1 /*
   2  * Copyright (c) 1998, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_OPTO_LOOPNODE_HPP
  26 #define SHARE_VM_OPTO_LOOPNODE_HPP
  27 
  28 #include "opto/cfgnode.hpp"
  29 #include "opto/multnode.hpp"
  30 #include "opto/phaseX.hpp"
  31 #include "opto/subnode.hpp"
  32 #include "opto/type.hpp"
  33 
  34 class CmpNode;
  35 class CountedLoopEndNode;
  36 class CountedLoopNode;
  37 class IdealLoopTree;
  38 class LoopNode;
  39 class Node;
  40 class OuterStripMinedLoopEndNode;
  41 class PhaseIdealLoop;
  42 class CountedLoopReserveKit;
  43 class VectorSet;
  44 class Invariance;
  45 struct small_cache;
  46 
  47 //
  48 //                  I D E A L I Z E D   L O O P S
  49 //
  50 // Idealized loops are the set of loops I perform more interesting
  51 // transformations on, beyond simple hoisting.
  52 
  53 //------------------------------LoopNode---------------------------------------
  54 // Simple loop header.  Fall in path on left, loop-back path on right.
  55 class LoopNode : public RegionNode {
  56   // Size is bigger to hold the flags.  However, the flags do not change
  57   // the semantics so it does not appear in the hash & cmp functions.
  58   virtual uint size_of() const { return sizeof(*this); }
  59 protected:
  60   short _loop_flags;
  61   // Names for flag bitfields
  62   enum { Normal=0, Pre=1, Main=2, Post=3, PreMainPostFlagsMask=3,
  63          MainHasNoPreLoop=4,
  64          HasExactTripCount=8,
  65          InnerLoop=16,
  66          PartialPeelLoop=32,
  67          PartialPeelFailed=64,
  68          HasReductions=128,
  69          WasSlpAnalyzed=256,
  70          PassedSlpAnalysis=512,
  71          DoUnrollOnly=1024,
  72          VectorizedLoop=2048,
  73          HasAtomicPostLoop=4096,
  74          HasRangeChecks=8192,
  75          IsMultiversioned=16384,
  76          StripMined=32768};
  77   char _unswitch_count;
  78   enum { _unswitch_max=3 };
  79   char _postloop_flags;
  80   enum { LoopNotRCEChecked = 0, LoopRCEChecked = 1, RCEPostLoop = 2 };
  81 
  82 public:
  83   // Names for edge indices
  84   enum { Self=0, EntryControl, LoopBackControl };
  85 
  86   int is_inner_loop() const { return _loop_flags & InnerLoop; }
  87   void set_inner_loop() { _loop_flags |= InnerLoop; }
  88 
  89   int range_checks_present() const { return _loop_flags & HasRangeChecks; }
  90   int is_multiversioned() const { return _loop_flags & IsMultiversioned; }
  91   int is_vectorized_loop() const { return _loop_flags & VectorizedLoop; }
  92   int is_partial_peel_loop() const { return _loop_flags & PartialPeelLoop; }
  93   void set_partial_peel_loop() { _loop_flags |= PartialPeelLoop; }
  94   int partial_peel_has_failed() const { return _loop_flags & PartialPeelFailed; }
  95   int is_strip_mined() const { return _loop_flags & StripMined; }
  96 
  97   void mark_partial_peel_failed() { _loop_flags |= PartialPeelFailed; }
  98   void mark_has_reductions() { _loop_flags |= HasReductions; }
  99   void mark_was_slp() { _loop_flags |= WasSlpAnalyzed; }
 100   void mark_passed_slp() { _loop_flags |= PassedSlpAnalysis; }
 101   void mark_do_unroll_only() { _loop_flags |= DoUnrollOnly; }
 102   void mark_loop_vectorized() { _loop_flags |= VectorizedLoop; }
 103   void mark_has_atomic_post_loop() { _loop_flags |= HasAtomicPostLoop; }
 104   void mark_has_range_checks() { _loop_flags |=  HasRangeChecks; }
 105   void mark_is_multiversioned() { _loop_flags |= IsMultiversioned; }
 106   void mark_strip_mined() { _loop_flags |= StripMined; }
 107   void clear_strip_mined() { _loop_flags &= ~StripMined; }
 108 
 109   int unswitch_max() { return _unswitch_max; }
 110   int unswitch_count() { return _unswitch_count; }
 111 
 112   int has_been_range_checked() const { return _postloop_flags & LoopRCEChecked; }
 113   void set_has_been_range_checked() { _postloop_flags |= LoopRCEChecked; }
 114   int is_rce_post_loop() const { return _postloop_flags & RCEPostLoop; }
 115   void set_is_rce_post_loop() { _postloop_flags |= RCEPostLoop; }
 116 
 117   void set_unswitch_count(int val) {
 118     assert (val <= unswitch_max(), "too many unswitches");
 119     _unswitch_count = val;
 120   }
 121 
 122   LoopNode(Node *entry, Node *backedge) : RegionNode(3), _loop_flags(0), _unswitch_count(0), _postloop_flags(0) {
 123     init_class_id(Class_Loop);
 124     init_req(EntryControl, entry);
 125     init_req(LoopBackControl, backedge);
 126   }
 127 
 128   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 129   virtual int Opcode() const;
 130   bool can_be_counted_loop(PhaseTransform* phase) const {
 131     return req() == 3 && in(0) != NULL &&
 132       in(1) != NULL && phase->type(in(1)) != Type::TOP &&
 133       in(2) != NULL && phase->type(in(2)) != Type::TOP;
 134   }
 135   bool is_valid_counted_loop() const;
 136 #ifndef PRODUCT
 137   virtual void dump_spec(outputStream *st) const;
 138 #endif
 139 
 140   void verify_strip_mined(int expect_skeleton) const;
 141   virtual LoopNode* skip_strip_mined(int expect_skeleton = 1) { return this; }
 142   virtual IfTrueNode* outer_loop_tail() const { ShouldNotReachHere(); return NULL; }
 143   virtual OuterStripMinedLoopEndNode* outer_loop_end() const { ShouldNotReachHere(); return NULL; }
 144   virtual IfFalseNode* outer_loop_exit() const { ShouldNotReachHere(); return NULL; }
 145   virtual SafePointNode* outer_safepoint() const { ShouldNotReachHere(); return NULL; }
 146 };
 147 
 148 //------------------------------Counted Loops----------------------------------
 149 // Counted loops are all trip-counted loops, with exactly 1 trip-counter exit
 150 // path (and maybe some other exit paths).  The trip-counter exit is always
 151 // last in the loop.  The trip-counter have to stride by a constant;
 152 // the exit value is also loop invariant.
 153 
 154 // CountedLoopNodes and CountedLoopEndNodes come in matched pairs.  The
 155 // CountedLoopNode has the incoming loop control and the loop-back-control
 156 // which is always the IfTrue before the matching CountedLoopEndNode.  The
 157 // CountedLoopEndNode has an incoming control (possibly not the
 158 // CountedLoopNode if there is control flow in the loop), the post-increment
 159 // trip-counter value, and the limit.  The trip-counter value is always of
 160 // the form (Op old-trip-counter stride).  The old-trip-counter is produced
 161 // by a Phi connected to the CountedLoopNode.  The stride is constant.
 162 // The Op is any commutable opcode, including Add, Mul, Xor.  The
 163 // CountedLoopEndNode also takes in the loop-invariant limit value.
 164 
 165 // From a CountedLoopNode I can reach the matching CountedLoopEndNode via the
 166 // loop-back control.  From CountedLoopEndNodes I can reach CountedLoopNodes
 167 // via the old-trip-counter from the Op node.
 168 
 169 //------------------------------CountedLoopNode--------------------------------
 170 // CountedLoopNodes head simple counted loops.  CountedLoopNodes have as
 171 // inputs the incoming loop-start control and the loop-back control, so they
 172 // act like RegionNodes.  They also take in the initial trip counter, the
 173 // loop-invariant stride and the loop-invariant limit value.  CountedLoopNodes
 174 // produce a loop-body control and the trip counter value.  Since
 175 // CountedLoopNodes behave like RegionNodes I still have a standard CFG model.
 176 
 177 class CountedLoopNode : public LoopNode {
 178   // Size is bigger to hold _main_idx.  However, _main_idx does not change
 179   // the semantics so it does not appear in the hash & cmp functions.
 180   virtual uint size_of() const { return sizeof(*this); }
 181 
 182   // For Pre- and Post-loops during debugging ONLY, this holds the index of
 183   // the Main CountedLoop.  Used to assert that we understand the graph shape.
 184   node_idx_t _main_idx;
 185 
 186   // Known trip count calculated by compute_exact_trip_count()
 187   uint  _trip_count;
 188 
 189   // Expected trip count from profile data
 190   float _profile_trip_cnt;
 191 
 192   // Log2 of original loop bodies in unrolled loop
 193   int _unrolled_count_log2;
 194 
 195   // Node count prior to last unrolling - used to decide if
 196   // unroll,optimize,unroll,optimize,... is making progress
 197   int _node_count_before_unroll;
 198 
 199   // If slp analysis is performed we record the maximum
 200   // vector mapped unroll factor here
 201   int _slp_maximum_unroll_factor;
 202 
 203 public:
 204   CountedLoopNode( Node *entry, Node *backedge )
 205     : LoopNode(entry, backedge), _main_idx(0), _trip_count(max_juint),
 206       _profile_trip_cnt(COUNT_UNKNOWN), _unrolled_count_log2(0),
 207       _node_count_before_unroll(0), _slp_maximum_unroll_factor(0) {
 208     init_class_id(Class_CountedLoop);
 209     // Initialize _trip_count to the largest possible value.
 210     // Will be reset (lower) if the loop's trip count is known.
 211   }
 212 
 213   virtual int Opcode() const;
 214   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 215 
 216   Node *init_control() const { return in(EntryControl); }
 217   Node *back_control() const { return in(LoopBackControl); }
 218   CountedLoopEndNode *loopexit_or_null() const;
 219   CountedLoopEndNode *loopexit() const;
 220   Node *init_trip() const;
 221   Node *stride() const;
 222   int   stride_con() const;
 223   bool  stride_is_con() const;
 224   Node *limit() const;
 225   Node *incr() const;
 226   Node *phi() const;
 227 
 228   // Match increment with optional truncation
 229   static Node* match_incr_with_optional_truncation(Node* expr, Node** trunc1, Node** trunc2, const TypeInt** trunc_type);
 230 
 231   // A 'main' loop has a pre-loop and a post-loop.  The 'main' loop
 232   // can run short a few iterations and may start a few iterations in.
 233   // It will be RCE'd and unrolled and aligned.
 234 
 235   // A following 'post' loop will run any remaining iterations.  Used
 236   // during Range Check Elimination, the 'post' loop will do any final
 237   // iterations with full checks.  Also used by Loop Unrolling, where
 238   // the 'post' loop will do any epilog iterations needed.  Basically,
 239   // a 'post' loop can not profitably be further unrolled or RCE'd.
 240 
 241   // A preceding 'pre' loop will run at least 1 iteration (to do peeling),
 242   // it may do under-flow checks for RCE and may do alignment iterations
 243   // so the following main loop 'knows' that it is striding down cache
 244   // lines.
 245 
 246   // A 'main' loop that is ONLY unrolled or peeled, never RCE'd or
 247   // Aligned, may be missing it's pre-loop.
 248   int is_normal_loop   () const { return (_loop_flags&PreMainPostFlagsMask) == Normal; }
 249   int is_pre_loop      () const { return (_loop_flags&PreMainPostFlagsMask) == Pre;    }
 250   int is_main_loop     () const { return (_loop_flags&PreMainPostFlagsMask) == Main;   }
 251   int is_post_loop     () const { return (_loop_flags&PreMainPostFlagsMask) == Post;   }
 252   int is_reduction_loop() const { return (_loop_flags&HasReductions) == HasReductions; }
 253   int was_slp_analyzed () const { return (_loop_flags&WasSlpAnalyzed) == WasSlpAnalyzed; }
 254   int has_passed_slp   () const { return (_loop_flags&PassedSlpAnalysis) == PassedSlpAnalysis; }
 255   int do_unroll_only      () const { return (_loop_flags&DoUnrollOnly) == DoUnrollOnly; }
 256   int is_main_no_pre_loop() const { return _loop_flags & MainHasNoPreLoop; }
 257   int has_atomic_post_loop  () const { return (_loop_flags & HasAtomicPostLoop) == HasAtomicPostLoop; }
 258   void set_main_no_pre_loop() { _loop_flags |= MainHasNoPreLoop; }
 259 
 260   int main_idx() const { return _main_idx; }
 261 
 262 
 263   void set_pre_loop  (CountedLoopNode *main) { assert(is_normal_loop(),""); _loop_flags |= Pre ; _main_idx = main->_idx; }
 264   void set_main_loop (                     ) { assert(is_normal_loop(),""); _loop_flags |= Main;                         }
 265   void set_post_loop (CountedLoopNode *main) { assert(is_normal_loop(),""); _loop_flags |= Post; _main_idx = main->_idx; }
 266   void set_normal_loop(                    ) { _loop_flags &= ~PreMainPostFlagsMask; }
 267 
 268   void set_trip_count(uint tc) { _trip_count = tc; }
 269   uint trip_count()            { return _trip_count; }
 270 
 271   bool has_exact_trip_count() const { return (_loop_flags & HasExactTripCount) != 0; }
 272   void set_exact_trip_count(uint tc) {
 273     _trip_count = tc;
 274     _loop_flags |= HasExactTripCount;
 275   }
 276   void set_nonexact_trip_count() {
 277     _loop_flags &= ~HasExactTripCount;
 278   }
 279   void set_notpassed_slp() {
 280     _loop_flags &= ~PassedSlpAnalysis;
 281   }
 282 
 283   void set_profile_trip_cnt(float ptc) { _profile_trip_cnt = ptc; }
 284   float profile_trip_cnt()             { return _profile_trip_cnt; }
 285 
 286   void double_unrolled_count() { _unrolled_count_log2++; }
 287   int  unrolled_count()        { return 1 << MIN2(_unrolled_count_log2, BitsPerInt-3); }
 288 
 289   void set_node_count_before_unroll(int ct)  { _node_count_before_unroll = ct; }
 290   int  node_count_before_unroll()            { return _node_count_before_unroll; }
 291   void set_slp_max_unroll(int unroll_factor) { _slp_maximum_unroll_factor = unroll_factor; }
 292   int  slp_max_unroll() const                { return _slp_maximum_unroll_factor; }
 293 
 294   virtual LoopNode* skip_strip_mined(int expect_opaq = 1);
 295   OuterStripMinedLoopNode* outer_loop() const;
 296   virtual IfTrueNode* outer_loop_tail() const;
 297   virtual OuterStripMinedLoopEndNode* outer_loop_end() const;
 298   virtual IfFalseNode* outer_loop_exit() const;
 299   virtual SafePointNode* outer_safepoint() const;
 300 
 301   // If this is a main loop in a pre/main/post loop nest, walk over
 302   // the predicates that were inserted by
 303   // duplicate_predicates()/add_range_check_predicate()
 304   Node* skip_predicates();
 305 
 306 #ifndef PRODUCT
 307   virtual void dump_spec(outputStream *st) const;
 308 #endif
 309 };
 310 
 311 //------------------------------CountedLoopEndNode-----------------------------
 312 // CountedLoopEndNodes end simple trip counted loops.  They act much like
 313 // IfNodes.
 314 class CountedLoopEndNode : public IfNode {
 315 public:
 316   enum { TestControl, TestValue };
 317 
 318   CountedLoopEndNode( Node *control, Node *test, float prob, float cnt )
 319     : IfNode( control, test, prob, cnt) {
 320     init_class_id(Class_CountedLoopEnd);
 321   }
 322   virtual int Opcode() const;
 323 
 324   Node *cmp_node() const            { return (in(TestValue)->req() >=2) ? in(TestValue)->in(1) : NULL; }
 325   Node *incr() const                { Node *tmp = cmp_node(); return (tmp && tmp->req()==3) ? tmp->in(1) : NULL; }
 326   Node *limit() const               { Node *tmp = cmp_node(); return (tmp && tmp->req()==3) ? tmp->in(2) : NULL; }
 327   Node *stride() const              { Node *tmp = incr    (); return (tmp && tmp->req()==3) ? tmp->in(2) : NULL; }
 328   Node *init_trip() const           { Node *tmp = phi     (); return (tmp && tmp->req()==3) ? tmp->in(1) : NULL; }
 329   int stride_con() const;
 330   bool stride_is_con() const        { Node *tmp = stride  (); return (tmp != NULL && tmp->is_Con()); }
 331   BoolTest::mask test_trip() const  { return in(TestValue)->as_Bool()->_test._test; }
 332   PhiNode *phi() const {
 333     Node *tmp = incr();
 334     if (tmp && tmp->req() == 3) {
 335       Node* phi = tmp->in(1);
 336       if (phi->is_Phi()) {
 337         return phi->as_Phi();
 338       }
 339     }
 340     return NULL;
 341   }
 342   CountedLoopNode *loopnode() const {
 343     // The CountedLoopNode that goes with this CountedLoopEndNode may
 344     // have been optimized out by the IGVN so be cautious with the
 345     // pattern matching on the graph
 346     PhiNode* iv_phi = phi();
 347     if (iv_phi == NULL) {
 348       return NULL;
 349     }
 350     Node *ln = iv_phi->in(0);
 351     if (ln->is_CountedLoop() && ln->as_CountedLoop()->loopexit_or_null() == this) {
 352       return (CountedLoopNode*)ln;
 353     }
 354     return NULL;
 355   }
 356 
 357 #ifndef PRODUCT
 358   virtual void dump_spec(outputStream *st) const;
 359 #endif
 360 };
 361 
 362 
 363 inline CountedLoopEndNode *CountedLoopNode::loopexit_or_null() const {
 364   Node *bc = back_control();
 365   if( bc == NULL ) return NULL;
 366   Node *le = bc->in(0);
 367   if( le->Opcode() != Op_CountedLoopEnd )
 368     return NULL;
 369   return (CountedLoopEndNode*)le;
 370 }
 371 inline CountedLoopEndNode *CountedLoopNode::loopexit() const {
 372   CountedLoopEndNode* cle = loopexit_or_null();
 373   assert(cle != NULL, "loopexit is NULL");
 374   return cle;
 375 }
 376 inline Node *CountedLoopNode::init_trip() const { return loopexit_or_null() ? loopexit()->init_trip() : NULL; }
 377 inline Node *CountedLoopNode::stride() const { return loopexit_or_null() ? loopexit()->stride() : NULL; }
 378 inline int CountedLoopNode::stride_con() const { return loopexit_or_null() ? loopexit()->stride_con() : 0; }
 379 inline bool CountedLoopNode::stride_is_con() const { return loopexit_or_null() && loopexit()->stride_is_con(); }
 380 inline Node *CountedLoopNode::limit() const { return loopexit_or_null() ? loopexit()->limit() : NULL; }
 381 inline Node *CountedLoopNode::incr() const { return loopexit_or_null() ? loopexit()->incr() : NULL; }
 382 inline Node *CountedLoopNode::phi() const { return loopexit_or_null() ? loopexit()->phi() : NULL; }
 383 
 384 //------------------------------LoopLimitNode-----------------------------
 385 // Counted Loop limit node which represents exact final iterator value:
 386 // trip_count = (limit - init_trip + stride - 1)/stride
 387 // final_value= trip_count * stride + init_trip.
 388 // Use HW instructions to calculate it when it can overflow in integer.
 389 // Note, final_value should fit into integer since counted loop has
 390 // limit check: limit <= max_int-stride.
 391 class LoopLimitNode : public Node {
 392   enum { Init=1, Limit=2, Stride=3 };
 393  public:
 394   LoopLimitNode( Compile* C, Node *init, Node *limit, Node *stride ) : Node(0,init,limit,stride) {
 395     // Put it on the Macro nodes list to optimize during macro nodes expansion.
 396     init_flags(Flag_is_macro);
 397     C->add_macro_node(this);
 398   }
 399   virtual int Opcode() const;
 400   virtual const Type *bottom_type() const { return TypeInt::INT; }
 401   virtual uint ideal_reg() const { return Op_RegI; }
 402   virtual const Type* Value(PhaseGVN* phase) const;
 403   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 404   virtual Node* Identity(PhaseGVN* phase);
 405 };
 406 
 407 // Support for strip mining
 408 class OuterStripMinedLoopNode : public LoopNode {
 409 private:
 410   CountedLoopNode* inner_loop() const;
 411 public:
 412   OuterStripMinedLoopNode(Compile* C, Node *entry, Node *backedge)
 413     : LoopNode(entry, backedge) {
 414     init_class_id(Class_OuterStripMinedLoop);
 415     init_flags(Flag_is_macro);
 416     C->add_macro_node(this);
 417   }
 418 
 419   virtual int Opcode() const;
 420 
 421   virtual IfTrueNode* outer_loop_tail() const;
 422   virtual OuterStripMinedLoopEndNode* outer_loop_end() const;
 423   virtual IfFalseNode* outer_loop_exit() const;
 424   virtual SafePointNode* outer_safepoint() const;
 425   void adjust_strip_mined_loop(PhaseIterGVN* igvn);
 426 };
 427 
 428 class OuterStripMinedLoopEndNode : public IfNode {
 429 public:
 430   OuterStripMinedLoopEndNode(Node *control, Node *test, float prob, float cnt)
 431     : IfNode(control, test, prob, cnt) {
 432     init_class_id(Class_OuterStripMinedLoopEnd);
 433   }
 434 
 435   virtual int Opcode() const;
 436 
 437   virtual const Type* Value(PhaseGVN* phase) const;
 438   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 439 };
 440 
 441 // -----------------------------IdealLoopTree----------------------------------
 442 class IdealLoopTree : public ResourceObj {
 443 public:
 444   IdealLoopTree *_parent;       // Parent in loop tree
 445   IdealLoopTree *_next;         // Next sibling in loop tree
 446   IdealLoopTree *_child;        // First child in loop tree
 447 
 448   // The head-tail backedge defines the loop.
 449   // If tail is NULL then this loop has multiple backedges as part of the
 450   // same loop.  During cleanup I'll peel off the multiple backedges; merge
 451   // them at the loop bottom and flow 1 real backedge into the loop.
 452   Node *_head;                  // Head of loop
 453   Node *_tail;                  // Tail of loop
 454   inline Node *tail();          // Handle lazy update of _tail field
 455   PhaseIdealLoop* _phase;
 456   int _local_loop_unroll_limit;
 457   int _local_loop_unroll_factor;
 458 
 459   Node_List _body;              // Loop body for inner loops
 460 
 461   uint8_t _nest;                // Nesting depth
 462   uint8_t _irreducible:1,       // True if irreducible
 463           _has_call:1,          // True if has call safepoint
 464           _has_sfpt:1,          // True if has non-call safepoint
 465           _rce_candidate:1;     // True if candidate for range check elimination
 466 
 467   Node_List* _safepts;          // List of safepoints in this loop
 468   Node_List* _required_safept;  // A inner loop cannot delete these safepts;
 469   bool  _allow_optimizations;   // Allow loop optimizations
 470 
 471   IdealLoopTree( PhaseIdealLoop* phase, Node *head, Node *tail )
 472     : _parent(0), _next(0), _child(0),
 473       _head(head), _tail(tail),
 474       _phase(phase),
 475       _safepts(NULL),
 476       _required_safept(NULL),
 477       _allow_optimizations(true),
 478       _nest(0), _irreducible(0), _has_call(0), _has_sfpt(0), _rce_candidate(0),
 479       _local_loop_unroll_limit(0), _local_loop_unroll_factor(0)
 480   { }
 481 
 482   // Is 'l' a member of 'this'?
 483   bool is_member(const IdealLoopTree *l) const; // Test for nested membership
 484 
 485   // Set loop nesting depth.  Accumulate has_call bits.
 486   int set_nest( uint depth );
 487 
 488   // Split out multiple fall-in edges from the loop header.  Move them to a
 489   // private RegionNode before the loop.  This becomes the loop landing pad.
 490   void split_fall_in( PhaseIdealLoop *phase, int fall_in_cnt );
 491 
 492   // Split out the outermost loop from this shared header.
 493   void split_outer_loop( PhaseIdealLoop *phase );
 494 
 495   // Merge all the backedges from the shared header into a private Region.
 496   // Feed that region as the one backedge to this loop.
 497   void merge_many_backedges( PhaseIdealLoop *phase );
 498 
 499   // Split shared headers and insert loop landing pads.
 500   // Insert a LoopNode to replace the RegionNode.
 501   // Returns TRUE if loop tree is structurally changed.
 502   bool beautify_loops( PhaseIdealLoop *phase );
 503 
 504   // Perform optimization to use the loop predicates for null checks and range checks.
 505   // Applies to any loop level (not just the innermost one)
 506   bool loop_predication( PhaseIdealLoop *phase);
 507 
 508   // Perform iteration-splitting on inner loops.  Split iterations to
 509   // avoid range checks or one-shot null checks.  Returns false if the
 510   // current round of loop opts should stop.
 511   bool iteration_split( PhaseIdealLoop *phase, Node_List &old_new );
 512 
 513   // Driver for various flavors of iteration splitting.  Returns false
 514   // if the current round of loop opts should stop.
 515   bool iteration_split_impl( PhaseIdealLoop *phase, Node_List &old_new );
 516 
 517   // Given dominators, try to find loops with calls that must always be
 518   // executed (call dominates loop tail).  These loops do not need non-call
 519   // safepoints (ncsfpt).
 520   void check_safepts(VectorSet &visited, Node_List &stack);
 521 
 522   // Allpaths backwards scan from loop tail, terminating each path at first safepoint
 523   // encountered.
 524   void allpaths_check_safepts(VectorSet &visited, Node_List &stack);
 525 
 526   // Remove safepoints from loop. Optionally keeping one.
 527   void remove_safepoints(PhaseIdealLoop* phase, bool keep_one);
 528 
 529   // Convert to counted loops where possible
 530   void counted_loop( PhaseIdealLoop *phase );
 531 
 532   // Check for Node being a loop-breaking test
 533   Node *is_loop_exit(Node *iff) const;
 534 
 535   // Remove simplistic dead code from loop body
 536   void DCE_loop_body();
 537 
 538   // Look for loop-exit tests with my 50/50 guesses from the Parsing stage.
 539   // Replace with a 1-in-10 exit guess.
 540   void adjust_loop_exit_prob( PhaseIdealLoop *phase );
 541 
 542   // Return TRUE or FALSE if the loop should never be RCE'd or aligned.
 543   // Useful for unrolling loops with NO array accesses.
 544   bool policy_peel_only( PhaseIdealLoop *phase ) const;
 545 
 546   // Return TRUE or FALSE if the loop should be unswitched -- clone
 547   // loop with an invariant test
 548   bool policy_unswitching( PhaseIdealLoop *phase ) const;
 549 
 550   // Micro-benchmark spamming.  Remove empty loops.
 551   bool policy_do_remove_empty_loop( PhaseIdealLoop *phase );
 552 
 553   // Convert one iteration loop into normal code.
 554   bool policy_do_one_iteration_loop( PhaseIdealLoop *phase );
 555 
 556   // Return TRUE or FALSE if the loop should be peeled or not.  Peel if we can
 557   // make some loop-invariant test (usually a null-check) happen before the
 558   // loop.
 559   bool policy_peeling( PhaseIdealLoop *phase ) const;
 560 
 561   // Return TRUE or FALSE if the loop should be maximally unrolled. Stash any
 562   // known trip count in the counted loop node.
 563   bool policy_maximally_unroll( PhaseIdealLoop *phase ) const;
 564 
 565   // Return TRUE or FALSE if the loop should be unrolled or not.  Unroll if
 566   // the loop is a CountedLoop and the body is small enough.
 567   bool policy_unroll(PhaseIdealLoop *phase);
 568 
 569   // Loop analyses to map to a maximal superword unrolling for vectorization.
 570   void policy_unroll_slp_analysis(CountedLoopNode *cl, PhaseIdealLoop *phase, int future_unroll_ct);
 571 
 572   // Return TRUE or FALSE if the loop should be range-check-eliminated.
 573   // Gather a list of IF tests that are dominated by iteration splitting;
 574   // also gather the end of the first split and the start of the 2nd split.
 575   bool policy_range_check( PhaseIdealLoop *phase ) const;
 576 
 577   // Return TRUE or FALSE if the loop should be cache-line aligned.
 578   // Gather the expression that does the alignment.  Note that only
 579   // one array base can be aligned in a loop (unless the VM guarantees
 580   // mutual alignment).  Note that if we vectorize short memory ops
 581   // into longer memory ops, we may want to increase alignment.
 582   bool policy_align( PhaseIdealLoop *phase ) const;
 583 
 584   // Return TRUE if "iff" is a range check.
 585   bool is_range_check_if(IfNode *iff, PhaseIdealLoop *phase, Invariance& invar) const;
 586 
 587   // Compute loop trip count if possible
 588   void compute_trip_count(PhaseIdealLoop* phase);
 589 
 590   // Compute loop trip count from profile data
 591   void compute_profile_trip_cnt( PhaseIdealLoop *phase );
 592 
 593   // Reassociate invariant expressions.
 594   void reassociate_invariants(PhaseIdealLoop *phase);
 595   // Reassociate invariant add and subtract expressions.
 596   Node* reassociate_add_sub(Node* n1, PhaseIdealLoop *phase);
 597   // Return nonzero index of invariant operand if invariant and variant
 598   // are combined with an Add or Sub. Helper for reassociate_invariants.
 599   int is_invariant_addition(Node* n, PhaseIdealLoop *phase);
 600 
 601   // Return true if n is invariant
 602   bool is_invariant(Node* n) const;
 603 
 604   // Put loop body on igvn work list
 605   void record_for_igvn();
 606 
 607   bool is_loop()    { return !_irreducible && _tail && !_tail->is_top(); }
 608   bool is_inner()   { return is_loop() && _child == NULL; }
 609   bool is_counted() { return is_loop() && _head != NULL && _head->is_CountedLoop(); }
 610 
 611   void remove_main_post_loops(CountedLoopNode *cl, PhaseIdealLoop *phase);
 612 
 613 #ifndef PRODUCT
 614   void dump_head( ) const;      // Dump loop head only
 615   void dump() const;            // Dump this loop recursively
 616   void verify_tree(IdealLoopTree *loop, const IdealLoopTree *parent) const;
 617 #endif
 618 
 619 };
 620 
 621 // -----------------------------PhaseIdealLoop---------------------------------
 622 // Computes the mapping from Nodes to IdealLoopTrees.  Organizes IdealLoopTrees into a
 623 // loop tree.  Drives the loop-based transformations on the ideal graph.
 624 class PhaseIdealLoop : public PhaseTransform {
 625   friend class IdealLoopTree;
 626   friend class SuperWord;
 627   friend class CountedLoopReserveKit;
 628 
 629   // Pre-computed def-use info
 630   PhaseIterGVN &_igvn;
 631 
 632   // Head of loop tree
 633   IdealLoopTree *_ltree_root;
 634 
 635   // Array of pre-order numbers, plus post-visited bit.
 636   // ZERO for not pre-visited.  EVEN for pre-visited but not post-visited.
 637   // ODD for post-visited.  Other bits are the pre-order number.
 638   uint *_preorders;
 639   uint _max_preorder;
 640 
 641   const PhaseIdealLoop* _verify_me;
 642   bool _verify_only;
 643 
 644   // Allocate _preorders[] array
 645   void allocate_preorders() {
 646     _max_preorder = C->unique()+8;
 647     _preorders = NEW_RESOURCE_ARRAY(uint, _max_preorder);
 648     memset(_preorders, 0, sizeof(uint) * _max_preorder);
 649   }
 650 
 651   // Allocate _preorders[] array
 652   void reallocate_preorders() {
 653     if ( _max_preorder < C->unique() ) {
 654       _preorders = REALLOC_RESOURCE_ARRAY(uint, _preorders, _max_preorder, C->unique());
 655       _max_preorder = C->unique();
 656     }
 657     memset(_preorders, 0, sizeof(uint) * _max_preorder);
 658   }
 659 
 660   // Check to grow _preorders[] array for the case when build_loop_tree_impl()
 661   // adds new nodes.
 662   void check_grow_preorders( ) {
 663     if ( _max_preorder < C->unique() ) {
 664       uint newsize = _max_preorder<<1;  // double size of array
 665       _preorders = REALLOC_RESOURCE_ARRAY(uint, _preorders, _max_preorder, newsize);
 666       memset(&_preorders[_max_preorder],0,sizeof(uint)*(newsize-_max_preorder));
 667       _max_preorder = newsize;
 668     }
 669   }
 670   // Check for pre-visited.  Zero for NOT visited; non-zero for visited.
 671   int is_visited( Node *n ) const { return _preorders[n->_idx]; }
 672   // Pre-order numbers are written to the Nodes array as low-bit-set values.
 673   void set_preorder_visited( Node *n, int pre_order ) {
 674     assert( !is_visited( n ), "already set" );
 675     _preorders[n->_idx] = (pre_order<<1);
 676   };
 677   // Return pre-order number.
 678   int get_preorder( Node *n ) const { assert( is_visited(n), "" ); return _preorders[n->_idx]>>1; }
 679 
 680   // Check for being post-visited.
 681   // Should be previsited already (checked with assert(is_visited(n))).
 682   int is_postvisited( Node *n ) const { assert( is_visited(n), "" ); return _preorders[n->_idx]&1; }
 683 
 684   // Mark as post visited
 685   void set_postvisited( Node *n ) { assert( !is_postvisited( n ), "" ); _preorders[n->_idx] |= 1; }
 686 
 687   // Set/get control node out.  Set lower bit to distinguish from IdealLoopTree
 688   // Returns true if "n" is a data node, false if it's a control node.
 689   bool has_ctrl( Node *n ) const { return ((intptr_t)_nodes[n->_idx]) & 1; }
 690 
 691   // clear out dead code after build_loop_late
 692   Node_List _deadlist;
 693 
 694   // Support for faster execution of get_late_ctrl()/dom_lca()
 695   // when a node has many uses and dominator depth is deep.
 696   Node_Array _dom_lca_tags;
 697   void   init_dom_lca_tags();
 698   void   clear_dom_lca_tags();
 699 
 700   // Helper for debugging bad dominance relationships
 701   bool verify_dominance(Node* n, Node* use, Node* LCA, Node* early);
 702 
 703   Node* compute_lca_of_uses(Node* n, Node* early, bool verify = false);
 704 
 705   // Inline wrapper for frequent cases:
 706   // 1) only one use
 707   // 2) a use is the same as the current LCA passed as 'n1'
 708   Node *dom_lca_for_get_late_ctrl( Node *lca, Node *n, Node *tag ) {
 709     assert( n->is_CFG(), "" );
 710     // Fast-path NULL lca
 711     if( lca != NULL && lca != n ) {
 712       assert( lca->is_CFG(), "" );
 713       // find LCA of all uses
 714       n = dom_lca_for_get_late_ctrl_internal( lca, n, tag );
 715     }
 716     return find_non_split_ctrl(n);
 717   }
 718   Node *dom_lca_for_get_late_ctrl_internal( Node *lca, Node *n, Node *tag );
 719 
 720   // Helper function for directing control inputs away from CFG split
 721   // points.
 722   Node *find_non_split_ctrl( Node *ctrl ) const {
 723     if (ctrl != NULL) {
 724       if (ctrl->is_MultiBranch()) {
 725         ctrl = ctrl->in(0);
 726       }
 727       assert(ctrl->is_CFG(), "CFG");
 728     }
 729     return ctrl;
 730   }
 731 
 732   Node* cast_incr_before_loop(Node* incr, Node* ctrl, Node* loop);
 733   void duplicate_predicates(CountedLoopNode* pre_head, Node *min_taken, Node* castii,
 734                             IdealLoopTree* outer_loop, LoopNode* outer_main_head,
 735                             uint dd_main_head);
 736 
 737 public:
 738 
 739   static bool is_canonical_loop_entry(CountedLoopNode* cl);
 740 
 741   bool has_node( Node* n ) const {
 742     guarantee(n != NULL, "No Node.");
 743     return _nodes[n->_idx] != NULL;
 744   }
 745   // check if transform created new nodes that need _ctrl recorded
 746   Node *get_late_ctrl( Node *n, Node *early );
 747   Node *get_early_ctrl( Node *n );
 748   Node *get_early_ctrl_for_expensive(Node *n, Node* earliest);
 749   void set_early_ctrl( Node *n );
 750   void set_subtree_ctrl( Node *root );
 751   void set_ctrl( Node *n, Node *ctrl ) {
 752     assert( !has_node(n) || has_ctrl(n), "" );
 753     assert( ctrl->in(0), "cannot set dead control node" );
 754     assert( ctrl == find_non_split_ctrl(ctrl), "must set legal crtl" );
 755     _nodes.map( n->_idx, (Node*)((intptr_t)ctrl + 1) );
 756   }
 757   // Set control and update loop membership
 758   void set_ctrl_and_loop(Node* n, Node* ctrl) {
 759     IdealLoopTree* old_loop = get_loop(get_ctrl(n));
 760     IdealLoopTree* new_loop = get_loop(ctrl);
 761     if (old_loop != new_loop) {
 762       if (old_loop->_child == NULL) old_loop->_body.yank(n);
 763       if (new_loop->_child == NULL) new_loop->_body.push(n);
 764     }
 765     set_ctrl(n, ctrl);
 766   }
 767   // Control nodes can be replaced or subsumed.  During this pass they
 768   // get their replacement Node in slot 1.  Instead of updating the block
 769   // location of all Nodes in the subsumed block, we lazily do it.  As we
 770   // pull such a subsumed block out of the array, we write back the final
 771   // correct block.
 772   Node *get_ctrl( Node *i ) {
 773     assert(has_node(i), "");
 774     Node *n = get_ctrl_no_update(i);
 775     _nodes.map( i->_idx, (Node*)((intptr_t)n + 1) );
 776     assert(has_node(i) && has_ctrl(i), "");
 777     assert(n == find_non_split_ctrl(n), "must return legal ctrl" );
 778     return n;
 779   }
 780   // true if CFG node d dominates CFG node n
 781   bool is_dominator(Node *d, Node *n);
 782   // return get_ctrl for a data node and self(n) for a CFG node
 783   Node* ctrl_or_self(Node* n) {
 784     if (has_ctrl(n))
 785       return get_ctrl(n);
 786     else {
 787       assert (n->is_CFG(), "must be a CFG node");
 788       return n;
 789     }
 790   }
 791 
 792 private:
 793   Node *get_ctrl_no_update_helper(Node *i) const {
 794     assert(has_ctrl(i), "should be control, not loop");
 795     return (Node*)(((intptr_t)_nodes[i->_idx]) & ~1);
 796   }
 797 
 798   Node *get_ctrl_no_update(Node *i) const {
 799     assert( has_ctrl(i), "" );
 800     Node *n = get_ctrl_no_update_helper(i);
 801     if (!n->in(0)) {
 802       // Skip dead CFG nodes
 803       do {
 804         n = get_ctrl_no_update_helper(n);
 805       } while (!n->in(0));
 806       n = find_non_split_ctrl(n);
 807     }
 808     return n;
 809   }
 810 
 811   // Check for loop being set
 812   // "n" must be a control node. Returns true if "n" is known to be in a loop.
 813   bool has_loop( Node *n ) const {
 814     assert(!has_node(n) || !has_ctrl(n), "");
 815     return has_node(n);
 816   }
 817   // Set loop
 818   void set_loop( Node *n, IdealLoopTree *loop ) {
 819     _nodes.map(n->_idx, (Node*)loop);
 820   }
 821   // Lazy-dazy update of 'get_ctrl' and 'idom_at' mechanisms.  Replace
 822   // the 'old_node' with 'new_node'.  Kill old-node.  Add a reference
 823   // from old_node to new_node to support the lazy update.  Reference
 824   // replaces loop reference, since that is not needed for dead node.
 825 public:
 826   void lazy_update(Node *old_node, Node *new_node) {
 827     assert(old_node != new_node, "no cycles please");
 828     // Re-use the side array slot for this node to provide the
 829     // forwarding pointer.
 830     _nodes.map(old_node->_idx, (Node*)((intptr_t)new_node + 1));
 831   }
 832   void lazy_replace(Node *old_node, Node *new_node) {
 833     _igvn.replace_node(old_node, new_node);
 834     lazy_update(old_node, new_node);
 835   }
 836 
 837 private:
 838 
 839   // Place 'n' in some loop nest, where 'n' is a CFG node
 840   void build_loop_tree();
 841   int build_loop_tree_impl( Node *n, int pre_order );
 842   // Insert loop into the existing loop tree.  'innermost' is a leaf of the
 843   // loop tree, not the root.
 844   IdealLoopTree *sort( IdealLoopTree *loop, IdealLoopTree *innermost );
 845 
 846   // Place Data nodes in some loop nest
 847   void build_loop_early( VectorSet &visited, Node_List &worklist, Node_Stack &nstack );
 848   void build_loop_late ( VectorSet &visited, Node_List &worklist, Node_Stack &nstack );
 849   void build_loop_late_post ( Node* n );
 850   void verify_strip_mined_scheduling(Node *n, Node* least);
 851 
 852   // Array of immediate dominance info for each CFG node indexed by node idx
 853 private:
 854   uint _idom_size;
 855   Node **_idom;                 // Array of immediate dominators
 856   uint *_dom_depth;           // Used for fast LCA test
 857   GrowableArray<uint>* _dom_stk; // For recomputation of dom depth
 858 
 859   Node* idom_no_update(Node* d) const {
 860     assert(d->_idx < _idom_size, "oob");
 861     Node* n = _idom[d->_idx];
 862     assert(n != NULL,"Bad immediate dominator info.");
 863     while (n->in(0) == NULL) {  // Skip dead CFG nodes
 864       //n = n->in(1);
 865       n = (Node*)(((intptr_t)_nodes[n->_idx]) & ~1);
 866       assert(n != NULL,"Bad immediate dominator info.");
 867     }
 868     return n;
 869   }
 870   Node *idom(Node* d) const {
 871     uint didx = d->_idx;
 872     Node *n = idom_no_update(d);
 873     _idom[didx] = n;            // Lazily remove dead CFG nodes from table.
 874     return n;
 875   }
 876   uint dom_depth(Node* d) const {
 877     guarantee(d != NULL, "Null dominator info.");
 878     guarantee(d->_idx < _idom_size, "");
 879     return _dom_depth[d->_idx];
 880   }
 881   void set_idom(Node* d, Node* n, uint dom_depth);
 882   // Locally compute IDOM using dom_lca call
 883   Node *compute_idom( Node *region ) const;
 884   // Recompute dom_depth
 885   void recompute_dom_depth();
 886 
 887   // Is safept not required by an outer loop?
 888   bool is_deleteable_safept(Node* sfpt);
 889 
 890   // Replace parallel induction variable (parallel to trip counter)
 891   void replace_parallel_iv(IdealLoopTree *loop);
 892 
 893   // Perform verification that the graph is valid.
 894   PhaseIdealLoop( PhaseIterGVN &igvn) :
 895     PhaseTransform(Ideal_Loop),
 896     _igvn(igvn),
 897     _dom_lca_tags(arena()), // Thread::resource_area
 898     _verify_me(NULL),
 899     _verify_only(true) {
 900     build_and_optimize(false, false);
 901   }
 902 
 903   // build the loop tree and perform any requested optimizations
 904   void build_and_optimize(bool do_split_if, bool skip_loop_opts);
 905 
 906 public:
 907   // Dominators for the sea of nodes
 908   void Dominators();
 909   Node *dom_lca( Node *n1, Node *n2 ) const {
 910     return find_non_split_ctrl(dom_lca_internal(n1, n2));
 911   }
 912   Node *dom_lca_internal( Node *n1, Node *n2 ) const;
 913 
 914   // Compute the Ideal Node to Loop mapping
 915   PhaseIdealLoop( PhaseIterGVN &igvn, bool do_split_ifs, bool skip_loop_opts = false) :
 916     PhaseTransform(Ideal_Loop),
 917     _igvn(igvn),
 918     _dom_lca_tags(arena()), // Thread::resource_area
 919     _verify_me(NULL),
 920     _verify_only(false) {
 921     build_and_optimize(do_split_ifs, skip_loop_opts);
 922   }
 923 
 924   // Verify that verify_me made the same decisions as a fresh run.
 925   PhaseIdealLoop( PhaseIterGVN &igvn, const PhaseIdealLoop *verify_me) :
 926     PhaseTransform(Ideal_Loop),
 927     _igvn(igvn),
 928     _dom_lca_tags(arena()), // Thread::resource_area
 929     _verify_me(verify_me),
 930     _verify_only(false) {
 931     build_and_optimize(false, false);
 932   }
 933 
 934   // Build and verify the loop tree without modifying the graph.  This
 935   // is useful to verify that all inputs properly dominate their uses.
 936   static void verify(PhaseIterGVN& igvn) {
 937 #ifdef ASSERT
 938     PhaseIdealLoop v(igvn);
 939 #endif
 940   }
 941 
 942   // True if the method has at least 1 irreducible loop
 943   bool _has_irreducible_loops;
 944 
 945   // Per-Node transform
 946   virtual Node *transform( Node *a_node ) { return 0; }
 947 
 948   bool is_counted_loop(Node* x, IdealLoopTree*& loop);
 949   IdealLoopTree* create_outer_strip_mined_loop(BoolNode *test, Node *cmp, Node *init_control,
 950                                                IdealLoopTree* loop, float cl_prob, float le_fcnt,
 951                                                Node*& entry_control, Node*& iffalse);
 952 
 953   Node* exact_limit( IdealLoopTree *loop );
 954 
 955   // Return a post-walked LoopNode
 956   IdealLoopTree *get_loop( Node *n ) const {
 957     // Dead nodes have no loop, so return the top level loop instead
 958     if (!has_node(n))  return _ltree_root;
 959     assert(!has_ctrl(n), "");
 960     return (IdealLoopTree*)_nodes[n->_idx];
 961   }
 962 
 963   // Is 'n' a (nested) member of 'loop'?
 964   int is_member( const IdealLoopTree *loop, Node *n ) const {
 965     return loop->is_member(get_loop(n)); }
 966 
 967   // This is the basic building block of the loop optimizations.  It clones an
 968   // entire loop body.  It makes an old_new loop body mapping; with this
 969   // mapping you can find the new-loop equivalent to an old-loop node.  All
 970   // new-loop nodes are exactly equal to their old-loop counterparts, all
 971   // edges are the same.  All exits from the old-loop now have a RegionNode
 972   // that merges the equivalent new-loop path.  This is true even for the
 973   // normal "loop-exit" condition.  All uses of loop-invariant old-loop values
 974   // now come from (one or more) Phis that merge their new-loop equivalents.
 975   // Parameter side_by_side_idom:
 976   //   When side_by_size_idom is NULL, the dominator tree is constructed for
 977   //      the clone loop to dominate the original.  Used in construction of
 978   //      pre-main-post loop sequence.
 979   //   When nonnull, the clone and original are side-by-side, both are
 980   //      dominated by the passed in side_by_side_idom node.  Used in
 981   //      construction of unswitched loops.
 982   enum CloneLoopMode {
 983     IgnoreStripMined = 0,        // Only clone inner strip mined loop
 984     CloneIncludesStripMined = 1, // clone both inner and outer strip mined loops
 985     ControlAroundStripMined = 2  // Only clone inner strip mined loop,
 986                                  // result control flow branches
 987                                  // either to inner clone or outer
 988                                  // strip mined loop.
 989   };
 990   void clone_loop( IdealLoopTree *loop, Node_List &old_new, int dom_depth,
 991                   CloneLoopMode mode, Node* side_by_side_idom = NULL);
 992   void clone_loop_handle_data_uses(Node* old, Node_List &old_new,
 993                                    IdealLoopTree* loop, IdealLoopTree* companion_loop,
 994                                    Node_List*& split_if_set, Node_List*& split_bool_set,
 995                                    Node_List*& split_cex_set, Node_List& worklist,
 996                                    uint new_counter, CloneLoopMode mode);
 997   void clone_outer_loop(LoopNode* head, CloneLoopMode mode, IdealLoopTree *loop,
 998                         IdealLoopTree* outer_loop, int dd, Node_List &old_new,
 999                         Node_List& extra_data_nodes);
1000 
1001   // If we got the effect of peeling, either by actually peeling or by
1002   // making a pre-loop which must execute at least once, we can remove
1003   // all loop-invariant dominated tests in the main body.
1004   void peeled_dom_test_elim( IdealLoopTree *loop, Node_List &old_new );
1005 
1006   // Generate code to do a loop peel for the given loop (and body).
1007   // old_new is a temp array.
1008   void do_peeling( IdealLoopTree *loop, Node_List &old_new );
1009 
1010   // Add pre and post loops around the given loop.  These loops are used
1011   // during RCE, unrolling and aligning loops.
1012   void insert_pre_post_loops( IdealLoopTree *loop, Node_List &old_new, bool peel_only );
1013 
1014   // Add post loop after the given loop.
1015   Node *insert_post_loop(IdealLoopTree *loop, Node_List &old_new,
1016                          CountedLoopNode *main_head, CountedLoopEndNode *main_end,
1017                          Node *incr, Node *limit, CountedLoopNode *&post_head);
1018 
1019   // Add an RCE'd post loop which we will multi-version adapt for run time test path usage
1020   void insert_scalar_rced_post_loop( IdealLoopTree *loop, Node_List &old_new );
1021 
1022   // Add a vector post loop between a vector main loop and the current post loop
1023   void insert_vector_post_loop(IdealLoopTree *loop, Node_List &old_new);
1024   // If Node n lives in the back_ctrl block, we clone a private version of n
1025   // in preheader_ctrl block and return that, otherwise return n.
1026   Node *clone_up_backedge_goo( Node *back_ctrl, Node *preheader_ctrl, Node *n, VectorSet &visited, Node_Stack &clones );
1027 
1028   // Take steps to maximally unroll the loop.  Peel any odd iterations, then
1029   // unroll to do double iterations.  The next round of major loop transforms
1030   // will repeat till the doubled loop body does all remaining iterations in 1
1031   // pass.
1032   void do_maximally_unroll( IdealLoopTree *loop, Node_List &old_new );
1033 
1034   // Unroll the loop body one step - make each trip do 2 iterations.
1035   void do_unroll( IdealLoopTree *loop, Node_List &old_new, bool adjust_min_trip );
1036 
1037   // Mark vector reduction candidates before loop unrolling
1038   void mark_reductions( IdealLoopTree *loop );
1039 
1040   // Return true if exp is a constant times an induction var
1041   bool is_scaled_iv(Node* exp, Node* iv, int* p_scale);
1042 
1043   // Return true if exp is a scaled induction var plus (or minus) constant
1044   bool is_scaled_iv_plus_offset(Node* exp, Node* iv, int* p_scale, Node** p_offset, int depth = 0);
1045 
1046   // Create a new if above the uncommon_trap_if_pattern for the predicate to be promoted
1047   ProjNode* create_new_if_for_predicate(ProjNode* cont_proj, Node* new_entry,
1048                                         Deoptimization::DeoptReason reason,
1049                                         int opcode);
1050   void register_control(Node* n, IdealLoopTree *loop, Node* pred);
1051 
1052   // Clone loop predicates to cloned loops (peeled, unswitched)
1053   static ProjNode* clone_predicate(ProjNode* predicate_proj, Node* new_entry,
1054                                    Deoptimization::DeoptReason reason,
1055                                    PhaseIdealLoop* loop_phase,
1056                                    PhaseIterGVN* igvn);
1057 
1058   static Node* clone_loop_predicates(Node* old_entry, Node* new_entry,
1059                                          bool clone_limit_check,
1060                                          PhaseIdealLoop* loop_phase,
1061                                          PhaseIterGVN* igvn);
1062   Node* clone_loop_predicates(Node* old_entry, Node* new_entry, bool clone_limit_check);
1063 
1064   static Node* skip_loop_predicates(Node* entry);
1065 
1066   // Find a good location to insert a predicate
1067   static ProjNode* find_predicate_insertion_point(Node* start_c, Deoptimization::DeoptReason reason);
1068   // Find a predicate
1069   static Node* find_predicate(Node* entry);
1070   // Construct a range check for a predicate if
1071   BoolNode* rc_predicate(IdealLoopTree *loop, Node* ctrl,
1072                          int scale, Node* offset,
1073                          Node* init, Node* limit, jint stride,
1074                          Node* range, bool upper, bool &overflow);
1075 
1076   // Implementation of the loop predication to promote checks outside the loop
1077   bool loop_predication_impl(IdealLoopTree *loop);
1078   ProjNode* insert_skeleton_predicate(IfNode* iff, IdealLoopTree *loop,
1079                                       ProjNode* proj, ProjNode *predicate_proj,
1080                                       ProjNode* upper_bound_proj,
1081                                       int scale, Node* offset,
1082                                       Node* init, Node* limit, jint stride,
1083                                       Node* rng, bool& overflow);
1084   Node* add_range_check_predicate(IdealLoopTree* loop, CountedLoopNode* cl,
1085                                   Node* predicate_proj, int scale_con, Node* offset,
1086                                   Node* limit, jint stride_con);
1087 
1088   // Helper function to collect predicate for eliminating the useless ones
1089   void collect_potentially_useful_predicates(IdealLoopTree *loop, Unique_Node_List &predicate_opaque1);
1090   void eliminate_useless_predicates();
1091 
1092   // Change the control input of expensive nodes to allow commoning by
1093   // IGVN when it is guaranteed to not result in a more frequent
1094   // execution of the expensive node. Return true if progress.
1095   bool process_expensive_nodes();
1096 
1097   // Check whether node has become unreachable
1098   bool is_node_unreachable(Node *n) const {
1099     return !has_node(n) || n->is_unreachable(_igvn);
1100   }
1101 
1102   // Eliminate range-checks and other trip-counter vs loop-invariant tests.
1103   int do_range_check( IdealLoopTree *loop, Node_List &old_new );
1104 
1105   // Check to see if do_range_check(...) cleaned the main loop of range-checks
1106   void has_range_checks(IdealLoopTree *loop);
1107 
1108   // Process post loops which have range checks and try to build a multi-version
1109   // guard to safely determine if we can execute the post loop which was RCE'd.
1110   bool multi_version_post_loops(IdealLoopTree *rce_loop, IdealLoopTree *legacy_loop);
1111 
1112   // Cause the rce'd post loop to optimized away, this happens if we cannot complete multiverioning
1113   void poison_rce_post_loop(IdealLoopTree *rce_loop);
1114 
1115   // Create a slow version of the loop by cloning the loop
1116   // and inserting an if to select fast-slow versions.
1117   ProjNode* create_slow_version_of_loop(IdealLoopTree *loop,
1118                                         Node_List &old_new,
1119                                         int opcode,
1120                                         CloneLoopMode mode);
1121 
1122   // Clone a loop and return the clone head (clone_loop_head).
1123   // Added nodes include int(1), int(0) - disconnected, If, IfTrue, IfFalse,
1124   // This routine was created for usage in CountedLoopReserveKit.
1125   //
1126   //    int(1) -> If -> IfTrue -> original_loop_head
1127   //              |
1128   //              V
1129   //           IfFalse -> clone_loop_head (returned by function pointer)
1130   //
1131   LoopNode* create_reserve_version_of_loop(IdealLoopTree *loop, CountedLoopReserveKit* lk);
1132   // Clone loop with an invariant test (that does not exit) and
1133   // insert a clone of the test that selects which version to
1134   // execute.
1135   void do_unswitching (IdealLoopTree *loop, Node_List &old_new);
1136 
1137   // Find candidate "if" for unswitching
1138   IfNode* find_unswitching_candidate(const IdealLoopTree *loop) const;
1139 
1140   // Range Check Elimination uses this function!
1141   // Constrain the main loop iterations so the affine function:
1142   //    low_limit <= scale_con * I + offset  <  upper_limit
1143   // always holds true.  That is, either increase the number of iterations in
1144   // the pre-loop or the post-loop until the condition holds true in the main
1145   // loop.  Scale_con, offset and limit are all loop invariant.
1146   void add_constraint( int stride_con, int scale_con, Node *offset, Node *low_limit, Node *upper_limit, Node *pre_ctrl, Node **pre_limit, Node **main_limit );
1147   // Helper function for add_constraint().
1148   Node* adjust_limit( int stride_con, Node * scale, Node *offset, Node *rc_limit, Node *loop_limit, Node *pre_ctrl );
1149 
1150   // Partially peel loop up through last_peel node.
1151   bool partial_peel( IdealLoopTree *loop, Node_List &old_new );
1152 
1153   // Create a scheduled list of nodes control dependent on ctrl set.
1154   void scheduled_nodelist( IdealLoopTree *loop, VectorSet& ctrl, Node_List &sched );
1155   // Has a use in the vector set
1156   bool has_use_in_set( Node* n, VectorSet& vset );
1157   // Has use internal to the vector set (ie. not in a phi at the loop head)
1158   bool has_use_internal_to_set( Node* n, VectorSet& vset, IdealLoopTree *loop );
1159   // clone "n" for uses that are outside of loop
1160   int  clone_for_use_outside_loop( IdealLoopTree *loop, Node* n, Node_List& worklist );
1161   // clone "n" for special uses that are in the not_peeled region
1162   void clone_for_special_use_inside_loop( IdealLoopTree *loop, Node* n,
1163                                           VectorSet& not_peel, Node_List& sink_list, Node_List& worklist );
1164   // Insert phi(lp_entry_val, back_edge_val) at use->in(idx) for loop lp if phi does not already exist
1165   void insert_phi_for_loop( Node* use, uint idx, Node* lp_entry_val, Node* back_edge_val, LoopNode* lp );
1166 #ifdef ASSERT
1167   // Validate the loop partition sets: peel and not_peel
1168   bool is_valid_loop_partition( IdealLoopTree *loop, VectorSet& peel, Node_List& peel_list, VectorSet& not_peel );
1169   // Ensure that uses outside of loop are of the right form
1170   bool is_valid_clone_loop_form( IdealLoopTree *loop, Node_List& peel_list,
1171                                  uint orig_exit_idx, uint clone_exit_idx);
1172   bool is_valid_clone_loop_exit_use( IdealLoopTree *loop, Node* use, uint exit_idx);
1173 #endif
1174 
1175   // Returns nonzero constant stride if-node is a possible iv test (otherwise returns zero.)
1176   int stride_of_possible_iv( Node* iff );
1177   bool is_possible_iv_test( Node* iff ) { return stride_of_possible_iv(iff) != 0; }
1178   // Return the (unique) control output node that's in the loop (if it exists.)
1179   Node* stay_in_loop( Node* n, IdealLoopTree *loop);
1180   // Insert a signed compare loop exit cloned from an unsigned compare.
1181   IfNode* insert_cmpi_loop_exit(IfNode* if_cmpu, IdealLoopTree *loop);
1182   void remove_cmpi_loop_exit(IfNode* if_cmp, IdealLoopTree *loop);
1183   // Utility to register node "n" with PhaseIdealLoop
1184   void register_node(Node* n, IdealLoopTree *loop, Node* pred, int ddepth);
1185   // Utility to create an if-projection
1186   ProjNode* proj_clone(ProjNode* p, IfNode* iff);
1187   // Force the iff control output to be the live_proj
1188   Node* short_circuit_if(IfNode* iff, ProjNode* live_proj);
1189   // Insert a region before an if projection
1190   RegionNode* insert_region_before_proj(ProjNode* proj);
1191   // Insert a new if before an if projection
1192   ProjNode* insert_if_before_proj(Node* left, bool Signed, BoolTest::mask relop, Node* right, ProjNode* proj);
1193 
1194   // Passed in a Phi merging (recursively) some nearly equivalent Bool/Cmps.
1195   // "Nearly" because all Nodes have been cloned from the original in the loop,
1196   // but the fall-in edges to the Cmp are different.  Clone bool/Cmp pairs
1197   // through the Phi recursively, and return a Bool.
1198   Node *clone_iff( PhiNode *phi, IdealLoopTree *loop );
1199   CmpNode *clone_bool( PhiNode *phi, IdealLoopTree *loop );
1200 
1201 
1202   // Rework addressing expressions to get the most loop-invariant stuff
1203   // moved out.  We'd like to do all associative operators, but it's especially
1204   // important (common) to do address expressions.
1205   Node *remix_address_expressions( Node *n );
1206 
1207   // Attempt to use a conditional move instead of a phi/branch
1208   Node *conditional_move( Node *n );
1209 
1210   // Reorganize offset computations to lower register pressure.
1211   // Mostly prevent loop-fallout uses of the pre-incremented trip counter
1212   // (which are then alive with the post-incremented trip counter
1213   // forcing an extra register move)
1214   void reorg_offsets( IdealLoopTree *loop );
1215 
1216   // Check for aggressive application of 'split-if' optimization,
1217   // using basic block level info.
1218   void  split_if_with_blocks     ( VectorSet &visited, Node_Stack &nstack );
1219   Node *split_if_with_blocks_pre ( Node *n );
1220   void  split_if_with_blocks_post( Node *n );
1221   Node *has_local_phi_input( Node *n );
1222   // Mark an IfNode as being dominated by a prior test,
1223   // without actually altering the CFG (and hence IDOM info).
1224   void dominated_by( Node *prevdom, Node *iff, bool flip = false, bool exclude_loop_predicate = false );
1225 
1226   // Split Node 'n' through merge point
1227   Node *split_thru_region( Node *n, Node *region );
1228   // Split Node 'n' through merge point if there is enough win.
1229   Node *split_thru_phi( Node *n, Node *region, int policy );
1230   // Found an If getting its condition-code input from a Phi in the
1231   // same block.  Split thru the Region.
1232   void do_split_if( Node *iff );
1233 
1234   // Conversion of fill/copy patterns into intrisic versions
1235   bool do_intrinsify_fill();
1236   bool intrinsify_fill(IdealLoopTree* lpt);
1237   bool match_fill_loop(IdealLoopTree* lpt, Node*& store, Node*& store_value,
1238                        Node*& shift, Node*& offset);
1239 
1240 private:
1241   // Return a type based on condition control flow
1242   const TypeInt* filtered_type( Node *n, Node* n_ctrl);
1243   const TypeInt* filtered_type( Node *n ) { return filtered_type(n, NULL); }
1244  // Helpers for filtered type
1245   const TypeInt* filtered_type_from_dominators( Node* val, Node *val_ctrl);
1246 
1247   // Helper functions
1248   Node *spinup( Node *iff, Node *new_false, Node *new_true, Node *region, Node *phi, small_cache *cache );
1249   Node *find_use_block( Node *use, Node *def, Node *old_false, Node *new_false, Node *old_true, Node *new_true );
1250   void handle_use( Node *use, Node *def, small_cache *cache, Node *region_dom, Node *new_false, Node *new_true, Node *old_false, Node *old_true );
1251   bool split_up( Node *n, Node *blk1, Node *blk2 );
1252   void sink_use( Node *use, Node *post_loop );
1253   Node *place_near_use( Node *useblock ) const;
1254   Node* try_move_store_before_loop(Node* n, Node *n_ctrl);
1255   void try_move_store_after_loop(Node* n);
1256   bool identical_backtoback_ifs(Node *n);
1257   bool can_split_if(Node *n_ctrl);
1258 
1259   bool _created_loop_node;
1260 public:
1261   void set_created_loop_node() { _created_loop_node = true; }
1262   bool created_loop_node()     { return _created_loop_node; }
1263   void register_new_node( Node *n, Node *blk );
1264 
1265 #ifdef ASSERT
1266   void dump_bad_graph(const char* msg, Node* n, Node* early, Node* LCA);
1267 #endif
1268 
1269 #ifndef PRODUCT
1270   void dump( ) const;
1271   void dump( IdealLoopTree *loop, uint rpo_idx, Node_List &rpo_list ) const;
1272   void rpo( Node *start, Node_Stack &stk, VectorSet &visited, Node_List &rpo_list ) const;
1273   void verify() const;          // Major slow  :-)
1274   void verify_compare( Node *n, const PhaseIdealLoop *loop_verify, VectorSet &visited ) const;
1275   IdealLoopTree *get_loop_idx(Node* n) const {
1276     // Dead nodes have no loop, so return the top level loop instead
1277     return _nodes[n->_idx] ? (IdealLoopTree*)_nodes[n->_idx] : _ltree_root;
1278   }
1279   // Print some stats
1280   static void print_statistics();
1281   static int _loop_invokes;     // Count of PhaseIdealLoop invokes
1282   static int _loop_work;        // Sum of PhaseIdealLoop x _unique
1283 #endif
1284 };
1285 
1286 // This kit may be used for making of a reserved copy of a loop before this loop
1287 //  goes under non-reversible changes.
1288 //
1289 // Function create_reserve() creates a reserved copy (clone) of the loop.
1290 // The reserved copy is created by calling
1291 // PhaseIdealLoop::create_reserve_version_of_loop - see there how
1292 // the original and reserved loops are connected in the outer graph.
1293 // If create_reserve succeeded, it returns 'true' and _has_reserved is set to 'true'.
1294 //
1295 // By default the reserved copy (clone) of the loop is created as dead code - it is
1296 // dominated in the outer loop by this node chain:
1297 //   intcon(1)->If->IfFalse->reserved_copy.
1298 // The original loop is dominated by the the same node chain but IfTrue projection:
1299 //   intcon(0)->If->IfTrue->original_loop.
1300 //
1301 // In this implementation of CountedLoopReserveKit the ctor includes create_reserve()
1302 // and the dtor, checks _use_new value.
1303 // If _use_new == false, it "switches" control to reserved copy of the loop
1304 // by simple replacing of node intcon(1) with node intcon(0).
1305 //
1306 // Here is a proposed example of usage (see also SuperWord::output in superword.cpp).
1307 //
1308 // void CountedLoopReserveKit_example()
1309 // {
1310 //    CountedLoopReserveKit lrk((phase, lpt, DoReserveCopy = true); // create local object
1311 //    if (DoReserveCopy && !lrk.has_reserved()) {
1312 //      return; //failed to create reserved loop copy
1313 //    }
1314 //    ...
1315 //    //something is wrong, switch to original loop
1316 ///   if(something_is_wrong) return; // ~CountedLoopReserveKit makes the switch
1317 //    ...
1318 //    //everything worked ok, return with the newly modified loop
1319 //    lrk.use_new();
1320 //    return; // ~CountedLoopReserveKit does nothing once use_new() was called
1321 //  }
1322 //
1323 // Keep in mind, that by default if create_reserve() is not followed by use_new()
1324 // the dtor will "switch to the original" loop.
1325 // NOTE. You you modify outside of the original loop this class is no help.
1326 //
1327 class CountedLoopReserveKit {
1328   private:
1329     PhaseIdealLoop* _phase;
1330     IdealLoopTree*  _lpt;
1331     LoopNode*       _lp;
1332     IfNode*         _iff;
1333     LoopNode*       _lp_reserved;
1334     bool            _has_reserved;
1335     bool            _use_new;
1336     const bool      _active; //may be set to false in ctor, then the object is dummy
1337 
1338   public:
1339     CountedLoopReserveKit(PhaseIdealLoop* phase, IdealLoopTree *loop, bool active);
1340     ~CountedLoopReserveKit();
1341     void use_new()                {_use_new = true;}
1342     void set_iff(IfNode* x)       {_iff = x;}
1343     bool has_reserved()     const { return _active && _has_reserved;}
1344   private:
1345     bool create_reserve();
1346 };// class CountedLoopReserveKit
1347 
1348 inline Node* IdealLoopTree::tail() {
1349 // Handle lazy update of _tail field
1350   Node *n = _tail;
1351   //while( !n->in(0) )  // Skip dead CFG nodes
1352     //n = n->in(1);
1353   if (n->in(0) == NULL)
1354     n = _phase->get_ctrl(n);
1355   _tail = n;
1356   return n;
1357 }
1358 
1359 
1360 // Iterate over the loop tree using a preorder, left-to-right traversal.
1361 //
1362 // Example that visits all counted loops from within PhaseIdealLoop
1363 //
1364 //  for (LoopTreeIterator iter(_ltree_root); !iter.done(); iter.next()) {
1365 //   IdealLoopTree* lpt = iter.current();
1366 //   if (!lpt->is_counted()) continue;
1367 //   ...
1368 class LoopTreeIterator : public StackObj {
1369 private:
1370   IdealLoopTree* _root;
1371   IdealLoopTree* _curnt;
1372 
1373 public:
1374   LoopTreeIterator(IdealLoopTree* root) : _root(root), _curnt(root) {}
1375 
1376   bool done() { return _curnt == NULL; }       // Finished iterating?
1377 
1378   void next();                                 // Advance to next loop tree
1379 
1380   IdealLoopTree* current() { return _curnt; }  // Return current value of iterator.
1381 };
1382 
1383 #endif // SHARE_VM_OPTO_LOOPNODE_HPP