1 /*
   2  * Copyright (c) 1998, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "ci/ciMethodData.hpp"
  27 #include "compiler/compileLog.hpp"
  28 #include "libadt/vectset.hpp"
  29 #include "memory/allocation.inline.hpp"
  30 #include "memory/resourceArea.hpp"
  31 #include "opto/addnode.hpp"
  32 #include "opto/callnode.hpp"
  33 #include "opto/connode.hpp"
  34 #include "opto/convertnode.hpp"
  35 #include "opto/divnode.hpp"
  36 #include "opto/idealGraphPrinter.hpp"
  37 #include "opto/loopnode.hpp"
  38 #include "opto/mulnode.hpp"
  39 #include "opto/rootnode.hpp"
  40 #include "opto/superword.hpp"
  41 
  42 //=============================================================================
  43 //------------------------------is_loop_iv-------------------------------------
  44 // Determine if a node is Counted loop induction variable.
  45 // The method is declared in node.hpp.
  46 const Node* Node::is_loop_iv() const {
  47   if (this->is_Phi() && !this->as_Phi()->is_copy() &&
  48       this->as_Phi()->region()->is_CountedLoop() &&
  49       this->as_Phi()->region()->as_CountedLoop()->phi() == this) {
  50     return this;
  51   } else {
  52     return NULL;
  53   }
  54 }
  55 
  56 //=============================================================================
  57 //------------------------------dump_spec--------------------------------------
  58 // Dump special per-node info
  59 #ifndef PRODUCT
  60 void LoopNode::dump_spec(outputStream *st) const {
  61   if (is_inner_loop()) st->print( "inner " );
  62   if (is_partial_peel_loop()) st->print( "partial_peel " );
  63   if (partial_peel_has_failed()) st->print( "partial_peel_failed " );
  64 }
  65 #endif
  66 
  67 //------------------------------is_valid_counted_loop-------------------------
  68 bool LoopNode::is_valid_counted_loop() const {
  69   if (is_CountedLoop()) {
  70     CountedLoopNode*    l  = as_CountedLoop();
  71     CountedLoopEndNode* le = l->loopexit_or_null();
  72     if (le != NULL &&
  73         le->proj_out_or_null(1 /* true */) == l->in(LoopNode::LoopBackControl)) {
  74       Node* phi  = l->phi();
  75       Node* exit = le->proj_out_or_null(0 /* false */);
  76       if (exit != NULL && exit->Opcode() == Op_IfFalse &&
  77           phi != NULL && phi->is_Phi() &&
  78           phi->in(LoopNode::LoopBackControl) == l->incr() &&
  79           le->loopnode() == l && le->stride_is_con()) {
  80         return true;
  81       }
  82     }
  83   }
  84   return false;
  85 }
  86 
  87 //------------------------------get_early_ctrl---------------------------------
  88 // Compute earliest legal control
  89 Node *PhaseIdealLoop::get_early_ctrl( Node *n ) {
  90   assert( !n->is_Phi() && !n->is_CFG(), "this code only handles data nodes" );
  91   uint i;
  92   Node *early;
  93   if (n->in(0) && !n->is_expensive()) {
  94     early = n->in(0);
  95     if (!early->is_CFG()) // Might be a non-CFG multi-def
  96       early = get_ctrl(early);        // So treat input as a straight data input
  97     i = 1;
  98   } else {
  99     early = get_ctrl(n->in(1));
 100     i = 2;
 101   }
 102   uint e_d = dom_depth(early);
 103   assert( early, "" );
 104   for (; i < n->req(); i++) {
 105     Node *cin = get_ctrl(n->in(i));
 106     assert( cin, "" );
 107     // Keep deepest dominator depth
 108     uint c_d = dom_depth(cin);
 109     if (c_d > e_d) {           // Deeper guy?
 110       early = cin;              // Keep deepest found so far
 111       e_d = c_d;
 112     } else if (c_d == e_d &&    // Same depth?
 113                early != cin) { // If not equal, must use slower algorithm
 114       // If same depth but not equal, one _must_ dominate the other
 115       // and we want the deeper (i.e., dominated) guy.
 116       Node *n1 = early;
 117       Node *n2 = cin;
 118       while (1) {
 119         n1 = idom(n1);          // Walk up until break cycle
 120         n2 = idom(n2);
 121         if (n1 == cin ||        // Walked early up to cin
 122             dom_depth(n2) < c_d)
 123           break;                // early is deeper; keep him
 124         if (n2 == early ||      // Walked cin up to early
 125             dom_depth(n1) < c_d) {
 126           early = cin;          // cin is deeper; keep him
 127           break;
 128         }
 129       }
 130       e_d = dom_depth(early);   // Reset depth register cache
 131     }
 132   }
 133 
 134   // Return earliest legal location
 135   assert(early == find_non_split_ctrl(early), "unexpected early control");
 136 
 137   if (n->is_expensive() && !_verify_only && !_verify_me) {
 138     assert(n->in(0), "should have control input");
 139     early = get_early_ctrl_for_expensive(n, early);
 140   }
 141 
 142   return early;
 143 }
 144 
 145 //------------------------------get_early_ctrl_for_expensive---------------------------------
 146 // Move node up the dominator tree as high as legal while still beneficial
 147 Node *PhaseIdealLoop::get_early_ctrl_for_expensive(Node *n, Node* earliest) {
 148   assert(n->in(0) && n->is_expensive(), "expensive node with control input here");
 149   assert(OptimizeExpensiveOps, "optimization off?");
 150 
 151   Node* ctl = n->in(0);
 152   assert(ctl->is_CFG(), "expensive input 0 must be cfg");
 153   uint min_dom_depth = dom_depth(earliest);
 154 #ifdef ASSERT
 155   if (!is_dominator(ctl, earliest) && !is_dominator(earliest, ctl)) {
 156     dump_bad_graph("Bad graph detected in get_early_ctrl_for_expensive", n, earliest, ctl);
 157     assert(false, "Bad graph detected in get_early_ctrl_for_expensive");
 158   }
 159 #endif
 160   if (dom_depth(ctl) < min_dom_depth) {
 161     return earliest;
 162   }
 163 
 164   while (1) {
 165     Node *next = ctl;
 166     // Moving the node out of a loop on the projection of a If
 167     // confuses loop predication. So once we hit a Loop in a If branch
 168     // that doesn't branch to an UNC, we stop. The code that process
 169     // expensive nodes will notice the loop and skip over it to try to
 170     // move the node further up.
 171     if (ctl->is_CountedLoop() && ctl->in(1) != NULL && ctl->in(1)->in(0) != NULL && ctl->in(1)->in(0)->is_If()) {
 172       if (!ctl->in(1)->as_Proj()->is_uncommon_trap_if_pattern(Deoptimization::Reason_none)) {
 173         break;
 174       }
 175       next = idom(ctl->in(1)->in(0));
 176     } else if (ctl->is_Proj()) {
 177       // We only move it up along a projection if the projection is
 178       // the single control projection for its parent: same code path,
 179       // if it's a If with UNC or fallthrough of a call.
 180       Node* parent_ctl = ctl->in(0);
 181       if (parent_ctl == NULL) {
 182         break;
 183       } else if (parent_ctl->is_CountedLoopEnd() && parent_ctl->as_CountedLoopEnd()->loopnode() != NULL) {
 184         next = parent_ctl->as_CountedLoopEnd()->loopnode()->init_control();
 185       } else if (parent_ctl->is_If()) {
 186         if (!ctl->as_Proj()->is_uncommon_trap_if_pattern(Deoptimization::Reason_none)) {
 187           break;
 188         }
 189         assert(idom(ctl) == parent_ctl, "strange");
 190         next = idom(parent_ctl);
 191       } else if (ctl->is_CatchProj()) {
 192         if (ctl->as_Proj()->_con != CatchProjNode::fall_through_index) {
 193           break;
 194         }
 195         assert(parent_ctl->in(0)->in(0)->is_Call(), "strange graph");
 196         next = parent_ctl->in(0)->in(0)->in(0);
 197       } else {
 198         // Check if parent control has a single projection (this
 199         // control is the only possible successor of the parent
 200         // control). If so, we can try to move the node above the
 201         // parent control.
 202         int nb_ctl_proj = 0;
 203         for (DUIterator_Fast imax, i = parent_ctl->fast_outs(imax); i < imax; i++) {
 204           Node *p = parent_ctl->fast_out(i);
 205           if (p->is_Proj() && p->is_CFG()) {
 206             nb_ctl_proj++;
 207             if (nb_ctl_proj > 1) {
 208               break;
 209             }
 210           }
 211         }
 212 
 213         if (nb_ctl_proj > 1) {
 214           break;
 215         }
 216         assert(parent_ctl->is_Start() || parent_ctl->is_MemBar() || parent_ctl->is_Call(), "unexpected node");
 217         assert(idom(ctl) == parent_ctl, "strange");
 218         next = idom(parent_ctl);
 219       }
 220     } else {
 221       next = idom(ctl);
 222     }
 223     if (next->is_Root() || next->is_Start() || dom_depth(next) < min_dom_depth) {
 224       break;
 225     }
 226     ctl = next;
 227   }
 228 
 229   if (ctl != n->in(0)) {
 230     _igvn.replace_input_of(n, 0, ctl);
 231     _igvn.hash_insert(n);
 232   }
 233 
 234   return ctl;
 235 }
 236 
 237 
 238 //------------------------------set_early_ctrl---------------------------------
 239 // Set earliest legal control
 240 void PhaseIdealLoop::set_early_ctrl( Node *n ) {
 241   Node *early = get_early_ctrl(n);
 242 
 243   // Record earliest legal location
 244   set_ctrl(n, early);
 245 }
 246 
 247 //------------------------------set_subtree_ctrl-------------------------------
 248 // set missing _ctrl entries on new nodes
 249 void PhaseIdealLoop::set_subtree_ctrl( Node *n ) {
 250   // Already set?  Get out.
 251   if( _nodes[n->_idx] ) return;
 252   // Recursively set _nodes array to indicate where the Node goes
 253   uint i;
 254   for( i = 0; i < n->req(); ++i ) {
 255     Node *m = n->in(i);
 256     if( m && m != C->root() )
 257       set_subtree_ctrl( m );
 258   }
 259 
 260   // Fixup self
 261   set_early_ctrl( n );
 262 }
 263 
 264 // Create a skeleton strip mined outer loop: a Loop head before the
 265 // inner strip mined loop, a safepoint and an exit condition guarded
 266 // by an opaque node after the inner strip mined loop with a backedge
 267 // to the loop head. The inner strip mined loop is left as it is. Only
 268 // once loop optimizations are over, do we adjust the inner loop exit
 269 // condition to limit its number of iterations, set the outer loop
 270 // exit condition and add Phis to the outer loop head. Some loop
 271 // optimizations that operate on the inner strip mined loop need to be
 272 // aware of the outer strip mined loop: loop unswitching needs to
 273 // clone the outer loop as well as the inner, unrolling needs to only
 274 // clone the inner loop etc. No optimizations need to change the outer
 275 // strip mined loop as it is only a skeleton.
 276 IdealLoopTree* PhaseIdealLoop::create_outer_strip_mined_loop(BoolNode *test, Node *cmp, Node *init_control,
 277                                                              IdealLoopTree* loop, float cl_prob, float le_fcnt,
 278                                                              Node*& entry_control, Node*& iffalse) {
 279   Node* outer_test = _igvn.intcon(0);
 280   set_ctrl(outer_test, C->root());
 281   Node *orig = iffalse;
 282   iffalse = iffalse->clone();
 283   _igvn.register_new_node_with_optimizer(iffalse);
 284   set_idom(iffalse, idom(orig), dom_depth(orig));
 285 
 286   IfNode *outer_le = new OuterStripMinedLoopEndNode(iffalse, outer_test, cl_prob, le_fcnt);
 287   Node *outer_ift = new IfTrueNode (outer_le);
 288   Node* outer_iff = orig;
 289   _igvn.replace_input_of(outer_iff, 0, outer_le);
 290 
 291   LoopNode *outer_l = new OuterStripMinedLoopNode(C, init_control, outer_ift);
 292   entry_control = outer_l;
 293 
 294   IdealLoopTree* outer_ilt = new IdealLoopTree(this, outer_l, outer_ift);
 295   IdealLoopTree* parent = loop->_parent;
 296   IdealLoopTree* sibling = parent->_child;
 297   if (sibling == loop) {
 298     parent->_child = outer_ilt;
 299   } else {
 300     while (sibling->_next != loop) {
 301       sibling = sibling->_next;
 302     }
 303     sibling->_next = outer_ilt;
 304   }
 305   outer_ilt->_next = loop->_next;
 306   outer_ilt->_parent = parent;
 307   outer_ilt->_child = loop;
 308   outer_ilt->_nest = loop->_nest;
 309   loop->_parent = outer_ilt;
 310   loop->_next = NULL;
 311   loop->_nest++;
 312 
 313   set_loop(iffalse, outer_ilt);
 314   register_control(outer_le, outer_ilt, iffalse);
 315   register_control(outer_ift, outer_ilt, outer_le);
 316   set_idom(outer_iff, outer_le, dom_depth(outer_le));
 317   _igvn.register_new_node_with_optimizer(outer_l);
 318   set_loop(outer_l, outer_ilt);
 319   set_idom(outer_l, init_control, dom_depth(init_control)+1);
 320 
 321   return outer_ilt;
 322 }
 323 
 324 //------------------------------is_counted_loop--------------------------------
 325 bool PhaseIdealLoop::is_counted_loop(Node* x, IdealLoopTree*& loop) {
 326   PhaseGVN *gvn = &_igvn;
 327 
 328   // Counted loop head must be a good RegionNode with only 3 not NULL
 329   // control input edges: Self, Entry, LoopBack.
 330   if (x->in(LoopNode::Self) == NULL || x->req() != 3 || loop->_irreducible) {
 331     return false;
 332   }
 333   Node *init_control = x->in(LoopNode::EntryControl);
 334   Node *back_control = x->in(LoopNode::LoopBackControl);
 335   if (init_control == NULL || back_control == NULL)    // Partially dead
 336     return false;
 337   // Must also check for TOP when looking for a dead loop
 338   if (init_control->is_top() || back_control->is_top())
 339     return false;
 340 
 341   // Allow funny placement of Safepoint
 342   if (back_control->Opcode() == Op_SafePoint) {
 343     if (LoopStripMiningIter != 0) {
 344       // Leaving the safepoint on the backedge and creating a
 345       // CountedLoop will confuse optimizations. We can't move the
 346       // safepoint around because its jvm state wouldn't match a new
 347       // location. Give up on that loop.
 348       return false;
 349     }
 350     back_control = back_control->in(TypeFunc::Control);
 351   }
 352 
 353   // Controlling test for loop
 354   Node *iftrue = back_control;
 355   uint iftrue_op = iftrue->Opcode();
 356   if (iftrue_op != Op_IfTrue &&
 357       iftrue_op != Op_IfFalse)
 358     // I have a weird back-control.  Probably the loop-exit test is in
 359     // the middle of the loop and I am looking at some trailing control-flow
 360     // merge point.  To fix this I would have to partially peel the loop.
 361     return false; // Obscure back-control
 362 
 363   // Get boolean guarding loop-back test
 364   Node *iff = iftrue->in(0);
 365   if (get_loop(iff) != loop || !iff->in(1)->is_Bool())
 366     return false;
 367   BoolNode *test = iff->in(1)->as_Bool();
 368   BoolTest::mask bt = test->_test._test;
 369   float cl_prob = iff->as_If()->_prob;
 370   if (iftrue_op == Op_IfFalse) {
 371     bt = BoolTest(bt).negate();
 372     cl_prob = 1.0 - cl_prob;
 373   }
 374   // Get backedge compare
 375   Node *cmp = test->in(1);
 376   int cmp_op = cmp->Opcode();
 377   if (cmp_op != Op_CmpI)
 378     return false;                // Avoid pointer & float compares
 379 
 380   // Find the trip-counter increment & limit.  Limit must be loop invariant.
 381   Node *incr  = cmp->in(1);
 382   Node *limit = cmp->in(2);
 383 
 384   // ---------
 385   // need 'loop()' test to tell if limit is loop invariant
 386   // ---------
 387 
 388   if (!is_member(loop, get_ctrl(incr))) { // Swapped trip counter and limit?
 389     Node *tmp = incr;            // Then reverse order into the CmpI
 390     incr = limit;
 391     limit = tmp;
 392     bt = BoolTest(bt).commute(); // And commute the exit test
 393   }
 394   if (is_member(loop, get_ctrl(limit))) // Limit must be loop-invariant
 395     return false;
 396   if (!is_member(loop, get_ctrl(incr))) // Trip counter must be loop-variant
 397     return false;
 398 
 399   Node* phi_incr = NULL;
 400   // Trip-counter increment must be commutative & associative.
 401   if (incr->Opcode() == Op_CastII) {
 402     incr = incr->in(1);
 403   }
 404   if (incr->is_Phi()) {
 405     if (incr->as_Phi()->region() != x || incr->req() != 3)
 406       return false; // Not simple trip counter expression
 407     phi_incr = incr;
 408     incr = phi_incr->in(LoopNode::LoopBackControl); // Assume incr is on backedge of Phi
 409     if (!is_member(loop, get_ctrl(incr))) // Trip counter must be loop-variant
 410       return false;
 411   }
 412 
 413   Node* trunc1 = NULL;
 414   Node* trunc2 = NULL;
 415   const TypeInt* iv_trunc_t = NULL;
 416   if (!(incr = CountedLoopNode::match_incr_with_optional_truncation(incr, &trunc1, &trunc2, &iv_trunc_t))) {
 417     return false; // Funny increment opcode
 418   }
 419   assert(incr->Opcode() == Op_AddI, "wrong increment code");
 420 
 421   // Get merge point
 422   Node *xphi = incr->in(1);
 423   Node *stride = incr->in(2);
 424   if (!stride->is_Con()) {     // Oops, swap these
 425     if (!xphi->is_Con())       // Is the other guy a constant?
 426       return false;             // Nope, unknown stride, bail out
 427     Node *tmp = xphi;           // 'incr' is commutative, so ok to swap
 428     xphi = stride;
 429     stride = tmp;
 430   }
 431   if (xphi->Opcode() == Op_CastII) {
 432     xphi = xphi->in(1);
 433   }
 434   // Stride must be constant
 435   int stride_con = stride->get_int();
 436   if (stride_con == 0)
 437     return false; // missed some peephole opt
 438 
 439   if (!xphi->is_Phi())
 440     return false; // Too much math on the trip counter
 441   if (phi_incr != NULL && phi_incr != xphi)
 442     return false;
 443   PhiNode *phi = xphi->as_Phi();
 444 
 445   // Phi must be of loop header; backedge must wrap to increment
 446   if (phi->region() != x)
 447     return false;
 448   if ((trunc1 == NULL && phi->in(LoopNode::LoopBackControl) != incr) ||
 449       (trunc1 != NULL && phi->in(LoopNode::LoopBackControl) != trunc1)) {
 450     return false;
 451   }
 452   Node *init_trip = phi->in(LoopNode::EntryControl);
 453 
 454   // If iv trunc type is smaller than int, check for possible wrap.
 455   if (!TypeInt::INT->higher_equal(iv_trunc_t)) {
 456     assert(trunc1 != NULL, "must have found some truncation");
 457 
 458     // Get a better type for the phi (filtered thru if's)
 459     const TypeInt* phi_ft = filtered_type(phi);
 460 
 461     // Can iv take on a value that will wrap?
 462     //
 463     // Ensure iv's limit is not within "stride" of the wrap value.
 464     //
 465     // Example for "short" type
 466     //    Truncation ensures value is in the range -32768..32767 (iv_trunc_t)
 467     //    If the stride is +10, then the last value of the induction
 468     //    variable before the increment (phi_ft->_hi) must be
 469     //    <= 32767 - 10 and (phi_ft->_lo) must be >= -32768 to
 470     //    ensure no truncation occurs after the increment.
 471 
 472     if (stride_con > 0) {
 473       if (iv_trunc_t->_hi - phi_ft->_hi < stride_con ||
 474           iv_trunc_t->_lo > phi_ft->_lo) {
 475         return false;  // truncation may occur
 476       }
 477     } else if (stride_con < 0) {
 478       if (iv_trunc_t->_lo - phi_ft->_lo > stride_con ||
 479           iv_trunc_t->_hi < phi_ft->_hi) {
 480         return false;  // truncation may occur
 481       }
 482     }
 483     // No possibility of wrap so truncation can be discarded
 484     // Promote iv type to Int
 485   } else {
 486     assert(trunc1 == NULL && trunc2 == NULL, "no truncation for int");
 487   }
 488 
 489   // If the condition is inverted and we will be rolling
 490   // through MININT to MAXINT, then bail out.
 491   if (bt == BoolTest::eq || // Bail out, but this loop trips at most twice!
 492       // Odd stride
 493       (bt == BoolTest::ne && stride_con != 1 && stride_con != -1) ||
 494       // Count down loop rolls through MAXINT
 495       ((bt == BoolTest::le || bt == BoolTest::lt) && stride_con < 0) ||
 496       // Count up loop rolls through MININT
 497       ((bt == BoolTest::ge || bt == BoolTest::gt) && stride_con > 0)) {
 498     return false; // Bail out
 499   }
 500 
 501   const TypeInt* init_t = gvn->type(init_trip)->is_int();
 502   const TypeInt* limit_t = gvn->type(limit)->is_int();
 503 
 504   if (stride_con > 0) {
 505     jlong init_p = (jlong)init_t->_lo + stride_con;
 506     if (init_p > (jlong)max_jint || init_p > (jlong)limit_t->_hi)
 507       return false; // cyclic loop or this loop trips only once
 508   } else {
 509     jlong init_p = (jlong)init_t->_hi + stride_con;
 510     if (init_p < (jlong)min_jint || init_p < (jlong)limit_t->_lo)
 511       return false; // cyclic loop or this loop trips only once
 512   }
 513 
 514   if (phi_incr != NULL) {
 515     // check if there is a possiblity of IV overflowing after the first increment
 516     if (stride_con > 0) {
 517       if (init_t->_hi > max_jint - stride_con) {
 518         return false;
 519       }
 520     } else {
 521       if (init_t->_lo < min_jint - stride_con) {
 522         return false;
 523       }
 524     }
 525   }
 526 
 527   // =================================================
 528   // ---- SUCCESS!   Found A Trip-Counted Loop!  -----
 529   //
 530   assert(x->Opcode() == Op_Loop, "regular loops only");
 531   C->print_method(PHASE_BEFORE_CLOOPS, 3);
 532 
 533   Node *hook = new Node(6);
 534 
 535   // ===================================================
 536   // Generate loop limit check to avoid integer overflow
 537   // in cases like next (cyclic loops):
 538   //
 539   // for (i=0; i <= max_jint; i++) {}
 540   // for (i=0; i <  max_jint; i+=2) {}
 541   //
 542   //
 543   // Limit check predicate depends on the loop test:
 544   //
 545   // for(;i != limit; i++)       --> limit <= (max_jint)
 546   // for(;i <  limit; i+=stride) --> limit <= (max_jint - stride + 1)
 547   // for(;i <= limit; i+=stride) --> limit <= (max_jint - stride    )
 548   //
 549 
 550   // Check if limit is excluded to do more precise int overflow check.
 551   bool incl_limit = (bt == BoolTest::le || bt == BoolTest::ge);
 552   int stride_m  = stride_con - (incl_limit ? 0 : (stride_con > 0 ? 1 : -1));
 553 
 554   // If compare points directly to the phi we need to adjust
 555   // the compare so that it points to the incr. Limit have
 556   // to be adjusted to keep trip count the same and the
 557   // adjusted limit should be checked for int overflow.
 558   if (phi_incr != NULL) {
 559     stride_m  += stride_con;
 560   }
 561 
 562   if (limit->is_Con()) {
 563     int limit_con = limit->get_int();
 564     if ((stride_con > 0 && limit_con > (max_jint - stride_m)) ||
 565         (stride_con < 0 && limit_con < (min_jint - stride_m))) {
 566       // Bailout: it could be integer overflow.
 567       return false;
 568     }
 569   } else if ((stride_con > 0 && limit_t->_hi <= (max_jint - stride_m)) ||
 570              (stride_con < 0 && limit_t->_lo >= (min_jint - stride_m))) {
 571       // Limit's type may satisfy the condition, for example,
 572       // when it is an array length.
 573   } else {
 574     // Generate loop's limit check.
 575     // Loop limit check predicate should be near the loop.
 576     ProjNode *limit_check_proj = find_predicate_insertion_point(init_control, Deoptimization::Reason_loop_limit_check);
 577     if (!limit_check_proj) {
 578       // The limit check predicate is not generated if this method trapped here before.
 579 #ifdef ASSERT
 580       if (TraceLoopLimitCheck) {
 581         tty->print("missing loop limit check:");
 582         loop->dump_head();
 583         x->dump(1);
 584       }
 585 #endif
 586       return false;
 587     }
 588 
 589     IfNode* check_iff = limit_check_proj->in(0)->as_If();
 590     Node* cmp_limit;
 591     Node* bol;
 592 
 593     if (stride_con > 0) {
 594       cmp_limit = new CmpINode(limit, _igvn.intcon(max_jint - stride_m));
 595       bol = new BoolNode(cmp_limit, BoolTest::le);
 596     } else {
 597       cmp_limit = new CmpINode(limit, _igvn.intcon(min_jint - stride_m));
 598       bol = new BoolNode(cmp_limit, BoolTest::ge);
 599     }
 600     cmp_limit = _igvn.register_new_node_with_optimizer(cmp_limit);
 601     bol = _igvn.register_new_node_with_optimizer(bol);
 602     set_subtree_ctrl(bol);
 603 
 604     // Replace condition in original predicate but preserve Opaque node
 605     // so that previous predicates could be found.
 606     assert(check_iff->in(1)->Opcode() == Op_Conv2B &&
 607            check_iff->in(1)->in(1)->Opcode() == Op_Opaque1, "");
 608     Node* opq = check_iff->in(1)->in(1);
 609     _igvn.replace_input_of(opq, 1, bol);
 610     // Update ctrl.
 611     set_ctrl(opq, check_iff->in(0));
 612     set_ctrl(check_iff->in(1), check_iff->in(0));
 613 
 614 #ifndef PRODUCT
 615     // report that the loop predication has been actually performed
 616     // for this loop
 617     if (TraceLoopLimitCheck) {
 618       tty->print_cr("Counted Loop Limit Check generated:");
 619       debug_only( bol->dump(2); )
 620     }
 621 #endif
 622   }
 623 
 624   if (phi_incr != NULL) {
 625     // If compare points directly to the phi we need to adjust
 626     // the compare so that it points to the incr. Limit have
 627     // to be adjusted to keep trip count the same and we
 628     // should avoid int overflow.
 629     //
 630     //   i = init; do {} while(i++ < limit);
 631     // is converted to
 632     //   i = init; do {} while(++i < limit+1);
 633     //
 634     limit = gvn->transform(new AddINode(limit, stride));
 635   }
 636 
 637   // Now we need to canonicalize loop condition.
 638   if (bt == BoolTest::ne) {
 639     assert(stride_con == 1 || stride_con == -1, "simple increment only");
 640     // 'ne' can be replaced with 'lt' only when init < limit.
 641     if (stride_con > 0 && init_t->_hi < limit_t->_lo)
 642       bt = BoolTest::lt;
 643     // 'ne' can be replaced with 'gt' only when init > limit.
 644     if (stride_con < 0 && init_t->_lo > limit_t->_hi)
 645       bt = BoolTest::gt;
 646   }
 647 
 648   if (incl_limit) {
 649     // The limit check guaranties that 'limit <= (max_jint - stride)' so
 650     // we can convert 'i <= limit' to 'i < limit+1' since stride != 0.
 651     //
 652     Node* one = (stride_con > 0) ? gvn->intcon( 1) : gvn->intcon(-1);
 653     limit = gvn->transform(new AddINode(limit, one));
 654     if (bt == BoolTest::le)
 655       bt = BoolTest::lt;
 656     else if (bt == BoolTest::ge)
 657       bt = BoolTest::gt;
 658     else
 659       ShouldNotReachHere();
 660   }
 661   set_subtree_ctrl( limit );
 662 
 663   if (LoopStripMiningIter == 0) {
 664     // Check for SafePoint on backedge and remove
 665     Node *sfpt = x->in(LoopNode::LoopBackControl);
 666     if (sfpt->Opcode() == Op_SafePoint && is_deleteable_safept(sfpt)) {
 667       lazy_replace( sfpt, iftrue );
 668       if (loop->_safepts != NULL) {
 669         loop->_safepts->yank(sfpt);
 670       }
 671       loop->_tail = iftrue;
 672     }
 673   }
 674 
 675   // Build a canonical trip test.
 676   // Clone code, as old values may be in use.
 677   incr = incr->clone();
 678   incr->set_req(1,phi);
 679   incr->set_req(2,stride);
 680   incr = _igvn.register_new_node_with_optimizer(incr);
 681   set_early_ctrl( incr );
 682   _igvn.rehash_node_delayed(phi);
 683   phi->set_req_X( LoopNode::LoopBackControl, incr, &_igvn );
 684 
 685   // If phi type is more restrictive than Int, raise to
 686   // Int to prevent (almost) infinite recursion in igvn
 687   // which can only handle integer types for constants or minint..maxint.
 688   if (!TypeInt::INT->higher_equal(phi->bottom_type())) {
 689     Node* nphi = PhiNode::make(phi->in(0), phi->in(LoopNode::EntryControl), TypeInt::INT);
 690     nphi->set_req(LoopNode::LoopBackControl, phi->in(LoopNode::LoopBackControl));
 691     nphi = _igvn.register_new_node_with_optimizer(nphi);
 692     set_ctrl(nphi, get_ctrl(phi));
 693     _igvn.replace_node(phi, nphi);
 694     phi = nphi->as_Phi();
 695   }
 696   cmp = cmp->clone();
 697   cmp->set_req(1,incr);
 698   cmp->set_req(2,limit);
 699   cmp = _igvn.register_new_node_with_optimizer(cmp);
 700   set_ctrl(cmp, iff->in(0));
 701 
 702   test = test->clone()->as_Bool();
 703   (*(BoolTest*)&test->_test)._test = bt;
 704   test->set_req(1,cmp);
 705   _igvn.register_new_node_with_optimizer(test);
 706   set_ctrl(test, iff->in(0));
 707 
 708   // Replace the old IfNode with a new LoopEndNode
 709   Node *lex = _igvn.register_new_node_with_optimizer(new CountedLoopEndNode( iff->in(0), test, cl_prob, iff->as_If()->_fcnt ));
 710   IfNode *le = lex->as_If();
 711   uint dd = dom_depth(iff);
 712   set_idom(le, le->in(0), dd); // Update dominance for loop exit
 713   set_loop(le, loop);
 714 
 715   // Get the loop-exit control
 716   Node *iffalse = iff->as_If()->proj_out(!(iftrue_op == Op_IfTrue));
 717 
 718   // Need to swap loop-exit and loop-back control?
 719   if (iftrue_op == Op_IfFalse) {
 720     Node *ift2=_igvn.register_new_node_with_optimizer(new IfTrueNode (le));
 721     Node *iff2=_igvn.register_new_node_with_optimizer(new IfFalseNode(le));
 722 
 723     loop->_tail = back_control = ift2;
 724     set_loop(ift2, loop);
 725     set_loop(iff2, get_loop(iffalse));
 726 
 727     // Lazy update of 'get_ctrl' mechanism.
 728     lazy_replace(iffalse, iff2);
 729     lazy_replace(iftrue,  ift2);
 730 
 731     // Swap names
 732     iffalse = iff2;
 733     iftrue  = ift2;
 734   } else {
 735     _igvn.rehash_node_delayed(iffalse);
 736     _igvn.rehash_node_delayed(iftrue);
 737     iffalse->set_req_X( 0, le, &_igvn );
 738     iftrue ->set_req_X( 0, le, &_igvn );
 739   }
 740 
 741   set_idom(iftrue,  le, dd+1);
 742   set_idom(iffalse, le, dd+1);
 743   assert(iff->outcnt() == 0, "should be dead now");
 744   lazy_replace( iff, le ); // fix 'get_ctrl'
 745 
 746   Node *sfpt2 = le->in(0);
 747 
 748   Node* entry_control = init_control;
 749   bool strip_mine_loop = LoopStripMiningIter > 1 && loop->_child == NULL &&
 750     sfpt2->Opcode() == Op_SafePoint && !loop->_has_call;
 751   IdealLoopTree* outer_ilt = NULL;
 752   if (strip_mine_loop) {
 753     outer_ilt = create_outer_strip_mined_loop(test, cmp, init_control, loop,
 754                                               cl_prob, le->_fcnt, entry_control,
 755                                               iffalse);
 756   }
 757 
 758   // Now setup a new CountedLoopNode to replace the existing LoopNode
 759   CountedLoopNode *l = new CountedLoopNode(entry_control, back_control);
 760   l->set_unswitch_count(x->as_Loop()->unswitch_count()); // Preserve
 761   // The following assert is approximately true, and defines the intention
 762   // of can_be_counted_loop.  It fails, however, because phase->type
 763   // is not yet initialized for this loop and its parts.
 764   //assert(l->can_be_counted_loop(this), "sanity");
 765   _igvn.register_new_node_with_optimizer(l);
 766   set_loop(l, loop);
 767   loop->_head = l;
 768   // Fix all data nodes placed at the old loop head.
 769   // Uses the lazy-update mechanism of 'get_ctrl'.
 770   lazy_replace( x, l );
 771   set_idom(l, entry_control, dom_depth(entry_control) + 1);
 772 
 773   if (LoopStripMiningIter == 0 || strip_mine_loop) {
 774     // Check for immediately preceding SafePoint and remove
 775     if (sfpt2->Opcode() == Op_SafePoint && (LoopStripMiningIter != 0 || is_deleteable_safept(sfpt2))) {
 776       if (strip_mine_loop) {
 777         Node* outer_le = outer_ilt->_tail->in(0);
 778         Node* sfpt = sfpt2->clone();
 779         sfpt->set_req(0, iffalse);
 780         outer_le->set_req(0, sfpt);
 781         register_control(sfpt, outer_ilt, iffalse);
 782         set_idom(outer_le, sfpt, dom_depth(sfpt));
 783       }
 784       lazy_replace( sfpt2, sfpt2->in(TypeFunc::Control));
 785       if (loop->_safepts != NULL) {
 786         loop->_safepts->yank(sfpt2);
 787       }
 788     }
 789   }
 790 
 791   // Free up intermediate goo
 792   _igvn.remove_dead_node(hook);
 793 
 794 #ifdef ASSERT
 795   assert(l->is_valid_counted_loop(), "counted loop shape is messed up");
 796   assert(l == loop->_head && l->phi() == phi && l->loopexit_or_null() == lex, "" );
 797 #endif
 798 #ifndef PRODUCT
 799   if (TraceLoopOpts) {
 800     tty->print("Counted      ");
 801     loop->dump_head();
 802   }
 803 #endif
 804 
 805   C->print_method(PHASE_AFTER_CLOOPS, 3);
 806 
 807   // Capture bounds of the loop in the induction variable Phi before
 808   // subsequent transformation (iteration splitting) obscures the
 809   // bounds
 810   l->phi()->as_Phi()->set_type(l->phi()->Value(&_igvn));
 811 
 812   if (strip_mine_loop) {
 813     l->mark_strip_mined();
 814     l->verify_strip_mined(1);
 815     outer_ilt->_head->as_Loop()->verify_strip_mined(1);
 816     loop = outer_ilt;
 817   }
 818 
 819   return true;
 820 }
 821 
 822 //----------------------exact_limit-------------------------------------------
 823 Node* PhaseIdealLoop::exact_limit( IdealLoopTree *loop ) {
 824   assert(loop->_head->is_CountedLoop(), "");
 825   CountedLoopNode *cl = loop->_head->as_CountedLoop();
 826   assert(cl->is_valid_counted_loop(), "");
 827 
 828   if (ABS(cl->stride_con()) == 1 ||
 829       cl->limit()->Opcode() == Op_LoopLimit) {
 830     // Old code has exact limit (it could be incorrect in case of int overflow).
 831     // Loop limit is exact with stride == 1. And loop may already have exact limit.
 832     return cl->limit();
 833   }
 834   Node *limit = NULL;
 835 #ifdef ASSERT
 836   BoolTest::mask bt = cl->loopexit()->test_trip();
 837   assert(bt == BoolTest::lt || bt == BoolTest::gt, "canonical test is expected");
 838 #endif
 839   if (cl->has_exact_trip_count()) {
 840     // Simple case: loop has constant boundaries.
 841     // Use jlongs to avoid integer overflow.
 842     int stride_con = cl->stride_con();
 843     jlong  init_con = cl->init_trip()->get_int();
 844     jlong limit_con = cl->limit()->get_int();
 845     julong trip_cnt = cl->trip_count();
 846     jlong final_con = init_con + trip_cnt*stride_con;
 847     int final_int = (int)final_con;
 848     // The final value should be in integer range since the loop
 849     // is counted and the limit was checked for overflow.
 850     assert(final_con == (jlong)final_int, "final value should be integer");
 851     limit = _igvn.intcon(final_int);
 852   } else {
 853     // Create new LoopLimit node to get exact limit (final iv value).
 854     limit = new LoopLimitNode(C, cl->init_trip(), cl->limit(), cl->stride());
 855     register_new_node(limit, cl->in(LoopNode::EntryControl));
 856   }
 857   assert(limit != NULL, "sanity");
 858   return limit;
 859 }
 860 
 861 //------------------------------Ideal------------------------------------------
 862 // Return a node which is more "ideal" than the current node.
 863 // Attempt to convert into a counted-loop.
 864 Node *LoopNode::Ideal(PhaseGVN *phase, bool can_reshape) {
 865   if (!can_be_counted_loop(phase) && !is_OuterStripMinedLoop()) {
 866     phase->C->set_major_progress();
 867   }
 868   return RegionNode::Ideal(phase, can_reshape);
 869 }
 870 
 871 void LoopNode::verify_strip_mined(int expect_skeleton) const {
 872 #ifdef ASSERT
 873   const OuterStripMinedLoopNode* outer = NULL;
 874   const CountedLoopNode* inner = NULL;
 875   if (is_strip_mined()) {
 876     assert(is_CountedLoop(), "no Loop should be marked strip mined");
 877     inner = as_CountedLoop();
 878     outer = inner->in(LoopNode::EntryControl)->as_OuterStripMinedLoop();
 879   } else if (is_OuterStripMinedLoop()) {
 880     outer = this->as_OuterStripMinedLoop();
 881     inner = outer->unique_ctrl_out()->as_CountedLoop();
 882     assert(!is_strip_mined(), "outer loop shouldn't be marked strip mined");
 883   }
 884   if (inner != NULL || outer != NULL) {
 885     assert(inner != NULL && outer != NULL, "missing loop in strip mined nest");
 886     Node* outer_tail = outer->in(LoopNode::LoopBackControl);
 887     Node* outer_le = outer_tail->in(0);
 888     assert(outer_le->Opcode() == Op_OuterStripMinedLoopEnd, "tail of outer loop should be an If");
 889     Node* sfpt = outer_le->in(0);
 890     assert(sfpt->Opcode() == Op_SafePoint, "where's the safepoint?");
 891     Node* inner_out = sfpt->in(0);
 892     if (inner_out->outcnt() != 1) {
 893       ResourceMark rm;
 894       Unique_Node_List wq;
 895 
 896       for (DUIterator_Fast imax, i = inner_out->fast_outs(imax); i < imax; i++) {
 897         Node* u = inner_out->fast_out(i);
 898         if (u == sfpt) {
 899           continue;
 900         }
 901         wq.clear();
 902         wq.push(u);
 903         bool found_sfpt = false;
 904         for (uint next = 0; next < wq.size() && !found_sfpt; next++) {
 905           Node *n = wq.at(next);
 906           for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax && !found_sfpt; i++) {
 907             Node* u = n->fast_out(i);
 908             if (u == sfpt) {
 909               found_sfpt = true;
 910             }
 911             if (!u->is_CFG()) {
 912               wq.push(u);
 913             }
 914           }
 915         }
 916         assert(found_sfpt, "no node in loop that's not input to safepoint");
 917       }
 918     }
 919     CountedLoopEndNode* cle = inner_out->in(0)->as_CountedLoopEnd();
 920     assert(cle == inner->loopexit_or_null(), "mismatch");
 921     bool has_skeleton = outer_le->in(1)->bottom_type()->singleton() && outer_le->in(1)->bottom_type()->is_int()->get_con() == 0;
 922     if (has_skeleton) {
 923       assert(expect_skeleton == 1 || expect_skeleton == -1, "unexpected skeleton node");
 924       assert(outer->outcnt() == 2, "only phis");
 925     } else {
 926       assert(expect_skeleton == 0 || expect_skeleton == -1, "no skeleton node?");
 927       uint phis = 0;
 928       for (DUIterator_Fast imax, i = inner->fast_outs(imax); i < imax; i++) {
 929         Node* u = inner->fast_out(i);
 930         if (u->is_Phi()) {
 931           phis++;
 932         }
 933       }
 934       for (DUIterator_Fast imax, i = outer->fast_outs(imax); i < imax; i++) {
 935         Node* u = outer->fast_out(i);
 936         assert(u == outer || u == inner || u->is_Phi(), "nothing between inner and outer loop");
 937       }
 938       uint stores = 0;
 939       for (DUIterator_Fast imax, i = inner_out->fast_outs(imax); i < imax; i++) {
 940         Node* u = inner_out->fast_out(i);
 941         if (u->is_Store()) {
 942           stores++;
 943         }
 944       }
 945       assert(outer->outcnt() >= phis + 2 && outer->outcnt() <= phis + 2 + stores + 1, "only phis");
 946     }
 947     assert(sfpt->outcnt() == 1, "no data node");
 948     assert(outer_tail->outcnt() == 1 || !has_skeleton, "no data node");
 949   }
 950 #endif
 951 }
 952 
 953 //=============================================================================
 954 //------------------------------Ideal------------------------------------------
 955 // Return a node which is more "ideal" than the current node.
 956 // Attempt to convert into a counted-loop.
 957 Node *CountedLoopNode::Ideal(PhaseGVN *phase, bool can_reshape) {
 958   return RegionNode::Ideal(phase, can_reshape);
 959 }
 960 
 961 //------------------------------dump_spec--------------------------------------
 962 // Dump special per-node info
 963 #ifndef PRODUCT
 964 void CountedLoopNode::dump_spec(outputStream *st) const {
 965   LoopNode::dump_spec(st);
 966   if (stride_is_con()) {
 967     st->print("stride: %d ",stride_con());
 968   }
 969   if (is_pre_loop ()) st->print("pre of N%d" , _main_idx);
 970   if (is_main_loop()) st->print("main of N%d", _idx);
 971   if (is_post_loop()) st->print("post of N%d", _main_idx);
 972   if (is_strip_mined()) st->print(" strip mined");
 973 }
 974 #endif
 975 
 976 //=============================================================================
 977 int CountedLoopEndNode::stride_con() const {
 978   return stride()->bottom_type()->is_int()->get_con();
 979 }
 980 
 981 //=============================================================================
 982 //------------------------------Value-----------------------------------------
 983 const Type* LoopLimitNode::Value(PhaseGVN* phase) const {
 984   const Type* init_t   = phase->type(in(Init));
 985   const Type* limit_t  = phase->type(in(Limit));
 986   const Type* stride_t = phase->type(in(Stride));
 987   // Either input is TOP ==> the result is TOP
 988   if (init_t   == Type::TOP) return Type::TOP;
 989   if (limit_t  == Type::TOP) return Type::TOP;
 990   if (stride_t == Type::TOP) return Type::TOP;
 991 
 992   int stride_con = stride_t->is_int()->get_con();
 993   if (stride_con == 1)
 994     return NULL;  // Identity
 995 
 996   if (init_t->is_int()->is_con() && limit_t->is_int()->is_con()) {
 997     // Use jlongs to avoid integer overflow.
 998     jlong init_con   =  init_t->is_int()->get_con();
 999     jlong limit_con  = limit_t->is_int()->get_con();
1000     int  stride_m   = stride_con - (stride_con > 0 ? 1 : -1);
1001     jlong trip_count = (limit_con - init_con + stride_m)/stride_con;
1002     jlong final_con  = init_con + stride_con*trip_count;
1003     int final_int = (int)final_con;
1004     // The final value should be in integer range since the loop
1005     // is counted and the limit was checked for overflow.
1006     assert(final_con == (jlong)final_int, "final value should be integer");
1007     return TypeInt::make(final_int);
1008   }
1009 
1010   return bottom_type(); // TypeInt::INT
1011 }
1012 
1013 //------------------------------Ideal------------------------------------------
1014 // Return a node which is more "ideal" than the current node.
1015 Node *LoopLimitNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1016   if (phase->type(in(Init))   == Type::TOP ||
1017       phase->type(in(Limit))  == Type::TOP ||
1018       phase->type(in(Stride)) == Type::TOP)
1019     return NULL;  // Dead
1020 
1021   int stride_con = phase->type(in(Stride))->is_int()->get_con();
1022   if (stride_con == 1)
1023     return NULL;  // Identity
1024 
1025   if (in(Init)->is_Con() && in(Limit)->is_Con())
1026     return NULL;  // Value
1027 
1028   // Delay following optimizations until all loop optimizations
1029   // done to keep Ideal graph simple.
1030   if (!can_reshape || phase->C->major_progress())
1031     return NULL;
1032 
1033   const TypeInt* init_t  = phase->type(in(Init) )->is_int();
1034   const TypeInt* limit_t = phase->type(in(Limit))->is_int();
1035   int stride_p;
1036   jlong lim, ini;
1037   julong max;
1038   if (stride_con > 0) {
1039     stride_p = stride_con;
1040     lim = limit_t->_hi;
1041     ini = init_t->_lo;
1042     max = (julong)max_jint;
1043   } else {
1044     stride_p = -stride_con;
1045     lim = init_t->_hi;
1046     ini = limit_t->_lo;
1047     max = (julong)min_jint;
1048   }
1049   julong range = lim - ini + stride_p;
1050   if (range <= max) {
1051     // Convert to integer expression if it is not overflow.
1052     Node* stride_m = phase->intcon(stride_con - (stride_con > 0 ? 1 : -1));
1053     Node *range = phase->transform(new SubINode(in(Limit), in(Init)));
1054     Node *bias  = phase->transform(new AddINode(range, stride_m));
1055     Node *trip  = phase->transform(new DivINode(0, bias, in(Stride)));
1056     Node *span  = phase->transform(new MulINode(trip, in(Stride)));
1057     return new AddINode(span, in(Init)); // exact limit
1058   }
1059 
1060   if (is_power_of_2(stride_p) ||                // divisor is 2^n
1061       !Matcher::has_match_rule(Op_LoopLimit)) { // or no specialized Mach node?
1062     // Convert to long expression to avoid integer overflow
1063     // and let igvn optimizer convert this division.
1064     //
1065     Node*   init   = phase->transform( new ConvI2LNode(in(Init)));
1066     Node*  limit   = phase->transform( new ConvI2LNode(in(Limit)));
1067     Node* stride   = phase->longcon(stride_con);
1068     Node* stride_m = phase->longcon(stride_con - (stride_con > 0 ? 1 : -1));
1069 
1070     Node *range = phase->transform(new SubLNode(limit, init));
1071     Node *bias  = phase->transform(new AddLNode(range, stride_m));
1072     Node *span;
1073     if (stride_con > 0 && is_power_of_2(stride_p)) {
1074       // bias >= 0 if stride >0, so if stride is 2^n we can use &(-stride)
1075       // and avoid generating rounding for division. Zero trip guard should
1076       // guarantee that init < limit but sometimes the guard is missing and
1077       // we can get situation when init > limit. Note, for the empty loop
1078       // optimization zero trip guard is generated explicitly which leaves
1079       // only RCE predicate where exact limit is used and the predicate
1080       // will simply fail forcing recompilation.
1081       Node* neg_stride   = phase->longcon(-stride_con);
1082       span = phase->transform(new AndLNode(bias, neg_stride));
1083     } else {
1084       Node *trip  = phase->transform(new DivLNode(0, bias, stride));
1085       span = phase->transform(new MulLNode(trip, stride));
1086     }
1087     // Convert back to int
1088     Node *span_int = phase->transform(new ConvL2INode(span));
1089     return new AddINode(span_int, in(Init)); // exact limit
1090   }
1091 
1092   return NULL;    // No progress
1093 }
1094 
1095 //------------------------------Identity---------------------------------------
1096 // If stride == 1 return limit node.
1097 Node* LoopLimitNode::Identity(PhaseGVN* phase) {
1098   int stride_con = phase->type(in(Stride))->is_int()->get_con();
1099   if (stride_con == 1 || stride_con == -1)
1100     return in(Limit);
1101   return this;
1102 }
1103 
1104 //=============================================================================
1105 //----------------------match_incr_with_optional_truncation--------------------
1106 // Match increment with optional truncation:
1107 // CHAR: (i+1)&0x7fff, BYTE: ((i+1)<<8)>>8, or SHORT: ((i+1)<<16)>>16
1108 // Return NULL for failure. Success returns the increment node.
1109 Node* CountedLoopNode::match_incr_with_optional_truncation(
1110                       Node* expr, Node** trunc1, Node** trunc2, const TypeInt** trunc_type) {
1111   // Quick cutouts:
1112   if (expr == NULL || expr->req() != 3)  return NULL;
1113 
1114   Node *t1 = NULL;
1115   Node *t2 = NULL;
1116   const TypeInt* trunc_t = TypeInt::INT;
1117   Node* n1 = expr;
1118   int   n1op = n1->Opcode();
1119 
1120   // Try to strip (n1 & M) or (n1 << N >> N) from n1.
1121   if (n1op == Op_AndI &&
1122       n1->in(2)->is_Con() &&
1123       n1->in(2)->bottom_type()->is_int()->get_con() == 0x7fff) {
1124     // %%% This check should match any mask of 2**K-1.
1125     t1 = n1;
1126     n1 = t1->in(1);
1127     n1op = n1->Opcode();
1128     trunc_t = TypeInt::CHAR;
1129   } else if (n1op == Op_RShiftI &&
1130              n1->in(1) != NULL &&
1131              n1->in(1)->Opcode() == Op_LShiftI &&
1132              n1->in(2) == n1->in(1)->in(2) &&
1133              n1->in(2)->is_Con()) {
1134     jint shift = n1->in(2)->bottom_type()->is_int()->get_con();
1135     // %%% This check should match any shift in [1..31].
1136     if (shift == 16 || shift == 8) {
1137       t1 = n1;
1138       t2 = t1->in(1);
1139       n1 = t2->in(1);
1140       n1op = n1->Opcode();
1141       if (shift == 16) {
1142         trunc_t = TypeInt::SHORT;
1143       } else if (shift == 8) {
1144         trunc_t = TypeInt::BYTE;
1145       }
1146     }
1147   }
1148 
1149   // If (maybe after stripping) it is an AddI, we won:
1150   if (n1op == Op_AddI) {
1151     *trunc1 = t1;
1152     *trunc2 = t2;
1153     *trunc_type = trunc_t;
1154     return n1;
1155   }
1156 
1157   // failed
1158   return NULL;
1159 }
1160 
1161 LoopNode* CountedLoopNode::skip_strip_mined(int expect_skeleton) {
1162   if (is_strip_mined()) {
1163     verify_strip_mined(expect_skeleton);
1164     return in(EntryControl)->as_Loop();
1165   }
1166   return this;
1167 }
1168 
1169 OuterStripMinedLoopNode* CountedLoopNode::outer_loop() const {
1170   assert(is_strip_mined(), "not a strip mined loop");
1171   Node* c = in(EntryControl);
1172   if (c == NULL || c->is_top() || !c->is_OuterStripMinedLoop()) {
1173     return NULL;
1174   }
1175   return c->as_OuterStripMinedLoop();
1176 }
1177 
1178 IfTrueNode* OuterStripMinedLoopNode::outer_loop_tail() const {
1179   Node* c = in(LoopBackControl);
1180   if (c == NULL || c->is_top()) {
1181     return NULL;
1182   }
1183   return c->as_IfTrue();
1184 }
1185 
1186 IfTrueNode* CountedLoopNode::outer_loop_tail() const {
1187   LoopNode* l = outer_loop();
1188   if (l == NULL) {
1189     return NULL;
1190   }
1191   return l->outer_loop_tail();
1192 }
1193 
1194 OuterStripMinedLoopEndNode* OuterStripMinedLoopNode::outer_loop_end() const {
1195   IfTrueNode* proj = outer_loop_tail();
1196   if (proj == NULL) {
1197     return NULL;
1198   }
1199   Node* c = proj->in(0);
1200   if (c == NULL || c->is_top() || c->outcnt() != 2) {
1201     return NULL;
1202   }
1203   return c->as_OuterStripMinedLoopEnd();
1204 }
1205 
1206 OuterStripMinedLoopEndNode* CountedLoopNode::outer_loop_end() const {
1207   LoopNode* l = outer_loop();
1208   if (l == NULL) {
1209     return NULL;
1210   }
1211   return l->outer_loop_end();
1212 }
1213 
1214 IfFalseNode* OuterStripMinedLoopNode::outer_loop_exit() const {
1215   IfNode* le = outer_loop_end();
1216   if (le == NULL) {
1217     return NULL;
1218   }
1219   Node* c = le->proj_out_or_null(false);
1220   if (c == NULL) {
1221     return NULL;
1222   }
1223   return c->as_IfFalse();
1224 }
1225 
1226 IfFalseNode* CountedLoopNode::outer_loop_exit() const {
1227   LoopNode* l = outer_loop();
1228   if (l == NULL) {
1229     return NULL;
1230   }
1231   return l->outer_loop_exit();
1232 }
1233 
1234 SafePointNode* OuterStripMinedLoopNode::outer_safepoint() const {
1235   IfNode* le = outer_loop_end();
1236   if (le == NULL) {
1237     return NULL;
1238   }
1239   Node* c = le->in(0);
1240   if (c == NULL || c->is_top()) {
1241     return NULL;
1242   }
1243   assert(c->Opcode() == Op_SafePoint, "broken outer loop");
1244   return c->as_SafePoint();
1245 }
1246 
1247 SafePointNode* CountedLoopNode::outer_safepoint() const {
1248   LoopNode* l = outer_loop();
1249   if (l == NULL) {
1250     return NULL;
1251   }
1252   return l->outer_safepoint();
1253 }
1254 
1255 Node* CountedLoopNode::skip_predicates() {
1256   if (is_main_loop()) {
1257     Node* ctrl = skip_strip_mined()->in(LoopNode::EntryControl);
1258     while (ctrl != NULL && ctrl->is_Proj() && ctrl->in(0)->is_If() &&
1259            ctrl->in(0)->as_If()->proj_out(1-ctrl->as_Proj()->_con)->outcnt() == 1 &&
1260            ctrl->in(0)->as_If()->proj_out(1-ctrl->as_Proj()->_con)->unique_out()->Opcode() == Op_Halt) {
1261       ctrl = ctrl->in(0)->in(0);
1262     }
1263 
1264     return ctrl;
1265   }
1266   return in(LoopNode::EntryControl);
1267 }
1268 
1269 void OuterStripMinedLoopNode::adjust_strip_mined_loop(PhaseIterGVN* igvn) {
1270   // Look for the outer & inner strip mined loop, reduce number of
1271   // iterations of the inner loop, set exit condition of outer loop,
1272   // construct required phi nodes for outer loop.
1273   CountedLoopNode* inner_cl = unique_ctrl_out()->as_CountedLoop();
1274   assert(inner_cl->is_strip_mined(), "inner loop should be strip mined");
1275   Node* inner_iv_phi = inner_cl->phi();
1276   if (inner_iv_phi == NULL) {
1277     IfNode* outer_le = outer_loop_end();
1278     Node* iff = igvn->transform(new IfNode(outer_le->in(0), outer_le->in(1), outer_le->_prob, outer_le->_fcnt));
1279     igvn->replace_node(outer_le, iff);
1280     inner_cl->clear_strip_mined();
1281     return;
1282   }
1283   CountedLoopEndNode* inner_cle = inner_cl->loopexit();
1284 
1285   int stride = inner_cl->stride_con();
1286   jlong scaled_iters_long = ((jlong)LoopStripMiningIter) * ABS(stride);
1287   int scaled_iters = (int)scaled_iters_long;
1288   int short_scaled_iters = LoopStripMiningIterShortLoop* ABS(stride);
1289   const TypeInt* inner_iv_t = igvn->type(inner_iv_phi)->is_int();
1290   jlong iter_estimate = (jlong)inner_iv_t->_hi - (jlong)inner_iv_t->_lo;
1291   assert(iter_estimate > 0, "broken");
1292   if ((jlong)scaled_iters != scaled_iters_long || iter_estimate <= short_scaled_iters) {
1293     // Remove outer loop and safepoint (too few iterations)
1294     Node* outer_sfpt = outer_safepoint();
1295     Node* outer_out = outer_loop_exit();
1296     igvn->replace_node(outer_out, outer_sfpt->in(0));
1297     igvn->replace_input_of(outer_sfpt, 0, igvn->C->top());
1298     inner_cl->clear_strip_mined();
1299     return;
1300   }
1301   if (iter_estimate <= scaled_iters_long) {
1302     // We would only go through one iteration of
1303     // the outer loop: drop the outer loop but
1304     // keep the safepoint so we don't run for
1305     // too long without a safepoint
1306     IfNode* outer_le = outer_loop_end();
1307     Node* iff = igvn->transform(new IfNode(outer_le->in(0), outer_le->in(1), outer_le->_prob, outer_le->_fcnt));
1308     igvn->replace_node(outer_le, iff);
1309     inner_cl->clear_strip_mined();
1310     return;
1311   }
1312 
1313   Node* cle_tail = inner_cle->proj_out(true);
1314   ResourceMark rm;
1315   Node_List old_new;
1316   if (cle_tail->outcnt() > 1) {
1317     // Look for nodes on backedge of inner loop and clone them
1318     Unique_Node_List backedge_nodes;
1319     for (DUIterator_Fast imax, i = cle_tail->fast_outs(imax); i < imax; i++) {
1320       Node* u = cle_tail->fast_out(i);
1321       if (u != inner_cl) {
1322         assert(!u->is_CFG(), "control flow on the backedge?");
1323         backedge_nodes.push(u);
1324       }
1325     }
1326     uint last = igvn->C->unique();
1327     for (uint next = 0; next < backedge_nodes.size(); next++) {
1328       Node* n = backedge_nodes.at(next);
1329       old_new.map(n->_idx, n->clone());
1330       for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1331         Node* u = n->fast_out(i);
1332         assert(!u->is_CFG(), "broken");
1333         if (u->_idx >= last) {
1334           continue;
1335         }
1336         if (!u->is_Phi()) {
1337           backedge_nodes.push(u);
1338         } else {
1339           assert(u->in(0) == inner_cl, "strange phi on the backedge");
1340         }
1341       }
1342     }
1343     // Put the clones on the outer loop backedge
1344     Node* le_tail = outer_loop_tail();
1345     for (uint next = 0; next < backedge_nodes.size(); next++) {
1346       Node *n = old_new[backedge_nodes.at(next)->_idx];
1347       for (uint i = 1; i < n->req(); i++) {
1348         if (n->in(i) != NULL && old_new[n->in(i)->_idx] != NULL) {
1349           n->set_req(i, old_new[n->in(i)->_idx]);
1350         }
1351       }
1352       if (n->in(0) != NULL && n->in(0) == cle_tail) {
1353         n->set_req(0, le_tail);
1354       }
1355       igvn->register_new_node_with_optimizer(n);
1356     }
1357   }
1358 
1359   Node* iv_phi = NULL;
1360   // Make a clone of each phi in the inner loop
1361   // for the outer loop
1362   for (uint i = 0; i < inner_cl->outcnt(); i++) {
1363     Node* u = inner_cl->raw_out(i);
1364     if (u->is_Phi()) {
1365       assert(u->in(0) == inner_cl, "inconsistent");
1366       Node* phi = u->clone();
1367       phi->set_req(0, this);
1368       Node* be = old_new[phi->in(LoopNode::LoopBackControl)->_idx];
1369       if (be != NULL) {
1370         phi->set_req(LoopNode::LoopBackControl, be);
1371       }
1372       phi = igvn->transform(phi);
1373       igvn->replace_input_of(u, LoopNode::EntryControl, phi);
1374       if (u == inner_iv_phi) {
1375         iv_phi = phi;
1376       }
1377     }
1378   }
1379   Node* cle_out = inner_cle->proj_out(false);
1380   if (cle_out->outcnt() > 1) {
1381     // Look for chains of stores that were sunk
1382     // out of the inner loop and are in the outer loop
1383     for (DUIterator_Fast imax, i = cle_out->fast_outs(imax); i < imax; i++) {
1384       Node* u = cle_out->fast_out(i);
1385       if (u->is_Store()) {
1386         Node* first = u;
1387         for(;;) {
1388           Node* next = first->in(MemNode::Memory);
1389           if (!next->is_Store() || next->in(0) != cle_out) {
1390             break;
1391           }
1392           first = next;
1393         }
1394         Node* last = u;
1395         for(;;) {
1396           Node* next = NULL;
1397           for (DUIterator_Fast jmax, j = last->fast_outs(jmax); j < jmax; j++) {
1398             Node* uu = last->fast_out(j);
1399             if (uu->is_Store() && uu->in(0) == cle_out) {
1400               assert(next == NULL, "only one in the outer loop");
1401               next = uu;
1402             }
1403           }
1404           if (next == NULL) {
1405             break;
1406           }
1407           last = next;
1408         }
1409         Node* phi = NULL;
1410         for (DUIterator_Fast jmax, j = fast_outs(jmax); j < jmax; j++) {
1411           Node* uu = fast_out(j);
1412           if (uu->is_Phi()) {
1413             Node* be = uu->in(LoopNode::LoopBackControl);
1414             if (be->is_Store() && old_new[be->_idx] != NULL) {
1415               assert(false, "store on the backedge + sunk stores: unsupported");
1416               // drop outer loop
1417               IfNode* outer_le = outer_loop_end();
1418               Node* iff = igvn->transform(new IfNode(outer_le->in(0), outer_le->in(1), outer_le->_prob, outer_le->_fcnt));
1419               igvn->replace_node(outer_le, iff);
1420               inner_cl->clear_strip_mined();
1421               return;
1422             }
1423             if (be == last || be == first->in(MemNode::Memory)) {
1424               assert(phi == NULL, "only one phi");
1425               phi = uu;
1426             }
1427           }
1428         }
1429 #ifdef ASSERT
1430         for (DUIterator_Fast jmax, j = fast_outs(jmax); j < jmax; j++) {
1431           Node* uu = fast_out(j);
1432           if (uu->is_Phi() && uu->bottom_type() == Type::MEMORY) {
1433             if (uu->adr_type() == igvn->C->get_adr_type(igvn->C->get_alias_index(u->adr_type()))) {
1434               assert(phi == uu, "what's that phi?");
1435             } else if (uu->adr_type() == TypePtr::BOTTOM) {
1436               Node* n = uu->in(LoopNode::LoopBackControl);
1437               uint limit = igvn->C->live_nodes();
1438               uint i = 0;
1439               while (n != uu) {
1440                 i++;
1441                 assert(i < limit, "infinite loop");
1442                 if (n->is_Proj()) {
1443                   n = n->in(0);
1444                 } else if (n->is_SafePoint() || n->is_MemBar()) {
1445                   n = n->in(TypeFunc::Memory);
1446                 } else if (n->is_Phi()) {
1447                   n = n->in(1);
1448                 } else if (n->is_MergeMem()) {
1449                   n = n->as_MergeMem()->memory_at(igvn->C->get_alias_index(u->adr_type()));
1450                 } else if (n->is_Store() || n->is_LoadStore() || n->is_ClearArray()) {
1451                   n = n->in(MemNode::Memory);
1452                 } else {
1453                   n->dump();
1454                   ShouldNotReachHere();
1455                 }
1456               }
1457             }
1458           }
1459         }
1460 #endif
1461         if (phi == NULL) {
1462           // If the an entire chains was sunk, the
1463           // inner loop has no phi for that memory
1464           // slice, create one for the outer loop
1465           phi = PhiNode::make(this, first->in(MemNode::Memory), Type::MEMORY,
1466                               igvn->C->get_adr_type(igvn->C->get_alias_index(u->adr_type())));
1467           phi->set_req(LoopNode::LoopBackControl, last);
1468           phi = igvn->transform(phi);
1469           igvn->replace_input_of(first, MemNode::Memory, phi);
1470         } else {
1471           // Or fix the outer loop fix to include
1472           // that chain of stores.
1473           Node* be = phi->in(LoopNode::LoopBackControl);
1474           assert(!(be->is_Store() && old_new[be->_idx] != NULL), "store on the backedge + sunk stores: unsupported");
1475           if (be == first->in(MemNode::Memory)) {
1476             if (be == phi->in(LoopNode::LoopBackControl)) {
1477               igvn->replace_input_of(phi, LoopNode::LoopBackControl, last);
1478             } else {
1479               igvn->replace_input_of(be, MemNode::Memory, last);
1480             }
1481           } else {
1482 #ifdef ASSERT
1483             if (be == phi->in(LoopNode::LoopBackControl)) {
1484               assert(phi->in(LoopNode::LoopBackControl) == last, "");
1485             } else {
1486               assert(be->in(MemNode::Memory) == last, "");
1487             }
1488 #endif
1489           }
1490         }
1491       }
1492     }
1493   }
1494 
1495   if (iv_phi != NULL) {
1496     // Now adjust the inner loop's exit condition
1497     Node* limit = inner_cl->limit();
1498     Node* sub = NULL;
1499     if (stride > 0) {
1500       sub = igvn->transform(new SubINode(limit, iv_phi));
1501     } else {
1502       sub = igvn->transform(new SubINode(iv_phi, limit));
1503     }
1504     Node* min = igvn->transform(new MinINode(sub, igvn->intcon(scaled_iters)));
1505     Node* new_limit = NULL;
1506     if (stride > 0) {
1507       new_limit = igvn->transform(new AddINode(min, iv_phi));
1508     } else {
1509       new_limit = igvn->transform(new SubINode(iv_phi, min));
1510     }
1511     Node* cmp = inner_cle->cmp_node()->clone();
1512     igvn->replace_input_of(cmp, 2, new_limit);
1513     Node* bol = inner_cle->in(CountedLoopEndNode::TestValue)->clone();
1514     cmp->set_req(2, limit);
1515     bol->set_req(1, igvn->transform(cmp));
1516     igvn->replace_input_of(outer_loop_end(), 1, igvn->transform(bol));
1517   } else {
1518     assert(false, "should be able to adjust outer loop");
1519     IfNode* outer_le = outer_loop_end();
1520     Node* iff = igvn->transform(new IfNode(outer_le->in(0), outer_le->in(1), outer_le->_prob, outer_le->_fcnt));
1521     igvn->replace_node(outer_le, iff);
1522     inner_cl->clear_strip_mined();
1523   }
1524 }
1525 
1526 const Type* OuterStripMinedLoopEndNode::Value(PhaseGVN* phase) const {
1527   if (!in(0)) return Type::TOP;
1528   if (phase->type(in(0)) == Type::TOP)
1529     return Type::TOP;
1530 
1531   return TypeTuple::IFBOTH;
1532 }
1533 
1534 Node *OuterStripMinedLoopEndNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1535   if (remove_dead_region(phase, can_reshape))  return this;
1536 
1537   return NULL;
1538 }
1539 
1540 //------------------------------filtered_type--------------------------------
1541 // Return a type based on condition control flow
1542 // A successful return will be a type that is restricted due
1543 // to a series of dominating if-tests, such as:
1544 //    if (i < 10) {
1545 //       if (i > 0) {
1546 //          here: "i" type is [1..10)
1547 //       }
1548 //    }
1549 // or a control flow merge
1550 //    if (i < 10) {
1551 //       do {
1552 //          phi( , ) -- at top of loop type is [min_int..10)
1553 //         i = ?
1554 //       } while ( i < 10)
1555 //
1556 const TypeInt* PhaseIdealLoop::filtered_type( Node *n, Node* n_ctrl) {
1557   assert(n && n->bottom_type()->is_int(), "must be int");
1558   const TypeInt* filtered_t = NULL;
1559   if (!n->is_Phi()) {
1560     assert(n_ctrl != NULL || n_ctrl == C->top(), "valid control");
1561     filtered_t = filtered_type_from_dominators(n, n_ctrl);
1562 
1563   } else {
1564     Node* phi    = n->as_Phi();
1565     Node* region = phi->in(0);
1566     assert(n_ctrl == NULL || n_ctrl == region, "ctrl parameter must be region");
1567     if (region && region != C->top()) {
1568       for (uint i = 1; i < phi->req(); i++) {
1569         Node* val   = phi->in(i);
1570         Node* use_c = region->in(i);
1571         const TypeInt* val_t = filtered_type_from_dominators(val, use_c);
1572         if (val_t != NULL) {
1573           if (filtered_t == NULL) {
1574             filtered_t = val_t;
1575           } else {
1576             filtered_t = filtered_t->meet(val_t)->is_int();
1577           }
1578         }
1579       }
1580     }
1581   }
1582   const TypeInt* n_t = _igvn.type(n)->is_int();
1583   if (filtered_t != NULL) {
1584     n_t = n_t->join(filtered_t)->is_int();
1585   }
1586   return n_t;
1587 }
1588 
1589 
1590 //------------------------------filtered_type_from_dominators--------------------------------
1591 // Return a possibly more restrictive type for val based on condition control flow of dominators
1592 const TypeInt* PhaseIdealLoop::filtered_type_from_dominators( Node* val, Node *use_ctrl) {
1593   if (val->is_Con()) {
1594      return val->bottom_type()->is_int();
1595   }
1596   uint if_limit = 10; // Max number of dominating if's visited
1597   const TypeInt* rtn_t = NULL;
1598 
1599   if (use_ctrl && use_ctrl != C->top()) {
1600     Node* val_ctrl = get_ctrl(val);
1601     uint val_dom_depth = dom_depth(val_ctrl);
1602     Node* pred = use_ctrl;
1603     uint if_cnt = 0;
1604     while (if_cnt < if_limit) {
1605       if ((pred->Opcode() == Op_IfTrue || pred->Opcode() == Op_IfFalse)) {
1606         if_cnt++;
1607         const TypeInt* if_t = IfNode::filtered_int_type(&_igvn, val, pred);
1608         if (if_t != NULL) {
1609           if (rtn_t == NULL) {
1610             rtn_t = if_t;
1611           } else {
1612             rtn_t = rtn_t->join(if_t)->is_int();
1613           }
1614         }
1615       }
1616       pred = idom(pred);
1617       if (pred == NULL || pred == C->top()) {
1618         break;
1619       }
1620       // Stop if going beyond definition block of val
1621       if (dom_depth(pred) < val_dom_depth) {
1622         break;
1623       }
1624     }
1625   }
1626   return rtn_t;
1627 }
1628 
1629 
1630 //------------------------------dump_spec--------------------------------------
1631 // Dump special per-node info
1632 #ifndef PRODUCT
1633 void CountedLoopEndNode::dump_spec(outputStream *st) const {
1634   if( in(TestValue) != NULL && in(TestValue)->is_Bool() ) {
1635     BoolTest bt( test_trip()); // Added this for g++.
1636 
1637     st->print("[");
1638     bt.dump_on(st);
1639     st->print("]");
1640   }
1641   st->print(" ");
1642   IfNode::dump_spec(st);
1643 }
1644 #endif
1645 
1646 //=============================================================================
1647 //------------------------------is_member--------------------------------------
1648 // Is 'l' a member of 'this'?
1649 bool IdealLoopTree::is_member(const IdealLoopTree *l) const {
1650   while( l->_nest > _nest ) l = l->_parent;
1651   return l == this;
1652 }
1653 
1654 //------------------------------set_nest---------------------------------------
1655 // Set loop tree nesting depth.  Accumulate _has_call bits.
1656 int IdealLoopTree::set_nest( uint depth ) {
1657   _nest = depth;
1658   int bits = _has_call;
1659   if( _child ) bits |= _child->set_nest(depth+1);
1660   if( bits ) _has_call = 1;
1661   if( _next  ) bits |= _next ->set_nest(depth  );
1662   return bits;
1663 }
1664 
1665 //------------------------------split_fall_in----------------------------------
1666 // Split out multiple fall-in edges from the loop header.  Move them to a
1667 // private RegionNode before the loop.  This becomes the loop landing pad.
1668 void IdealLoopTree::split_fall_in( PhaseIdealLoop *phase, int fall_in_cnt ) {
1669   PhaseIterGVN &igvn = phase->_igvn;
1670   uint i;
1671 
1672   // Make a new RegionNode to be the landing pad.
1673   Node *landing_pad = new RegionNode( fall_in_cnt+1 );
1674   phase->set_loop(landing_pad,_parent);
1675   // Gather all the fall-in control paths into the landing pad
1676   uint icnt = fall_in_cnt;
1677   uint oreq = _head->req();
1678   for( i = oreq-1; i>0; i-- )
1679     if( !phase->is_member( this, _head->in(i) ) )
1680       landing_pad->set_req(icnt--,_head->in(i));
1681 
1682   // Peel off PhiNode edges as well
1683   for (DUIterator_Fast jmax, j = _head->fast_outs(jmax); j < jmax; j++) {
1684     Node *oj = _head->fast_out(j);
1685     if( oj->is_Phi() ) {
1686       PhiNode* old_phi = oj->as_Phi();
1687       assert( old_phi->region() == _head, "" );
1688       igvn.hash_delete(old_phi);   // Yank from hash before hacking edges
1689       Node *p = PhiNode::make_blank(landing_pad, old_phi);
1690       uint icnt = fall_in_cnt;
1691       for( i = oreq-1; i>0; i-- ) {
1692         if( !phase->is_member( this, _head->in(i) ) ) {
1693           p->init_req(icnt--, old_phi->in(i));
1694           // Go ahead and clean out old edges from old phi
1695           old_phi->del_req(i);
1696         }
1697       }
1698       // Search for CSE's here, because ZKM.jar does a lot of
1699       // loop hackery and we need to be a little incremental
1700       // with the CSE to avoid O(N^2) node blow-up.
1701       Node *p2 = igvn.hash_find_insert(p); // Look for a CSE
1702       if( p2 ) {                // Found CSE
1703         p->destruct();          // Recover useless new node
1704         p = p2;                 // Use old node
1705       } else {
1706         igvn.register_new_node_with_optimizer(p, old_phi);
1707       }
1708       // Make old Phi refer to new Phi.
1709       old_phi->add_req(p);
1710       // Check for the special case of making the old phi useless and
1711       // disappear it.  In JavaGrande I have a case where this useless
1712       // Phi is the loop limit and prevents recognizing a CountedLoop
1713       // which in turn prevents removing an empty loop.
1714       Node *id_old_phi = old_phi->Identity( &igvn );
1715       if( id_old_phi != old_phi ) { // Found a simple identity?
1716         // Note that I cannot call 'replace_node' here, because
1717         // that will yank the edge from old_phi to the Region and
1718         // I'm mid-iteration over the Region's uses.
1719         for (DUIterator_Last imin, i = old_phi->last_outs(imin); i >= imin; ) {
1720           Node* use = old_phi->last_out(i);
1721           igvn.rehash_node_delayed(use);
1722           uint uses_found = 0;
1723           for (uint j = 0; j < use->len(); j++) {
1724             if (use->in(j) == old_phi) {
1725               if (j < use->req()) use->set_req (j, id_old_phi);
1726               else                use->set_prec(j, id_old_phi);
1727               uses_found++;
1728             }
1729           }
1730           i -= uses_found;    // we deleted 1 or more copies of this edge
1731         }
1732       }
1733       igvn._worklist.push(old_phi);
1734     }
1735   }
1736   // Finally clean out the fall-in edges from the RegionNode
1737   for( i = oreq-1; i>0; i-- ) {
1738     if( !phase->is_member( this, _head->in(i) ) ) {
1739       _head->del_req(i);
1740     }
1741   }
1742   igvn.rehash_node_delayed(_head);
1743   // Transform landing pad
1744   igvn.register_new_node_with_optimizer(landing_pad, _head);
1745   // Insert landing pad into the header
1746   _head->add_req(landing_pad);
1747 }
1748 
1749 //------------------------------split_outer_loop-------------------------------
1750 // Split out the outermost loop from this shared header.
1751 void IdealLoopTree::split_outer_loop( PhaseIdealLoop *phase ) {
1752   PhaseIterGVN &igvn = phase->_igvn;
1753 
1754   // Find index of outermost loop; it should also be my tail.
1755   uint outer_idx = 1;
1756   while( _head->in(outer_idx) != _tail ) outer_idx++;
1757 
1758   // Make a LoopNode for the outermost loop.
1759   Node *ctl = _head->in(LoopNode::EntryControl);
1760   Node *outer = new LoopNode( ctl, _head->in(outer_idx) );
1761   outer = igvn.register_new_node_with_optimizer(outer, _head);
1762   phase->set_created_loop_node();
1763 
1764   // Outermost loop falls into '_head' loop
1765   _head->set_req(LoopNode::EntryControl, outer);
1766   _head->del_req(outer_idx);
1767   // Split all the Phis up between '_head' loop and 'outer' loop.
1768   for (DUIterator_Fast jmax, j = _head->fast_outs(jmax); j < jmax; j++) {
1769     Node *out = _head->fast_out(j);
1770     if( out->is_Phi() ) {
1771       PhiNode *old_phi = out->as_Phi();
1772       assert( old_phi->region() == _head, "" );
1773       Node *phi = PhiNode::make_blank(outer, old_phi);
1774       phi->init_req(LoopNode::EntryControl,    old_phi->in(LoopNode::EntryControl));
1775       phi->init_req(LoopNode::LoopBackControl, old_phi->in(outer_idx));
1776       phi = igvn.register_new_node_with_optimizer(phi, old_phi);
1777       // Make old Phi point to new Phi on the fall-in path
1778       igvn.replace_input_of(old_phi, LoopNode::EntryControl, phi);
1779       old_phi->del_req(outer_idx);
1780     }
1781   }
1782 
1783   // Use the new loop head instead of the old shared one
1784   _head = outer;
1785   phase->set_loop(_head, this);
1786 }
1787 
1788 //------------------------------fix_parent-------------------------------------
1789 static void fix_parent( IdealLoopTree *loop, IdealLoopTree *parent ) {
1790   loop->_parent = parent;
1791   if( loop->_child ) fix_parent( loop->_child, loop   );
1792   if( loop->_next  ) fix_parent( loop->_next , parent );
1793 }
1794 
1795 //------------------------------estimate_path_freq-----------------------------
1796 static float estimate_path_freq( Node *n ) {
1797   // Try to extract some path frequency info
1798   IfNode *iff;
1799   for( int i = 0; i < 50; i++ ) { // Skip through a bunch of uncommon tests
1800     uint nop = n->Opcode();
1801     if( nop == Op_SafePoint ) {   // Skip any safepoint
1802       n = n->in(0);
1803       continue;
1804     }
1805     if( nop == Op_CatchProj ) {   // Get count from a prior call
1806       // Assume call does not always throw exceptions: means the call-site
1807       // count is also the frequency of the fall-through path.
1808       assert( n->is_CatchProj(), "" );
1809       if( ((CatchProjNode*)n)->_con != CatchProjNode::fall_through_index )
1810         return 0.0f;            // Assume call exception path is rare
1811       Node *call = n->in(0)->in(0)->in(0);
1812       assert( call->is_Call(), "expect a call here" );
1813       const JVMState *jvms = ((CallNode*)call)->jvms();
1814       ciMethodData* methodData = jvms->method()->method_data();
1815       if (!methodData->is_mature())  return 0.0f; // No call-site data
1816       ciProfileData* data = methodData->bci_to_data(jvms->bci());
1817       if ((data == NULL) || !data->is_CounterData()) {
1818         // no call profile available, try call's control input
1819         n = n->in(0);
1820         continue;
1821       }
1822       return data->as_CounterData()->count()/FreqCountInvocations;
1823     }
1824     // See if there's a gating IF test
1825     Node *n_c = n->in(0);
1826     if( !n_c->is_If() ) break;       // No estimate available
1827     iff = n_c->as_If();
1828     if( iff->_fcnt != COUNT_UNKNOWN )   // Have a valid count?
1829       // Compute how much count comes on this path
1830       return ((nop == Op_IfTrue) ? iff->_prob : 1.0f - iff->_prob) * iff->_fcnt;
1831     // Have no count info.  Skip dull uncommon-trap like branches.
1832     if( (nop == Op_IfTrue  && iff->_prob < PROB_LIKELY_MAG(5)) ||
1833         (nop == Op_IfFalse && iff->_prob > PROB_UNLIKELY_MAG(5)) )
1834       break;
1835     // Skip through never-taken branch; look for a real loop exit.
1836     n = iff->in(0);
1837   }
1838   return 0.0f;                  // No estimate available
1839 }
1840 
1841 //------------------------------merge_many_backedges---------------------------
1842 // Merge all the backedges from the shared header into a private Region.
1843 // Feed that region as the one backedge to this loop.
1844 void IdealLoopTree::merge_many_backedges( PhaseIdealLoop *phase ) {
1845   uint i;
1846 
1847   // Scan for the top 2 hottest backedges
1848   float hotcnt = 0.0f;
1849   float warmcnt = 0.0f;
1850   uint hot_idx = 0;
1851   // Loop starts at 2 because slot 1 is the fall-in path
1852   for( i = 2; i < _head->req(); i++ ) {
1853     float cnt = estimate_path_freq(_head->in(i));
1854     if( cnt > hotcnt ) {       // Grab hottest path
1855       warmcnt = hotcnt;
1856       hotcnt = cnt;
1857       hot_idx = i;
1858     } else if( cnt > warmcnt ) { // And 2nd hottest path
1859       warmcnt = cnt;
1860     }
1861   }
1862 
1863   // See if the hottest backedge is worthy of being an inner loop
1864   // by being much hotter than the next hottest backedge.
1865   if( hotcnt <= 0.0001 ||
1866       hotcnt < 2.0*warmcnt ) hot_idx = 0;// No hot backedge
1867 
1868   // Peel out the backedges into a private merge point; peel
1869   // them all except optionally hot_idx.
1870   PhaseIterGVN &igvn = phase->_igvn;
1871 
1872   Node *hot_tail = NULL;
1873   // Make a Region for the merge point
1874   Node *r = new RegionNode(1);
1875   for( i = 2; i < _head->req(); i++ ) {
1876     if( i != hot_idx )
1877       r->add_req( _head->in(i) );
1878     else hot_tail = _head->in(i);
1879   }
1880   igvn.register_new_node_with_optimizer(r, _head);
1881   // Plug region into end of loop _head, followed by hot_tail
1882   while( _head->req() > 3 ) _head->del_req( _head->req()-1 );
1883   igvn.replace_input_of(_head, 2, r);
1884   if( hot_idx ) _head->add_req(hot_tail);
1885 
1886   // Split all the Phis up between '_head' loop and the Region 'r'
1887   for (DUIterator_Fast jmax, j = _head->fast_outs(jmax); j < jmax; j++) {
1888     Node *out = _head->fast_out(j);
1889     if( out->is_Phi() ) {
1890       PhiNode* n = out->as_Phi();
1891       igvn.hash_delete(n);      // Delete from hash before hacking edges
1892       Node *hot_phi = NULL;
1893       Node *phi = new PhiNode(r, n->type(), n->adr_type());
1894       // Check all inputs for the ones to peel out
1895       uint j = 1;
1896       for( uint i = 2; i < n->req(); i++ ) {
1897         if( i != hot_idx )
1898           phi->set_req( j++, n->in(i) );
1899         else hot_phi = n->in(i);
1900       }
1901       // Register the phi but do not transform until whole place transforms
1902       igvn.register_new_node_with_optimizer(phi, n);
1903       // Add the merge phi to the old Phi
1904       while( n->req() > 3 ) n->del_req( n->req()-1 );
1905       igvn.replace_input_of(n, 2, phi);
1906       if( hot_idx ) n->add_req(hot_phi);
1907     }
1908   }
1909 
1910 
1911   // Insert a new IdealLoopTree inserted below me.  Turn it into a clone
1912   // of self loop tree.  Turn self into a loop headed by _head and with
1913   // tail being the new merge point.
1914   IdealLoopTree *ilt = new IdealLoopTree( phase, _head, _tail );
1915   phase->set_loop(_tail,ilt);   // Adjust tail
1916   _tail = r;                    // Self's tail is new merge point
1917   phase->set_loop(r,this);
1918   ilt->_child = _child;         // New guy has my children
1919   _child = ilt;                 // Self has new guy as only child
1920   ilt->_parent = this;          // new guy has self for parent
1921   ilt->_nest = _nest;           // Same nesting depth (for now)
1922 
1923   // Starting with 'ilt', look for child loop trees using the same shared
1924   // header.  Flatten these out; they will no longer be loops in the end.
1925   IdealLoopTree **pilt = &_child;
1926   while( ilt ) {
1927     if( ilt->_head == _head ) {
1928       uint i;
1929       for( i = 2; i < _head->req(); i++ )
1930         if( _head->in(i) == ilt->_tail )
1931           break;                // Still a loop
1932       if( i == _head->req() ) { // No longer a loop
1933         // Flatten ilt.  Hang ilt's "_next" list from the end of
1934         // ilt's '_child' list.  Move the ilt's _child up to replace ilt.
1935         IdealLoopTree **cp = &ilt->_child;
1936         while( *cp ) cp = &(*cp)->_next;   // Find end of child list
1937         *cp = ilt->_next;       // Hang next list at end of child list
1938         *pilt = ilt->_child;    // Move child up to replace ilt
1939         ilt->_head = NULL;      // Flag as a loop UNIONED into parent
1940         ilt = ilt->_child;      // Repeat using new ilt
1941         continue;               // do not advance over ilt->_child
1942       }
1943       assert( ilt->_tail == hot_tail, "expected to only find the hot inner loop here" );
1944       phase->set_loop(_head,ilt);
1945     }
1946     pilt = &ilt->_child;        // Advance to next
1947     ilt = *pilt;
1948   }
1949 
1950   if( _child ) fix_parent( _child, this );
1951 }
1952 
1953 //------------------------------beautify_loops---------------------------------
1954 // Split shared headers and insert loop landing pads.
1955 // Insert a LoopNode to replace the RegionNode.
1956 // Return TRUE if loop tree is structurally changed.
1957 bool IdealLoopTree::beautify_loops( PhaseIdealLoop *phase ) {
1958   bool result = false;
1959   // Cache parts in locals for easy
1960   PhaseIterGVN &igvn = phase->_igvn;
1961 
1962   igvn.hash_delete(_head);      // Yank from hash before hacking edges
1963 
1964   // Check for multiple fall-in paths.  Peel off a landing pad if need be.
1965   int fall_in_cnt = 0;
1966   for( uint i = 1; i < _head->req(); i++ )
1967     if( !phase->is_member( this, _head->in(i) ) )
1968       fall_in_cnt++;
1969   assert( fall_in_cnt, "at least 1 fall-in path" );
1970   if( fall_in_cnt > 1 )         // Need a loop landing pad to merge fall-ins
1971     split_fall_in( phase, fall_in_cnt );
1972 
1973   // Swap inputs to the _head and all Phis to move the fall-in edge to
1974   // the left.
1975   fall_in_cnt = 1;
1976   while( phase->is_member( this, _head->in(fall_in_cnt) ) )
1977     fall_in_cnt++;
1978   if( fall_in_cnt > 1 ) {
1979     // Since I am just swapping inputs I do not need to update def-use info
1980     Node *tmp = _head->in(1);
1981     igvn.rehash_node_delayed(_head);
1982     _head->set_req( 1, _head->in(fall_in_cnt) );
1983     _head->set_req( fall_in_cnt, tmp );
1984     // Swap also all Phis
1985     for (DUIterator_Fast imax, i = _head->fast_outs(imax); i < imax; i++) {
1986       Node* phi = _head->fast_out(i);
1987       if( phi->is_Phi() ) {
1988         igvn.rehash_node_delayed(phi); // Yank from hash before hacking edges
1989         tmp = phi->in(1);
1990         phi->set_req( 1, phi->in(fall_in_cnt) );
1991         phi->set_req( fall_in_cnt, tmp );
1992       }
1993     }
1994   }
1995   assert( !phase->is_member( this, _head->in(1) ), "left edge is fall-in" );
1996   assert(  phase->is_member( this, _head->in(2) ), "right edge is loop" );
1997 
1998   // If I am a shared header (multiple backedges), peel off the many
1999   // backedges into a private merge point and use the merge point as
2000   // the one true backedge.
2001   if( _head->req() > 3 ) {
2002     // Merge the many backedges into a single backedge but leave
2003     // the hottest backedge as separate edge for the following peel.
2004     merge_many_backedges( phase );
2005     result = true;
2006   }
2007 
2008   // If I have one hot backedge, peel off myself loop.
2009   // I better be the outermost loop.
2010   if (_head->req() > 3 && !_irreducible) {
2011     split_outer_loop( phase );
2012     result = true;
2013 
2014   } else if (!_head->is_Loop() && !_irreducible) {
2015     // Make a new LoopNode to replace the old loop head
2016     Node *l = new LoopNode( _head->in(1), _head->in(2) );
2017     l = igvn.register_new_node_with_optimizer(l, _head);
2018     phase->set_created_loop_node();
2019     // Go ahead and replace _head
2020     phase->_igvn.replace_node( _head, l );
2021     _head = l;
2022     phase->set_loop(_head, this);
2023   }
2024 
2025   // Now recursively beautify nested loops
2026   if( _child ) result |= _child->beautify_loops( phase );
2027   if( _next  ) result |= _next ->beautify_loops( phase );
2028   return result;
2029 }
2030 
2031 //------------------------------allpaths_check_safepts----------------------------
2032 // Allpaths backwards scan from loop tail, terminating each path at first safepoint
2033 // encountered.  Helper for check_safepts.
2034 void IdealLoopTree::allpaths_check_safepts(VectorSet &visited, Node_List &stack) {
2035   assert(stack.size() == 0, "empty stack");
2036   stack.push(_tail);
2037   visited.Clear();
2038   visited.set(_tail->_idx);
2039   while (stack.size() > 0) {
2040     Node* n = stack.pop();
2041     if (n->is_Call() && n->as_Call()->guaranteed_safepoint()) {
2042       // Terminate this path
2043     } else if (n->Opcode() == Op_SafePoint) {
2044       if (_phase->get_loop(n) != this) {
2045         if (_required_safept == NULL) _required_safept = new Node_List();
2046         _required_safept->push(n);  // save the one closest to the tail
2047       }
2048       // Terminate this path
2049     } else {
2050       uint start = n->is_Region() ? 1 : 0;
2051       uint end   = n->is_Region() && !n->is_Loop() ? n->req() : start + 1;
2052       for (uint i = start; i < end; i++) {
2053         Node* in = n->in(i);
2054         assert(in->is_CFG(), "must be");
2055         if (!visited.test_set(in->_idx) && is_member(_phase->get_loop(in))) {
2056           stack.push(in);
2057         }
2058       }
2059     }
2060   }
2061 }
2062 
2063 //------------------------------check_safepts----------------------------
2064 // Given dominators, try to find loops with calls that must always be
2065 // executed (call dominates loop tail).  These loops do not need non-call
2066 // safepoints (ncsfpt).
2067 //
2068 // A complication is that a safepoint in a inner loop may be needed
2069 // by an outer loop. In the following, the inner loop sees it has a
2070 // call (block 3) on every path from the head (block 2) to the
2071 // backedge (arc 3->2).  So it deletes the ncsfpt (non-call safepoint)
2072 // in block 2, _but_ this leaves the outer loop without a safepoint.
2073 //
2074 //          entry  0
2075 //                 |
2076 //                 v
2077 // outer 1,2    +->1
2078 //              |  |
2079 //              |  v
2080 //              |  2<---+  ncsfpt in 2
2081 //              |_/|\   |
2082 //                 | v  |
2083 // inner 2,3      /  3  |  call in 3
2084 //               /   |  |
2085 //              v    +--+
2086 //        exit  4
2087 //
2088 //
2089 // This method creates a list (_required_safept) of ncsfpt nodes that must
2090 // be protected is created for each loop. When a ncsfpt maybe deleted, it
2091 // is first looked for in the lists for the outer loops of the current loop.
2092 //
2093 // The insights into the problem:
2094 //  A) counted loops are okay
2095 //  B) innermost loops are okay (only an inner loop can delete
2096 //     a ncsfpt needed by an outer loop)
2097 //  C) a loop is immune from an inner loop deleting a safepoint
2098 //     if the loop has a call on the idom-path
2099 //  D) a loop is also immune if it has a ncsfpt (non-call safepoint) on the
2100 //     idom-path that is not in a nested loop
2101 //  E) otherwise, an ncsfpt on the idom-path that is nested in an inner
2102 //     loop needs to be prevented from deletion by an inner loop
2103 //
2104 // There are two analyses:
2105 //  1) The first, and cheaper one, scans the loop body from
2106 //     tail to head following the idom (immediate dominator)
2107 //     chain, looking for the cases (C,D,E) above.
2108 //     Since inner loops are scanned before outer loops, there is summary
2109 //     information about inner loops.  Inner loops can be skipped over
2110 //     when the tail of an inner loop is encountered.
2111 //
2112 //  2) The second, invoked if the first fails to find a call or ncsfpt on
2113 //     the idom path (which is rare), scans all predecessor control paths
2114 //     from the tail to the head, terminating a path when a call or sfpt
2115 //     is encountered, to find the ncsfpt's that are closest to the tail.
2116 //
2117 void IdealLoopTree::check_safepts(VectorSet &visited, Node_List &stack) {
2118   // Bottom up traversal
2119   IdealLoopTree* ch = _child;
2120   if (_child) _child->check_safepts(visited, stack);
2121   if (_next)  _next ->check_safepts(visited, stack);
2122 
2123   if (!_head->is_CountedLoop() && !_has_sfpt && _parent != NULL && !_irreducible) {
2124     bool  has_call         = false; // call on dom-path
2125     bool  has_local_ncsfpt = false; // ncsfpt on dom-path at this loop depth
2126     Node* nonlocal_ncsfpt  = NULL;  // ncsfpt on dom-path at a deeper depth
2127     // Scan the dom-path nodes from tail to head
2128     for (Node* n = tail(); n != _head; n = _phase->idom(n)) {
2129       if (n->is_Call() && n->as_Call()->guaranteed_safepoint()) {
2130         has_call = true;
2131         _has_sfpt = 1;          // Then no need for a safept!
2132         break;
2133       } else if (n->Opcode() == Op_SafePoint) {
2134         if (_phase->get_loop(n) == this) {
2135           has_local_ncsfpt = true;
2136           break;
2137         }
2138         if (nonlocal_ncsfpt == NULL) {
2139           nonlocal_ncsfpt = n; // save the one closest to the tail
2140         }
2141       } else {
2142         IdealLoopTree* nlpt = _phase->get_loop(n);
2143         if (this != nlpt) {
2144           // If at an inner loop tail, see if the inner loop has already
2145           // recorded seeing a call on the dom-path (and stop.)  If not,
2146           // jump to the head of the inner loop.
2147           assert(is_member(nlpt), "nested loop");
2148           Node* tail = nlpt->_tail;
2149           if (tail->in(0)->is_If()) tail = tail->in(0);
2150           if (n == tail) {
2151             // If inner loop has call on dom-path, so does outer loop
2152             if (nlpt->_has_sfpt) {
2153               has_call = true;
2154               _has_sfpt = 1;
2155               break;
2156             }
2157             // Skip to head of inner loop
2158             assert(_phase->is_dominator(_head, nlpt->_head), "inner head dominated by outer head");
2159             n = nlpt->_head;
2160           }
2161         }
2162       }
2163     }
2164     // Record safept's that this loop needs preserved when an
2165     // inner loop attempts to delete it's safepoints.
2166     if (_child != NULL && !has_call && !has_local_ncsfpt) {
2167       if (nonlocal_ncsfpt != NULL) {
2168         if (_required_safept == NULL) _required_safept = new Node_List();
2169         _required_safept->push(nonlocal_ncsfpt);
2170       } else {
2171         // Failed to find a suitable safept on the dom-path.  Now use
2172         // an all paths walk from tail to head, looking for safepoints to preserve.
2173         allpaths_check_safepts(visited, stack);
2174       }
2175     }
2176   }
2177 }
2178 
2179 //---------------------------is_deleteable_safept----------------------------
2180 // Is safept not required by an outer loop?
2181 bool PhaseIdealLoop::is_deleteable_safept(Node* sfpt) {
2182   assert(sfpt->Opcode() == Op_SafePoint, "");
2183   IdealLoopTree* lp = get_loop(sfpt)->_parent;
2184   while (lp != NULL) {
2185     Node_List* sfpts = lp->_required_safept;
2186     if (sfpts != NULL) {
2187       for (uint i = 0; i < sfpts->size(); i++) {
2188         if (sfpt == sfpts->at(i))
2189           return false;
2190       }
2191     }
2192     lp = lp->_parent;
2193   }
2194   return true;
2195 }
2196 
2197 //---------------------------replace_parallel_iv-------------------------------
2198 // Replace parallel induction variable (parallel to trip counter)
2199 void PhaseIdealLoop::replace_parallel_iv(IdealLoopTree *loop) {
2200   assert(loop->_head->is_CountedLoop(), "");
2201   CountedLoopNode *cl = loop->_head->as_CountedLoop();
2202   if (!cl->is_valid_counted_loop())
2203     return;         // skip malformed counted loop
2204   Node *incr = cl->incr();
2205   if (incr == NULL)
2206     return;         // Dead loop?
2207   Node *init = cl->init_trip();
2208   Node *phi  = cl->phi();
2209   int stride_con = cl->stride_con();
2210 
2211   // Visit all children, looking for Phis
2212   for (DUIterator i = cl->outs(); cl->has_out(i); i++) {
2213     Node *out = cl->out(i);
2214     // Look for other phis (secondary IVs). Skip dead ones
2215     if (!out->is_Phi() || out == phi || !has_node(out))
2216       continue;
2217     PhiNode* phi2 = out->as_Phi();
2218     Node *incr2 = phi2->in( LoopNode::LoopBackControl );
2219     // Look for induction variables of the form:  X += constant
2220     if (phi2->region() != loop->_head ||
2221         incr2->req() != 3 ||
2222         incr2->in(1) != phi2 ||
2223         incr2 == incr ||
2224         incr2->Opcode() != Op_AddI ||
2225         !incr2->in(2)->is_Con())
2226       continue;
2227 
2228     // Check for parallel induction variable (parallel to trip counter)
2229     // via an affine function.  In particular, count-down loops with
2230     // count-up array indices are common. We only RCE references off
2231     // the trip-counter, so we need to convert all these to trip-counter
2232     // expressions.
2233     Node *init2 = phi2->in( LoopNode::EntryControl );
2234     int stride_con2 = incr2->in(2)->get_int();
2235 
2236     // The ratio of the two strides cannot be represented as an int
2237     // if stride_con2 is min_int and stride_con is -1.
2238     if (stride_con2 == min_jint && stride_con == -1) {
2239       continue;
2240     }
2241 
2242     // The general case here gets a little tricky.  We want to find the
2243     // GCD of all possible parallel IV's and make a new IV using this
2244     // GCD for the loop.  Then all possible IVs are simple multiples of
2245     // the GCD.  In practice, this will cover very few extra loops.
2246     // Instead we require 'stride_con2' to be a multiple of 'stride_con',
2247     // where +/-1 is the common case, but other integer multiples are
2248     // also easy to handle.
2249     int ratio_con = stride_con2/stride_con;
2250 
2251     if ((ratio_con * stride_con) == stride_con2) { // Check for exact
2252 #ifndef PRODUCT
2253       if (TraceLoopOpts) {
2254         tty->print("Parallel IV: %d ", phi2->_idx);
2255         loop->dump_head();
2256       }
2257 #endif
2258       // Convert to using the trip counter.  The parallel induction
2259       // variable differs from the trip counter by a loop-invariant
2260       // amount, the difference between their respective initial values.
2261       // It is scaled by the 'ratio_con'.
2262       Node* ratio = _igvn.intcon(ratio_con);
2263       set_ctrl(ratio, C->root());
2264       Node* ratio_init = new MulINode(init, ratio);
2265       _igvn.register_new_node_with_optimizer(ratio_init, init);
2266       set_early_ctrl(ratio_init);
2267       Node* diff = new SubINode(init2, ratio_init);
2268       _igvn.register_new_node_with_optimizer(diff, init2);
2269       set_early_ctrl(diff);
2270       Node* ratio_idx = new MulINode(phi, ratio);
2271       _igvn.register_new_node_with_optimizer(ratio_idx, phi);
2272       set_ctrl(ratio_idx, cl);
2273       Node* add = new AddINode(ratio_idx, diff);
2274       _igvn.register_new_node_with_optimizer(add);
2275       set_ctrl(add, cl);
2276       _igvn.replace_node( phi2, add );
2277       // Sometimes an induction variable is unused
2278       if (add->outcnt() == 0) {
2279         _igvn.remove_dead_node(add);
2280       }
2281       --i; // deleted this phi; rescan starting with next position
2282       continue;
2283     }
2284   }
2285 }
2286 
2287 void IdealLoopTree::remove_safepoints(PhaseIdealLoop* phase, bool keep_one) {
2288   Node* keep = NULL;
2289   if (keep_one) {
2290     // Look for a safepoint on the idom-path.
2291     for (Node* i = tail(); i != _head; i = phase->idom(i)) {
2292       if (i->Opcode() == Op_SafePoint && phase->get_loop(i) == this) {
2293         keep = i;
2294         break; // Found one
2295       }
2296     }
2297   }
2298 
2299   // Don't remove any safepoints if it is requested to keep a single safepoint and
2300   // no safepoint was found on idom-path. It is not safe to remove any safepoint
2301   // in this case since there's no safepoint dominating all paths in the loop body.
2302   bool prune = !keep_one || keep != NULL;
2303 
2304   // Delete other safepoints in this loop.
2305   Node_List* sfpts = _safepts;
2306   if (prune && sfpts != NULL) {
2307     assert(keep == NULL || keep->Opcode() == Op_SafePoint, "not safepoint");
2308     for (uint i = 0; i < sfpts->size(); i++) {
2309       Node* n = sfpts->at(i);
2310       assert(phase->get_loop(n) == this, "");
2311       if (n != keep && phase->is_deleteable_safept(n)) {
2312         phase->lazy_replace(n, n->in(TypeFunc::Control));
2313       }
2314     }
2315   }
2316 }
2317 
2318 //------------------------------counted_loop-----------------------------------
2319 // Convert to counted loops where possible
2320 void IdealLoopTree::counted_loop( PhaseIdealLoop *phase ) {
2321 
2322   // For grins, set the inner-loop flag here
2323   if (!_child) {
2324     if (_head->is_Loop()) _head->as_Loop()->set_inner_loop();
2325   }
2326 
2327   IdealLoopTree* loop = this;
2328   if (_head->is_CountedLoop() ||
2329       phase->is_counted_loop(_head, loop)) {
2330 
2331     if (LoopStripMiningIter == 0 || (LoopStripMiningIter > 1 && _child == NULL)) {
2332       // Indicate we do not need a safepoint here
2333       _has_sfpt = 1;
2334     }
2335 
2336     // Remove safepoints
2337     bool keep_one_sfpt = !(_has_call || _has_sfpt);
2338     remove_safepoints(phase, keep_one_sfpt);
2339 
2340     // Look for induction variables
2341     phase->replace_parallel_iv(this);
2342 
2343   } else if (_parent != NULL && !_irreducible) {
2344     // Not a counted loop. Keep one safepoint.
2345     bool keep_one_sfpt = true;
2346     remove_safepoints(phase, keep_one_sfpt);
2347   }
2348 
2349   // Recursively
2350   assert(loop->_child != this || (loop->_head->as_Loop()->is_OuterStripMinedLoop() && _head->as_CountedLoop()->is_strip_mined()), "what kind of loop was added?");
2351   assert(loop->_child != this || (loop->_child->_child == NULL && loop->_child->_next == NULL), "would miss some loops");
2352   if (loop->_child && loop->_child != this) loop->_child->counted_loop(phase);
2353   if (loop->_next)  loop->_next ->counted_loop(phase);
2354 }
2355 
2356 #ifndef PRODUCT
2357 //------------------------------dump_head--------------------------------------
2358 // Dump 1 liner for loop header info
2359 void IdealLoopTree::dump_head( ) const {
2360   for (uint i=0; i<_nest; i++)
2361     tty->print("  ");
2362   tty->print("Loop: N%d/N%d ",_head->_idx,_tail->_idx);
2363   if (_irreducible) tty->print(" IRREDUCIBLE");
2364   Node* entry = _head->is_Loop() ? _head->as_Loop()->skip_strip_mined(-1)->in(LoopNode::EntryControl) : _head->in(LoopNode::EntryControl);
2365   Node* predicate = PhaseIdealLoop::find_predicate_insertion_point(entry, Deoptimization::Reason_loop_limit_check);
2366   if (predicate != NULL ) {
2367     tty->print(" limit_check");
2368     entry = entry->in(0)->in(0);
2369   }
2370   if (UseLoopPredicate) {
2371     entry = PhaseIdealLoop::find_predicate_insertion_point(entry, Deoptimization::Reason_predicate);
2372     if (entry != NULL) {
2373       tty->print(" predicated");
2374     }
2375   }
2376   if (_head->is_CountedLoop()) {
2377     CountedLoopNode *cl = _head->as_CountedLoop();
2378     tty->print(" counted");
2379 
2380     Node* init_n = cl->init_trip();
2381     if (init_n  != NULL &&  init_n->is_Con())
2382       tty->print(" [%d,", cl->init_trip()->get_int());
2383     else
2384       tty->print(" [int,");
2385     Node* limit_n = cl->limit();
2386     if (limit_n  != NULL &&  limit_n->is_Con())
2387       tty->print("%d),", cl->limit()->get_int());
2388     else
2389       tty->print("int),");
2390     int stride_con  = cl->stride_con();
2391     if (stride_con > 0) tty->print("+");
2392     tty->print("%d", stride_con);
2393 
2394     tty->print(" (%0.f iters) ", cl->profile_trip_cnt());
2395 
2396     if (cl->is_pre_loop ()) tty->print(" pre" );
2397     if (cl->is_main_loop()) tty->print(" main");
2398     if (cl->is_post_loop()) tty->print(" post");
2399     if (cl->is_vectorized_loop()) tty->print(" vector");
2400     if (cl->range_checks_present()) tty->print(" rc ");
2401     if (cl->is_multiversioned()) tty->print(" multi ");
2402   }
2403   if (_has_call) tty->print(" has_call");
2404   if (_has_sfpt) tty->print(" has_sfpt");
2405   if (_rce_candidate) tty->print(" rce");
2406   if (_safepts != NULL && _safepts->size() > 0) {
2407     tty->print(" sfpts={"); _safepts->dump_simple(); tty->print(" }");
2408   }
2409   if (_required_safept != NULL && _required_safept->size() > 0) {
2410     tty->print(" req={"); _required_safept->dump_simple(); tty->print(" }");
2411   }
2412   if (Verbose) {
2413     tty->print(" body={"); _body.dump_simple(); tty->print(" }");
2414   }
2415   if (_head->is_Loop() && _head->as_Loop()->is_strip_mined()) {
2416     tty->print(" strip_mined");
2417   }
2418   tty->cr();
2419 }
2420 
2421 //------------------------------dump-------------------------------------------
2422 // Dump loops by loop tree
2423 void IdealLoopTree::dump( ) const {
2424   dump_head();
2425   if (_child) _child->dump();
2426   if (_next)  _next ->dump();
2427 }
2428 
2429 #endif
2430 
2431 static void log_loop_tree(IdealLoopTree* root, IdealLoopTree* loop, CompileLog* log) {
2432   if (loop == root) {
2433     if (loop->_child != NULL) {
2434       log->begin_head("loop_tree");
2435       log->end_head();
2436       if( loop->_child ) log_loop_tree(root, loop->_child, log);
2437       log->tail("loop_tree");
2438       assert(loop->_next == NULL, "what?");
2439     }
2440   } else {
2441     Node* head = loop->_head;
2442     log->begin_head("loop");
2443     log->print(" idx='%d' ", head->_idx);
2444     if (loop->_irreducible) log->print("irreducible='1' ");
2445     if (head->is_Loop()) {
2446       if (head->as_Loop()->is_inner_loop()) log->print("inner_loop='1' ");
2447       if (head->as_Loop()->is_partial_peel_loop()) log->print("partial_peel_loop='1' ");
2448     }
2449     if (head->is_CountedLoop()) {
2450       CountedLoopNode* cl = head->as_CountedLoop();
2451       if (cl->is_pre_loop())  log->print("pre_loop='%d' ",  cl->main_idx());
2452       if (cl->is_main_loop()) log->print("main_loop='%d' ", cl->_idx);
2453       if (cl->is_post_loop()) log->print("post_loop='%d' ",  cl->main_idx());
2454     }
2455     log->end_head();
2456     if( loop->_child ) log_loop_tree(root, loop->_child, log);
2457     log->tail("loop");
2458     if( loop->_next  ) log_loop_tree(root, loop->_next, log);
2459   }
2460 }
2461 
2462 //---------------------collect_potentially_useful_predicates-----------------------
2463 // Helper function to collect potentially useful predicates to prevent them from
2464 // being eliminated by PhaseIdealLoop::eliminate_useless_predicates
2465 void PhaseIdealLoop::collect_potentially_useful_predicates(
2466                          IdealLoopTree * loop, Unique_Node_List &useful_predicates) {
2467   if (loop->_child) { // child
2468     collect_potentially_useful_predicates(loop->_child, useful_predicates);
2469   }
2470 
2471   // self (only loops that we can apply loop predication may use their predicates)
2472   if (loop->_head->is_Loop() &&
2473       !loop->_irreducible    &&
2474       !loop->tail()->is_top()) {
2475     LoopNode* lpn = loop->_head->as_Loop();
2476     Node* entry = lpn->in(LoopNode::EntryControl);
2477     Node* predicate_proj = find_predicate(entry); // loop_limit_check first
2478     if (predicate_proj != NULL ) { // right pattern that can be used by loop predication
2479       assert(entry->in(0)->in(1)->in(1)->Opcode() == Op_Opaque1, "must be");
2480       useful_predicates.push(entry->in(0)->in(1)->in(1)); // good one
2481       entry = entry->in(0)->in(0);
2482     }
2483     predicate_proj = find_predicate(entry); // Predicate
2484     if (predicate_proj != NULL ) {
2485       useful_predicates.push(entry->in(0)->in(1)->in(1)); // good one
2486     }
2487   }
2488 
2489   if (loop->_next) { // sibling
2490     collect_potentially_useful_predicates(loop->_next, useful_predicates);
2491   }
2492 }
2493 
2494 //------------------------eliminate_useless_predicates-----------------------------
2495 // Eliminate all inserted predicates if they could not be used by loop predication.
2496 // Note: it will also eliminates loop limits check predicate since it also uses
2497 // Opaque1 node (see Parse::add_predicate()).
2498 void PhaseIdealLoop::eliminate_useless_predicates() {
2499   if (C->predicate_count() == 0)
2500     return; // no predicate left
2501 
2502   Unique_Node_List useful_predicates; // to store useful predicates
2503   if (C->has_loops()) {
2504     collect_potentially_useful_predicates(_ltree_root->_child, useful_predicates);
2505   }
2506 
2507   for (int i = C->predicate_count(); i > 0; i--) {
2508      Node * n = C->predicate_opaque1_node(i-1);
2509      assert(n->Opcode() == Op_Opaque1, "must be");
2510      if (!useful_predicates.member(n)) { // not in the useful list
2511        _igvn.replace_node(n, n->in(1));
2512      }
2513   }
2514 }
2515 
2516 //------------------------process_expensive_nodes-----------------------------
2517 // Expensive nodes have their control input set to prevent the GVN
2518 // from commoning them and as a result forcing the resulting node to
2519 // be in a more frequent path. Use CFG information here, to change the
2520 // control inputs so that some expensive nodes can be commoned while
2521 // not executed more frequently.
2522 bool PhaseIdealLoop::process_expensive_nodes() {
2523   assert(OptimizeExpensiveOps, "optimization off?");
2524 
2525   // Sort nodes to bring similar nodes together
2526   C->sort_expensive_nodes();
2527 
2528   bool progress = false;
2529 
2530   for (int i = 0; i < C->expensive_count(); ) {
2531     Node* n = C->expensive_node(i);
2532     int start = i;
2533     // Find nodes similar to n
2534     i++;
2535     for (; i < C->expensive_count() && Compile::cmp_expensive_nodes(n, C->expensive_node(i)) == 0; i++);
2536     int end = i;
2537     // And compare them two by two
2538     for (int j = start; j < end; j++) {
2539       Node* n1 = C->expensive_node(j);
2540       if (is_node_unreachable(n1)) {
2541         continue;
2542       }
2543       for (int k = j+1; k < end; k++) {
2544         Node* n2 = C->expensive_node(k);
2545         if (is_node_unreachable(n2)) {
2546           continue;
2547         }
2548 
2549         assert(n1 != n2, "should be pair of nodes");
2550 
2551         Node* c1 = n1->in(0);
2552         Node* c2 = n2->in(0);
2553 
2554         Node* parent_c1 = c1;
2555         Node* parent_c2 = c2;
2556 
2557         // The call to get_early_ctrl_for_expensive() moves the
2558         // expensive nodes up but stops at loops that are in a if
2559         // branch. See whether we can exit the loop and move above the
2560         // If.
2561         if (c1->is_Loop()) {
2562           parent_c1 = c1->in(1);
2563         }
2564         if (c2->is_Loop()) {
2565           parent_c2 = c2->in(1);
2566         }
2567 
2568         if (parent_c1 == parent_c2) {
2569           _igvn._worklist.push(n1);
2570           _igvn._worklist.push(n2);
2571           continue;
2572         }
2573 
2574         // Look for identical expensive node up the dominator chain.
2575         if (is_dominator(c1, c2)) {
2576           c2 = c1;
2577         } else if (is_dominator(c2, c1)) {
2578           c1 = c2;
2579         } else if (parent_c1->is_Proj() && parent_c1->in(0)->is_If() &&
2580                    parent_c2->is_Proj() && parent_c1->in(0) == parent_c2->in(0)) {
2581           // Both branches have the same expensive node so move it up
2582           // before the if.
2583           c1 = c2 = idom(parent_c1->in(0));
2584         }
2585         // Do the actual moves
2586         if (n1->in(0) != c1) {
2587           _igvn.hash_delete(n1);
2588           n1->set_req(0, c1);
2589           _igvn.hash_insert(n1);
2590           _igvn._worklist.push(n1);
2591           progress = true;
2592         }
2593         if (n2->in(0) != c2) {
2594           _igvn.hash_delete(n2);
2595           n2->set_req(0, c2);
2596           _igvn.hash_insert(n2);
2597           _igvn._worklist.push(n2);
2598           progress = true;
2599         }
2600       }
2601     }
2602   }
2603 
2604   return progress;
2605 }
2606 
2607 
2608 //=============================================================================
2609 //----------------------------build_and_optimize-------------------------------
2610 // Create a PhaseLoop.  Build the ideal Loop tree.  Map each Ideal Node to
2611 // its corresponding LoopNode.  If 'optimize' is true, do some loop cleanups.
2612 void PhaseIdealLoop::build_and_optimize(bool do_split_ifs, bool skip_loop_opts) {
2613   ResourceMark rm;
2614 
2615   int old_progress = C->major_progress();
2616   uint orig_worklist_size = _igvn._worklist.size();
2617 
2618   // Reset major-progress flag for the driver's heuristics
2619   C->clear_major_progress();
2620 
2621 #ifndef PRODUCT
2622   // Capture for later assert
2623   uint unique = C->unique();
2624   _loop_invokes++;
2625   _loop_work += unique;
2626 #endif
2627 
2628   // True if the method has at least 1 irreducible loop
2629   _has_irreducible_loops = false;
2630 
2631   _created_loop_node = false;
2632 
2633   Arena *a = Thread::current()->resource_area();
2634   VectorSet visited(a);
2635   // Pre-grow the mapping from Nodes to IdealLoopTrees.
2636   _nodes.map(C->unique(), NULL);
2637   memset(_nodes.adr(), 0, wordSize * C->unique());
2638 
2639   // Pre-build the top-level outermost loop tree entry
2640   _ltree_root = new IdealLoopTree( this, C->root(), C->root() );
2641   // Do not need a safepoint at the top level
2642   _ltree_root->_has_sfpt = 1;
2643 
2644   // Initialize Dominators.
2645   // Checked in clone_loop_predicate() during beautify_loops().
2646   _idom_size = 0;
2647   _idom      = NULL;
2648   _dom_depth = NULL;
2649   _dom_stk   = NULL;
2650 
2651   // Empty pre-order array
2652   allocate_preorders();
2653 
2654   // Build a loop tree on the fly.  Build a mapping from CFG nodes to
2655   // IdealLoopTree entries.  Data nodes are NOT walked.
2656   build_loop_tree();
2657   // Check for bailout, and return
2658   if (C->failing()) {
2659     return;
2660   }
2661 
2662   // No loops after all
2663   if( !_ltree_root->_child && !_verify_only ) C->set_has_loops(false);
2664 
2665   // There should always be an outer loop containing the Root and Return nodes.
2666   // If not, we have a degenerate empty program.  Bail out in this case.
2667   if (!has_node(C->root())) {
2668     if (!_verify_only) {
2669       C->clear_major_progress();
2670       C->record_method_not_compilable("empty program detected during loop optimization");
2671     }
2672     return;
2673   }
2674 
2675   // Nothing to do, so get out
2676   bool stop_early = !C->has_loops() && !skip_loop_opts && !do_split_ifs && !_verify_me && !_verify_only;
2677   bool do_expensive_nodes = C->should_optimize_expensive_nodes(_igvn);
2678   if (stop_early && !do_expensive_nodes) {
2679     _igvn.optimize();           // Cleanup NeverBranches
2680     return;
2681   }
2682 
2683   // Set loop nesting depth
2684   _ltree_root->set_nest( 0 );
2685 
2686   // Split shared headers and insert loop landing pads.
2687   // Do not bother doing this on the Root loop of course.
2688   if( !_verify_me && !_verify_only && _ltree_root->_child ) {
2689     C->print_method(PHASE_BEFORE_BEAUTIFY_LOOPS, 3);
2690     if( _ltree_root->_child->beautify_loops( this ) ) {
2691       // Re-build loop tree!
2692       _ltree_root->_child = NULL;
2693       _nodes.clear();
2694       reallocate_preorders();
2695       build_loop_tree();
2696       // Check for bailout, and return
2697       if (C->failing()) {
2698         return;
2699       }
2700       // Reset loop nesting depth
2701       _ltree_root->set_nest( 0 );
2702 
2703       C->print_method(PHASE_AFTER_BEAUTIFY_LOOPS, 3);
2704     }
2705   }
2706 
2707   // Build Dominators for elision of NULL checks & loop finding.
2708   // Since nodes do not have a slot for immediate dominator, make
2709   // a persistent side array for that info indexed on node->_idx.
2710   _idom_size = C->unique();
2711   _idom      = NEW_RESOURCE_ARRAY( Node*, _idom_size );
2712   _dom_depth = NEW_RESOURCE_ARRAY( uint,  _idom_size );
2713   _dom_stk   = NULL; // Allocated on demand in recompute_dom_depth
2714   memset( _dom_depth, 0, _idom_size * sizeof(uint) );
2715 
2716   Dominators();
2717 
2718   if (!_verify_only) {
2719     // As a side effect, Dominators removed any unreachable CFG paths
2720     // into RegionNodes.  It doesn't do this test against Root, so
2721     // we do it here.
2722     for( uint i = 1; i < C->root()->req(); i++ ) {
2723       if( !_nodes[C->root()->in(i)->_idx] ) {    // Dead path into Root?
2724         _igvn.delete_input_of(C->root(), i);
2725         i--;                      // Rerun same iteration on compressed edges
2726       }
2727     }
2728 
2729     // Given dominators, try to find inner loops with calls that must
2730     // always be executed (call dominates loop tail).  These loops do
2731     // not need a separate safepoint.
2732     Node_List cisstack(a);
2733     _ltree_root->check_safepts(visited, cisstack);
2734   }
2735 
2736   // Walk the DATA nodes and place into loops.  Find earliest control
2737   // node.  For CFG nodes, the _nodes array starts out and remains
2738   // holding the associated IdealLoopTree pointer.  For DATA nodes, the
2739   // _nodes array holds the earliest legal controlling CFG node.
2740 
2741   // Allocate stack with enough space to avoid frequent realloc
2742   int stack_size = (C->live_nodes() >> 1) + 16; // (live_nodes>>1)+16 from Java2D stats
2743   Node_Stack nstack( a, stack_size );
2744 
2745   visited.Clear();
2746   Node_List worklist(a);
2747   // Don't need C->root() on worklist since
2748   // it will be processed among C->top() inputs
2749   worklist.push( C->top() );
2750   visited.set( C->top()->_idx ); // Set C->top() as visited now
2751   build_loop_early( visited, worklist, nstack );
2752 
2753   // Given early legal placement, try finding counted loops.  This placement
2754   // is good enough to discover most loop invariants.
2755   if( !_verify_me && !_verify_only )
2756     _ltree_root->counted_loop( this );
2757 
2758   // Find latest loop placement.  Find ideal loop placement.
2759   visited.Clear();
2760   init_dom_lca_tags();
2761   // Need C->root() on worklist when processing outs
2762   worklist.push( C->root() );
2763   NOT_PRODUCT( C->verify_graph_edges(); )
2764   worklist.push( C->top() );
2765   build_loop_late( visited, worklist, nstack );
2766 
2767   if (_verify_only) {
2768     // restore major progress flag
2769     for (int i = 0; i < old_progress; i++)
2770       C->set_major_progress();
2771     assert(C->unique() == unique, "verification mode made Nodes? ? ?");
2772     assert(_igvn._worklist.size() == orig_worklist_size, "shouldn't push anything");
2773     return;
2774   }
2775 
2776   // clear out the dead code after build_loop_late
2777   while (_deadlist.size()) {
2778     _igvn.remove_globally_dead_node(_deadlist.pop());
2779   }
2780 
2781   if (stop_early) {
2782     assert(do_expensive_nodes, "why are we here?");
2783     if (process_expensive_nodes()) {
2784       // If we made some progress when processing expensive nodes then
2785       // the IGVN may modify the graph in a way that will allow us to
2786       // make some more progress: we need to try processing expensive
2787       // nodes again.
2788       C->set_major_progress();
2789     }
2790     _igvn.optimize();
2791     return;
2792   }
2793 
2794   // Some parser-inserted loop predicates could never be used by loop
2795   // predication or they were moved away from loop during some optimizations.
2796   // For example, peeling. Eliminate them before next loop optimizations.
2797   eliminate_useless_predicates();
2798 
2799 #ifndef PRODUCT
2800   C->verify_graph_edges();
2801   if (_verify_me) {             // Nested verify pass?
2802     // Check to see if the verify mode is broken
2803     assert(C->unique() == unique, "non-optimize mode made Nodes? ? ?");
2804     return;
2805   }
2806   if(VerifyLoopOptimizations) verify();
2807   if(TraceLoopOpts && C->has_loops()) {
2808     _ltree_root->dump();
2809   }
2810 #endif
2811 
2812   if (skip_loop_opts) {
2813     // restore major progress flag
2814     for (int i = 0; i < old_progress; i++) {
2815       C->set_major_progress();
2816     }
2817 
2818     // Cleanup any modified bits
2819     _igvn.optimize();
2820 
2821     if (C->log() != NULL) {
2822       log_loop_tree(_ltree_root, _ltree_root, C->log());
2823     }
2824     return;
2825   }
2826 
2827   if (ReassociateInvariants) {
2828     // Reassociate invariants and prep for split_thru_phi
2829     for (LoopTreeIterator iter(_ltree_root); !iter.done(); iter.next()) {
2830       IdealLoopTree* lpt = iter.current();
2831       bool is_counted = lpt->is_counted();
2832       if (!is_counted || !lpt->is_inner()) continue;
2833 
2834       // check for vectorized loops, any reassociation of invariants was already done
2835       if (is_counted && lpt->_head->as_CountedLoop()->do_unroll_only()) continue;
2836 
2837       lpt->reassociate_invariants(this);
2838 
2839       // Because RCE opportunities can be masked by split_thru_phi,
2840       // look for RCE candidates and inhibit split_thru_phi
2841       // on just their loop-phi's for this pass of loop opts
2842       if (SplitIfBlocks && do_split_ifs) {
2843         if (lpt->policy_range_check(this)) {
2844           lpt->_rce_candidate = 1; // = true
2845         }
2846       }
2847     }
2848   }
2849 
2850   // Check for aggressive application of split-if and other transforms
2851   // that require basic-block info (like cloning through Phi's)
2852   if( SplitIfBlocks && do_split_ifs ) {
2853     visited.Clear();
2854     split_if_with_blocks( visited, nstack );
2855     NOT_PRODUCT( if( VerifyLoopOptimizations ) verify(); );
2856   }
2857 
2858   if (!C->major_progress() && do_expensive_nodes && process_expensive_nodes()) {
2859     C->set_major_progress();
2860   }
2861 
2862   // Perform loop predication before iteration splitting
2863   if (C->has_loops() && !C->major_progress() && (C->predicate_count() > 0)) {
2864     _ltree_root->_child->loop_predication(this);
2865   }
2866 
2867   if (OptimizeFill && UseLoopPredicate && C->has_loops() && !C->major_progress()) {
2868     if (do_intrinsify_fill()) {
2869       C->set_major_progress();
2870     }
2871   }
2872 
2873   // Perform iteration-splitting on inner loops.  Split iterations to avoid
2874   // range checks or one-shot null checks.
2875 
2876   // If split-if's didn't hack the graph too bad (no CFG changes)
2877   // then do loop opts.
2878   if (C->has_loops() && !C->major_progress()) {
2879     memset( worklist.adr(), 0, worklist.Size()*sizeof(Node*) );
2880     _ltree_root->_child->iteration_split( this, worklist );
2881     // No verify after peeling!  GCM has hoisted code out of the loop.
2882     // After peeling, the hoisted code could sink inside the peeled area.
2883     // The peeling code does not try to recompute the best location for
2884     // all the code before the peeled area, so the verify pass will always
2885     // complain about it.
2886   }
2887   // Do verify graph edges in any case
2888   NOT_PRODUCT( C->verify_graph_edges(); );
2889 
2890   if (!do_split_ifs) {
2891     // We saw major progress in Split-If to get here.  We forced a
2892     // pass with unrolling and not split-if, however more split-if's
2893     // might make progress.  If the unrolling didn't make progress
2894     // then the major-progress flag got cleared and we won't try
2895     // another round of Split-If.  In particular the ever-common
2896     // instance-of/check-cast pattern requires at least 2 rounds of
2897     // Split-If to clear out.
2898     C->set_major_progress();
2899   }
2900 
2901   // Repeat loop optimizations if new loops were seen
2902   if (created_loop_node()) {
2903     C->set_major_progress();
2904   }
2905 
2906   // Keep loop predicates and perform optimizations with them
2907   // until no more loop optimizations could be done.
2908   // After that switch predicates off and do more loop optimizations.
2909   if (!C->major_progress() && (C->predicate_count() > 0)) {
2910      C->cleanup_loop_predicates(_igvn);
2911      if (TraceLoopOpts) {
2912        tty->print_cr("PredicatesOff");
2913      }
2914      C->set_major_progress();
2915   }
2916 
2917   // Convert scalar to superword operations at the end of all loop opts.
2918   if (UseSuperWord && C->has_loops() && !C->major_progress()) {
2919     // SuperWord transform
2920     SuperWord sw(this);
2921     for (LoopTreeIterator iter(_ltree_root); !iter.done(); iter.next()) {
2922       IdealLoopTree* lpt = iter.current();
2923       if (lpt->is_counted()) {
2924         CountedLoopNode *cl = lpt->_head->as_CountedLoop();
2925 
2926         if (PostLoopMultiversioning && cl->is_rce_post_loop() && !cl->is_vectorized_loop()) {
2927           // Check that the rce'd post loop is encountered first, multiversion after all
2928           // major main loop optimization are concluded
2929           if (!C->major_progress()) {
2930             IdealLoopTree *lpt_next = lpt->_next;
2931             if (lpt_next && lpt_next->is_counted()) {
2932               CountedLoopNode *cl = lpt_next->_head->as_CountedLoop();
2933               has_range_checks(lpt_next);
2934               if (cl->is_post_loop() && cl->range_checks_present()) {
2935                 if (!cl->is_multiversioned()) {
2936                   if (multi_version_post_loops(lpt, lpt_next) == false) {
2937                     // Cause the rce loop to be optimized away if we fail
2938                     cl->mark_is_multiversioned();
2939                     cl->set_slp_max_unroll(0);
2940                     poison_rce_post_loop(lpt);
2941                   }
2942                 }
2943               }
2944             }
2945             sw.transform_loop(lpt, true);
2946           }
2947         } else if (cl->is_main_loop()) {
2948           sw.transform_loop(lpt, true);
2949         }
2950       }
2951     }
2952   }
2953 
2954   // Cleanup any modified bits
2955   _igvn.optimize();
2956 
2957   // disable assert until issue with split_flow_path is resolved (6742111)
2958   // assert(!_has_irreducible_loops || C->parsed_irreducible_loop() || C->is_osr_compilation(),
2959   //        "shouldn't introduce irreducible loops");
2960 
2961   if (C->log() != NULL) {
2962     log_loop_tree(_ltree_root, _ltree_root, C->log());
2963   }
2964 }
2965 
2966 #ifndef PRODUCT
2967 //------------------------------print_statistics-------------------------------
2968 int PhaseIdealLoop::_loop_invokes=0;// Count of PhaseIdealLoop invokes
2969 int PhaseIdealLoop::_loop_work=0; // Sum of PhaseIdealLoop x unique
2970 void PhaseIdealLoop::print_statistics() {
2971   tty->print_cr("PhaseIdealLoop=%d, sum _unique=%d", _loop_invokes, _loop_work);
2972 }
2973 
2974 //------------------------------verify-----------------------------------------
2975 // Build a verify-only PhaseIdealLoop, and see that it agrees with me.
2976 static int fail;                // debug only, so its multi-thread dont care
2977 void PhaseIdealLoop::verify() const {
2978   int old_progress = C->major_progress();
2979   ResourceMark rm;
2980   PhaseIdealLoop loop_verify( _igvn, this );
2981   VectorSet visited(Thread::current()->resource_area());
2982 
2983   fail = 0;
2984   verify_compare( C->root(), &loop_verify, visited );
2985   assert( fail == 0, "verify loops failed" );
2986   // Verify loop structure is the same
2987   _ltree_root->verify_tree(loop_verify._ltree_root, NULL);
2988   // Reset major-progress.  It was cleared by creating a verify version of
2989   // PhaseIdealLoop.
2990   for( int i=0; i<old_progress; i++ )
2991     C->set_major_progress();
2992 }
2993 
2994 //------------------------------verify_compare---------------------------------
2995 // Make sure me and the given PhaseIdealLoop agree on key data structures
2996 void PhaseIdealLoop::verify_compare( Node *n, const PhaseIdealLoop *loop_verify, VectorSet &visited ) const {
2997   if( !n ) return;
2998   if( visited.test_set( n->_idx ) ) return;
2999   if( !_nodes[n->_idx] ) {      // Unreachable
3000     assert( !loop_verify->_nodes[n->_idx], "both should be unreachable" );
3001     return;
3002   }
3003 
3004   uint i;
3005   for( i = 0; i < n->req(); i++ )
3006     verify_compare( n->in(i), loop_verify, visited );
3007 
3008   // Check the '_nodes' block/loop structure
3009   i = n->_idx;
3010   if( has_ctrl(n) ) {           // We have control; verify has loop or ctrl
3011     if( _nodes[i] != loop_verify->_nodes[i] &&
3012         get_ctrl_no_update(n) != loop_verify->get_ctrl_no_update(n) ) {
3013       tty->print("Mismatched control setting for: ");
3014       n->dump();
3015       if( fail++ > 10 ) return;
3016       Node *c = get_ctrl_no_update(n);
3017       tty->print("We have it as: ");
3018       if( c->in(0) ) c->dump();
3019         else tty->print_cr("N%d",c->_idx);
3020       tty->print("Verify thinks: ");
3021       if( loop_verify->has_ctrl(n) )
3022         loop_verify->get_ctrl_no_update(n)->dump();
3023       else
3024         loop_verify->get_loop_idx(n)->dump();
3025       tty->cr();
3026     }
3027   } else {                    // We have a loop
3028     IdealLoopTree *us = get_loop_idx(n);
3029     if( loop_verify->has_ctrl(n) ) {
3030       tty->print("Mismatched loop setting for: ");
3031       n->dump();
3032       if( fail++ > 10 ) return;
3033       tty->print("We have it as: ");
3034       us->dump();
3035       tty->print("Verify thinks: ");
3036       loop_verify->get_ctrl_no_update(n)->dump();
3037       tty->cr();
3038     } else if (!C->major_progress()) {
3039       // Loop selection can be messed up if we did a major progress
3040       // operation, like split-if.  Do not verify in that case.
3041       IdealLoopTree *them = loop_verify->get_loop_idx(n);
3042       if( us->_head != them->_head ||  us->_tail != them->_tail ) {
3043         tty->print("Unequals loops for: ");
3044         n->dump();
3045         if( fail++ > 10 ) return;
3046         tty->print("We have it as: ");
3047         us->dump();
3048         tty->print("Verify thinks: ");
3049         them->dump();
3050         tty->cr();
3051       }
3052     }
3053   }
3054 
3055   // Check for immediate dominators being equal
3056   if( i >= _idom_size ) {
3057     if( !n->is_CFG() ) return;
3058     tty->print("CFG Node with no idom: ");
3059     n->dump();
3060     return;
3061   }
3062   if( !n->is_CFG() ) return;
3063   if( n == C->root() ) return; // No IDOM here
3064 
3065   assert(n->_idx == i, "sanity");
3066   Node *id = idom_no_update(n);
3067   if( id != loop_verify->idom_no_update(n) ) {
3068     tty->print("Unequals idoms for: ");
3069     n->dump();
3070     if( fail++ > 10 ) return;
3071     tty->print("We have it as: ");
3072     id->dump();
3073     tty->print("Verify thinks: ");
3074     loop_verify->idom_no_update(n)->dump();
3075     tty->cr();
3076   }
3077 
3078 }
3079 
3080 //------------------------------verify_tree------------------------------------
3081 // Verify that tree structures match.  Because the CFG can change, siblings
3082 // within the loop tree can be reordered.  We attempt to deal with that by
3083 // reordering the verify's loop tree if possible.
3084 void IdealLoopTree::verify_tree(IdealLoopTree *loop, const IdealLoopTree *parent) const {
3085   assert( _parent == parent, "Badly formed loop tree" );
3086 
3087   // Siblings not in same order?  Attempt to re-order.
3088   if( _head != loop->_head ) {
3089     // Find _next pointer to update
3090     IdealLoopTree **pp = &loop->_parent->_child;
3091     while( *pp != loop )
3092       pp = &((*pp)->_next);
3093     // Find proper sibling to be next
3094     IdealLoopTree **nn = &loop->_next;
3095     while( (*nn) && (*nn)->_head != _head )
3096       nn = &((*nn)->_next);
3097 
3098     // Check for no match.
3099     if( !(*nn) ) {
3100       // Annoyingly, irreducible loops can pick different headers
3101       // after a major_progress operation, so the rest of the loop
3102       // tree cannot be matched.
3103       if (_irreducible && Compile::current()->major_progress())  return;
3104       assert( 0, "failed to match loop tree" );
3105     }
3106 
3107     // Move (*nn) to (*pp)
3108     IdealLoopTree *hit = *nn;
3109     *nn = hit->_next;
3110     hit->_next = loop;
3111     *pp = loop;
3112     loop = hit;
3113     // Now try again to verify
3114   }
3115 
3116   assert( _head  == loop->_head , "mismatched loop head" );
3117   Node *tail = _tail;           // Inline a non-updating version of
3118   while( !tail->in(0) )         // the 'tail()' call.
3119     tail = tail->in(1);
3120   assert( tail == loop->_tail, "mismatched loop tail" );
3121 
3122   // Counted loops that are guarded should be able to find their guards
3123   if( _head->is_CountedLoop() && _head->as_CountedLoop()->is_main_loop() ) {
3124     CountedLoopNode *cl = _head->as_CountedLoop();
3125     Node *init = cl->init_trip();
3126     Node *ctrl = cl->in(LoopNode::EntryControl);
3127     assert( ctrl->Opcode() == Op_IfTrue || ctrl->Opcode() == Op_IfFalse, "" );
3128     Node *iff  = ctrl->in(0);
3129     assert( iff->Opcode() == Op_If, "" );
3130     Node *bol  = iff->in(1);
3131     assert( bol->Opcode() == Op_Bool, "" );
3132     Node *cmp  = bol->in(1);
3133     assert( cmp->Opcode() == Op_CmpI, "" );
3134     Node *add  = cmp->in(1);
3135     Node *opaq;
3136     if( add->Opcode() == Op_Opaque1 ) {
3137       opaq = add;
3138     } else {
3139       assert( add->Opcode() == Op_AddI || add->Opcode() == Op_ConI , "" );
3140       assert( add == init, "" );
3141       opaq = cmp->in(2);
3142     }
3143     assert( opaq->Opcode() == Op_Opaque1, "" );
3144 
3145   }
3146 
3147   if (_child != NULL)  _child->verify_tree(loop->_child, this);
3148   if (_next  != NULL)  _next ->verify_tree(loop->_next,  parent);
3149   // Innermost loops need to verify loop bodies,
3150   // but only if no 'major_progress'
3151   int fail = 0;
3152   if (!Compile::current()->major_progress() && _child == NULL) {
3153     for( uint i = 0; i < _body.size(); i++ ) {
3154       Node *n = _body.at(i);
3155       if (n->outcnt() == 0)  continue; // Ignore dead
3156       uint j;
3157       for( j = 0; j < loop->_body.size(); j++ )
3158         if( loop->_body.at(j) == n )
3159           break;
3160       if( j == loop->_body.size() ) { // Not found in loop body
3161         // Last ditch effort to avoid assertion: Its possible that we
3162         // have some users (so outcnt not zero) but are still dead.
3163         // Try to find from root.
3164         if (Compile::current()->root()->find(n->_idx)) {
3165           fail++;
3166           tty->print("We have that verify does not: ");
3167           n->dump();
3168         }
3169       }
3170     }
3171     for( uint i2 = 0; i2 < loop->_body.size(); i2++ ) {
3172       Node *n = loop->_body.at(i2);
3173       if (n->outcnt() == 0)  continue; // Ignore dead
3174       uint j;
3175       for( j = 0; j < _body.size(); j++ )
3176         if( _body.at(j) == n )
3177           break;
3178       if( j == _body.size() ) { // Not found in loop body
3179         // Last ditch effort to avoid assertion: Its possible that we
3180         // have some users (so outcnt not zero) but are still dead.
3181         // Try to find from root.
3182         if (Compile::current()->root()->find(n->_idx)) {
3183           fail++;
3184           tty->print("Verify has that we do not: ");
3185           n->dump();
3186         }
3187       }
3188     }
3189     assert( !fail, "loop body mismatch" );
3190   }
3191 }
3192 
3193 #endif
3194 
3195 //------------------------------set_idom---------------------------------------
3196 void PhaseIdealLoop::set_idom(Node* d, Node* n, uint dom_depth) {
3197   uint idx = d->_idx;
3198   if (idx >= _idom_size) {
3199     uint newsize = _idom_size<<1;
3200     while( idx >= newsize ) {
3201       newsize <<= 1;
3202     }
3203     _idom      = REALLOC_RESOURCE_ARRAY( Node*,     _idom,_idom_size,newsize);
3204     _dom_depth = REALLOC_RESOURCE_ARRAY( uint, _dom_depth,_idom_size,newsize);
3205     memset( _dom_depth + _idom_size, 0, (newsize - _idom_size) * sizeof(uint) );
3206     _idom_size = newsize;
3207   }
3208   _idom[idx] = n;
3209   _dom_depth[idx] = dom_depth;
3210 }
3211 
3212 //------------------------------recompute_dom_depth---------------------------------------
3213 // The dominator tree is constructed with only parent pointers.
3214 // This recomputes the depth in the tree by first tagging all
3215 // nodes as "no depth yet" marker.  The next pass then runs up
3216 // the dom tree from each node marked "no depth yet", and computes
3217 // the depth on the way back down.
3218 void PhaseIdealLoop::recompute_dom_depth() {
3219   uint no_depth_marker = C->unique();
3220   uint i;
3221   // Initialize depth to "no depth yet"
3222   for (i = 0; i < _idom_size; i++) {
3223     if (_dom_depth[i] > 0 && _idom[i] != NULL) {
3224      _dom_depth[i] = no_depth_marker;
3225     }
3226   }
3227   if (_dom_stk == NULL) {
3228     uint init_size = C->live_nodes() / 100; // Guess that 1/100 is a reasonable initial size.
3229     if (init_size < 10) init_size = 10;
3230     _dom_stk = new GrowableArray<uint>(init_size);
3231   }
3232   // Compute new depth for each node.
3233   for (i = 0; i < _idom_size; i++) {
3234     uint j = i;
3235     // Run up the dom tree to find a node with a depth
3236     while (_dom_depth[j] == no_depth_marker) {
3237       _dom_stk->push(j);
3238       j = _idom[j]->_idx;
3239     }
3240     // Compute the depth on the way back down this tree branch
3241     uint dd = _dom_depth[j] + 1;
3242     while (_dom_stk->length() > 0) {
3243       uint j = _dom_stk->pop();
3244       _dom_depth[j] = dd;
3245       dd++;
3246     }
3247   }
3248 }
3249 
3250 //------------------------------sort-------------------------------------------
3251 // Insert 'loop' into the existing loop tree.  'innermost' is a leaf of the
3252 // loop tree, not the root.
3253 IdealLoopTree *PhaseIdealLoop::sort( IdealLoopTree *loop, IdealLoopTree *innermost ) {
3254   if( !innermost ) return loop; // New innermost loop
3255 
3256   int loop_preorder = get_preorder(loop->_head); // Cache pre-order number
3257   assert( loop_preorder, "not yet post-walked loop" );
3258   IdealLoopTree **pp = &innermost;      // Pointer to previous next-pointer
3259   IdealLoopTree *l = *pp;               // Do I go before or after 'l'?
3260 
3261   // Insert at start of list
3262   while( l ) {                  // Insertion sort based on pre-order
3263     if( l == loop ) return innermost; // Already on list!
3264     int l_preorder = get_preorder(l->_head); // Cache pre-order number
3265     assert( l_preorder, "not yet post-walked l" );
3266     // Check header pre-order number to figure proper nesting
3267     if( loop_preorder > l_preorder )
3268       break;                    // End of insertion
3269     // If headers tie (e.g., shared headers) check tail pre-order numbers.
3270     // Since I split shared headers, you'd think this could not happen.
3271     // BUT: I must first do the preorder numbering before I can discover I
3272     // have shared headers, so the split headers all get the same preorder
3273     // number as the RegionNode they split from.
3274     if( loop_preorder == l_preorder &&
3275         get_preorder(loop->_tail) < get_preorder(l->_tail) )
3276       break;                    // Also check for shared headers (same pre#)
3277     pp = &l->_parent;           // Chain up list
3278     l = *pp;
3279   }
3280   // Link into list
3281   // Point predecessor to me
3282   *pp = loop;
3283   // Point me to successor
3284   IdealLoopTree *p = loop->_parent;
3285   loop->_parent = l;            // Point me to successor
3286   if( p ) sort( p, innermost ); // Insert my parents into list as well
3287   return innermost;
3288 }
3289 
3290 //------------------------------build_loop_tree--------------------------------
3291 // I use a modified Vick/Tarjan algorithm.  I need pre- and a post- visit
3292 // bits.  The _nodes[] array is mapped by Node index and holds a NULL for
3293 // not-yet-pre-walked, pre-order # for pre-but-not-post-walked and holds the
3294 // tightest enclosing IdealLoopTree for post-walked.
3295 //
3296 // During my forward walk I do a short 1-layer lookahead to see if I can find
3297 // a loop backedge with that doesn't have any work on the backedge.  This
3298 // helps me construct nested loops with shared headers better.
3299 //
3300 // Once I've done the forward recursion, I do the post-work.  For each child
3301 // I check to see if there is a backedge.  Backedges define a loop!  I
3302 // insert an IdealLoopTree at the target of the backedge.
3303 //
3304 // During the post-work I also check to see if I have several children
3305 // belonging to different loops.  If so, then this Node is a decision point
3306 // where control flow can choose to change loop nests.  It is at this
3307 // decision point where I can figure out how loops are nested.  At this
3308 // time I can properly order the different loop nests from my children.
3309 // Note that there may not be any backedges at the decision point!
3310 //
3311 // Since the decision point can be far removed from the backedges, I can't
3312 // order my loops at the time I discover them.  Thus at the decision point
3313 // I need to inspect loop header pre-order numbers to properly nest my
3314 // loops.  This means I need to sort my childrens' loops by pre-order.
3315 // The sort is of size number-of-control-children, which generally limits
3316 // it to size 2 (i.e., I just choose between my 2 target loops).
3317 void PhaseIdealLoop::build_loop_tree() {
3318   // Allocate stack of size C->live_nodes()/2 to avoid frequent realloc
3319   GrowableArray <Node *> bltstack(C->live_nodes() >> 1);
3320   Node *n = C->root();
3321   bltstack.push(n);
3322   int pre_order = 1;
3323   int stack_size;
3324 
3325   while ( ( stack_size = bltstack.length() ) != 0 ) {
3326     n = bltstack.top(); // Leave node on stack
3327     if ( !is_visited(n) ) {
3328       // ---- Pre-pass Work ----
3329       // Pre-walked but not post-walked nodes need a pre_order number.
3330 
3331       set_preorder_visited( n, pre_order ); // set as visited
3332 
3333       // ---- Scan over children ----
3334       // Scan first over control projections that lead to loop headers.
3335       // This helps us find inner-to-outer loops with shared headers better.
3336 
3337       // Scan children's children for loop headers.
3338       for ( int i = n->outcnt() - 1; i >= 0; --i ) {
3339         Node* m = n->raw_out(i);       // Child
3340         if( m->is_CFG() && !is_visited(m) ) { // Only for CFG children
3341           // Scan over children's children to find loop
3342           for (DUIterator_Fast jmax, j = m->fast_outs(jmax); j < jmax; j++) {
3343             Node* l = m->fast_out(j);
3344             if( is_visited(l) &&       // Been visited?
3345                 !is_postvisited(l) &&  // But not post-visited
3346                 get_preorder(l) < pre_order ) { // And smaller pre-order
3347               // Found!  Scan the DFS down this path before doing other paths
3348               bltstack.push(m);
3349               break;
3350             }
3351           }
3352         }
3353       }
3354       pre_order++;
3355     }
3356     else if ( !is_postvisited(n) ) {
3357       // Note: build_loop_tree_impl() adds out edges on rare occasions,
3358       // such as com.sun.rsasign.am::a.
3359       // For non-recursive version, first, process current children.
3360       // On next iteration, check if additional children were added.
3361       for ( int k = n->outcnt() - 1; k >= 0; --k ) {
3362         Node* u = n->raw_out(k);
3363         if ( u->is_CFG() && !is_visited(u) ) {
3364           bltstack.push(u);
3365         }
3366       }
3367       if ( bltstack.length() == stack_size ) {
3368         // There were no additional children, post visit node now
3369         (void)bltstack.pop(); // Remove node from stack
3370         pre_order = build_loop_tree_impl( n, pre_order );
3371         // Check for bailout
3372         if (C->failing()) {
3373           return;
3374         }
3375         // Check to grow _preorders[] array for the case when
3376         // build_loop_tree_impl() adds new nodes.
3377         check_grow_preorders();
3378       }
3379     }
3380     else {
3381       (void)bltstack.pop(); // Remove post-visited node from stack
3382     }
3383   }
3384 }
3385 
3386 //------------------------------build_loop_tree_impl---------------------------
3387 int PhaseIdealLoop::build_loop_tree_impl( Node *n, int pre_order ) {
3388   // ---- Post-pass Work ----
3389   // Pre-walked but not post-walked nodes need a pre_order number.
3390 
3391   // Tightest enclosing loop for this Node
3392   IdealLoopTree *innermost = NULL;
3393 
3394   // For all children, see if any edge is a backedge.  If so, make a loop
3395   // for it.  Then find the tightest enclosing loop for the self Node.
3396   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
3397     Node* m = n->fast_out(i);   // Child
3398     if( n == m ) continue;      // Ignore control self-cycles
3399     if( !m->is_CFG() ) continue;// Ignore non-CFG edges
3400 
3401     IdealLoopTree *l;           // Child's loop
3402     if( !is_postvisited(m) ) {  // Child visited but not post-visited?
3403       // Found a backedge
3404       assert( get_preorder(m) < pre_order, "should be backedge" );
3405       // Check for the RootNode, which is already a LoopNode and is allowed
3406       // to have multiple "backedges".
3407       if( m == C->root()) {     // Found the root?
3408         l = _ltree_root;        // Root is the outermost LoopNode
3409       } else {                  // Else found a nested loop
3410         // Insert a LoopNode to mark this loop.
3411         l = new IdealLoopTree(this, m, n);
3412       } // End of Else found a nested loop
3413       if( !has_loop(m) )        // If 'm' does not already have a loop set
3414         set_loop(m, l);         // Set loop header to loop now
3415 
3416     } else {                    // Else not a nested loop
3417       if( !_nodes[m->_idx] ) continue; // Dead code has no loop
3418       l = get_loop(m);          // Get previously determined loop
3419       // If successor is header of a loop (nest), move up-loop till it
3420       // is a member of some outer enclosing loop.  Since there are no
3421       // shared headers (I've split them already) I only need to go up
3422       // at most 1 level.
3423       while( l && l->_head == m ) // Successor heads loop?
3424         l = l->_parent;         // Move up 1 for me
3425       // If this loop is not properly parented, then this loop
3426       // has no exit path out, i.e. its an infinite loop.
3427       if( !l ) {
3428         // Make loop "reachable" from root so the CFG is reachable.  Basically
3429         // insert a bogus loop exit that is never taken.  'm', the loop head,
3430         // points to 'n', one (of possibly many) fall-in paths.  There may be
3431         // many backedges as well.
3432 
3433         // Here I set the loop to be the root loop.  I could have, after
3434         // inserting a bogus loop exit, restarted the recursion and found my
3435         // new loop exit.  This would make the infinite loop a first-class
3436         // loop and it would then get properly optimized.  What's the use of
3437         // optimizing an infinite loop?
3438         l = _ltree_root;        // Oops, found infinite loop
3439 
3440         if (!_verify_only) {
3441           // Insert the NeverBranch between 'm' and it's control user.
3442           NeverBranchNode *iff = new NeverBranchNode( m );
3443           _igvn.register_new_node_with_optimizer(iff);
3444           set_loop(iff, l);
3445           Node *if_t = new CProjNode( iff, 0 );
3446           _igvn.register_new_node_with_optimizer(if_t);
3447           set_loop(if_t, l);
3448 
3449           Node* cfg = NULL;       // Find the One True Control User of m
3450           for (DUIterator_Fast jmax, j = m->fast_outs(jmax); j < jmax; j++) {
3451             Node* x = m->fast_out(j);
3452             if (x->is_CFG() && x != m && x != iff)
3453               { cfg = x; break; }
3454           }
3455           assert(cfg != NULL, "must find the control user of m");
3456           uint k = 0;             // Probably cfg->in(0)
3457           while( cfg->in(k) != m ) k++; // But check incase cfg is a Region
3458           cfg->set_req( k, if_t ); // Now point to NeverBranch
3459           _igvn._worklist.push(cfg);
3460 
3461           // Now create the never-taken loop exit
3462           Node *if_f = new CProjNode( iff, 1 );
3463           _igvn.register_new_node_with_optimizer(if_f);
3464           set_loop(if_f, l);
3465           // Find frame ptr for Halt.  Relies on the optimizer
3466           // V-N'ing.  Easier and quicker than searching through
3467           // the program structure.
3468           Node *frame = new ParmNode( C->start(), TypeFunc::FramePtr );
3469           _igvn.register_new_node_with_optimizer(frame);
3470           // Halt & Catch Fire
3471           Node *halt = new HaltNode( if_f, frame );
3472           _igvn.register_new_node_with_optimizer(halt);
3473           set_loop(halt, l);
3474           C->root()->add_req(halt);
3475         }
3476         set_loop(C->root(), _ltree_root);
3477       }
3478     }
3479     // Weeny check for irreducible.  This child was already visited (this
3480     // IS the post-work phase).  Is this child's loop header post-visited
3481     // as well?  If so, then I found another entry into the loop.
3482     if (!_verify_only) {
3483       while( is_postvisited(l->_head) ) {
3484         // found irreducible
3485         l->_irreducible = 1; // = true
3486         l = l->_parent;
3487         _has_irreducible_loops = true;
3488         // Check for bad CFG here to prevent crash, and bailout of compile
3489         if (l == NULL) {
3490           C->record_method_not_compilable("unhandled CFG detected during loop optimization");
3491           return pre_order;
3492         }
3493       }
3494       C->set_has_irreducible_loop(_has_irreducible_loops);
3495     }
3496 
3497     // This Node might be a decision point for loops.  It is only if
3498     // it's children belong to several different loops.  The sort call
3499     // does a trivial amount of work if there is only 1 child or all
3500     // children belong to the same loop.  If however, the children
3501     // belong to different loops, the sort call will properly set the
3502     // _parent pointers to show how the loops nest.
3503     //
3504     // In any case, it returns the tightest enclosing loop.
3505     innermost = sort( l, innermost );
3506   }
3507 
3508   // Def-use info will have some dead stuff; dead stuff will have no
3509   // loop decided on.
3510 
3511   // Am I a loop header?  If so fix up my parent's child and next ptrs.
3512   if( innermost && innermost->_head == n ) {
3513     assert( get_loop(n) == innermost, "" );
3514     IdealLoopTree *p = innermost->_parent;
3515     IdealLoopTree *l = innermost;
3516     while( p && l->_head == n ) {
3517       l->_next = p->_child;     // Put self on parents 'next child'
3518       p->_child = l;            // Make self as first child of parent
3519       l = p;                    // Now walk up the parent chain
3520       p = l->_parent;
3521     }
3522   } else {
3523     // Note that it is possible for a LoopNode to reach here, if the
3524     // backedge has been made unreachable (hence the LoopNode no longer
3525     // denotes a Loop, and will eventually be removed).
3526 
3527     // Record tightest enclosing loop for self.  Mark as post-visited.
3528     set_loop(n, innermost);
3529     // Also record has_call flag early on
3530     if( innermost ) {
3531       if( n->is_Call() && !n->is_CallLeaf() && !n->is_macro() ) {
3532         // Do not count uncommon calls
3533         if( !n->is_CallStaticJava() || !n->as_CallStaticJava()->_name ) {
3534           Node *iff = n->in(0)->in(0);
3535           // No any calls for vectorized loops.
3536           if( UseSuperWord || !iff->is_If() ||
3537               (n->in(0)->Opcode() == Op_IfFalse &&
3538                (1.0 - iff->as_If()->_prob) >= 0.01) ||
3539               (iff->as_If()->_prob >= 0.01) )
3540             innermost->_has_call = 1;
3541         }
3542       } else if( n->is_Allocate() && n->as_Allocate()->_is_scalar_replaceable ) {
3543         // Disable loop optimizations if the loop has a scalar replaceable
3544         // allocation. This disabling may cause a potential performance lost
3545         // if the allocation is not eliminated for some reason.
3546         innermost->_allow_optimizations = false;
3547         innermost->_has_call = 1; // = true
3548       } else if (n->Opcode() == Op_SafePoint) {
3549         // Record all safepoints in this loop.
3550         if (innermost->_safepts == NULL) innermost->_safepts = new Node_List();
3551         innermost->_safepts->push(n);
3552       }
3553     }
3554   }
3555 
3556   // Flag as post-visited now
3557   set_postvisited(n);
3558   return pre_order;
3559 }
3560 
3561 
3562 //------------------------------build_loop_early-------------------------------
3563 // Put Data nodes into some loop nest, by setting the _nodes[]->loop mapping.
3564 // First pass computes the earliest controlling node possible.  This is the
3565 // controlling input with the deepest dominating depth.
3566 void PhaseIdealLoop::build_loop_early( VectorSet &visited, Node_List &worklist, Node_Stack &nstack ) {
3567   while (worklist.size() != 0) {
3568     // Use local variables nstack_top_n & nstack_top_i to cache values
3569     // on nstack's top.
3570     Node *nstack_top_n = worklist.pop();
3571     uint  nstack_top_i = 0;
3572 //while_nstack_nonempty:
3573     while (true) {
3574       // Get parent node and next input's index from stack's top.
3575       Node  *n = nstack_top_n;
3576       uint   i = nstack_top_i;
3577       uint cnt = n->req(); // Count of inputs
3578       if (i == 0) {        // Pre-process the node.
3579         if( has_node(n) &&            // Have either loop or control already?
3580             !has_ctrl(n) ) {          // Have loop picked out already?
3581           // During "merge_many_backedges" we fold up several nested loops
3582           // into a single loop.  This makes the members of the original
3583           // loop bodies pointing to dead loops; they need to move up
3584           // to the new UNION'd larger loop.  I set the _head field of these
3585           // dead loops to NULL and the _parent field points to the owning
3586           // loop.  Shades of UNION-FIND algorithm.
3587           IdealLoopTree *ilt;
3588           while( !(ilt = get_loop(n))->_head ) {
3589             // Normally I would use a set_loop here.  But in this one special
3590             // case, it is legal (and expected) to change what loop a Node
3591             // belongs to.
3592             _nodes.map(n->_idx, (Node*)(ilt->_parent) );
3593           }
3594           // Remove safepoints ONLY if I've already seen I don't need one.
3595           // (the old code here would yank a 2nd safepoint after seeing a
3596           // first one, even though the 1st did not dominate in the loop body
3597           // and thus could be avoided indefinitely)
3598           if( !_verify_only && !_verify_me && ilt->_has_sfpt && n->Opcode() == Op_SafePoint &&
3599               is_deleteable_safept(n)) {
3600             Node *in = n->in(TypeFunc::Control);
3601             lazy_replace(n,in);       // Pull safepoint now
3602             if (ilt->_safepts != NULL) {
3603               ilt->_safepts->yank(n);
3604             }
3605             // Carry on with the recursion "as if" we are walking
3606             // only the control input
3607             if( !visited.test_set( in->_idx ) ) {
3608               worklist.push(in);      // Visit this guy later, using worklist
3609             }
3610             // Get next node from nstack:
3611             // - skip n's inputs processing by setting i > cnt;
3612             // - we also will not call set_early_ctrl(n) since
3613             //   has_node(n) == true (see the condition above).
3614             i = cnt + 1;
3615           }
3616         }
3617       } // if (i == 0)
3618 
3619       // Visit all inputs
3620       bool done = true;       // Assume all n's inputs will be processed
3621       while (i < cnt) {
3622         Node *in = n->in(i);
3623         ++i;
3624         if (in == NULL) continue;
3625         if (in->pinned() && !in->is_CFG())
3626           set_ctrl(in, in->in(0));
3627         int is_visited = visited.test_set( in->_idx );
3628         if (!has_node(in)) {  // No controlling input yet?
3629           assert( !in->is_CFG(), "CFG Node with no controlling input?" );
3630           assert( !is_visited, "visit only once" );
3631           nstack.push(n, i);  // Save parent node and next input's index.
3632           nstack_top_n = in;  // Process current input now.
3633           nstack_top_i = 0;
3634           done = false;       // Not all n's inputs processed.
3635           break; // continue while_nstack_nonempty;
3636         } else if (!is_visited) {
3637           // This guy has a location picked out for him, but has not yet
3638           // been visited.  Happens to all CFG nodes, for instance.
3639           // Visit him using the worklist instead of recursion, to break
3640           // cycles.  Since he has a location already we do not need to
3641           // find his location before proceeding with the current Node.
3642           worklist.push(in);  // Visit this guy later, using worklist
3643         }
3644       }
3645       if (done) {
3646         // All of n's inputs have been processed, complete post-processing.
3647 
3648         // Compute earliest point this Node can go.
3649         // CFG, Phi, pinned nodes already know their controlling input.
3650         if (!has_node(n)) {
3651           // Record earliest legal location
3652           set_early_ctrl( n );
3653         }
3654         if (nstack.is_empty()) {
3655           // Finished all nodes on stack.
3656           // Process next node on the worklist.
3657           break;
3658         }
3659         // Get saved parent node and next input's index.
3660         nstack_top_n = nstack.node();
3661         nstack_top_i = nstack.index();
3662         nstack.pop();
3663       }
3664     } // while (true)
3665   }
3666 }
3667 
3668 //------------------------------dom_lca_internal--------------------------------
3669 // Pair-wise LCA
3670 Node *PhaseIdealLoop::dom_lca_internal( Node *n1, Node *n2 ) const {
3671   if( !n1 ) return n2;          // Handle NULL original LCA
3672   assert( n1->is_CFG(), "" );
3673   assert( n2->is_CFG(), "" );
3674   // find LCA of all uses
3675   uint d1 = dom_depth(n1);
3676   uint d2 = dom_depth(n2);
3677   while (n1 != n2) {
3678     if (d1 > d2) {
3679       n1 =      idom(n1);
3680       d1 = dom_depth(n1);
3681     } else if (d1 < d2) {
3682       n2 =      idom(n2);
3683       d2 = dom_depth(n2);
3684     } else {
3685       // Here d1 == d2.  Due to edits of the dominator-tree, sections
3686       // of the tree might have the same depth.  These sections have
3687       // to be searched more carefully.
3688 
3689       // Scan up all the n1's with equal depth, looking for n2.
3690       Node *t1 = idom(n1);
3691       while (dom_depth(t1) == d1) {
3692         if (t1 == n2)  return n2;
3693         t1 = idom(t1);
3694       }
3695       // Scan up all the n2's with equal depth, looking for n1.
3696       Node *t2 = idom(n2);
3697       while (dom_depth(t2) == d2) {
3698         if (t2 == n1)  return n1;
3699         t2 = idom(t2);
3700       }
3701       // Move up to a new dominator-depth value as well as up the dom-tree.
3702       n1 = t1;
3703       n2 = t2;
3704       d1 = dom_depth(n1);
3705       d2 = dom_depth(n2);
3706     }
3707   }
3708   return n1;
3709 }
3710 
3711 //------------------------------compute_idom-----------------------------------
3712 // Locally compute IDOM using dom_lca call.  Correct only if the incoming
3713 // IDOMs are correct.
3714 Node *PhaseIdealLoop::compute_idom( Node *region ) const {
3715   assert( region->is_Region(), "" );
3716   Node *LCA = NULL;
3717   for( uint i = 1; i < region->req(); i++ ) {
3718     if( region->in(i) != C->top() )
3719       LCA = dom_lca( LCA, region->in(i) );
3720   }
3721   return LCA;
3722 }
3723 
3724 bool PhaseIdealLoop::verify_dominance(Node* n, Node* use, Node* LCA, Node* early) {
3725   bool had_error = false;
3726 #ifdef ASSERT
3727   if (early != C->root()) {
3728     // Make sure that there's a dominance path from LCA to early
3729     Node* d = LCA;
3730     while (d != early) {
3731       if (d == C->root()) {
3732         dump_bad_graph("Bad graph detected in compute_lca_of_uses", n, early, LCA);
3733         tty->print_cr("*** Use %d isn't dominated by def %d ***", use->_idx, n->_idx);
3734         had_error = true;
3735         break;
3736       }
3737       d = idom(d);
3738     }
3739   }
3740 #endif
3741   return had_error;
3742 }
3743 
3744 
3745 Node* PhaseIdealLoop::compute_lca_of_uses(Node* n, Node* early, bool verify) {
3746   // Compute LCA over list of uses
3747   bool had_error = false;
3748   Node *LCA = NULL;
3749   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax && LCA != early; i++) {
3750     Node* c = n->fast_out(i);
3751     if (_nodes[c->_idx] == NULL)
3752       continue;                 // Skip the occasional dead node
3753     if( c->is_Phi() ) {         // For Phis, we must land above on the path
3754       for( uint j=1; j<c->req(); j++ ) {// For all inputs
3755         if( c->in(j) == n ) {   // Found matching input?
3756           Node *use = c->in(0)->in(j);
3757           if (_verify_only && use->is_top()) continue;
3758           LCA = dom_lca_for_get_late_ctrl( LCA, use, n );
3759           if (verify) had_error = verify_dominance(n, use, LCA, early) || had_error;
3760         }
3761       }
3762     } else {
3763       // For CFG data-users, use is in the block just prior
3764       Node *use = has_ctrl(c) ? get_ctrl(c) : c->in(0);
3765       LCA = dom_lca_for_get_late_ctrl( LCA, use, n );
3766       if (verify) had_error = verify_dominance(n, use, LCA, early) || had_error;
3767     }
3768   }
3769   assert(!had_error, "bad dominance");
3770   return LCA;
3771 }
3772 
3773 // Check the shape of the graph at the loop entry. In some cases,
3774 // the shape of the graph does not match the shape outlined below.
3775 // That is caused by the Opaque1 node "protecting" the shape of
3776 // the graph being removed by, for example, the IGVN performed
3777 // in PhaseIdealLoop::build_and_optimize().
3778 //
3779 // After the Opaque1 node has been removed, optimizations (e.g., split-if,
3780 // loop unswitching, and IGVN, or a combination of them) can freely change
3781 // the graph's shape. As a result, the graph shape outlined below cannot
3782 // be guaranteed anymore.
3783 bool PhaseIdealLoop::is_canonical_loop_entry(CountedLoopNode* cl) {
3784   if (!cl->is_main_loop() && !cl->is_post_loop()) {
3785     return false;
3786   }
3787   Node* ctrl = cl->skip_predicates();
3788 
3789   if (ctrl == NULL || (!ctrl->is_IfTrue() && !ctrl->is_IfFalse())) {
3790     return false;
3791   }
3792   Node* iffm = ctrl->in(0);
3793   if (iffm == NULL || !iffm->is_If()) {
3794     return false;
3795   }
3796   Node* bolzm = iffm->in(1);
3797   if (bolzm == NULL || !bolzm->is_Bool()) {
3798     return false;
3799   }
3800   Node* cmpzm = bolzm->in(1);
3801   if (cmpzm == NULL || !cmpzm->is_Cmp()) {
3802     return false;
3803   }
3804   // compares can get conditionally flipped
3805   bool found_opaque = false;
3806   for (uint i = 1; i < cmpzm->req(); i++) {
3807     Node* opnd = cmpzm->in(i);
3808     if (opnd && opnd->Opcode() == Op_Opaque1) {
3809       found_opaque = true;
3810       break;
3811     }
3812   }
3813   if (!found_opaque) {
3814     return false;
3815   }
3816   return true;
3817 }
3818 
3819 //------------------------------get_late_ctrl----------------------------------
3820 // Compute latest legal control.
3821 Node *PhaseIdealLoop::get_late_ctrl( Node *n, Node *early ) {
3822   assert(early != NULL, "early control should not be NULL");
3823 
3824   Node* LCA = compute_lca_of_uses(n, early);
3825 #ifdef ASSERT
3826   if (LCA == C->root() && LCA != early) {
3827     // def doesn't dominate uses so print some useful debugging output
3828     compute_lca_of_uses(n, early, true);
3829   }
3830 #endif
3831 
3832   // if this is a load, check for anti-dependent stores
3833   // We use a conservative algorithm to identify potential interfering
3834   // instructions and for rescheduling the load.  The users of the memory
3835   // input of this load are examined.  Any use which is not a load and is
3836   // dominated by early is considered a potentially interfering store.
3837   // This can produce false positives.
3838   if (n->is_Load() && LCA != early) {
3839     Node_List worklist;
3840 
3841     Node *mem = n->in(MemNode::Memory);
3842     for (DUIterator_Fast imax, i = mem->fast_outs(imax); i < imax; i++) {
3843       Node* s = mem->fast_out(i);
3844       worklist.push(s);
3845     }
3846     while(worklist.size() != 0 && LCA != early) {
3847       Node* s = worklist.pop();
3848       if (s->is_Load() || s->Opcode() == Op_SafePoint) {
3849         continue;
3850       } else if (s->is_MergeMem()) {
3851         for (DUIterator_Fast imax, i = s->fast_outs(imax); i < imax; i++) {
3852           Node* s1 = s->fast_out(i);
3853           worklist.push(s1);
3854         }
3855       } else {
3856         Node *sctrl = has_ctrl(s) ? get_ctrl(s) : s->in(0);
3857         assert(sctrl != NULL || s->outcnt() == 0, "must have control");
3858         if (sctrl != NULL && !sctrl->is_top() && is_dominator(early, sctrl)) {
3859           LCA = dom_lca_for_get_late_ctrl(LCA, sctrl, n);
3860         }
3861       }
3862     }
3863   }
3864 
3865   assert(LCA == find_non_split_ctrl(LCA), "unexpected late control");
3866   return LCA;
3867 }
3868 
3869 // true if CFG node d dominates CFG node n
3870 bool PhaseIdealLoop::is_dominator(Node *d, Node *n) {
3871   if (d == n)
3872     return true;
3873   assert(d->is_CFG() && n->is_CFG(), "must have CFG nodes");
3874   uint dd = dom_depth(d);
3875   while (dom_depth(n) >= dd) {
3876     if (n == d)
3877       return true;
3878     n = idom(n);
3879   }
3880   return false;
3881 }
3882 
3883 //------------------------------dom_lca_for_get_late_ctrl_internal-------------
3884 // Pair-wise LCA with tags.
3885 // Tag each index with the node 'tag' currently being processed
3886 // before advancing up the dominator chain using idom().
3887 // Later calls that find a match to 'tag' know that this path has already
3888 // been considered in the current LCA (which is input 'n1' by convention).
3889 // Since get_late_ctrl() is only called once for each node, the tag array
3890 // does not need to be cleared between calls to get_late_ctrl().
3891 // Algorithm trades a larger constant factor for better asymptotic behavior
3892 //
3893 Node *PhaseIdealLoop::dom_lca_for_get_late_ctrl_internal( Node *n1, Node *n2, Node *tag ) {
3894   uint d1 = dom_depth(n1);
3895   uint d2 = dom_depth(n2);
3896 
3897   do {
3898     if (d1 > d2) {
3899       // current lca is deeper than n2
3900       _dom_lca_tags.map(n1->_idx, tag);
3901       n1 =      idom(n1);
3902       d1 = dom_depth(n1);
3903     } else if (d1 < d2) {
3904       // n2 is deeper than current lca
3905       Node *memo = _dom_lca_tags[n2->_idx];
3906       if( memo == tag ) {
3907         return n1;    // Return the current LCA
3908       }
3909       _dom_lca_tags.map(n2->_idx, tag);
3910       n2 =      idom(n2);
3911       d2 = dom_depth(n2);
3912     } else {
3913       // Here d1 == d2.  Due to edits of the dominator-tree, sections
3914       // of the tree might have the same depth.  These sections have
3915       // to be searched more carefully.
3916 
3917       // Scan up all the n1's with equal depth, looking for n2.
3918       _dom_lca_tags.map(n1->_idx, tag);
3919       Node *t1 = idom(n1);
3920       while (dom_depth(t1) == d1) {
3921         if (t1 == n2)  return n2;
3922         _dom_lca_tags.map(t1->_idx, tag);
3923         t1 = idom(t1);
3924       }
3925       // Scan up all the n2's with equal depth, looking for n1.
3926       _dom_lca_tags.map(n2->_idx, tag);
3927       Node *t2 = idom(n2);
3928       while (dom_depth(t2) == d2) {
3929         if (t2 == n1)  return n1;
3930         _dom_lca_tags.map(t2->_idx, tag);
3931         t2 = idom(t2);
3932       }
3933       // Move up to a new dominator-depth value as well as up the dom-tree.
3934       n1 = t1;
3935       n2 = t2;
3936       d1 = dom_depth(n1);
3937       d2 = dom_depth(n2);
3938     }
3939   } while (n1 != n2);
3940   return n1;
3941 }
3942 
3943 //------------------------------init_dom_lca_tags------------------------------
3944 // Tag could be a node's integer index, 32bits instead of 64bits in some cases
3945 // Intended use does not involve any growth for the array, so it could
3946 // be of fixed size.
3947 void PhaseIdealLoop::init_dom_lca_tags() {
3948   uint limit = C->unique() + 1;
3949   _dom_lca_tags.map( limit, NULL );
3950 #ifdef ASSERT
3951   for( uint i = 0; i < limit; ++i ) {
3952     assert(_dom_lca_tags[i] == NULL, "Must be distinct from each node pointer");
3953   }
3954 #endif // ASSERT
3955 }
3956 
3957 //------------------------------clear_dom_lca_tags------------------------------
3958 // Tag could be a node's integer index, 32bits instead of 64bits in some cases
3959 // Intended use does not involve any growth for the array, so it could
3960 // be of fixed size.
3961 void PhaseIdealLoop::clear_dom_lca_tags() {
3962   uint limit = C->unique() + 1;
3963   _dom_lca_tags.map( limit, NULL );
3964   _dom_lca_tags.clear();
3965 #ifdef ASSERT
3966   for( uint i = 0; i < limit; ++i ) {
3967     assert(_dom_lca_tags[i] == NULL, "Must be distinct from each node pointer");
3968   }
3969 #endif // ASSERT
3970 }
3971 
3972 //------------------------------build_loop_late--------------------------------
3973 // Put Data nodes into some loop nest, by setting the _nodes[]->loop mapping.
3974 // Second pass finds latest legal placement, and ideal loop placement.
3975 void PhaseIdealLoop::build_loop_late( VectorSet &visited, Node_List &worklist, Node_Stack &nstack ) {
3976   while (worklist.size() != 0) {
3977     Node *n = worklist.pop();
3978     // Only visit once
3979     if (visited.test_set(n->_idx)) continue;
3980     uint cnt = n->outcnt();
3981     uint   i = 0;
3982     while (true) {
3983       assert( _nodes[n->_idx], "no dead nodes" );
3984       // Visit all children
3985       if (i < cnt) {
3986         Node* use = n->raw_out(i);
3987         ++i;
3988         // Check for dead uses.  Aggressively prune such junk.  It might be
3989         // dead in the global sense, but still have local uses so I cannot
3990         // easily call 'remove_dead_node'.
3991         if( _nodes[use->_idx] != NULL || use->is_top() ) { // Not dead?
3992           // Due to cycles, we might not hit the same fixed point in the verify
3993           // pass as we do in the regular pass.  Instead, visit such phis as
3994           // simple uses of the loop head.
3995           if( use->in(0) && (use->is_CFG() || use->is_Phi()) ) {
3996             if( !visited.test(use->_idx) )
3997               worklist.push(use);
3998           } else if( !visited.test_set(use->_idx) ) {
3999             nstack.push(n, i); // Save parent and next use's index.
4000             n   = use;         // Process all children of current use.
4001             cnt = use->outcnt();
4002             i   = 0;
4003           }
4004         } else {
4005           // Do not visit around the backedge of loops via data edges.
4006           // push dead code onto a worklist
4007           _deadlist.push(use);
4008         }
4009       } else {
4010         // All of n's children have been processed, complete post-processing.
4011         build_loop_late_post(n);
4012         if (nstack.is_empty()) {
4013           // Finished all nodes on stack.
4014           // Process next node on the worklist.
4015           break;
4016         }
4017         // Get saved parent node and next use's index. Visit the rest of uses.
4018         n   = nstack.node();
4019         cnt = n->outcnt();
4020         i   = nstack.index();
4021         nstack.pop();
4022       }
4023     }
4024   }
4025 }
4026 
4027 // Verify that no data node is schedules in the outer loop of a strip
4028 // mined loop.
4029 void PhaseIdealLoop::verify_strip_mined_scheduling(Node *n, Node* least) {
4030 #ifdef ASSERT
4031   if (get_loop(least)->_nest == 0) {
4032     return;
4033   }
4034   IdealLoopTree* loop = get_loop(least);
4035   Node* head = loop->_head;
4036   if (head->is_OuterStripMinedLoop()) {
4037     Node* sfpt = head->as_Loop()->outer_safepoint();
4038     ResourceMark rm;
4039     Unique_Node_List wq;
4040     wq.push(sfpt);
4041     for (uint i = 0; i < wq.size(); i++) {
4042       Node *m = wq.at(i);
4043       for (uint i = 1; i < m->req(); i++) {
4044         Node* nn = m->in(i);
4045         if (nn == n) {
4046           return;
4047         }
4048         if (nn != NULL && has_ctrl(nn) && get_loop(get_ctrl(nn)) == loop) {
4049           wq.push(nn);
4050         }
4051       }
4052     }
4053     ShouldNotReachHere();
4054   }
4055 #endif
4056 }
4057 
4058 
4059 //------------------------------build_loop_late_post---------------------------
4060 // Put Data nodes into some loop nest, by setting the _nodes[]->loop mapping.
4061 // Second pass finds latest legal placement, and ideal loop placement.
4062 void PhaseIdealLoop::build_loop_late_post( Node *n ) {
4063 
4064   if (n->req() == 2 && (n->Opcode() == Op_ConvI2L || n->Opcode() == Op_CastII) && !C->major_progress() && !_verify_only) {
4065     _igvn._worklist.push(n);  // Maybe we'll normalize it, if no more loops.
4066   }
4067 
4068 #ifdef ASSERT
4069   if (_verify_only && !n->is_CFG()) {
4070     // Check def-use domination.
4071     compute_lca_of_uses(n, get_ctrl(n), true /* verify */);
4072   }
4073 #endif
4074 
4075   // CFG and pinned nodes already handled
4076   if( n->in(0) ) {
4077     if( n->in(0)->is_top() ) return; // Dead?
4078 
4079     // We'd like +VerifyLoopOptimizations to not believe that Mod's/Loads
4080     // _must_ be pinned (they have to observe their control edge of course).
4081     // Unlike Stores (which modify an unallocable resource, the memory
4082     // state), Mods/Loads can float around.  So free them up.
4083     bool pinned = true;
4084     switch( n->Opcode() ) {
4085     case Op_DivI:
4086     case Op_DivF:
4087     case Op_DivD:
4088     case Op_ModI:
4089     case Op_ModF:
4090     case Op_ModD:
4091     case Op_LoadB:              // Same with Loads; they can sink
4092     case Op_LoadUB:             // during loop optimizations.
4093     case Op_LoadUS:
4094     case Op_LoadD:
4095     case Op_LoadF:
4096     case Op_LoadI:
4097     case Op_LoadKlass:
4098     case Op_LoadNKlass:
4099     case Op_LoadL:
4100     case Op_LoadS:
4101     case Op_LoadP:
4102     case Op_LoadN:
4103     case Op_LoadRange:
4104     case Op_LoadD_unaligned:
4105     case Op_LoadL_unaligned:
4106     case Op_StrComp:            // Does a bunch of load-like effects
4107     case Op_StrEquals:
4108     case Op_StrIndexOf:
4109     case Op_StrIndexOfChar:
4110     case Op_AryEq:
4111     case Op_HasNegatives:
4112       pinned = false;
4113     }
4114     if( pinned ) {
4115       IdealLoopTree *chosen_loop = get_loop(n->is_CFG() ? n : get_ctrl(n));
4116       if( !chosen_loop->_child )       // Inner loop?
4117         chosen_loop->_body.push(n); // Collect inner loops
4118       return;
4119     }
4120   } else {                      // No slot zero
4121     if( n->is_CFG() ) {         // CFG with no slot 0 is dead
4122       _nodes.map(n->_idx,0);    // No block setting, it's globally dead
4123       return;
4124     }
4125     assert(!n->is_CFG() || n->outcnt() == 0, "");
4126   }
4127 
4128   // Do I have a "safe range" I can select over?
4129   Node *early = get_ctrl(n);// Early location already computed
4130 
4131   // Compute latest point this Node can go
4132   Node *LCA = get_late_ctrl( n, early );
4133   // LCA is NULL due to uses being dead
4134   if( LCA == NULL ) {
4135 #ifdef ASSERT
4136     for (DUIterator i1 = n->outs(); n->has_out(i1); i1++) {
4137       assert( _nodes[n->out(i1)->_idx] == NULL, "all uses must also be dead");
4138     }
4139 #endif
4140     _nodes.map(n->_idx, 0);     // This node is useless
4141     _deadlist.push(n);
4142     return;
4143   }
4144   assert(LCA != NULL && !LCA->is_top(), "no dead nodes");
4145 
4146   Node *legal = LCA;            // Walk 'legal' up the IDOM chain
4147   Node *least = legal;          // Best legal position so far
4148   while( early != legal ) {     // While not at earliest legal
4149 #ifdef ASSERT
4150     if (legal->is_Start() && !early->is_Root()) {
4151       // Bad graph. Print idom path and fail.
4152       dump_bad_graph("Bad graph detected in build_loop_late", n, early, LCA);
4153       assert(false, "Bad graph detected in build_loop_late");
4154     }
4155 #endif
4156     // Find least loop nesting depth
4157     legal = idom(legal);        // Bump up the IDOM tree
4158     // Check for lower nesting depth
4159     if( get_loop(legal)->_nest < get_loop(least)->_nest )
4160       least = legal;
4161   }
4162   assert(early == legal || legal != C->root(), "bad dominance of inputs");
4163 
4164   // Try not to place code on a loop entry projection
4165   // which can inhibit range check elimination.
4166   if (least != early) {
4167     Node* ctrl_out = least->unique_ctrl_out();
4168     if (ctrl_out && ctrl_out->is_Loop() &&
4169         least == ctrl_out->in(LoopNode::EntryControl) &&
4170         (ctrl_out->is_CountedLoop() || ctrl_out->is_OuterStripMinedLoop())) {
4171       Node* least_dom = idom(least);
4172       if (get_loop(least_dom)->is_member(get_loop(least))) {
4173         least = least_dom;
4174       }
4175     }
4176   }
4177 
4178 #ifdef ASSERT
4179   // If verifying, verify that 'verify_me' has a legal location
4180   // and choose it as our location.
4181   if( _verify_me ) {
4182     Node *v_ctrl = _verify_me->get_ctrl_no_update(n);
4183     Node *legal = LCA;
4184     while( early != legal ) {   // While not at earliest legal
4185       if( legal == v_ctrl ) break;  // Check for prior good location
4186       legal = idom(legal)      ;// Bump up the IDOM tree
4187     }
4188     // Check for prior good location
4189     if( legal == v_ctrl ) least = legal; // Keep prior if found
4190   }
4191 #endif
4192 
4193   // Assign discovered "here or above" point
4194   least = find_non_split_ctrl(least);
4195   verify_strip_mined_scheduling(n, least);
4196   set_ctrl(n, least);
4197 
4198   // Collect inner loop bodies
4199   IdealLoopTree *chosen_loop = get_loop(least);
4200   if( !chosen_loop->_child )   // Inner loop?
4201     chosen_loop->_body.push(n);// Collect inner loops
4202 }
4203 
4204 #ifdef ASSERT
4205 void PhaseIdealLoop::dump_bad_graph(const char* msg, Node* n, Node* early, Node* LCA) {
4206   tty->print_cr("%s", msg);
4207   tty->print("n: "); n->dump();
4208   tty->print("early(n): "); early->dump();
4209   if (n->in(0) != NULL  && !n->in(0)->is_top() &&
4210       n->in(0) != early && !n->in(0)->is_Root()) {
4211     tty->print("n->in(0): "); n->in(0)->dump();
4212   }
4213   for (uint i = 1; i < n->req(); i++) {
4214     Node* in1 = n->in(i);
4215     if (in1 != NULL && in1 != n && !in1->is_top()) {
4216       tty->print("n->in(%d): ", i); in1->dump();
4217       Node* in1_early = get_ctrl(in1);
4218       tty->print("early(n->in(%d)): ", i); in1_early->dump();
4219       if (in1->in(0) != NULL     && !in1->in(0)->is_top() &&
4220           in1->in(0) != in1_early && !in1->in(0)->is_Root()) {
4221         tty->print("n->in(%d)->in(0): ", i); in1->in(0)->dump();
4222       }
4223       for (uint j = 1; j < in1->req(); j++) {
4224         Node* in2 = in1->in(j);
4225         if (in2 != NULL && in2 != n && in2 != in1 && !in2->is_top()) {
4226           tty->print("n->in(%d)->in(%d): ", i, j); in2->dump();
4227           Node* in2_early = get_ctrl(in2);
4228           tty->print("early(n->in(%d)->in(%d)): ", i, j); in2_early->dump();
4229           if (in2->in(0) != NULL     && !in2->in(0)->is_top() &&
4230               in2->in(0) != in2_early && !in2->in(0)->is_Root()) {
4231             tty->print("n->in(%d)->in(%d)->in(0): ", i, j); in2->in(0)->dump();
4232           }
4233         }
4234       }
4235     }
4236   }
4237   tty->cr();
4238   tty->print("LCA(n): "); LCA->dump();
4239   for (uint i = 0; i < n->outcnt(); i++) {
4240     Node* u1 = n->raw_out(i);
4241     if (u1 == n)
4242       continue;
4243     tty->print("n->out(%d): ", i); u1->dump();
4244     if (u1->is_CFG()) {
4245       for (uint j = 0; j < u1->outcnt(); j++) {
4246         Node* u2 = u1->raw_out(j);
4247         if (u2 != u1 && u2 != n && u2->is_CFG()) {
4248           tty->print("n->out(%d)->out(%d): ", i, j); u2->dump();
4249         }
4250       }
4251     } else {
4252       Node* u1_later = get_ctrl(u1);
4253       tty->print("later(n->out(%d)): ", i); u1_later->dump();
4254       if (u1->in(0) != NULL     && !u1->in(0)->is_top() &&
4255           u1->in(0) != u1_later && !u1->in(0)->is_Root()) {
4256         tty->print("n->out(%d)->in(0): ", i); u1->in(0)->dump();
4257       }
4258       for (uint j = 0; j < u1->outcnt(); j++) {
4259         Node* u2 = u1->raw_out(j);
4260         if (u2 == n || u2 == u1)
4261           continue;
4262         tty->print("n->out(%d)->out(%d): ", i, j); u2->dump();
4263         if (!u2->is_CFG()) {
4264           Node* u2_later = get_ctrl(u2);
4265           tty->print("later(n->out(%d)->out(%d)): ", i, j); u2_later->dump();
4266           if (u2->in(0) != NULL     && !u2->in(0)->is_top() &&
4267               u2->in(0) != u2_later && !u2->in(0)->is_Root()) {
4268             tty->print("n->out(%d)->in(0): ", i); u2->in(0)->dump();
4269           }
4270         }
4271       }
4272     }
4273   }
4274   tty->cr();
4275   int ct = 0;
4276   Node *dbg_legal = LCA;
4277   while(!dbg_legal->is_Start() && ct < 100) {
4278     tty->print("idom[%d] ",ct); dbg_legal->dump();
4279     ct++;
4280     dbg_legal = idom(dbg_legal);
4281   }
4282   tty->cr();
4283 }
4284 #endif
4285 
4286 #ifndef PRODUCT
4287 //------------------------------dump-------------------------------------------
4288 void PhaseIdealLoop::dump( ) const {
4289   ResourceMark rm;
4290   Arena* arena = Thread::current()->resource_area();
4291   Node_Stack stack(arena, C->live_nodes() >> 2);
4292   Node_List rpo_list;
4293   VectorSet visited(arena);
4294   visited.set(C->top()->_idx);
4295   rpo( C->root(), stack, visited, rpo_list );
4296   // Dump root loop indexed by last element in PO order
4297   dump( _ltree_root, rpo_list.size(), rpo_list );
4298 }
4299 
4300 void PhaseIdealLoop::dump( IdealLoopTree *loop, uint idx, Node_List &rpo_list ) const {
4301   loop->dump_head();
4302 
4303   // Now scan for CFG nodes in the same loop
4304   for( uint j=idx; j > 0;  j-- ) {
4305     Node *n = rpo_list[j-1];
4306     if( !_nodes[n->_idx] )      // Skip dead nodes
4307       continue;
4308     if( get_loop(n) != loop ) { // Wrong loop nest
4309       if( get_loop(n)->_head == n &&    // Found nested loop?
4310           get_loop(n)->_parent == loop )
4311         dump(get_loop(n),rpo_list.size(),rpo_list);     // Print it nested-ly
4312       continue;
4313     }
4314 
4315     // Dump controlling node
4316     for( uint x = 0; x < loop->_nest; x++ )
4317       tty->print("  ");
4318     tty->print("C");
4319     if( n == C->root() ) {
4320       n->dump();
4321     } else {
4322       Node* cached_idom   = idom_no_update(n);
4323       Node *computed_idom = n->in(0);
4324       if( n->is_Region() ) {
4325         computed_idom = compute_idom(n);
4326         // computed_idom() will return n->in(0) when idom(n) is an IfNode (or
4327         // any MultiBranch ctrl node), so apply a similar transform to
4328         // the cached idom returned from idom_no_update.
4329         cached_idom = find_non_split_ctrl(cached_idom);
4330       }
4331       tty->print(" ID:%d",computed_idom->_idx);
4332       n->dump();
4333       if( cached_idom != computed_idom ) {
4334         tty->print_cr("*** BROKEN IDOM!  Computed as: %d, cached as: %d",
4335                       computed_idom->_idx, cached_idom->_idx);
4336       }
4337     }
4338     // Dump nodes it controls
4339     for( uint k = 0; k < _nodes.Size(); k++ ) {
4340       // (k < C->unique() && get_ctrl(find(k)) == n)
4341       if (k < C->unique() && _nodes[k] == (Node*)((intptr_t)n + 1)) {
4342         Node *m = C->root()->find(k);
4343         if( m && m->outcnt() > 0 ) {
4344           if (!(has_ctrl(m) && get_ctrl_no_update(m) == n)) {
4345             tty->print_cr("*** BROKEN CTRL ACCESSOR!  _nodes[k] is %p, ctrl is %p",
4346                           _nodes[k], has_ctrl(m) ? get_ctrl_no_update(m) : NULL);
4347           }
4348           for( uint j = 0; j < loop->_nest; j++ )
4349             tty->print("  ");
4350           tty->print(" ");
4351           m->dump();
4352         }
4353       }
4354     }
4355   }
4356 }
4357 
4358 // Collect a R-P-O for the whole CFG.
4359 // Result list is in post-order (scan backwards for RPO)
4360 void PhaseIdealLoop::rpo( Node *start, Node_Stack &stk, VectorSet &visited, Node_List &rpo_list ) const {
4361   stk.push(start, 0);
4362   visited.set(start->_idx);
4363 
4364   while (stk.is_nonempty()) {
4365     Node* m   = stk.node();
4366     uint  idx = stk.index();
4367     if (idx < m->outcnt()) {
4368       stk.set_index(idx + 1);
4369       Node* n = m->raw_out(idx);
4370       if (n->is_CFG() && !visited.test_set(n->_idx)) {
4371         stk.push(n, 0);
4372       }
4373     } else {
4374       rpo_list.push(m);
4375       stk.pop();
4376     }
4377   }
4378 }
4379 #endif
4380 
4381 
4382 //=============================================================================
4383 //------------------------------LoopTreeIterator-----------------------------------
4384 
4385 // Advance to next loop tree using a preorder, left-to-right traversal.
4386 void LoopTreeIterator::next() {
4387   assert(!done(), "must not be done.");
4388   if (_curnt->_child != NULL) {
4389     _curnt = _curnt->_child;
4390   } else if (_curnt->_next != NULL) {
4391     _curnt = _curnt->_next;
4392   } else {
4393     while (_curnt != _root && _curnt->_next == NULL) {
4394       _curnt = _curnt->_parent;
4395     }
4396     if (_curnt == _root) {
4397       _curnt = NULL;
4398       assert(done(), "must be done.");
4399     } else {
4400       assert(_curnt->_next != NULL, "must be more to do");
4401       _curnt = _curnt->_next;
4402     }
4403   }
4404 }