile_count.
3506     if (log())
3507       log()->elem("observe trap='%s' count='%d' mcount='%d' decompiles='%d' mdecompiles='%d'",
3508                   Deoptimization::trap_reason_name(reason),
3509                   md->trap_count(reason), trap_count(reason),
3510                   md->decompile_count(), decompile_count());
3511     return true;
3512   } else {
3513     // The coast is clear.
3514     return false;
3515   }
3516 }
3517 
3518 // Compute when not to trap. Used by matching trap based nodes and
3519 // NullCheck optimization.
3520 void Compile::set_allowed_deopt_reasons() {
3521   _allowed_reasons = 0;
3522   if (is_method_compilation()) {
3523     for (int rs = (int)Deoptimization::Reason_none+1; rs < Compile::trapHistLength; rs++) {
3524       assert(rs < BitsPerInt, "recode bit map");
3525       if (!too_many_traps((Deoptimization::DeoptReason) rs)) {
3526         _allowed_reasons |= nth_bit(rs);
3527       }
3528     }
3529   }
3530 }
3531 
3532 #ifndef PRODUCT
3533 //------------------------------verify_graph_edges---------------------------
3534 // Walk the Graph and verify that there is a one-to-one correspondence
3535 // between Use-Def edges and Def-Use edges in the graph.
3536 void Compile::verify_graph_edges(bool no_dead_code) {
3537   if (VerifyGraphEdges) {
3538     ResourceArea *area = Thread::current()->resource_area();
3539     Unique_Node_List visited(area);
3540     // Call recursive graph walk to check edges
3541     _root->verify_edges(visited);
3542     if (no_dead_code) {
3543       // Now make sure that no visited node is used by an unvisited node.
3544       bool dead_nodes = false;
3545       Unique_Node_List checked(area);
3546       while (visited.size() > 0) {
3547         Node* n = visited.pop();
3548         checked.push(n);
3549         for (uint i = 0; i < n->outcnt(); i++) {
3550           Node* use = n->raw_out(i);
3551           if (checked.member(use))  continue;  // already checked
3552           if (visited.member(use))  continue;  // already in the graph
3553           if (use->is_Con())        continue;  // a dead ConNode is OK
3554           // At this point, we have found a dead node which is DU-reachable.
3555           if (!dead_nodes) {
3556             tty->print_cr("*** Dead nodes reachable via DU edges:");
3557             dead_nodes = true;
3558           }
3559           use->dump(2);
3560           tty->print_cr("---");
3561           checked.push(use);  // No repeats; pretend it is now checked.
3562         }
3563       }
3564       assert(!dead_nodes, "using nodes must be reachable from root");
3565     }
3566   }
3567 }
3568 
3569 // Verify GC barriers consistency
3570 // Currently supported:
3571 // - G1 pre-barriers (see GraphKit::g1_write_barrier_pre())
3572 void Compile::verify_barriers() {
3573   if (UseG1GC) {
3574     // Verify G1 pre-barriers
3575     const int marking_offset = in_bytes(JavaThread::satb_mark_queue_offset() + SATBMarkQueue::byte_offset_of_active());
3576 
3577     ResourceArea *area = Thread::current()->resource_area();
3578     Unique_Node_List visited(area);
3579     Node_List worklist(area);
3580     // We're going to walk control flow backwards starting from the Root
3581     worklist.push(_root);
3582     while (worklist.size() > 0) {
3583       Node* x = worklist.pop();
3584       if (x == NULL || x == top()) continue;
3585       if (visited.member(x)) {
3586         continue;
3587       } else {
3588         visited.push(x);
3589       }
3590 
3591       if (x->is_Region()) {
3592         for (uint i = 1; i < x->req(); i++) {
3593           worklist.push(x->in(i));
3594         }
3595       } else {
3596         worklist.push(x->in(0));
3597         // We are looking for the pattern:
3598         //                            /->ThreadLocal
3599         // If->Bool->CmpI->LoadB->AddP->ConL(marking_offset)
3600         //              \->ConI(0)
3601         // We want to verify that the If and the LoadB have the same control
3602         // See GraphKit::g1_write_barrier_pre()
3603         if (x->is_If()) {
3604           IfNode *iff = x->as_If();
3605           if (iff->in(1)->is_Bool() && iff->in(1)->in(1)->is_Cmp()) {
3606             CmpNode *cmp = iff->in(1)->in(1)->as_Cmp();
3607             if (cmp->Opcode() == Op_CmpI && cmp->in(2)->is_Con() && cmp->in(2)->bottom_type()->is_int()->get_con() == 0
3608                 && cmp->in(1)->is_Load()) {
3609               LoadNode* load = cmp->in(1)->as_Load();
3610               if (load->Opcode() == Op_LoadB && load->in(2)->is_AddP() && load->in(2)->in(2)->Opcode() == Op_ThreadLocal
3611                   && load->in(2)->in(3)->is_Con()
3612                   && load->in(2)->in(3)->bottom_type()->is_intptr_t()->get_con() == marking_offset) {
3613 
3614                 Node* if_ctrl = iff->in(0);
3615                 Node* load_ctrl = load->in(0);
3616 
3617                 if (if_ctrl != load_ctrl) {
3618                   // Skip possible CProj->NeverBranch in infinite loops
3619                   if ((if_ctrl->is_Proj() && if_ctrl->Opcode() == Op_CProj)
3620                       && (if_ctrl->in(0)->is_MultiBranch() && if_ctrl->in(0)->Opcode() == Op_NeverBranch)) {
3621                     if_ctrl = if_ctrl->in(0)->in(0);
3622                   }
3623                 }
3624                 assert(load_ctrl != NULL && if_ctrl == load_ctrl, "controls must match");
3625               }
3626             }
3627           }
3628         }
3629       }
3630     }
3631   }
3632 }
3633 
3634 #endif
3635 
3636 // The Compile object keeps track of failure reasons separately from the ciEnv.
3637 // This is required because there is not quite a 1-1 relation between the
3638 // ciEnv and its compilation task and the Compile object.  Note that one
3639 // ciEnv might use two Compile objects, if C2Compiler::compile_method decides
3640 // to backtrack and retry without subsuming loads.  Other than this backtracking
3641 // behavior, the Compile's failure reason is quietly copied up to the ciEnv
3642 // by the logic in C2Compiler.
3643 void Compile::record_failure(const char* reason) {
3644   if (log() != NULL) {
3645     log()->elem("failure reason='%s' phase='compile'", reason);
3646   }
3647   if (_failure_reason == NULL) {
3648     // Record the first failure reason.
3649     _failure_reason = reason;
3650   }
3651 
3652   if (!C->failure_reason_is(C2Compiler::retry_no_subsuming_loads())) {
3653     C->print_method(PHASE_FAILURE);
3654   }
3655   _root = NULL;  // flush the graph, too
3656 }
3657 
3658 Compile::TracePhase::TracePhase(const char* name, elapsedTimer* accumulator)
3659   : TraceTime(name, accumulator, CITime, CITimeVerbose),
3660     _phase_name(name), _dolog(CITimeVerbose)
3661 {
3662   if (_dolog) {
3663     C = Compile::current();
3664     _log = C->log();
3665   } else {
3666     C = NULL;
3667     _log = NULL;
3668   }
3669   if (_log != NULL) {
3670     _log->begin_head("phase name='%s' nodes='%d' live='%d'", _phase_name, C->unique(), C->live_nodes());
3671     _log->stamp();
3672     _log->end_head();
3673   }
3674 }
3675 
3676 Compile::TracePhase::~TracePhase() {
3677 
3678   C = Compile::current();
3679   if (_dolog) {
3680     _log = C->log();
3681   } else {
3682     _log = NULL;
3683   }
3684 
3685 #ifdef ASSERT
3686   if (PrintIdealNodeCount) {
3687     tty->print_cr("phase name='%s' nodes='%d' live='%d' live_graph_walk='%d'",
3688                   _phase_name, C->unique(), C->live_nodes(), C->count_live_nodes_by_graph_walk());
3689   }
3690 
3691   if (VerifyIdealNodeCount) {
3692     Compile::current()->print_missing_nodes();
3693   }
3694 #endif
3695 
3696   if (_log != NULL) {
3697     _log->done("phase name='%s' nodes='%d' live='%d'", _phase_name, C->unique(), C->live_nodes());
3698   }
3699 }
3700 
3701 //=============================================================================
3702 // Two Constant's are equal when the type and the value are equal.
3703 bool Compile::Constant::operator==(const Constant& other) {
3704   if (type()          != other.type()         )  return false;
3705   if (can_be_reused() != other.can_be_reused())  return false;
3706   // For floating point values we compare the bit pattern.
3707   switch (type()) {
3708   case T_FLOAT:   return (_v._value.i == other._v._value.i);
3709   case T_LONG:
3710   case T_DOUBLE:  return (_v._value.j == other._v._value.j);
3711   case T_OBJECT:
3712   case T_ADDRESS: return (_v._value.l == other._v._value.l);
3713   case T_VOID:    return (_v._value.l == other._v._value.l);  // jump-table entries
3714   case T_METADATA: return (_v._metadata == other._v._metadata);
3715   default: ShouldNotReachHere();
3716   }
3717   return false;
3718 }
3719 
3720 static int type_to_size_in_bytes(BasicType t) {
3721   switch (t) {
3722   case T_LONG:    return sizeof(jlong  );
3723   case T_FLOAT:   return sizeof(jfloat );
3724   case T_DOUBLE:  return sizeof(jdouble);
3725   case T_METADATA: return sizeof(Metadata*);
3726     // We use T_VOID as marker for jump-table entries (labels) which
3727     // need an internal word relocation.
3728   case T_VOID:
3729   case T_ADDRESS:
3730   case T_OBJECT:  return sizeof(jobject);
3731   }
3732 
3733   ShouldNotReachHere();
3734   return -1;
3735 }
3736 
3737 int Compile::ConstantTable::qsort_comparator(Constant* a, Constant* b) {
3738   // sort descending
3739   if (a->freq() > b->freq())  return -1;
3740   if (a->freq() < b->freq())  return  1;
3741   return 0;
3742 }
3743 
3744 void Compile::ConstantTable::calculate_offsets_and_size() {
3745   // First, sort the array by frequencies.
3746   _constants.sort(qsort_comparator);
3747 
3748 #ifdef ASSERT
3749   // Make sure all jump-table entries were sorted to the end of the
3750   // array (they have a negative frequency).
3751   bool found_void = false;
3752   for (int i = 0; i < _constants.length(); i++) {
3753     Constant con = _constants.at(i);
3754     if (con.type() == T_VOID)
3755       found_void = true;  // jump-tables
3756     else
3757       assert(!found_void, "wrong sorting");
3758   }
3759 #endif
3760 
3761   int offset = 0;
3762   for (int i = 0; i < _constants.length(); i++) {
3763     Constant* con = _constants.adr_at(i);
3764 
3765     // Align offset for type.
3766     int typesize = type_to_size_in_bytes(con->type());
3767     offset = align_size_up(offset, typesize);
3768     con->set_offset(offset);   // set constant's offset
3769 
3770     if (con->type() == T_VOID) {
3771       MachConstantNode* n = (MachConstantNode*) con->get_jobject();
3772       offset = offset + typesize * n->outcnt();  // expand jump-table
3773     } else {
3774       offset = offset + typesize;
3775     }
3776   }
3777 
3778   // Align size up to the next section start (which is insts; see
3779   // CodeBuffer::align_at_start).
3780   assert(_size == -1, "already set?");
3781   _size = align_size_up(offset, CodeEntryAlignment);
3782 }
3783 
3784 void Compile::ConstantTable::emit(CodeBuffer& cb) {
3785   MacroAssembler _masm(&cb);
3786   for (int i = 0; i < _constants.length(); i++) {
3787     Constant con = _constants.at(i);
3788     address constant_addr = NULL;
3789     switch (con.type()) {
3790     case T_LONG:   constant_addr = _masm.long_constant(  con.get_jlong()  ); break;
3791     case T_FLOAT:  constant_addr = _masm.float_constant( con.get_jfloat() ); break;
3792     case T_DOUBLE: constant_addr = _masm.double_constant(con.get_jdouble()); break;
3793     case T_OBJECT: {
3794       jobject obj = con.get_jobject();
3795       int oop_index = _masm.oop_recorder()->find_index(obj);
3796       constant_addr = _masm.address_constant((address) obj, oop_Relocation::spec(oop_index));
3797       break;
3798     }
3799     case T_ADDRESS: {
3800       address addr = (address) con.get_jobject();
3801       constant_addr = _masm.address_constant(addr);
3802       break;
3803     }
3804     // We use T_VOID as marker for jump-table entries (labels) which
3805     // need an internal word relocation.
3806     case T_VOID: {
3807       MachConstantNode* n = (MachConstantNode*) con.get_jobject();
3808       // Fill the jump-table with a dummy word.  The real value is
3809       // filled in later in fill_jump_table.
3810       address dummy = (address) n;
3811       constant_addr = _masm.address_constant(dummy);
3812       // Expand jump-table
3813       for (uint i = 1; i < n->outcnt(); i++) {
3814         address temp_addr = _masm.address_constant(dummy + i);
3815         assert(temp_addr, "consts section too small");
3816       }
3817       break;
3818     }
3819     case T_METADATA: {
3820       Metadata* obj = con.get_metadata();
3821       int metadata_index = _masm.oop_recorder()->find_index(obj);
3822       constant_addr = _masm.address_constant((address) obj, metadata_Relocation::spec(metadata_index));
3823       break;
3824     }
3825     default: ShouldNotReachHere();
3826     }
3827     assert(constant_addr, "consts section too small");
3828     assert((constant_addr - _masm.code()->consts()->start()) == con.offset(),
3829             "must be: %d == %d", (int) (constant_addr - _masm.code()->consts()->start()), (int)(con.offset()));
3830   }
3831 }
3832 
3833 int Compile::ConstantTable::find_offset(Constant& con) const {
3834   int idx = _constants.find(con);
3835   assert(idx != -1, "constant must be in constant table");
3836   int offset = _constants.at(idx).offset();
3837   assert(offset != -1, "constant table not emitted yet?");
3838   return offset;
3839 }
3840 
3841 void Compile::ConstantTable::add(Constant& con) {
3842   if (con.can_be_reused()) {
3843     int idx = _constants.find(con);
3844     if (idx != -1 && _constants.at(idx).can_be_reused()) {
3845       _constants.adr_at(idx)->inc_freq(con.freq());  // increase the frequency by the current value
3846       return;
3847     }
3848   }
3849   (void) _constants.append(con);
3850 }
3851 
3852 Compile::Constant Compile::ConstantTable::add(MachConstantNode* n, BasicType type, jvalue value) {
3853   Block* b = Compile::current()->cfg()->get_block_for_node(n);
3854   Constant con(type, value, b->_freq);
3855   add(con);
3856   return con;
3857 }
3858 
3859 Compile::Constant Compile::ConstantTable::add(Metadata* metadata) {
3860   Constant con(metadata);
3861   add(con);
3862   return con;
3863 }
3864 
3865 Compile::Constant Compile::ConstantTable::add(MachConstantNode* n, MachOper* oper) {
3866   jvalue value;
3867   BasicType type = oper->type()->basic_type();
3868   switch (type) {
3869   case T_LONG:    value.j = oper->constantL(); break;
3870   case T_FLOAT:   value.f = oper->constantF(); break;
3871   case T_DOUBLE:  value.d = oper->constantD(); break;
3872   case T_OBJECT:
3873   case T_ADDRESS: value.l = (jobject) oper->constant(); break;
3874   case T_METADATA: return add((Metadata*)oper->constant()); break;
3875   default: guarantee(false, "unhandled type: %s", type2name(type));
3876   }
3877   return add(n, type, value);
3878 }
3879 
3880 Compile::Constant Compile::ConstantTable::add_jump_table(MachConstantNode* n) {
3881   jvalue value;
3882   // We can use the node pointer here to identify the right jump-table
3883   // as this method is called from Compile::Fill_buffer right before
3884   // the MachNodes are emitted and the jump-table is filled (means the
3885   // MachNode pointers do not change anymore).
3886   value.l = (jobject) n;
3887   Constant con(T_VOID, value, next_jump_table_freq(), false);  // Labels of a jump-table cannot be reused.
3888   add(con);
3889   return con;
3890 }
3891 
3892 void Compile::ConstantTable::fill_jump_table(CodeBuffer& cb, MachConstantNode* n, GrowableArray<Label*> labels) const {
3893   // If called from Compile::scratch_emit_size do nothing.
3894   if (Compile::current()->in_scratch_emit_size())  return;
3895 
3896   assert(labels.is_nonempty(), "must be");
3897   assert((uint) labels.length() == n->outcnt(), "must be equal: %d == %d", labels.length(), n->outcnt());
3898 
3899   // Since MachConstantNode::constant_offset() also contains
3900   // table_base_offset() we need to subtract the table_base_offset()
3901   // to get the plain offset into the constant table.
3902   int offset = n->constant_offset() - table_base_offset();
3903 
3904   MacroAssembler _masm(&cb);
3905   address* jump_table_base = (address*) (_masm.code()->consts()->start() + offset);
3906 
3907   for (uint i = 0; i < n->outcnt(); i++) {
3908     address* constant_addr = &jump_table_base[i];
3909     assert(*constant_addr == (((address) n) + i), "all jump-table entries must contain adjusted node pointer: " INTPTR_FORMAT " == " INTPTR_FORMAT, p2i(*constant_addr), p2i(((address) n) + i));
3910     *constant_addr = cb.consts()->target(*labels.at(i), (address) constant_addr);
3911     cb.consts()->relocate((address) constant_addr, relocInfo::internal_word_type);
3912   }
3913 }
3914 
3915 //----------------------------static_subtype_check-----------------------------
3916 // Shortcut important common cases when superklass is exact:
3917 // (0) superklass is java.lang.Object (can occur in reflective code)
3918 // (1) subklass is already limited to a subtype of superklass => always ok
3919 // (2) subklass does not overlap with superklass => always fail
3920 // (3) superklass has NO subtypes and we can check with a simple compare.
3921 int Compile::static_subtype_check(ciKlass* superk, ciKlass* subk) {
3922   if (StressReflectiveCode) {
3923     return SSC_full_test;       // Let caller generate the general case.
3924   }
3925 
3926   if (superk == env()->Object_klass()) {
3927     return SSC_always_true;     // (0) this test cannot fail
3928   }
3929 
3930   ciType* superelem = superk;
3931   if (superelem->is_array_klass())
3932     superelem = superelem->as_array_klass()->base_element_type();
3933 
3934   if (!subk->is_interface()) {  // cannot trust static interface types yet
3935     if (subk->is_subtype_of(superk)) {
3936       return SSC_always_true;   // (1) false path dead; no dynamic test needed
3937     }
3938     if (!(superelem->is_klass() && superelem->as_klass()->is_interface()) &&
3939         !superk->is_subtype_of(subk)) {
3940       return SSC_always_false;
3941     }
3942   }
3943 
3944   // If casting to an instance klass, it must have no subtypes
3945   if (superk->is_interface()) {
3946     // Cannot trust interfaces yet.
3947     // %%% S.B. superk->nof_implementors() == 1
3948   } else if (superelem->is_instance_klass()) {
3949     ciInstanceKlass* ik = superelem->as_instance_klass();
3950     if (!ik->has_subklass() && !ik->is_interface()) {
3951       if (!ik->is_final()) {
3952         // Add a dependency if there is a chance of a later subclass.
3953         dependencies()->assert_leaf_type(ik);
3954       }
3955       return SSC_easy_test;     // (3) caller can do a simple ptr comparison
3956     }
3957   } else {
3958     // A primitive array type has no subtypes.
3959     return SSC_easy_test;       // (3) caller can do a simple ptr comparison
3960   }
3961 
3962   return SSC_full_test;
3963 }
3964 
3965 Node* Compile::conv_I2X_index(PhaseGVN *phase, Node* idx, const TypeInt* sizetype) {
3966 #ifdef _LP64
3967   // The scaled index operand to AddP must be a clean 64-bit value.
3968   // Java allows a 32-bit int to be incremented to a negative
3969   // value, which appears in a 64-bit register as a large
3970   // positive number.  Using that large positive number as an
3971   // operand in pointer arithmetic has bad consequences.
3972   // On the other hand, 32-bit overflow is rare, and the possibility
3973   // can often be excluded, if we annotate the ConvI2L node with
3974   // a type assertion that its value is known to be a small positive
3975   // number.  (The prior range check has ensured this.)
3976   // This assertion is used by ConvI2LNode::Ideal.
3977   int index_max = max_jint - 1;  // array size is max_jint, index is one less
3978   if (sizetype != NULL)  index_max = sizetype->_hi - 1;
3979   const TypeLong* lidxtype = TypeLong::make(CONST64(0), index_max, Type::WidenMax);
3980   idx = phase->transform(new ConvI2LNode(idx, lidxtype));
3981 #endif
3982   return idx;
3983 }
3984 
3985 // The message about the current inlining is accumulated in
3986 // _print_inlining_stream and transfered into the _print_inlining_list
3987 // once we know whether inlining succeeds or not. For regular
3988 // inlining, messages are appended to the buffer pointed by
3989 // _print_inlining_idx in the _print_inlining_list. For late inlining,
3990 // a new buffer is added after _print_inlining_idx in the list. This
3991 // way we can update the inlining message for late inlining call site
3992 // when the inlining is attempted again.
3993 void Compile::print_inlining_init() {
3994   if (print_inlining() || print_intrinsics()) {
3995     _print_inlining_stream = new stringStream();
3996     _print_inlining_list = new (comp_arena())GrowableArray<PrintInliningBuffer>(comp_arena(), 1, 1, PrintInliningBuffer());
3997   }
3998 }
3999 
4000 void Compile::print_inlining_reinit() {
4001   if (print_inlining() || print_intrinsics()) {
4002     // Re allocate buffer when we change ResourceMark
4003     _print_inlining_stream = new stringStream();
4004   }
4005 }
4006 
4007 void Compile::print_inlining_reset() {
4008   _print_inlining_stream->reset();
4009 }
4010 
4011 void Compile::print_inlining_commit() {
4012   assert(print_inlining() || print_intrinsics(), "PrintInlining off?");
4013   // Transfer the message from _print_inlining_stream to the current
4014   // _print_inlining_list buffer and clear _print_inlining_stream.
4015   _print_inlining_list->at(_print_inlining_idx).ss()->write(_print_inlining_stream->as_string(), _print_inlining_stream->size());
4016   print_inlining_reset();
4017 }
4018 
4019 void Compile::print_inlining_push() {
4020   // Add new buffer to the _print_inlining_list at current position
4021   _print_inlining_idx++;
4022   _print_inlining_list->insert_before(_print_inlining_idx, PrintInliningBuffer());
4023 }
4024 
4025 Compile::PrintInliningBuffer& Compile::print_inlining_current() {
4026   return _print_inlining_list->at(_print_inlining_idx);
4027 }
4028 
4029 void Compile::print_inlining_update(CallGenerator* cg) {
4030   if (print_inlining() || print_intrinsics()) {
4031     if (!cg->is_late_inline()) {
4032       if (print_inlining_current().cg() != NULL) {
4033         print_inlining_push();
4034       }
4035       print_inlining_commit();
4036     } else {
4037       if (print_inlining_current().cg() != cg &&
4038           (print_inlining_current().cg() != NULL ||
4039            print_inlining_current().ss()->size() != 0)) {
4040         print_inlining_push();
4041       }
4042       print_inlining_commit();
4043       print_inlining_current().set_cg(cg);
4044     }
4045   }
4046 }
4047 
4048 void Compile::print_inlining_move_to(CallGenerator* cg) {
4049   // We resume inlining at a late inlining call site. Locate the
4050   // corresponding inlining buffer so that we can update it.
4051   if (print_inlining()) {
4052     for (int i = 0; i < _print_inlining_list->length(); i++) {
4053       if (_print_inlining_list->adr_at(i)->cg() == cg) {
4054         _print_inlining_idx = i;
4055         return;
4056       }
4057     }
4058     ShouldNotReachHere();
4059   }
4060 }
4061 
4062 void Compile::print_inlining_update_delayed(CallGenerator* cg) {
4063   if (print_inlining()) {
4064     assert(_print_inlining_stream->size() > 0, "missing inlining msg");
4065     assert(print_inlining_current().cg() == cg, "wrong entry");
4066     // replace message with new message
4067     _print_inlining_list->at_put(_print_inlining_idx, PrintInliningBuffer());
4068     print_inlining_commit();
4069     print_inlining_current().set_cg(cg);
4070   }
4071 }
4072 
4073 void Compile::print_inlining_assert_ready() {
4074   assert(!_print_inlining || _print_inlining_stream->size() == 0, "loosing data");
4075 }
4076 
4077 void Compile::process_print_inlining() {
4078   bool do_print_inlining = print_inlining() || print_intrinsics();
4079   if (do_print_inlining || log() != NULL) {
4080     // Print inlining message for candidates that we couldn't inline
4081     // for lack of space
4082     for (int i = 0; i < _late_inlines.length(); i++) {
4083       CallGenerator* cg = _late_inlines.at(i);
4084       if (!cg->is_mh_late_inline()) {
4085         const char* msg = "live nodes > LiveNodeCountInliningCutoff";
4086         if (do_print_inlining) {
4087           cg->print_inlining_late(msg);
4088         }
4089         log_late_inline_failure(cg, msg);
4090       }
4091     }
4092   }
4093   if (do_print_inlining) {
4094     ResourceMark rm;
4095     stringStream ss;
4096     for (int i = 0; i < _print_inlining_list->length(); i++) {
4097       ss.print("%s", _print_inlining_list->adr_at(i)->ss()->as_string());
4098     }
4099     size_t end = ss.size();
4100     _print_inlining_output = NEW_ARENA_ARRAY(comp_arena(), char, end+1);
4101     strncpy(_print_inlining_output, ss.base(), end+1);
4102     _print_inlining_output[end] = 0;
4103   }
4104 }
4105 
4106 void Compile::dump_print_inlining() {
4107   if (_print_inlining_output != NULL) {
4108     tty->print_raw(_print_inlining_output);
4109   }
4110 }
4111 
4112 void Compile::log_late_inline(CallGenerator* cg) {
4113   if (log() != NULL) {
4114     log()->head("late_inline method='%d'  inline_id='" JLONG_FORMAT "'", log()->identify(cg->method()),
4115                 cg->unique_id());
4116     JVMState* p = cg->call_node()->jvms();
4117     while (p != NULL) {
4118       log()->elem("jvms bci='%d' method='%d'", p->bci(), log()->identify(p->method()));
4119       p = p->caller();
4120     }
4121     log()->tail("late_inline");
4122   }
4123 }
4124 
4125 void Compile::log_late_inline_failure(CallGenerator* cg, const char* msg) {
4126   log_late_inline(cg);
4127   if (log() != NULL) {
4128     log()->inline_fail(msg);
4129   }
4130 }
4131 
4132 void Compile::log_inline_id(CallGenerator* cg) {
4133   if (log() != NULL) {
4134     // The LogCompilation tool needs a unique way to identify late
4135     // inline call sites. This id must be unique for this call site in
4136     // this compilation. Try to have it unique across compilations as
4137     // well because it can be convenient when grepping through the log
4138     // file.
4139     // Distinguish OSR compilations from others in case CICountOSR is
4140     // on.
4141     jlong id = ((jlong)unique()) + (((jlong)compile_id()) << 33) + (CICountOSR && is_osr_compilation() ? ((jlong)1) << 32 : 0);
4142     cg->set_unique_id(id);
4143     log()->elem("inline_id id='" JLONG_FORMAT "'", id);
4144   }
4145 }
4146 
4147 void Compile::log_inline_failure(const char* msg) {
4148   if (C->log() != NULL) {
4149     C->log()->inline_fail(msg);
4150   }
4151 }
4152 
4153 
4154 // Dump inlining replay data to the stream.
4155 // Don't change thread state and acquire any locks.
4156 void Compile::dump_inline_data(outputStream* out) {
4157   InlineTree* inl_tree = ilt();
4158   if (inl_tree != NULL) {
4159     out->print(" inline %d", inl_tree->count());
4160     inl_tree->dump_replay_data(out);
4161   }
4162 }
4163 
4164 int Compile::cmp_expensive_nodes(Node* n1, Node* n2) {
4165   if (n1->Opcode() < n2->Opcode())      return -1;
4166   else if (n1->Opcode() > n2->Opcode()) return 1;
4167 
4168   assert(n1->req() == n2->req(), "can't compare %s nodes: n1->req() = %d, n2->req() = %d", NodeClassNames[n1->Opcode()], n1->req(), n2->req());
4169   for (uint i = 1; i < n1->req(); i++) {
4170     if (n1->in(i) < n2->in(i))      return -1;
4171     else if (n1->in(i) > n2->in(i)) return 1;
4172   }
4173 
4174   return 0;
4175 }
4176 
4177 int Compile::cmp_expensive_nodes(Node** n1p, Node** n2p) {
4178   Node* n1 = *n1p;
4179   Node* n2 = *n2p;
4180 
4181   return cmp_expensive_nodes(n1, n2);
4182 }
4183 
4184 void Compile::sort_expensive_nodes() {
4185   if (!expensive_nodes_sorted()) {
4186     _expensive_nodes->sort(cmp_expensive_nodes);
4187   }
4188 }
4189 
4190 bool Compile::expensive_nodes_sorted() const {
4191   for (int i = 1; i < _expensive_nodes->length(); i++) {
4192     if (cmp_expensive_nodes(_expensive_nodes->adr_at(i), _expensive_nodes->adr_at(i-1)) < 0) {
4193       return false;
4194     }
4195   }
4196   return true;
4197 }
4198 
4199 bool Compile::should_optimize_expensive_nodes(PhaseIterGVN &igvn) {
4200   if (_expensive_nodes->length() == 0) {
4201     return false;
4202   }
4203 
4204   assert(OptimizeExpensiveOps, "optimization off?");
4205 
4206   // Take this opportunity to remove dead nodes from the list
4207   int j = 0;
4208   for (int i = 0; i < _expensive_nodes->length(); i++) {
4209     Node* n = _expensive_nodes->at(i);
4210     if (!n->is_unreachable(igvn)) {
4211       assert(n->is_expensive(), "should be expensive");
4212       _expensive_nodes->at_put(j, n);
4213       j++;
4214     }
4215   }
4216   _expensive_nodes->trunc_to(j);
4217 
4218   // Then sort the list so that similar nodes are next to each other
4219   // and check for at least two nodes of identical kind with same data
4220   // inputs.
4221   sort_expensive_nodes();
4222 
4223   for (int i = 0; i < _expensive_nodes->length()-1; i++) {
4224     if (cmp_expensive_nodes(_expensive_nodes->adr_at(i), _expensive_nodes->adr_at(i+1)) == 0) {
4225       return true;
4226     }
4227   }
4228 
4229   return false;
4230 }
4231 
4232 void Compile::cleanup_expensive_nodes(PhaseIterGVN &igvn) {
4233   if (_expensive_nodes->length() == 0) {
4234     return;
4235   }
4236 
4237   assert(OptimizeExpensiveOps, "optimization off?");
4238 
4239   // Sort to bring similar nodes next to each other and clear the
4240   // control input of nodes for which there's only a single copy.
4241   sort_expensive_nodes();
4242 
4243   int j = 0;
4244   int identical = 0;
4245   int i = 0;
4246   bool modified = false;
4247   for (; i < _expensive_nodes->length()-1; i++) {
4248     assert(j <= i, "can't write beyond current index");
4249     if (_expensive_nodes->at(i)->Opcode() == _expensive_nodes->at(i+1)->Opcode()) {
4250       identical++;
4251       _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
4252       continue;
4253     }
4254     if (identical > 0) {
4255       _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
4256       identical = 0;
4257     } else {
4258       Node* n = _expensive_nodes->at(i);
4259       igvn.replace_input_of(n, 0, NULL);
4260       igvn.hash_insert(n);
4261       modified = true;
4262     }
4263   }
4264   if (identical > 0) {
4265     _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
4266   } else if (_expensive_nodes->length() >= 1) {
4267     Node* n = _expensive_nodes->at(i);
4268     igvn.replace_input_of(n, 0, NULL);
4269     igvn.hash_insert(n);
4270     modified = true;
4271   }
4272   _expensive_nodes->trunc_to(j);
4273   if (modified) {
4274     igvn.optimize();
4275   }
4276 }
4277 
4278 void Compile::add_expensive_node(Node * n) {
4279   assert(!_expensive_nodes->contains(n), "duplicate entry in expensive list");
4280   assert(n->is_expensive(), "expensive nodes with non-null control here only");
4281   assert(!n->is_CFG() && !n->is_Mem(), "no cfg or memory nodes here");
4282   if (OptimizeExpensiveOps) {
4283     _expensive_nodes->append(n);
4284   } else {
4285     // Clear control input and let IGVN optimize expensive nodes if
4286     // OptimizeExpensiveOps is off.
4287     n->set_req(0, NULL);
4288   }
4289 }
4290 
4291 /**
4292  * Remove the speculative part of types and clean up the graph
4293  */
4294 void Compile::remove_speculative_types(PhaseIterGVN &igvn) {
4295   if (UseTypeSpeculation) {
4296     Unique_Node_List worklist;
4297     worklist.push(root());
4298     int modified = 0;
4299     // Go over all type nodes that carry a speculative type, drop the
4300     // speculative part of the type and enqueue the node for an igvn
4301     // which may optimize it out.
4302     for (uint next = 0; next < worklist.size(); ++next) {
4303       Node *n  = worklist.at(next);
4304       if (n->is_Type()) {
4305         TypeNode* tn = n->as_Type();
4306         const Type* t = tn->type();
4307         const Type* t_no_spec = t->remove_speculative();
4308         if (t_no_spec != t) {
4309           bool in_hash = igvn.hash_delete(n);
4310           assert(in_hash, "node should be in igvn hash table");
4311           tn->set_type(t_no_spec);
4312           igvn.hash_insert(n);
4313           igvn._worklist.push(n); // give it a chance to go away
4314           modified++;
4315         }
4316       }
4317       uint max = n->len();
4318       for( uint i = 0; i < max; ++i ) {
4319         Node *m = n->in(i);
4320         if (not_a_node(m))  continue;
4321         worklist.push(m);
4322       }
4323     }
4324     // Drop the speculative part of all types in the igvn's type table
4325     igvn.remove_speculative_types();
4326     if (modified > 0) {
4327       igvn.optimize();
4328     }
4329 #ifdef ASSERT
4330     // Verify that after the IGVN is over no speculative type has resurfaced
4331     worklist.clear();
4332     worklist.push(root());
4333     for (uint next = 0; next < worklist.size(); ++next) {
4334       Node *n  = worklist.at(next);
4335       const Type* t = igvn.type_or_null(n);
4336       assert((t == NULL) || (t == t->remove_speculative()), "no more speculative types");
4337       if (n->is_Type()) {
4338         t = n->as_Type()->type();
4339         assert(t == t->remove_speculative(), "no more speculative types");
4340       }
4341       uint max = n->len();
4342       for( uint i = 0; i < max; ++i ) {
4343         Node *m = n->in(i);
4344         if (not_a_node(m))  continue;
4345         worklist.push(m);
4346       }
4347     }
4348     igvn.check_no_speculative_types();
4349 #endif
4350   }
4351 }
4352 
4353 // Auxiliary method to support randomized stressing/fuzzing.
4354 //
4355 // This method can be called the arbitrary number of times, with current count
4356 // as the argument. The logic allows selecting a single candidate from the
4357 // running list of candidates as follows:
4358 //    int count = 0;
4359 //    Cand* selected = null;
4360 //    while(cand = cand->next()) {
4361 //      if (randomized_select(++count)) {
4362 //        selected = cand;
4363 //      }
4364 //    }
4365 //
4366 // Including count equalizes the chances any candidate is "selected".
4367 // This is useful when we don't have the complete list of candidates to choose
4368 // from uniformly. In this case, we need to adjust the randomicity of the
4369 // selection, or else we will end up biasing the selection towards the latter
4370 // candidates.
4371 //
4372 // Quick back-envelope calculation shows that for the list of n candidates
4373 // the equal probability for the candidate to persist as "best" can be
4374 // achieved by replacing it with "next" k-th candidate with the probability
4375 // of 1/k. It can be easily shown that by the end of the run, the
4376 // probability for any candidate is converged to 1/n, thus giving the
4377 // uniform distribution among all the candidates.
4378 //
4379 // We don't care about the domain size as long as (RANDOMIZED_DOMAIN / count) is large.
4380 #define RANDOMIZED_DOMAIN_POW 29
4381 #define RANDOMIZED_DOMAIN (1 << RANDOMIZED_DOMAIN_POW)
4382 #define RANDOMIZED_DOMAIN_MASK ((1 << (RANDOMIZED_DOMAIN_POW + 1)) - 1)
4383 bool Compile::randomized_select(int count) {
4384   assert(count > 0, "only positive");
4385   return (os::random() & RANDOMIZED_DOMAIN_MASK) < (RANDOMIZED_DOMAIN / count);
4386 }
4387 
4388 CloneMap&     Compile::clone_map()                 { return _clone_map; }
4389 void          Compile::set_clone_map(Dict* d)      { _clone_map._dict = d; }
4390 
4391 void NodeCloneInfo::dump() const {
4392   tty->print(" {%d:%d} ", idx(), gen());
4393 }
4394 
4395 void CloneMap::clone(Node* old, Node* nnn, int gen) {
4396   uint64_t val = value(old->_idx);
4397   NodeCloneInfo cio(val);
4398   assert(val != 0, "old node should be in the map");
4399   NodeCloneInfo cin(cio.idx(), gen + cio.gen());
4400   insert(nnn->_idx, cin.get());
4401 #ifndef PRODUCT
4402   if (is_debug()) {
4403     tty->print_cr("CloneMap::clone inserted node %d info {%d:%d} into CloneMap", nnn->_idx, cin.idx(), cin.gen());
4404   }
4405 #endif
4406 }
4407 
4408 void CloneMap::verify_insert_and_clone(Node* old, Node* nnn, int gen) {
4409   NodeCloneInfo cio(value(old->_idx));
4410   if (cio.get() == 0) {
4411     cio.set(old->_idx, 0);
4412     insert(old->_idx, cio.get());
4413 #ifndef PRODUCT
4414     if (is_debug()) {
4415       tty->print_cr("CloneMap::verify_insert_and_clone inserted node %d info {%d:%d} into CloneMap", old->_idx, cio.idx(), cio.gen());
4416     }
4417 #endif
4418   }
4419   clone(old, nnn, gen);
4420 }
4421 
4422 int CloneMap::max_gen() const {
4423   int g = 0;
4424   DictI di(_dict);
4425   for(; di.test(); ++di) {
4426     int t = gen(di._key);
4427     if (g < t) {
4428       g = t;
4429 #ifndef PRODUCT
4430       if (is_debug()) {
4431         tty->print_cr("CloneMap::max_gen() update max=%d from %d", g, _2_node_idx_t(di._key));
4432       }
4433 #endif
4434     }
4435   }
4436   return g;
4437 }
4438 
4439 void CloneMap::dump(node_idx_t key) const {
4440   uint64_t val = value(key);
4441   if (val != 0) {
4442     NodeCloneInfo ni(val);
4443     ni.dump();
4444   }
4445 }