1 /*
   2  * Copyright (c) 2010, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "code/codeCache.hpp"
  27 #include "compiler/compilerDirectives.hpp"
  28 #include "compiler/compilerOracle.hpp"
  29 #include "compiler/compileTask.hpp"
  30 #include "runtime/advancedThresholdPolicy.hpp"
  31 #include "runtime/simpleThresholdPolicy.inline.hpp"
  32 
  33 #ifdef TIERED
  34 // Print an event.
  35 void AdvancedThresholdPolicy::print_specific(EventType type, methodHandle mh, methodHandle imh,
  36                                              int bci, CompLevel level) {
  37   tty->print(" rate=");
  38   if (mh->prev_time() == 0) tty->print("n/a");
  39   else tty->print("%f", mh->rate());
  40 
  41   tty->print(" k=%.2lf,%.2lf", threshold_scale(CompLevel_full_profile, Tier3LoadFeedback),
  42                                threshold_scale(CompLevel_full_optimization, Tier4LoadFeedback));
  43 
  44 }
  45 
  46 void AdvancedThresholdPolicy::initialize() {
  47   // Turn on ergonomic compiler count selection
  48   if (FLAG_IS_DEFAULT(CICompilerCountPerCPU) && FLAG_IS_DEFAULT(CICompilerCount)) {
  49     FLAG_SET_DEFAULT(CICompilerCountPerCPU, true);
  50   }
  51   int count = CICompilerCount;
  52   if (CICompilerCountPerCPU) {
  53     // Simple log n seems to grow too slowly for tiered, try something faster: log n * log log n
  54     int log_cpu = log2_intptr(os::active_processor_count());
  55     int loglog_cpu = log2_intptr(MAX2(log_cpu, 1));
  56     count = MAX2(log_cpu * loglog_cpu, 1) * 3 / 2;
  57   }
  58 
  59   set_c1_count(MAX2(count / 3, 1));
  60   set_c2_count(MAX2(count - c1_count(), 1));
  61   FLAG_SET_ERGO(intx, CICompilerCount, c1_count() + c2_count());
  62 
  63   // Some inlining tuning
  64 #ifdef X86
  65   if (FLAG_IS_DEFAULT(InlineSmallCode)) {
  66     FLAG_SET_DEFAULT(InlineSmallCode, 2000);
  67   }
  68 #endif
  69 
  70 #if defined SPARC || defined AARCH64
  71   if (FLAG_IS_DEFAULT(InlineSmallCode)) {
  72     FLAG_SET_DEFAULT(InlineSmallCode, 2500);
  73   }
  74 #endif
  75 
  76   set_increase_threshold_at_ratio();
  77   set_start_time(os::javaTimeMillis());
  78 }
  79 
  80 // update_rate() is called from select_task() while holding a compile queue lock.
  81 void AdvancedThresholdPolicy::update_rate(jlong t, Method* m) {
  82   // Skip update if counters are absent.
  83   // Can't allocate them since we are holding compile queue lock.
  84   if (m->method_counters() == NULL)  return;
  85 
  86   if (is_old(m)) {
  87     // We don't remove old methods from the queue,
  88     // so we can just zero the rate.
  89     m->set_rate(0);
  90     return;
  91   }
  92 
  93   // We don't update the rate if we've just came out of a safepoint.
  94   // delta_s is the time since last safepoint in milliseconds.
  95   jlong delta_s = t - SafepointSynchronize::end_of_last_safepoint();
  96   jlong delta_t = t - (m->prev_time() != 0 ? m->prev_time() : start_time()); // milliseconds since the last measurement
  97   // How many events were there since the last time?
  98   int event_count = m->invocation_count() + m->backedge_count();
  99   int delta_e = event_count - m->prev_event_count();
 100 
 101   // We should be running for at least 1ms.
 102   if (delta_s >= TieredRateUpdateMinTime) {
 103     // And we must've taken the previous point at least 1ms before.
 104     if (delta_t >= TieredRateUpdateMinTime && delta_e > 0) {
 105       m->set_prev_time(t);
 106       m->set_prev_event_count(event_count);
 107       m->set_rate((float)delta_e / (float)delta_t); // Rate is events per millisecond
 108     } else {
 109       if (delta_t > TieredRateUpdateMaxTime && delta_e == 0) {
 110         // If nothing happened for 25ms, zero the rate. Don't modify prev values.
 111         m->set_rate(0);
 112       }
 113     }
 114   }
 115 }
 116 
 117 // Check if this method has been stale from a given number of milliseconds.
 118 // See select_task().
 119 bool AdvancedThresholdPolicy::is_stale(jlong t, jlong timeout, Method* m) {
 120   jlong delta_s = t - SafepointSynchronize::end_of_last_safepoint();
 121   jlong delta_t = t - m->prev_time();
 122   if (delta_t > timeout && delta_s > timeout) {
 123     int event_count = m->invocation_count() + m->backedge_count();
 124     int delta_e = event_count - m->prev_event_count();
 125     // Return true if there were no events.
 126     return delta_e == 0;
 127   }
 128   return false;
 129 }
 130 
 131 // We don't remove old methods from the compile queue even if they have
 132 // very low activity. See select_task().
 133 bool AdvancedThresholdPolicy::is_old(Method* method) {
 134   return method->invocation_count() > 50000 || method->backedge_count() > 500000;
 135 }
 136 
 137 double AdvancedThresholdPolicy::weight(Method* method) {
 138   return (double)(method->rate() + 1) *
 139     (method->invocation_count() + 1) * (method->backedge_count() + 1);
 140 }
 141 
 142 // Apply heuristics and return true if x should be compiled before y
 143 bool AdvancedThresholdPolicy::compare_methods(Method* x, Method* y) {
 144   if (x->highest_comp_level() > y->highest_comp_level()) {
 145     // recompilation after deopt
 146     return true;
 147   } else
 148     if (x->highest_comp_level() == y->highest_comp_level()) {
 149       if (weight(x) > weight(y)) {
 150         return true;
 151       }
 152     }
 153   return false;
 154 }
 155 
 156 // Is method profiled enough?
 157 bool AdvancedThresholdPolicy::is_method_profiled(Method* method) {
 158   MethodData* mdo = method->method_data();
 159   if (mdo != NULL) {
 160     int i = mdo->invocation_count_delta();
 161     int b = mdo->backedge_count_delta();
 162     return call_predicate_helper<CompLevel_full_profile>(i, b, 1, method);
 163   }
 164   return false;
 165 }
 166 
 167 // Called with the queue locked and with at least one element
 168 CompileTask* AdvancedThresholdPolicy::select_task(CompileQueue* compile_queue) {
 169 #if INCLUDE_JVMCI
 170   CompileTask *max_blocking_task = NULL;
 171 #endif
 172   CompileTask *max_task = NULL;
 173   Method* max_method = NULL;
 174   jlong t = os::javaTimeMillis();
 175   // Iterate through the queue and find a method with a maximum rate.
 176   for (CompileTask* task = compile_queue->first(); task != NULL;) {
 177     CompileTask* next_task = task->next();
 178     Method* method = task->method();
 179     update_rate(t, method);
 180     if (max_task == NULL) {
 181       max_task = task;
 182       max_method = method;
 183     } else {
 184       // Prefer 'blocking' compilations to minimize waits on them.
 185       // This also helps to prevent blocking compiles from getting stale.
 186       CompLevel level = (CompLevel)task->comp_level();
 187       bool backgroundCompilation;
 188       DirectiveSet* directive =
 189         DirectivesStack::getMatchingDirective(methodHandle(method),
 190                                               CompileBroker::compiler(level));
 191       backgroundCompilation = directive->BackgroundCompilationOption;
 192       DirectivesStack::release(directive);
 193       if (backgroundCompilation == false) {
 194         max_task = task;
 195         max_method = method;
 196         break;
 197       }
 198       // If a method has been stale for some time, remove it from the queue.
 199       if (is_stale(t, TieredCompileTaskTimeout, method) && !is_old(method)) {
 200         if (PrintTieredEvents) {
 201           print_event(REMOVE_FROM_QUEUE, method, method, task->osr_bci(), level);
 202         }
 203         task->log_task_dequeued("stale");
 204         compile_queue->remove_and_mark_stale(task);
 205         method->clear_queued_for_compilation();
 206         task = next_task;
 207         continue;
 208       }
 209 
 210       // Select a method with a higher rate
 211       if (compare_methods(method, max_method)) {
 212         max_task = task;
 213         max_method = method;
 214       }
 215     }
 216 #if INCLUDE_JVMCI
 217     if (UseJVMCICompiler && task->is_blocking()) {
 218       if (max_blocking_task == NULL || compare_methods(method, max_blocking_task->method())) {
 219         max_blocking_task = task;
 220       }
 221     }
 222 #endif
 223     task = next_task;
 224   }
 225 
 226 #if INCLUDE_JVMCI
 227   if (UseJVMCICompiler) {
 228     if (max_blocking_task != NULL) {
 229       // In blocking compilation mode, the CompileBroker will make
 230       // compilations submitted by a JVMCI compiler thread non-blocking. These
 231       // compilations should be scheduled after all blocking compilations
 232       // to service non-compiler related compilations sooner and reduce the
 233       // chance of such compilations timing out.
 234       max_task = max_blocking_task;
 235       max_method = max_task->method();
 236     }
 237   }
 238 #endif
 239 
 240   if (max_task->comp_level() == CompLevel_full_profile && TieredStopAtLevel > CompLevel_full_profile
 241       && is_method_profiled(max_method)) {
 242     max_task->set_comp_level(CompLevel_limited_profile);
 243     if (PrintTieredEvents) {
 244       print_event(UPDATE_IN_QUEUE, max_method, max_method, max_task->osr_bci(), (CompLevel)max_task->comp_level());
 245     }
 246   }
 247 
 248   return max_task;
 249 }
 250 
 251 double AdvancedThresholdPolicy::threshold_scale(CompLevel level, int feedback_k) {
 252   double queue_size = CompileBroker::queue_size(level);
 253   int comp_count = compiler_count(level);
 254   double k = queue_size / (feedback_k * comp_count) + 1;
 255 
 256   // Increase C1 compile threshold when the code cache is filled more
 257   // than specified by IncreaseFirstTierCompileThresholdAt percentage.
 258   // The main intention is to keep enough free space for C2 compiled code
 259   // to achieve peak performance if the code cache is under stress.
 260   if ((TieredStopAtLevel == CompLevel_full_optimization) && (level != CompLevel_full_optimization))  {
 261     double current_reverse_free_ratio = CodeCache::reverse_free_ratio(CodeCache::get_code_blob_type(level));
 262     if (current_reverse_free_ratio > _increase_threshold_at_ratio) {
 263       k *= exp(current_reverse_free_ratio - _increase_threshold_at_ratio);
 264     }
 265   }
 266   return k;
 267 }
 268 
 269 // Call and loop predicates determine whether a transition to a higher
 270 // compilation level should be performed (pointers to predicate functions
 271 // are passed to common()).
 272 // Tier?LoadFeedback is basically a coefficient that determines of
 273 // how many methods per compiler thread can be in the queue before
 274 // the threshold values double.
 275 bool AdvancedThresholdPolicy::loop_predicate(int i, int b, CompLevel cur_level, Method* method) {
 276   switch(cur_level) {
 277   case CompLevel_none:
 278   case CompLevel_limited_profile: {
 279     double k = threshold_scale(CompLevel_full_profile, Tier3LoadFeedback);
 280     return loop_predicate_helper<CompLevel_none>(i, b, k, method);
 281   }
 282   case CompLevel_full_profile: {
 283     double k = threshold_scale(CompLevel_full_optimization, Tier4LoadFeedback);
 284     return loop_predicate_helper<CompLevel_full_profile>(i, b, k, method);
 285   }
 286   default:
 287     return true;
 288   }
 289 }
 290 
 291 bool AdvancedThresholdPolicy::call_predicate(int i, int b, CompLevel cur_level, Method* method) {
 292   switch(cur_level) {
 293   case CompLevel_none:
 294   case CompLevel_limited_profile: {
 295     double k = threshold_scale(CompLevel_full_profile, Tier3LoadFeedback);
 296     return call_predicate_helper<CompLevel_none>(i, b, k, method);
 297   }
 298   case CompLevel_full_profile: {
 299     double k = threshold_scale(CompLevel_full_optimization, Tier4LoadFeedback);
 300     return call_predicate_helper<CompLevel_full_profile>(i, b, k, method);
 301   }
 302   default:
 303     return true;
 304   }
 305 }
 306 
 307 // If a method is old enough and is still in the interpreter we would want to
 308 // start profiling without waiting for the compiled method to arrive.
 309 // We also take the load on compilers into the account.
 310 bool AdvancedThresholdPolicy::should_create_mdo(Method* method, CompLevel cur_level) {
 311   if (cur_level == CompLevel_none &&
 312       CompileBroker::queue_size(CompLevel_full_optimization) <=
 313       Tier3DelayOn * compiler_count(CompLevel_full_optimization)) {
 314     int i = method->invocation_count();
 315     int b = method->backedge_count();
 316     double k = Tier0ProfilingStartPercentage / 100.0;
 317     return call_predicate_helper<CompLevel_none>(i, b, k, method) || loop_predicate_helper<CompLevel_none>(i, b, k, method);
 318   }
 319   return false;
 320 }
 321 
 322 // Inlining control: if we're compiling a profiled method with C1 and the callee
 323 // is known to have OSRed in a C2 version, don't inline it.
 324 bool AdvancedThresholdPolicy::should_not_inline(ciEnv* env, ciMethod* callee) {
 325   CompLevel comp_level = (CompLevel)env->comp_level();
 326   if (comp_level == CompLevel_full_profile ||
 327       comp_level == CompLevel_limited_profile) {
 328     return callee->highest_osr_comp_level() == CompLevel_full_optimization;
 329   }
 330   return false;
 331 }
 332 
 333 // Create MDO if necessary.
 334 void AdvancedThresholdPolicy::create_mdo(methodHandle mh, JavaThread* THREAD) {
 335   if (mh->is_native() ||
 336       mh->is_abstract() ||
 337       mh->is_accessor() ||
 338       mh->is_constant_getter()) {
 339     return;
 340   }
 341   if (mh->method_data() == NULL) {
 342     Method::build_interpreter_method_data(mh, CHECK_AND_CLEAR);
 343   }
 344 }
 345 
 346 
 347 /*
 348  * Method states:
 349  *   0 - interpreter (CompLevel_none)
 350  *   1 - pure C1 (CompLevel_simple)
 351  *   2 - C1 with invocation and backedge counting (CompLevel_limited_profile)
 352  *   3 - C1 with full profiling (CompLevel_full_profile)
 353  *   4 - C2 (CompLevel_full_optimization)
 354  *
 355  * Common state transition patterns:
 356  * a. 0 -> 3 -> 4.
 357  *    The most common path. But note that even in this straightforward case
 358  *    profiling can start at level 0 and finish at level 3.
 359  *
 360  * b. 0 -> 2 -> 3 -> 4.
 361  *    This case occurs when the load on C2 is deemed too high. So, instead of transitioning
 362  *    into state 3 directly and over-profiling while a method is in the C2 queue we transition to
 363  *    level 2 and wait until the load on C2 decreases. This path is disabled for OSRs.
 364  *
 365  * c. 0 -> (3->2) -> 4.
 366  *    In this case we enqueue a method for compilation at level 3, but the C1 queue is long enough
 367  *    to enable the profiling to fully occur at level 0. In this case we change the compilation level
 368  *    of the method to 2 while the request is still in-queue, because it'll allow it to run much faster
 369  *    without full profiling while c2 is compiling.
 370  *
 371  * d. 0 -> 3 -> 1 or 0 -> 2 -> 1.
 372  *    After a method was once compiled with C1 it can be identified as trivial and be compiled to
 373  *    level 1. These transition can also occur if a method can't be compiled with C2 but can with C1.
 374  *
 375  * e. 0 -> 4.
 376  *    This can happen if a method fails C1 compilation (it will still be profiled in the interpreter)
 377  *    or because of a deopt that didn't require reprofiling (compilation won't happen in this case because
 378  *    the compiled version already exists).
 379  *
 380  * Note that since state 0 can be reached from any other state via deoptimization different loops
 381  * are possible.
 382  *
 383  */
 384 
 385 // Common transition function. Given a predicate determines if a method should transition to another level.
 386 CompLevel AdvancedThresholdPolicy::common(Predicate p, Method* method, CompLevel cur_level, bool disable_feedback) {
 387   CompLevel next_level = cur_level;
 388   int i = method->invocation_count();
 389   int b = method->backedge_count();
 390 
 391   if (is_trivial(method)) {
 392     next_level = CompLevel_simple;
 393   } else {
 394     switch(cur_level) {
 395     case CompLevel_none:
 396       // If we were at full profile level, would we switch to full opt?
 397       if (common(p, method, CompLevel_full_profile, disable_feedback) == CompLevel_full_optimization) {
 398         next_level = CompLevel_full_optimization;
 399       } else if ((this->*p)(i, b, cur_level, method)) {
 400 #if INCLUDE_JVMCI
 401         if (UseJVMCICompiler) {
 402           // Since JVMCI takes a while to warm up, its queue inevitably backs up during
 403           // early VM execution.
 404           next_level = CompLevel_full_profile;
 405           break;
 406         }
 407 #endif
 408         // C1-generated fully profiled code is about 30% slower than the limited profile
 409         // code that has only invocation and backedge counters. The observation is that
 410         // if C2 queue is large enough we can spend too much time in the fully profiled code
 411         // while waiting for C2 to pick the method from the queue. To alleviate this problem
 412         // we introduce a feedback on the C2 queue size. If the C2 queue is sufficiently long
 413         // we choose to compile a limited profiled version and then recompile with full profiling
 414         // when the load on C2 goes down.
 415         if (!disable_feedback && CompileBroker::queue_size(CompLevel_full_optimization) >
 416             Tier3DelayOn * compiler_count(CompLevel_full_optimization)) {
 417           next_level = CompLevel_limited_profile;
 418         } else {
 419           next_level = CompLevel_full_profile;
 420         }
 421       }
 422       break;
 423     case CompLevel_limited_profile:
 424       if (is_method_profiled(method)) {
 425         // Special case: we got here because this method was fully profiled in the interpreter.
 426         next_level = CompLevel_full_optimization;
 427       } else {
 428         MethodData* mdo = method->method_data();
 429         if (mdo != NULL) {
 430           if (mdo->would_profile()) {
 431             if (disable_feedback || (CompileBroker::queue_size(CompLevel_full_optimization) <=
 432                                      Tier3DelayOff * compiler_count(CompLevel_full_optimization) &&
 433                                      (this->*p)(i, b, cur_level, method))) {
 434               next_level = CompLevel_full_profile;
 435             }
 436           } else {
 437             next_level = CompLevel_full_optimization;
 438           }
 439         }
 440       }
 441       break;
 442     case CompLevel_full_profile:
 443       {
 444         MethodData* mdo = method->method_data();
 445         if (mdo != NULL) {
 446           if (mdo->would_profile()) {
 447             int mdo_i = mdo->invocation_count_delta();
 448             int mdo_b = mdo->backedge_count_delta();
 449             if ((this->*p)(mdo_i, mdo_b, cur_level, method)) {
 450               next_level = CompLevel_full_optimization;
 451             }
 452           } else {
 453             next_level = CompLevel_full_optimization;
 454           }
 455         }
 456       }
 457       break;
 458     }
 459   }
 460   return MIN2(next_level, (CompLevel)TieredStopAtLevel);
 461 }
 462 
 463 // Determine if a method should be compiled with a normal entry point at a different level.
 464 CompLevel AdvancedThresholdPolicy::call_event(Method* method, CompLevel cur_level) {
 465   CompLevel osr_level = MIN2((CompLevel) method->highest_osr_comp_level(),
 466                              common(&AdvancedThresholdPolicy::loop_predicate, method, cur_level, true));
 467   CompLevel next_level = common(&AdvancedThresholdPolicy::call_predicate, method, cur_level);
 468 
 469   // If OSR method level is greater than the regular method level, the levels should be
 470   // equalized by raising the regular method level in order to avoid OSRs during each
 471   // invocation of the method.
 472   if (osr_level == CompLevel_full_optimization && cur_level == CompLevel_full_profile) {
 473     MethodData* mdo = method->method_data();
 474     guarantee(mdo != NULL, "MDO should not be NULL");
 475     if (mdo->invocation_count() >= 1) {
 476       next_level = CompLevel_full_optimization;
 477     }
 478   } else {
 479     next_level = MAX2(osr_level, next_level);
 480   }
 481   return next_level;
 482 }
 483 
 484 // Determine if we should do an OSR compilation of a given method.
 485 CompLevel AdvancedThresholdPolicy::loop_event(Method* method, CompLevel cur_level) {
 486   CompLevel next_level = common(&AdvancedThresholdPolicy::loop_predicate, method, cur_level, true);
 487   if (cur_level == CompLevel_none) {
 488     // If there is a live OSR method that means that we deopted to the interpreter
 489     // for the transition.
 490     CompLevel osr_level = MIN2((CompLevel)method->highest_osr_comp_level(), next_level);
 491     if (osr_level > CompLevel_none) {
 492       return osr_level;
 493     }
 494   }
 495   return next_level;
 496 }
 497 
 498 // Update the rate and submit compile
 499 void AdvancedThresholdPolicy::submit_compile(const methodHandle& mh, int bci, CompLevel level, JavaThread* thread) {
 500   int hot_count = (bci == InvocationEntryBci) ? mh->invocation_count() : mh->backedge_count();
 501   update_rate(os::javaTimeMillis(), mh());
 502   CompileBroker::compile_method(mh, bci, level, mh, hot_count, "tiered", thread);
 503 }
 504 
 505 // Handle the invocation event.
 506 void AdvancedThresholdPolicy::method_invocation_event(const methodHandle& mh, const methodHandle& imh,
 507                                                       CompLevel level, nmethod* nm, JavaThread* thread) {
 508   if (should_create_mdo(mh(), level)) {
 509     create_mdo(mh, thread);
 510   }
 511   if (is_compilation_enabled() && !CompileBroker::compilation_is_in_queue(mh)) {
 512     CompLevel next_level = call_event(mh(), level);
 513     if (next_level != level) {
 514       compile(mh, InvocationEntryBci, next_level, thread);
 515     }
 516   }
 517 }
 518 
 519 // Handle the back branch event. Notice that we can compile the method
 520 // with a regular entry from here.
 521 void AdvancedThresholdPolicy::method_back_branch_event(const methodHandle& mh, const methodHandle& imh,
 522                                                        int bci, CompLevel level, nmethod* nm, JavaThread* thread) {
 523   if (should_create_mdo(mh(), level)) {
 524     create_mdo(mh, thread);
 525   }
 526   // Check if MDO should be created for the inlined method
 527   if (should_create_mdo(imh(), level)) {
 528     create_mdo(imh, thread);
 529   }
 530 
 531   if (is_compilation_enabled()) {
 532     CompLevel next_osr_level = loop_event(imh(), level);
 533     CompLevel max_osr_level = (CompLevel)imh->highest_osr_comp_level();
 534     // At the very least compile the OSR version
 535     if (!CompileBroker::compilation_is_in_queue(imh) && (next_osr_level != level)) {
 536       compile(imh, bci, next_osr_level, thread);
 537     }
 538 
 539     // Use loop event as an opportunity to also check if there's been
 540     // enough calls.
 541     CompLevel cur_level, next_level;
 542     if (mh() != imh()) { // If there is an enclosing method
 543       guarantee(nm != NULL, "Should have nmethod here");
 544       cur_level = comp_level(mh());
 545       next_level = call_event(mh(), cur_level);
 546 
 547       if (max_osr_level == CompLevel_full_optimization) {
 548         // The inlinee OSRed to full opt, we need to modify the enclosing method to avoid deopts
 549         bool make_not_entrant = false;
 550         if (nm->is_osr_method()) {
 551           // This is an osr method, just make it not entrant and recompile later if needed
 552           make_not_entrant = true;
 553         } else {
 554           if (next_level != CompLevel_full_optimization) {
 555             // next_level is not full opt, so we need to recompile the
 556             // enclosing method without the inlinee
 557             cur_level = CompLevel_none;
 558             make_not_entrant = true;
 559           }
 560         }
 561         if (make_not_entrant) {
 562           if (PrintTieredEvents) {
 563             int osr_bci = nm->is_osr_method() ? nm->osr_entry_bci() : InvocationEntryBci;
 564             print_event(MAKE_NOT_ENTRANT, mh(), mh(), osr_bci, level);
 565           }
 566           nm->make_not_entrant();
 567         }
 568       }
 569       if (!CompileBroker::compilation_is_in_queue(mh)) {
 570         // Fix up next_level if necessary to avoid deopts
 571         if (next_level == CompLevel_limited_profile && max_osr_level == CompLevel_full_profile) {
 572           next_level = CompLevel_full_profile;
 573         }
 574         if (cur_level != next_level) {
 575           compile(mh, InvocationEntryBci, next_level, thread);
 576         }
 577       }
 578     } else {
 579       cur_level = comp_level(imh());
 580       next_level = call_event(imh(), cur_level);
 581       if (!CompileBroker::compilation_is_in_queue(imh) && (next_level != cur_level)) {
 582         compile(imh, InvocationEntryBci, next_level, thread);
 583       }
 584     }
 585   }
 586 }
 587 
 588 #endif // TIERED