1 /*
   2  * Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "jvm.h"
  27 #include "asm/macroAssembler.hpp"
  28 #include "asm/macroAssembler.inline.hpp"
  29 #include "logging/log.hpp"
  30 #include "logging/logStream.hpp"
  31 #include "memory/resourceArea.hpp"
  32 #include "runtime/java.hpp"
  33 #include "runtime/os.hpp"
  34 #include "runtime/stubCodeGenerator.hpp"
  35 #include "vm_version_x86.hpp"
  36 
  37 
  38 int VM_Version::_cpu;
  39 int VM_Version::_model;
  40 int VM_Version::_stepping;
  41 VM_Version::CpuidInfo VM_Version::_cpuid_info = { 0, };
  42 
  43 // Address of instruction which causes SEGV
  44 address VM_Version::_cpuinfo_segv_addr = 0;
  45 // Address of instruction after the one which causes SEGV
  46 address VM_Version::_cpuinfo_cont_addr = 0;
  47 
  48 static BufferBlob* stub_blob;
  49 static const int stub_size = 1100;
  50 
  51 extern "C" {
  52   typedef void (*get_cpu_info_stub_t)(void*);
  53 }
  54 static get_cpu_info_stub_t get_cpu_info_stub = NULL;
  55 
  56 
  57 class VM_Version_StubGenerator: public StubCodeGenerator {
  58  public:
  59 
  60   VM_Version_StubGenerator(CodeBuffer *c) : StubCodeGenerator(c) {}
  61 
  62   address generate_get_cpu_info() {
  63     // Flags to test CPU type.
  64     const uint32_t HS_EFL_AC = 0x40000;
  65     const uint32_t HS_EFL_ID = 0x200000;
  66     // Values for when we don't have a CPUID instruction.
  67     const int      CPU_FAMILY_SHIFT = 8;
  68     const uint32_t CPU_FAMILY_386 = (3 << CPU_FAMILY_SHIFT);
  69     const uint32_t CPU_FAMILY_486 = (4 << CPU_FAMILY_SHIFT);
  70     bool use_evex = FLAG_IS_DEFAULT(UseAVX) || (UseAVX > 2);
  71 
  72     Label detect_486, cpu486, detect_586, std_cpuid1, std_cpuid4;
  73     Label sef_cpuid, ext_cpuid, ext_cpuid1, ext_cpuid5, ext_cpuid7, ext_cpuid8, done, wrapup;
  74     Label legacy_setup, save_restore_except, legacy_save_restore, start_simd_check;
  75 
  76     StubCodeMark mark(this, "VM_Version", "get_cpu_info_stub");
  77 #   define __ _masm->
  78 
  79     address start = __ pc();
  80 
  81     //
  82     // void get_cpu_info(VM_Version::CpuidInfo* cpuid_info);
  83     //
  84     // LP64: rcx and rdx are first and second argument registers on windows
  85 
  86     __ push(rbp);
  87 #ifdef _LP64
  88     __ mov(rbp, c_rarg0); // cpuid_info address
  89 #else
  90     __ movptr(rbp, Address(rsp, 8)); // cpuid_info address
  91 #endif
  92     __ push(rbx);
  93     __ push(rsi);
  94     __ pushf();          // preserve rbx, and flags
  95     __ pop(rax);
  96     __ push(rax);
  97     __ mov(rcx, rax);
  98     //
  99     // if we are unable to change the AC flag, we have a 386
 100     //
 101     __ xorl(rax, HS_EFL_AC);
 102     __ push(rax);
 103     __ popf();
 104     __ pushf();
 105     __ pop(rax);
 106     __ cmpptr(rax, rcx);
 107     __ jccb(Assembler::notEqual, detect_486);
 108 
 109     __ movl(rax, CPU_FAMILY_386);
 110     __ movl(Address(rbp, in_bytes(VM_Version::std_cpuid1_offset())), rax);
 111     __ jmp(done);
 112 
 113     //
 114     // If we are unable to change the ID flag, we have a 486 which does
 115     // not support the "cpuid" instruction.
 116     //
 117     __ bind(detect_486);
 118     __ mov(rax, rcx);
 119     __ xorl(rax, HS_EFL_ID);
 120     __ push(rax);
 121     __ popf();
 122     __ pushf();
 123     __ pop(rax);
 124     __ cmpptr(rcx, rax);
 125     __ jccb(Assembler::notEqual, detect_586);
 126 
 127     __ bind(cpu486);
 128     __ movl(rax, CPU_FAMILY_486);
 129     __ movl(Address(rbp, in_bytes(VM_Version::std_cpuid1_offset())), rax);
 130     __ jmp(done);
 131 
 132     //
 133     // At this point, we have a chip which supports the "cpuid" instruction
 134     //
 135     __ bind(detect_586);
 136     __ xorl(rax, rax);
 137     __ cpuid();
 138     __ orl(rax, rax);
 139     __ jcc(Assembler::equal, cpu486);   // if cpuid doesn't support an input
 140                                         // value of at least 1, we give up and
 141                                         // assume a 486
 142     __ lea(rsi, Address(rbp, in_bytes(VM_Version::std_cpuid0_offset())));
 143     __ movl(Address(rsi, 0), rax);
 144     __ movl(Address(rsi, 4), rbx);
 145     __ movl(Address(rsi, 8), rcx);
 146     __ movl(Address(rsi,12), rdx);
 147 
 148     __ cmpl(rax, 0xa);                  // Is cpuid(0xB) supported?
 149     __ jccb(Assembler::belowEqual, std_cpuid4);
 150 
 151     //
 152     // cpuid(0xB) Processor Topology
 153     //
 154     __ movl(rax, 0xb);
 155     __ xorl(rcx, rcx);   // Threads level
 156     __ cpuid();
 157 
 158     __ lea(rsi, Address(rbp, in_bytes(VM_Version::tpl_cpuidB0_offset())));
 159     __ movl(Address(rsi, 0), rax);
 160     __ movl(Address(rsi, 4), rbx);
 161     __ movl(Address(rsi, 8), rcx);
 162     __ movl(Address(rsi,12), rdx);
 163 
 164     __ movl(rax, 0xb);
 165     __ movl(rcx, 1);     // Cores level
 166     __ cpuid();
 167     __ push(rax);
 168     __ andl(rax, 0x1f);  // Determine if valid topology level
 169     __ orl(rax, rbx);    // eax[4:0] | ebx[0:15] == 0 indicates invalid level
 170     __ andl(rax, 0xffff);
 171     __ pop(rax);
 172     __ jccb(Assembler::equal, std_cpuid4);
 173 
 174     __ lea(rsi, Address(rbp, in_bytes(VM_Version::tpl_cpuidB1_offset())));
 175     __ movl(Address(rsi, 0), rax);
 176     __ movl(Address(rsi, 4), rbx);
 177     __ movl(Address(rsi, 8), rcx);
 178     __ movl(Address(rsi,12), rdx);
 179 
 180     __ movl(rax, 0xb);
 181     __ movl(rcx, 2);     // Packages level
 182     __ cpuid();
 183     __ push(rax);
 184     __ andl(rax, 0x1f);  // Determine if valid topology level
 185     __ orl(rax, rbx);    // eax[4:0] | ebx[0:15] == 0 indicates invalid level
 186     __ andl(rax, 0xffff);
 187     __ pop(rax);
 188     __ jccb(Assembler::equal, std_cpuid4);
 189 
 190     __ lea(rsi, Address(rbp, in_bytes(VM_Version::tpl_cpuidB2_offset())));
 191     __ movl(Address(rsi, 0), rax);
 192     __ movl(Address(rsi, 4), rbx);
 193     __ movl(Address(rsi, 8), rcx);
 194     __ movl(Address(rsi,12), rdx);
 195 
 196     //
 197     // cpuid(0x4) Deterministic cache params
 198     //
 199     __ bind(std_cpuid4);
 200     __ movl(rax, 4);
 201     __ cmpl(rax, Address(rbp, in_bytes(VM_Version::std_cpuid0_offset()))); // Is cpuid(0x4) supported?
 202     __ jccb(Assembler::greater, std_cpuid1);
 203 
 204     __ xorl(rcx, rcx);   // L1 cache
 205     __ cpuid();
 206     __ push(rax);
 207     __ andl(rax, 0x1f);  // Determine if valid cache parameters used
 208     __ orl(rax, rax);    // eax[4:0] == 0 indicates invalid cache
 209     __ pop(rax);
 210     __ jccb(Assembler::equal, std_cpuid1);
 211 
 212     __ lea(rsi, Address(rbp, in_bytes(VM_Version::dcp_cpuid4_offset())));
 213     __ movl(Address(rsi, 0), rax);
 214     __ movl(Address(rsi, 4), rbx);
 215     __ movl(Address(rsi, 8), rcx);
 216     __ movl(Address(rsi,12), rdx);
 217 
 218     //
 219     // Standard cpuid(0x1)
 220     //
 221     __ bind(std_cpuid1);
 222     __ movl(rax, 1);
 223     __ cpuid();
 224     __ lea(rsi, Address(rbp, in_bytes(VM_Version::std_cpuid1_offset())));
 225     __ movl(Address(rsi, 0), rax);
 226     __ movl(Address(rsi, 4), rbx);
 227     __ movl(Address(rsi, 8), rcx);
 228     __ movl(Address(rsi,12), rdx);
 229 
 230     //
 231     // Check if OS has enabled XGETBV instruction to access XCR0
 232     // (OSXSAVE feature flag) and CPU supports AVX
 233     //
 234     __ andl(rcx, 0x18000000); // cpuid1 bits osxsave | avx
 235     __ cmpl(rcx, 0x18000000);
 236     __ jccb(Assembler::notEqual, sef_cpuid); // jump if AVX is not supported
 237 
 238     //
 239     // XCR0, XFEATURE_ENABLED_MASK register
 240     //
 241     __ xorl(rcx, rcx);   // zero for XCR0 register
 242     __ xgetbv();
 243     __ lea(rsi, Address(rbp, in_bytes(VM_Version::xem_xcr0_offset())));
 244     __ movl(Address(rsi, 0), rax);
 245     __ movl(Address(rsi, 4), rdx);
 246 
 247     //
 248     // cpuid(0x7) Structured Extended Features
 249     //
 250     __ bind(sef_cpuid);
 251     __ movl(rax, 7);
 252     __ cmpl(rax, Address(rbp, in_bytes(VM_Version::std_cpuid0_offset()))); // Is cpuid(0x7) supported?
 253     __ jccb(Assembler::greater, ext_cpuid);
 254 
 255     __ xorl(rcx, rcx);
 256     __ cpuid();
 257     __ lea(rsi, Address(rbp, in_bytes(VM_Version::sef_cpuid7_offset())));
 258     __ movl(Address(rsi, 0), rax);
 259     __ movl(Address(rsi, 4), rbx);
 260     __ movl(Address(rsi, 8), rcx);
 261     __ movl(Address(rsi, 12), rdx);
 262 
 263     //
 264     // Extended cpuid(0x80000000)
 265     //
 266     __ bind(ext_cpuid);
 267     __ movl(rax, 0x80000000);
 268     __ cpuid();
 269     __ cmpl(rax, 0x80000000);     // Is cpuid(0x80000001) supported?
 270     __ jcc(Assembler::belowEqual, done);
 271     __ cmpl(rax, 0x80000004);     // Is cpuid(0x80000005) supported?
 272     __ jcc(Assembler::belowEqual, ext_cpuid1);
 273     __ cmpl(rax, 0x80000006);     // Is cpuid(0x80000007) supported?
 274     __ jccb(Assembler::belowEqual, ext_cpuid5);
 275     __ cmpl(rax, 0x80000007);     // Is cpuid(0x80000008) supported?
 276     __ jccb(Assembler::belowEqual, ext_cpuid7);
 277     __ cmpl(rax, 0x80000008);     // Is cpuid(0x80000009 and above) supported?
 278     __ jccb(Assembler::belowEqual, ext_cpuid8);
 279     __ cmpl(rax, 0x8000001E);     // Is cpuid(0x8000001E) supported?
 280     __ jccb(Assembler::below, ext_cpuid8);
 281     //
 282     // Extended cpuid(0x8000001E)
 283     //
 284     __ movl(rax, 0x8000001E);
 285     __ cpuid();
 286     __ lea(rsi, Address(rbp, in_bytes(VM_Version::ext_cpuid1E_offset())));
 287     __ movl(Address(rsi, 0), rax);
 288     __ movl(Address(rsi, 4), rbx);
 289     __ movl(Address(rsi, 8), rcx);
 290     __ movl(Address(rsi,12), rdx);
 291 
 292     //
 293     // Extended cpuid(0x80000008)
 294     //
 295     __ bind(ext_cpuid8);
 296     __ movl(rax, 0x80000008);
 297     __ cpuid();
 298     __ lea(rsi, Address(rbp, in_bytes(VM_Version::ext_cpuid8_offset())));
 299     __ movl(Address(rsi, 0), rax);
 300     __ movl(Address(rsi, 4), rbx);
 301     __ movl(Address(rsi, 8), rcx);
 302     __ movl(Address(rsi,12), rdx);
 303 
 304     //
 305     // Extended cpuid(0x80000007)
 306     //
 307     __ bind(ext_cpuid7);
 308     __ movl(rax, 0x80000007);
 309     __ cpuid();
 310     __ lea(rsi, Address(rbp, in_bytes(VM_Version::ext_cpuid7_offset())));
 311     __ movl(Address(rsi, 0), rax);
 312     __ movl(Address(rsi, 4), rbx);
 313     __ movl(Address(rsi, 8), rcx);
 314     __ movl(Address(rsi,12), rdx);
 315 
 316     //
 317     // Extended cpuid(0x80000005)
 318     //
 319     __ bind(ext_cpuid5);
 320     __ movl(rax, 0x80000005);
 321     __ cpuid();
 322     __ lea(rsi, Address(rbp, in_bytes(VM_Version::ext_cpuid5_offset())));
 323     __ movl(Address(rsi, 0), rax);
 324     __ movl(Address(rsi, 4), rbx);
 325     __ movl(Address(rsi, 8), rcx);
 326     __ movl(Address(rsi,12), rdx);
 327 
 328     //
 329     // Extended cpuid(0x80000001)
 330     //
 331     __ bind(ext_cpuid1);
 332     __ movl(rax, 0x80000001);
 333     __ cpuid();
 334     __ lea(rsi, Address(rbp, in_bytes(VM_Version::ext_cpuid1_offset())));
 335     __ movl(Address(rsi, 0), rax);
 336     __ movl(Address(rsi, 4), rbx);
 337     __ movl(Address(rsi, 8), rcx);
 338     __ movl(Address(rsi,12), rdx);
 339 
 340     //
 341     // Check if OS has enabled XGETBV instruction to access XCR0
 342     // (OSXSAVE feature flag) and CPU supports AVX
 343     //
 344     __ lea(rsi, Address(rbp, in_bytes(VM_Version::std_cpuid1_offset())));
 345     __ movl(rcx, 0x18000000); // cpuid1 bits osxsave | avx
 346     __ andl(rcx, Address(rsi, 8)); // cpuid1 bits osxsave | avx
 347     __ cmpl(rcx, 0x18000000);
 348     __ jccb(Assembler::notEqual, done); // jump if AVX is not supported
 349 
 350     __ movl(rax, 0x6);
 351     __ andl(rax, Address(rbp, in_bytes(VM_Version::xem_xcr0_offset()))); // xcr0 bits sse | ymm
 352     __ cmpl(rax, 0x6);
 353     __ jccb(Assembler::equal, start_simd_check); // return if AVX is not supported
 354 
 355     // we need to bridge farther than imm8, so we use this island as a thunk
 356     __ bind(done);
 357     __ jmp(wrapup);
 358 
 359     __ bind(start_simd_check);
 360     //
 361     // Some OSs have a bug when upper 128/256bits of YMM/ZMM
 362     // registers are not restored after a signal processing.
 363     // Generate SEGV here (reference through NULL)
 364     // and check upper YMM/ZMM bits after it.
 365     //
 366     intx saved_useavx = UseAVX;
 367     intx saved_usesse = UseSSE;
 368     // check _cpuid_info.sef_cpuid7_ebx.bits.avx512f
 369     __ lea(rsi, Address(rbp, in_bytes(VM_Version::sef_cpuid7_offset())));
 370     __ movl(rax, 0x10000);
 371     __ andl(rax, Address(rsi, 4)); // xcr0 bits sse | ymm
 372     __ cmpl(rax, 0x10000);
 373     __ jccb(Assembler::notEqual, legacy_setup); // jump if EVEX is not supported
 374     // check _cpuid_info.xem_xcr0_eax.bits.opmask
 375     // check _cpuid_info.xem_xcr0_eax.bits.zmm512
 376     // check _cpuid_info.xem_xcr0_eax.bits.zmm32
 377     __ movl(rax, 0xE0);
 378     __ andl(rax, Address(rbp, in_bytes(VM_Version::xem_xcr0_offset()))); // xcr0 bits sse | ymm
 379     __ cmpl(rax, 0xE0);
 380     __ jccb(Assembler::notEqual, legacy_setup); // jump if EVEX is not supported
 381 
 382     // If UseAVX is unitialized or is set by the user to include EVEX
 383     if (use_evex) {
 384       // EVEX setup: run in lowest evex mode
 385       VM_Version::set_evex_cpuFeatures(); // Enable temporary to pass asserts
 386       UseAVX = 3;
 387       UseSSE = 2;
 388 #ifdef _WINDOWS
 389       // xmm5-xmm15 are not preserved by caller on windows
 390       // https://msdn.microsoft.com/en-us/library/9z1stfyw.aspx
 391       __ subptr(rsp, 64);
 392       __ evmovdqul(Address(rsp, 0), xmm7, Assembler::AVX_512bit);
 393 #ifdef _LP64
 394       __ subptr(rsp, 64);
 395       __ evmovdqul(Address(rsp, 0), xmm8, Assembler::AVX_512bit);
 396       __ subptr(rsp, 64);
 397       __ evmovdqul(Address(rsp, 0), xmm31, Assembler::AVX_512bit);
 398 #endif // _LP64
 399 #endif // _WINDOWS
 400 
 401       // load value into all 64 bytes of zmm7 register
 402       __ movl(rcx, VM_Version::ymm_test_value());
 403       __ movdl(xmm0, rcx);
 404       __ vpbroadcastd(xmm0, xmm0, Assembler::AVX_512bit);
 405       __ evmovdqul(xmm7, xmm0, Assembler::AVX_512bit);
 406 #ifdef _LP64
 407       __ evmovdqul(xmm8, xmm0, Assembler::AVX_512bit);
 408       __ evmovdqul(xmm31, xmm0, Assembler::AVX_512bit);
 409 #endif
 410       VM_Version::clean_cpuFeatures();
 411       __ jmp(save_restore_except);
 412     }
 413 
 414     __ bind(legacy_setup);
 415     // AVX setup
 416     VM_Version::set_avx_cpuFeatures(); // Enable temporary to pass asserts
 417     UseAVX = 1;
 418     UseSSE = 2;
 419 #ifdef _WINDOWS
 420     __ subptr(rsp, 32);
 421     __ vmovdqu(Address(rsp, 0), xmm7);
 422 #ifdef _LP64
 423     __ subptr(rsp, 32);
 424     __ vmovdqu(Address(rsp, 0), xmm8);
 425     __ subptr(rsp, 32);
 426     __ vmovdqu(Address(rsp, 0), xmm15);
 427 #endif // _LP64
 428 #endif // _WINDOWS
 429 
 430     // load value into all 32 bytes of ymm7 register
 431     __ movl(rcx, VM_Version::ymm_test_value());
 432 
 433     __ movdl(xmm0, rcx);
 434     __ pshufd(xmm0, xmm0, 0x00);
 435     __ vinsertf128_high(xmm0, xmm0);
 436     __ vmovdqu(xmm7, xmm0);
 437 #ifdef _LP64
 438     __ vmovdqu(xmm8, xmm0);
 439     __ vmovdqu(xmm15, xmm0);
 440 #endif
 441     VM_Version::clean_cpuFeatures();
 442 
 443     __ bind(save_restore_except);
 444     __ xorl(rsi, rsi);
 445     VM_Version::set_cpuinfo_segv_addr(__ pc());
 446     // Generate SEGV
 447     __ movl(rax, Address(rsi, 0));
 448 
 449     VM_Version::set_cpuinfo_cont_addr(__ pc());
 450     // Returns here after signal. Save xmm0 to check it later.
 451 
 452     // check _cpuid_info.sef_cpuid7_ebx.bits.avx512f
 453     __ lea(rsi, Address(rbp, in_bytes(VM_Version::sef_cpuid7_offset())));
 454     __ movl(rax, 0x10000);
 455     __ andl(rax, Address(rsi, 4));
 456     __ cmpl(rax, 0x10000);
 457     __ jcc(Assembler::notEqual, legacy_save_restore);
 458     // check _cpuid_info.xem_xcr0_eax.bits.opmask
 459     // check _cpuid_info.xem_xcr0_eax.bits.zmm512
 460     // check _cpuid_info.xem_xcr0_eax.bits.zmm32
 461     __ movl(rax, 0xE0);
 462     __ andl(rax, Address(rbp, in_bytes(VM_Version::xem_xcr0_offset()))); // xcr0 bits sse | ymm
 463     __ cmpl(rax, 0xE0);
 464     __ jcc(Assembler::notEqual, legacy_save_restore);
 465 
 466     // If UseAVX is unitialized or is set by the user to include EVEX
 467     if (use_evex) {
 468       // EVEX check: run in lowest evex mode
 469       VM_Version::set_evex_cpuFeatures(); // Enable temporary to pass asserts
 470       UseAVX = 3;
 471       UseSSE = 2;
 472       __ lea(rsi, Address(rbp, in_bytes(VM_Version::zmm_save_offset())));
 473       __ evmovdqul(Address(rsi, 0), xmm0, Assembler::AVX_512bit);
 474       __ evmovdqul(Address(rsi, 64), xmm7, Assembler::AVX_512bit);
 475 #ifdef _LP64
 476       __ evmovdqul(Address(rsi, 128), xmm8, Assembler::AVX_512bit);
 477       __ evmovdqul(Address(rsi, 192), xmm31, Assembler::AVX_512bit);
 478 #endif
 479 
 480 #ifdef _WINDOWS
 481 #ifdef _LP64
 482       __ evmovdqul(xmm31, Address(rsp, 0), Assembler::AVX_512bit);
 483       __ addptr(rsp, 64);
 484       __ evmovdqul(xmm8, Address(rsp, 0), Assembler::AVX_512bit);
 485       __ addptr(rsp, 64);
 486 #endif // _LP64
 487       __ evmovdqul(xmm7, Address(rsp, 0), Assembler::AVX_512bit);
 488       __ addptr(rsp, 64);
 489 #endif // _WINDOWS
 490       generate_vzeroupper(wrapup);
 491       VM_Version::clean_cpuFeatures();
 492       UseAVX = saved_useavx;
 493       UseSSE = saved_usesse;
 494       __ jmp(wrapup);
 495    }
 496 
 497     __ bind(legacy_save_restore);
 498     // AVX check
 499     VM_Version::set_avx_cpuFeatures(); // Enable temporary to pass asserts
 500     UseAVX = 1;
 501     UseSSE = 2;
 502     __ lea(rsi, Address(rbp, in_bytes(VM_Version::ymm_save_offset())));
 503     __ vmovdqu(Address(rsi, 0), xmm0);
 504     __ vmovdqu(Address(rsi, 32), xmm7);
 505 #ifdef _LP64
 506     __ vmovdqu(Address(rsi, 64), xmm8);
 507     __ vmovdqu(Address(rsi, 96), xmm15);
 508 #endif
 509 
 510 #ifdef _WINDOWS
 511 #ifdef _LP64
 512     __ vmovdqu(xmm15, Address(rsp, 0));
 513     __ addptr(rsp, 32);
 514     __ vmovdqu(xmm8, Address(rsp, 0));
 515     __ addptr(rsp, 32);
 516 #endif // _LP64
 517     __ vmovdqu(xmm7, Address(rsp, 0));
 518     __ addptr(rsp, 32);
 519 #endif // _WINDOWS
 520     generate_vzeroupper(wrapup);
 521     VM_Version::clean_cpuFeatures();
 522     UseAVX = saved_useavx;
 523     UseSSE = saved_usesse;
 524 
 525     __ bind(wrapup);
 526     __ popf();
 527     __ pop(rsi);
 528     __ pop(rbx);
 529     __ pop(rbp);
 530     __ ret(0);
 531 
 532 #   undef __
 533 
 534     return start;
 535   };
 536   void generate_vzeroupper(Label& L_wrapup) {
 537 #   define __ _masm->
 538     __ lea(rsi, Address(rbp, in_bytes(VM_Version::std_cpuid0_offset())));
 539     __ cmpl(Address(rsi, 4), 0x756e6547);  // 'uneG'
 540     __ jcc(Assembler::notEqual, L_wrapup);
 541     __ movl(rcx, 0x0FFF0FF0);
 542     __ lea(rsi, Address(rbp, in_bytes(VM_Version::std_cpuid1_offset())));
 543     __ andl(rcx, Address(rsi, 0));
 544     __ cmpl(rcx, 0x00050670);              // If it is Xeon Phi 3200/5200/7200
 545     __ jcc(Assembler::equal, L_wrapup);
 546     __ cmpl(rcx, 0x00080650);              // If it is Future Xeon Phi
 547     __ jcc(Assembler::equal, L_wrapup);
 548     __ vzeroupper();
 549 #   undef __
 550   }
 551 };
 552 
 553 void VM_Version::get_processor_features() {
 554 
 555   _cpu = 4; // 486 by default
 556   _model = 0;
 557   _stepping = 0;
 558   _features = 0;
 559   _logical_processors_per_package = 1;
 560   // i486 internal cache is both I&D and has a 16-byte line size
 561   _L1_data_cache_line_size = 16;
 562 
 563   // Get raw processor info
 564 
 565   get_cpu_info_stub(&_cpuid_info);
 566 
 567   assert_is_initialized();
 568   _cpu = extended_cpu_family();
 569   _model = extended_cpu_model();
 570   _stepping = cpu_stepping();
 571 
 572   if (cpu_family() > 4) { // it supports CPUID
 573     _features = feature_flags();
 574     // Logical processors are only available on P4s and above,
 575     // and only if hyperthreading is available.
 576     _logical_processors_per_package = logical_processor_count();
 577     _L1_data_cache_line_size = L1_line_size();
 578   }
 579 
 580   _supports_cx8 = supports_cmpxchg8();
 581   // xchg and xadd instructions
 582   _supports_atomic_getset4 = true;
 583   _supports_atomic_getadd4 = true;
 584   LP64_ONLY(_supports_atomic_getset8 = true);
 585   LP64_ONLY(_supports_atomic_getadd8 = true);
 586 
 587 #ifdef _LP64
 588   // OS should support SSE for x64 and hardware should support at least SSE2.
 589   if (!VM_Version::supports_sse2()) {
 590     vm_exit_during_initialization("Unknown x64 processor: SSE2 not supported");
 591   }
 592   // in 64 bit the use of SSE2 is the minimum
 593   if (UseSSE < 2) UseSSE = 2;
 594 #endif
 595 
 596 #ifdef AMD64
 597   // flush_icache_stub have to be generated first.
 598   // That is why Icache line size is hard coded in ICache class,
 599   // see icache_x86.hpp. It is also the reason why we can't use
 600   // clflush instruction in 32-bit VM since it could be running
 601   // on CPU which does not support it.
 602   //
 603   // The only thing we can do is to verify that flushed
 604   // ICache::line_size has correct value.
 605   guarantee(_cpuid_info.std_cpuid1_edx.bits.clflush != 0, "clflush is not supported");
 606   // clflush_size is size in quadwords (8 bytes).
 607   guarantee(_cpuid_info.std_cpuid1_ebx.bits.clflush_size == 8, "such clflush size is not supported");
 608 #endif
 609 
 610   // If the OS doesn't support SSE, we can't use this feature even if the HW does
 611   if (!os::supports_sse())
 612     _features &= ~(CPU_SSE|CPU_SSE2|CPU_SSE3|CPU_SSSE3|CPU_SSE4A|CPU_SSE4_1|CPU_SSE4_2);
 613 
 614   if (UseSSE < 4) {
 615     _features &= ~CPU_SSE4_1;
 616     _features &= ~CPU_SSE4_2;
 617   }
 618 
 619   if (UseSSE < 3) {
 620     _features &= ~CPU_SSE3;
 621     _features &= ~CPU_SSSE3;
 622     _features &= ~CPU_SSE4A;
 623   }
 624 
 625   if (UseSSE < 2)
 626     _features &= ~CPU_SSE2;
 627 
 628   if (UseSSE < 1)
 629     _features &= ~CPU_SSE;
 630 
 631   //since AVX instructions is slower than SSE in some ZX cpus, force USEAVX=0.
 632   if (is_zx() && ((cpu_family() == 6) || (cpu_family() == 7))) {
 633     UseAVX = 0;
 634   }
 635 
 636   // first try initial setting and detect what we can support
 637   int use_avx_limit = 0;
 638   if (UseAVX > 0) {
 639     if (UseAVX > 2 && supports_evex()) {
 640       use_avx_limit = 3;
 641     } else if (UseAVX > 1 && supports_avx2()) {
 642       use_avx_limit = 2;
 643     } else if (UseAVX > 0 && supports_avx()) {
 644       use_avx_limit = 1;
 645     } else {
 646       use_avx_limit = 0;
 647     }
 648   }
 649   if (FLAG_IS_DEFAULT(UseAVX)) {
 650     FLAG_SET_DEFAULT(UseAVX, use_avx_limit);
 651   } else if (UseAVX > use_avx_limit) {
 652     warning("UseAVX=%d is not supported on this CPU, setting it to UseAVX=%d", (int) UseAVX, use_avx_limit);
 653     FLAG_SET_DEFAULT(UseAVX, use_avx_limit);
 654   } else if (UseAVX < 0) {
 655     warning("UseAVX=%d is not valid, setting it to UseAVX=0", (int) UseAVX);
 656     FLAG_SET_DEFAULT(UseAVX, 0);
 657   }
 658 
 659   if (UseAVX < 3) {
 660     _features &= ~CPU_AVX512F;
 661     _features &= ~CPU_AVX512DQ;
 662     _features &= ~CPU_AVX512CD;
 663     _features &= ~CPU_AVX512BW;
 664     _features &= ~CPU_AVX512VL;
 665     _features &= ~CPU_AVX512_VPOPCNTDQ;
 666     _features &= ~CPU_VPCLMULQDQ;
 667     _features &= ~CPU_VAES;
 668   }
 669 
 670   if (UseAVX < 2)
 671     _features &= ~CPU_AVX2;
 672 
 673   if (UseAVX < 1) {
 674     _features &= ~CPU_AVX;
 675     _features &= ~CPU_VZEROUPPER;
 676   }
 677 
 678   if (logical_processors_per_package() == 1) {
 679     // HT processor could be installed on a system which doesn't support HT.
 680     _features &= ~CPU_HT;
 681   }
 682 
 683   if( is_intel() ) { // Intel cpus specific settings
 684     if (is_knights_family()) {
 685       _features &= ~CPU_VZEROUPPER;
 686     }
 687   }
 688 
 689   char buf[256];
 690   jio_snprintf(buf, sizeof(buf), "(%u cores per cpu, %u threads per core) family %d model %d stepping %d%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s",
 691                cores_per_cpu(), threads_per_core(),
 692                cpu_family(), _model, _stepping,
 693                (supports_cmov() ? ", cmov" : ""),
 694                (supports_cmpxchg8() ? ", cx8" : ""),
 695                (supports_fxsr() ? ", fxsr" : ""),
 696                (supports_mmx()  ? ", mmx"  : ""),
 697                (supports_sse()  ? ", sse"  : ""),
 698                (supports_sse2() ? ", sse2" : ""),
 699                (supports_sse3() ? ", sse3" : ""),
 700                (supports_ssse3()? ", ssse3": ""),
 701                (supports_sse4_1() ? ", sse4.1" : ""),
 702                (supports_sse4_2() ? ", sse4.2" : ""),
 703                (supports_popcnt() ? ", popcnt" : ""),
 704                (supports_avx()    ? ", avx" : ""),
 705                (supports_avx2()   ? ", avx2" : ""),
 706                (supports_aes()    ? ", aes" : ""),
 707                (supports_clmul()  ? ", clmul" : ""),
 708                (supports_erms()   ? ", erms" : ""),
 709                (supports_rtm()    ? ", rtm" : ""),
 710                (supports_mmx_ext() ? ", mmxext" : ""),
 711                (supports_3dnow_prefetch() ? ", 3dnowpref" : ""),
 712                (supports_lzcnt()   ? ", lzcnt": ""),
 713                (supports_sse4a()   ? ", sse4a": ""),
 714                (supports_ht() ? ", ht": ""),
 715                (supports_tsc() ? ", tsc": ""),
 716                (supports_tscinv_bit() ? ", tscinvbit": ""),
 717                (supports_tscinv() ? ", tscinv": ""),
 718                (supports_bmi1() ? ", bmi1" : ""),
 719                (supports_bmi2() ? ", bmi2" : ""),
 720                (supports_adx() ? ", adx" : ""),
 721                (supports_evex() ? ", evex" : ""),
 722                (supports_sha() ? ", sha" : ""),
 723                (supports_fma() ? ", fma" : ""));
 724   _features_string = os::strdup(buf);
 725 
 726   // UseSSE is set to the smaller of what hardware supports and what
 727   // the command line requires.  I.e., you cannot set UseSSE to 2 on
 728   // older Pentiums which do not support it.
 729   int use_sse_limit = 0;
 730   if (UseSSE > 0) {
 731     if (UseSSE > 3 && supports_sse4_1()) {
 732       use_sse_limit = 4;
 733     } else if (UseSSE > 2 && supports_sse3()) {
 734       use_sse_limit = 3;
 735     } else if (UseSSE > 1 && supports_sse2()) {
 736       use_sse_limit = 2;
 737     } else if (UseSSE > 0 && supports_sse()) {
 738       use_sse_limit = 1;
 739     } else {
 740       use_sse_limit = 0;
 741     }
 742   }
 743   if (FLAG_IS_DEFAULT(UseSSE)) {
 744     FLAG_SET_DEFAULT(UseSSE, use_sse_limit);
 745   } else if (UseSSE > use_sse_limit) {
 746     warning("UseSSE=%d is not supported on this CPU, setting it to UseSSE=%d", (int) UseSSE, use_sse_limit);
 747     FLAG_SET_DEFAULT(UseSSE, use_sse_limit);
 748   } else if (UseSSE < 0) {
 749     warning("UseSSE=%d is not valid, setting it to UseSSE=0", (int) UseSSE);
 750     FLAG_SET_DEFAULT(UseSSE, 0);
 751   }
 752 
 753   // Use AES instructions if available.
 754   if (supports_aes()) {
 755     if (FLAG_IS_DEFAULT(UseAES)) {
 756       FLAG_SET_DEFAULT(UseAES, true);
 757     }
 758     if (!UseAES) {
 759       if (UseAESIntrinsics && !FLAG_IS_DEFAULT(UseAESIntrinsics)) {
 760         warning("AES intrinsics require UseAES flag to be enabled. Intrinsics will be disabled.");
 761       }
 762       FLAG_SET_DEFAULT(UseAESIntrinsics, false);
 763     } else {
 764       if (UseSSE > 2) {
 765         if (FLAG_IS_DEFAULT(UseAESIntrinsics)) {
 766           FLAG_SET_DEFAULT(UseAESIntrinsics, true);
 767         }
 768       } else {
 769         // The AES intrinsic stubs require AES instruction support (of course)
 770         // but also require sse3 mode or higher for instructions it use.
 771         if (UseAESIntrinsics && !FLAG_IS_DEFAULT(UseAESIntrinsics)) {
 772           warning("X86 AES intrinsics require SSE3 instructions or higher. Intrinsics will be disabled.");
 773         }
 774         FLAG_SET_DEFAULT(UseAESIntrinsics, false);
 775       }
 776 
 777       // --AES-CTR begins--
 778       if (!UseAESIntrinsics) {
 779         if (UseAESCTRIntrinsics && !FLAG_IS_DEFAULT(UseAESCTRIntrinsics)) {
 780           warning("AES-CTR intrinsics require UseAESIntrinsics flag to be enabled. Intrinsics will be disabled.");
 781           FLAG_SET_DEFAULT(UseAESCTRIntrinsics, false);
 782         }
 783       } else {
 784         if(supports_sse4_1()) {
 785           if (FLAG_IS_DEFAULT(UseAESCTRIntrinsics)) {
 786             FLAG_SET_DEFAULT(UseAESCTRIntrinsics, true);
 787           }
 788         } else {
 789            // The AES-CTR intrinsic stubs require AES instruction support (of course)
 790            // but also require sse4.1 mode or higher for instructions it use.
 791           if (UseAESCTRIntrinsics && !FLAG_IS_DEFAULT(UseAESCTRIntrinsics)) {
 792              warning("X86 AES-CTR intrinsics require SSE4.1 instructions or higher. Intrinsics will be disabled.");
 793            }
 794            FLAG_SET_DEFAULT(UseAESCTRIntrinsics, false);
 795         }
 796       }
 797       // --AES-CTR ends--
 798     }
 799   } else if (UseAES || UseAESIntrinsics || UseAESCTRIntrinsics) {
 800     if (UseAES && !FLAG_IS_DEFAULT(UseAES)) {
 801       warning("AES instructions are not available on this CPU");
 802       FLAG_SET_DEFAULT(UseAES, false);
 803     }
 804     if (UseAESIntrinsics && !FLAG_IS_DEFAULT(UseAESIntrinsics)) {
 805       warning("AES intrinsics are not available on this CPU");
 806       FLAG_SET_DEFAULT(UseAESIntrinsics, false);
 807     }
 808     if (UseAESCTRIntrinsics && !FLAG_IS_DEFAULT(UseAESCTRIntrinsics)) {
 809       warning("AES-CTR intrinsics are not available on this CPU");
 810       FLAG_SET_DEFAULT(UseAESCTRIntrinsics, false);
 811     }
 812   }
 813 
 814   // Use CLMUL instructions if available.
 815   if (supports_clmul()) {
 816     if (FLAG_IS_DEFAULT(UseCLMUL)) {
 817       UseCLMUL = true;
 818     }
 819   } else if (UseCLMUL) {
 820     if (!FLAG_IS_DEFAULT(UseCLMUL))
 821       warning("CLMUL instructions not available on this CPU (AVX may also be required)");
 822     FLAG_SET_DEFAULT(UseCLMUL, false);
 823   }
 824 
 825   if (UseCLMUL && (UseSSE > 2)) {
 826     if (FLAG_IS_DEFAULT(UseCRC32Intrinsics)) {
 827       UseCRC32Intrinsics = true;
 828     }
 829   } else if (UseCRC32Intrinsics) {
 830     if (!FLAG_IS_DEFAULT(UseCRC32Intrinsics))
 831       warning("CRC32 Intrinsics requires CLMUL instructions (not available on this CPU)");
 832     FLAG_SET_DEFAULT(UseCRC32Intrinsics, false);
 833   }
 834 
 835   if (supports_sse4_2() && supports_clmul()) {
 836     if (FLAG_IS_DEFAULT(UseCRC32CIntrinsics)) {
 837       UseCRC32CIntrinsics = true;
 838     }
 839   } else if (UseCRC32CIntrinsics) {
 840     if (!FLAG_IS_DEFAULT(UseCRC32CIntrinsics)) {
 841       warning("CRC32C intrinsics are not available on this CPU");
 842     }
 843     FLAG_SET_DEFAULT(UseCRC32CIntrinsics, false);
 844   }
 845 
 846   // GHASH/GCM intrinsics
 847   if (UseCLMUL && (UseSSE > 2)) {
 848     if (FLAG_IS_DEFAULT(UseGHASHIntrinsics)) {
 849       UseGHASHIntrinsics = true;
 850     }
 851   } else if (UseGHASHIntrinsics) {
 852     if (!FLAG_IS_DEFAULT(UseGHASHIntrinsics))
 853       warning("GHASH intrinsic requires CLMUL and SSE2 instructions on this CPU");
 854     FLAG_SET_DEFAULT(UseGHASHIntrinsics, false);
 855   }
 856 
 857   // Base64 Intrinsics (Check the condition for which the intrinsic will be active)
 858   if ((UseAVX > 2) && supports_avx512vl() && supports_avx512bw()) {
 859     if (FLAG_IS_DEFAULT(UseBASE64Intrinsics)) {
 860       UseBASE64Intrinsics = true;
 861     }
 862   } else if (UseBASE64Intrinsics) {
 863      if (!FLAG_IS_DEFAULT(UseBASE64Intrinsics))
 864       warning("Base64 intrinsic requires EVEX instructions on this CPU");
 865     FLAG_SET_DEFAULT(UseBASE64Intrinsics, false);
 866   }
 867 
 868   if (supports_fma() && UseSSE >= 2) { // Check UseSSE since FMA code uses SSE instructions
 869     if (FLAG_IS_DEFAULT(UseFMA)) {
 870       UseFMA = true;
 871     }
 872   } else if (UseFMA) {
 873     warning("FMA instructions are not available on this CPU");
 874     FLAG_SET_DEFAULT(UseFMA, false);
 875   }
 876 
 877   if (supports_sha() LP64_ONLY(|| supports_avx2() && supports_bmi2())) {
 878     if (FLAG_IS_DEFAULT(UseSHA)) {
 879       UseSHA = true;
 880     }
 881   } else if (UseSHA) {
 882     warning("SHA instructions are not available on this CPU");
 883     FLAG_SET_DEFAULT(UseSHA, false);
 884   }
 885 
 886   if (supports_sha() && supports_sse4_1() && UseSHA) {
 887     if (FLAG_IS_DEFAULT(UseSHA1Intrinsics)) {
 888       FLAG_SET_DEFAULT(UseSHA1Intrinsics, true);
 889     }
 890   } else if (UseSHA1Intrinsics) {
 891     warning("Intrinsics for SHA-1 crypto hash functions not available on this CPU.");
 892     FLAG_SET_DEFAULT(UseSHA1Intrinsics, false);
 893   }
 894 
 895   if (supports_sse4_1() && UseSHA) {
 896     if (FLAG_IS_DEFAULT(UseSHA256Intrinsics)) {
 897       FLAG_SET_DEFAULT(UseSHA256Intrinsics, true);
 898     }
 899   } else if (UseSHA256Intrinsics) {
 900     warning("Intrinsics for SHA-224 and SHA-256 crypto hash functions not available on this CPU.");
 901     FLAG_SET_DEFAULT(UseSHA256Intrinsics, false);
 902   }
 903 
 904   if (UseSHA && supports_avx2() && supports_bmi2()) {
 905     if (FLAG_IS_DEFAULT(UseSHA512Intrinsics)) {
 906       FLAG_SET_DEFAULT(UseSHA512Intrinsics, true);
 907     }
 908   } else if (UseSHA512Intrinsics) {
 909     warning("Intrinsics for SHA-384 and SHA-512 crypto hash functions not available on this CPU.");
 910     FLAG_SET_DEFAULT(UseSHA512Intrinsics, false);
 911   }
 912 
 913   if (!(UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics)) {
 914     FLAG_SET_DEFAULT(UseSHA, false);
 915   }
 916 
 917   if (UseAdler32Intrinsics) {
 918     warning("Adler32Intrinsics not available on this CPU.");
 919     FLAG_SET_DEFAULT(UseAdler32Intrinsics, false);
 920   }
 921 
 922   if (!supports_rtm() && UseRTMLocking) {
 923     // Can't continue because UseRTMLocking affects UseBiasedLocking flag
 924     // setting during arguments processing. See use_biased_locking().
 925     // VM_Version_init() is executed after UseBiasedLocking is used
 926     // in Thread::allocate().
 927     vm_exit_during_initialization("RTM instructions are not available on this CPU");
 928   }
 929 
 930 #if INCLUDE_RTM_OPT
 931   if (UseRTMLocking) {
 932     if (is_client_compilation_mode_vm()) {
 933       // Only C2 does RTM locking optimization.
 934       // Can't continue because UseRTMLocking affects UseBiasedLocking flag
 935       // setting during arguments processing. See use_biased_locking().
 936       vm_exit_during_initialization("RTM locking optimization is not supported in this VM");
 937     }
 938     if (is_intel_family_core()) {
 939       if ((_model == CPU_MODEL_HASWELL_E3) ||
 940           (_model == CPU_MODEL_HASWELL_E7 && _stepping < 3) ||
 941           (_model == CPU_MODEL_BROADWELL  && _stepping < 4)) {
 942         // currently a collision between SKL and HSW_E3
 943         if (!UnlockExperimentalVMOptions && UseAVX < 3) {
 944           vm_exit_during_initialization("UseRTMLocking is only available as experimental option on this "
 945                                         "platform. It must be enabled via -XX:+UnlockExperimentalVMOptions flag.");
 946         } else {
 947           warning("UseRTMLocking is only available as experimental option on this platform.");
 948         }
 949       }
 950     }
 951     if (!FLAG_IS_CMDLINE(UseRTMLocking)) {
 952       // RTM locking should be used only for applications with
 953       // high lock contention. For now we do not use it by default.
 954       vm_exit_during_initialization("UseRTMLocking flag should be only set on command line");
 955     }
 956   } else { // !UseRTMLocking
 957     if (UseRTMForStackLocks) {
 958       if (!FLAG_IS_DEFAULT(UseRTMForStackLocks)) {
 959         warning("UseRTMForStackLocks flag should be off when UseRTMLocking flag is off");
 960       }
 961       FLAG_SET_DEFAULT(UseRTMForStackLocks, false);
 962     }
 963     if (UseRTMDeopt) {
 964       FLAG_SET_DEFAULT(UseRTMDeopt, false);
 965     }
 966     if (PrintPreciseRTMLockingStatistics) {
 967       FLAG_SET_DEFAULT(PrintPreciseRTMLockingStatistics, false);
 968     }
 969   }
 970 #else
 971   if (UseRTMLocking) {
 972     // Only C2 does RTM locking optimization.
 973     // Can't continue because UseRTMLocking affects UseBiasedLocking flag
 974     // setting during arguments processing. See use_biased_locking().
 975     vm_exit_during_initialization("RTM locking optimization is not supported in this VM");
 976   }
 977 #endif
 978 
 979 #ifdef COMPILER2
 980   if (UseFPUForSpilling) {
 981     if (UseSSE < 2) {
 982       // Only supported with SSE2+
 983       FLAG_SET_DEFAULT(UseFPUForSpilling, false);
 984     }
 985   }
 986 #endif
 987 
 988 #if COMPILER2_OR_JVMCI
 989   int mvs_max = 0;
 990   if (UseSSE < 2) {
 991     // Vectors (in XMM) are only supported with SSE2+
 992     // SSE is always 2 on x64.
 993     mvs_max = 0;
 994   } else if (UseAVX == 0 || !os_supports_avx_vectors()) {
 995     // 16 byte vectors (in XMM) are supported with SSE2+
 996     mvs_max = 16;
 997   } else if (UseAVX == 1 || UseAVX == 2) {
 998     // 32 bytes vectors (in YMM) are only supported with AVX+
 999     mvs_max = 32;
1000   } else if (UseAVX > 2 ) {
1001     // 64 bytes vectors (in ZMM) are only supported with AVX 3
1002     mvs_max = 64;
1003   }
1004 
1005   int mvs_min = 0;
1006 #ifdef _LP64
1007   mvs_min = 4; // We require MaxVectorSize to be at least 4 on 64bit
1008 #endif
1009 
1010   if (!FLAG_IS_DEFAULT(MaxVectorSize)) {
1011     if (MaxVectorSize < mvs_min) {
1012       warning("MaxVectorSize must be at least %i on this platform", mvs_min);
1013       FLAG_SET_DEFAULT(MaxVectorSize, mvs_min);
1014     }
1015     if (MaxVectorSize > mvs_max) {
1016       warning("MaxVectorSize must be at most %i on this platform", mvs_max);
1017       FLAG_SET_DEFAULT(MaxVectorSize, mvs_max);
1018     }
1019     if (!is_power_of_2(MaxVectorSize)) {
1020       warning("MaxVectorSize must be a power of 2, setting to default: %i", mvs_max);
1021       FLAG_SET_DEFAULT(MaxVectorSize, mvs_max);
1022     }
1023   } else {
1024     // If default, use highest supported configuration
1025     FLAG_SET_DEFAULT(MaxVectorSize, mvs_max);
1026   }
1027 
1028 #if defined(COMPILER2) && defined(ASSERT)
1029   if (MaxVectorSize > 0) {
1030     if (supports_avx() && PrintMiscellaneous && Verbose && TraceNewVectors) {
1031       tty->print_cr("State of YMM registers after signal handle:");
1032       int nreg = 2 LP64_ONLY(+2);
1033       const char* ymm_name[4] = {"0", "7", "8", "15"};
1034       for (int i = 0; i < nreg; i++) {
1035         tty->print("YMM%s:", ymm_name[i]);
1036         for (int j = 7; j >=0; j--) {
1037           tty->print(" %x", _cpuid_info.ymm_save[i*8 + j]);
1038         }
1039         tty->cr();
1040       }
1041     }
1042 #endif // COMPILER2 && ASSERT
1043   }
1044 #endif // COMPILER2_OR_JVMCI
1045 
1046 #ifdef COMPILER2
1047 #ifdef _LP64
1048   if (FLAG_IS_DEFAULT(UseMultiplyToLenIntrinsic)) {
1049     UseMultiplyToLenIntrinsic = true;
1050   }
1051   if (FLAG_IS_DEFAULT(UseSquareToLenIntrinsic)) {
1052     UseSquareToLenIntrinsic = true;
1053   }
1054   if (FLAG_IS_DEFAULT(UseMulAddIntrinsic)) {
1055     UseMulAddIntrinsic = true;
1056   }
1057   if (FLAG_IS_DEFAULT(UseMontgomeryMultiplyIntrinsic)) {
1058     UseMontgomeryMultiplyIntrinsic = true;
1059   }
1060   if (FLAG_IS_DEFAULT(UseMontgomerySquareIntrinsic)) {
1061     UseMontgomerySquareIntrinsic = true;
1062   }
1063 #else
1064   if (UseMultiplyToLenIntrinsic) {
1065     if (!FLAG_IS_DEFAULT(UseMultiplyToLenIntrinsic)) {
1066       warning("multiplyToLen intrinsic is not available in 32-bit VM");
1067     }
1068     FLAG_SET_DEFAULT(UseMultiplyToLenIntrinsic, false);
1069   }
1070   if (UseMontgomeryMultiplyIntrinsic) {
1071     if (!FLAG_IS_DEFAULT(UseMontgomeryMultiplyIntrinsic)) {
1072       warning("montgomeryMultiply intrinsic is not available in 32-bit VM");
1073     }
1074     FLAG_SET_DEFAULT(UseMontgomeryMultiplyIntrinsic, false);
1075   }
1076   if (UseMontgomerySquareIntrinsic) {
1077     if (!FLAG_IS_DEFAULT(UseMontgomerySquareIntrinsic)) {
1078       warning("montgomerySquare intrinsic is not available in 32-bit VM");
1079     }
1080     FLAG_SET_DEFAULT(UseMontgomerySquareIntrinsic, false);
1081   }
1082   if (UseSquareToLenIntrinsic) {
1083     if (!FLAG_IS_DEFAULT(UseSquareToLenIntrinsic)) {
1084       warning("squareToLen intrinsic is not available in 32-bit VM");
1085     }
1086     FLAG_SET_DEFAULT(UseSquareToLenIntrinsic, false);
1087   }
1088   if (UseMulAddIntrinsic) {
1089     if (!FLAG_IS_DEFAULT(UseMulAddIntrinsic)) {
1090       warning("mulAdd intrinsic is not available in 32-bit VM");
1091     }
1092     FLAG_SET_DEFAULT(UseMulAddIntrinsic, false);
1093   }
1094 #endif
1095 #endif // COMPILER2
1096 
1097   // On new cpus instructions which update whole XMM register should be used
1098   // to prevent partial register stall due to dependencies on high half.
1099   //
1100   // UseXmmLoadAndClearUpper == true  --> movsd(xmm, mem)
1101   // UseXmmLoadAndClearUpper == false --> movlpd(xmm, mem)
1102   // UseXmmRegToRegMoveAll == true  --> movaps(xmm, xmm), movapd(xmm, xmm).
1103   // UseXmmRegToRegMoveAll == false --> movss(xmm, xmm),  movsd(xmm, xmm).
1104 
1105 
1106   if (is_zx()) { // ZX cpus specific settings
1107     if (FLAG_IS_DEFAULT(UseStoreImmI16)) {
1108       UseStoreImmI16 = false; // don't use it on ZX cpus
1109     }
1110     if ((cpu_family() == 6) || (cpu_family() == 7)) {
1111       if (FLAG_IS_DEFAULT(UseAddressNop)) {
1112         // Use it on all ZX cpus
1113         UseAddressNop = true;
1114       }
1115     }
1116     if (FLAG_IS_DEFAULT(UseXmmLoadAndClearUpper)) {
1117       UseXmmLoadAndClearUpper = true; // use movsd on all ZX cpus
1118     }
1119     if (FLAG_IS_DEFAULT(UseXmmRegToRegMoveAll)) {
1120       if (supports_sse3()) {
1121         UseXmmRegToRegMoveAll = true; // use movaps, movapd on new ZX cpus
1122       } else {
1123         UseXmmRegToRegMoveAll = false;
1124       }
1125     }
1126     if (((cpu_family() == 6) || (cpu_family() == 7)) && supports_sse3()) { // new ZX cpus
1127 #ifdef COMPILER2
1128       if (FLAG_IS_DEFAULT(MaxLoopPad)) {
1129         // For new ZX cpus do the next optimization:
1130         // don't align the beginning of a loop if there are enough instructions
1131         // left (NumberOfLoopInstrToAlign defined in c2_globals.hpp)
1132         // in current fetch line (OptoLoopAlignment) or the padding
1133         // is big (> MaxLoopPad).
1134         // Set MaxLoopPad to 11 for new ZX cpus to reduce number of
1135         // generated NOP instructions. 11 is the largest size of one
1136         // address NOP instruction '0F 1F' (see Assembler::nop(i)).
1137         MaxLoopPad = 11;
1138       }
1139 #endif // COMPILER2
1140       if (FLAG_IS_DEFAULT(UseXMMForArrayCopy)) {
1141         UseXMMForArrayCopy = true; // use SSE2 movq on new ZX cpus
1142       }
1143       if (supports_sse4_2()) { // new ZX cpus
1144         if (FLAG_IS_DEFAULT(UseUnalignedLoadStores)) {
1145           UseUnalignedLoadStores = true; // use movdqu on newest ZX cpus
1146         }
1147       }
1148       if (supports_sse4_2()) {
1149         if (FLAG_IS_DEFAULT(UseSSE42Intrinsics)) {
1150           FLAG_SET_DEFAULT(UseSSE42Intrinsics, true);
1151         }
1152       } else {
1153         if (UseSSE42Intrinsics && !FLAG_IS_DEFAULT(UseAESIntrinsics)) {
1154           warning("SSE4.2 intrinsics require SSE4.2 instructions or higher. Intrinsics will be disabled.");
1155         }
1156         FLAG_SET_DEFAULT(UseSSE42Intrinsics, false);
1157       }
1158     }
1159 
1160     if (FLAG_IS_DEFAULT(AllocatePrefetchInstr) && supports_3dnow_prefetch()) {
1161       FLAG_SET_DEFAULT(AllocatePrefetchInstr, 3);
1162     }
1163   }
1164 
1165   if( is_amd() ) { // AMD cpus specific settings
1166     if( supports_sse2() && FLAG_IS_DEFAULT(UseAddressNop) ) {
1167       // Use it on new AMD cpus starting from Opteron.
1168       UseAddressNop = true;
1169     }
1170     if( supports_sse2() && FLAG_IS_DEFAULT(UseNewLongLShift) ) {
1171       // Use it on new AMD cpus starting from Opteron.
1172       UseNewLongLShift = true;
1173     }
1174     if( FLAG_IS_DEFAULT(UseXmmLoadAndClearUpper) ) {
1175       if (supports_sse4a()) {
1176         UseXmmLoadAndClearUpper = true; // use movsd only on '10h' Opteron
1177       } else {
1178         UseXmmLoadAndClearUpper = false;
1179       }
1180     }
1181     if( FLAG_IS_DEFAULT(UseXmmRegToRegMoveAll) ) {
1182       if( supports_sse4a() ) {
1183         UseXmmRegToRegMoveAll = true; // use movaps, movapd only on '10h'
1184       } else {
1185         UseXmmRegToRegMoveAll = false;
1186       }
1187     }
1188     if( FLAG_IS_DEFAULT(UseXmmI2F) ) {
1189       if( supports_sse4a() ) {
1190         UseXmmI2F = true;
1191       } else {
1192         UseXmmI2F = false;
1193       }
1194     }
1195     if( FLAG_IS_DEFAULT(UseXmmI2D) ) {
1196       if( supports_sse4a() ) {
1197         UseXmmI2D = true;
1198       } else {
1199         UseXmmI2D = false;
1200       }
1201     }
1202     if (supports_sse4_2()) {
1203       if (FLAG_IS_DEFAULT(UseSSE42Intrinsics)) {
1204         FLAG_SET_DEFAULT(UseSSE42Intrinsics, true);
1205       }
1206     } else {
1207       if (UseSSE42Intrinsics && !FLAG_IS_DEFAULT(UseAESIntrinsics)) {
1208         warning("SSE4.2 intrinsics require SSE4.2 instructions or higher. Intrinsics will be disabled.");
1209       }
1210       FLAG_SET_DEFAULT(UseSSE42Intrinsics, false);
1211     }
1212 
1213     // some defaults for AMD family 15h
1214     if ( cpu_family() == 0x15 ) {
1215       // On family 15h processors default is no sw prefetch
1216       if (FLAG_IS_DEFAULT(AllocatePrefetchStyle)) {
1217         FLAG_SET_DEFAULT(AllocatePrefetchStyle, 0);
1218       }
1219       // Also, if some other prefetch style is specified, default instruction type is PREFETCHW
1220       if (FLAG_IS_DEFAULT(AllocatePrefetchInstr)) {
1221         FLAG_SET_DEFAULT(AllocatePrefetchInstr, 3);
1222       }
1223       // On family 15h processors use XMM and UnalignedLoadStores for Array Copy
1224       if (supports_sse2() && FLAG_IS_DEFAULT(UseXMMForArrayCopy)) {
1225         FLAG_SET_DEFAULT(UseXMMForArrayCopy, true);
1226       }
1227       if (supports_sse2() && FLAG_IS_DEFAULT(UseUnalignedLoadStores)) {
1228         FLAG_SET_DEFAULT(UseUnalignedLoadStores, true);
1229       }
1230     }
1231 
1232 #ifdef COMPILER2
1233     if (cpu_family() < 0x17 && MaxVectorSize > 16) {
1234       // Limit vectors size to 16 bytes on AMD cpus < 17h.
1235       FLAG_SET_DEFAULT(MaxVectorSize, 16);
1236     }
1237 #endif // COMPILER2
1238 
1239     // Some defaults for AMD family 17h
1240     if ( cpu_family() == 0x17 ) {
1241       // On family 17h processors use XMM and UnalignedLoadStores for Array Copy
1242       if (supports_sse2() && FLAG_IS_DEFAULT(UseXMMForArrayCopy)) {
1243         FLAG_SET_DEFAULT(UseXMMForArrayCopy, true);
1244       }
1245       if (supports_sse2() && FLAG_IS_DEFAULT(UseUnalignedLoadStores)) {
1246         FLAG_SET_DEFAULT(UseUnalignedLoadStores, true);
1247       }
1248 #ifdef COMPILER2
1249       if (supports_sse4_2() && FLAG_IS_DEFAULT(UseFPUForSpilling)) {
1250         FLAG_SET_DEFAULT(UseFPUForSpilling, true);
1251       }
1252 #endif
1253     }
1254   }
1255 
1256   if( is_intel() ) { // Intel cpus specific settings
1257     if( FLAG_IS_DEFAULT(UseStoreImmI16) ) {
1258       UseStoreImmI16 = false; // don't use it on Intel cpus
1259     }
1260     if( cpu_family() == 6 || cpu_family() == 15 ) {
1261       if( FLAG_IS_DEFAULT(UseAddressNop) ) {
1262         // Use it on all Intel cpus starting from PentiumPro
1263         UseAddressNop = true;
1264       }
1265     }
1266     if( FLAG_IS_DEFAULT(UseXmmLoadAndClearUpper) ) {
1267       UseXmmLoadAndClearUpper = true; // use movsd on all Intel cpus
1268     }
1269     if( FLAG_IS_DEFAULT(UseXmmRegToRegMoveAll) ) {
1270       if( supports_sse3() ) {
1271         UseXmmRegToRegMoveAll = true; // use movaps, movapd on new Intel cpus
1272       } else {
1273         UseXmmRegToRegMoveAll = false;
1274       }
1275     }
1276     if( cpu_family() == 6 && supports_sse3() ) { // New Intel cpus
1277 #ifdef COMPILER2
1278       if( FLAG_IS_DEFAULT(MaxLoopPad) ) {
1279         // For new Intel cpus do the next optimization:
1280         // don't align the beginning of a loop if there are enough instructions
1281         // left (NumberOfLoopInstrToAlign defined in c2_globals.hpp)
1282         // in current fetch line (OptoLoopAlignment) or the padding
1283         // is big (> MaxLoopPad).
1284         // Set MaxLoopPad to 11 for new Intel cpus to reduce number of
1285         // generated NOP instructions. 11 is the largest size of one
1286         // address NOP instruction '0F 1F' (see Assembler::nop(i)).
1287         MaxLoopPad = 11;
1288       }
1289 #endif // COMPILER2
1290       if (FLAG_IS_DEFAULT(UseXMMForArrayCopy)) {
1291         UseXMMForArrayCopy = true; // use SSE2 movq on new Intel cpus
1292       }
1293       if (supports_sse4_2() && supports_ht()) { // Newest Intel cpus
1294         if (FLAG_IS_DEFAULT(UseUnalignedLoadStores)) {
1295           UseUnalignedLoadStores = true; // use movdqu on newest Intel cpus
1296         }
1297       }
1298       if (supports_sse4_2()) {
1299         if (FLAG_IS_DEFAULT(UseSSE42Intrinsics)) {
1300           FLAG_SET_DEFAULT(UseSSE42Intrinsics, true);
1301         }
1302       } else {
1303         if (UseSSE42Intrinsics && !FLAG_IS_DEFAULT(UseAESIntrinsics)) {
1304           warning("SSE4.2 intrinsics require SSE4.2 instructions or higher. Intrinsics will be disabled.");
1305         }
1306         FLAG_SET_DEFAULT(UseSSE42Intrinsics, false);
1307       }
1308     }
1309     if (is_atom_family() || is_knights_family()) {
1310 #ifdef COMPILER2
1311       if (FLAG_IS_DEFAULT(OptoScheduling)) {
1312         OptoScheduling = true;
1313       }
1314 #endif
1315       if (supports_sse4_2()) { // Silvermont
1316         if (FLAG_IS_DEFAULT(UseUnalignedLoadStores)) {
1317           UseUnalignedLoadStores = true; // use movdqu on newest Intel cpus
1318         }
1319       }
1320       if (FLAG_IS_DEFAULT(UseIncDec)) {
1321         FLAG_SET_DEFAULT(UseIncDec, false);
1322       }
1323     }
1324     if(FLAG_IS_DEFAULT(AllocatePrefetchInstr) && supports_3dnow_prefetch()) {
1325       FLAG_SET_DEFAULT(AllocatePrefetchInstr, 3);
1326     }
1327   }
1328 
1329 #ifdef _LP64
1330   if (UseSSE42Intrinsics) {
1331     if (FLAG_IS_DEFAULT(UseVectorizedMismatchIntrinsic)) {
1332       UseVectorizedMismatchIntrinsic = true;
1333     }
1334   } else if (UseVectorizedMismatchIntrinsic) {
1335     if (!FLAG_IS_DEFAULT(UseVectorizedMismatchIntrinsic))
1336       warning("vectorizedMismatch intrinsics are not available on this CPU");
1337     FLAG_SET_DEFAULT(UseVectorizedMismatchIntrinsic, false);
1338   }
1339 #else
1340   if (UseVectorizedMismatchIntrinsic) {
1341     if (!FLAG_IS_DEFAULT(UseVectorizedMismatchIntrinsic)) {
1342       warning("vectorizedMismatch intrinsic is not available in 32-bit VM");
1343     }
1344     FLAG_SET_DEFAULT(UseVectorizedMismatchIntrinsic, false);
1345   }
1346 #endif // _LP64
1347 
1348   // Use count leading zeros count instruction if available.
1349   if (supports_lzcnt()) {
1350     if (FLAG_IS_DEFAULT(UseCountLeadingZerosInstruction)) {
1351       UseCountLeadingZerosInstruction = true;
1352     }
1353    } else if (UseCountLeadingZerosInstruction) {
1354     warning("lzcnt instruction is not available on this CPU");
1355     FLAG_SET_DEFAULT(UseCountLeadingZerosInstruction, false);
1356   }
1357 
1358   // Use count trailing zeros instruction if available
1359   if (supports_bmi1()) {
1360     // tzcnt does not require VEX prefix
1361     if (FLAG_IS_DEFAULT(UseCountTrailingZerosInstruction)) {
1362       if (!UseBMI1Instructions && !FLAG_IS_DEFAULT(UseBMI1Instructions)) {
1363         // Don't use tzcnt if BMI1 is switched off on command line.
1364         UseCountTrailingZerosInstruction = false;
1365       } else {
1366         UseCountTrailingZerosInstruction = true;
1367       }
1368     }
1369   } else if (UseCountTrailingZerosInstruction) {
1370     warning("tzcnt instruction is not available on this CPU");
1371     FLAG_SET_DEFAULT(UseCountTrailingZerosInstruction, false);
1372   }
1373 
1374   // BMI instructions (except tzcnt) use an encoding with VEX prefix.
1375   // VEX prefix is generated only when AVX > 0.
1376   if (supports_bmi1() && supports_avx()) {
1377     if (FLAG_IS_DEFAULT(UseBMI1Instructions)) {
1378       UseBMI1Instructions = true;
1379     }
1380   } else if (UseBMI1Instructions) {
1381     warning("BMI1 instructions are not available on this CPU (AVX is also required)");
1382     FLAG_SET_DEFAULT(UseBMI1Instructions, false);
1383   }
1384 
1385   if (supports_bmi2() && supports_avx()) {
1386     if (FLAG_IS_DEFAULT(UseBMI2Instructions)) {
1387       UseBMI2Instructions = true;
1388     }
1389   } else if (UseBMI2Instructions) {
1390     warning("BMI2 instructions are not available on this CPU (AVX is also required)");
1391     FLAG_SET_DEFAULT(UseBMI2Instructions, false);
1392   }
1393 
1394   // Use population count instruction if available.
1395   if (supports_popcnt()) {
1396     if (FLAG_IS_DEFAULT(UsePopCountInstruction)) {
1397       UsePopCountInstruction = true;
1398     }
1399   } else if (UsePopCountInstruction) {
1400     warning("POPCNT instruction is not available on this CPU");
1401     FLAG_SET_DEFAULT(UsePopCountInstruction, false);
1402   }
1403 
1404   // Use fast-string operations if available.
1405   if (supports_erms()) {
1406     if (FLAG_IS_DEFAULT(UseFastStosb)) {
1407       UseFastStosb = true;
1408     }
1409   } else if (UseFastStosb) {
1410     warning("fast-string operations are not available on this CPU");
1411     FLAG_SET_DEFAULT(UseFastStosb, false);
1412   }
1413 
1414   // Use XMM/YMM MOVDQU instruction for Object Initialization
1415   if (!UseFastStosb && UseSSE >= 2 && UseUnalignedLoadStores) {
1416     if (FLAG_IS_DEFAULT(UseXMMForObjInit)) {
1417       UseXMMForObjInit = true;
1418     }
1419   } else if (UseXMMForObjInit) {
1420     warning("UseXMMForObjInit requires SSE2 and unaligned load/stores. Feature is switched off.");
1421     FLAG_SET_DEFAULT(UseXMMForObjInit, false);
1422   }
1423 
1424 #ifdef COMPILER2
1425   if (FLAG_IS_DEFAULT(AlignVector)) {
1426     // Modern processors allow misaligned memory operations for vectors.
1427     AlignVector = !UseUnalignedLoadStores;
1428   }
1429 #endif // COMPILER2
1430 
1431   if (FLAG_IS_DEFAULT(AllocatePrefetchInstr)) {
1432     if (AllocatePrefetchInstr == 3 && !supports_3dnow_prefetch()) {
1433       FLAG_SET_DEFAULT(AllocatePrefetchInstr, 0);
1434     } else if (!supports_sse() && supports_3dnow_prefetch()) {
1435       FLAG_SET_DEFAULT(AllocatePrefetchInstr, 3);
1436     }
1437   }
1438 
1439   // Allocation prefetch settings
1440   intx cache_line_size = prefetch_data_size();
1441   if (FLAG_IS_DEFAULT(AllocatePrefetchStepSize) &&
1442       (cache_line_size > AllocatePrefetchStepSize)) {
1443     FLAG_SET_DEFAULT(AllocatePrefetchStepSize, cache_line_size);
1444   }
1445 
1446   if ((AllocatePrefetchDistance == 0) && (AllocatePrefetchStyle != 0)) {
1447     assert(!FLAG_IS_DEFAULT(AllocatePrefetchDistance), "default value should not be 0");
1448     if (!FLAG_IS_DEFAULT(AllocatePrefetchStyle)) {
1449       warning("AllocatePrefetchDistance is set to 0 which disable prefetching. Ignoring AllocatePrefetchStyle flag.");
1450     }
1451     FLAG_SET_DEFAULT(AllocatePrefetchStyle, 0);
1452   }
1453 
1454   if (FLAG_IS_DEFAULT(AllocatePrefetchDistance)) {
1455     bool use_watermark_prefetch = (AllocatePrefetchStyle == 2);
1456     FLAG_SET_DEFAULT(AllocatePrefetchDistance, allocate_prefetch_distance(use_watermark_prefetch));
1457   }
1458 
1459   if (is_intel() && cpu_family() == 6 && supports_sse3()) {
1460     if (FLAG_IS_DEFAULT(AllocatePrefetchLines) &&
1461         supports_sse4_2() && supports_ht()) { // Nehalem based cpus
1462       FLAG_SET_DEFAULT(AllocatePrefetchLines, 4);
1463     }
1464 #ifdef COMPILER2
1465     if (FLAG_IS_DEFAULT(UseFPUForSpilling) && supports_sse4_2()) {
1466       FLAG_SET_DEFAULT(UseFPUForSpilling, true);
1467     }
1468 #endif
1469   }
1470 
1471   if (is_zx() && ((cpu_family() == 6) || (cpu_family() == 7)) && supports_sse4_2()) {
1472 #ifdef COMPILER2
1473     if (FLAG_IS_DEFAULT(UseFPUForSpilling)) {
1474       FLAG_SET_DEFAULT(UseFPUForSpilling, true);
1475     }
1476 #endif
1477   }
1478 
1479 #ifdef _LP64
1480   // Prefetch settings
1481 
1482   // Prefetch interval for gc copy/scan == 9 dcache lines.  Derived from
1483   // 50-warehouse specjbb runs on a 2-way 1.8ghz opteron using a 4gb heap.
1484   // Tested intervals from 128 to 2048 in increments of 64 == one cache line.
1485   // 256 bytes (4 dcache lines) was the nearest runner-up to 576.
1486 
1487   // gc copy/scan is disabled if prefetchw isn't supported, because
1488   // Prefetch::write emits an inlined prefetchw on Linux.
1489   // Do not use the 3dnow prefetchw instruction.  It isn't supported on em64t.
1490   // The used prefetcht0 instruction works for both amd64 and em64t.
1491 
1492   if (FLAG_IS_DEFAULT(PrefetchCopyIntervalInBytes)) {
1493     FLAG_SET_DEFAULT(PrefetchCopyIntervalInBytes, 576);
1494   }
1495   if (FLAG_IS_DEFAULT(PrefetchScanIntervalInBytes)) {
1496     FLAG_SET_DEFAULT(PrefetchScanIntervalInBytes, 576);
1497   }
1498   if (FLAG_IS_DEFAULT(PrefetchFieldsAhead)) {
1499     FLAG_SET_DEFAULT(PrefetchFieldsAhead, 1);
1500   }
1501 #endif
1502 
1503   if (FLAG_IS_DEFAULT(ContendedPaddingWidth) &&
1504      (cache_line_size > ContendedPaddingWidth))
1505      ContendedPaddingWidth = cache_line_size;
1506 
1507   // This machine allows unaligned memory accesses
1508   if (FLAG_IS_DEFAULT(UseUnalignedAccesses)) {
1509     FLAG_SET_DEFAULT(UseUnalignedAccesses, true);
1510   }
1511 
1512 #ifndef PRODUCT
1513   if (log_is_enabled(Info, os, cpu)) {
1514     LogStream ls(Log(os, cpu)::info());
1515     outputStream* log = &ls;
1516     log->print_cr("Logical CPUs per core: %u",
1517                   logical_processors_per_package());
1518     log->print_cr("L1 data cache line size: %u", L1_data_cache_line_size());
1519     log->print("UseSSE=%d", (int) UseSSE);
1520     if (UseAVX > 0) {
1521       log->print("  UseAVX=%d", (int) UseAVX);
1522     }
1523     if (UseAES) {
1524       log->print("  UseAES=1");
1525     }
1526 #ifdef COMPILER2
1527     if (MaxVectorSize > 0) {
1528       log->print("  MaxVectorSize=%d", (int) MaxVectorSize);
1529     }
1530 #endif
1531     log->cr();
1532     log->print("Allocation");
1533     if (AllocatePrefetchStyle <= 0 || (UseSSE == 0 && !supports_3dnow_prefetch())) {
1534       log->print_cr(": no prefetching");
1535     } else {
1536       log->print(" prefetching: ");
1537       if (UseSSE == 0 && supports_3dnow_prefetch()) {
1538         log->print("PREFETCHW");
1539       } else if (UseSSE >= 1) {
1540         if (AllocatePrefetchInstr == 0) {
1541           log->print("PREFETCHNTA");
1542         } else if (AllocatePrefetchInstr == 1) {
1543           log->print("PREFETCHT0");
1544         } else if (AllocatePrefetchInstr == 2) {
1545           log->print("PREFETCHT2");
1546         } else if (AllocatePrefetchInstr == 3) {
1547           log->print("PREFETCHW");
1548         }
1549       }
1550       if (AllocatePrefetchLines > 1) {
1551         log->print_cr(" at distance %d, %d lines of %d bytes", (int) AllocatePrefetchDistance, (int) AllocatePrefetchLines, (int) AllocatePrefetchStepSize);
1552       } else {
1553         log->print_cr(" at distance %d, one line of %d bytes", (int) AllocatePrefetchDistance, (int) AllocatePrefetchStepSize);
1554       }
1555     }
1556 
1557     if (PrefetchCopyIntervalInBytes > 0) {
1558       log->print_cr("PrefetchCopyIntervalInBytes %d", (int) PrefetchCopyIntervalInBytes);
1559     }
1560     if (PrefetchScanIntervalInBytes > 0) {
1561       log->print_cr("PrefetchScanIntervalInBytes %d", (int) PrefetchScanIntervalInBytes);
1562     }
1563     if (PrefetchFieldsAhead > 0) {
1564       log->print_cr("PrefetchFieldsAhead %d", (int) PrefetchFieldsAhead);
1565     }
1566     if (ContendedPaddingWidth > 0) {
1567       log->print_cr("ContendedPaddingWidth %d", (int) ContendedPaddingWidth);
1568     }
1569   }
1570 #endif // !PRODUCT
1571 }
1572 
1573 bool VM_Version::use_biased_locking() {
1574 #if INCLUDE_RTM_OPT
1575   // RTM locking is most useful when there is high lock contention and
1576   // low data contention.  With high lock contention the lock is usually
1577   // inflated and biased locking is not suitable for that case.
1578   // RTM locking code requires that biased locking is off.
1579   // Note: we can't switch off UseBiasedLocking in get_processor_features()
1580   // because it is used by Thread::allocate() which is called before
1581   // VM_Version::initialize().
1582   if (UseRTMLocking && UseBiasedLocking) {
1583     if (FLAG_IS_DEFAULT(UseBiasedLocking)) {
1584       FLAG_SET_DEFAULT(UseBiasedLocking, false);
1585     } else {
1586       warning("Biased locking is not supported with RTM locking; ignoring UseBiasedLocking flag." );
1587       UseBiasedLocking = false;
1588     }
1589   }
1590 #endif
1591   return UseBiasedLocking;
1592 }
1593 
1594 void VM_Version::initialize() {
1595   ResourceMark rm;
1596   // Making this stub must be FIRST use of assembler
1597 
1598   stub_blob = BufferBlob::create("get_cpu_info_stub", stub_size);
1599   if (stub_blob == NULL) {
1600     vm_exit_during_initialization("Unable to allocate get_cpu_info_stub");
1601   }
1602   CodeBuffer c(stub_blob);
1603   VM_Version_StubGenerator g(&c);
1604   get_cpu_info_stub = CAST_TO_FN_PTR(get_cpu_info_stub_t,
1605                                      g.generate_get_cpu_info());
1606 
1607   get_processor_features();
1608 }