1 /*
   2  * Copyright (c) 1998, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/macroAssembler.inline.hpp"
  27 #include "memory/allocation.inline.hpp"
  28 #include "oops/compressedOops.hpp"
  29 #include "opto/ad.hpp"
  30 #include "opto/block.hpp"
  31 #include "opto/c2compiler.hpp"
  32 #include "opto/callnode.hpp"
  33 #include "opto/cfgnode.hpp"
  34 #include "opto/machnode.hpp"
  35 #include "opto/runtime.hpp"
  36 #include "opto/chaitin.hpp"
  37 #include "runtime/sharedRuntime.hpp"
  38 
  39 // Optimization - Graph Style
  40 
  41 // Check whether val is not-null-decoded compressed oop,
  42 // i.e. will grab into the base of the heap if it represents NULL.
  43 static bool accesses_heap_base_zone(Node *val) {
  44   if (CompressedOops::base() != NULL) { // Implies UseCompressedOops.
  45     if (val && val->is_Mach()) {
  46       if (val->as_Mach()->ideal_Opcode() == Op_DecodeN) {
  47         // This assumes all Decodes with TypePtr::NotNull are matched to nodes that
  48         // decode NULL to point to the heap base (Decode_NN).
  49         if (val->bottom_type()->is_oopptr()->ptr() == TypePtr::NotNull) {
  50           return true;
  51         }
  52       }
  53       // Must recognize load operation with Decode matched in memory operand.
  54       // We should not reach here exept for PPC/AIX, as os::zero_page_read_protected()
  55       // returns true everywhere else. On PPC, no such memory operands
  56       // exist, therefore we did not yet implement a check for such operands.
  57       NOT_AIX(Unimplemented());
  58     }
  59   }
  60   return false;
  61 }
  62 
  63 static bool needs_explicit_null_check_for_read(Node *val) {
  64   // On some OSes (AIX) the page at address 0 is only write protected.
  65   // If so, only Store operations will trap.
  66   if (os::zero_page_read_protected()) {
  67     return false;  // Implicit null check will work.
  68   }
  69   // Also a read accessing the base of a heap-based compressed heap will trap.
  70   if (accesses_heap_base_zone(val) &&         // Hits the base zone page.
  71       CompressedOops::use_implicit_null_checks()) { // Base zone page is protected.
  72     return false;
  73   }
  74 
  75   return true;
  76 }
  77 
  78 //------------------------------implicit_null_check----------------------------
  79 // Detect implicit-null-check opportunities.  Basically, find NULL checks
  80 // with suitable memory ops nearby.  Use the memory op to do the NULL check.
  81 // I can generate a memory op if there is not one nearby.
  82 // The proj is the control projection for the not-null case.
  83 // The val is the pointer being checked for nullness or
  84 // decodeHeapOop_not_null node if it did not fold into address.
  85 void PhaseCFG::implicit_null_check(Block* block, Node *proj, Node *val, int allowed_reasons) {
  86   // Assume if null check need for 0 offset then always needed
  87   // Intel solaris doesn't support any null checks yet and no
  88   // mechanism exists (yet) to set the switches at an os_cpu level
  89   if( !ImplicitNullChecks || MacroAssembler::needs_explicit_null_check(0)) return;
  90 
  91   // Make sure the ptr-is-null path appears to be uncommon!
  92   float f = block->end()->as_MachIf()->_prob;
  93   if( proj->Opcode() == Op_IfTrue ) f = 1.0f - f;
  94   if( f > PROB_UNLIKELY_MAG(4) ) return;
  95 
  96   uint bidx = 0;                // Capture index of value into memop
  97   bool was_store;               // Memory op is a store op
  98 
  99   // Get the successor block for if the test ptr is non-null
 100   Block* not_null_block;  // this one goes with the proj
 101   Block* null_block;
 102   if (block->get_node(block->number_of_nodes()-1) == proj) {
 103     null_block     = block->_succs[0];
 104     not_null_block = block->_succs[1];
 105   } else {
 106     assert(block->get_node(block->number_of_nodes()-2) == proj, "proj is one or the other");
 107     not_null_block = block->_succs[0];
 108     null_block     = block->_succs[1];
 109   }
 110   while (null_block->is_Empty() == Block::empty_with_goto) {
 111     null_block     = null_block->_succs[0];
 112   }
 113 
 114   // Search the exception block for an uncommon trap.
 115   // (See Parse::do_if and Parse::do_ifnull for the reason
 116   // we need an uncommon trap.  Briefly, we need a way to
 117   // detect failure of this optimization, as in 6366351.)
 118   {
 119     bool found_trap = false;
 120     for (uint i1 = 0; i1 < null_block->number_of_nodes(); i1++) {
 121       Node* nn = null_block->get_node(i1);
 122       if (nn->is_MachCall() &&
 123           nn->as_MachCall()->entry_point() == SharedRuntime::uncommon_trap_blob()->entry_point()) {
 124         const Type* trtype = nn->in(TypeFunc::Parms)->bottom_type();
 125         if (trtype->isa_int() && trtype->is_int()->is_con()) {
 126           jint tr_con = trtype->is_int()->get_con();
 127           Deoptimization::DeoptReason reason = Deoptimization::trap_request_reason(tr_con);
 128           Deoptimization::DeoptAction action = Deoptimization::trap_request_action(tr_con);
 129           assert((int)reason < (int)BitsPerInt, "recode bit map");
 130           if (is_set_nth_bit(allowed_reasons, (int) reason)
 131               && action != Deoptimization::Action_none) {
 132             // This uncommon trap is sure to recompile, eventually.
 133             // When that happens, C->too_many_traps will prevent
 134             // this transformation from happening again.
 135             found_trap = true;
 136           }
 137         }
 138         break;
 139       }
 140     }
 141     if (!found_trap) {
 142       // We did not find an uncommon trap.
 143       return;
 144     }
 145   }
 146 
 147   // Check for decodeHeapOop_not_null node which did not fold into address
 148   bool is_decoden = ((intptr_t)val) & 1;
 149   val = (Node*)(((intptr_t)val) & ~1);
 150 
 151   assert(!is_decoden || (val->in(0) == NULL) && val->is_Mach() &&
 152          (val->as_Mach()->ideal_Opcode() == Op_DecodeN), "sanity");
 153 
 154   // Search the successor block for a load or store who's base value is also
 155   // the tested value.  There may be several.
 156   Node_List *out = new Node_List(Thread::current()->resource_area());
 157   MachNode *best = NULL;        // Best found so far
 158   for (DUIterator i = val->outs(); val->has_out(i); i++) {
 159     Node *m = val->out(i);
 160     if( !m->is_Mach() ) continue;
 161     MachNode *mach = m->as_Mach();
 162     was_store = false;
 163     int iop = mach->ideal_Opcode();
 164     switch( iop ) {
 165     case Op_LoadB:
 166     case Op_LoadUB:
 167     case Op_LoadUS:
 168     case Op_LoadD:
 169     case Op_LoadF:
 170     case Op_LoadI:
 171     case Op_LoadL:
 172     case Op_LoadP:
 173     case Op_LoadBarrierSlowReg:
 174     case Op_LoadBarrierWeakSlowReg:
 175     case Op_LoadN:
 176     case Op_LoadS:
 177     case Op_LoadKlass:
 178     case Op_LoadNKlass:
 179     case Op_LoadRange:
 180     case Op_LoadD_unaligned:
 181     case Op_LoadL_unaligned:
 182       assert(mach->in(2) == val, "should be address");
 183       break;
 184     case Op_StoreB:
 185     case Op_StoreC:
 186     case Op_StoreCM:
 187     case Op_StoreD:
 188     case Op_StoreF:
 189     case Op_StoreI:
 190     case Op_StoreL:
 191     case Op_StoreP:
 192     case Op_StoreN:
 193     case Op_StoreNKlass:
 194       was_store = true;         // Memory op is a store op
 195       // Stores will have their address in slot 2 (memory in slot 1).
 196       // If the value being nul-checked is in another slot, it means we
 197       // are storing the checked value, which does NOT check the value!
 198       if( mach->in(2) != val ) continue;
 199       break;                    // Found a memory op?
 200     case Op_StrComp:
 201     case Op_StrEquals:
 202     case Op_StrIndexOf:
 203     case Op_StrIndexOfChar:
 204     case Op_AryEq:
 205     case Op_StrInflatedCopy:
 206     case Op_StrCompressedCopy:
 207     case Op_EncodeISOArray:
 208     case Op_HasNegatives:
 209       // Not a legit memory op for implicit null check regardless of
 210       // embedded loads
 211       continue;
 212     default:                    // Also check for embedded loads
 213       if( !mach->needs_anti_dependence_check() )
 214         continue;               // Not an memory op; skip it
 215       if( must_clone[iop] ) {
 216         // Do not move nodes which produce flags because
 217         // RA will try to clone it to place near branch and
 218         // it will cause recompilation, see clone_node().
 219         continue;
 220       }
 221       {
 222         // Check that value is used in memory address in
 223         // instructions with embedded load (CmpP val1,(val2+off)).
 224         Node* base;
 225         Node* index;
 226         const MachOper* oper = mach->memory_inputs(base, index);
 227         if (oper == NULL || oper == (MachOper*)-1) {
 228           continue;             // Not an memory op; skip it
 229         }
 230         if (val == base ||
 231             (val == index && val->bottom_type()->isa_narrowoop())) {
 232           break;                // Found it
 233         } else {
 234           continue;             // Skip it
 235         }
 236       }
 237       break;
 238     }
 239 
 240     // On some OSes (AIX) the page at address 0 is only write protected.
 241     // If so, only Store operations will trap.
 242     // But a read accessing the base of a heap-based compressed heap will trap.
 243     if (!was_store && needs_explicit_null_check_for_read(val)) {
 244       continue;
 245     }
 246 
 247     // Check that node's control edge is not-null block's head or dominates it,
 248     // otherwise we can't hoist it because there are other control dependencies.
 249     Node* ctrl = mach->in(0);
 250     if (ctrl != NULL && !(ctrl == not_null_block->head() ||
 251         get_block_for_node(ctrl)->dominates(not_null_block))) {
 252       continue;
 253     }
 254 
 255     // check if the offset is not too high for implicit exception
 256     {
 257       intptr_t offset = 0;
 258       const TypePtr *adr_type = NULL;  // Do not need this return value here
 259       const Node* base = mach->get_base_and_disp(offset, adr_type);
 260       if (base == NULL || base == NodeSentinel) {
 261         // Narrow oop address doesn't have base, only index.
 262         // Give up if offset is beyond page size or if heap base is not protected.
 263         if (val->bottom_type()->isa_narrowoop() &&
 264             (MacroAssembler::needs_explicit_null_check(offset) ||
 265              !CompressedOops::use_implicit_null_checks()))
 266           continue;
 267         // cannot reason about it; is probably not implicit null exception
 268       } else {
 269         const TypePtr* tptr;
 270         if (UseCompressedOops && (CompressedOops::shift() == 0 ||
 271                                   CompressedKlassPointers::shift() == 0)) {
 272           // 32-bits narrow oop can be the base of address expressions
 273           tptr = base->get_ptr_type();
 274         } else {
 275           // only regular oops are expected here
 276           tptr = base->bottom_type()->is_ptr();
 277         }
 278         // Give up if offset is not a compile-time constant.
 279         if (offset == Type::OffsetBot || tptr->_offset == Type::OffsetBot)
 280           continue;
 281         offset += tptr->_offset; // correct if base is offseted
 282         // Give up if reference is beyond page size.
 283         if (MacroAssembler::needs_explicit_null_check(offset))
 284           continue;
 285         // Give up if base is a decode node and the heap base is not protected.
 286         if (base->is_Mach() && base->as_Mach()->ideal_Opcode() == Op_DecodeN &&
 287             !CompressedOops::use_implicit_null_checks())
 288           continue;
 289       }
 290     }
 291 
 292     // Check ctrl input to see if the null-check dominates the memory op
 293     Block *cb = get_block_for_node(mach);
 294     cb = cb->_idom;             // Always hoist at least 1 block
 295     if( !was_store ) {          // Stores can be hoisted only one block
 296       while( cb->_dom_depth > (block->_dom_depth + 1))
 297         cb = cb->_idom;         // Hoist loads as far as we want
 298       // The non-null-block should dominate the memory op, too. Live
 299       // range spilling will insert a spill in the non-null-block if it is
 300       // needs to spill the memory op for an implicit null check.
 301       if (cb->_dom_depth == (block->_dom_depth + 1)) {
 302         if (cb != not_null_block) continue;
 303         cb = cb->_idom;
 304       }
 305     }
 306     if( cb != block ) continue;
 307 
 308     // Found a memory user; see if it can be hoisted to check-block
 309     uint vidx = 0;              // Capture index of value into memop
 310     uint j;
 311     for( j = mach->req()-1; j > 0; j-- ) {
 312       if( mach->in(j) == val ) {
 313         vidx = j;
 314         // Ignore DecodeN val which could be hoisted to where needed.
 315         if( is_decoden ) continue;
 316       }
 317       // Block of memory-op input
 318       Block *inb = get_block_for_node(mach->in(j));
 319       Block *b = block;          // Start from nul check
 320       while( b != inb && b->_dom_depth > inb->_dom_depth )
 321         b = b->_idom;           // search upwards for input
 322       // See if input dominates null check
 323       if( b != inb )
 324         break;
 325     }
 326     if( j > 0 )
 327       continue;
 328     Block *mb = get_block_for_node(mach);
 329     // Hoisting stores requires more checks for the anti-dependence case.
 330     // Give up hoisting if we have to move the store past any load.
 331     if( was_store ) {
 332       Block *b = mb;            // Start searching here for a local load
 333       // mach use (faulting) trying to hoist
 334       // n might be blocker to hoisting
 335       while( b != block ) {
 336         uint k;
 337         for( k = 1; k < b->number_of_nodes(); k++ ) {
 338           Node *n = b->get_node(k);
 339           if( n->needs_anti_dependence_check() &&
 340               n->in(LoadNode::Memory) == mach->in(StoreNode::Memory) )
 341             break;              // Found anti-dependent load
 342         }
 343         if( k < b->number_of_nodes() )
 344           break;                // Found anti-dependent load
 345         // Make sure control does not do a merge (would have to check allpaths)
 346         if( b->num_preds() != 2 ) break;
 347         b = get_block_for_node(b->pred(1)); // Move up to predecessor block
 348       }
 349       if( b != block ) continue;
 350     }
 351 
 352     // Make sure this memory op is not already being used for a NullCheck
 353     Node *e = mb->end();
 354     if( e->is_MachNullCheck() && e->in(1) == mach )
 355       continue;                 // Already being used as a NULL check
 356 
 357     // Found a candidate!  Pick one with least dom depth - the highest
 358     // in the dom tree should be closest to the null check.
 359     if (best == NULL || get_block_for_node(mach)->_dom_depth < get_block_for_node(best)->_dom_depth) {
 360       best = mach;
 361       bidx = vidx;
 362     }
 363   }
 364   // No candidate!
 365   if (best == NULL) {
 366     return;
 367   }
 368 
 369   // ---- Found an implicit null check
 370 #ifndef PRODUCT
 371   extern int implicit_null_checks;
 372   implicit_null_checks++;
 373 #endif
 374 
 375   if( is_decoden ) {
 376     // Check if we need to hoist decodeHeapOop_not_null first.
 377     Block *valb = get_block_for_node(val);
 378     if( block != valb && block->_dom_depth < valb->_dom_depth ) {
 379       // Hoist it up to the end of the test block.
 380       valb->find_remove(val);
 381       block->add_inst(val);
 382       map_node_to_block(val, block);
 383       // DecodeN on x86 may kill flags. Check for flag-killing projections
 384       // that also need to be hoisted.
 385       for (DUIterator_Fast jmax, j = val->fast_outs(jmax); j < jmax; j++) {
 386         Node* n = val->fast_out(j);
 387         if( n->is_MachProj() ) {
 388           get_block_for_node(n)->find_remove(n);
 389           block->add_inst(n);
 390           map_node_to_block(n, block);
 391         }
 392       }
 393     }
 394   }
 395   // Hoist the memory candidate up to the end of the test block.
 396   Block *old_block = get_block_for_node(best);
 397   old_block->find_remove(best);
 398   block->add_inst(best);
 399   map_node_to_block(best, block);
 400 
 401   // Move the control dependence if it is pinned to not-null block.
 402   // Don't change it in other cases: NULL or dominating control.
 403   if (best->in(0) == not_null_block->head()) {
 404     // Set it to control edge of null check.
 405     best->set_req(0, proj->in(0)->in(0));
 406   }
 407 
 408   // Check for flag-killing projections that also need to be hoisted
 409   // Should be DU safe because no edge updates.
 410   for (DUIterator_Fast jmax, j = best->fast_outs(jmax); j < jmax; j++) {
 411     Node* n = best->fast_out(j);
 412     if( n->is_MachProj() ) {
 413       get_block_for_node(n)->find_remove(n);
 414       block->add_inst(n);
 415       map_node_to_block(n, block);
 416     }
 417   }
 418 
 419   // proj==Op_True --> ne test; proj==Op_False --> eq test.
 420   // One of two graph shapes got matched:
 421   //   (IfTrue  (If (Bool NE (CmpP ptr NULL))))
 422   //   (IfFalse (If (Bool EQ (CmpP ptr NULL))))
 423   // NULL checks are always branch-if-eq.  If we see a IfTrue projection
 424   // then we are replacing a 'ne' test with a 'eq' NULL check test.
 425   // We need to flip the projections to keep the same semantics.
 426   if( proj->Opcode() == Op_IfTrue ) {
 427     // Swap order of projections in basic block to swap branch targets
 428     Node *tmp1 = block->get_node(block->end_idx()+1);
 429     Node *tmp2 = block->get_node(block->end_idx()+2);
 430     block->map_node(tmp2, block->end_idx()+1);
 431     block->map_node(tmp1, block->end_idx()+2);
 432     Node *tmp = new Node(C->top()); // Use not NULL input
 433     tmp1->replace_by(tmp);
 434     tmp2->replace_by(tmp1);
 435     tmp->replace_by(tmp2);
 436     tmp->destruct();
 437   }
 438 
 439   // Remove the existing null check; use a new implicit null check instead.
 440   // Since schedule-local needs precise def-use info, we need to correct
 441   // it as well.
 442   Node *old_tst = proj->in(0);
 443   MachNode *nul_chk = new MachNullCheckNode(old_tst->in(0),best,bidx);
 444   block->map_node(nul_chk, block->end_idx());
 445   map_node_to_block(nul_chk, block);
 446   // Redirect users of old_test to nul_chk
 447   for (DUIterator_Last i2min, i2 = old_tst->last_outs(i2min); i2 >= i2min; --i2)
 448     old_tst->last_out(i2)->set_req(0, nul_chk);
 449   // Clean-up any dead code
 450   for (uint i3 = 0; i3 < old_tst->req(); i3++) {
 451     Node* in = old_tst->in(i3);
 452     old_tst->set_req(i3, NULL);
 453     if (in->outcnt() == 0) {
 454       // Remove dead input node
 455       in->disconnect_inputs(NULL, C);
 456       block->find_remove(in);
 457     }
 458   }
 459 
 460   latency_from_uses(nul_chk);
 461   latency_from_uses(best);
 462 
 463   // insert anti-dependences to defs in this block
 464   if (! best->needs_anti_dependence_check()) {
 465     for (uint k = 1; k < block->number_of_nodes(); k++) {
 466       Node *n = block->get_node(k);
 467       if (n->needs_anti_dependence_check() &&
 468           n->in(LoadNode::Memory) == best->in(StoreNode::Memory)) {
 469         // Found anti-dependent load
 470         insert_anti_dependences(block, n);
 471       }
 472     }
 473   }
 474 }
 475 
 476 
 477 //------------------------------select-----------------------------------------
 478 // Select a nice fellow from the worklist to schedule next. If there is only
 479 // one choice, then use it. Projections take top priority for correctness
 480 // reasons - if I see a projection, then it is next.  There are a number of
 481 // other special cases, for instructions that consume condition codes, et al.
 482 // These are chosen immediately. Some instructions are required to immediately
 483 // precede the last instruction in the block, and these are taken last. Of the
 484 // remaining cases (most), choose the instruction with the greatest latency
 485 // (that is, the most number of pseudo-cycles required to the end of the
 486 // routine). If there is a tie, choose the instruction with the most inputs.
 487 Node* PhaseCFG::select(
 488   Block* block,
 489   Node_List &worklist,
 490   GrowableArray<int> &ready_cnt,
 491   VectorSet &next_call,
 492   uint sched_slot,
 493   intptr_t* recalc_pressure_nodes) {
 494 
 495   // If only a single entry on the stack, use it
 496   uint cnt = worklist.size();
 497   if (cnt == 1) {
 498     Node *n = worklist[0];
 499     worklist.map(0,worklist.pop());
 500     return n;
 501   }
 502 
 503   uint choice  = 0; // Bigger is most important
 504   uint latency = 0; // Bigger is scheduled first
 505   uint score   = 0; // Bigger is better
 506   int idx = -1;     // Index in worklist
 507   int cand_cnt = 0; // Candidate count
 508   bool block_size_threshold_ok = (block->number_of_nodes() > 10) ? true : false;
 509 
 510   for( uint i=0; i<cnt; i++ ) { // Inspect entire worklist
 511     // Order in worklist is used to break ties.
 512     // See caller for how this is used to delay scheduling
 513     // of induction variable increments to after the other
 514     // uses of the phi are scheduled.
 515     Node *n = worklist[i];      // Get Node on worklist
 516 
 517     int iop = n->is_Mach() ? n->as_Mach()->ideal_Opcode() : 0;
 518     if( n->is_Proj() ||         // Projections always win
 519         n->Opcode()== Op_Con || // So does constant 'Top'
 520         iop == Op_CreateEx ||   // Create-exception must start block
 521         iop == Op_CheckCastPP
 522         ) {
 523       worklist.map(i,worklist.pop());
 524       return n;
 525     }
 526 
 527     // Final call in a block must be adjacent to 'catch'
 528     Node *e = block->end();
 529     if( e->is_Catch() && e->in(0)->in(0) == n )
 530       continue;
 531 
 532     // Memory op for an implicit null check has to be at the end of the block
 533     if( e->is_MachNullCheck() && e->in(1) == n )
 534       continue;
 535 
 536     // Schedule IV increment last.
 537     if (e->is_Mach() && e->as_Mach()->ideal_Opcode() == Op_CountedLoopEnd) {
 538       // Cmp might be matched into CountedLoopEnd node.
 539       Node *cmp = (e->in(1)->ideal_reg() == Op_RegFlags) ? e->in(1) : e;
 540       if (cmp->req() > 1 && cmp->in(1) == n && n->is_iteratively_computed()) {
 541         continue;
 542       }
 543     }
 544 
 545     uint n_choice  = 2;
 546 
 547     // See if this instruction is consumed by a branch. If so, then (as the
 548     // branch is the last instruction in the basic block) force it to the
 549     // end of the basic block
 550     if ( must_clone[iop] ) {
 551       // See if any use is a branch
 552       bool found_machif = false;
 553 
 554       for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
 555         Node* use = n->fast_out(j);
 556 
 557         // The use is a conditional branch, make them adjacent
 558         if (use->is_MachIf() && get_block_for_node(use) == block) {
 559           found_machif = true;
 560           break;
 561         }
 562 
 563         // More than this instruction pending for successor to be ready,
 564         // don't choose this if other opportunities are ready
 565         if (ready_cnt.at(use->_idx) > 1)
 566           n_choice = 1;
 567       }
 568 
 569       // loop terminated, prefer not to use this instruction
 570       if (found_machif)
 571         continue;
 572     }
 573 
 574     // See if this has a predecessor that is "must_clone", i.e. sets the
 575     // condition code. If so, choose this first
 576     for (uint j = 0; j < n->req() ; j++) {
 577       Node *inn = n->in(j);
 578       if (inn) {
 579         if (inn->is_Mach() && must_clone[inn->as_Mach()->ideal_Opcode()] ) {
 580           n_choice = 3;
 581           break;
 582         }
 583       }
 584     }
 585 
 586     // MachTemps should be scheduled last so they are near their uses
 587     if (n->is_MachTemp()) {
 588       n_choice = 1;
 589     }
 590 
 591     uint n_latency = get_latency_for_node(n);
 592     uint n_score = n->req();   // Many inputs get high score to break ties
 593 
 594     if (OptoRegScheduling && block_size_threshold_ok) {
 595       if (recalc_pressure_nodes[n->_idx] == 0x7fff7fff) {
 596         _regalloc->_scratch_int_pressure.init(_regalloc->_sched_int_pressure.high_pressure_limit());
 597         _regalloc->_scratch_float_pressure.init(_regalloc->_sched_float_pressure.high_pressure_limit());
 598         // simulate the notion that we just picked this node to schedule
 599         n->add_flag(Node::Flag_is_scheduled);
 600         // now caculate its effect upon the graph if we did
 601         adjust_register_pressure(n, block, recalc_pressure_nodes, false);
 602         // return its state for finalize in case somebody else wins
 603         n->remove_flag(Node::Flag_is_scheduled);
 604         // now save the two final pressure components of register pressure, limiting pressure calcs to short size
 605         short int_pressure = (short)_regalloc->_scratch_int_pressure.current_pressure();
 606         short float_pressure = (short)_regalloc->_scratch_float_pressure.current_pressure();
 607         recalc_pressure_nodes[n->_idx] = int_pressure;
 608         recalc_pressure_nodes[n->_idx] |= (float_pressure << 16);
 609       }
 610 
 611       if (_scheduling_for_pressure) {
 612         latency = n_latency;
 613         if (n_choice != 3) {
 614           // Now evaluate each register pressure component based on threshold in the score.
 615           // In general the defining register type will dominate the score, ergo we will not see register pressure grow on both banks
 616           // on a single instruction, but we might see it shrink on both banks.
 617           // For each use of register that has a register class that is over the high pressure limit, we build n_score up for
 618           // live ranges that terminate on this instruction.
 619           if (_regalloc->_sched_int_pressure.current_pressure() > _regalloc->_sched_int_pressure.high_pressure_limit()) {
 620             short int_pressure = (short)recalc_pressure_nodes[n->_idx];
 621             n_score = (int_pressure < 0) ? ((score + n_score) - int_pressure) : (int_pressure > 0) ? 1 : n_score;
 622           }
 623           if (_regalloc->_sched_float_pressure.current_pressure() > _regalloc->_sched_float_pressure.high_pressure_limit()) {
 624             short float_pressure = (short)(recalc_pressure_nodes[n->_idx] >> 16);
 625             n_score = (float_pressure < 0) ? ((score + n_score) - float_pressure) : (float_pressure > 0) ? 1 : n_score;
 626           }
 627         } else {
 628           // make sure we choose these candidates
 629           score = 0;
 630         }
 631       }
 632     }
 633 
 634     // Keep best latency found
 635     cand_cnt++;
 636     if (choice < n_choice ||
 637         (choice == n_choice &&
 638          ((StressLCM && Compile::randomized_select(cand_cnt)) ||
 639           (!StressLCM &&
 640            (latency < n_latency ||
 641             (latency == n_latency &&
 642              (score < n_score))))))) {
 643       choice  = n_choice;
 644       latency = n_latency;
 645       score   = n_score;
 646       idx     = i;               // Also keep index in worklist
 647     }
 648   } // End of for all ready nodes in worklist
 649 
 650   guarantee(idx >= 0, "index should be set");
 651   Node *n = worklist[(uint)idx];      // Get the winner
 652 
 653   worklist.map((uint)idx, worklist.pop());     // Compress worklist
 654   return n;
 655 }
 656 
 657 //-------------------------adjust_register_pressure----------------------------
 658 void PhaseCFG::adjust_register_pressure(Node* n, Block* block, intptr_t* recalc_pressure_nodes, bool finalize_mode) {
 659   PhaseLive* liveinfo = _regalloc->get_live();
 660   IndexSet* liveout = liveinfo->live(block);
 661   // first adjust the register pressure for the sources
 662   for (uint i = 1; i < n->req(); i++) {
 663     bool lrg_ends = false;
 664     Node *src_n = n->in(i);
 665     if (src_n == NULL) continue;
 666     if (!src_n->is_Mach()) continue;
 667     uint src = _regalloc->_lrg_map.find(src_n);
 668     if (src == 0) continue;
 669     LRG& lrg_src = _regalloc->lrgs(src);
 670     // detect if the live range ends or not
 671     if (liveout->member(src) == false) {
 672       lrg_ends = true;
 673       for (DUIterator_Fast jmax, j = src_n->fast_outs(jmax); j < jmax; j++) {
 674         Node* m = src_n->fast_out(j); // Get user
 675         if (m == n) continue;
 676         if (!m->is_Mach()) continue;
 677         MachNode *mach = m->as_Mach();
 678         bool src_matches = false;
 679         int iop = mach->ideal_Opcode();
 680 
 681         switch (iop) {
 682         case Op_StoreB:
 683         case Op_StoreC:
 684         case Op_StoreCM:
 685         case Op_StoreD:
 686         case Op_StoreF:
 687         case Op_StoreI:
 688         case Op_StoreL:
 689         case Op_StoreP:
 690         case Op_StoreN:
 691         case Op_StoreVector:
 692         case Op_StoreNKlass:
 693           for (uint k = 1; k < m->req(); k++) {
 694             Node *in = m->in(k);
 695             if (in == src_n) {
 696               src_matches = true;
 697               break;
 698             }
 699           }
 700           break;
 701 
 702         default:
 703           src_matches = true;
 704           break;
 705         }
 706 
 707         // If we have a store as our use, ignore the non source operands
 708         if (src_matches == false) continue;
 709 
 710         // Mark every unscheduled use which is not n with a recalculation
 711         if ((get_block_for_node(m) == block) && (!m->is_scheduled())) {
 712           if (finalize_mode && !m->is_Phi()) {
 713             recalc_pressure_nodes[m->_idx] = 0x7fff7fff;
 714           }
 715           lrg_ends = false;
 716         }
 717       }
 718     }
 719     // if none, this live range ends and we can adjust register pressure
 720     if (lrg_ends) {
 721       if (finalize_mode) {
 722         _regalloc->lower_pressure(block, 0, lrg_src, NULL, _regalloc->_sched_int_pressure, _regalloc->_sched_float_pressure);
 723       } else {
 724         _regalloc->lower_pressure(block, 0, lrg_src, NULL, _regalloc->_scratch_int_pressure, _regalloc->_scratch_float_pressure);
 725       }
 726     }
 727   }
 728 
 729   // now add the register pressure from the dest and evaluate which heuristic we should use:
 730   // 1.) The default, latency scheduling
 731   // 2.) Register pressure scheduling based on the high pressure limit threshold for int or float register stacks
 732   uint dst = _regalloc->_lrg_map.find(n);
 733   if (dst != 0) {
 734     LRG& lrg_dst = _regalloc->lrgs(dst);
 735     if (finalize_mode) {
 736       _regalloc->raise_pressure(block, lrg_dst, _regalloc->_sched_int_pressure, _regalloc->_sched_float_pressure);
 737       // check to see if we fall over the register pressure cliff here
 738       if (_regalloc->_sched_int_pressure.current_pressure() > _regalloc->_sched_int_pressure.high_pressure_limit()) {
 739         _scheduling_for_pressure = true;
 740       } else if (_regalloc->_sched_float_pressure.current_pressure() > _regalloc->_sched_float_pressure.high_pressure_limit()) {
 741         _scheduling_for_pressure = true;
 742       } else {
 743         // restore latency scheduling mode
 744         _scheduling_for_pressure = false;
 745       }
 746     } else {
 747       _regalloc->raise_pressure(block, lrg_dst, _regalloc->_scratch_int_pressure, _regalloc->_scratch_float_pressure);
 748     }
 749   }
 750 }
 751 
 752 //------------------------------set_next_call----------------------------------
 753 void PhaseCFG::set_next_call(Block* block, Node* n, VectorSet& next_call) {
 754   if( next_call.test_set(n->_idx) ) return;
 755   for( uint i=0; i<n->len(); i++ ) {
 756     Node *m = n->in(i);
 757     if( !m ) continue;  // must see all nodes in block that precede call
 758     if (get_block_for_node(m) == block) {
 759       set_next_call(block, m, next_call);
 760     }
 761   }
 762 }
 763 
 764 //------------------------------needed_for_next_call---------------------------
 765 // Set the flag 'next_call' for each Node that is needed for the next call to
 766 // be scheduled.  This flag lets me bias scheduling so Nodes needed for the
 767 // next subroutine call get priority - basically it moves things NOT needed
 768 // for the next call till after the call.  This prevents me from trying to
 769 // carry lots of stuff live across a call.
 770 void PhaseCFG::needed_for_next_call(Block* block, Node* this_call, VectorSet& next_call) {
 771   // Find the next control-defining Node in this block
 772   Node* call = NULL;
 773   for (DUIterator_Fast imax, i = this_call->fast_outs(imax); i < imax; i++) {
 774     Node* m = this_call->fast_out(i);
 775     if (get_block_for_node(m) == block && // Local-block user
 776         m != this_call &&       // Not self-start node
 777         m->is_MachCall()) {
 778       call = m;
 779       break;
 780     }
 781   }
 782   if (call == NULL)  return;    // No next call (e.g., block end is near)
 783   // Set next-call for all inputs to this call
 784   set_next_call(block, call, next_call);
 785 }
 786 
 787 //------------------------------add_call_kills-------------------------------------
 788 // helper function that adds caller save registers to MachProjNode
 789 static void add_call_kills(MachProjNode *proj, RegMask& regs, const char* save_policy, bool exclude_soe) {
 790   // Fill in the kill mask for the call
 791   for( OptoReg::Name r = OptoReg::Name(0); r < _last_Mach_Reg; r=OptoReg::add(r,1) ) {
 792     if( !regs.Member(r) ) {     // Not already defined by the call
 793       // Save-on-call register?
 794       if ((save_policy[r] == 'C') ||
 795           (save_policy[r] == 'A') ||
 796           ((save_policy[r] == 'E') && exclude_soe)) {
 797         proj->_rout.Insert(r);
 798       }
 799     }
 800   }
 801 }
 802 
 803 
 804 //------------------------------sched_call-------------------------------------
 805 uint PhaseCFG::sched_call(Block* block, uint node_cnt, Node_List& worklist, GrowableArray<int>& ready_cnt, MachCallNode* mcall, VectorSet& next_call) {
 806   RegMask regs;
 807 
 808   // Schedule all the users of the call right now.  All the users are
 809   // projection Nodes, so they must be scheduled next to the call.
 810   // Collect all the defined registers.
 811   for (DUIterator_Fast imax, i = mcall->fast_outs(imax); i < imax; i++) {
 812     Node* n = mcall->fast_out(i);
 813     assert( n->is_MachProj(), "" );
 814     int n_cnt = ready_cnt.at(n->_idx)-1;
 815     ready_cnt.at_put(n->_idx, n_cnt);
 816     assert( n_cnt == 0, "" );
 817     // Schedule next to call
 818     block->map_node(n, node_cnt++);
 819     // Collect defined registers
 820     regs.OR(n->out_RegMask());
 821     // Check for scheduling the next control-definer
 822     if( n->bottom_type() == Type::CONTROL )
 823       // Warm up next pile of heuristic bits
 824       needed_for_next_call(block, n, next_call);
 825 
 826     // Children of projections are now all ready
 827     for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
 828       Node* m = n->fast_out(j); // Get user
 829       if(get_block_for_node(m) != block) {
 830         continue;
 831       }
 832       if( m->is_Phi() ) continue;
 833       int m_cnt = ready_cnt.at(m->_idx) - 1;
 834       ready_cnt.at_put(m->_idx, m_cnt);
 835       if( m_cnt == 0 )
 836         worklist.push(m);
 837     }
 838 
 839   }
 840 
 841   // Act as if the call defines the Frame Pointer.
 842   // Certainly the FP is alive and well after the call.
 843   regs.Insert(_matcher.c_frame_pointer());
 844 
 845   // Set all registers killed and not already defined by the call.
 846   uint r_cnt = mcall->tf()->range()->cnt();
 847   int op = mcall->ideal_Opcode();
 848   MachProjNode *proj = new MachProjNode( mcall, r_cnt+1, RegMask::Empty, MachProjNode::fat_proj );
 849   map_node_to_block(proj, block);
 850   block->insert_node(proj, node_cnt++);
 851 
 852   // Select the right register save policy.
 853   const char *save_policy = NULL;
 854   switch (op) {
 855     case Op_CallRuntime:
 856     case Op_CallLeaf:
 857     case Op_CallLeafNoFP:
 858       // Calling C code so use C calling convention
 859       save_policy = _matcher._c_reg_save_policy;
 860       break;
 861 
 862     case Op_CallStaticJava:
 863     case Op_CallDynamicJava:
 864       // Calling Java code so use Java calling convention
 865       save_policy = _matcher._register_save_policy;
 866       break;
 867 
 868     default:
 869       ShouldNotReachHere();
 870   }
 871 
 872   // When using CallRuntime mark SOE registers as killed by the call
 873   // so values that could show up in the RegisterMap aren't live in a
 874   // callee saved register since the register wouldn't know where to
 875   // find them.  CallLeaf and CallLeafNoFP are ok because they can't
 876   // have debug info on them.  Strictly speaking this only needs to be
 877   // done for oops since idealreg2debugmask takes care of debug info
 878   // references but there no way to handle oops differently than other
 879   // pointers as far as the kill mask goes.
 880   bool exclude_soe = op == Op_CallRuntime;
 881 
 882   // If the call is a MethodHandle invoke, we need to exclude the
 883   // register which is used to save the SP value over MH invokes from
 884   // the mask.  Otherwise this register could be used for
 885   // deoptimization information.
 886   if (op == Op_CallStaticJava) {
 887     MachCallStaticJavaNode* mcallstaticjava = (MachCallStaticJavaNode*) mcall;
 888     if (mcallstaticjava->_method_handle_invoke)
 889       proj->_rout.OR(Matcher::method_handle_invoke_SP_save_mask());
 890   }
 891 
 892   add_call_kills(proj, regs, save_policy, exclude_soe);
 893 
 894   return node_cnt;
 895 }
 896 
 897 
 898 //------------------------------schedule_local---------------------------------
 899 // Topological sort within a block.  Someday become a real scheduler.
 900 bool PhaseCFG::schedule_local(Block* block, GrowableArray<int>& ready_cnt, VectorSet& next_call, intptr_t *recalc_pressure_nodes) {
 901   // Already "sorted" are the block start Node (as the first entry), and
 902   // the block-ending Node and any trailing control projections.  We leave
 903   // these alone.  PhiNodes and ParmNodes are made to follow the block start
 904   // Node.  Everything else gets topo-sorted.
 905 
 906 #ifndef PRODUCT
 907     if (trace_opto_pipelining()) {
 908       tty->print_cr("# --- schedule_local B%d, before: ---", block->_pre_order);
 909       for (uint i = 0;i < block->number_of_nodes(); i++) {
 910         tty->print("# ");
 911         block->get_node(i)->fast_dump();
 912       }
 913       tty->print_cr("#");
 914     }
 915 #endif
 916 
 917   // RootNode is already sorted
 918   if (block->number_of_nodes() == 1) {
 919     return true;
 920   }
 921 
 922   bool block_size_threshold_ok = (block->number_of_nodes() > 10) ? true : false;
 923 
 924   // We track the uses of local definitions as input dependences so that
 925   // we know when a given instruction is avialable to be scheduled.
 926   uint i;
 927   if (OptoRegScheduling && block_size_threshold_ok) {
 928     for (i = 1; i < block->number_of_nodes(); i++) { // setup nodes for pressure calc
 929       Node *n = block->get_node(i);
 930       n->remove_flag(Node::Flag_is_scheduled);
 931       if (!n->is_Phi()) {
 932         recalc_pressure_nodes[n->_idx] = 0x7fff7fff;
 933       }
 934     }
 935   }
 936 
 937   // Move PhiNodes and ParmNodes from 1 to cnt up to the start
 938   uint node_cnt = block->end_idx();
 939   uint phi_cnt = 1;
 940   for( i = 1; i<node_cnt; i++ ) { // Scan for Phi
 941     Node *n = block->get_node(i);
 942     if( n->is_Phi() ||          // Found a PhiNode or ParmNode
 943         (n->is_Proj()  && n->in(0) == block->head()) ) {
 944       // Move guy at 'phi_cnt' to the end; makes a hole at phi_cnt
 945       block->map_node(block->get_node(phi_cnt), i);
 946       block->map_node(n, phi_cnt++);  // swap Phi/Parm up front
 947       if (OptoRegScheduling && block_size_threshold_ok) {
 948         // mark n as scheduled
 949         n->add_flag(Node::Flag_is_scheduled);
 950       }
 951     } else {                    // All others
 952       // Count block-local inputs to 'n'
 953       uint cnt = n->len();      // Input count
 954       uint local = 0;
 955       for( uint j=0; j<cnt; j++ ) {
 956         Node *m = n->in(j);
 957         if( m && get_block_for_node(m) == block && !m->is_top() )
 958           local++;              // One more block-local input
 959       }
 960       ready_cnt.at_put(n->_idx, local); // Count em up
 961 
 962 #ifdef ASSERT
 963       if( UseConcMarkSweepGC || UseG1GC ) {
 964         if( n->is_Mach() && n->as_Mach()->ideal_Opcode() == Op_StoreCM ) {
 965           // Check the precedence edges
 966           for (uint prec = n->req(); prec < n->len(); prec++) {
 967             Node* oop_store = n->in(prec);
 968             if (oop_store != NULL) {
 969               assert(get_block_for_node(oop_store)->_dom_depth <= block->_dom_depth, "oop_store must dominate card-mark");
 970             }
 971           }
 972         }
 973       }
 974 #endif
 975 
 976       // A few node types require changing a required edge to a precedence edge
 977       // before allocation.
 978       if( n->is_Mach() && n->req() > TypeFunc::Parms &&
 979           (n->as_Mach()->ideal_Opcode() == Op_MemBarAcquire ||
 980            n->as_Mach()->ideal_Opcode() == Op_MemBarVolatile) ) {
 981         // MemBarAcquire could be created without Precedent edge.
 982         // del_req() replaces the specified edge with the last input edge
 983         // and then removes the last edge. If the specified edge > number of
 984         // edges the last edge will be moved outside of the input edges array
 985         // and the edge will be lost. This is why this code should be
 986         // executed only when Precedent (== TypeFunc::Parms) edge is present.
 987         Node *x = n->in(TypeFunc::Parms);
 988         if (x != NULL && get_block_for_node(x) == block && n->find_prec_edge(x) != -1) {
 989           // Old edge to node within same block will get removed, but no precedence
 990           // edge will get added because it already exists. Update ready count.
 991           int cnt = ready_cnt.at(n->_idx);
 992           assert(cnt > 1, "MemBar node %d must not get ready here", n->_idx);
 993           ready_cnt.at_put(n->_idx, cnt-1);
 994         }
 995         n->del_req(TypeFunc::Parms);
 996         n->add_prec(x);
 997       }
 998     }
 999   }
1000   for(uint i2=i; i2< block->number_of_nodes(); i2++ ) // Trailing guys get zapped count
1001     ready_cnt.at_put(block->get_node(i2)->_idx, 0);
1002 
1003   // All the prescheduled guys do not hold back internal nodes
1004   uint i3;
1005   for (i3 = 0; i3 < phi_cnt; i3++) {  // For all pre-scheduled
1006     Node *n = block->get_node(i3);       // Get pre-scheduled
1007     for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
1008       Node* m = n->fast_out(j);
1009       if (get_block_for_node(m) == block) { // Local-block user
1010         int m_cnt = ready_cnt.at(m->_idx)-1;
1011         if (OptoRegScheduling && block_size_threshold_ok) {
1012           // mark m as scheduled
1013           if (m_cnt < 0) {
1014             m->add_flag(Node::Flag_is_scheduled);
1015           }
1016         }
1017         ready_cnt.at_put(m->_idx, m_cnt);   // Fix ready count
1018       }
1019     }
1020   }
1021 
1022   Node_List delay;
1023   // Make a worklist
1024   Node_List worklist;
1025   for(uint i4=i3; i4<node_cnt; i4++ ) {    // Put ready guys on worklist
1026     Node *m = block->get_node(i4);
1027     if( !ready_cnt.at(m->_idx) ) {   // Zero ready count?
1028       if (m->is_iteratively_computed()) {
1029         // Push induction variable increments last to allow other uses
1030         // of the phi to be scheduled first. The select() method breaks
1031         // ties in scheduling by worklist order.
1032         delay.push(m);
1033       } else if (m->is_Mach() && m->as_Mach()->ideal_Opcode() == Op_CreateEx) {
1034         // Force the CreateEx to the top of the list so it's processed
1035         // first and ends up at the start of the block.
1036         worklist.insert(0, m);
1037       } else {
1038         worklist.push(m);         // Then on to worklist!
1039       }
1040     }
1041   }
1042   while (delay.size()) {
1043     Node* d = delay.pop();
1044     worklist.push(d);
1045   }
1046 
1047   if (OptoRegScheduling && block_size_threshold_ok) {
1048     // To stage register pressure calculations we need to examine the live set variables
1049     // breaking them up by register class to compartmentalize the calculations.
1050     uint float_pressure = Matcher::float_pressure(FLOATPRESSURE);
1051     _regalloc->_sched_int_pressure.init(INTPRESSURE);
1052     _regalloc->_sched_float_pressure.init(float_pressure);
1053     _regalloc->_scratch_int_pressure.init(INTPRESSURE);
1054     _regalloc->_scratch_float_pressure.init(float_pressure);
1055 
1056     _regalloc->compute_entry_block_pressure(block);
1057   }
1058 
1059   // Warm up the 'next_call' heuristic bits
1060   needed_for_next_call(block, block->head(), next_call);
1061 
1062 #ifndef PRODUCT
1063     if (trace_opto_pipelining()) {
1064       for (uint j=0; j< block->number_of_nodes(); j++) {
1065         Node     *n = block->get_node(j);
1066         int     idx = n->_idx;
1067         tty->print("#   ready cnt:%3d  ", ready_cnt.at(idx));
1068         tty->print("latency:%3d  ", get_latency_for_node(n));
1069         tty->print("%4d: %s\n", idx, n->Name());
1070       }
1071     }
1072 #endif
1073 
1074   uint max_idx = (uint)ready_cnt.length();
1075   // Pull from worklist and schedule
1076   while( worklist.size() ) {    // Worklist is not ready
1077 
1078 #ifndef PRODUCT
1079     if (trace_opto_pipelining()) {
1080       tty->print("#   ready list:");
1081       for( uint i=0; i<worklist.size(); i++ ) { // Inspect entire worklist
1082         Node *n = worklist[i];      // Get Node on worklist
1083         tty->print(" %d", n->_idx);
1084       }
1085       tty->cr();
1086     }
1087 #endif
1088 
1089     // Select and pop a ready guy from worklist
1090     Node* n = select(block, worklist, ready_cnt, next_call, phi_cnt, recalc_pressure_nodes);
1091     block->map_node(n, phi_cnt++);    // Schedule him next
1092 
1093     if (OptoRegScheduling && block_size_threshold_ok) {
1094       n->add_flag(Node::Flag_is_scheduled);
1095 
1096       // Now adjust the resister pressure with the node we selected
1097       if (!n->is_Phi()) {
1098         adjust_register_pressure(n, block, recalc_pressure_nodes, true);
1099       }
1100     }
1101 
1102 #ifndef PRODUCT
1103     if (trace_opto_pipelining()) {
1104       tty->print("#    select %d: %s", n->_idx, n->Name());
1105       tty->print(", latency:%d", get_latency_for_node(n));
1106       n->dump();
1107       if (Verbose) {
1108         tty->print("#   ready list:");
1109         for( uint i=0; i<worklist.size(); i++ ) { // Inspect entire worklist
1110           Node *n = worklist[i];      // Get Node on worklist
1111           tty->print(" %d", n->_idx);
1112         }
1113         tty->cr();
1114       }
1115     }
1116 
1117 #endif
1118     if( n->is_MachCall() ) {
1119       MachCallNode *mcall = n->as_MachCall();
1120       phi_cnt = sched_call(block, phi_cnt, worklist, ready_cnt, mcall, next_call);
1121       continue;
1122     }
1123 
1124     if (n->is_Mach() && n->as_Mach()->has_call()) {
1125       RegMask regs;
1126       regs.Insert(_matcher.c_frame_pointer());
1127       regs.OR(n->out_RegMask());
1128 
1129       MachProjNode *proj = new MachProjNode( n, 1, RegMask::Empty, MachProjNode::fat_proj );
1130       map_node_to_block(proj, block);
1131       block->insert_node(proj, phi_cnt++);
1132 
1133       add_call_kills(proj, regs, _matcher._c_reg_save_policy, false);
1134     }
1135 
1136     // Children are now all ready
1137     for (DUIterator_Fast i5max, i5 = n->fast_outs(i5max); i5 < i5max; i5++) {
1138       Node* m = n->fast_out(i5); // Get user
1139       if (get_block_for_node(m) != block) {
1140         continue;
1141       }
1142       if( m->is_Phi() ) continue;
1143       if (m->_idx >= max_idx) { // new node, skip it
1144         assert(m->is_MachProj() && n->is_Mach() && n->as_Mach()->has_call(), "unexpected node types");
1145         continue;
1146       }
1147       int m_cnt = ready_cnt.at(m->_idx) - 1;
1148       ready_cnt.at_put(m->_idx, m_cnt);
1149       if( m_cnt == 0 )
1150         worklist.push(m);
1151     }
1152   }
1153 
1154   if( phi_cnt != block->end_idx() ) {
1155     // did not schedule all.  Retry, Bailout, or Die
1156     if (C->subsume_loads() == true && !C->failing()) {
1157       // Retry with subsume_loads == false
1158       // If this is the first failure, the sentinel string will "stick"
1159       // to the Compile object, and the C2Compiler will see it and retry.
1160       C->record_failure(C2Compiler::retry_no_subsuming_loads());
1161     } else {
1162       assert(false, "graph should be schedulable");
1163     }
1164     // assert( phi_cnt == end_idx(), "did not schedule all" );
1165     return false;
1166   }
1167 
1168   if (OptoRegScheduling && block_size_threshold_ok) {
1169     _regalloc->compute_exit_block_pressure(block);
1170     block->_reg_pressure = _regalloc->_sched_int_pressure.final_pressure();
1171     block->_freg_pressure = _regalloc->_sched_float_pressure.final_pressure();
1172   }
1173 
1174 #ifndef PRODUCT
1175   if (trace_opto_pipelining()) {
1176     tty->print_cr("#");
1177     tty->print_cr("# after schedule_local");
1178     for (uint i = 0;i < block->number_of_nodes();i++) {
1179       tty->print("# ");
1180       block->get_node(i)->fast_dump();
1181     }
1182     tty->print_cr("# ");
1183 
1184     if (OptoRegScheduling && block_size_threshold_ok) {
1185       tty->print_cr("# pressure info : %d", block->_pre_order);
1186       _regalloc->print_pressure_info(_regalloc->_sched_int_pressure, "int register info");
1187       _regalloc->print_pressure_info(_regalloc->_sched_float_pressure, "float register info");
1188     }
1189     tty->cr();
1190   }
1191 #endif
1192 
1193   return true;
1194 }
1195 
1196 //--------------------------catch_cleanup_fix_all_inputs-----------------------
1197 static void catch_cleanup_fix_all_inputs(Node *use, Node *old_def, Node *new_def) {
1198   for (uint l = 0; l < use->len(); l++) {
1199     if (use->in(l) == old_def) {
1200       if (l < use->req()) {
1201         use->set_req(l, new_def);
1202       } else {
1203         use->rm_prec(l);
1204         use->add_prec(new_def);
1205         l--;
1206       }
1207     }
1208   }
1209 }
1210 
1211 //------------------------------catch_cleanup_find_cloned_def------------------
1212 Node* PhaseCFG::catch_cleanup_find_cloned_def(Block *use_blk, Node *def, Block *def_blk, int n_clone_idx) {
1213   assert( use_blk != def_blk, "Inter-block cleanup only");
1214 
1215   // The use is some block below the Catch.  Find and return the clone of the def
1216   // that dominates the use. If there is no clone in a dominating block, then
1217   // create a phi for the def in a dominating block.
1218 
1219   // Find which successor block dominates this use.  The successor
1220   // blocks must all be single-entry (from the Catch only; I will have
1221   // split blocks to make this so), hence they all dominate.
1222   while( use_blk->_dom_depth > def_blk->_dom_depth+1 )
1223     use_blk = use_blk->_idom;
1224 
1225   // Find the successor
1226   Node *fixup = NULL;
1227 
1228   uint j;
1229   for( j = 0; j < def_blk->_num_succs; j++ )
1230     if( use_blk == def_blk->_succs[j] )
1231       break;
1232 
1233   if( j == def_blk->_num_succs ) {
1234     // Block at same level in dom-tree is not a successor.  It needs a
1235     // PhiNode, the PhiNode uses from the def and IT's uses need fixup.
1236     Node_Array inputs = new Node_List(Thread::current()->resource_area());
1237     for(uint k = 1; k < use_blk->num_preds(); k++) {
1238       Block* block = get_block_for_node(use_blk->pred(k));
1239       inputs.map(k, catch_cleanup_find_cloned_def(block, def, def_blk, n_clone_idx));
1240     }
1241 
1242     // Check to see if the use_blk already has an identical phi inserted.
1243     // If it exists, it will be at the first position since all uses of a
1244     // def are processed together.
1245     Node *phi = use_blk->get_node(1);
1246     if( phi->is_Phi() ) {
1247       fixup = phi;
1248       for (uint k = 1; k < use_blk->num_preds(); k++) {
1249         if (phi->in(k) != inputs[k]) {
1250           // Not a match
1251           fixup = NULL;
1252           break;
1253         }
1254       }
1255     }
1256 
1257     // If an existing PhiNode was not found, make a new one.
1258     if (fixup == NULL) {
1259       Node *new_phi = PhiNode::make(use_blk->head(), def);
1260       use_blk->insert_node(new_phi, 1);
1261       map_node_to_block(new_phi, use_blk);
1262       for (uint k = 1; k < use_blk->num_preds(); k++) {
1263         new_phi->set_req(k, inputs[k]);
1264       }
1265       fixup = new_phi;
1266     }
1267 
1268   } else {
1269     // Found the use just below the Catch.  Make it use the clone.
1270     fixup = use_blk->get_node(n_clone_idx);
1271   }
1272 
1273   return fixup;
1274 }
1275 
1276 //--------------------------catch_cleanup_intra_block--------------------------
1277 // Fix all input edges in use that reference "def".  The use is in the same
1278 // block as the def and both have been cloned in each successor block.
1279 static void catch_cleanup_intra_block(Node *use, Node *def, Block *blk, int beg, int n_clone_idx) {
1280 
1281   // Both the use and def have been cloned. For each successor block,
1282   // get the clone of the use, and make its input the clone of the def
1283   // found in that block.
1284 
1285   uint use_idx = blk->find_node(use);
1286   uint offset_idx = use_idx - beg;
1287   for( uint k = 0; k < blk->_num_succs; k++ ) {
1288     // Get clone in each successor block
1289     Block *sb = blk->_succs[k];
1290     Node *clone = sb->get_node(offset_idx+1);
1291     assert( clone->Opcode() == use->Opcode(), "" );
1292 
1293     // Make use-clone reference the def-clone
1294     catch_cleanup_fix_all_inputs(clone, def, sb->get_node(n_clone_idx));
1295   }
1296 }
1297 
1298 //------------------------------catch_cleanup_inter_block---------------------
1299 // Fix all input edges in use that reference "def".  The use is in a different
1300 // block than the def.
1301 void PhaseCFG::catch_cleanup_inter_block(Node *use, Block *use_blk, Node *def, Block *def_blk, int n_clone_idx) {
1302   if( !use_blk ) return;        // Can happen if the use is a precedence edge
1303 
1304   Node *new_def = catch_cleanup_find_cloned_def(use_blk, def, def_blk, n_clone_idx);
1305   catch_cleanup_fix_all_inputs(use, def, new_def);
1306 }
1307 
1308 //------------------------------call_catch_cleanup-----------------------------
1309 // If we inserted any instructions between a Call and his CatchNode,
1310 // clone the instructions on all paths below the Catch.
1311 void PhaseCFG::call_catch_cleanup(Block* block) {
1312 
1313   // End of region to clone
1314   uint end = block->end_idx();
1315   if( !block->get_node(end)->is_Catch() ) return;
1316   // Start of region to clone
1317   uint beg = end;
1318   while(!block->get_node(beg-1)->is_MachProj() ||
1319         !block->get_node(beg-1)->in(0)->is_MachCall() ) {
1320     beg--;
1321     assert(beg > 0,"Catch cleanup walking beyond block boundary");
1322   }
1323   // Range of inserted instructions is [beg, end)
1324   if( beg == end ) return;
1325 
1326   // Clone along all Catch output paths.  Clone area between the 'beg' and
1327   // 'end' indices.
1328   for( uint i = 0; i < block->_num_succs; i++ ) {
1329     Block *sb = block->_succs[i];
1330     // Clone the entire area; ignoring the edge fixup for now.
1331     for( uint j = end; j > beg; j-- ) {
1332       Node *clone = block->get_node(j-1)->clone();
1333       sb->insert_node(clone, 1);
1334       map_node_to_block(clone, sb);
1335       if (clone->needs_anti_dependence_check()) {
1336         insert_anti_dependences(sb, clone);
1337       }
1338     }
1339   }
1340 
1341 
1342   // Fixup edges.  Check the def-use info per cloned Node
1343   for(uint i2 = beg; i2 < end; i2++ ) {
1344     uint n_clone_idx = i2-beg+1; // Index of clone of n in each successor block
1345     Node *n = block->get_node(i2);        // Node that got cloned
1346     // Need DU safe iterator because of edge manipulation in calls.
1347     Unique_Node_List *out = new Unique_Node_List(Thread::current()->resource_area());
1348     for (DUIterator_Fast j1max, j1 = n->fast_outs(j1max); j1 < j1max; j1++) {
1349       out->push(n->fast_out(j1));
1350     }
1351     uint max = out->size();
1352     for (uint j = 0; j < max; j++) {// For all users
1353       Node *use = out->pop();
1354       Block *buse = get_block_for_node(use);
1355       if( use->is_Phi() ) {
1356         for( uint k = 1; k < use->req(); k++ )
1357           if( use->in(k) == n ) {
1358             Block* b = get_block_for_node(buse->pred(k));
1359             Node *fixup = catch_cleanup_find_cloned_def(b, n, block, n_clone_idx);
1360             use->set_req(k, fixup);
1361           }
1362       } else {
1363         if (block == buse) {
1364           catch_cleanup_intra_block(use, n, block, beg, n_clone_idx);
1365         } else {
1366           catch_cleanup_inter_block(use, buse, n, block, n_clone_idx);
1367         }
1368       }
1369     } // End for all users
1370 
1371   } // End of for all Nodes in cloned area
1372 
1373   // Remove the now-dead cloned ops
1374   for(uint i3 = beg; i3 < end; i3++ ) {
1375     block->get_node(beg)->disconnect_inputs(NULL, C);
1376     block->remove_node(beg);
1377   }
1378 
1379   // If the successor blocks have a CreateEx node, move it back to the top
1380   for(uint i4 = 0; i4 < block->_num_succs; i4++ ) {
1381     Block *sb = block->_succs[i4];
1382     uint new_cnt = end - beg;
1383     // Remove any newly created, but dead, nodes.
1384     for( uint j = new_cnt; j > 0; j-- ) {
1385       Node *n = sb->get_node(j);
1386       if (n->outcnt() == 0 &&
1387           (!n->is_Proj() || n->as_Proj()->in(0)->outcnt() == 1) ){
1388         n->disconnect_inputs(NULL, C);
1389         sb->remove_node(j);
1390         new_cnt--;
1391       }
1392     }
1393     // If any newly created nodes remain, move the CreateEx node to the top
1394     if (new_cnt > 0) {
1395       Node *cex = sb->get_node(1+new_cnt);
1396       if( cex->is_Mach() && cex->as_Mach()->ideal_Opcode() == Op_CreateEx ) {
1397         sb->remove_node(1+new_cnt);
1398         sb->insert_node(cex, 1);
1399       }
1400     }
1401   }
1402 }