1 /*
   2  * Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/macroAssembler.hpp"
  27 #include "asm/macroAssembler.inline.hpp"
  28 #include "ci/ciReplay.hpp"
  29 #include "classfile/systemDictionary.hpp"
  30 #include "code/exceptionHandlerTable.hpp"
  31 #include "code/nmethod.hpp"
  32 #include "compiler/compileBroker.hpp"
  33 #include "compiler/compileLog.hpp"
  34 #include "compiler/disassembler.hpp"
  35 #include "compiler/oopMap.hpp"
  36 #include "memory/resourceArea.hpp"
  37 #include "opto/addnode.hpp"
  38 #include "opto/block.hpp"
  39 #include "opto/c2compiler.hpp"
  40 #include "opto/callGenerator.hpp"
  41 #include "opto/callnode.hpp"
  42 #include "opto/castnode.hpp"
  43 #include "opto/cfgnode.hpp"
  44 #include "opto/chaitin.hpp"
  45 #include "opto/compile.hpp"
  46 #include "opto/connode.hpp"
  47 #include "opto/convertnode.hpp"
  48 #include "opto/divnode.hpp"
  49 #include "opto/escape.hpp"
  50 #include "opto/idealGraphPrinter.hpp"
  51 #include "opto/loopnode.hpp"
  52 #include "opto/machnode.hpp"
  53 #include "opto/macro.hpp"
  54 #include "opto/matcher.hpp"
  55 #include "opto/mathexactnode.hpp"
  56 #include "opto/memnode.hpp"
  57 #include "opto/mulnode.hpp"
  58 #include "opto/narrowptrnode.hpp"
  59 #include "opto/node.hpp"
  60 #include "opto/opcodes.hpp"
  61 #include "opto/output.hpp"
  62 #include "opto/parse.hpp"
  63 #include "opto/phaseX.hpp"
  64 #include "opto/rootnode.hpp"
  65 #include "opto/runtime.hpp"
  66 #include "opto/stringopts.hpp"
  67 #include "opto/type.hpp"
  68 #include "opto/vectornode.hpp"
  69 #include "runtime/arguments.hpp"
  70 #include "runtime/sharedRuntime.hpp"
  71 #include "runtime/signature.hpp"
  72 #include "runtime/stubRoutines.hpp"
  73 #include "runtime/timer.hpp"
  74 #include "utilities/align.hpp"
  75 #include "utilities/copy.hpp"
  76 
  77 
  78 // -------------------- Compile::mach_constant_base_node -----------------------
  79 // Constant table base node singleton.
  80 MachConstantBaseNode* Compile::mach_constant_base_node() {
  81   if (_mach_constant_base_node == NULL) {
  82     _mach_constant_base_node = new MachConstantBaseNode();
  83     _mach_constant_base_node->add_req(C->root());
  84   }
  85   return _mach_constant_base_node;
  86 }
  87 
  88 
  89 /// Support for intrinsics.
  90 
  91 // Return the index at which m must be inserted (or already exists).
  92 // The sort order is by the address of the ciMethod, with is_virtual as minor key.
  93 class IntrinsicDescPair {
  94  private:
  95   ciMethod* _m;
  96   bool _is_virtual;
  97  public:
  98   IntrinsicDescPair(ciMethod* m, bool is_virtual) : _m(m), _is_virtual(is_virtual) {}
  99   static int compare(IntrinsicDescPair* const& key, CallGenerator* const& elt) {
 100     ciMethod* m= elt->method();
 101     ciMethod* key_m = key->_m;
 102     if (key_m < m)      return -1;
 103     else if (key_m > m) return 1;
 104     else {
 105       bool is_virtual = elt->is_virtual();
 106       bool key_virtual = key->_is_virtual;
 107       if (key_virtual < is_virtual)      return -1;
 108       else if (key_virtual > is_virtual) return 1;
 109       else                               return 0;
 110     }
 111   }
 112 };
 113 int Compile::intrinsic_insertion_index(ciMethod* m, bool is_virtual, bool& found) {
 114 #ifdef ASSERT
 115   for (int i = 1; i < _intrinsics->length(); i++) {
 116     CallGenerator* cg1 = _intrinsics->at(i-1);
 117     CallGenerator* cg2 = _intrinsics->at(i);
 118     assert(cg1->method() != cg2->method()
 119            ? cg1->method()     < cg2->method()
 120            : cg1->is_virtual() < cg2->is_virtual(),
 121            "compiler intrinsics list must stay sorted");
 122   }
 123 #endif
 124   IntrinsicDescPair pair(m, is_virtual);
 125   return _intrinsics->find_sorted<IntrinsicDescPair*, IntrinsicDescPair::compare>(&pair, found);
 126 }
 127 
 128 void Compile::register_intrinsic(CallGenerator* cg) {
 129   if (_intrinsics == NULL) {
 130     _intrinsics = new (comp_arena())GrowableArray<CallGenerator*>(comp_arena(), 60, 0, NULL);
 131   }
 132   int len = _intrinsics->length();
 133   bool found = false;
 134   int index = intrinsic_insertion_index(cg->method(), cg->is_virtual(), found);
 135   assert(!found, "registering twice");
 136   _intrinsics->insert_before(index, cg);
 137   assert(find_intrinsic(cg->method(), cg->is_virtual()) == cg, "registration worked");
 138 }
 139 
 140 CallGenerator* Compile::find_intrinsic(ciMethod* m, bool is_virtual) {
 141   assert(m->is_loaded(), "don't try this on unloaded methods");
 142   if (_intrinsics != NULL) {
 143     bool found = false;
 144     int index = intrinsic_insertion_index(m, is_virtual, found);
 145      if (found) {
 146       return _intrinsics->at(index);
 147     }
 148   }
 149   // Lazily create intrinsics for intrinsic IDs well-known in the runtime.
 150   if (m->intrinsic_id() != vmIntrinsics::_none &&
 151       m->intrinsic_id() <= vmIntrinsics::LAST_COMPILER_INLINE) {
 152     CallGenerator* cg = make_vm_intrinsic(m, is_virtual);
 153     if (cg != NULL) {
 154       // Save it for next time:
 155       register_intrinsic(cg);
 156       return cg;
 157     } else {
 158       gather_intrinsic_statistics(m->intrinsic_id(), is_virtual, _intrinsic_disabled);
 159     }
 160   }
 161   return NULL;
 162 }
 163 
 164 // Compile:: register_library_intrinsics and make_vm_intrinsic are defined
 165 // in library_call.cpp.
 166 
 167 
 168 #ifndef PRODUCT
 169 // statistics gathering...
 170 
 171 juint  Compile::_intrinsic_hist_count[vmIntrinsics::ID_LIMIT] = {0};
 172 jubyte Compile::_intrinsic_hist_flags[vmIntrinsics::ID_LIMIT] = {0};
 173 
 174 bool Compile::gather_intrinsic_statistics(vmIntrinsics::ID id, bool is_virtual, int flags) {
 175   assert(id > vmIntrinsics::_none && id < vmIntrinsics::ID_LIMIT, "oob");
 176   int oflags = _intrinsic_hist_flags[id];
 177   assert(flags != 0, "what happened?");
 178   if (is_virtual) {
 179     flags |= _intrinsic_virtual;
 180   }
 181   bool changed = (flags != oflags);
 182   if ((flags & _intrinsic_worked) != 0) {
 183     juint count = (_intrinsic_hist_count[id] += 1);
 184     if (count == 1) {
 185       changed = true;           // first time
 186     }
 187     // increment the overall count also:
 188     _intrinsic_hist_count[vmIntrinsics::_none] += 1;
 189   }
 190   if (changed) {
 191     if (((oflags ^ flags) & _intrinsic_virtual) != 0) {
 192       // Something changed about the intrinsic's virtuality.
 193       if ((flags & _intrinsic_virtual) != 0) {
 194         // This is the first use of this intrinsic as a virtual call.
 195         if (oflags != 0) {
 196           // We already saw it as a non-virtual, so note both cases.
 197           flags |= _intrinsic_both;
 198         }
 199       } else if ((oflags & _intrinsic_both) == 0) {
 200         // This is the first use of this intrinsic as a non-virtual
 201         flags |= _intrinsic_both;
 202       }
 203     }
 204     _intrinsic_hist_flags[id] = (jubyte) (oflags | flags);
 205   }
 206   // update the overall flags also:
 207   _intrinsic_hist_flags[vmIntrinsics::_none] |= (jubyte) flags;
 208   return changed;
 209 }
 210 
 211 static char* format_flags(int flags, char* buf) {
 212   buf[0] = 0;
 213   if ((flags & Compile::_intrinsic_worked) != 0)    strcat(buf, ",worked");
 214   if ((flags & Compile::_intrinsic_failed) != 0)    strcat(buf, ",failed");
 215   if ((flags & Compile::_intrinsic_disabled) != 0)  strcat(buf, ",disabled");
 216   if ((flags & Compile::_intrinsic_virtual) != 0)   strcat(buf, ",virtual");
 217   if ((flags & Compile::_intrinsic_both) != 0)      strcat(buf, ",nonvirtual");
 218   if (buf[0] == 0)  strcat(buf, ",");
 219   assert(buf[0] == ',', "must be");
 220   return &buf[1];
 221 }
 222 
 223 void Compile::print_intrinsic_statistics() {
 224   char flagsbuf[100];
 225   ttyLocker ttyl;
 226   if (xtty != NULL)  xtty->head("statistics type='intrinsic'");
 227   tty->print_cr("Compiler intrinsic usage:");
 228   juint total = _intrinsic_hist_count[vmIntrinsics::_none];
 229   if (total == 0)  total = 1;  // avoid div0 in case of no successes
 230   #define PRINT_STAT_LINE(name, c, f) \
 231     tty->print_cr("  %4d (%4.1f%%) %s (%s)", (int)(c), ((c) * 100.0) / total, name, f);
 232   for (int index = 1 + (int)vmIntrinsics::_none; index < (int)vmIntrinsics::ID_LIMIT; index++) {
 233     vmIntrinsics::ID id = (vmIntrinsics::ID) index;
 234     int   flags = _intrinsic_hist_flags[id];
 235     juint count = _intrinsic_hist_count[id];
 236     if ((flags | count) != 0) {
 237       PRINT_STAT_LINE(vmIntrinsics::name_at(id), count, format_flags(flags, flagsbuf));
 238     }
 239   }
 240   PRINT_STAT_LINE("total", total, format_flags(_intrinsic_hist_flags[vmIntrinsics::_none], flagsbuf));
 241   if (xtty != NULL)  xtty->tail("statistics");
 242 }
 243 
 244 void Compile::print_statistics() {
 245   { ttyLocker ttyl;
 246     if (xtty != NULL)  xtty->head("statistics type='opto'");
 247     Parse::print_statistics();
 248     PhaseCCP::print_statistics();
 249     PhaseRegAlloc::print_statistics();
 250     Scheduling::print_statistics();
 251     PhasePeephole::print_statistics();
 252     PhaseIdealLoop::print_statistics();
 253     if (xtty != NULL)  xtty->tail("statistics");
 254   }
 255   if (_intrinsic_hist_flags[vmIntrinsics::_none] != 0) {
 256     // put this under its own <statistics> element.
 257     print_intrinsic_statistics();
 258   }
 259 }
 260 #endif //PRODUCT
 261 
 262 // Support for bundling info
 263 Bundle* Compile::node_bundling(const Node *n) {
 264   assert(valid_bundle_info(n), "oob");
 265   return &_node_bundling_base[n->_idx];
 266 }
 267 
 268 bool Compile::valid_bundle_info(const Node *n) {
 269   return (_node_bundling_limit > n->_idx);
 270 }
 271 
 272 
 273 void Compile::gvn_replace_by(Node* n, Node* nn) {
 274   for (DUIterator_Last imin, i = n->last_outs(imin); i >= imin; ) {
 275     Node* use = n->last_out(i);
 276     bool is_in_table = initial_gvn()->hash_delete(use);
 277     uint uses_found = 0;
 278     for (uint j = 0; j < use->len(); j++) {
 279       if (use->in(j) == n) {
 280         if (j < use->req())
 281           use->set_req(j, nn);
 282         else
 283           use->set_prec(j, nn);
 284         uses_found++;
 285       }
 286     }
 287     if (is_in_table) {
 288       // reinsert into table
 289       initial_gvn()->hash_find_insert(use);
 290     }
 291     record_for_igvn(use);
 292     i -= uses_found;    // we deleted 1 or more copies of this edge
 293   }
 294 }
 295 
 296 
 297 static inline bool not_a_node(const Node* n) {
 298   if (n == NULL)                   return true;
 299   if (((intptr_t)n & 1) != 0)      return true;  // uninitialized, etc.
 300   if (*(address*)n == badAddress)  return true;  // kill by Node::destruct
 301   return false;
 302 }
 303 
 304 // Identify all nodes that are reachable from below, useful.
 305 // Use breadth-first pass that records state in a Unique_Node_List,
 306 // recursive traversal is slower.
 307 void Compile::identify_useful_nodes(Unique_Node_List &useful) {
 308   int estimated_worklist_size = live_nodes();
 309   useful.map( estimated_worklist_size, NULL );  // preallocate space
 310 
 311   // Initialize worklist
 312   if (root() != NULL)     { useful.push(root()); }
 313   // If 'top' is cached, declare it useful to preserve cached node
 314   if( cached_top_node() ) { useful.push(cached_top_node()); }
 315 
 316   // Push all useful nodes onto the list, breadthfirst
 317   for( uint next = 0; next < useful.size(); ++next ) {
 318     assert( next < unique(), "Unique useful nodes < total nodes");
 319     Node *n  = useful.at(next);
 320     uint max = n->len();
 321     for( uint i = 0; i < max; ++i ) {
 322       Node *m = n->in(i);
 323       if (not_a_node(m))  continue;
 324       useful.push(m);
 325     }
 326   }
 327 }
 328 
 329 // Update dead_node_list with any missing dead nodes using useful
 330 // list. Consider all non-useful nodes to be useless i.e., dead nodes.
 331 void Compile::update_dead_node_list(Unique_Node_List &useful) {
 332   uint max_idx = unique();
 333   VectorSet& useful_node_set = useful.member_set();
 334 
 335   for (uint node_idx = 0; node_idx < max_idx; node_idx++) {
 336     // If node with index node_idx is not in useful set,
 337     // mark it as dead in dead node list.
 338     if (! useful_node_set.test(node_idx) ) {
 339       record_dead_node(node_idx);
 340     }
 341   }
 342 }
 343 
 344 void Compile::remove_useless_late_inlines(GrowableArray<CallGenerator*>* inlines, Unique_Node_List &useful) {
 345   int shift = 0;
 346   for (int i = 0; i < inlines->length(); i++) {
 347     CallGenerator* cg = inlines->at(i);
 348     CallNode* call = cg->call_node();
 349     if (shift > 0) {
 350       inlines->at_put(i-shift, cg);
 351     }
 352     if (!useful.member(call)) {
 353       shift++;
 354     }
 355   }
 356   inlines->trunc_to(inlines->length()-shift);
 357 }
 358 
 359 // Disconnect all useless nodes by disconnecting those at the boundary.
 360 void Compile::remove_useless_nodes(Unique_Node_List &useful) {
 361   uint next = 0;
 362   while (next < useful.size()) {
 363     Node *n = useful.at(next++);
 364     if (n->is_SafePoint()) {
 365       // We're done with a parsing phase. Replaced nodes are not valid
 366       // beyond that point.
 367       n->as_SafePoint()->delete_replaced_nodes();
 368     }
 369     // Use raw traversal of out edges since this code removes out edges
 370     int max = n->outcnt();
 371     for (int j = 0; j < max; ++j) {
 372       Node* child = n->raw_out(j);
 373       if (! useful.member(child)) {
 374         assert(!child->is_top() || child != top(),
 375                "If top is cached in Compile object it is in useful list");
 376         // Only need to remove this out-edge to the useless node
 377         n->raw_del_out(j);
 378         --j;
 379         --max;
 380       }
 381     }
 382     if (n->outcnt() == 1 && n->has_special_unique_user()) {
 383       record_for_igvn(n->unique_out());
 384     }
 385   }
 386   // Remove useless macro and predicate opaq nodes
 387   for (int i = C->macro_count()-1; i >= 0; i--) {
 388     Node* n = C->macro_node(i);
 389     if (!useful.member(n)) {
 390       remove_macro_node(n);
 391     }
 392   }
 393   // Remove useless CastII nodes with range check dependency
 394   for (int i = range_check_cast_count() - 1; i >= 0; i--) {
 395     Node* cast = range_check_cast_node(i);
 396     if (!useful.member(cast)) {
 397       remove_range_check_cast(cast);
 398     }
 399   }
 400   // Remove useless expensive node
 401   for (int i = C->expensive_count()-1; i >= 0; i--) {
 402     Node* n = C->expensive_node(i);
 403     if (!useful.member(n)) {
 404       remove_expensive_node(n);
 405     }
 406   }
 407   // clean up the late inline lists
 408   remove_useless_late_inlines(&_string_late_inlines, useful);
 409   remove_useless_late_inlines(&_boxing_late_inlines, useful);
 410   remove_useless_late_inlines(&_late_inlines, useful);
 411   debug_only(verify_graph_edges(true/*check for no_dead_code*/);)
 412 }
 413 
 414 //------------------------------frame_size_in_words-----------------------------
 415 // frame_slots in units of words
 416 int Compile::frame_size_in_words() const {
 417   // shift is 0 in LP32 and 1 in LP64
 418   const int shift = (LogBytesPerWord - LogBytesPerInt);
 419   int words = _frame_slots >> shift;
 420   assert( words << shift == _frame_slots, "frame size must be properly aligned in LP64" );
 421   return words;
 422 }
 423 
 424 // To bang the stack of this compiled method we use the stack size
 425 // that the interpreter would need in case of a deoptimization. This
 426 // removes the need to bang the stack in the deoptimization blob which
 427 // in turn simplifies stack overflow handling.
 428 int Compile::bang_size_in_bytes() const {
 429   return MAX2(frame_size_in_bytes() + os::extra_bang_size_in_bytes(), _interpreter_frame_size);
 430 }
 431 
 432 // ============================================================================
 433 //------------------------------CompileWrapper---------------------------------
 434 class CompileWrapper : public StackObj {
 435   Compile *const _compile;
 436  public:
 437   CompileWrapper(Compile* compile);
 438 
 439   ~CompileWrapper();
 440 };
 441 
 442 CompileWrapper::CompileWrapper(Compile* compile) : _compile(compile) {
 443   // the Compile* pointer is stored in the current ciEnv:
 444   ciEnv* env = compile->env();
 445   assert(env == ciEnv::current(), "must already be a ciEnv active");
 446   assert(env->compiler_data() == NULL, "compile already active?");
 447   env->set_compiler_data(compile);
 448   assert(compile == Compile::current(), "sanity");
 449 
 450   compile->set_type_dict(NULL);
 451   compile->set_clone_map(new Dict(cmpkey, hashkey, _compile->comp_arena()));
 452   compile->clone_map().set_clone_idx(0);
 453   compile->set_type_hwm(NULL);
 454   compile->set_type_last_size(0);
 455   compile->set_last_tf(NULL, NULL);
 456   compile->set_indexSet_arena(NULL);
 457   compile->set_indexSet_free_block_list(NULL);
 458   compile->init_type_arena();
 459   Type::Initialize(compile);
 460   _compile->set_scratch_buffer_blob(NULL);
 461   _compile->begin_method();
 462   _compile->clone_map().set_debug(_compile->has_method() && _compile->directive()->CloneMapDebugOption);
 463 }
 464 CompileWrapper::~CompileWrapper() {
 465   _compile->end_method();
 466   if (_compile->scratch_buffer_blob() != NULL)
 467     BufferBlob::free(_compile->scratch_buffer_blob());
 468   _compile->env()->set_compiler_data(NULL);
 469 }
 470 
 471 
 472 //----------------------------print_compile_messages---------------------------
 473 void Compile::print_compile_messages() {
 474 #ifndef PRODUCT
 475   // Check if recompiling
 476   if (_subsume_loads == false && PrintOpto) {
 477     // Recompiling without allowing machine instructions to subsume loads
 478     tty->print_cr("*********************************************************");
 479     tty->print_cr("** Bailout: Recompile without subsuming loads          **");
 480     tty->print_cr("*********************************************************");
 481   }
 482   if (_do_escape_analysis != DoEscapeAnalysis && PrintOpto) {
 483     // Recompiling without escape analysis
 484     tty->print_cr("*********************************************************");
 485     tty->print_cr("** Bailout: Recompile without escape analysis          **");
 486     tty->print_cr("*********************************************************");
 487   }
 488   if (_eliminate_boxing != EliminateAutoBox && PrintOpto) {
 489     // Recompiling without boxing elimination
 490     tty->print_cr("*********************************************************");
 491     tty->print_cr("** Bailout: Recompile without boxing elimination       **");
 492     tty->print_cr("*********************************************************");
 493   }
 494   if (C->directive()->BreakAtCompileOption) {
 495     // Open the debugger when compiling this method.
 496     tty->print("### Breaking when compiling: ");
 497     method()->print_short_name();
 498     tty->cr();
 499     BREAKPOINT;
 500   }
 501 
 502   if( PrintOpto ) {
 503     if (is_osr_compilation()) {
 504       tty->print("[OSR]%3d", _compile_id);
 505     } else {
 506       tty->print("%3d", _compile_id);
 507     }
 508   }
 509 #endif
 510 }
 511 
 512 
 513 //-----------------------init_scratch_buffer_blob------------------------------
 514 // Construct a temporary BufferBlob and cache it for this compile.
 515 void Compile::init_scratch_buffer_blob(int const_size) {
 516   // If there is already a scratch buffer blob allocated and the
 517   // constant section is big enough, use it.  Otherwise free the
 518   // current and allocate a new one.
 519   BufferBlob* blob = scratch_buffer_blob();
 520   if ((blob != NULL) && (const_size <= _scratch_const_size)) {
 521     // Use the current blob.
 522   } else {
 523     if (blob != NULL) {
 524       BufferBlob::free(blob);
 525     }
 526 
 527     ResourceMark rm;
 528     _scratch_const_size = const_size;
 529     int size = (MAX_inst_size + MAX_stubs_size + _scratch_const_size);
 530     blob = BufferBlob::create("Compile::scratch_buffer", size);
 531     // Record the buffer blob for next time.
 532     set_scratch_buffer_blob(blob);
 533     // Have we run out of code space?
 534     if (scratch_buffer_blob() == NULL) {
 535       // Let CompilerBroker disable further compilations.
 536       record_failure("Not enough space for scratch buffer in CodeCache");
 537       return;
 538     }
 539   }
 540 
 541   // Initialize the relocation buffers
 542   relocInfo* locs_buf = (relocInfo*) blob->content_end() - MAX_locs_size;
 543   set_scratch_locs_memory(locs_buf);
 544 }
 545 
 546 
 547 //-----------------------scratch_emit_size-------------------------------------
 548 // Helper function that computes size by emitting code
 549 uint Compile::scratch_emit_size(const Node* n) {
 550   // Start scratch_emit_size section.
 551   set_in_scratch_emit_size(true);
 552 
 553   // Emit into a trash buffer and count bytes emitted.
 554   // This is a pretty expensive way to compute a size,
 555   // but it works well enough if seldom used.
 556   // All common fixed-size instructions are given a size
 557   // method by the AD file.
 558   // Note that the scratch buffer blob and locs memory are
 559   // allocated at the beginning of the compile task, and
 560   // may be shared by several calls to scratch_emit_size.
 561   // The allocation of the scratch buffer blob is particularly
 562   // expensive, since it has to grab the code cache lock.
 563   BufferBlob* blob = this->scratch_buffer_blob();
 564   assert(blob != NULL, "Initialize BufferBlob at start");
 565   assert(blob->size() > MAX_inst_size, "sanity");
 566   relocInfo* locs_buf = scratch_locs_memory();
 567   address blob_begin = blob->content_begin();
 568   address blob_end   = (address)locs_buf;
 569   assert(blob->contains(blob_end), "sanity");
 570   CodeBuffer buf(blob_begin, blob_end - blob_begin);
 571   buf.initialize_consts_size(_scratch_const_size);
 572   buf.initialize_stubs_size(MAX_stubs_size);
 573   assert(locs_buf != NULL, "sanity");
 574   int lsize = MAX_locs_size / 3;
 575   buf.consts()->initialize_shared_locs(&locs_buf[lsize * 0], lsize);
 576   buf.insts()->initialize_shared_locs( &locs_buf[lsize * 1], lsize);
 577   buf.stubs()->initialize_shared_locs( &locs_buf[lsize * 2], lsize);
 578   // Mark as scratch buffer.
 579   buf.consts()->set_scratch_emit();
 580   buf.insts()->set_scratch_emit();
 581   buf.stubs()->set_scratch_emit();
 582 
 583   // Do the emission.
 584 
 585   Label fakeL; // Fake label for branch instructions.
 586   Label*   saveL = NULL;
 587   uint save_bnum = 0;
 588   bool is_branch = n->is_MachBranch();
 589   if (is_branch) {
 590     MacroAssembler masm(&buf);
 591     masm.bind(fakeL);
 592     n->as_MachBranch()->save_label(&saveL, &save_bnum);
 593     n->as_MachBranch()->label_set(&fakeL, 0);
 594   }
 595   n->emit(buf, this->regalloc());
 596 
 597   // Emitting into the scratch buffer should not fail
 598   assert (!failing(), "Must not have pending failure. Reason is: %s", failure_reason());
 599 
 600   if (is_branch) // Restore label.
 601     n->as_MachBranch()->label_set(saveL, save_bnum);
 602 
 603   // End scratch_emit_size section.
 604   set_in_scratch_emit_size(false);
 605 
 606   return buf.insts_size();
 607 }
 608 
 609 
 610 // ============================================================================
 611 //------------------------------Compile standard-------------------------------
 612 debug_only( int Compile::_debug_idx = 100000; )
 613 
 614 // Compile a method.  entry_bci is -1 for normal compilations and indicates
 615 // the continuation bci for on stack replacement.
 616 
 617 
 618 Compile::Compile( ciEnv* ci_env, C2Compiler* compiler, ciMethod* target, int osr_bci,
 619                   bool subsume_loads, bool do_escape_analysis, bool eliminate_boxing, DirectiveSet* directive)
 620                 : Phase(Compiler),
 621                   _env(ci_env),
 622                   _directive(directive),
 623                   _log(ci_env->log()),
 624                   _compile_id(ci_env->compile_id()),
 625                   _save_argument_registers(false),
 626                   _stub_name(NULL),
 627                   _stub_function(NULL),
 628                   _stub_entry_point(NULL),
 629                   _method(target),
 630                   _entry_bci(osr_bci),
 631                   _initial_gvn(NULL),
 632                   _for_igvn(NULL),
 633                   _warm_calls(NULL),
 634                   _subsume_loads(subsume_loads),
 635                   _do_escape_analysis(do_escape_analysis),
 636                   _eliminate_boxing(eliminate_boxing),
 637                   _failure_reason(NULL),
 638                   _code_buffer("Compile::Fill_buffer"),
 639                   _orig_pc_slot(0),
 640                   _orig_pc_slot_offset_in_bytes(0),
 641                   _has_method_handle_invokes(false),
 642                   _mach_constant_base_node(NULL),
 643                   _node_bundling_limit(0),
 644                   _node_bundling_base(NULL),
 645                   _java_calls(0),
 646                   _inner_loops(0),
 647                   _scratch_const_size(-1),
 648                   _in_scratch_emit_size(false),
 649                   _dead_node_list(comp_arena()),
 650                   _dead_node_count(0),
 651 #ifndef PRODUCT
 652                   _trace_opto_output(directive->TraceOptoOutputOption),
 653                   _in_dump_cnt(0),
 654                   _printer(IdealGraphPrinter::printer()),
 655 #endif
 656                   _congraph(NULL),
 657                   _comp_arena(mtCompiler),
 658                   _node_arena(mtCompiler),
 659                   _old_arena(mtCompiler),
 660                   _Compile_types(mtCompiler),
 661                   _replay_inline_data(NULL),
 662                   _late_inlines(comp_arena(), 2, 0, NULL),
 663                   _string_late_inlines(comp_arena(), 2, 0, NULL),
 664                   _boxing_late_inlines(comp_arena(), 2, 0, NULL),
 665                   _late_inlines_pos(0),
 666                   _number_of_mh_late_inlines(0),
 667                   _inlining_progress(false),
 668                   _inlining_incrementally(false),
 669                   _print_inlining_list(NULL),
 670                   _print_inlining_stream(NULL),
 671                   _print_inlining_idx(0),
 672                   _print_inlining_output(NULL),
 673                   _interpreter_frame_size(0),
 674                   _max_node_limit(MaxNodeLimit),
 675                   _has_reserved_stack_access(target->has_reserved_stack_access()) {
 676   C = this;
 677 #ifndef PRODUCT
 678   if (_printer != NULL) {
 679     _printer->set_compile(this);
 680   }
 681 #endif
 682   CompileWrapper cw(this);
 683 
 684   if (CITimeVerbose) {
 685     tty->print(" ");
 686     target->holder()->name()->print();
 687     tty->print(".");
 688     target->print_short_name();
 689     tty->print("  ");
 690   }
 691   TraceTime t1("Total compilation time", &_t_totalCompilation, CITime, CITimeVerbose);
 692   TraceTime t2(NULL, &_t_methodCompilation, CITime, false);
 693 
 694 #ifndef PRODUCT
 695   bool print_opto_assembly = directive->PrintOptoAssemblyOption;
 696   if (!print_opto_assembly) {
 697     bool print_assembly = directive->PrintAssemblyOption;
 698     if (print_assembly && !Disassembler::can_decode()) {
 699       tty->print_cr("PrintAssembly request changed to PrintOptoAssembly");
 700       print_opto_assembly = true;
 701     }
 702   }
 703   set_print_assembly(print_opto_assembly);
 704   set_parsed_irreducible_loop(false);
 705 
 706   if (directive->ReplayInlineOption) {
 707     _replay_inline_data = ciReplay::load_inline_data(method(), entry_bci(), ci_env->comp_level());
 708   }
 709 #endif
 710   set_print_inlining(directive->PrintInliningOption || PrintOptoInlining);
 711   set_print_intrinsics(directive->PrintIntrinsicsOption);
 712   set_has_irreducible_loop(true); // conservative until build_loop_tree() reset it
 713 
 714   if (ProfileTraps RTM_OPT_ONLY( || UseRTMLocking )) {
 715     // Make sure the method being compiled gets its own MDO,
 716     // so we can at least track the decompile_count().
 717     // Need MDO to record RTM code generation state.
 718     method()->ensure_method_data();
 719   }
 720 
 721   Init(::AliasLevel);
 722 
 723 
 724   print_compile_messages();
 725 
 726   _ilt = InlineTree::build_inline_tree_root();
 727 
 728   // Even if NO memory addresses are used, MergeMem nodes must have at least 1 slice
 729   assert(num_alias_types() >= AliasIdxRaw, "");
 730 
 731 #define MINIMUM_NODE_HASH  1023
 732   // Node list that Iterative GVN will start with
 733   Unique_Node_List for_igvn(comp_arena());
 734   set_for_igvn(&for_igvn);
 735 
 736   // GVN that will be run immediately on new nodes
 737   uint estimated_size = method()->code_size()*4+64;
 738   estimated_size = (estimated_size < MINIMUM_NODE_HASH ? MINIMUM_NODE_HASH : estimated_size);
 739   PhaseGVN gvn(node_arena(), estimated_size);
 740   set_initial_gvn(&gvn);
 741 
 742   print_inlining_init();
 743   { // Scope for timing the parser
 744     TracePhase tp("parse", &timers[_t_parser]);
 745 
 746     // Put top into the hash table ASAP.
 747     initial_gvn()->transform_no_reclaim(top());
 748 
 749     // Set up tf(), start(), and find a CallGenerator.
 750     CallGenerator* cg = NULL;
 751     if (is_osr_compilation()) {
 752       const TypeTuple *domain = StartOSRNode::osr_domain();
 753       const TypeTuple *range = TypeTuple::make_range(method()->signature());
 754       init_tf(TypeFunc::make(domain, range));
 755       StartNode* s = new StartOSRNode(root(), domain);
 756       initial_gvn()->set_type_bottom(s);
 757       init_start(s);
 758       cg = CallGenerator::for_osr(method(), entry_bci());
 759     } else {
 760       // Normal case.
 761       init_tf(TypeFunc::make(method()));
 762       StartNode* s = new StartNode(root(), tf()->domain());
 763       initial_gvn()->set_type_bottom(s);
 764       init_start(s);
 765       if (method()->intrinsic_id() == vmIntrinsics::_Reference_get && UseG1GC) {
 766         // With java.lang.ref.reference.get() we must go through the
 767         // intrinsic when G1 is enabled - even when get() is the root
 768         // method of the compile - so that, if necessary, the value in
 769         // the referent field of the reference object gets recorded by
 770         // the pre-barrier code.
 771         // Specifically, if G1 is enabled, the value in the referent
 772         // field is recorded by the G1 SATB pre barrier. This will
 773         // result in the referent being marked live and the reference
 774         // object removed from the list of discovered references during
 775         // reference processing.
 776         cg = find_intrinsic(method(), false);
 777       }
 778       if (cg == NULL) {
 779         float past_uses = method()->interpreter_invocation_count();
 780         float expected_uses = past_uses;
 781         cg = CallGenerator::for_inline(method(), expected_uses);
 782       }
 783     }
 784     if (failing())  return;
 785     if (cg == NULL) {
 786       record_method_not_compilable("cannot parse method");
 787       return;
 788     }
 789     JVMState* jvms = build_start_state(start(), tf());
 790     if ((jvms = cg->generate(jvms)) == NULL) {
 791       if (!failure_reason_is(C2Compiler::retry_class_loading_during_parsing())) {
 792         record_method_not_compilable("method parse failed");
 793       }
 794       return;
 795     }
 796     GraphKit kit(jvms);
 797 
 798     if (!kit.stopped()) {
 799       // Accept return values, and transfer control we know not where.
 800       // This is done by a special, unique ReturnNode bound to root.
 801       return_values(kit.jvms());
 802     }
 803 
 804     if (kit.has_exceptions()) {
 805       // Any exceptions that escape from this call must be rethrown
 806       // to whatever caller is dynamically above us on the stack.
 807       // This is done by a special, unique RethrowNode bound to root.
 808       rethrow_exceptions(kit.transfer_exceptions_into_jvms());
 809     }
 810 
 811     assert(IncrementalInline || (_late_inlines.length() == 0 && !has_mh_late_inlines()), "incremental inlining is off");
 812 
 813     if (_late_inlines.length() == 0 && !has_mh_late_inlines() && !failing() && has_stringbuilder()) {
 814       inline_string_calls(true);
 815     }
 816 
 817     if (failing())  return;
 818 
 819     print_method(PHASE_BEFORE_REMOVEUSELESS, 3);
 820 
 821     // Remove clutter produced by parsing.
 822     if (!failing()) {
 823       ResourceMark rm;
 824       PhaseRemoveUseless pru(initial_gvn(), &for_igvn);
 825     }
 826   }
 827 
 828   // Note:  Large methods are capped off in do_one_bytecode().
 829   if (failing())  return;
 830 
 831   // After parsing, node notes are no longer automagic.
 832   // They must be propagated by register_new_node_with_optimizer(),
 833   // clone(), or the like.
 834   set_default_node_notes(NULL);
 835 
 836   for (;;) {
 837     int successes = Inline_Warm();
 838     if (failing())  return;
 839     if (successes == 0)  break;
 840   }
 841 
 842   // Drain the list.
 843   Finish_Warm();
 844 #ifndef PRODUCT
 845   if (_printer && _printer->should_print(1)) {
 846     _printer->print_inlining();
 847   }
 848 #endif
 849 
 850   if (failing())  return;
 851   NOT_PRODUCT( verify_graph_edges(); )
 852 
 853   // Now optimize
 854   Optimize();
 855   if (failing())  return;
 856   NOT_PRODUCT( verify_graph_edges(); )
 857 
 858 #ifndef PRODUCT
 859   if (PrintIdeal) {
 860     ttyLocker ttyl;  // keep the following output all in one block
 861     // This output goes directly to the tty, not the compiler log.
 862     // To enable tools to match it up with the compilation activity,
 863     // be sure to tag this tty output with the compile ID.
 864     if (xtty != NULL) {
 865       xtty->head("ideal compile_id='%d'%s", compile_id(),
 866                  is_osr_compilation()    ? " compile_kind='osr'" :
 867                  "");
 868     }
 869     root()->dump(9999);
 870     if (xtty != NULL) {
 871       xtty->tail("ideal");
 872     }
 873   }
 874 #endif
 875 
 876   NOT_PRODUCT( verify_barriers(); )
 877 
 878   // Dump compilation data to replay it.
 879   if (directive->DumpReplayOption) {
 880     env()->dump_replay_data(_compile_id);
 881   }
 882   if (directive->DumpInlineOption && (ilt() != NULL)) {
 883     env()->dump_inline_data(_compile_id);
 884   }
 885 
 886   // Now that we know the size of all the monitors we can add a fixed slot
 887   // for the original deopt pc.
 888 
 889   _orig_pc_slot =  fixed_slots();
 890   int next_slot = _orig_pc_slot + (sizeof(address) / VMRegImpl::stack_slot_size);
 891   set_fixed_slots(next_slot);
 892 
 893   // Compute when to use implicit null checks. Used by matching trap based
 894   // nodes and NullCheck optimization.
 895   set_allowed_deopt_reasons();
 896 
 897   // Now generate code
 898   Code_Gen();
 899   if (failing())  return;
 900 
 901   // Check if we want to skip execution of all compiled code.
 902   {
 903 #ifndef PRODUCT
 904     if (OptoNoExecute) {
 905       record_method_not_compilable("+OptoNoExecute");  // Flag as failed
 906       return;
 907     }
 908 #endif
 909     TracePhase tp("install_code", &timers[_t_registerMethod]);
 910 
 911     if (is_osr_compilation()) {
 912       _code_offsets.set_value(CodeOffsets::Verified_Entry, 0);
 913       _code_offsets.set_value(CodeOffsets::OSR_Entry, _first_block_size);
 914     } else {
 915       _code_offsets.set_value(CodeOffsets::Verified_Entry, _first_block_size);
 916       _code_offsets.set_value(CodeOffsets::OSR_Entry, 0);
 917     }
 918 
 919     env()->register_method(_method, _entry_bci,
 920                            &_code_offsets,
 921                            _orig_pc_slot_offset_in_bytes,
 922                            code_buffer(),
 923                            frame_size_in_words(), _oop_map_set,
 924                            &_handler_table, &_inc_table,
 925                            compiler,
 926                            has_unsafe_access(),
 927                            SharedRuntime::is_wide_vector(max_vector_size()),
 928                            rtm_state()
 929                            );
 930 
 931     if (log() != NULL) // Print code cache state into compiler log
 932       log()->code_cache_state();
 933   }
 934 }
 935 
 936 //------------------------------Compile----------------------------------------
 937 // Compile a runtime stub
 938 Compile::Compile( ciEnv* ci_env,
 939                   TypeFunc_generator generator,
 940                   address stub_function,
 941                   const char *stub_name,
 942                   int is_fancy_jump,
 943                   bool pass_tls,
 944                   bool save_arg_registers,
 945                   bool return_pc,
 946                   DirectiveSet* directive)
 947   : Phase(Compiler),
 948     _env(ci_env),
 949     _directive(directive),
 950     _log(ci_env->log()),
 951     _compile_id(0),
 952     _save_argument_registers(save_arg_registers),
 953     _method(NULL),
 954     _stub_name(stub_name),
 955     _stub_function(stub_function),
 956     _stub_entry_point(NULL),
 957     _entry_bci(InvocationEntryBci),
 958     _initial_gvn(NULL),
 959     _for_igvn(NULL),
 960     _warm_calls(NULL),
 961     _orig_pc_slot(0),
 962     _orig_pc_slot_offset_in_bytes(0),
 963     _subsume_loads(true),
 964     _do_escape_analysis(false),
 965     _eliminate_boxing(false),
 966     _failure_reason(NULL),
 967     _code_buffer("Compile::Fill_buffer"),
 968     _has_method_handle_invokes(false),
 969     _mach_constant_base_node(NULL),
 970     _node_bundling_limit(0),
 971     _node_bundling_base(NULL),
 972     _java_calls(0),
 973     _inner_loops(0),
 974 #ifndef PRODUCT
 975     _trace_opto_output(directive->TraceOptoOutputOption),
 976     _in_dump_cnt(0),
 977     _printer(NULL),
 978 #endif
 979     _comp_arena(mtCompiler),
 980     _node_arena(mtCompiler),
 981     _old_arena(mtCompiler),
 982     _Compile_types(mtCompiler),
 983     _dead_node_list(comp_arena()),
 984     _dead_node_count(0),
 985     _congraph(NULL),
 986     _replay_inline_data(NULL),
 987     _number_of_mh_late_inlines(0),
 988     _inlining_progress(false),
 989     _inlining_incrementally(false),
 990     _print_inlining_list(NULL),
 991     _print_inlining_stream(NULL),
 992     _print_inlining_idx(0),
 993     _print_inlining_output(NULL),
 994     _allowed_reasons(0),
 995     _interpreter_frame_size(0),
 996     _max_node_limit(MaxNodeLimit),
 997     _has_reserved_stack_access(false) {
 998   C = this;
 999 
1000   TraceTime t1(NULL, &_t_totalCompilation, CITime, false);
1001   TraceTime t2(NULL, &_t_stubCompilation, CITime, false);
1002 
1003 #ifndef PRODUCT
1004   set_print_assembly(PrintFrameConverterAssembly);
1005   set_parsed_irreducible_loop(false);
1006 #endif
1007   set_has_irreducible_loop(false); // no loops
1008 
1009   CompileWrapper cw(this);
1010   Init(/*AliasLevel=*/ 0);
1011   init_tf((*generator)());
1012 
1013   {
1014     // The following is a dummy for the sake of GraphKit::gen_stub
1015     Unique_Node_List for_igvn(comp_arena());
1016     set_for_igvn(&for_igvn);  // not used, but some GraphKit guys push on this
1017     PhaseGVN gvn(Thread::current()->resource_area(),255);
1018     set_initial_gvn(&gvn);    // not significant, but GraphKit guys use it pervasively
1019     gvn.transform_no_reclaim(top());
1020 
1021     GraphKit kit;
1022     kit.gen_stub(stub_function, stub_name, is_fancy_jump, pass_tls, return_pc);
1023   }
1024 
1025   NOT_PRODUCT( verify_graph_edges(); )
1026   Code_Gen();
1027   if (failing())  return;
1028 
1029 
1030   // Entry point will be accessed using compile->stub_entry_point();
1031   if (code_buffer() == NULL) {
1032     Matcher::soft_match_failure();
1033   } else {
1034     if (PrintAssembly && (WizardMode || Verbose))
1035       tty->print_cr("### Stub::%s", stub_name);
1036 
1037     if (!failing()) {
1038       assert(_fixed_slots == 0, "no fixed slots used for runtime stubs");
1039 
1040       // Make the NMethod
1041       // For now we mark the frame as never safe for profile stackwalking
1042       RuntimeStub *rs = RuntimeStub::new_runtime_stub(stub_name,
1043                                                       code_buffer(),
1044                                                       CodeOffsets::frame_never_safe,
1045                                                       // _code_offsets.value(CodeOffsets::Frame_Complete),
1046                                                       frame_size_in_words(),
1047                                                       _oop_map_set,
1048                                                       save_arg_registers);
1049       assert(rs != NULL && rs->is_runtime_stub(), "sanity check");
1050 
1051       _stub_entry_point = rs->entry_point();
1052     }
1053   }
1054 }
1055 
1056 //------------------------------Init-------------------------------------------
1057 // Prepare for a single compilation
1058 void Compile::Init(int aliaslevel) {
1059   _unique  = 0;
1060   _regalloc = NULL;
1061 
1062   _tf      = NULL;  // filled in later
1063   _top     = NULL;  // cached later
1064   _matcher = NULL;  // filled in later
1065   _cfg     = NULL;  // filled in later
1066 
1067   set_24_bit_selection_and_mode(Use24BitFP, false);
1068 
1069   _node_note_array = NULL;
1070   _default_node_notes = NULL;
1071   DEBUG_ONLY( _modified_nodes = NULL; ) // Used in Optimize()
1072 
1073   _immutable_memory = NULL; // filled in at first inquiry
1074 
1075   // Globally visible Nodes
1076   // First set TOP to NULL to give safe behavior during creation of RootNode
1077   set_cached_top_node(NULL);
1078   set_root(new RootNode());
1079   // Now that you have a Root to point to, create the real TOP
1080   set_cached_top_node( new ConNode(Type::TOP) );
1081   set_recent_alloc(NULL, NULL);
1082 
1083   // Create Debug Information Recorder to record scopes, oopmaps, etc.
1084   env()->set_oop_recorder(new OopRecorder(env()->arena()));
1085   env()->set_debug_info(new DebugInformationRecorder(env()->oop_recorder()));
1086   env()->set_dependencies(new Dependencies(env()));
1087 
1088   _fixed_slots = 0;
1089   set_has_split_ifs(false);
1090   set_has_loops(has_method() && method()->has_loops()); // first approximation
1091   set_has_stringbuilder(false);
1092   set_has_boxed_value(false);
1093   _trap_can_recompile = false;  // no traps emitted yet
1094   _major_progress = true; // start out assuming good things will happen
1095   set_has_unsafe_access(false);
1096   set_max_vector_size(0);
1097   set_clear_upper_avx(false);  //false as default for clear upper bits of ymm registers
1098   Copy::zero_to_bytes(_trap_hist, sizeof(_trap_hist));
1099   set_decompile_count(0);
1100 
1101   set_do_freq_based_layout(_directive->BlockLayoutByFrequencyOption);
1102   set_num_loop_opts(LoopOptsCount);
1103   set_do_inlining(Inline);
1104   set_max_inline_size(MaxInlineSize);
1105   set_freq_inline_size(FreqInlineSize);
1106   set_do_scheduling(OptoScheduling);
1107   set_do_count_invocations(false);
1108   set_do_method_data_update(false);
1109 
1110   set_do_vector_loop(false);
1111 
1112   if (AllowVectorizeOnDemand) {
1113     if (has_method() && (_directive->VectorizeOption || _directive->VectorizeDebugOption)) {
1114       set_do_vector_loop(true);
1115       NOT_PRODUCT(if (do_vector_loop() && Verbose) {tty->print("Compile::Init: do vectorized loops (SIMD like) for method %s\n",  method()->name()->as_quoted_ascii());})
1116     } else if (has_method() && method()->name() != 0 &&
1117                method()->intrinsic_id() == vmIntrinsics::_forEachRemaining) {
1118       set_do_vector_loop(true);
1119     }
1120   }
1121   set_use_cmove(UseCMoveUnconditionally /* || do_vector_loop()*/); //TODO: consider do_vector_loop() mandate use_cmove unconditionally
1122   NOT_PRODUCT(if (use_cmove() && Verbose && has_method()) {tty->print("Compile::Init: use CMove without profitability tests for method %s\n",  method()->name()->as_quoted_ascii());})
1123 
1124   set_age_code(has_method() && method()->profile_aging());
1125   set_rtm_state(NoRTM); // No RTM lock eliding by default
1126   _max_node_limit = _directive->MaxNodeLimitOption;
1127 
1128 #if INCLUDE_RTM_OPT
1129   if (UseRTMLocking && has_method() && (method()->method_data_or_null() != NULL)) {
1130     int rtm_state = method()->method_data()->rtm_state();
1131     if (method_has_option("NoRTMLockEliding") || ((rtm_state & NoRTM) != 0)) {
1132       // Don't generate RTM lock eliding code.
1133       set_rtm_state(NoRTM);
1134     } else if (method_has_option("UseRTMLockEliding") || ((rtm_state & UseRTM) != 0) || !UseRTMDeopt) {
1135       // Generate RTM lock eliding code without abort ratio calculation code.
1136       set_rtm_state(UseRTM);
1137     } else if (UseRTMDeopt) {
1138       // Generate RTM lock eliding code and include abort ratio calculation
1139       // code if UseRTMDeopt is on.
1140       set_rtm_state(ProfileRTM);
1141     }
1142   }
1143 #endif
1144   if (debug_info()->recording_non_safepoints()) {
1145     set_node_note_array(new(comp_arena()) GrowableArray<Node_Notes*>
1146                         (comp_arena(), 8, 0, NULL));
1147     set_default_node_notes(Node_Notes::make(this));
1148   }
1149 
1150   // // -- Initialize types before each compile --
1151   // // Update cached type information
1152   // if( _method && _method->constants() )
1153   //   Type::update_loaded_types(_method, _method->constants());
1154 
1155   // Init alias_type map.
1156   if (!_do_escape_analysis && aliaslevel == 3)
1157     aliaslevel = 2;  // No unique types without escape analysis
1158   _AliasLevel = aliaslevel;
1159   const int grow_ats = 16;
1160   _max_alias_types = grow_ats;
1161   _alias_types   = NEW_ARENA_ARRAY(comp_arena(), AliasType*, grow_ats);
1162   AliasType* ats = NEW_ARENA_ARRAY(comp_arena(), AliasType,  grow_ats);
1163   Copy::zero_to_bytes(ats, sizeof(AliasType)*grow_ats);
1164   {
1165     for (int i = 0; i < grow_ats; i++)  _alias_types[i] = &ats[i];
1166   }
1167   // Initialize the first few types.
1168   _alias_types[AliasIdxTop]->Init(AliasIdxTop, NULL);
1169   _alias_types[AliasIdxBot]->Init(AliasIdxBot, TypePtr::BOTTOM);
1170   _alias_types[AliasIdxRaw]->Init(AliasIdxRaw, TypeRawPtr::BOTTOM);
1171   _num_alias_types = AliasIdxRaw+1;
1172   // Zero out the alias type cache.
1173   Copy::zero_to_bytes(_alias_cache, sizeof(_alias_cache));
1174   // A NULL adr_type hits in the cache right away.  Preload the right answer.
1175   probe_alias_cache(NULL)->_index = AliasIdxTop;
1176 
1177   _intrinsics = NULL;
1178   _macro_nodes = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1179   _predicate_opaqs = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1180   _expensive_nodes = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1181   _range_check_casts = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1182   register_library_intrinsics();
1183 }
1184 
1185 //---------------------------init_start----------------------------------------
1186 // Install the StartNode on this compile object.
1187 void Compile::init_start(StartNode* s) {
1188   if (failing())
1189     return; // already failing
1190   assert(s == start(), "");
1191 }
1192 
1193 /**
1194  * Return the 'StartNode'. We must not have a pending failure, since the ideal graph
1195  * can be in an inconsistent state, i.e., we can get segmentation faults when traversing
1196  * the ideal graph.
1197  */
1198 StartNode* Compile::start() const {
1199   assert (!failing(), "Must not have pending failure. Reason is: %s", failure_reason());
1200   for (DUIterator_Fast imax, i = root()->fast_outs(imax); i < imax; i++) {
1201     Node* start = root()->fast_out(i);
1202     if (start->is_Start()) {
1203       return start->as_Start();
1204     }
1205   }
1206   fatal("Did not find Start node!");
1207   return NULL;
1208 }
1209 
1210 //-------------------------------immutable_memory-------------------------------------
1211 // Access immutable memory
1212 Node* Compile::immutable_memory() {
1213   if (_immutable_memory != NULL) {
1214     return _immutable_memory;
1215   }
1216   StartNode* s = start();
1217   for (DUIterator_Fast imax, i = s->fast_outs(imax); true; i++) {
1218     Node *p = s->fast_out(i);
1219     if (p != s && p->as_Proj()->_con == TypeFunc::Memory) {
1220       _immutable_memory = p;
1221       return _immutable_memory;
1222     }
1223   }
1224   ShouldNotReachHere();
1225   return NULL;
1226 }
1227 
1228 //----------------------set_cached_top_node------------------------------------
1229 // Install the cached top node, and make sure Node::is_top works correctly.
1230 void Compile::set_cached_top_node(Node* tn) {
1231   if (tn != NULL)  verify_top(tn);
1232   Node* old_top = _top;
1233   _top = tn;
1234   // Calling Node::setup_is_top allows the nodes the chance to adjust
1235   // their _out arrays.
1236   if (_top != NULL)     _top->setup_is_top();
1237   if (old_top != NULL)  old_top->setup_is_top();
1238   assert(_top == NULL || top()->is_top(), "");
1239 }
1240 
1241 #ifdef ASSERT
1242 uint Compile::count_live_nodes_by_graph_walk() {
1243   Unique_Node_List useful(comp_arena());
1244   // Get useful node list by walking the graph.
1245   identify_useful_nodes(useful);
1246   return useful.size();
1247 }
1248 
1249 void Compile::print_missing_nodes() {
1250 
1251   // Return if CompileLog is NULL and PrintIdealNodeCount is false.
1252   if ((_log == NULL) && (! PrintIdealNodeCount)) {
1253     return;
1254   }
1255 
1256   // This is an expensive function. It is executed only when the user
1257   // specifies VerifyIdealNodeCount option or otherwise knows the
1258   // additional work that needs to be done to identify reachable nodes
1259   // by walking the flow graph and find the missing ones using
1260   // _dead_node_list.
1261 
1262   Unique_Node_List useful(comp_arena());
1263   // Get useful node list by walking the graph.
1264   identify_useful_nodes(useful);
1265 
1266   uint l_nodes = C->live_nodes();
1267   uint l_nodes_by_walk = useful.size();
1268 
1269   if (l_nodes != l_nodes_by_walk) {
1270     if (_log != NULL) {
1271       _log->begin_head("mismatched_nodes count='%d'", abs((int) (l_nodes - l_nodes_by_walk)));
1272       _log->stamp();
1273       _log->end_head();
1274     }
1275     VectorSet& useful_member_set = useful.member_set();
1276     int last_idx = l_nodes_by_walk;
1277     for (int i = 0; i < last_idx; i++) {
1278       if (useful_member_set.test(i)) {
1279         if (_dead_node_list.test(i)) {
1280           if (_log != NULL) {
1281             _log->elem("mismatched_node_info node_idx='%d' type='both live and dead'", i);
1282           }
1283           if (PrintIdealNodeCount) {
1284             // Print the log message to tty
1285               tty->print_cr("mismatched_node idx='%d' both live and dead'", i);
1286               useful.at(i)->dump();
1287           }
1288         }
1289       }
1290       else if (! _dead_node_list.test(i)) {
1291         if (_log != NULL) {
1292           _log->elem("mismatched_node_info node_idx='%d' type='neither live nor dead'", i);
1293         }
1294         if (PrintIdealNodeCount) {
1295           // Print the log message to tty
1296           tty->print_cr("mismatched_node idx='%d' type='neither live nor dead'", i);
1297         }
1298       }
1299     }
1300     if (_log != NULL) {
1301       _log->tail("mismatched_nodes");
1302     }
1303   }
1304 }
1305 void Compile::record_modified_node(Node* n) {
1306   if (_modified_nodes != NULL && !_inlining_incrementally &&
1307       n->outcnt() != 0 && !n->is_Con()) {
1308     _modified_nodes->push(n);
1309   }
1310 }
1311 
1312 void Compile::remove_modified_node(Node* n) {
1313   if (_modified_nodes != NULL) {
1314     _modified_nodes->remove(n);
1315   }
1316 }
1317 #endif
1318 
1319 #ifndef PRODUCT
1320 void Compile::verify_top(Node* tn) const {
1321   if (tn != NULL) {
1322     assert(tn->is_Con(), "top node must be a constant");
1323     assert(((ConNode*)tn)->type() == Type::TOP, "top node must have correct type");
1324     assert(tn->in(0) != NULL, "must have live top node");
1325   }
1326 }
1327 #endif
1328 
1329 
1330 ///-------------------Managing Per-Node Debug & Profile Info-------------------
1331 
1332 void Compile::grow_node_notes(GrowableArray<Node_Notes*>* arr, int grow_by) {
1333   guarantee(arr != NULL, "");
1334   int num_blocks = arr->length();
1335   if (grow_by < num_blocks)  grow_by = num_blocks;
1336   int num_notes = grow_by * _node_notes_block_size;
1337   Node_Notes* notes = NEW_ARENA_ARRAY(node_arena(), Node_Notes, num_notes);
1338   Copy::zero_to_bytes(notes, num_notes * sizeof(Node_Notes));
1339   while (num_notes > 0) {
1340     arr->append(notes);
1341     notes     += _node_notes_block_size;
1342     num_notes -= _node_notes_block_size;
1343   }
1344   assert(num_notes == 0, "exact multiple, please");
1345 }
1346 
1347 bool Compile::copy_node_notes_to(Node* dest, Node* source) {
1348   if (source == NULL || dest == NULL)  return false;
1349 
1350   if (dest->is_Con())
1351     return false;               // Do not push debug info onto constants.
1352 
1353 #ifdef ASSERT
1354   // Leave a bread crumb trail pointing to the original node:
1355   if (dest != NULL && dest != source && dest->debug_orig() == NULL) {
1356     dest->set_debug_orig(source);
1357   }
1358 #endif
1359 
1360   if (node_note_array() == NULL)
1361     return false;               // Not collecting any notes now.
1362 
1363   // This is a copy onto a pre-existing node, which may already have notes.
1364   // If both nodes have notes, do not overwrite any pre-existing notes.
1365   Node_Notes* source_notes = node_notes_at(source->_idx);
1366   if (source_notes == NULL || source_notes->is_clear())  return false;
1367   Node_Notes* dest_notes   = node_notes_at(dest->_idx);
1368   if (dest_notes == NULL || dest_notes->is_clear()) {
1369     return set_node_notes_at(dest->_idx, source_notes);
1370   }
1371 
1372   Node_Notes merged_notes = (*source_notes);
1373   // The order of operations here ensures that dest notes will win...
1374   merged_notes.update_from(dest_notes);
1375   return set_node_notes_at(dest->_idx, &merged_notes);
1376 }
1377 
1378 
1379 //--------------------------allow_range_check_smearing-------------------------
1380 // Gating condition for coalescing similar range checks.
1381 // Sometimes we try 'speculatively' replacing a series of a range checks by a
1382 // single covering check that is at least as strong as any of them.
1383 // If the optimization succeeds, the simplified (strengthened) range check
1384 // will always succeed.  If it fails, we will deopt, and then give up
1385 // on the optimization.
1386 bool Compile::allow_range_check_smearing() const {
1387   // If this method has already thrown a range-check,
1388   // assume it was because we already tried range smearing
1389   // and it failed.
1390   uint already_trapped = trap_count(Deoptimization::Reason_range_check);
1391   return !already_trapped;
1392 }
1393 
1394 
1395 //------------------------------flatten_alias_type-----------------------------
1396 const TypePtr *Compile::flatten_alias_type( const TypePtr *tj ) const {
1397   int offset = tj->offset();
1398   TypePtr::PTR ptr = tj->ptr();
1399 
1400   // Known instance (scalarizable allocation) alias only with itself.
1401   bool is_known_inst = tj->isa_oopptr() != NULL &&
1402                        tj->is_oopptr()->is_known_instance();
1403 
1404   // Process weird unsafe references.
1405   if (offset == Type::OffsetBot && (tj->isa_instptr() /*|| tj->isa_klassptr()*/)) {
1406     assert(InlineUnsafeOps, "indeterminate pointers come only from unsafe ops");
1407     assert(!is_known_inst, "scalarizable allocation should not have unsafe references");
1408     tj = TypeOopPtr::BOTTOM;
1409     ptr = tj->ptr();
1410     offset = tj->offset();
1411   }
1412 
1413   // Array pointers need some flattening
1414   const TypeAryPtr *ta = tj->isa_aryptr();
1415   if (ta && ta->is_stable()) {
1416     // Erase stability property for alias analysis.
1417     tj = ta = ta->cast_to_stable(false);
1418   }
1419   if( ta && is_known_inst ) {
1420     if ( offset != Type::OffsetBot &&
1421          offset > arrayOopDesc::length_offset_in_bytes() ) {
1422       offset = Type::OffsetBot; // Flatten constant access into array body only
1423       tj = ta = TypeAryPtr::make(ptr, ta->ary(), ta->klass(), true, offset, ta->instance_id());
1424     }
1425   } else if( ta && _AliasLevel >= 2 ) {
1426     // For arrays indexed by constant indices, we flatten the alias
1427     // space to include all of the array body.  Only the header, klass
1428     // and array length can be accessed un-aliased.
1429     if( offset != Type::OffsetBot ) {
1430       if( ta->const_oop() ) { // MethodData* or Method*
1431         offset = Type::OffsetBot;   // Flatten constant access into array body
1432         tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),ta->ary(),ta->klass(),false,offset);
1433       } else if( offset == arrayOopDesc::length_offset_in_bytes() ) {
1434         // range is OK as-is.
1435         tj = ta = TypeAryPtr::RANGE;
1436       } else if( offset == oopDesc::klass_offset_in_bytes() ) {
1437         tj = TypeInstPtr::KLASS; // all klass loads look alike
1438         ta = TypeAryPtr::RANGE; // generic ignored junk
1439         ptr = TypePtr::BotPTR;
1440       } else if( offset == oopDesc::mark_offset_in_bytes() ) {
1441         tj = TypeInstPtr::MARK;
1442         ta = TypeAryPtr::RANGE; // generic ignored junk
1443         ptr = TypePtr::BotPTR;
1444       } else {                  // Random constant offset into array body
1445         offset = Type::OffsetBot;   // Flatten constant access into array body
1446         tj = ta = TypeAryPtr::make(ptr,ta->ary(),ta->klass(),false,offset);
1447       }
1448     }
1449     // Arrays of fixed size alias with arrays of unknown size.
1450     if (ta->size() != TypeInt::POS) {
1451       const TypeAry *tary = TypeAry::make(ta->elem(), TypeInt::POS);
1452       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,ta->klass(),false,offset);
1453     }
1454     // Arrays of known objects become arrays of unknown objects.
1455     if (ta->elem()->isa_narrowoop() && ta->elem() != TypeNarrowOop::BOTTOM) {
1456       const TypeAry *tary = TypeAry::make(TypeNarrowOop::BOTTOM, ta->size());
1457       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,offset);
1458     }
1459     if (ta->elem()->isa_oopptr() && ta->elem() != TypeInstPtr::BOTTOM) {
1460       const TypeAry *tary = TypeAry::make(TypeInstPtr::BOTTOM, ta->size());
1461       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,offset);
1462     }
1463     // Arrays of bytes and of booleans both use 'bastore' and 'baload' so
1464     // cannot be distinguished by bytecode alone.
1465     if (ta->elem() == TypeInt::BOOL) {
1466       const TypeAry *tary = TypeAry::make(TypeInt::BYTE, ta->size());
1467       ciKlass* aklass = ciTypeArrayKlass::make(T_BYTE);
1468       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,aklass,false,offset);
1469     }
1470     // During the 2nd round of IterGVN, NotNull castings are removed.
1471     // Make sure the Bottom and NotNull variants alias the same.
1472     // Also, make sure exact and non-exact variants alias the same.
1473     if (ptr == TypePtr::NotNull || ta->klass_is_exact() || ta->speculative() != NULL) {
1474       tj = ta = TypeAryPtr::make(TypePtr::BotPTR,ta->ary(),ta->klass(),false,offset);
1475     }
1476   }
1477 
1478   // Oop pointers need some flattening
1479   const TypeInstPtr *to = tj->isa_instptr();
1480   if( to && _AliasLevel >= 2 && to != TypeOopPtr::BOTTOM ) {
1481     ciInstanceKlass *k = to->klass()->as_instance_klass();
1482     if( ptr == TypePtr::Constant ) {
1483       if (to->klass() != ciEnv::current()->Class_klass() ||
1484           offset < k->size_helper() * wordSize) {
1485         // No constant oop pointers (such as Strings); they alias with
1486         // unknown strings.
1487         assert(!is_known_inst, "not scalarizable allocation");
1488         tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,offset);
1489       }
1490     } else if( is_known_inst ) {
1491       tj = to; // Keep NotNull and klass_is_exact for instance type
1492     } else if( ptr == TypePtr::NotNull || to->klass_is_exact() ) {
1493       // During the 2nd round of IterGVN, NotNull castings are removed.
1494       // Make sure the Bottom and NotNull variants alias the same.
1495       // Also, make sure exact and non-exact variants alias the same.
1496       tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,offset);
1497     }
1498     if (to->speculative() != NULL) {
1499       tj = to = TypeInstPtr::make(to->ptr(),to->klass(),to->klass_is_exact(),to->const_oop(),to->offset(), to->instance_id());
1500     }
1501     // Canonicalize the holder of this field
1502     if (offset >= 0 && offset < instanceOopDesc::base_offset_in_bytes()) {
1503       // First handle header references such as a LoadKlassNode, even if the
1504       // object's klass is unloaded at compile time (4965979).
1505       if (!is_known_inst) { // Do it only for non-instance types
1506         tj = to = TypeInstPtr::make(TypePtr::BotPTR, env()->Object_klass(), false, NULL, offset);
1507       }
1508     } else if (offset < 0 || offset >= k->size_helper() * wordSize) {
1509       // Static fields are in the space above the normal instance
1510       // fields in the java.lang.Class instance.
1511       if (to->klass() != ciEnv::current()->Class_klass()) {
1512         to = NULL;
1513         tj = TypeOopPtr::BOTTOM;
1514         offset = tj->offset();
1515       }
1516     } else {
1517       ciInstanceKlass *canonical_holder = k->get_canonical_holder(offset);
1518       if (!k->equals(canonical_holder) || tj->offset() != offset) {
1519         if( is_known_inst ) {
1520           tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, true, NULL, offset, to->instance_id());
1521         } else {
1522           tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, false, NULL, offset);
1523         }
1524       }
1525     }
1526   }
1527 
1528   // Klass pointers to object array klasses need some flattening
1529   const TypeKlassPtr *tk = tj->isa_klassptr();
1530   if( tk ) {
1531     // If we are referencing a field within a Klass, we need
1532     // to assume the worst case of an Object.  Both exact and
1533     // inexact types must flatten to the same alias class so
1534     // use NotNull as the PTR.
1535     if ( offset == Type::OffsetBot || (offset >= 0 && (size_t)offset < sizeof(Klass)) ) {
1536 
1537       tj = tk = TypeKlassPtr::make(TypePtr::NotNull,
1538                                    TypeKlassPtr::OBJECT->klass(),
1539                                    offset);
1540     }
1541 
1542     ciKlass* klass = tk->klass();
1543     if( klass->is_obj_array_klass() ) {
1544       ciKlass* k = TypeAryPtr::OOPS->klass();
1545       if( !k || !k->is_loaded() )                  // Only fails for some -Xcomp runs
1546         k = TypeInstPtr::BOTTOM->klass();
1547       tj = tk = TypeKlassPtr::make( TypePtr::NotNull, k, offset );
1548     }
1549 
1550     // Check for precise loads from the primary supertype array and force them
1551     // to the supertype cache alias index.  Check for generic array loads from
1552     // the primary supertype array and also force them to the supertype cache
1553     // alias index.  Since the same load can reach both, we need to merge
1554     // these 2 disparate memories into the same alias class.  Since the
1555     // primary supertype array is read-only, there's no chance of confusion
1556     // where we bypass an array load and an array store.
1557     int primary_supers_offset = in_bytes(Klass::primary_supers_offset());
1558     if (offset == Type::OffsetBot ||
1559         (offset >= primary_supers_offset &&
1560          offset < (int)(primary_supers_offset + Klass::primary_super_limit() * wordSize)) ||
1561         offset == (int)in_bytes(Klass::secondary_super_cache_offset())) {
1562       offset = in_bytes(Klass::secondary_super_cache_offset());
1563       tj = tk = TypeKlassPtr::make( TypePtr::NotNull, tk->klass(), offset );
1564     }
1565   }
1566 
1567   // Flatten all Raw pointers together.
1568   if (tj->base() == Type::RawPtr)
1569     tj = TypeRawPtr::BOTTOM;
1570 
1571   if (tj->base() == Type::AnyPtr)
1572     tj = TypePtr::BOTTOM;      // An error, which the caller must check for.
1573 
1574   // Flatten all to bottom for now
1575   switch( _AliasLevel ) {
1576   case 0:
1577     tj = TypePtr::BOTTOM;
1578     break;
1579   case 1:                       // Flatten to: oop, static, field or array
1580     switch (tj->base()) {
1581     //case Type::AryPtr: tj = TypeAryPtr::RANGE;    break;
1582     case Type::RawPtr:   tj = TypeRawPtr::BOTTOM;   break;
1583     case Type::AryPtr:   // do not distinguish arrays at all
1584     case Type::InstPtr:  tj = TypeInstPtr::BOTTOM;  break;
1585     case Type::KlassPtr: tj = TypeKlassPtr::OBJECT; break;
1586     case Type::AnyPtr:   tj = TypePtr::BOTTOM;      break;  // caller checks it
1587     default: ShouldNotReachHere();
1588     }
1589     break;
1590   case 2:                       // No collapsing at level 2; keep all splits
1591   case 3:                       // No collapsing at level 3; keep all splits
1592     break;
1593   default:
1594     Unimplemented();
1595   }
1596 
1597   offset = tj->offset();
1598   assert( offset != Type::OffsetTop, "Offset has fallen from constant" );
1599 
1600   assert( (offset != Type::OffsetBot && tj->base() != Type::AryPtr) ||
1601           (offset == Type::OffsetBot && tj->base() == Type::AryPtr) ||
1602           (offset == Type::OffsetBot && tj == TypeOopPtr::BOTTOM) ||
1603           (offset == Type::OffsetBot && tj == TypePtr::BOTTOM) ||
1604           (offset == oopDesc::mark_offset_in_bytes() && tj->base() == Type::AryPtr) ||
1605           (offset == oopDesc::klass_offset_in_bytes() && tj->base() == Type::AryPtr) ||
1606           (offset == arrayOopDesc::length_offset_in_bytes() && tj->base() == Type::AryPtr)  ,
1607           "For oops, klasses, raw offset must be constant; for arrays the offset is never known" );
1608   assert( tj->ptr() != TypePtr::TopPTR &&
1609           tj->ptr() != TypePtr::AnyNull &&
1610           tj->ptr() != TypePtr::Null, "No imprecise addresses" );
1611 //    assert( tj->ptr() != TypePtr::Constant ||
1612 //            tj->base() == Type::RawPtr ||
1613 //            tj->base() == Type::KlassPtr, "No constant oop addresses" );
1614 
1615   return tj;
1616 }
1617 
1618 void Compile::AliasType::Init(int i, const TypePtr* at) {
1619   _index = i;
1620   _adr_type = at;
1621   _field = NULL;
1622   _element = NULL;
1623   _is_rewritable = true; // default
1624   const TypeOopPtr *atoop = (at != NULL) ? at->isa_oopptr() : NULL;
1625   if (atoop != NULL && atoop->is_known_instance()) {
1626     const TypeOopPtr *gt = atoop->cast_to_instance_id(TypeOopPtr::InstanceBot);
1627     _general_index = Compile::current()->get_alias_index(gt);
1628   } else {
1629     _general_index = 0;
1630   }
1631 }
1632 
1633 BasicType Compile::AliasType::basic_type() const {
1634   if (element() != NULL) {
1635     const Type* element = adr_type()->is_aryptr()->elem();
1636     return element->isa_narrowoop() ? T_OBJECT : element->array_element_basic_type();
1637   } if (field() != NULL) {
1638     return field()->layout_type();
1639   } else {
1640     return T_ILLEGAL; // unknown
1641   }
1642 }
1643 
1644 //---------------------------------print_on------------------------------------
1645 #ifndef PRODUCT
1646 void Compile::AliasType::print_on(outputStream* st) {
1647   if (index() < 10)
1648         st->print("@ <%d> ", index());
1649   else  st->print("@ <%d>",  index());
1650   st->print(is_rewritable() ? "   " : " RO");
1651   int offset = adr_type()->offset();
1652   if (offset == Type::OffsetBot)
1653         st->print(" +any");
1654   else  st->print(" +%-3d", offset);
1655   st->print(" in ");
1656   adr_type()->dump_on(st);
1657   const TypeOopPtr* tjp = adr_type()->isa_oopptr();
1658   if (field() != NULL && tjp) {
1659     if (tjp->klass()  != field()->holder() ||
1660         tjp->offset() != field()->offset_in_bytes()) {
1661       st->print(" != ");
1662       field()->print();
1663       st->print(" ***");
1664     }
1665   }
1666 }
1667 
1668 void print_alias_types() {
1669   Compile* C = Compile::current();
1670   tty->print_cr("--- Alias types, AliasIdxBot .. %d", C->num_alias_types()-1);
1671   for (int idx = Compile::AliasIdxBot; idx < C->num_alias_types(); idx++) {
1672     C->alias_type(idx)->print_on(tty);
1673     tty->cr();
1674   }
1675 }
1676 #endif
1677 
1678 
1679 //----------------------------probe_alias_cache--------------------------------
1680 Compile::AliasCacheEntry* Compile::probe_alias_cache(const TypePtr* adr_type) {
1681   intptr_t key = (intptr_t) adr_type;
1682   key ^= key >> logAliasCacheSize;
1683   return &_alias_cache[key & right_n_bits(logAliasCacheSize)];
1684 }
1685 
1686 
1687 //-----------------------------grow_alias_types--------------------------------
1688 void Compile::grow_alias_types() {
1689   const int old_ats  = _max_alias_types; // how many before?
1690   const int new_ats  = old_ats;          // how many more?
1691   const int grow_ats = old_ats+new_ats;  // how many now?
1692   _max_alias_types = grow_ats;
1693   _alias_types =  REALLOC_ARENA_ARRAY(comp_arena(), AliasType*, _alias_types, old_ats, grow_ats);
1694   AliasType* ats =    NEW_ARENA_ARRAY(comp_arena(), AliasType, new_ats);
1695   Copy::zero_to_bytes(ats, sizeof(AliasType)*new_ats);
1696   for (int i = 0; i < new_ats; i++)  _alias_types[old_ats+i] = &ats[i];
1697 }
1698 
1699 
1700 //--------------------------------find_alias_type------------------------------
1701 Compile::AliasType* Compile::find_alias_type(const TypePtr* adr_type, bool no_create, ciField* original_field) {
1702   if (_AliasLevel == 0)
1703     return alias_type(AliasIdxBot);
1704 
1705   AliasCacheEntry* ace = probe_alias_cache(adr_type);
1706   if (ace->_adr_type == adr_type) {
1707     return alias_type(ace->_index);
1708   }
1709 
1710   // Handle special cases.
1711   if (adr_type == NULL)             return alias_type(AliasIdxTop);
1712   if (adr_type == TypePtr::BOTTOM)  return alias_type(AliasIdxBot);
1713 
1714   // Do it the slow way.
1715   const TypePtr* flat = flatten_alias_type(adr_type);
1716 
1717 #ifdef ASSERT
1718   {
1719     ResourceMark rm;
1720     assert(flat == flatten_alias_type(flat), "not idempotent: adr_type = %s; flat = %s => %s",
1721            Type::str(adr_type), Type::str(flat), Type::str(flatten_alias_type(flat)));
1722     assert(flat != TypePtr::BOTTOM, "cannot alias-analyze an untyped ptr: adr_type = %s",
1723            Type::str(adr_type));
1724     if (flat->isa_oopptr() && !flat->isa_klassptr()) {
1725       const TypeOopPtr* foop = flat->is_oopptr();
1726       // Scalarizable allocations have exact klass always.
1727       bool exact = !foop->klass_is_exact() || foop->is_known_instance();
1728       const TypePtr* xoop = foop->cast_to_exactness(exact)->is_ptr();
1729       assert(foop == flatten_alias_type(xoop), "exactness must not affect alias type: foop = %s; xoop = %s",
1730              Type::str(foop), Type::str(xoop));
1731     }
1732   }
1733 #endif
1734 
1735   int idx = AliasIdxTop;
1736   for (int i = 0; i < num_alias_types(); i++) {
1737     if (alias_type(i)->adr_type() == flat) {
1738       idx = i;
1739       break;
1740     }
1741   }
1742 
1743   if (idx == AliasIdxTop) {
1744     if (no_create)  return NULL;
1745     // Grow the array if necessary.
1746     if (_num_alias_types == _max_alias_types)  grow_alias_types();
1747     // Add a new alias type.
1748     idx = _num_alias_types++;
1749     _alias_types[idx]->Init(idx, flat);
1750     if (flat == TypeInstPtr::KLASS)  alias_type(idx)->set_rewritable(false);
1751     if (flat == TypeAryPtr::RANGE)   alias_type(idx)->set_rewritable(false);
1752     if (flat->isa_instptr()) {
1753       if (flat->offset() == java_lang_Class::klass_offset_in_bytes()
1754           && flat->is_instptr()->klass() == env()->Class_klass())
1755         alias_type(idx)->set_rewritable(false);
1756     }
1757     if (flat->isa_aryptr()) {
1758 #ifdef ASSERT
1759       const int header_size_min  = arrayOopDesc::base_offset_in_bytes(T_BYTE);
1760       // (T_BYTE has the weakest alignment and size restrictions...)
1761       assert(flat->offset() < header_size_min, "array body reference must be OffsetBot");
1762 #endif
1763       if (flat->offset() == TypePtr::OffsetBot) {
1764         alias_type(idx)->set_element(flat->is_aryptr()->elem());
1765       }
1766     }
1767     if (flat->isa_klassptr()) {
1768       if (flat->offset() == in_bytes(Klass::super_check_offset_offset()))
1769         alias_type(idx)->set_rewritable(false);
1770       if (flat->offset() == in_bytes(Klass::modifier_flags_offset()))
1771         alias_type(idx)->set_rewritable(false);
1772       if (flat->offset() == in_bytes(Klass::access_flags_offset()))
1773         alias_type(idx)->set_rewritable(false);
1774       if (flat->offset() == in_bytes(Klass::java_mirror_offset()))
1775         alias_type(idx)->set_rewritable(false);
1776     }
1777     // %%% (We would like to finalize JavaThread::threadObj_offset(),
1778     // but the base pointer type is not distinctive enough to identify
1779     // references into JavaThread.)
1780 
1781     // Check for final fields.
1782     const TypeInstPtr* tinst = flat->isa_instptr();
1783     if (tinst && tinst->offset() >= instanceOopDesc::base_offset_in_bytes()) {
1784       ciField* field;
1785       if (tinst->const_oop() != NULL &&
1786           tinst->klass() == ciEnv::current()->Class_klass() &&
1787           tinst->offset() >= (tinst->klass()->as_instance_klass()->size_helper() * wordSize)) {
1788         // static field
1789         ciInstanceKlass* k = tinst->const_oop()->as_instance()->java_lang_Class_klass()->as_instance_klass();
1790         field = k->get_field_by_offset(tinst->offset(), true);
1791       } else {
1792         ciInstanceKlass *k = tinst->klass()->as_instance_klass();
1793         field = k->get_field_by_offset(tinst->offset(), false);
1794       }
1795       assert(field == NULL ||
1796              original_field == NULL ||
1797              (field->holder() == original_field->holder() &&
1798               field->offset() == original_field->offset() &&
1799               field->is_static() == original_field->is_static()), "wrong field?");
1800       // Set field() and is_rewritable() attributes.
1801       if (field != NULL)  alias_type(idx)->set_field(field);
1802     }
1803   }
1804 
1805   // Fill the cache for next time.
1806   ace->_adr_type = adr_type;
1807   ace->_index    = idx;
1808   assert(alias_type(adr_type) == alias_type(idx),  "type must be installed");
1809 
1810   // Might as well try to fill the cache for the flattened version, too.
1811   AliasCacheEntry* face = probe_alias_cache(flat);
1812   if (face->_adr_type == NULL) {
1813     face->_adr_type = flat;
1814     face->_index    = idx;
1815     assert(alias_type(flat) == alias_type(idx), "flat type must work too");
1816   }
1817 
1818   return alias_type(idx);
1819 }
1820 
1821 
1822 Compile::AliasType* Compile::alias_type(ciField* field) {
1823   const TypeOopPtr* t;
1824   if (field->is_static())
1825     t = TypeInstPtr::make(field->holder()->java_mirror());
1826   else
1827     t = TypeOopPtr::make_from_klass_raw(field->holder());
1828   AliasType* atp = alias_type(t->add_offset(field->offset_in_bytes()), field);
1829   assert((field->is_final() || field->is_stable()) == !atp->is_rewritable(), "must get the rewritable bits correct");
1830   return atp;
1831 }
1832 
1833 
1834 //------------------------------have_alias_type--------------------------------
1835 bool Compile::have_alias_type(const TypePtr* adr_type) {
1836   AliasCacheEntry* ace = probe_alias_cache(adr_type);
1837   if (ace->_adr_type == adr_type) {
1838     return true;
1839   }
1840 
1841   // Handle special cases.
1842   if (adr_type == NULL)             return true;
1843   if (adr_type == TypePtr::BOTTOM)  return true;
1844 
1845   return find_alias_type(adr_type, true, NULL) != NULL;
1846 }
1847 
1848 //-----------------------------must_alias--------------------------------------
1849 // True if all values of the given address type are in the given alias category.
1850 bool Compile::must_alias(const TypePtr* adr_type, int alias_idx) {
1851   if (alias_idx == AliasIdxBot)         return true;  // the universal category
1852   if (adr_type == NULL)                 return true;  // NULL serves as TypePtr::TOP
1853   if (alias_idx == AliasIdxTop)         return false; // the empty category
1854   if (adr_type->base() == Type::AnyPtr) return false; // TypePtr::BOTTOM or its twins
1855 
1856   // the only remaining possible overlap is identity
1857   int adr_idx = get_alias_index(adr_type);
1858   assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
1859   assert(adr_idx == alias_idx ||
1860          (alias_type(alias_idx)->adr_type() != TypeOopPtr::BOTTOM
1861           && adr_type                       != TypeOopPtr::BOTTOM),
1862          "should not be testing for overlap with an unsafe pointer");
1863   return adr_idx == alias_idx;
1864 }
1865 
1866 //------------------------------can_alias--------------------------------------
1867 // True if any values of the given address type are in the given alias category.
1868 bool Compile::can_alias(const TypePtr* adr_type, int alias_idx) {
1869   if (alias_idx == AliasIdxTop)         return false; // the empty category
1870   if (adr_type == NULL)                 return false; // NULL serves as TypePtr::TOP
1871   if (alias_idx == AliasIdxBot)         return true;  // the universal category
1872   if (adr_type->base() == Type::AnyPtr) return true;  // TypePtr::BOTTOM or its twins
1873 
1874   // the only remaining possible overlap is identity
1875   int adr_idx = get_alias_index(adr_type);
1876   assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
1877   return adr_idx == alias_idx;
1878 }
1879 
1880 
1881 
1882 //---------------------------pop_warm_call-------------------------------------
1883 WarmCallInfo* Compile::pop_warm_call() {
1884   WarmCallInfo* wci = _warm_calls;
1885   if (wci != NULL)  _warm_calls = wci->remove_from(wci);
1886   return wci;
1887 }
1888 
1889 //----------------------------Inline_Warm--------------------------------------
1890 int Compile::Inline_Warm() {
1891   // If there is room, try to inline some more warm call sites.
1892   // %%% Do a graph index compaction pass when we think we're out of space?
1893   if (!InlineWarmCalls)  return 0;
1894 
1895   int calls_made_hot = 0;
1896   int room_to_grow   = NodeCountInliningCutoff - unique();
1897   int amount_to_grow = MIN2(room_to_grow, (int)NodeCountInliningStep);
1898   int amount_grown   = 0;
1899   WarmCallInfo* call;
1900   while (amount_to_grow > 0 && (call = pop_warm_call()) != NULL) {
1901     int est_size = (int)call->size();
1902     if (est_size > (room_to_grow - amount_grown)) {
1903       // This one won't fit anyway.  Get rid of it.
1904       call->make_cold();
1905       continue;
1906     }
1907     call->make_hot();
1908     calls_made_hot++;
1909     amount_grown   += est_size;
1910     amount_to_grow -= est_size;
1911   }
1912 
1913   if (calls_made_hot > 0)  set_major_progress();
1914   return calls_made_hot;
1915 }
1916 
1917 
1918 //----------------------------Finish_Warm--------------------------------------
1919 void Compile::Finish_Warm() {
1920   if (!InlineWarmCalls)  return;
1921   if (failing())  return;
1922   if (warm_calls() == NULL)  return;
1923 
1924   // Clean up loose ends, if we are out of space for inlining.
1925   WarmCallInfo* call;
1926   while ((call = pop_warm_call()) != NULL) {
1927     call->make_cold();
1928   }
1929 }
1930 
1931 //---------------------cleanup_loop_predicates-----------------------
1932 // Remove the opaque nodes that protect the predicates so that all unused
1933 // checks and uncommon_traps will be eliminated from the ideal graph
1934 void Compile::cleanup_loop_predicates(PhaseIterGVN &igvn) {
1935   if (predicate_count()==0) return;
1936   for (int i = predicate_count(); i > 0; i--) {
1937     Node * n = predicate_opaque1_node(i-1);
1938     assert(n->Opcode() == Op_Opaque1, "must be");
1939     igvn.replace_node(n, n->in(1));
1940   }
1941   assert(predicate_count()==0, "should be clean!");
1942 }
1943 
1944 void Compile::add_range_check_cast(Node* n) {
1945   assert(n->isa_CastII()->has_range_check(), "CastII should have range check dependency");
1946   assert(!_range_check_casts->contains(n), "duplicate entry in range check casts");
1947   _range_check_casts->append(n);
1948 }
1949 
1950 // Remove all range check dependent CastIINodes.
1951 void Compile::remove_range_check_casts(PhaseIterGVN &igvn) {
1952   for (int i = range_check_cast_count(); i > 0; i--) {
1953     Node* cast = range_check_cast_node(i-1);
1954     assert(cast->isa_CastII()->has_range_check(), "CastII should have range check dependency");
1955     igvn.replace_node(cast, cast->in(1));
1956   }
1957   assert(range_check_cast_count() == 0, "should be empty");
1958 }
1959 
1960 // StringOpts and late inlining of string methods
1961 void Compile::inline_string_calls(bool parse_time) {
1962   {
1963     // remove useless nodes to make the usage analysis simpler
1964     ResourceMark rm;
1965     PhaseRemoveUseless pru(initial_gvn(), for_igvn());
1966   }
1967 
1968   {
1969     ResourceMark rm;
1970     print_method(PHASE_BEFORE_STRINGOPTS, 3);
1971     PhaseStringOpts pso(initial_gvn(), for_igvn());
1972     print_method(PHASE_AFTER_STRINGOPTS, 3);
1973   }
1974 
1975   // now inline anything that we skipped the first time around
1976   if (!parse_time) {
1977     _late_inlines_pos = _late_inlines.length();
1978   }
1979 
1980   while (_string_late_inlines.length() > 0) {
1981     CallGenerator* cg = _string_late_inlines.pop();
1982     cg->do_late_inline();
1983     if (failing())  return;
1984   }
1985   _string_late_inlines.trunc_to(0);
1986 }
1987 
1988 // Late inlining of boxing methods
1989 void Compile::inline_boxing_calls(PhaseIterGVN& igvn) {
1990   if (_boxing_late_inlines.length() > 0) {
1991     assert(has_boxed_value(), "inconsistent");
1992 
1993     PhaseGVN* gvn = initial_gvn();
1994     set_inlining_incrementally(true);
1995 
1996     assert( igvn._worklist.size() == 0, "should be done with igvn" );
1997     for_igvn()->clear();
1998     gvn->replace_with(&igvn);
1999 
2000     _late_inlines_pos = _late_inlines.length();
2001 
2002     while (_boxing_late_inlines.length() > 0) {
2003       CallGenerator* cg = _boxing_late_inlines.pop();
2004       cg->do_late_inline();
2005       if (failing())  return;
2006     }
2007     _boxing_late_inlines.trunc_to(0);
2008 
2009     {
2010       ResourceMark rm;
2011       PhaseRemoveUseless pru(gvn, for_igvn());
2012     }
2013 
2014     igvn = PhaseIterGVN(gvn);
2015     igvn.optimize();
2016 
2017     set_inlining_progress(false);
2018     set_inlining_incrementally(false);
2019   }
2020 }
2021 
2022 void Compile::inline_incrementally_one(PhaseIterGVN& igvn) {
2023   assert(IncrementalInline, "incremental inlining should be on");
2024   PhaseGVN* gvn = initial_gvn();
2025 
2026   set_inlining_progress(false);
2027   for_igvn()->clear();
2028   gvn->replace_with(&igvn);
2029 
2030   {
2031     TracePhase tp("incrementalInline_inline", &timers[_t_incrInline_inline]);
2032     int i = 0;
2033     for (; i <_late_inlines.length() && !inlining_progress(); i++) {
2034       CallGenerator* cg = _late_inlines.at(i);
2035       _late_inlines_pos = i+1;
2036       cg->do_late_inline();
2037       if (failing())  return;
2038     }
2039     int j = 0;
2040     for (; i < _late_inlines.length(); i++, j++) {
2041       _late_inlines.at_put(j, _late_inlines.at(i));
2042     }
2043     _late_inlines.trunc_to(j);
2044   }
2045 
2046   {
2047     TracePhase tp("incrementalInline_pru", &timers[_t_incrInline_pru]);
2048     ResourceMark rm;
2049     PhaseRemoveUseless pru(gvn, for_igvn());
2050   }
2051 
2052   {
2053     TracePhase tp("incrementalInline_igvn", &timers[_t_incrInline_igvn]);
2054     igvn = PhaseIterGVN(gvn);
2055   }
2056 }
2057 
2058 // Perform incremental inlining until bound on number of live nodes is reached
2059 void Compile::inline_incrementally(PhaseIterGVN& igvn) {
2060   TracePhase tp("incrementalInline", &timers[_t_incrInline]);
2061 
2062   PhaseGVN* gvn = initial_gvn();
2063 
2064   set_inlining_incrementally(true);
2065   set_inlining_progress(true);
2066   uint low_live_nodes = 0;
2067 
2068   while(inlining_progress() && _late_inlines.length() > 0) {
2069 
2070     if (live_nodes() > (uint)LiveNodeCountInliningCutoff) {
2071       if (low_live_nodes < (uint)LiveNodeCountInliningCutoff * 8 / 10) {
2072         TracePhase tp("incrementalInline_ideal", &timers[_t_incrInline_ideal]);
2073         // PhaseIdealLoop is expensive so we only try it once we are
2074         // out of live nodes and we only try it again if the previous
2075         // helped got the number of nodes down significantly
2076         PhaseIdealLoop ideal_loop( igvn, false, true );
2077         if (failing())  return;
2078         low_live_nodes = live_nodes();
2079         _major_progress = true;
2080       }
2081 
2082       if (live_nodes() > (uint)LiveNodeCountInliningCutoff) {
2083         break;
2084       }
2085     }
2086 
2087     inline_incrementally_one(igvn);
2088 
2089     if (failing())  return;
2090 
2091     {
2092       TracePhase tp("incrementalInline_igvn", &timers[_t_incrInline_igvn]);
2093       igvn.optimize();
2094     }
2095 
2096     if (failing())  return;
2097   }
2098 
2099   assert( igvn._worklist.size() == 0, "should be done with igvn" );
2100 
2101   if (_string_late_inlines.length() > 0) {
2102     assert(has_stringbuilder(), "inconsistent");
2103     for_igvn()->clear();
2104     initial_gvn()->replace_with(&igvn);
2105 
2106     inline_string_calls(false);
2107 
2108     if (failing())  return;
2109 
2110     {
2111       TracePhase tp("incrementalInline_pru", &timers[_t_incrInline_pru]);
2112       ResourceMark rm;
2113       PhaseRemoveUseless pru(initial_gvn(), for_igvn());
2114     }
2115 
2116     {
2117       TracePhase tp("incrementalInline_igvn", &timers[_t_incrInline_igvn]);
2118       igvn = PhaseIterGVN(gvn);
2119       igvn.optimize();
2120     }
2121   }
2122 
2123   set_inlining_incrementally(false);
2124 }
2125 
2126 
2127 //------------------------------Optimize---------------------------------------
2128 // Given a graph, optimize it.
2129 void Compile::Optimize() {
2130   TracePhase tp("optimizer", &timers[_t_optimizer]);
2131 
2132 #ifndef PRODUCT
2133   if (_directive->BreakAtCompileOption) {
2134     BREAKPOINT;
2135   }
2136 
2137 #endif
2138 
2139   ResourceMark rm;
2140   int          loop_opts_cnt;
2141 
2142   print_inlining_reinit();
2143 
2144   NOT_PRODUCT( verify_graph_edges(); )
2145 
2146   print_method(PHASE_AFTER_PARSING);
2147 
2148  {
2149   // Iterative Global Value Numbering, including ideal transforms
2150   // Initialize IterGVN with types and values from parse-time GVN
2151   PhaseIterGVN igvn(initial_gvn());
2152 #ifdef ASSERT
2153   _modified_nodes = new (comp_arena()) Unique_Node_List(comp_arena());
2154 #endif
2155   {
2156     TracePhase tp("iterGVN", &timers[_t_iterGVN]);
2157     igvn.optimize();
2158   }
2159 
2160   print_method(PHASE_ITER_GVN1, 2);
2161 
2162   if (failing())  return;
2163 
2164   inline_incrementally(igvn);
2165 
2166   print_method(PHASE_INCREMENTAL_INLINE, 2);
2167 
2168   if (failing())  return;
2169 
2170   if (eliminate_boxing()) {
2171     // Inline valueOf() methods now.
2172     inline_boxing_calls(igvn);
2173 
2174     if (AlwaysIncrementalInline) {
2175       inline_incrementally(igvn);
2176     }
2177 
2178     print_method(PHASE_INCREMENTAL_BOXING_INLINE, 2);
2179 
2180     if (failing())  return;
2181   }
2182 
2183   // Remove the speculative part of types and clean up the graph from
2184   // the extra CastPP nodes whose only purpose is to carry them. Do
2185   // that early so that optimizations are not disrupted by the extra
2186   // CastPP nodes.
2187   remove_speculative_types(igvn);
2188 
2189   // No more new expensive nodes will be added to the list from here
2190   // so keep only the actual candidates for optimizations.
2191   cleanup_expensive_nodes(igvn);
2192 
2193   if (!failing() && RenumberLiveNodes && live_nodes() + NodeLimitFudgeFactor < unique()) {
2194     Compile::TracePhase tp("", &timers[_t_renumberLive]);
2195     initial_gvn()->replace_with(&igvn);
2196     for_igvn()->clear();
2197     Unique_Node_List new_worklist(C->comp_arena());
2198     {
2199       ResourceMark rm;
2200       PhaseRenumberLive prl = PhaseRenumberLive(initial_gvn(), for_igvn(), &new_worklist);
2201     }
2202     set_for_igvn(&new_worklist);
2203     igvn = PhaseIterGVN(initial_gvn());
2204     igvn.optimize();
2205   }
2206 
2207   // Perform escape analysis
2208   if (_do_escape_analysis && ConnectionGraph::has_candidates(this)) {
2209     if (has_loops()) {
2210       // Cleanup graph (remove dead nodes).
2211       TracePhase tp("idealLoop", &timers[_t_idealLoop]);
2212       PhaseIdealLoop ideal_loop( igvn, false, true );
2213       if (major_progress()) print_method(PHASE_PHASEIDEAL_BEFORE_EA, 2);
2214       if (failing())  return;
2215     }
2216     ConnectionGraph::do_analysis(this, &igvn);
2217 
2218     if (failing())  return;
2219 
2220     // Optimize out fields loads from scalar replaceable allocations.
2221     igvn.optimize();
2222     print_method(PHASE_ITER_GVN_AFTER_EA, 2);
2223 
2224     if (failing())  return;
2225 
2226     if (congraph() != NULL && macro_count() > 0) {
2227       TracePhase tp("macroEliminate", &timers[_t_macroEliminate]);
2228       PhaseMacroExpand mexp(igvn);
2229       mexp.eliminate_macro_nodes();
2230       igvn.set_delay_transform(false);
2231 
2232       igvn.optimize();
2233       print_method(PHASE_ITER_GVN_AFTER_ELIMINATION, 2);
2234 
2235       if (failing())  return;
2236     }
2237   }
2238 
2239   // Loop transforms on the ideal graph.  Range Check Elimination,
2240   // peeling, unrolling, etc.
2241 
2242   // Set loop opts counter
2243   loop_opts_cnt = num_loop_opts();
2244   if((loop_opts_cnt > 0) && (has_loops() || has_split_ifs())) {
2245     {
2246       TracePhase tp("idealLoop", &timers[_t_idealLoop]);
2247       PhaseIdealLoop ideal_loop( igvn, true );
2248       loop_opts_cnt--;
2249       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP1, 2);
2250       if (failing())  return;
2251     }
2252     // Loop opts pass if partial peeling occurred in previous pass
2253     if(PartialPeelLoop && major_progress() && (loop_opts_cnt > 0)) {
2254       TracePhase tp("idealLoop", &timers[_t_idealLoop]);
2255       PhaseIdealLoop ideal_loop( igvn, false );
2256       loop_opts_cnt--;
2257       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP2, 2);
2258       if (failing())  return;
2259     }
2260     // Loop opts pass for loop-unrolling before CCP
2261     if(major_progress() && (loop_opts_cnt > 0)) {
2262       TracePhase tp("idealLoop", &timers[_t_idealLoop]);
2263       PhaseIdealLoop ideal_loop( igvn, false );
2264       loop_opts_cnt--;
2265       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP3, 2);
2266     }
2267     if (!failing()) {
2268       // Verify that last round of loop opts produced a valid graph
2269       TracePhase tp("idealLoopVerify", &timers[_t_idealLoopVerify]);
2270       PhaseIdealLoop::verify(igvn);
2271     }
2272   }
2273   if (failing())  return;
2274 
2275   // Conditional Constant Propagation;
2276   PhaseCCP ccp( &igvn );
2277   assert( true, "Break here to ccp.dump_nodes_and_types(_root,999,1)");
2278   {
2279     TracePhase tp("ccp", &timers[_t_ccp]);
2280     ccp.do_transform();
2281   }
2282   print_method(PHASE_CPP1, 2);
2283 
2284   assert( true, "Break here to ccp.dump_old2new_map()");
2285 
2286   // Iterative Global Value Numbering, including ideal transforms
2287   {
2288     TracePhase tp("iterGVN2", &timers[_t_iterGVN2]);
2289     igvn = ccp;
2290     igvn.optimize();
2291   }
2292 
2293   print_method(PHASE_ITER_GVN2, 2);
2294 
2295   if (failing())  return;
2296 
2297   // Loop transforms on the ideal graph.  Range Check Elimination,
2298   // peeling, unrolling, etc.
2299   if(loop_opts_cnt > 0) {
2300     debug_only( int cnt = 0; );
2301     while(major_progress() && (loop_opts_cnt > 0)) {
2302       TracePhase tp("idealLoop", &timers[_t_idealLoop]);
2303       assert( cnt++ < 40, "infinite cycle in loop optimization" );
2304       PhaseIdealLoop ideal_loop( igvn, true);
2305       loop_opts_cnt--;
2306       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP_ITERATIONS, 2);
2307       if (failing())  return;
2308     }
2309   }
2310   // Ensure that major progress is now clear
2311   C->clear_major_progress();
2312 
2313   {
2314     // Verify that all previous optimizations produced a valid graph
2315     // at least to this point, even if no loop optimizations were done.
2316     TracePhase tp("idealLoopVerify", &timers[_t_idealLoopVerify]);
2317     PhaseIdealLoop::verify(igvn);
2318   }
2319 
2320   if (range_check_cast_count() > 0) {
2321     // No more loop optimizations. Remove all range check dependent CastIINodes.
2322     C->remove_range_check_casts(igvn);
2323     igvn.optimize();
2324   }
2325 
2326   {
2327     TracePhase tp("macroExpand", &timers[_t_macroExpand]);
2328     PhaseMacroExpand  mex(igvn);
2329     if (mex.expand_macro_nodes()) {
2330       assert(failing(), "must bail out w/ explicit message");
2331       return;
2332     }
2333   }
2334 
2335   DEBUG_ONLY( _modified_nodes = NULL; )
2336  } // (End scope of igvn; run destructor if necessary for asserts.)
2337 
2338  process_print_inlining();
2339  // A method with only infinite loops has no edges entering loops from root
2340  {
2341    TracePhase tp("graphReshape", &timers[_t_graphReshaping]);
2342    if (final_graph_reshaping()) {
2343      assert(failing(), "must bail out w/ explicit message");
2344      return;
2345    }
2346  }
2347 
2348  print_method(PHASE_OPTIMIZE_FINISHED, 2);
2349 }
2350 
2351 
2352 //------------------------------Code_Gen---------------------------------------
2353 // Given a graph, generate code for it
2354 void Compile::Code_Gen() {
2355   if (failing()) {
2356     return;
2357   }
2358 
2359   // Perform instruction selection.  You might think we could reclaim Matcher
2360   // memory PDQ, but actually the Matcher is used in generating spill code.
2361   // Internals of the Matcher (including some VectorSets) must remain live
2362   // for awhile - thus I cannot reclaim Matcher memory lest a VectorSet usage
2363   // set a bit in reclaimed memory.
2364 
2365   // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
2366   // nodes.  Mapping is only valid at the root of each matched subtree.
2367   NOT_PRODUCT( verify_graph_edges(); )
2368 
2369   Matcher matcher;
2370   _matcher = &matcher;
2371   {
2372     TracePhase tp("matcher", &timers[_t_matcher]);
2373     matcher.match();
2374   }
2375   // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
2376   // nodes.  Mapping is only valid at the root of each matched subtree.
2377   NOT_PRODUCT( verify_graph_edges(); )
2378 
2379   // If you have too many nodes, or if matching has failed, bail out
2380   check_node_count(0, "out of nodes matching instructions");
2381   if (failing()) {
2382     return;
2383   }
2384 
2385   print_method(PHASE_MATCHING, 2);
2386 
2387   // Build a proper-looking CFG
2388   PhaseCFG cfg(node_arena(), root(), matcher);
2389   _cfg = &cfg;
2390   {
2391     TracePhase tp("scheduler", &timers[_t_scheduler]);
2392     bool success = cfg.do_global_code_motion();
2393     if (!success) {
2394       return;
2395     }
2396 
2397     print_method(PHASE_GLOBAL_CODE_MOTION, 2);
2398     NOT_PRODUCT( verify_graph_edges(); )
2399     debug_only( cfg.verify(); )
2400   }
2401 
2402   PhaseChaitin regalloc(unique(), cfg, matcher, false);
2403   _regalloc = &regalloc;
2404   {
2405     TracePhase tp("regalloc", &timers[_t_registerAllocation]);
2406     // Perform register allocation.  After Chaitin, use-def chains are
2407     // no longer accurate (at spill code) and so must be ignored.
2408     // Node->LRG->reg mappings are still accurate.
2409     _regalloc->Register_Allocate();
2410 
2411     // Bail out if the allocator builds too many nodes
2412     if (failing()) {
2413       return;
2414     }
2415   }
2416 
2417   // Prior to register allocation we kept empty basic blocks in case the
2418   // the allocator needed a place to spill.  After register allocation we
2419   // are not adding any new instructions.  If any basic block is empty, we
2420   // can now safely remove it.
2421   {
2422     TracePhase tp("blockOrdering", &timers[_t_blockOrdering]);
2423     cfg.remove_empty_blocks();
2424     if (do_freq_based_layout()) {
2425       PhaseBlockLayout layout(cfg);
2426     } else {
2427       cfg.set_loop_alignment();
2428     }
2429     cfg.fixup_flow();
2430   }
2431 
2432   // Apply peephole optimizations
2433   if( OptoPeephole ) {
2434     TracePhase tp("peephole", &timers[_t_peephole]);
2435     PhasePeephole peep( _regalloc, cfg);
2436     peep.do_transform();
2437   }
2438 
2439   // Do late expand if CPU requires this.
2440   if (Matcher::require_postalloc_expand) {
2441     TracePhase tp("postalloc_expand", &timers[_t_postalloc_expand]);
2442     cfg.postalloc_expand(_regalloc);
2443   }
2444 
2445   // Convert Nodes to instruction bits in a buffer
2446   {
2447     TraceTime tp("output", &timers[_t_output], CITime);
2448     Output();
2449   }
2450 
2451   print_method(PHASE_FINAL_CODE);
2452 
2453   // He's dead, Jim.
2454   _cfg     = (PhaseCFG*)((intptr_t)0xdeadbeef);
2455   _regalloc = (PhaseChaitin*)((intptr_t)0xdeadbeef);
2456 }
2457 
2458 
2459 //------------------------------dump_asm---------------------------------------
2460 // Dump formatted assembly
2461 #ifndef PRODUCT
2462 void Compile::dump_asm(int *pcs, uint pc_limit) {
2463   bool cut_short = false;
2464   tty->print_cr("#");
2465   tty->print("#  ");  _tf->dump();  tty->cr();
2466   tty->print_cr("#");
2467 
2468   // For all blocks
2469   int pc = 0x0;                 // Program counter
2470   char starts_bundle = ' ';
2471   _regalloc->dump_frame();
2472 
2473   Node *n = NULL;
2474   for (uint i = 0; i < _cfg->number_of_blocks(); i++) {
2475     if (VMThread::should_terminate()) {
2476       cut_short = true;
2477       break;
2478     }
2479     Block* block = _cfg->get_block(i);
2480     if (block->is_connector() && !Verbose) {
2481       continue;
2482     }
2483     n = block->head();
2484     if (pcs && n->_idx < pc_limit) {
2485       tty->print("%3.3x   ", pcs[n->_idx]);
2486     } else {
2487       tty->print("      ");
2488     }
2489     block->dump_head(_cfg);
2490     if (block->is_connector()) {
2491       tty->print_cr("        # Empty connector block");
2492     } else if (block->num_preds() == 2 && block->pred(1)->is_CatchProj() && block->pred(1)->as_CatchProj()->_con == CatchProjNode::fall_through_index) {
2493       tty->print_cr("        # Block is sole successor of call");
2494     }
2495 
2496     // For all instructions
2497     Node *delay = NULL;
2498     for (uint j = 0; j < block->number_of_nodes(); j++) {
2499       if (VMThread::should_terminate()) {
2500         cut_short = true;
2501         break;
2502       }
2503       n = block->get_node(j);
2504       if (valid_bundle_info(n)) {
2505         Bundle* bundle = node_bundling(n);
2506         if (bundle->used_in_unconditional_delay()) {
2507           delay = n;
2508           continue;
2509         }
2510         if (bundle->starts_bundle()) {
2511           starts_bundle = '+';
2512         }
2513       }
2514 
2515       if (WizardMode) {
2516         n->dump();
2517       }
2518 
2519       if( !n->is_Region() &&    // Dont print in the Assembly
2520           !n->is_Phi() &&       // a few noisely useless nodes
2521           !n->is_Proj() &&
2522           !n->is_MachTemp() &&
2523           !n->is_SafePointScalarObject() &&
2524           !n->is_Catch() &&     // Would be nice to print exception table targets
2525           !n->is_MergeMem() &&  // Not very interesting
2526           !n->is_top() &&       // Debug info table constants
2527           !(n->is_Con() && !n->is_Mach())// Debug info table constants
2528           ) {
2529         if (pcs && n->_idx < pc_limit)
2530           tty->print("%3.3x", pcs[n->_idx]);
2531         else
2532           tty->print("   ");
2533         tty->print(" %c ", starts_bundle);
2534         starts_bundle = ' ';
2535         tty->print("\t");
2536         n->format(_regalloc, tty);
2537         tty->cr();
2538       }
2539 
2540       // If we have an instruction with a delay slot, and have seen a delay,
2541       // then back up and print it
2542       if (valid_bundle_info(n) && node_bundling(n)->use_unconditional_delay()) {
2543         assert(delay != NULL, "no unconditional delay instruction");
2544         if (WizardMode) delay->dump();
2545 
2546         if (node_bundling(delay)->starts_bundle())
2547           starts_bundle = '+';
2548         if (pcs && n->_idx < pc_limit)
2549           tty->print("%3.3x", pcs[n->_idx]);
2550         else
2551           tty->print("   ");
2552         tty->print(" %c ", starts_bundle);
2553         starts_bundle = ' ';
2554         tty->print("\t");
2555         delay->format(_regalloc, tty);
2556         tty->cr();
2557         delay = NULL;
2558       }
2559 
2560       // Dump the exception table as well
2561       if( n->is_Catch() && (Verbose || WizardMode) ) {
2562         // Print the exception table for this offset
2563         _handler_table.print_subtable_for(pc);
2564       }
2565     }
2566 
2567     if (pcs && n->_idx < pc_limit)
2568       tty->print_cr("%3.3x", pcs[n->_idx]);
2569     else
2570       tty->cr();
2571 
2572     assert(cut_short || delay == NULL, "no unconditional delay branch");
2573 
2574   } // End of per-block dump
2575   tty->cr();
2576 
2577   if (cut_short)  tty->print_cr("*** disassembly is cut short ***");
2578 }
2579 #endif
2580 
2581 //------------------------------Final_Reshape_Counts---------------------------
2582 // This class defines counters to help identify when a method
2583 // may/must be executed using hardware with only 24-bit precision.
2584 struct Final_Reshape_Counts : public StackObj {
2585   int  _call_count;             // count non-inlined 'common' calls
2586   int  _float_count;            // count float ops requiring 24-bit precision
2587   int  _double_count;           // count double ops requiring more precision
2588   int  _java_call_count;        // count non-inlined 'java' calls
2589   int  _inner_loop_count;       // count loops which need alignment
2590   VectorSet _visited;           // Visitation flags
2591   Node_List _tests;             // Set of IfNodes & PCTableNodes
2592 
2593   Final_Reshape_Counts() :
2594     _call_count(0), _float_count(0), _double_count(0),
2595     _java_call_count(0), _inner_loop_count(0),
2596     _visited( Thread::current()->resource_area() ) { }
2597 
2598   void inc_call_count  () { _call_count  ++; }
2599   void inc_float_count () { _float_count ++; }
2600   void inc_double_count() { _double_count++; }
2601   void inc_java_call_count() { _java_call_count++; }
2602   void inc_inner_loop_count() { _inner_loop_count++; }
2603 
2604   int  get_call_count  () const { return _call_count  ; }
2605   int  get_float_count () const { return _float_count ; }
2606   int  get_double_count() const { return _double_count; }
2607   int  get_java_call_count() const { return _java_call_count; }
2608   int  get_inner_loop_count() const { return _inner_loop_count; }
2609 };
2610 
2611 #ifdef ASSERT
2612 static bool oop_offset_is_sane(const TypeInstPtr* tp) {
2613   ciInstanceKlass *k = tp->klass()->as_instance_klass();
2614   // Make sure the offset goes inside the instance layout.
2615   return k->contains_field_offset(tp->offset());
2616   // Note that OffsetBot and OffsetTop are very negative.
2617 }
2618 #endif
2619 
2620 // Eliminate trivially redundant StoreCMs and accumulate their
2621 // precedence edges.
2622 void Compile::eliminate_redundant_card_marks(Node* n) {
2623   assert(n->Opcode() == Op_StoreCM, "expected StoreCM");
2624   if (n->in(MemNode::Address)->outcnt() > 1) {
2625     // There are multiple users of the same address so it might be
2626     // possible to eliminate some of the StoreCMs
2627     Node* mem = n->in(MemNode::Memory);
2628     Node* adr = n->in(MemNode::Address);
2629     Node* val = n->in(MemNode::ValueIn);
2630     Node* prev = n;
2631     bool done = false;
2632     // Walk the chain of StoreCMs eliminating ones that match.  As
2633     // long as it's a chain of single users then the optimization is
2634     // safe.  Eliminating partially redundant StoreCMs would require
2635     // cloning copies down the other paths.
2636     while (mem->Opcode() == Op_StoreCM && mem->outcnt() == 1 && !done) {
2637       if (adr == mem->in(MemNode::Address) &&
2638           val == mem->in(MemNode::ValueIn)) {
2639         // redundant StoreCM
2640         if (mem->req() > MemNode::OopStore) {
2641           // Hasn't been processed by this code yet.
2642           n->add_prec(mem->in(MemNode::OopStore));
2643         } else {
2644           // Already converted to precedence edge
2645           for (uint i = mem->req(); i < mem->len(); i++) {
2646             // Accumulate any precedence edges
2647             if (mem->in(i) != NULL) {
2648               n->add_prec(mem->in(i));
2649             }
2650           }
2651           // Everything above this point has been processed.
2652           done = true;
2653         }
2654         // Eliminate the previous StoreCM
2655         prev->set_req(MemNode::Memory, mem->in(MemNode::Memory));
2656         assert(mem->outcnt() == 0, "should be dead");
2657         mem->disconnect_inputs(NULL, this);
2658       } else {
2659         prev = mem;
2660       }
2661       mem = prev->in(MemNode::Memory);
2662     }
2663   }
2664 }
2665 
2666 //------------------------------final_graph_reshaping_impl----------------------
2667 // Implement items 1-5 from final_graph_reshaping below.
2668 void Compile::final_graph_reshaping_impl( Node *n, Final_Reshape_Counts &frc) {
2669 
2670   if ( n->outcnt() == 0 ) return; // dead node
2671   uint nop = n->Opcode();
2672 
2673   // Check for 2-input instruction with "last use" on right input.
2674   // Swap to left input.  Implements item (2).
2675   if( n->req() == 3 &&          // two-input instruction
2676       n->in(1)->outcnt() > 1 && // left use is NOT a last use
2677       (!n->in(1)->is_Phi() || n->in(1)->in(2) != n) && // it is not data loop
2678       n->in(2)->outcnt() == 1 &&// right use IS a last use
2679       !n->in(2)->is_Con() ) {   // right use is not a constant
2680     // Check for commutative opcode
2681     switch( nop ) {
2682     case Op_AddI:  case Op_AddF:  case Op_AddD:  case Op_AddL:
2683     case Op_MaxI:  case Op_MinI:
2684     case Op_MulI:  case Op_MulF:  case Op_MulD:  case Op_MulL:
2685     case Op_AndL:  case Op_XorL:  case Op_OrL:
2686     case Op_AndI:  case Op_XorI:  case Op_OrI: {
2687       // Move "last use" input to left by swapping inputs
2688       n->swap_edges(1, 2);
2689       break;
2690     }
2691     default:
2692       break;
2693     }
2694   }
2695 
2696 #ifdef ASSERT
2697   if( n->is_Mem() ) {
2698     int alias_idx = get_alias_index(n->as_Mem()->adr_type());
2699     assert( n->in(0) != NULL || alias_idx != Compile::AliasIdxRaw ||
2700             // oop will be recorded in oop map if load crosses safepoint
2701             n->is_Load() && (n->as_Load()->bottom_type()->isa_oopptr() ||
2702                              LoadNode::is_immutable_value(n->in(MemNode::Address))),
2703             "raw memory operations should have control edge");
2704   }
2705 #endif
2706   // Count FPU ops and common calls, implements item (3)
2707   switch( nop ) {
2708   // Count all float operations that may use FPU
2709   case Op_AddF:
2710   case Op_SubF:
2711   case Op_MulF:
2712   case Op_DivF:
2713   case Op_NegF:
2714   case Op_ModF:
2715   case Op_ConvI2F:
2716   case Op_ConF:
2717   case Op_CmpF:
2718   case Op_CmpF3:
2719   // case Op_ConvL2F: // longs are split into 32-bit halves
2720     frc.inc_float_count();
2721     break;
2722 
2723   case Op_ConvF2D:
2724   case Op_ConvD2F:
2725     frc.inc_float_count();
2726     frc.inc_double_count();
2727     break;
2728 
2729   // Count all double operations that may use FPU
2730   case Op_AddD:
2731   case Op_SubD:
2732   case Op_MulD:
2733   case Op_DivD:
2734   case Op_NegD:
2735   case Op_ModD:
2736   case Op_ConvI2D:
2737   case Op_ConvD2I:
2738   // case Op_ConvL2D: // handled by leaf call
2739   // case Op_ConvD2L: // handled by leaf call
2740   case Op_ConD:
2741   case Op_CmpD:
2742   case Op_CmpD3:
2743     frc.inc_double_count();
2744     break;
2745   case Op_Opaque1:              // Remove Opaque Nodes before matching
2746   case Op_Opaque2:              // Remove Opaque Nodes before matching
2747   case Op_Opaque3:
2748     n->subsume_by(n->in(1), this);
2749     break;
2750   case Op_CallStaticJava:
2751   case Op_CallJava:
2752   case Op_CallDynamicJava:
2753     frc.inc_java_call_count(); // Count java call site;
2754   case Op_CallRuntime:
2755   case Op_CallLeaf:
2756   case Op_CallLeafNoFP: {
2757     assert (n->is_Call(), "");
2758     CallNode *call = n->as_Call();
2759     // Count call sites where the FP mode bit would have to be flipped.
2760     // Do not count uncommon runtime calls:
2761     // uncommon_trap, _complete_monitor_locking, _complete_monitor_unlocking,
2762     // _new_Java, _new_typeArray, _new_objArray, _rethrow_Java, ...
2763     if (!call->is_CallStaticJava() || !call->as_CallStaticJava()->_name) {
2764       frc.inc_call_count();   // Count the call site
2765     } else {                  // See if uncommon argument is shared
2766       Node *n = call->in(TypeFunc::Parms);
2767       int nop = n->Opcode();
2768       // Clone shared simple arguments to uncommon calls, item (1).
2769       if (n->outcnt() > 1 &&
2770           !n->is_Proj() &&
2771           nop != Op_CreateEx &&
2772           nop != Op_CheckCastPP &&
2773           nop != Op_DecodeN &&
2774           nop != Op_DecodeNKlass &&
2775           !n->is_Mem() &&
2776           !n->is_Phi()) {
2777         Node *x = n->clone();
2778         call->set_req(TypeFunc::Parms, x);
2779       }
2780     }
2781     break;
2782   }
2783 
2784   case Op_StoreD:
2785   case Op_LoadD:
2786   case Op_LoadD_unaligned:
2787     frc.inc_double_count();
2788     goto handle_mem;
2789   case Op_StoreF:
2790   case Op_LoadF:
2791     frc.inc_float_count();
2792     goto handle_mem;
2793 
2794   case Op_StoreCM:
2795     {
2796       // Convert OopStore dependence into precedence edge
2797       Node* prec = n->in(MemNode::OopStore);
2798       n->del_req(MemNode::OopStore);
2799       n->add_prec(prec);
2800       eliminate_redundant_card_marks(n);
2801     }
2802 
2803     // fall through
2804 
2805   case Op_StoreB:
2806   case Op_StoreC:
2807   case Op_StorePConditional:
2808   case Op_StoreI:
2809   case Op_StoreL:
2810   case Op_StoreIConditional:
2811   case Op_StoreLConditional:
2812   case Op_CompareAndSwapB:
2813   case Op_CompareAndSwapS:
2814   case Op_CompareAndSwapI:
2815   case Op_CompareAndSwapL:
2816   case Op_CompareAndSwapP:
2817   case Op_CompareAndSwapN:
2818   case Op_WeakCompareAndSwapB:
2819   case Op_WeakCompareAndSwapS:
2820   case Op_WeakCompareAndSwapI:
2821   case Op_WeakCompareAndSwapL:
2822   case Op_WeakCompareAndSwapP:
2823   case Op_WeakCompareAndSwapN:
2824   case Op_CompareAndExchangeB:
2825   case Op_CompareAndExchangeS:
2826   case Op_CompareAndExchangeI:
2827   case Op_CompareAndExchangeL:
2828   case Op_CompareAndExchangeP:
2829   case Op_CompareAndExchangeN:
2830   case Op_GetAndAddS:
2831   case Op_GetAndAddB:
2832   case Op_GetAndAddI:
2833   case Op_GetAndAddL:
2834   case Op_GetAndSetS:
2835   case Op_GetAndSetB:
2836   case Op_GetAndSetI:
2837   case Op_GetAndSetL:
2838   case Op_GetAndSetP:
2839   case Op_GetAndSetN:
2840   case Op_StoreP:
2841   case Op_StoreN:
2842   case Op_StoreNKlass:
2843   case Op_LoadB:
2844   case Op_LoadUB:
2845   case Op_LoadUS:
2846   case Op_LoadI:
2847   case Op_LoadKlass:
2848   case Op_LoadNKlass:
2849   case Op_LoadL:
2850   case Op_LoadL_unaligned:
2851   case Op_LoadPLocked:
2852   case Op_LoadP:
2853   case Op_LoadN:
2854   case Op_LoadRange:
2855   case Op_LoadS: {
2856   handle_mem:
2857 #ifdef ASSERT
2858     if( VerifyOptoOopOffsets ) {
2859       assert( n->is_Mem(), "" );
2860       MemNode *mem  = (MemNode*)n;
2861       // Check to see if address types have grounded out somehow.
2862       const TypeInstPtr *tp = mem->in(MemNode::Address)->bottom_type()->isa_instptr();
2863       assert( !tp || oop_offset_is_sane(tp), "" );
2864     }
2865 #endif
2866     break;
2867   }
2868 
2869   case Op_AddP: {               // Assert sane base pointers
2870     Node *addp = n->in(AddPNode::Address);
2871     assert( !addp->is_AddP() ||
2872             addp->in(AddPNode::Base)->is_top() || // Top OK for allocation
2873             addp->in(AddPNode::Base) == n->in(AddPNode::Base),
2874             "Base pointers must match (addp %u)", addp->_idx );
2875 #ifdef _LP64
2876     if ((UseCompressedOops || UseCompressedClassPointers) &&
2877         addp->Opcode() == Op_ConP &&
2878         addp == n->in(AddPNode::Base) &&
2879         n->in(AddPNode::Offset)->is_Con()) {
2880       // If the transformation of ConP to ConN+DecodeN is beneficial depends
2881       // on the platform and on the compressed oops mode.
2882       // Use addressing with narrow klass to load with offset on x86.
2883       // Some platforms can use the constant pool to load ConP.
2884       // Do this transformation here since IGVN will convert ConN back to ConP.
2885       const Type* t = addp->bottom_type();
2886       bool is_oop   = t->isa_oopptr() != NULL;
2887       bool is_klass = t->isa_klassptr() != NULL;
2888 
2889       if ((is_oop   && Matcher::const_oop_prefer_decode()  ) ||
2890           (is_klass && Matcher::const_klass_prefer_decode())) {
2891         Node* nn = NULL;
2892 
2893         int op = is_oop ? Op_ConN : Op_ConNKlass;
2894 
2895         // Look for existing ConN node of the same exact type.
2896         Node* r  = root();
2897         uint cnt = r->outcnt();
2898         for (uint i = 0; i < cnt; i++) {
2899           Node* m = r->raw_out(i);
2900           if (m!= NULL && m->Opcode() == op &&
2901               m->bottom_type()->make_ptr() == t) {
2902             nn = m;
2903             break;
2904           }
2905         }
2906         if (nn != NULL) {
2907           // Decode a narrow oop to match address
2908           // [R12 + narrow_oop_reg<<3 + offset]
2909           if (is_oop) {
2910             nn = new DecodeNNode(nn, t);
2911           } else {
2912             nn = new DecodeNKlassNode(nn, t);
2913           }
2914           // Check for succeeding AddP which uses the same Base.
2915           // Otherwise we will run into the assertion above when visiting that guy.
2916           for (uint i = 0; i < n->outcnt(); ++i) {
2917             Node *out_i = n->raw_out(i);
2918             if (out_i && out_i->is_AddP() && out_i->in(AddPNode::Base) == addp) {
2919               out_i->set_req(AddPNode::Base, nn);
2920 #ifdef ASSERT
2921               for (uint j = 0; j < out_i->outcnt(); ++j) {
2922                 Node *out_j = out_i->raw_out(j);
2923                 assert(out_j == NULL || !out_j->is_AddP() || out_j->in(AddPNode::Base) != addp,
2924                        "more than 2 AddP nodes in a chain (out_j %u)", out_j->_idx);
2925               }
2926 #endif
2927             }
2928           }
2929           n->set_req(AddPNode::Base, nn);
2930           n->set_req(AddPNode::Address, nn);
2931           if (addp->outcnt() == 0) {
2932             addp->disconnect_inputs(NULL, this);
2933           }
2934         }
2935       }
2936     }
2937 #endif
2938     // platform dependent reshaping of the address expression
2939     reshape_address(n->as_AddP());
2940     break;
2941   }
2942 
2943   case Op_CastPP: {
2944     // Remove CastPP nodes to gain more freedom during scheduling but
2945     // keep the dependency they encode as control or precedence edges
2946     // (if control is set already) on memory operations. Some CastPP
2947     // nodes don't have a control (don't carry a dependency): skip
2948     // those.
2949     if (n->in(0) != NULL) {
2950       ResourceMark rm;
2951       Unique_Node_List wq;
2952       wq.push(n);
2953       for (uint next = 0; next < wq.size(); ++next) {
2954         Node *m = wq.at(next);
2955         for (DUIterator_Fast imax, i = m->fast_outs(imax); i < imax; i++) {
2956           Node* use = m->fast_out(i);
2957           if (use->is_Mem() || use->is_EncodeNarrowPtr()) {
2958             use->ensure_control_or_add_prec(n->in(0));
2959           } else {
2960             switch(use->Opcode()) {
2961             case Op_AddP:
2962             case Op_DecodeN:
2963             case Op_DecodeNKlass:
2964             case Op_CheckCastPP:
2965             case Op_CastPP:
2966               wq.push(use);
2967               break;
2968             }
2969           }
2970         }
2971       }
2972     }
2973     const bool is_LP64 = LP64_ONLY(true) NOT_LP64(false);
2974     if (is_LP64 && n->in(1)->is_DecodeN() && Matcher::gen_narrow_oop_implicit_null_checks()) {
2975       Node* in1 = n->in(1);
2976       const Type* t = n->bottom_type();
2977       Node* new_in1 = in1->clone();
2978       new_in1->as_DecodeN()->set_type(t);
2979 
2980       if (!Matcher::narrow_oop_use_complex_address()) {
2981         //
2982         // x86, ARM and friends can handle 2 adds in addressing mode
2983         // and Matcher can fold a DecodeN node into address by using
2984         // a narrow oop directly and do implicit NULL check in address:
2985         //
2986         // [R12 + narrow_oop_reg<<3 + offset]
2987         // NullCheck narrow_oop_reg
2988         //
2989         // On other platforms (Sparc) we have to keep new DecodeN node and
2990         // use it to do implicit NULL check in address:
2991         //
2992         // decode_not_null narrow_oop_reg, base_reg
2993         // [base_reg + offset]
2994         // NullCheck base_reg
2995         //
2996         // Pin the new DecodeN node to non-null path on these platform (Sparc)
2997         // to keep the information to which NULL check the new DecodeN node
2998         // corresponds to use it as value in implicit_null_check().
2999         //
3000         new_in1->set_req(0, n->in(0));
3001       }
3002 
3003       n->subsume_by(new_in1, this);
3004       if (in1->outcnt() == 0) {
3005         in1->disconnect_inputs(NULL, this);
3006       }
3007     } else {
3008       n->subsume_by(n->in(1), this);
3009       if (n->outcnt() == 0) {
3010         n->disconnect_inputs(NULL, this);
3011       }
3012     }
3013     break;
3014   }
3015 #ifdef _LP64
3016   case Op_CmpP:
3017     // Do this transformation here to preserve CmpPNode::sub() and
3018     // other TypePtr related Ideal optimizations (for example, ptr nullness).
3019     if (n->in(1)->is_DecodeNarrowPtr() || n->in(2)->is_DecodeNarrowPtr()) {
3020       Node* in1 = n->in(1);
3021       Node* in2 = n->in(2);
3022       if (!in1->is_DecodeNarrowPtr()) {
3023         in2 = in1;
3024         in1 = n->in(2);
3025       }
3026       assert(in1->is_DecodeNarrowPtr(), "sanity");
3027 
3028       Node* new_in2 = NULL;
3029       if (in2->is_DecodeNarrowPtr()) {
3030         assert(in2->Opcode() == in1->Opcode(), "must be same node type");
3031         new_in2 = in2->in(1);
3032       } else if (in2->Opcode() == Op_ConP) {
3033         const Type* t = in2->bottom_type();
3034         if (t == TypePtr::NULL_PTR) {
3035           assert(in1->is_DecodeN(), "compare klass to null?");
3036           // Don't convert CmpP null check into CmpN if compressed
3037           // oops implicit null check is not generated.
3038           // This will allow to generate normal oop implicit null check.
3039           if (Matcher::gen_narrow_oop_implicit_null_checks())
3040             new_in2 = ConNode::make(TypeNarrowOop::NULL_PTR);
3041           //
3042           // This transformation together with CastPP transformation above
3043           // will generated code for implicit NULL checks for compressed oops.
3044           //
3045           // The original code after Optimize()
3046           //
3047           //    LoadN memory, narrow_oop_reg
3048           //    decode narrow_oop_reg, base_reg
3049           //    CmpP base_reg, NULL
3050           //    CastPP base_reg // NotNull
3051           //    Load [base_reg + offset], val_reg
3052           //
3053           // after these transformations will be
3054           //
3055           //    LoadN memory, narrow_oop_reg
3056           //    CmpN narrow_oop_reg, NULL
3057           //    decode_not_null narrow_oop_reg, base_reg
3058           //    Load [base_reg + offset], val_reg
3059           //
3060           // and the uncommon path (== NULL) will use narrow_oop_reg directly
3061           // since narrow oops can be used in debug info now (see the code in
3062           // final_graph_reshaping_walk()).
3063           //
3064           // At the end the code will be matched to
3065           // on x86:
3066           //
3067           //    Load_narrow_oop memory, narrow_oop_reg
3068           //    Load [R12 + narrow_oop_reg<<3 + offset], val_reg
3069           //    NullCheck narrow_oop_reg
3070           //
3071           // and on sparc:
3072           //
3073           //    Load_narrow_oop memory, narrow_oop_reg
3074           //    decode_not_null narrow_oop_reg, base_reg
3075           //    Load [base_reg + offset], val_reg
3076           //    NullCheck base_reg
3077           //
3078         } else if (t->isa_oopptr()) {
3079           new_in2 = ConNode::make(t->make_narrowoop());
3080         } else if (t->isa_klassptr()) {
3081           new_in2 = ConNode::make(t->make_narrowklass());
3082         }
3083       }
3084       if (new_in2 != NULL) {
3085         Node* cmpN = new CmpNNode(in1->in(1), new_in2);
3086         n->subsume_by(cmpN, this);
3087         if (in1->outcnt() == 0) {
3088           in1->disconnect_inputs(NULL, this);
3089         }
3090         if (in2->outcnt() == 0) {
3091           in2->disconnect_inputs(NULL, this);
3092         }
3093       }
3094     }
3095     break;
3096 
3097   case Op_DecodeN:
3098   case Op_DecodeNKlass:
3099     assert(!n->in(1)->is_EncodeNarrowPtr(), "should be optimized out");
3100     // DecodeN could be pinned when it can't be fold into
3101     // an address expression, see the code for Op_CastPP above.
3102     assert(n->in(0) == NULL || (UseCompressedOops && !Matcher::narrow_oop_use_complex_address()), "no control");
3103     break;
3104 
3105   case Op_EncodeP:
3106   case Op_EncodePKlass: {
3107     Node* in1 = n->in(1);
3108     if (in1->is_DecodeNarrowPtr()) {
3109       n->subsume_by(in1->in(1), this);
3110     } else if (in1->Opcode() == Op_ConP) {
3111       const Type* t = in1->bottom_type();
3112       if (t == TypePtr::NULL_PTR) {
3113         assert(t->isa_oopptr(), "null klass?");
3114         n->subsume_by(ConNode::make(TypeNarrowOop::NULL_PTR), this);
3115       } else if (t->isa_oopptr()) {
3116         n->subsume_by(ConNode::make(t->make_narrowoop()), this);
3117       } else if (t->isa_klassptr()) {
3118         n->subsume_by(ConNode::make(t->make_narrowklass()), this);
3119       }
3120     }
3121     if (in1->outcnt() == 0) {
3122       in1->disconnect_inputs(NULL, this);
3123     }
3124     break;
3125   }
3126 
3127   case Op_Proj: {
3128     if (OptimizeStringConcat) {
3129       ProjNode* p = n->as_Proj();
3130       if (p->_is_io_use) {
3131         // Separate projections were used for the exception path which
3132         // are normally removed by a late inline.  If it wasn't inlined
3133         // then they will hang around and should just be replaced with
3134         // the original one.
3135         Node* proj = NULL;
3136         // Replace with just one
3137         for (SimpleDUIterator i(p->in(0)); i.has_next(); i.next()) {
3138           Node *use = i.get();
3139           if (use->is_Proj() && p != use && use->as_Proj()->_con == p->_con) {
3140             proj = use;
3141             break;
3142           }
3143         }
3144         assert(proj != NULL, "must be found");
3145         p->subsume_by(proj, this);
3146       }
3147     }
3148     break;
3149   }
3150 
3151   case Op_Phi:
3152     if (n->as_Phi()->bottom_type()->isa_narrowoop() || n->as_Phi()->bottom_type()->isa_narrowklass()) {
3153       // The EncodeP optimization may create Phi with the same edges
3154       // for all paths. It is not handled well by Register Allocator.
3155       Node* unique_in = n->in(1);
3156       assert(unique_in != NULL, "");
3157       uint cnt = n->req();
3158       for (uint i = 2; i < cnt; i++) {
3159         Node* m = n->in(i);
3160         assert(m != NULL, "");
3161         if (unique_in != m)
3162           unique_in = NULL;
3163       }
3164       if (unique_in != NULL) {
3165         n->subsume_by(unique_in, this);
3166       }
3167     }
3168     break;
3169 
3170 #endif
3171 
3172 #ifdef ASSERT
3173   case Op_CastII:
3174     // Verify that all range check dependent CastII nodes were removed.
3175     if (n->isa_CastII()->has_range_check()) {
3176       n->dump(3);
3177       assert(false, "Range check dependent CastII node was not removed");
3178     }
3179     break;
3180 #endif
3181 
3182   case Op_ModI:
3183     if (UseDivMod) {
3184       // Check if a%b and a/b both exist
3185       Node* d = n->find_similar(Op_DivI);
3186       if (d) {
3187         // Replace them with a fused divmod if supported
3188         if (Matcher::has_match_rule(Op_DivModI)) {
3189           DivModINode* divmod = DivModINode::make(n);
3190           d->subsume_by(divmod->div_proj(), this);
3191           n->subsume_by(divmod->mod_proj(), this);
3192         } else {
3193           // replace a%b with a-((a/b)*b)
3194           Node* mult = new MulINode(d, d->in(2));
3195           Node* sub  = new SubINode(d->in(1), mult);
3196           n->subsume_by(sub, this);
3197         }
3198       }
3199     }
3200     break;
3201 
3202   case Op_ModL:
3203     if (UseDivMod) {
3204       // Check if a%b and a/b both exist
3205       Node* d = n->find_similar(Op_DivL);
3206       if (d) {
3207         // Replace them with a fused divmod if supported
3208         if (Matcher::has_match_rule(Op_DivModL)) {
3209           DivModLNode* divmod = DivModLNode::make(n);
3210           d->subsume_by(divmod->div_proj(), this);
3211           n->subsume_by(divmod->mod_proj(), this);
3212         } else {
3213           // replace a%b with a-((a/b)*b)
3214           Node* mult = new MulLNode(d, d->in(2));
3215           Node* sub  = new SubLNode(d->in(1), mult);
3216           n->subsume_by(sub, this);
3217         }
3218       }
3219     }
3220     break;
3221 
3222   case Op_LoadVector:
3223   case Op_StoreVector:
3224     break;
3225 
3226   case Op_AddReductionVI:
3227   case Op_AddReductionVL:
3228   case Op_AddReductionVF:
3229   case Op_AddReductionVD:
3230   case Op_MulReductionVI:
3231   case Op_MulReductionVL:
3232   case Op_MulReductionVF:
3233   case Op_MulReductionVD:
3234     break;
3235 
3236   case Op_PackB:
3237   case Op_PackS:
3238   case Op_PackI:
3239   case Op_PackF:
3240   case Op_PackL:
3241   case Op_PackD:
3242     if (n->req()-1 > 2) {
3243       // Replace many operand PackNodes with a binary tree for matching
3244       PackNode* p = (PackNode*) n;
3245       Node* btp = p->binary_tree_pack(1, n->req());
3246       n->subsume_by(btp, this);
3247     }
3248     break;
3249   case Op_Loop:
3250   case Op_CountedLoop:
3251   case Op_OuterStripMinedLoop:
3252     if (n->as_Loop()->is_inner_loop()) {
3253       frc.inc_inner_loop_count();
3254     }
3255     n->as_Loop()->verify_strip_mined(0);
3256     break;
3257   case Op_LShiftI:
3258   case Op_RShiftI:
3259   case Op_URShiftI:
3260   case Op_LShiftL:
3261   case Op_RShiftL:
3262   case Op_URShiftL:
3263     if (Matcher::need_masked_shift_count) {
3264       // The cpu's shift instructions don't restrict the count to the
3265       // lower 5/6 bits. We need to do the masking ourselves.
3266       Node* in2 = n->in(2);
3267       juint mask = (n->bottom_type() == TypeInt::INT) ? (BitsPerInt - 1) : (BitsPerLong - 1);
3268       const TypeInt* t = in2->find_int_type();
3269       if (t != NULL && t->is_con()) {
3270         juint shift = t->get_con();
3271         if (shift > mask) { // Unsigned cmp
3272           n->set_req(2, ConNode::make(TypeInt::make(shift & mask)));
3273         }
3274       } else {
3275         if (t == NULL || t->_lo < 0 || t->_hi > (int)mask) {
3276           Node* shift = new AndINode(in2, ConNode::make(TypeInt::make(mask)));
3277           n->set_req(2, shift);
3278         }
3279       }
3280       if (in2->outcnt() == 0) { // Remove dead node
3281         in2->disconnect_inputs(NULL, this);
3282       }
3283     }
3284     break;
3285   case Op_MemBarStoreStore:
3286   case Op_MemBarRelease:
3287     // Break the link with AllocateNode: it is no longer useful and
3288     // confuses register allocation.
3289     if (n->req() > MemBarNode::Precedent) {
3290       n->set_req(MemBarNode::Precedent, top());
3291     }
3292     break;
3293   case Op_RangeCheck: {
3294     RangeCheckNode* rc = n->as_RangeCheck();
3295     Node* iff = new IfNode(rc->in(0), rc->in(1), rc->_prob, rc->_fcnt);
3296     n->subsume_by(iff, this);
3297     frc._tests.push(iff);
3298     break;
3299   }
3300   case Op_ConvI2L: {
3301     if (!Matcher::convi2l_type_required) {
3302       // Code generation on some platforms doesn't need accurate
3303       // ConvI2L types. Widening the type can help remove redundant
3304       // address computations.
3305       n->as_Type()->set_type(TypeLong::INT);
3306       ResourceMark rm;
3307       Node_List wq;
3308       wq.push(n);
3309       for (uint next = 0; next < wq.size(); next++) {
3310         Node *m = wq.at(next);
3311 
3312         for(;;) {
3313           // Loop over all nodes with identical inputs edges as m
3314           Node* k = m->find_similar(m->Opcode());
3315           if (k == NULL) {
3316             break;
3317           }
3318           // Push their uses so we get a chance to remove node made
3319           // redundant
3320           for (DUIterator_Fast imax, i = k->fast_outs(imax); i < imax; i++) {
3321             Node* u = k->fast_out(i);
3322             assert(!wq.contains(u), "shouldn't process one node several times");
3323             if (u->Opcode() == Op_LShiftL ||
3324                 u->Opcode() == Op_AddL ||
3325                 u->Opcode() == Op_SubL ||
3326                 u->Opcode() == Op_AddP) {
3327               wq.push(u);
3328             }
3329           }
3330           // Replace all nodes with identical edges as m with m
3331           k->subsume_by(m, this);
3332         }
3333       }
3334     }
3335     break;
3336   }
3337   default:
3338     assert( !n->is_Call(), "" );
3339     assert( !n->is_Mem(), "" );
3340     assert( nop != Op_ProfileBoolean, "should be eliminated during IGVN");
3341     break;
3342   }
3343 
3344   // Collect CFG split points
3345   if (n->is_MultiBranch() && !n->is_RangeCheck()) {
3346     frc._tests.push(n);
3347   }
3348 }
3349 
3350 //------------------------------final_graph_reshaping_walk---------------------
3351 // Replacing Opaque nodes with their input in final_graph_reshaping_impl(),
3352 // requires that the walk visits a node's inputs before visiting the node.
3353 void Compile::final_graph_reshaping_walk( Node_Stack &nstack, Node *root, Final_Reshape_Counts &frc ) {
3354   ResourceArea *area = Thread::current()->resource_area();
3355   Unique_Node_List sfpt(area);
3356 
3357   frc._visited.set(root->_idx); // first, mark node as visited
3358   uint cnt = root->req();
3359   Node *n = root;
3360   uint  i = 0;
3361   while (true) {
3362     if (i < cnt) {
3363       // Place all non-visited non-null inputs onto stack
3364       Node* m = n->in(i);
3365       ++i;
3366       if (m != NULL && !frc._visited.test_set(m->_idx)) {
3367         if (m->is_SafePoint() && m->as_SafePoint()->jvms() != NULL) {
3368           // compute worst case interpreter size in case of a deoptimization
3369           update_interpreter_frame_size(m->as_SafePoint()->jvms()->interpreter_frame_size());
3370 
3371           sfpt.push(m);
3372         }
3373         cnt = m->req();
3374         nstack.push(n, i); // put on stack parent and next input's index
3375         n = m;
3376         i = 0;
3377       }
3378     } else {
3379       // Now do post-visit work
3380       final_graph_reshaping_impl( n, frc );
3381       if (nstack.is_empty())
3382         break;             // finished
3383       n = nstack.node();   // Get node from stack
3384       cnt = n->req();
3385       i = nstack.index();
3386       nstack.pop();        // Shift to the next node on stack
3387     }
3388   }
3389 
3390   // Skip next transformation if compressed oops are not used.
3391   if ((UseCompressedOops && !Matcher::gen_narrow_oop_implicit_null_checks()) ||
3392       (!UseCompressedOops && !UseCompressedClassPointers))
3393     return;
3394 
3395   // Go over safepoints nodes to skip DecodeN/DecodeNKlass nodes for debug edges.
3396   // It could be done for an uncommon traps or any safepoints/calls
3397   // if the DecodeN/DecodeNKlass node is referenced only in a debug info.
3398   while (sfpt.size() > 0) {
3399     n = sfpt.pop();
3400     JVMState *jvms = n->as_SafePoint()->jvms();
3401     assert(jvms != NULL, "sanity");
3402     int start = jvms->debug_start();
3403     int end   = n->req();
3404     bool is_uncommon = (n->is_CallStaticJava() &&
3405                         n->as_CallStaticJava()->uncommon_trap_request() != 0);
3406     for (int j = start; j < end; j++) {
3407       Node* in = n->in(j);
3408       if (in->is_DecodeNarrowPtr()) {
3409         bool safe_to_skip = true;
3410         if (!is_uncommon ) {
3411           // Is it safe to skip?
3412           for (uint i = 0; i < in->outcnt(); i++) {
3413             Node* u = in->raw_out(i);
3414             if (!u->is_SafePoint() ||
3415                 (u->is_Call() && u->as_Call()->has_non_debug_use(n))) {
3416               safe_to_skip = false;
3417             }
3418           }
3419         }
3420         if (safe_to_skip) {
3421           n->set_req(j, in->in(1));
3422         }
3423         if (in->outcnt() == 0) {
3424           in->disconnect_inputs(NULL, this);
3425         }
3426       }
3427     }
3428   }
3429 }
3430 
3431 //------------------------------final_graph_reshaping--------------------------
3432 // Final Graph Reshaping.
3433 //
3434 // (1) Clone simple inputs to uncommon calls, so they can be scheduled late
3435 //     and not commoned up and forced early.  Must come after regular
3436 //     optimizations to avoid GVN undoing the cloning.  Clone constant
3437 //     inputs to Loop Phis; these will be split by the allocator anyways.
3438 //     Remove Opaque nodes.
3439 // (2) Move last-uses by commutative operations to the left input to encourage
3440 //     Intel update-in-place two-address operations and better register usage
3441 //     on RISCs.  Must come after regular optimizations to avoid GVN Ideal
3442 //     calls canonicalizing them back.
3443 // (3) Count the number of double-precision FP ops, single-precision FP ops
3444 //     and call sites.  On Intel, we can get correct rounding either by
3445 //     forcing singles to memory (requires extra stores and loads after each
3446 //     FP bytecode) or we can set a rounding mode bit (requires setting and
3447 //     clearing the mode bit around call sites).  The mode bit is only used
3448 //     if the relative frequency of single FP ops to calls is low enough.
3449 //     This is a key transform for SPEC mpeg_audio.
3450 // (4) Detect infinite loops; blobs of code reachable from above but not
3451 //     below.  Several of the Code_Gen algorithms fail on such code shapes,
3452 //     so we simply bail out.  Happens a lot in ZKM.jar, but also happens
3453 //     from time to time in other codes (such as -Xcomp finalizer loops, etc).
3454 //     Detection is by looking for IfNodes where only 1 projection is
3455 //     reachable from below or CatchNodes missing some targets.
3456 // (5) Assert for insane oop offsets in debug mode.
3457 
3458 bool Compile::final_graph_reshaping() {
3459   // an infinite loop may have been eliminated by the optimizer,
3460   // in which case the graph will be empty.
3461   if (root()->req() == 1) {
3462     record_method_not_compilable("trivial infinite loop");
3463     return true;
3464   }
3465 
3466   // Expensive nodes have their control input set to prevent the GVN
3467   // from freely commoning them. There's no GVN beyond this point so
3468   // no need to keep the control input. We want the expensive nodes to
3469   // be freely moved to the least frequent code path by gcm.
3470   assert(OptimizeExpensiveOps || expensive_count() == 0, "optimization off but list non empty?");
3471   for (int i = 0; i < expensive_count(); i++) {
3472     _expensive_nodes->at(i)->set_req(0, NULL);
3473   }
3474 
3475   Final_Reshape_Counts frc;
3476 
3477   // Visit everybody reachable!
3478   // Allocate stack of size C->live_nodes()/2 to avoid frequent realloc
3479   Node_Stack nstack(live_nodes() >> 1);
3480   final_graph_reshaping_walk(nstack, root(), frc);
3481 
3482   // Check for unreachable (from below) code (i.e., infinite loops).
3483   for( uint i = 0; i < frc._tests.size(); i++ ) {
3484     MultiBranchNode *n = frc._tests[i]->as_MultiBranch();
3485     // Get number of CFG targets.
3486     // Note that PCTables include exception targets after calls.
3487     uint required_outcnt = n->required_outcnt();
3488     if (n->outcnt() != required_outcnt) {
3489       // Check for a few special cases.  Rethrow Nodes never take the
3490       // 'fall-thru' path, so expected kids is 1 less.
3491       if (n->is_PCTable() && n->in(0) && n->in(0)->in(0)) {
3492         if (n->in(0)->in(0)->is_Call()) {
3493           CallNode *call = n->in(0)->in(0)->as_Call();
3494           if (call->entry_point() == OptoRuntime::rethrow_stub()) {
3495             required_outcnt--;      // Rethrow always has 1 less kid
3496           } else if (call->req() > TypeFunc::Parms &&
3497                      call->is_CallDynamicJava()) {
3498             // Check for null receiver. In such case, the optimizer has
3499             // detected that the virtual call will always result in a null
3500             // pointer exception. The fall-through projection of this CatchNode
3501             // will not be populated.
3502             Node *arg0 = call->in(TypeFunc::Parms);
3503             if (arg0->is_Type() &&
3504                 arg0->as_Type()->type()->higher_equal(TypePtr::NULL_PTR)) {
3505               required_outcnt--;
3506             }
3507           } else if (call->entry_point() == OptoRuntime::new_array_Java() &&
3508                      call->req() > TypeFunc::Parms+1 &&
3509                      call->is_CallStaticJava()) {
3510             // Check for negative array length. In such case, the optimizer has
3511             // detected that the allocation attempt will always result in an
3512             // exception. There is no fall-through projection of this CatchNode .
3513             Node *arg1 = call->in(TypeFunc::Parms+1);
3514             if (arg1->is_Type() &&
3515                 arg1->as_Type()->type()->join(TypeInt::POS)->empty()) {
3516               required_outcnt--;
3517             }
3518           }
3519         }
3520       }
3521       // Recheck with a better notion of 'required_outcnt'
3522       if (n->outcnt() != required_outcnt) {
3523         record_method_not_compilable("malformed control flow");
3524         return true;            // Not all targets reachable!
3525       }
3526     }
3527     // Check that I actually visited all kids.  Unreached kids
3528     // must be infinite loops.
3529     for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++)
3530       if (!frc._visited.test(n->fast_out(j)->_idx)) {
3531         record_method_not_compilable("infinite loop");
3532         return true;            // Found unvisited kid; must be unreach
3533       }
3534 
3535     // Here so verification code in final_graph_reshaping_walk()
3536     // always see an OuterStripMinedLoopEnd
3537     if (n->is_OuterStripMinedLoopEnd()) {
3538       IfNode* init_iff = n->as_If();
3539       Node* iff = new IfNode(init_iff->in(0), init_iff->in(1), init_iff->_prob, init_iff->_fcnt);
3540       n->subsume_by(iff, this);
3541     }
3542   }
3543 
3544   // If original bytecodes contained a mixture of floats and doubles
3545   // check if the optimizer has made it homogenous, item (3).
3546   if( Use24BitFPMode && Use24BitFP && UseSSE == 0 &&
3547       frc.get_float_count() > 32 &&
3548       frc.get_double_count() == 0 &&
3549       (10 * frc.get_call_count() < frc.get_float_count()) ) {
3550     set_24_bit_selection_and_mode( false,  true );
3551   }
3552 
3553   set_java_calls(frc.get_java_call_count());
3554   set_inner_loops(frc.get_inner_loop_count());
3555 
3556   // No infinite loops, no reason to bail out.
3557   return false;
3558 }
3559 
3560 //-----------------------------too_many_traps----------------------------------
3561 // Report if there are too many traps at the current method and bci.
3562 // Return true if there was a trap, and/or PerMethodTrapLimit is exceeded.
3563 bool Compile::too_many_traps(ciMethod* method,
3564                              int bci,
3565                              Deoptimization::DeoptReason reason) {
3566   ciMethodData* md = method->method_data();
3567   if (md->is_empty()) {
3568     // Assume the trap has not occurred, or that it occurred only
3569     // because of a transient condition during start-up in the interpreter.
3570     return false;
3571   }
3572   ciMethod* m = Deoptimization::reason_is_speculate(reason) ? this->method() : NULL;
3573   if (md->has_trap_at(bci, m, reason) != 0) {
3574     // Assume PerBytecodeTrapLimit==0, for a more conservative heuristic.
3575     // Also, if there are multiple reasons, or if there is no per-BCI record,
3576     // assume the worst.
3577     if (log())
3578       log()->elem("observe trap='%s' count='%d'",
3579                   Deoptimization::trap_reason_name(reason),
3580                   md->trap_count(reason));
3581     return true;
3582   } else {
3583     // Ignore method/bci and see if there have been too many globally.
3584     return too_many_traps(reason, md);
3585   }
3586 }
3587 
3588 // Less-accurate variant which does not require a method and bci.
3589 bool Compile::too_many_traps(Deoptimization::DeoptReason reason,
3590                              ciMethodData* logmd) {
3591   if (trap_count(reason) >= Deoptimization::per_method_trap_limit(reason)) {
3592     // Too many traps globally.
3593     // Note that we use cumulative trap_count, not just md->trap_count.
3594     if (log()) {
3595       int mcount = (logmd == NULL)? -1: (int)logmd->trap_count(reason);
3596       log()->elem("observe trap='%s' count='0' mcount='%d' ccount='%d'",
3597                   Deoptimization::trap_reason_name(reason),
3598                   mcount, trap_count(reason));
3599     }
3600     return true;
3601   } else {
3602     // The coast is clear.
3603     return false;
3604   }
3605 }
3606 
3607 //--------------------------too_many_recompiles--------------------------------
3608 // Report if there are too many recompiles at the current method and bci.
3609 // Consults PerBytecodeRecompilationCutoff and PerMethodRecompilationCutoff.
3610 // Is not eager to return true, since this will cause the compiler to use
3611 // Action_none for a trap point, to avoid too many recompilations.
3612 bool Compile::too_many_recompiles(ciMethod* method,
3613                                   int bci,
3614                                   Deoptimization::DeoptReason reason) {
3615   ciMethodData* md = method->method_data();
3616   if (md->is_empty()) {
3617     // Assume the trap has not occurred, or that it occurred only
3618     // because of a transient condition during start-up in the interpreter.
3619     return false;
3620   }
3621   // Pick a cutoff point well within PerBytecodeRecompilationCutoff.
3622   uint bc_cutoff = (uint) PerBytecodeRecompilationCutoff / 8;
3623   uint m_cutoff  = (uint) PerMethodRecompilationCutoff / 2 + 1;  // not zero
3624   Deoptimization::DeoptReason per_bc_reason
3625     = Deoptimization::reason_recorded_per_bytecode_if_any(reason);
3626   ciMethod* m = Deoptimization::reason_is_speculate(reason) ? this->method() : NULL;
3627   if ((per_bc_reason == Deoptimization::Reason_none
3628        || md->has_trap_at(bci, m, reason) != 0)
3629       // The trap frequency measure we care about is the recompile count:
3630       && md->trap_recompiled_at(bci, m)
3631       && md->overflow_recompile_count() >= bc_cutoff) {
3632     // Do not emit a trap here if it has already caused recompilations.
3633     // Also, if there are multiple reasons, or if there is no per-BCI record,
3634     // assume the worst.
3635     if (log())
3636       log()->elem("observe trap='%s recompiled' count='%d' recompiles2='%d'",
3637                   Deoptimization::trap_reason_name(reason),
3638                   md->trap_count(reason),
3639                   md->overflow_recompile_count());
3640     return true;
3641   } else if (trap_count(reason) != 0
3642              && decompile_count() >= m_cutoff) {
3643     // Too many recompiles globally, and we have seen this sort of trap.
3644     // Use cumulative decompile_count, not just md->decompile_count.
3645     if (log())
3646       log()->elem("observe trap='%s' count='%d' mcount='%d' decompiles='%d' mdecompiles='%d'",
3647                   Deoptimization::trap_reason_name(reason),
3648                   md->trap_count(reason), trap_count(reason),
3649                   md->decompile_count(), decompile_count());
3650     return true;
3651   } else {
3652     // The coast is clear.
3653     return false;
3654   }
3655 }
3656 
3657 // Compute when not to trap. Used by matching trap based nodes and
3658 // NullCheck optimization.
3659 void Compile::set_allowed_deopt_reasons() {
3660   _allowed_reasons = 0;
3661   if (is_method_compilation()) {
3662     for (int rs = (int)Deoptimization::Reason_none+1; rs < Compile::trapHistLength; rs++) {
3663       assert(rs < BitsPerInt, "recode bit map");
3664       if (!too_many_traps((Deoptimization::DeoptReason) rs)) {
3665         _allowed_reasons |= nth_bit(rs);
3666       }
3667     }
3668   }
3669 }
3670 
3671 #ifndef PRODUCT
3672 //------------------------------verify_graph_edges---------------------------
3673 // Walk the Graph and verify that there is a one-to-one correspondence
3674 // between Use-Def edges and Def-Use edges in the graph.
3675 void Compile::verify_graph_edges(bool no_dead_code) {
3676   if (VerifyGraphEdges) {
3677     ResourceArea *area = Thread::current()->resource_area();
3678     Unique_Node_List visited(area);
3679     // Call recursive graph walk to check edges
3680     _root->verify_edges(visited);
3681     if (no_dead_code) {
3682       // Now make sure that no visited node is used by an unvisited node.
3683       bool dead_nodes = false;
3684       Unique_Node_List checked(area);
3685       while (visited.size() > 0) {
3686         Node* n = visited.pop();
3687         checked.push(n);
3688         for (uint i = 0; i < n->outcnt(); i++) {
3689           Node* use = n->raw_out(i);
3690           if (checked.member(use))  continue;  // already checked
3691           if (visited.member(use))  continue;  // already in the graph
3692           if (use->is_Con())        continue;  // a dead ConNode is OK
3693           // At this point, we have found a dead node which is DU-reachable.
3694           if (!dead_nodes) {
3695             tty->print_cr("*** Dead nodes reachable via DU edges:");
3696             dead_nodes = true;
3697           }
3698           use->dump(2);
3699           tty->print_cr("---");
3700           checked.push(use);  // No repeats; pretend it is now checked.
3701         }
3702       }
3703       assert(!dead_nodes, "using nodes must be reachable from root");
3704     }
3705   }
3706 }
3707 
3708 // Verify GC barriers consistency
3709 // Currently supported:
3710 // - G1 pre-barriers (see GraphKit::g1_write_barrier_pre())
3711 void Compile::verify_barriers() {
3712   if (UseG1GC) {
3713     // Verify G1 pre-barriers
3714     const int marking_offset = in_bytes(JavaThread::satb_mark_queue_offset() + SATBMarkQueue::byte_offset_of_active());
3715 
3716     ResourceArea *area = Thread::current()->resource_area();
3717     Unique_Node_List visited(area);
3718     Node_List worklist(area);
3719     // We're going to walk control flow backwards starting from the Root
3720     worklist.push(_root);
3721     while (worklist.size() > 0) {
3722       Node* x = worklist.pop();
3723       if (x == NULL || x == top()) continue;
3724       if (visited.member(x)) {
3725         continue;
3726       } else {
3727         visited.push(x);
3728       }
3729 
3730       if (x->is_Region()) {
3731         for (uint i = 1; i < x->req(); i++) {
3732           worklist.push(x->in(i));
3733         }
3734       } else {
3735         worklist.push(x->in(0));
3736         // We are looking for the pattern:
3737         //                            /->ThreadLocal
3738         // If->Bool->CmpI->LoadB->AddP->ConL(marking_offset)
3739         //              \->ConI(0)
3740         // We want to verify that the If and the LoadB have the same control
3741         // See GraphKit::g1_write_barrier_pre()
3742         if (x->is_If()) {
3743           IfNode *iff = x->as_If();
3744           if (iff->in(1)->is_Bool() && iff->in(1)->in(1)->is_Cmp()) {
3745             CmpNode *cmp = iff->in(1)->in(1)->as_Cmp();
3746             if (cmp->Opcode() == Op_CmpI && cmp->in(2)->is_Con() && cmp->in(2)->bottom_type()->is_int()->get_con() == 0
3747                 && cmp->in(1)->is_Load()) {
3748               LoadNode* load = cmp->in(1)->as_Load();
3749               if (load->Opcode() == Op_LoadB && load->in(2)->is_AddP() && load->in(2)->in(2)->Opcode() == Op_ThreadLocal
3750                   && load->in(2)->in(3)->is_Con()
3751                   && load->in(2)->in(3)->bottom_type()->is_intptr_t()->get_con() == marking_offset) {
3752 
3753                 Node* if_ctrl = iff->in(0);
3754                 Node* load_ctrl = load->in(0);
3755 
3756                 if (if_ctrl != load_ctrl) {
3757                   // Skip possible CProj->NeverBranch in infinite loops
3758                   if ((if_ctrl->is_Proj() && if_ctrl->Opcode() == Op_CProj)
3759                       && (if_ctrl->in(0)->is_MultiBranch() && if_ctrl->in(0)->Opcode() == Op_NeverBranch)) {
3760                     if_ctrl = if_ctrl->in(0)->in(0);
3761                   }
3762                 }
3763                 assert(load_ctrl != NULL && if_ctrl == load_ctrl, "controls must match");
3764               }
3765             }
3766           }
3767         }
3768       }
3769     }
3770   }
3771 }
3772 
3773 #endif
3774 
3775 // The Compile object keeps track of failure reasons separately from the ciEnv.
3776 // This is required because there is not quite a 1-1 relation between the
3777 // ciEnv and its compilation task and the Compile object.  Note that one
3778 // ciEnv might use two Compile objects, if C2Compiler::compile_method decides
3779 // to backtrack and retry without subsuming loads.  Other than this backtracking
3780 // behavior, the Compile's failure reason is quietly copied up to the ciEnv
3781 // by the logic in C2Compiler.
3782 void Compile::record_failure(const char* reason) {
3783   if (log() != NULL) {
3784     log()->elem("failure reason='%s' phase='compile'", reason);
3785   }
3786   if (_failure_reason == NULL) {
3787     // Record the first failure reason.
3788     _failure_reason = reason;
3789   }
3790 
3791   if (!C->failure_reason_is(C2Compiler::retry_no_subsuming_loads())) {
3792     C->print_method(PHASE_FAILURE);
3793   }
3794   _root = NULL;  // flush the graph, too
3795 }
3796 
3797 Compile::TracePhase::TracePhase(const char* name, elapsedTimer* accumulator)
3798   : TraceTime(name, accumulator, CITime, CITimeVerbose),
3799     _phase_name(name), _dolog(CITimeVerbose)
3800 {
3801   if (_dolog) {
3802     C = Compile::current();
3803     _log = C->log();
3804   } else {
3805     C = NULL;
3806     _log = NULL;
3807   }
3808   if (_log != NULL) {
3809     _log->begin_head("phase name='%s' nodes='%d' live='%d'", _phase_name, C->unique(), C->live_nodes());
3810     _log->stamp();
3811     _log->end_head();
3812   }
3813 }
3814 
3815 Compile::TracePhase::~TracePhase() {
3816 
3817   C = Compile::current();
3818   if (_dolog) {
3819     _log = C->log();
3820   } else {
3821     _log = NULL;
3822   }
3823 
3824 #ifdef ASSERT
3825   if (PrintIdealNodeCount) {
3826     tty->print_cr("phase name='%s' nodes='%d' live='%d' live_graph_walk='%d'",
3827                   _phase_name, C->unique(), C->live_nodes(), C->count_live_nodes_by_graph_walk());
3828   }
3829 
3830   if (VerifyIdealNodeCount) {
3831     Compile::current()->print_missing_nodes();
3832   }
3833 #endif
3834 
3835   if (_log != NULL) {
3836     _log->done("phase name='%s' nodes='%d' live='%d'", _phase_name, C->unique(), C->live_nodes());
3837   }
3838 }
3839 
3840 //=============================================================================
3841 // Two Constant's are equal when the type and the value are equal.
3842 bool Compile::Constant::operator==(const Constant& other) {
3843   if (type()          != other.type()         )  return false;
3844   if (can_be_reused() != other.can_be_reused())  return false;
3845   // For floating point values we compare the bit pattern.
3846   switch (type()) {
3847   case T_INT:
3848   case T_FLOAT:   return (_v._value.i == other._v._value.i);
3849   case T_LONG:
3850   case T_DOUBLE:  return (_v._value.j == other._v._value.j);
3851   case T_OBJECT:
3852   case T_ADDRESS: return (_v._value.l == other._v._value.l);
3853   case T_VOID:    return (_v._value.l == other._v._value.l);  // jump-table entries
3854   case T_METADATA: return (_v._metadata == other._v._metadata);
3855   default: ShouldNotReachHere(); return false;
3856   }
3857 }
3858 
3859 static int type_to_size_in_bytes(BasicType t) {
3860   switch (t) {
3861   case T_INT:     return sizeof(jint   );
3862   case T_LONG:    return sizeof(jlong  );
3863   case T_FLOAT:   return sizeof(jfloat );
3864   case T_DOUBLE:  return sizeof(jdouble);
3865   case T_METADATA: return sizeof(Metadata*);
3866     // We use T_VOID as marker for jump-table entries (labels) which
3867     // need an internal word relocation.
3868   case T_VOID:
3869   case T_ADDRESS:
3870   case T_OBJECT:  return sizeof(jobject);
3871   default:
3872     ShouldNotReachHere();
3873     return -1;
3874   }
3875 }
3876 
3877 int Compile::ConstantTable::qsort_comparator(Constant* a, Constant* b) {
3878   // sort descending
3879   if (a->freq() > b->freq())  return -1;
3880   if (a->freq() < b->freq())  return  1;
3881   return 0;
3882 }
3883 
3884 void Compile::ConstantTable::calculate_offsets_and_size() {
3885   // First, sort the array by frequencies.
3886   _constants.sort(qsort_comparator);
3887 
3888 #ifdef ASSERT
3889   // Make sure all jump-table entries were sorted to the end of the
3890   // array (they have a negative frequency).
3891   bool found_void = false;
3892   for (int i = 0; i < _constants.length(); i++) {
3893     Constant con = _constants.at(i);
3894     if (con.type() == T_VOID)
3895       found_void = true;  // jump-tables
3896     else
3897       assert(!found_void, "wrong sorting");
3898   }
3899 #endif
3900 
3901   int offset = 0;
3902   for (int i = 0; i < _constants.length(); i++) {
3903     Constant* con = _constants.adr_at(i);
3904 
3905     // Align offset for type.
3906     int typesize = type_to_size_in_bytes(con->type());
3907     offset = align_up(offset, typesize);
3908     con->set_offset(offset);   // set constant's offset
3909 
3910     if (con->type() == T_VOID) {
3911       MachConstantNode* n = (MachConstantNode*) con->get_jobject();
3912       offset = offset + typesize * n->outcnt();  // expand jump-table
3913     } else {
3914       offset = offset + typesize;
3915     }
3916   }
3917 
3918   // Align size up to the next section start (which is insts; see
3919   // CodeBuffer::align_at_start).
3920   assert(_size == -1, "already set?");
3921   _size = align_up(offset, (int)CodeEntryAlignment);
3922 }
3923 
3924 void Compile::ConstantTable::emit(CodeBuffer& cb) {
3925   MacroAssembler _masm(&cb);
3926   for (int i = 0; i < _constants.length(); i++) {
3927     Constant con = _constants.at(i);
3928     address constant_addr = NULL;
3929     switch (con.type()) {
3930     case T_INT:    constant_addr = _masm.int_constant(   con.get_jint()   ); break;
3931     case T_LONG:   constant_addr = _masm.long_constant(  con.get_jlong()  ); break;
3932     case T_FLOAT:  constant_addr = _masm.float_constant( con.get_jfloat() ); break;
3933     case T_DOUBLE: constant_addr = _masm.double_constant(con.get_jdouble()); break;
3934     case T_OBJECT: {
3935       jobject obj = con.get_jobject();
3936       int oop_index = _masm.oop_recorder()->find_index(obj);
3937       constant_addr = _masm.address_constant((address) obj, oop_Relocation::spec(oop_index));
3938       break;
3939     }
3940     case T_ADDRESS: {
3941       address addr = (address) con.get_jobject();
3942       constant_addr = _masm.address_constant(addr);
3943       break;
3944     }
3945     // We use T_VOID as marker for jump-table entries (labels) which
3946     // need an internal word relocation.
3947     case T_VOID: {
3948       MachConstantNode* n = (MachConstantNode*) con.get_jobject();
3949       // Fill the jump-table with a dummy word.  The real value is
3950       // filled in later in fill_jump_table.
3951       address dummy = (address) n;
3952       constant_addr = _masm.address_constant(dummy);
3953       // Expand jump-table
3954       for (uint i = 1; i < n->outcnt(); i++) {
3955         address temp_addr = _masm.address_constant(dummy + i);
3956         assert(temp_addr, "consts section too small");
3957       }
3958       break;
3959     }
3960     case T_METADATA: {
3961       Metadata* obj = con.get_metadata();
3962       int metadata_index = _masm.oop_recorder()->find_index(obj);
3963       constant_addr = _masm.address_constant((address) obj, metadata_Relocation::spec(metadata_index));
3964       break;
3965     }
3966     default: ShouldNotReachHere();
3967     }
3968     assert(constant_addr, "consts section too small");
3969     assert((constant_addr - _masm.code()->consts()->start()) == con.offset(),
3970             "must be: %d == %d", (int) (constant_addr - _masm.code()->consts()->start()), (int)(con.offset()));
3971   }
3972 }
3973 
3974 int Compile::ConstantTable::find_offset(Constant& con) const {
3975   int idx = _constants.find(con);
3976   assert(idx != -1, "constant must be in constant table");
3977   int offset = _constants.at(idx).offset();
3978   assert(offset != -1, "constant table not emitted yet?");
3979   return offset;
3980 }
3981 
3982 void Compile::ConstantTable::add(Constant& con) {
3983   if (con.can_be_reused()) {
3984     int idx = _constants.find(con);
3985     if (idx != -1 && _constants.at(idx).can_be_reused()) {
3986       _constants.adr_at(idx)->inc_freq(con.freq());  // increase the frequency by the current value
3987       return;
3988     }
3989   }
3990   (void) _constants.append(con);
3991 }
3992 
3993 Compile::Constant Compile::ConstantTable::add(MachConstantNode* n, BasicType type, jvalue value) {
3994   Block* b = Compile::current()->cfg()->get_block_for_node(n);
3995   Constant con(type, value, b->_freq);
3996   add(con);
3997   return con;
3998 }
3999 
4000 Compile::Constant Compile::ConstantTable::add(Metadata* metadata) {
4001   Constant con(metadata);
4002   add(con);
4003   return con;
4004 }
4005 
4006 Compile::Constant Compile::ConstantTable::add(MachConstantNode* n, MachOper* oper) {
4007   jvalue value;
4008   BasicType type = oper->type()->basic_type();
4009   switch (type) {
4010   case T_LONG:    value.j = oper->constantL(); break;
4011   case T_FLOAT:   value.f = oper->constantF(); break;
4012   case T_DOUBLE:  value.d = oper->constantD(); break;
4013   case T_OBJECT:
4014   case T_ADDRESS: value.l = (jobject) oper->constant(); break;
4015   case T_METADATA: return add((Metadata*)oper->constant()); break;
4016   default: guarantee(false, "unhandled type: %s", type2name(type));
4017   }
4018   return add(n, type, value);
4019 }
4020 
4021 Compile::Constant Compile::ConstantTable::add_jump_table(MachConstantNode* n) {
4022   jvalue value;
4023   // We can use the node pointer here to identify the right jump-table
4024   // as this method is called from Compile::Fill_buffer right before
4025   // the MachNodes are emitted and the jump-table is filled (means the
4026   // MachNode pointers do not change anymore).
4027   value.l = (jobject) n;
4028   Constant con(T_VOID, value, next_jump_table_freq(), false);  // Labels of a jump-table cannot be reused.
4029   add(con);
4030   return con;
4031 }
4032 
4033 void Compile::ConstantTable::fill_jump_table(CodeBuffer& cb, MachConstantNode* n, GrowableArray<Label*> labels) const {
4034   // If called from Compile::scratch_emit_size do nothing.
4035   if (Compile::current()->in_scratch_emit_size())  return;
4036 
4037   assert(labels.is_nonempty(), "must be");
4038   assert((uint) labels.length() == n->outcnt(), "must be equal: %d == %d", labels.length(), n->outcnt());
4039 
4040   // Since MachConstantNode::constant_offset() also contains
4041   // table_base_offset() we need to subtract the table_base_offset()
4042   // to get the plain offset into the constant table.
4043   int offset = n->constant_offset() - table_base_offset();
4044 
4045   MacroAssembler _masm(&cb);
4046   address* jump_table_base = (address*) (_masm.code()->consts()->start() + offset);
4047 
4048   for (uint i = 0; i < n->outcnt(); i++) {
4049     address* constant_addr = &jump_table_base[i];
4050     assert(*constant_addr == (((address) n) + i), "all jump-table entries must contain adjusted node pointer: " INTPTR_FORMAT " == " INTPTR_FORMAT, p2i(*constant_addr), p2i(((address) n) + i));
4051     *constant_addr = cb.consts()->target(*labels.at(i), (address) constant_addr);
4052     cb.consts()->relocate((address) constant_addr, relocInfo::internal_word_type);
4053   }
4054 }
4055 
4056 //----------------------------static_subtype_check-----------------------------
4057 // Shortcut important common cases when superklass is exact:
4058 // (0) superklass is java.lang.Object (can occur in reflective code)
4059 // (1) subklass is already limited to a subtype of superklass => always ok
4060 // (2) subklass does not overlap with superklass => always fail
4061 // (3) superklass has NO subtypes and we can check with a simple compare.
4062 int Compile::static_subtype_check(ciKlass* superk, ciKlass* subk) {
4063   if (StressReflectiveCode) {
4064     return SSC_full_test;       // Let caller generate the general case.
4065   }
4066 
4067   if (superk == env()->Object_klass()) {
4068     return SSC_always_true;     // (0) this test cannot fail
4069   }
4070 
4071   ciType* superelem = superk;
4072   if (superelem->is_array_klass())
4073     superelem = superelem->as_array_klass()->base_element_type();
4074 
4075   if (!subk->is_interface()) {  // cannot trust static interface types yet
4076     if (subk->is_subtype_of(superk)) {
4077       return SSC_always_true;   // (1) false path dead; no dynamic test needed
4078     }
4079     if (!(superelem->is_klass() && superelem->as_klass()->is_interface()) &&
4080         !superk->is_subtype_of(subk)) {
4081       return SSC_always_false;
4082     }
4083   }
4084 
4085   // If casting to an instance klass, it must have no subtypes
4086   if (superk->is_interface()) {
4087     // Cannot trust interfaces yet.
4088     // %%% S.B. superk->nof_implementors() == 1
4089   } else if (superelem->is_instance_klass()) {
4090     ciInstanceKlass* ik = superelem->as_instance_klass();
4091     if (!ik->has_subklass() && !ik->is_interface()) {
4092       if (!ik->is_final()) {
4093         // Add a dependency if there is a chance of a later subclass.
4094         dependencies()->assert_leaf_type(ik);
4095       }
4096       return SSC_easy_test;     // (3) caller can do a simple ptr comparison
4097     }
4098   } else {
4099     // A primitive array type has no subtypes.
4100     return SSC_easy_test;       // (3) caller can do a simple ptr comparison
4101   }
4102 
4103   return SSC_full_test;
4104 }
4105 
4106 Node* Compile::conv_I2X_index(PhaseGVN* phase, Node* idx, const TypeInt* sizetype, Node* ctrl) {
4107 #ifdef _LP64
4108   // The scaled index operand to AddP must be a clean 64-bit value.
4109   // Java allows a 32-bit int to be incremented to a negative
4110   // value, which appears in a 64-bit register as a large
4111   // positive number.  Using that large positive number as an
4112   // operand in pointer arithmetic has bad consequences.
4113   // On the other hand, 32-bit overflow is rare, and the possibility
4114   // can often be excluded, if we annotate the ConvI2L node with
4115   // a type assertion that its value is known to be a small positive
4116   // number.  (The prior range check has ensured this.)
4117   // This assertion is used by ConvI2LNode::Ideal.
4118   int index_max = max_jint - 1;  // array size is max_jint, index is one less
4119   if (sizetype != NULL) index_max = sizetype->_hi - 1;
4120   const TypeInt* iidxtype = TypeInt::make(0, index_max, Type::WidenMax);
4121   idx = constrained_convI2L(phase, idx, iidxtype, ctrl);
4122 #endif
4123   return idx;
4124 }
4125 
4126 // Convert integer value to a narrowed long type dependent on ctrl (for example, a range check)
4127 Node* Compile::constrained_convI2L(PhaseGVN* phase, Node* value, const TypeInt* itype, Node* ctrl) {
4128   if (ctrl != NULL) {
4129     // Express control dependency by a CastII node with a narrow type.
4130     value = new CastIINode(value, itype, false, true /* range check dependency */);
4131     // Make the CastII node dependent on the control input to prevent the narrowed ConvI2L
4132     // node from floating above the range check during loop optimizations. Otherwise, the
4133     // ConvI2L node may be eliminated independently of the range check, causing the data path
4134     // to become TOP while the control path is still there (although it's unreachable).
4135     value->set_req(0, ctrl);
4136     // Save CastII node to remove it after loop optimizations.
4137     phase->C->add_range_check_cast(value);
4138     value = phase->transform(value);
4139   }
4140   const TypeLong* ltype = TypeLong::make(itype->_lo, itype->_hi, itype->_widen);
4141   return phase->transform(new ConvI2LNode(value, ltype));
4142 }
4143 
4144 // The message about the current inlining is accumulated in
4145 // _print_inlining_stream and transfered into the _print_inlining_list
4146 // once we know whether inlining succeeds or not. For regular
4147 // inlining, messages are appended to the buffer pointed by
4148 // _print_inlining_idx in the _print_inlining_list. For late inlining,
4149 // a new buffer is added after _print_inlining_idx in the list. This
4150 // way we can update the inlining message for late inlining call site
4151 // when the inlining is attempted again.
4152 void Compile::print_inlining_init() {
4153   if (print_inlining() || print_intrinsics()) {
4154     _print_inlining_stream = new stringStream();
4155     _print_inlining_list = new (comp_arena())GrowableArray<PrintInliningBuffer>(comp_arena(), 1, 1, PrintInliningBuffer());
4156   }
4157 }
4158 
4159 void Compile::print_inlining_reinit() {
4160   if (print_inlining() || print_intrinsics()) {
4161     // Re allocate buffer when we change ResourceMark
4162     _print_inlining_stream = new stringStream();
4163   }
4164 }
4165 
4166 void Compile::print_inlining_reset() {
4167   _print_inlining_stream->reset();
4168 }
4169 
4170 void Compile::print_inlining_commit() {
4171   assert(print_inlining() || print_intrinsics(), "PrintInlining off?");
4172   // Transfer the message from _print_inlining_stream to the current
4173   // _print_inlining_list buffer and clear _print_inlining_stream.
4174   _print_inlining_list->at(_print_inlining_idx).ss()->write(_print_inlining_stream->as_string(), _print_inlining_stream->size());
4175   print_inlining_reset();
4176 }
4177 
4178 void Compile::print_inlining_push() {
4179   // Add new buffer to the _print_inlining_list at current position
4180   _print_inlining_idx++;
4181   _print_inlining_list->insert_before(_print_inlining_idx, PrintInliningBuffer());
4182 }
4183 
4184 Compile::PrintInliningBuffer& Compile::print_inlining_current() {
4185   return _print_inlining_list->at(_print_inlining_idx);
4186 }
4187 
4188 void Compile::print_inlining_update(CallGenerator* cg) {
4189   if (print_inlining() || print_intrinsics()) {
4190     if (!cg->is_late_inline()) {
4191       if (print_inlining_current().cg() != NULL) {
4192         print_inlining_push();
4193       }
4194       print_inlining_commit();
4195     } else {
4196       if (print_inlining_current().cg() != cg &&
4197           (print_inlining_current().cg() != NULL ||
4198            print_inlining_current().ss()->size() != 0)) {
4199         print_inlining_push();
4200       }
4201       print_inlining_commit();
4202       print_inlining_current().set_cg(cg);
4203     }
4204   }
4205 }
4206 
4207 void Compile::print_inlining_move_to(CallGenerator* cg) {
4208   // We resume inlining at a late inlining call site. Locate the
4209   // corresponding inlining buffer so that we can update it.
4210   if (print_inlining()) {
4211     for (int i = 0; i < _print_inlining_list->length(); i++) {
4212       if (_print_inlining_list->adr_at(i)->cg() == cg) {
4213         _print_inlining_idx = i;
4214         return;
4215       }
4216     }
4217     ShouldNotReachHere();
4218   }
4219 }
4220 
4221 void Compile::print_inlining_update_delayed(CallGenerator* cg) {
4222   if (print_inlining()) {
4223     assert(_print_inlining_stream->size() > 0, "missing inlining msg");
4224     assert(print_inlining_current().cg() == cg, "wrong entry");
4225     // replace message with new message
4226     _print_inlining_list->at_put(_print_inlining_idx, PrintInliningBuffer());
4227     print_inlining_commit();
4228     print_inlining_current().set_cg(cg);
4229   }
4230 }
4231 
4232 void Compile::print_inlining_assert_ready() {
4233   assert(!_print_inlining || _print_inlining_stream->size() == 0, "loosing data");
4234 }
4235 
4236 void Compile::process_print_inlining() {
4237   bool do_print_inlining = print_inlining() || print_intrinsics();
4238   if (do_print_inlining || log() != NULL) {
4239     // Print inlining message for candidates that we couldn't inline
4240     // for lack of space
4241     for (int i = 0; i < _late_inlines.length(); i++) {
4242       CallGenerator* cg = _late_inlines.at(i);
4243       if (!cg->is_mh_late_inline()) {
4244         const char* msg = "live nodes > LiveNodeCountInliningCutoff";
4245         if (do_print_inlining) {
4246           cg->print_inlining_late(msg);
4247         }
4248         log_late_inline_failure(cg, msg);
4249       }
4250     }
4251   }
4252   if (do_print_inlining) {
4253     ResourceMark rm;
4254     stringStream ss;
4255     for (int i = 0; i < _print_inlining_list->length(); i++) {
4256       ss.print("%s", _print_inlining_list->adr_at(i)->ss()->as_string());
4257     }
4258     size_t end = ss.size();
4259     _print_inlining_output = NEW_ARENA_ARRAY(comp_arena(), char, end+1);
4260     strncpy(_print_inlining_output, ss.base(), end+1);
4261     _print_inlining_output[end] = 0;
4262   }
4263 }
4264 
4265 void Compile::dump_print_inlining() {
4266   if (_print_inlining_output != NULL) {
4267     tty->print_raw(_print_inlining_output);
4268   }
4269 }
4270 
4271 void Compile::log_late_inline(CallGenerator* cg) {
4272   if (log() != NULL) {
4273     log()->head("late_inline method='%d'  inline_id='" JLONG_FORMAT "'", log()->identify(cg->method()),
4274                 cg->unique_id());
4275     JVMState* p = cg->call_node()->jvms();
4276     while (p != NULL) {
4277       log()->elem("jvms bci='%d' method='%d'", p->bci(), log()->identify(p->method()));
4278       p = p->caller();
4279     }
4280     log()->tail("late_inline");
4281   }
4282 }
4283 
4284 void Compile::log_late_inline_failure(CallGenerator* cg, const char* msg) {
4285   log_late_inline(cg);
4286   if (log() != NULL) {
4287     log()->inline_fail(msg);
4288   }
4289 }
4290 
4291 void Compile::log_inline_id(CallGenerator* cg) {
4292   if (log() != NULL) {
4293     // The LogCompilation tool needs a unique way to identify late
4294     // inline call sites. This id must be unique for this call site in
4295     // this compilation. Try to have it unique across compilations as
4296     // well because it can be convenient when grepping through the log
4297     // file.
4298     // Distinguish OSR compilations from others in case CICountOSR is
4299     // on.
4300     jlong id = ((jlong)unique()) + (((jlong)compile_id()) << 33) + (CICountOSR && is_osr_compilation() ? ((jlong)1) << 32 : 0);
4301     cg->set_unique_id(id);
4302     log()->elem("inline_id id='" JLONG_FORMAT "'", id);
4303   }
4304 }
4305 
4306 void Compile::log_inline_failure(const char* msg) {
4307   if (C->log() != NULL) {
4308     C->log()->inline_fail(msg);
4309   }
4310 }
4311 
4312 
4313 // Dump inlining replay data to the stream.
4314 // Don't change thread state and acquire any locks.
4315 void Compile::dump_inline_data(outputStream* out) {
4316   InlineTree* inl_tree = ilt();
4317   if (inl_tree != NULL) {
4318     out->print(" inline %d", inl_tree->count());
4319     inl_tree->dump_replay_data(out);
4320   }
4321 }
4322 
4323 int Compile::cmp_expensive_nodes(Node* n1, Node* n2) {
4324   if (n1->Opcode() < n2->Opcode())      return -1;
4325   else if (n1->Opcode() > n2->Opcode()) return 1;
4326 
4327   assert(n1->req() == n2->req(), "can't compare %s nodes: n1->req() = %d, n2->req() = %d", NodeClassNames[n1->Opcode()], n1->req(), n2->req());
4328   for (uint i = 1; i < n1->req(); i++) {
4329     if (n1->in(i) < n2->in(i))      return -1;
4330     else if (n1->in(i) > n2->in(i)) return 1;
4331   }
4332 
4333   return 0;
4334 }
4335 
4336 int Compile::cmp_expensive_nodes(Node** n1p, Node** n2p) {
4337   Node* n1 = *n1p;
4338   Node* n2 = *n2p;
4339 
4340   return cmp_expensive_nodes(n1, n2);
4341 }
4342 
4343 void Compile::sort_expensive_nodes() {
4344   if (!expensive_nodes_sorted()) {
4345     _expensive_nodes->sort(cmp_expensive_nodes);
4346   }
4347 }
4348 
4349 bool Compile::expensive_nodes_sorted() const {
4350   for (int i = 1; i < _expensive_nodes->length(); i++) {
4351     if (cmp_expensive_nodes(_expensive_nodes->adr_at(i), _expensive_nodes->adr_at(i-1)) < 0) {
4352       return false;
4353     }
4354   }
4355   return true;
4356 }
4357 
4358 bool Compile::should_optimize_expensive_nodes(PhaseIterGVN &igvn) {
4359   if (_expensive_nodes->length() == 0) {
4360     return false;
4361   }
4362 
4363   assert(OptimizeExpensiveOps, "optimization off?");
4364 
4365   // Take this opportunity to remove dead nodes from the list
4366   int j = 0;
4367   for (int i = 0; i < _expensive_nodes->length(); i++) {
4368     Node* n = _expensive_nodes->at(i);
4369     if (!n->is_unreachable(igvn)) {
4370       assert(n->is_expensive(), "should be expensive");
4371       _expensive_nodes->at_put(j, n);
4372       j++;
4373     }
4374   }
4375   _expensive_nodes->trunc_to(j);
4376 
4377   // Then sort the list so that similar nodes are next to each other
4378   // and check for at least two nodes of identical kind with same data
4379   // inputs.
4380   sort_expensive_nodes();
4381 
4382   for (int i = 0; i < _expensive_nodes->length()-1; i++) {
4383     if (cmp_expensive_nodes(_expensive_nodes->adr_at(i), _expensive_nodes->adr_at(i+1)) == 0) {
4384       return true;
4385     }
4386   }
4387 
4388   return false;
4389 }
4390 
4391 void Compile::cleanup_expensive_nodes(PhaseIterGVN &igvn) {
4392   if (_expensive_nodes->length() == 0) {
4393     return;
4394   }
4395 
4396   assert(OptimizeExpensiveOps, "optimization off?");
4397 
4398   // Sort to bring similar nodes next to each other and clear the
4399   // control input of nodes for which there's only a single copy.
4400   sort_expensive_nodes();
4401 
4402   int j = 0;
4403   int identical = 0;
4404   int i = 0;
4405   bool modified = false;
4406   for (; i < _expensive_nodes->length()-1; i++) {
4407     assert(j <= i, "can't write beyond current index");
4408     if (_expensive_nodes->at(i)->Opcode() == _expensive_nodes->at(i+1)->Opcode()) {
4409       identical++;
4410       _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
4411       continue;
4412     }
4413     if (identical > 0) {
4414       _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
4415       identical = 0;
4416     } else {
4417       Node* n = _expensive_nodes->at(i);
4418       igvn.replace_input_of(n, 0, NULL);
4419       igvn.hash_insert(n);
4420       modified = true;
4421     }
4422   }
4423   if (identical > 0) {
4424     _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
4425   } else if (_expensive_nodes->length() >= 1) {
4426     Node* n = _expensive_nodes->at(i);
4427     igvn.replace_input_of(n, 0, NULL);
4428     igvn.hash_insert(n);
4429     modified = true;
4430   }
4431   _expensive_nodes->trunc_to(j);
4432   if (modified) {
4433     igvn.optimize();
4434   }
4435 }
4436 
4437 void Compile::add_expensive_node(Node * n) {
4438   assert(!_expensive_nodes->contains(n), "duplicate entry in expensive list");
4439   assert(n->is_expensive(), "expensive nodes with non-null control here only");
4440   assert(!n->is_CFG() && !n->is_Mem(), "no cfg or memory nodes here");
4441   if (OptimizeExpensiveOps) {
4442     _expensive_nodes->append(n);
4443   } else {
4444     // Clear control input and let IGVN optimize expensive nodes if
4445     // OptimizeExpensiveOps is off.
4446     n->set_req(0, NULL);
4447   }
4448 }
4449 
4450 /**
4451  * Remove the speculative part of types and clean up the graph
4452  */
4453 void Compile::remove_speculative_types(PhaseIterGVN &igvn) {
4454   if (UseTypeSpeculation) {
4455     Unique_Node_List worklist;
4456     worklist.push(root());
4457     int modified = 0;
4458     // Go over all type nodes that carry a speculative type, drop the
4459     // speculative part of the type and enqueue the node for an igvn
4460     // which may optimize it out.
4461     for (uint next = 0; next < worklist.size(); ++next) {
4462       Node *n  = worklist.at(next);
4463       if (n->is_Type()) {
4464         TypeNode* tn = n->as_Type();
4465         const Type* t = tn->type();
4466         const Type* t_no_spec = t->remove_speculative();
4467         if (t_no_spec != t) {
4468           bool in_hash = igvn.hash_delete(n);
4469           assert(in_hash, "node should be in igvn hash table");
4470           tn->set_type(t_no_spec);
4471           igvn.hash_insert(n);
4472           igvn._worklist.push(n); // give it a chance to go away
4473           modified++;
4474         }
4475       }
4476       uint max = n->len();
4477       for( uint i = 0; i < max; ++i ) {
4478         Node *m = n->in(i);
4479         if (not_a_node(m))  continue;
4480         worklist.push(m);
4481       }
4482     }
4483     // Drop the speculative part of all types in the igvn's type table
4484     igvn.remove_speculative_types();
4485     if (modified > 0) {
4486       igvn.optimize();
4487     }
4488 #ifdef ASSERT
4489     // Verify that after the IGVN is over no speculative type has resurfaced
4490     worklist.clear();
4491     worklist.push(root());
4492     for (uint next = 0; next < worklist.size(); ++next) {
4493       Node *n  = worklist.at(next);
4494       const Type* t = igvn.type_or_null(n);
4495       assert((t == NULL) || (t == t->remove_speculative()), "no more speculative types");
4496       if (n->is_Type()) {
4497         t = n->as_Type()->type();
4498         assert(t == t->remove_speculative(), "no more speculative types");
4499       }
4500       uint max = n->len();
4501       for( uint i = 0; i < max; ++i ) {
4502         Node *m = n->in(i);
4503         if (not_a_node(m))  continue;
4504         worklist.push(m);
4505       }
4506     }
4507     igvn.check_no_speculative_types();
4508 #endif
4509   }
4510 }
4511 
4512 // Auxiliary method to support randomized stressing/fuzzing.
4513 //
4514 // This method can be called the arbitrary number of times, with current count
4515 // as the argument. The logic allows selecting a single candidate from the
4516 // running list of candidates as follows:
4517 //    int count = 0;
4518 //    Cand* selected = null;
4519 //    while(cand = cand->next()) {
4520 //      if (randomized_select(++count)) {
4521 //        selected = cand;
4522 //      }
4523 //    }
4524 //
4525 // Including count equalizes the chances any candidate is "selected".
4526 // This is useful when we don't have the complete list of candidates to choose
4527 // from uniformly. In this case, we need to adjust the randomicity of the
4528 // selection, or else we will end up biasing the selection towards the latter
4529 // candidates.
4530 //
4531 // Quick back-envelope calculation shows that for the list of n candidates
4532 // the equal probability for the candidate to persist as "best" can be
4533 // achieved by replacing it with "next" k-th candidate with the probability
4534 // of 1/k. It can be easily shown that by the end of the run, the
4535 // probability for any candidate is converged to 1/n, thus giving the
4536 // uniform distribution among all the candidates.
4537 //
4538 // We don't care about the domain size as long as (RANDOMIZED_DOMAIN / count) is large.
4539 #define RANDOMIZED_DOMAIN_POW 29
4540 #define RANDOMIZED_DOMAIN (1 << RANDOMIZED_DOMAIN_POW)
4541 #define RANDOMIZED_DOMAIN_MASK ((1 << (RANDOMIZED_DOMAIN_POW + 1)) - 1)
4542 bool Compile::randomized_select(int count) {
4543   assert(count > 0, "only positive");
4544   return (os::random() & RANDOMIZED_DOMAIN_MASK) < (RANDOMIZED_DOMAIN / count);
4545 }
4546 
4547 CloneMap&     Compile::clone_map()                 { return _clone_map; }
4548 void          Compile::set_clone_map(Dict* d)      { _clone_map._dict = d; }
4549 
4550 void NodeCloneInfo::dump() const {
4551   tty->print(" {%d:%d} ", idx(), gen());
4552 }
4553 
4554 void CloneMap::clone(Node* old, Node* nnn, int gen) {
4555   uint64_t val = value(old->_idx);
4556   NodeCloneInfo cio(val);
4557   assert(val != 0, "old node should be in the map");
4558   NodeCloneInfo cin(cio.idx(), gen + cio.gen());
4559   insert(nnn->_idx, cin.get());
4560 #ifndef PRODUCT
4561   if (is_debug()) {
4562     tty->print_cr("CloneMap::clone inserted node %d info {%d:%d} into CloneMap", nnn->_idx, cin.idx(), cin.gen());
4563   }
4564 #endif
4565 }
4566 
4567 void CloneMap::verify_insert_and_clone(Node* old, Node* nnn, int gen) {
4568   NodeCloneInfo cio(value(old->_idx));
4569   if (cio.get() == 0) {
4570     cio.set(old->_idx, 0);
4571     insert(old->_idx, cio.get());
4572 #ifndef PRODUCT
4573     if (is_debug()) {
4574       tty->print_cr("CloneMap::verify_insert_and_clone inserted node %d info {%d:%d} into CloneMap", old->_idx, cio.idx(), cio.gen());
4575     }
4576 #endif
4577   }
4578   clone(old, nnn, gen);
4579 }
4580 
4581 int CloneMap::max_gen() const {
4582   int g = 0;
4583   DictI di(_dict);
4584   for(; di.test(); ++di) {
4585     int t = gen(di._key);
4586     if (g < t) {
4587       g = t;
4588 #ifndef PRODUCT
4589       if (is_debug()) {
4590         tty->print_cr("CloneMap::max_gen() update max=%d from %d", g, _2_node_idx_t(di._key));
4591       }
4592 #endif
4593     }
4594   }
4595   return g;
4596 }
4597 
4598 void CloneMap::dump(node_idx_t key) const {
4599   uint64_t val = value(key);
4600   if (val != 0) {
4601     NodeCloneInfo ni(val);
4602     ni.dump();
4603   }
4604 }