1 /*
   2  * Copyright (c) 2010, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "code/codeCache.hpp"
  27 #include "compiler/compileTask.hpp"
  28 #include "runtime/advancedThresholdPolicy.hpp"
  29 #include "runtime/simpleThresholdPolicy.inline.hpp"
  30 
  31 #ifdef TIERED
  32 // Print an event.
  33 void AdvancedThresholdPolicy::print_specific(EventType type, methodHandle mh, methodHandle imh,
  34                                              int bci, CompLevel level) {
  35   tty->print(" rate=");
  36   if (mh->prev_time() == 0) tty->print("n/a");
  37   else tty->print("%f", mh->rate());
  38 
  39   tty->print(" k=%.2lf,%.2lf", threshold_scale(CompLevel_full_profile, Tier3LoadFeedback),
  40                                threshold_scale(CompLevel_full_optimization, Tier4LoadFeedback));
  41 
  42 }
  43 
  44 void AdvancedThresholdPolicy::initialize() {
  45   int count = CICompilerCount;
  46 #ifdef _LP64
  47   // Turn on ergonomic compiler count selection
  48   if (FLAG_IS_DEFAULT(CICompilerCountPerCPU) && FLAG_IS_DEFAULT(CICompilerCount)) {
  49     FLAG_SET_DEFAULT(CICompilerCountPerCPU, true);
  50   }
  51   if (CICompilerCountPerCPU) {
  52     // Simple log n seems to grow too slowly for tiered, try something faster: log n * log log n
  53     int log_cpu = log2_intptr(os::active_processor_count());
  54     int loglog_cpu = log2_intptr(MAX2(log_cpu, 1));
  55     count = MAX2(log_cpu * loglog_cpu, 1) * 3 / 2;
  56   }
  57 #else
  58   // On 32-bit systems, the number of compiler threads is limited to 3.
  59   // On these systems, the virtual address space available to the JVM
  60   // is usually limited to 2-4 GB (the exact value depends on the platform).
  61   // As the compilers (especially C2) can consume a large amount of
  62   // memory, scaling the number of compiler threads with the number of
  63   // available cores can result in the exhaustion of the address space
  64   /// available to the VM and thus cause the VM to crash.
  65   if (FLAG_IS_DEFAULT(CICompilerCount)) {
  66     count = 3;
  67   }
  68 #endif
  69 
  70   set_c1_count(MAX2(count / 3, 1));
  71   set_c2_count(MAX2(count - c1_count(), 1));
  72   FLAG_SET_ERGO(intx, CICompilerCount, c1_count() + c2_count());
  73 
  74   // Some inlining tuning
  75 #ifdef X86
  76   if (FLAG_IS_DEFAULT(InlineSmallCode)) {
  77     FLAG_SET_DEFAULT(InlineSmallCode, 2000);
  78   }
  79 #endif
  80 
  81 #if defined SPARC || defined AARCH64
  82   if (FLAG_IS_DEFAULT(InlineSmallCode)) {
  83     FLAG_SET_DEFAULT(InlineSmallCode, 2500);
  84   }
  85 #endif
  86 
  87   set_increase_threshold_at_ratio();
  88   set_start_time(os::javaTimeMillis());
  89 }
  90 
  91 // update_rate() is called from select_task() while holding a compile queue lock.
  92 void AdvancedThresholdPolicy::update_rate(jlong t, Method* m) {
  93   // Skip update if counters are absent.
  94   // Can't allocate them since we are holding compile queue lock.
  95   if (m->method_counters() == NULL)  return;
  96 
  97   if (is_old(m)) {
  98     // We don't remove old methods from the queue,
  99     // so we can just zero the rate.
 100     m->set_rate(0);
 101     return;
 102   }
 103 
 104   // We don't update the rate if we've just came out of a safepoint.
 105   // delta_s is the time since last safepoint in milliseconds.
 106   jlong delta_s = t - SafepointSynchronize::end_of_last_safepoint();
 107   jlong delta_t = t - (m->prev_time() != 0 ? m->prev_time() : start_time()); // milliseconds since the last measurement
 108   // How many events were there since the last time?
 109   int event_count = m->invocation_count() + m->backedge_count();
 110   int delta_e = event_count - m->prev_event_count();
 111 
 112   // We should be running for at least 1ms.
 113   if (delta_s >= TieredRateUpdateMinTime) {
 114     // And we must've taken the previous point at least 1ms before.
 115     if (delta_t >= TieredRateUpdateMinTime && delta_e > 0) {
 116       m->set_prev_time(t);
 117       m->set_prev_event_count(event_count);
 118       m->set_rate((float)delta_e / (float)delta_t); // Rate is events per millisecond
 119     } else {
 120       if (delta_t > TieredRateUpdateMaxTime && delta_e == 0) {
 121         // If nothing happened for 25ms, zero the rate. Don't modify prev values.
 122         m->set_rate(0);
 123       }
 124     }
 125   }
 126 }
 127 
 128 // Check if this method has been stale from a given number of milliseconds.
 129 // See select_task().
 130 bool AdvancedThresholdPolicy::is_stale(jlong t, jlong timeout, Method* m) {
 131   jlong delta_s = t - SafepointSynchronize::end_of_last_safepoint();
 132   jlong delta_t = t - m->prev_time();
 133   if (delta_t > timeout && delta_s > timeout) {
 134     int event_count = m->invocation_count() + m->backedge_count();
 135     int delta_e = event_count - m->prev_event_count();
 136     // Return true if there were no events.
 137     return delta_e == 0;
 138   }
 139   return false;
 140 }
 141 
 142 // We don't remove old methods from the compile queue even if they have
 143 // very low activity. See select_task().
 144 bool AdvancedThresholdPolicy::is_old(Method* method) {
 145   return method->invocation_count() > 50000 || method->backedge_count() > 500000;
 146 }
 147 
 148 double AdvancedThresholdPolicy::weight(Method* method) {
 149   return (double)(method->rate() + 1) *
 150     (method->invocation_count() + 1) * (method->backedge_count() + 1);
 151 }
 152 
 153 // Apply heuristics and return true if x should be compiled before y
 154 bool AdvancedThresholdPolicy::compare_methods(Method* x, Method* y) {
 155   if (x->highest_comp_level() > y->highest_comp_level()) {
 156     // recompilation after deopt
 157     return true;
 158   } else
 159     if (x->highest_comp_level() == y->highest_comp_level()) {
 160       if (weight(x) > weight(y)) {
 161         return true;
 162       }
 163     }
 164   return false;
 165 }
 166 
 167 // Is method profiled enough?
 168 bool AdvancedThresholdPolicy::is_method_profiled(Method* method) {
 169   MethodData* mdo = method->method_data();
 170   if (mdo != NULL) {
 171     int i = mdo->invocation_count_delta();
 172     int b = mdo->backedge_count_delta();
 173     return call_predicate_helper<CompLevel_full_profile>(i, b, 1, method);
 174   }
 175   return false;
 176 }
 177 
 178 // Called with the queue locked and with at least one element
 179 CompileTask* AdvancedThresholdPolicy::select_task(CompileQueue* compile_queue) {
 180 #if INCLUDE_JVMCI
 181   CompileTask *max_blocking_task = NULL;
 182 #endif
 183   CompileTask *max_task = NULL;
 184   Method* max_method = NULL;
 185   jlong t = os::javaTimeMillis();
 186   // Iterate through the queue and find a method with a maximum rate.
 187   for (CompileTask* task = compile_queue->first(); task != NULL;) {
 188     CompileTask* next_task = task->next();
 189     Method* method = task->method();
 190     update_rate(t, method);
 191     if (max_task == NULL) {
 192       max_task = task;
 193       max_method = method;
 194     } else {
 195       // If a method has been stale for some time, remove it from the queue.
 196       if (is_stale(t, TieredCompileTaskTimeout, method) && !is_old(method)) {
 197         if (PrintTieredEvents) {
 198           print_event(REMOVE_FROM_QUEUE, method, method, task->osr_bci(), (CompLevel)task->comp_level());
 199         }
 200         task->log_task_dequeued("stale");
 201         compile_queue->remove_and_mark_stale(task);
 202         method->clear_queued_for_compilation();
 203         task = next_task;
 204         continue;
 205       }
 206 
 207       // Select a method with a higher rate
 208       if (compare_methods(method, max_method)) {
 209         max_task = task;
 210         max_method = method;
 211       }
 212     }
 213 #if INCLUDE_JVMCI
 214     if (UseJVMCICompiler && task->is_blocking()) {
 215       if (max_blocking_task == NULL || compare_methods(method, max_blocking_task->method())) {
 216         max_blocking_task = task;
 217       }
 218     }
 219 #endif
 220     task = next_task;
 221   }
 222 
 223 #if INCLUDE_JVMCI
 224   if (UseJVMCICompiler) {
 225     if (max_blocking_task != NULL) {
 226       // In blocking compilation mode, the CompileBroker will make
 227       // compilations submitted by a JVMCI compiler thread non-blocking. These
 228       // compilations should be scheduled after all blocking compilations
 229       // to service non-compiler related compilations sooner and reduce the
 230       // chance of such compilations timing out.
 231       max_task = max_blocking_task;
 232       max_method = max_task->method();
 233     }
 234   }
 235 #endif
 236 
 237   if (max_task->comp_level() == CompLevel_full_profile && TieredStopAtLevel > CompLevel_full_profile
 238       && is_method_profiled(max_method)) {
 239     max_task->set_comp_level(CompLevel_limited_profile);
 240     if (PrintTieredEvents) {
 241       print_event(UPDATE_IN_QUEUE, max_method, max_method, max_task->osr_bci(), (CompLevel)max_task->comp_level());
 242     }
 243   }
 244 
 245   return max_task;
 246 }
 247 
 248 double AdvancedThresholdPolicy::threshold_scale(CompLevel level, int feedback_k) {
 249   double queue_size = CompileBroker::queue_size(level);
 250   int comp_count = compiler_count(level);
 251   double k = queue_size / (feedback_k * comp_count) + 1;
 252 
 253   // Increase C1 compile threshold when the code cache is filled more
 254   // than specified by IncreaseFirstTierCompileThresholdAt percentage.
 255   // The main intention is to keep enough free space for C2 compiled code
 256   // to achieve peak performance if the code cache is under stress.
 257   if ((TieredStopAtLevel == CompLevel_full_optimization) && (level != CompLevel_full_optimization))  {
 258     double current_reverse_free_ratio = CodeCache::reverse_free_ratio(CodeCache::get_code_blob_type(level));
 259     if (current_reverse_free_ratio > _increase_threshold_at_ratio) {
 260       k *= exp(current_reverse_free_ratio - _increase_threshold_at_ratio);
 261     }
 262   }
 263   return k;
 264 }
 265 
 266 // Call and loop predicates determine whether a transition to a higher
 267 // compilation level should be performed (pointers to predicate functions
 268 // are passed to common()).
 269 // Tier?LoadFeedback is basically a coefficient that determines of
 270 // how many methods per compiler thread can be in the queue before
 271 // the threshold values double.
 272 bool AdvancedThresholdPolicy::loop_predicate(int i, int b, CompLevel cur_level, Method* method) {
 273   switch(cur_level) {
 274   case CompLevel_none:
 275   case CompLevel_limited_profile: {
 276     double k = threshold_scale(CompLevel_full_profile, Tier3LoadFeedback);
 277     return loop_predicate_helper<CompLevel_none>(i, b, k, method);
 278   }
 279   case CompLevel_full_profile: {
 280     double k = threshold_scale(CompLevel_full_optimization, Tier4LoadFeedback);
 281     return loop_predicate_helper<CompLevel_full_profile>(i, b, k, method);
 282   }
 283   default:
 284     return true;
 285   }
 286 }
 287 
 288 bool AdvancedThresholdPolicy::call_predicate(int i, int b, CompLevel cur_level, Method* method) {
 289   switch(cur_level) {
 290   case CompLevel_none:
 291   case CompLevel_limited_profile: {
 292     double k = threshold_scale(CompLevel_full_profile, Tier3LoadFeedback);
 293     return call_predicate_helper<CompLevel_none>(i, b, k, method);
 294   }
 295   case CompLevel_full_profile: {
 296     double k = threshold_scale(CompLevel_full_optimization, Tier4LoadFeedback);
 297     return call_predicate_helper<CompLevel_full_profile>(i, b, k, method);
 298   }
 299   default:
 300     return true;
 301   }
 302 }
 303 
 304 // If a method is old enough and is still in the interpreter we would want to
 305 // start profiling without waiting for the compiled method to arrive.
 306 // We also take the load on compilers into the account.
 307 bool AdvancedThresholdPolicy::should_create_mdo(Method* method, CompLevel cur_level) {
 308   if (cur_level == CompLevel_none &&
 309       CompileBroker::queue_size(CompLevel_full_optimization) <=
 310       Tier3DelayOn * compiler_count(CompLevel_full_optimization)) {
 311     int i = method->invocation_count();
 312     int b = method->backedge_count();
 313     double k = Tier0ProfilingStartPercentage / 100.0;
 314     return call_predicate_helper<CompLevel_none>(i, b, k, method) || loop_predicate_helper<CompLevel_none>(i, b, k, method);
 315   }
 316   return false;
 317 }
 318 
 319 // Inlining control: if we're compiling a profiled method with C1 and the callee
 320 // is known to have OSRed in a C2 version, don't inline it.
 321 bool AdvancedThresholdPolicy::should_not_inline(ciEnv* env, ciMethod* callee) {
 322   CompLevel comp_level = (CompLevel)env->comp_level();
 323   if (comp_level == CompLevel_full_profile ||
 324       comp_level == CompLevel_limited_profile) {
 325     return callee->highest_osr_comp_level() == CompLevel_full_optimization;
 326   }
 327   return false;
 328 }
 329 
 330 // Create MDO if necessary.
 331 void AdvancedThresholdPolicy::create_mdo(methodHandle mh, JavaThread* THREAD) {
 332   if (mh->is_native() ||
 333       mh->is_abstract() ||
 334       mh->is_accessor() ||
 335       mh->is_constant_getter()) {
 336     return;
 337   }
 338   if (mh->method_data() == NULL) {
 339     Method::build_interpreter_method_data(mh, CHECK_AND_CLEAR);
 340   }
 341 }
 342 
 343 
 344 /*
 345  * Method states:
 346  *   0 - interpreter (CompLevel_none)
 347  *   1 - pure C1 (CompLevel_simple)
 348  *   2 - C1 with invocation and backedge counting (CompLevel_limited_profile)
 349  *   3 - C1 with full profiling (CompLevel_full_profile)
 350  *   4 - C2 (CompLevel_full_optimization)
 351  *
 352  * Common state transition patterns:
 353  * a. 0 -> 3 -> 4.
 354  *    The most common path. But note that even in this straightforward case
 355  *    profiling can start at level 0 and finish at level 3.
 356  *
 357  * b. 0 -> 2 -> 3 -> 4.
 358  *    This case occurs when the load on C2 is deemed too high. So, instead of transitioning
 359  *    into state 3 directly and over-profiling while a method is in the C2 queue we transition to
 360  *    level 2 and wait until the load on C2 decreases. This path is disabled for OSRs.
 361  *
 362  * c. 0 -> (3->2) -> 4.
 363  *    In this case we enqueue a method for compilation at level 3, but the C1 queue is long enough
 364  *    to enable the profiling to fully occur at level 0. In this case we change the compilation level
 365  *    of the method to 2 while the request is still in-queue, because it'll allow it to run much faster
 366  *    without full profiling while c2 is compiling.
 367  *
 368  * d. 0 -> 3 -> 1 or 0 -> 2 -> 1.
 369  *    After a method was once compiled with C1 it can be identified as trivial and be compiled to
 370  *    level 1. These transition can also occur if a method can't be compiled with C2 but can with C1.
 371  *
 372  * e. 0 -> 4.
 373  *    This can happen if a method fails C1 compilation (it will still be profiled in the interpreter)
 374  *    or because of a deopt that didn't require reprofiling (compilation won't happen in this case because
 375  *    the compiled version already exists).
 376  *
 377  * Note that since state 0 can be reached from any other state via deoptimization different loops
 378  * are possible.
 379  *
 380  */
 381 
 382 // Common transition function. Given a predicate determines if a method should transition to another level.
 383 CompLevel AdvancedThresholdPolicy::common(Predicate p, Method* method, CompLevel cur_level, bool disable_feedback) {
 384   CompLevel next_level = cur_level;
 385   int i = method->invocation_count();
 386   int b = method->backedge_count();
 387 
 388   if (is_trivial(method)) {
 389     next_level = CompLevel_simple;
 390   } else {
 391     switch(cur_level) {
 392     case CompLevel_none:
 393       // If we were at full profile level, would we switch to full opt?
 394       if (common(p, method, CompLevel_full_profile, disable_feedback) == CompLevel_full_optimization) {
 395         next_level = CompLevel_full_optimization;
 396       } else if ((this->*p)(i, b, cur_level, method)) {
 397 #if INCLUDE_JVMCI
 398         if (UseJVMCICompiler) {
 399           // Since JVMCI takes a while to warm up, its queue inevitably backs up during
 400           // early VM execution.
 401           next_level = CompLevel_full_profile;
 402           break;
 403         }
 404 #endif
 405         // C1-generated fully profiled code is about 30% slower than the limited profile
 406         // code that has only invocation and backedge counters. The observation is that
 407         // if C2 queue is large enough we can spend too much time in the fully profiled code
 408         // while waiting for C2 to pick the method from the queue. To alleviate this problem
 409         // we introduce a feedback on the C2 queue size. If the C2 queue is sufficiently long
 410         // we choose to compile a limited profiled version and then recompile with full profiling
 411         // when the load on C2 goes down.
 412         if (!disable_feedback && CompileBroker::queue_size(CompLevel_full_optimization) >
 413             Tier3DelayOn * compiler_count(CompLevel_full_optimization)) {
 414           next_level = CompLevel_limited_profile;
 415         } else {
 416           next_level = CompLevel_full_profile;
 417         }
 418       }
 419       break;
 420     case CompLevel_limited_profile:
 421       if (is_method_profiled(method)) {
 422         // Special case: we got here because this method was fully profiled in the interpreter.
 423         next_level = CompLevel_full_optimization;
 424       } else {
 425         MethodData* mdo = method->method_data();
 426         if (mdo != NULL) {
 427           if (mdo->would_profile()) {
 428             if (disable_feedback || (CompileBroker::queue_size(CompLevel_full_optimization) <=
 429                                      Tier3DelayOff * compiler_count(CompLevel_full_optimization) &&
 430                                      (this->*p)(i, b, cur_level, method))) {
 431               next_level = CompLevel_full_profile;
 432             }
 433           } else {
 434             next_level = CompLevel_full_optimization;
 435           }
 436         }
 437       }
 438       break;
 439     case CompLevel_full_profile:
 440       {
 441         MethodData* mdo = method->method_data();
 442         if (mdo != NULL) {
 443           if (mdo->would_profile()) {
 444             int mdo_i = mdo->invocation_count_delta();
 445             int mdo_b = mdo->backedge_count_delta();
 446             if ((this->*p)(mdo_i, mdo_b, cur_level, method)) {
 447               next_level = CompLevel_full_optimization;
 448             }
 449           } else {
 450             next_level = CompLevel_full_optimization;
 451           }
 452         }
 453       }
 454       break;
 455     }
 456   }
 457   return MIN2(next_level, (CompLevel)TieredStopAtLevel);
 458 }
 459 
 460 // Determine if a method should be compiled with a normal entry point at a different level.
 461 CompLevel AdvancedThresholdPolicy::call_event(Method* method, CompLevel cur_level) {
 462   CompLevel osr_level = MIN2((CompLevel) method->highest_osr_comp_level(),
 463                              common(&AdvancedThresholdPolicy::loop_predicate, method, cur_level, true));
 464   CompLevel next_level = common(&AdvancedThresholdPolicy::call_predicate, method, cur_level);
 465 
 466   // If OSR method level is greater than the regular method level, the levels should be
 467   // equalized by raising the regular method level in order to avoid OSRs during each
 468   // invocation of the method.
 469   if (osr_level == CompLevel_full_optimization && cur_level == CompLevel_full_profile) {
 470     MethodData* mdo = method->method_data();
 471     guarantee(mdo != NULL, "MDO should not be NULL");
 472     if (mdo->invocation_count() >= 1) {
 473       next_level = CompLevel_full_optimization;
 474     }
 475   } else {
 476     next_level = MAX2(osr_level, next_level);
 477   }
 478   return next_level;
 479 }
 480 
 481 // Determine if we should do an OSR compilation of a given method.
 482 CompLevel AdvancedThresholdPolicy::loop_event(Method* method, CompLevel cur_level) {
 483   CompLevel next_level = common(&AdvancedThresholdPolicy::loop_predicate, method, cur_level, true);
 484   if (cur_level == CompLevel_none) {
 485     // If there is a live OSR method that means that we deopted to the interpreter
 486     // for the transition.
 487     CompLevel osr_level = MIN2((CompLevel)method->highest_osr_comp_level(), next_level);
 488     if (osr_level > CompLevel_none) {
 489       return osr_level;
 490     }
 491   }
 492   return next_level;
 493 }
 494 
 495 // Update the rate and submit compile
 496 void AdvancedThresholdPolicy::submit_compile(const methodHandle& mh, int bci, CompLevel level, JavaThread* thread) {
 497   int hot_count = (bci == InvocationEntryBci) ? mh->invocation_count() : mh->backedge_count();
 498   update_rate(os::javaTimeMillis(), mh());
 499   CompileBroker::compile_method(mh, bci, level, mh, hot_count, "tiered", thread);
 500 }
 501 
 502 // Handle the invocation event.
 503 void AdvancedThresholdPolicy::method_invocation_event(const methodHandle& mh, const methodHandle& imh,
 504                                                       CompLevel level, nmethod* nm, JavaThread* thread) {
 505   if (should_create_mdo(mh(), level)) {
 506     create_mdo(mh, thread);
 507   }
 508   if (is_compilation_enabled() && !CompileBroker::compilation_is_in_queue(mh)) {
 509     CompLevel next_level = call_event(mh(), level);
 510     if (next_level != level) {
 511       compile(mh, InvocationEntryBci, next_level, thread);
 512     }
 513   }
 514 }
 515 
 516 // Handle the back branch event. Notice that we can compile the method
 517 // with a regular entry from here.
 518 void AdvancedThresholdPolicy::method_back_branch_event(const methodHandle& mh, const methodHandle& imh,
 519                                                        int bci, CompLevel level, nmethod* nm, JavaThread* thread) {
 520   if (should_create_mdo(mh(), level)) {
 521     create_mdo(mh, thread);
 522   }
 523   // Check if MDO should be created for the inlined method
 524   if (should_create_mdo(imh(), level)) {
 525     create_mdo(imh, thread);
 526   }
 527 
 528   if (is_compilation_enabled()) {
 529     CompLevel next_osr_level = loop_event(imh(), level);
 530     CompLevel max_osr_level = (CompLevel)imh->highest_osr_comp_level();
 531     // At the very least compile the OSR version
 532     if (!CompileBroker::compilation_is_in_queue(imh) && (next_osr_level != level)) {
 533       compile(imh, bci, next_osr_level, thread);
 534     }
 535 
 536     // Use loop event as an opportunity to also check if there's been
 537     // enough calls.
 538     CompLevel cur_level, next_level;
 539     if (mh() != imh()) { // If there is an enclosing method
 540       guarantee(nm != NULL, "Should have nmethod here");
 541       cur_level = comp_level(mh());
 542       next_level = call_event(mh(), cur_level);
 543 
 544       if (max_osr_level == CompLevel_full_optimization) {
 545         // The inlinee OSRed to full opt, we need to modify the enclosing method to avoid deopts
 546         bool make_not_entrant = false;
 547         if (nm->is_osr_method()) {
 548           // This is an osr method, just make it not entrant and recompile later if needed
 549           make_not_entrant = true;
 550         } else {
 551           if (next_level != CompLevel_full_optimization) {
 552             // next_level is not full opt, so we need to recompile the
 553             // enclosing method without the inlinee
 554             cur_level = CompLevel_none;
 555             make_not_entrant = true;
 556           }
 557         }
 558         if (make_not_entrant) {
 559           if (PrintTieredEvents) {
 560             int osr_bci = nm->is_osr_method() ? nm->osr_entry_bci() : InvocationEntryBci;
 561             print_event(MAKE_NOT_ENTRANT, mh(), mh(), osr_bci, level);
 562           }
 563           nm->make_not_entrant();
 564         }
 565       }
 566       if (!CompileBroker::compilation_is_in_queue(mh)) {
 567         // Fix up next_level if necessary to avoid deopts
 568         if (next_level == CompLevel_limited_profile && max_osr_level == CompLevel_full_profile) {
 569           next_level = CompLevel_full_profile;
 570         }
 571         if (cur_level != next_level) {
 572           compile(mh, InvocationEntryBci, next_level, thread);
 573         }
 574       }
 575     } else {
 576       cur_level = comp_level(imh());
 577       next_level = call_event(imh(), cur_level);
 578       if (!CompileBroker::compilation_is_in_queue(imh) && (next_level != cur_level)) {
 579         compile(imh, InvocationEntryBci, next_level, thread);
 580       }
 581     }
 582   }
 583 }
 584 
 585 #endif // TIERED