1 /*
   2  * Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "gc/shared/barrierSet.hpp"
  27 #include "gc/shared/c2/barrierSetC2.hpp"
  28 #include "libadt/vectset.hpp"
  29 #include "memory/allocation.inline.hpp"
  30 #include "memory/resourceArea.hpp"
  31 #include "opto/castnode.hpp"
  32 #include "opto/cfgnode.hpp"
  33 #include "opto/connode.hpp"
  34 #include "opto/loopnode.hpp"
  35 #include "opto/machnode.hpp"
  36 #include "opto/matcher.hpp"
  37 #include "opto/node.hpp"
  38 #include "opto/opcodes.hpp"
  39 #include "opto/regmask.hpp"
  40 #include "opto/rootnode.hpp"
  41 #include "opto/type.hpp"
  42 #include "utilities/copy.hpp"
  43 #include "utilities/macros.hpp"
  44 
  45 class RegMask;
  46 // #include "phase.hpp"
  47 class PhaseTransform;
  48 class PhaseGVN;
  49 
  50 // Arena we are currently building Nodes in
  51 const uint Node::NotAMachineReg = 0xffff0000;
  52 
  53 #ifndef PRODUCT
  54 extern int nodes_created;
  55 #endif
  56 #ifdef __clang__
  57 #pragma clang diagnostic push
  58 #pragma GCC diagnostic ignored "-Wuninitialized"
  59 #endif
  60 
  61 #ifdef ASSERT
  62 
  63 //-------------------------- construct_node------------------------------------
  64 // Set a breakpoint here to identify where a particular node index is built.
  65 void Node::verify_construction() {
  66   _debug_orig = NULL;
  67   int old_debug_idx = Compile::debug_idx();
  68   int new_debug_idx = old_debug_idx+1;
  69   if (new_debug_idx > 0) {
  70     // Arrange that the lowest five decimal digits of _debug_idx
  71     // will repeat those of _idx. In case this is somehow pathological,
  72     // we continue to assign negative numbers (!) consecutively.
  73     const int mod = 100000;
  74     int bump = (int)(_idx - new_debug_idx) % mod;
  75     if (bump < 0)  bump += mod;
  76     assert(bump >= 0 && bump < mod, "");
  77     new_debug_idx += bump;
  78   }
  79   Compile::set_debug_idx(new_debug_idx);
  80   set_debug_idx( new_debug_idx );
  81   assert(Compile::current()->unique() < (INT_MAX - 1), "Node limit exceeded INT_MAX");
  82   assert(Compile::current()->live_nodes() < Compile::current()->max_node_limit(), "Live Node limit exceeded limit");
  83   if (BreakAtNode != 0 && (_debug_idx == BreakAtNode || (int)_idx == BreakAtNode)) {
  84     tty->print_cr("BreakAtNode: _idx=%d _debug_idx=%d", _idx, _debug_idx);
  85     BREAKPOINT;
  86   }
  87 #if OPTO_DU_ITERATOR_ASSERT
  88   _last_del = NULL;
  89   _del_tick = 0;
  90 #endif
  91   _hash_lock = 0;
  92 }
  93 
  94 
  95 // #ifdef ASSERT ...
  96 
  97 #if OPTO_DU_ITERATOR_ASSERT
  98 void DUIterator_Common::sample(const Node* node) {
  99   _vdui     = VerifyDUIterators;
 100   _node     = node;
 101   _outcnt   = node->_outcnt;
 102   _del_tick = node->_del_tick;
 103   _last     = NULL;
 104 }
 105 
 106 void DUIterator_Common::verify(const Node* node, bool at_end_ok) {
 107   assert(_node     == node, "consistent iterator source");
 108   assert(_del_tick == node->_del_tick, "no unexpected deletions allowed");
 109 }
 110 
 111 void DUIterator_Common::verify_resync() {
 112   // Ensure that the loop body has just deleted the last guy produced.
 113   const Node* node = _node;
 114   // Ensure that at least one copy of the last-seen edge was deleted.
 115   // Note:  It is OK to delete multiple copies of the last-seen edge.
 116   // Unfortunately, we have no way to verify that all the deletions delete
 117   // that same edge.  On this point we must use the Honor System.
 118   assert(node->_del_tick >= _del_tick+1, "must have deleted an edge");
 119   assert(node->_last_del == _last, "must have deleted the edge just produced");
 120   // We liked this deletion, so accept the resulting outcnt and tick.
 121   _outcnt   = node->_outcnt;
 122   _del_tick = node->_del_tick;
 123 }
 124 
 125 void DUIterator_Common::reset(const DUIterator_Common& that) {
 126   if (this == &that)  return;  // ignore assignment to self
 127   if (!_vdui) {
 128     // We need to initialize everything, overwriting garbage values.
 129     _last = that._last;
 130     _vdui = that._vdui;
 131   }
 132   // Note:  It is legal (though odd) for an iterator over some node x
 133   // to be reassigned to iterate over another node y.  Some doubly-nested
 134   // progress loops depend on being able to do this.
 135   const Node* node = that._node;
 136   // Re-initialize everything, except _last.
 137   _node     = node;
 138   _outcnt   = node->_outcnt;
 139   _del_tick = node->_del_tick;
 140 }
 141 
 142 void DUIterator::sample(const Node* node) {
 143   DUIterator_Common::sample(node);      // Initialize the assertion data.
 144   _refresh_tick = 0;                    // No refreshes have happened, as yet.
 145 }
 146 
 147 void DUIterator::verify(const Node* node, bool at_end_ok) {
 148   DUIterator_Common::verify(node, at_end_ok);
 149   assert(_idx      <  node->_outcnt + (uint)at_end_ok, "idx in range");
 150 }
 151 
 152 void DUIterator::verify_increment() {
 153   if (_refresh_tick & 1) {
 154     // We have refreshed the index during this loop.
 155     // Fix up _idx to meet asserts.
 156     if (_idx > _outcnt)  _idx = _outcnt;
 157   }
 158   verify(_node, true);
 159 }
 160 
 161 void DUIterator::verify_resync() {
 162   // Note:  We do not assert on _outcnt, because insertions are OK here.
 163   DUIterator_Common::verify_resync();
 164   // Make sure we are still in sync, possibly with no more out-edges:
 165   verify(_node, true);
 166 }
 167 
 168 void DUIterator::reset(const DUIterator& that) {
 169   if (this == &that)  return;  // self assignment is always a no-op
 170   assert(that._refresh_tick == 0, "assign only the result of Node::outs()");
 171   assert(that._idx          == 0, "assign only the result of Node::outs()");
 172   assert(_idx               == that._idx, "already assigned _idx");
 173   if (!_vdui) {
 174     // We need to initialize everything, overwriting garbage values.
 175     sample(that._node);
 176   } else {
 177     DUIterator_Common::reset(that);
 178     if (_refresh_tick & 1) {
 179       _refresh_tick++;                  // Clear the "was refreshed" flag.
 180     }
 181     assert(_refresh_tick < 2*100000, "DU iteration must converge quickly");
 182   }
 183 }
 184 
 185 void DUIterator::refresh() {
 186   DUIterator_Common::sample(_node);     // Re-fetch assertion data.
 187   _refresh_tick |= 1;                   // Set the "was refreshed" flag.
 188 }
 189 
 190 void DUIterator::verify_finish() {
 191   // If the loop has killed the node, do not require it to re-run.
 192   if (_node->_outcnt == 0)  _refresh_tick &= ~1;
 193   // If this assert triggers, it means that a loop used refresh_out_pos
 194   // to re-synch an iteration index, but the loop did not correctly
 195   // re-run itself, using a "while (progress)" construct.
 196   // This iterator enforces the rule that you must keep trying the loop
 197   // until it "runs clean" without any need for refreshing.
 198   assert(!(_refresh_tick & 1), "the loop must run once with no refreshing");
 199 }
 200 
 201 
 202 void DUIterator_Fast::verify(const Node* node, bool at_end_ok) {
 203   DUIterator_Common::verify(node, at_end_ok);
 204   Node** out    = node->_out;
 205   uint   cnt    = node->_outcnt;
 206   assert(cnt == _outcnt, "no insertions allowed");
 207   assert(_outp >= out && _outp <= out + cnt - !at_end_ok, "outp in range");
 208   // This last check is carefully designed to work for NO_OUT_ARRAY.
 209 }
 210 
 211 void DUIterator_Fast::verify_limit() {
 212   const Node* node = _node;
 213   verify(node, true);
 214   assert(_outp == node->_out + node->_outcnt, "limit still correct");
 215 }
 216 
 217 void DUIterator_Fast::verify_resync() {
 218   const Node* node = _node;
 219   if (_outp == node->_out + _outcnt) {
 220     // Note that the limit imax, not the pointer i, gets updated with the
 221     // exact count of deletions.  (For the pointer it's always "--i".)
 222     assert(node->_outcnt+node->_del_tick == _outcnt+_del_tick, "no insertions allowed with deletion(s)");
 223     // This is a limit pointer, with a name like "imax".
 224     // Fudge the _last field so that the common assert will be happy.
 225     _last = (Node*) node->_last_del;
 226     DUIterator_Common::verify_resync();
 227   } else {
 228     assert(node->_outcnt < _outcnt, "no insertions allowed with deletion(s)");
 229     // A normal internal pointer.
 230     DUIterator_Common::verify_resync();
 231     // Make sure we are still in sync, possibly with no more out-edges:
 232     verify(node, true);
 233   }
 234 }
 235 
 236 void DUIterator_Fast::verify_relimit(uint n) {
 237   const Node* node = _node;
 238   assert((int)n > 0, "use imax -= n only with a positive count");
 239   // This must be a limit pointer, with a name like "imax".
 240   assert(_outp == node->_out + node->_outcnt, "apply -= only to a limit (imax)");
 241   // The reported number of deletions must match what the node saw.
 242   assert(node->_del_tick == _del_tick + n, "must have deleted n edges");
 243   // Fudge the _last field so that the common assert will be happy.
 244   _last = (Node*) node->_last_del;
 245   DUIterator_Common::verify_resync();
 246 }
 247 
 248 void DUIterator_Fast::reset(const DUIterator_Fast& that) {
 249   assert(_outp              == that._outp, "already assigned _outp");
 250   DUIterator_Common::reset(that);
 251 }
 252 
 253 void DUIterator_Last::verify(const Node* node, bool at_end_ok) {
 254   // at_end_ok means the _outp is allowed to underflow by 1
 255   _outp += at_end_ok;
 256   DUIterator_Fast::verify(node, at_end_ok);  // check _del_tick, etc.
 257   _outp -= at_end_ok;
 258   assert(_outp == (node->_out + node->_outcnt) - 1, "pointer must point to end of nodes");
 259 }
 260 
 261 void DUIterator_Last::verify_limit() {
 262   // Do not require the limit address to be resynched.
 263   //verify(node, true);
 264   assert(_outp == _node->_out, "limit still correct");
 265 }
 266 
 267 void DUIterator_Last::verify_step(uint num_edges) {
 268   assert((int)num_edges > 0, "need non-zero edge count for loop progress");
 269   _outcnt   -= num_edges;
 270   _del_tick += num_edges;
 271   // Make sure we are still in sync, possibly with no more out-edges:
 272   const Node* node = _node;
 273   verify(node, true);
 274   assert(node->_last_del == _last, "must have deleted the edge just produced");
 275 }
 276 
 277 #endif //OPTO_DU_ITERATOR_ASSERT
 278 
 279 
 280 #endif //ASSERT
 281 
 282 
 283 // This constant used to initialize _out may be any non-null value.
 284 // The value NULL is reserved for the top node only.
 285 #define NO_OUT_ARRAY ((Node**)-1)
 286 
 287 // Out-of-line code from node constructors.
 288 // Executed only when extra debug info. is being passed around.
 289 static void init_node_notes(Compile* C, int idx, Node_Notes* nn) {
 290   C->set_node_notes_at(idx, nn);
 291 }
 292 
 293 // Shared initialization code.
 294 inline int Node::Init(int req) {
 295   Compile* C = Compile::current();
 296   int idx = C->next_unique();
 297 
 298   // Allocate memory for the necessary number of edges.
 299   if (req > 0) {
 300     // Allocate space for _in array to have double alignment.
 301     _in = (Node **) ((char *) (C->node_arena()->Amalloc_D(req * sizeof(void*))));
 302   }
 303   // If there are default notes floating around, capture them:
 304   Node_Notes* nn = C->default_node_notes();
 305   if (nn != NULL)  init_node_notes(C, idx, nn);
 306 
 307   // Note:  At this point, C is dead,
 308   // and we begin to initialize the new Node.
 309 
 310   _cnt = _max = req;
 311   _outcnt = _outmax = 0;
 312   _class_id = Class_Node;
 313   _flags = 0;
 314   _out = NO_OUT_ARRAY;
 315   return idx;
 316 }
 317 
 318 //------------------------------Node-------------------------------------------
 319 // Create a Node, with a given number of required edges.
 320 Node::Node(uint req)
 321   : _idx(Init(req))
 322 #ifdef ASSERT
 323   , _parse_idx(_idx)
 324 #endif
 325 {
 326   assert( req < Compile::current()->max_node_limit() - NodeLimitFudgeFactor, "Input limit exceeded" );
 327   debug_only( verify_construction() );
 328   NOT_PRODUCT(nodes_created++);
 329   if (req == 0) {
 330     _in = NULL;
 331   } else {
 332     Node** to = _in;
 333     for(uint i = 0; i < req; i++) {
 334       to[i] = NULL;
 335     }
 336   }
 337 }
 338 
 339 //------------------------------Node-------------------------------------------
 340 Node::Node(Node *n0)
 341   : _idx(Init(1))
 342 #ifdef ASSERT
 343   , _parse_idx(_idx)
 344 #endif
 345 {
 346   debug_only( verify_construction() );
 347   NOT_PRODUCT(nodes_created++);
 348   assert( is_not_dead(n0), "can not use dead node");
 349   _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
 350 }
 351 
 352 //------------------------------Node-------------------------------------------
 353 Node::Node(Node *n0, Node *n1)
 354   : _idx(Init(2))
 355 #ifdef ASSERT
 356   , _parse_idx(_idx)
 357 #endif
 358 {
 359   debug_only( verify_construction() );
 360   NOT_PRODUCT(nodes_created++);
 361   assert( is_not_dead(n0), "can not use dead node");
 362   assert( is_not_dead(n1), "can not use dead node");
 363   _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
 364   _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
 365 }
 366 
 367 //------------------------------Node-------------------------------------------
 368 Node::Node(Node *n0, Node *n1, Node *n2)
 369   : _idx(Init(3))
 370 #ifdef ASSERT
 371   , _parse_idx(_idx)
 372 #endif
 373 {
 374   debug_only( verify_construction() );
 375   NOT_PRODUCT(nodes_created++);
 376   assert( is_not_dead(n0), "can not use dead node");
 377   assert( is_not_dead(n1), "can not use dead node");
 378   assert( is_not_dead(n2), "can not use dead node");
 379   _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
 380   _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
 381   _in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this);
 382 }
 383 
 384 //------------------------------Node-------------------------------------------
 385 Node::Node(Node *n0, Node *n1, Node *n2, Node *n3)
 386   : _idx(Init(4))
 387 #ifdef ASSERT
 388   , _parse_idx(_idx)
 389 #endif
 390 {
 391   debug_only( verify_construction() );
 392   NOT_PRODUCT(nodes_created++);
 393   assert( is_not_dead(n0), "can not use dead node");
 394   assert( is_not_dead(n1), "can not use dead node");
 395   assert( is_not_dead(n2), "can not use dead node");
 396   assert( is_not_dead(n3), "can not use dead node");
 397   _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
 398   _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
 399   _in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this);
 400   _in[3] = n3; if (n3 != NULL) n3->add_out((Node *)this);
 401 }
 402 
 403 //------------------------------Node-------------------------------------------
 404 Node::Node(Node *n0, Node *n1, Node *n2, Node *n3, Node *n4)
 405   : _idx(Init(5))
 406 #ifdef ASSERT
 407   , _parse_idx(_idx)
 408 #endif
 409 {
 410   debug_only( verify_construction() );
 411   NOT_PRODUCT(nodes_created++);
 412   assert( is_not_dead(n0), "can not use dead node");
 413   assert( is_not_dead(n1), "can not use dead node");
 414   assert( is_not_dead(n2), "can not use dead node");
 415   assert( is_not_dead(n3), "can not use dead node");
 416   assert( is_not_dead(n4), "can not use dead node");
 417   _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
 418   _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
 419   _in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this);
 420   _in[3] = n3; if (n3 != NULL) n3->add_out((Node *)this);
 421   _in[4] = n4; if (n4 != NULL) n4->add_out((Node *)this);
 422 }
 423 
 424 //------------------------------Node-------------------------------------------
 425 Node::Node(Node *n0, Node *n1, Node *n2, Node *n3,
 426                      Node *n4, Node *n5)
 427   : _idx(Init(6))
 428 #ifdef ASSERT
 429   , _parse_idx(_idx)
 430 #endif
 431 {
 432   debug_only( verify_construction() );
 433   NOT_PRODUCT(nodes_created++);
 434   assert( is_not_dead(n0), "can not use dead node");
 435   assert( is_not_dead(n1), "can not use dead node");
 436   assert( is_not_dead(n2), "can not use dead node");
 437   assert( is_not_dead(n3), "can not use dead node");
 438   assert( is_not_dead(n4), "can not use dead node");
 439   assert( is_not_dead(n5), "can not use dead node");
 440   _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
 441   _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
 442   _in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this);
 443   _in[3] = n3; if (n3 != NULL) n3->add_out((Node *)this);
 444   _in[4] = n4; if (n4 != NULL) n4->add_out((Node *)this);
 445   _in[5] = n5; if (n5 != NULL) n5->add_out((Node *)this);
 446 }
 447 
 448 //------------------------------Node-------------------------------------------
 449 Node::Node(Node *n0, Node *n1, Node *n2, Node *n3,
 450                      Node *n4, Node *n5, Node *n6)
 451   : _idx(Init(7))
 452 #ifdef ASSERT
 453   , _parse_idx(_idx)
 454 #endif
 455 {
 456   debug_only( verify_construction() );
 457   NOT_PRODUCT(nodes_created++);
 458   assert( is_not_dead(n0), "can not use dead node");
 459   assert( is_not_dead(n1), "can not use dead node");
 460   assert( is_not_dead(n2), "can not use dead node");
 461   assert( is_not_dead(n3), "can not use dead node");
 462   assert( is_not_dead(n4), "can not use dead node");
 463   assert( is_not_dead(n5), "can not use dead node");
 464   assert( is_not_dead(n6), "can not use dead node");
 465   _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
 466   _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
 467   _in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this);
 468   _in[3] = n3; if (n3 != NULL) n3->add_out((Node *)this);
 469   _in[4] = n4; if (n4 != NULL) n4->add_out((Node *)this);
 470   _in[5] = n5; if (n5 != NULL) n5->add_out((Node *)this);
 471   _in[6] = n6; if (n6 != NULL) n6->add_out((Node *)this);
 472 }
 473 
 474 #ifdef __clang__
 475 #pragma clang diagnostic pop
 476 #endif
 477 
 478 
 479 //------------------------------clone------------------------------------------
 480 // Clone a Node.
 481 Node *Node::clone() const {
 482   Compile* C = Compile::current();
 483   uint s = size_of();           // Size of inherited Node
 484   Node *n = (Node*)C->node_arena()->Amalloc_D(size_of() + _max*sizeof(Node*));
 485   Copy::conjoint_words_to_lower((HeapWord*)this, (HeapWord*)n, s);
 486   // Set the new input pointer array
 487   n->_in = (Node**)(((char*)n)+s);
 488   // Cannot share the old output pointer array, so kill it
 489   n->_out = NO_OUT_ARRAY;
 490   // And reset the counters to 0
 491   n->_outcnt = 0;
 492   n->_outmax = 0;
 493   // Unlock this guy, since he is not in any hash table.
 494   debug_only(n->_hash_lock = 0);
 495   // Walk the old node's input list to duplicate its edges
 496   uint i;
 497   for( i = 0; i < len(); i++ ) {
 498     Node *x = in(i);
 499     n->_in[i] = x;
 500     if (x != NULL) x->add_out(n);
 501   }
 502   if (is_macro())
 503     C->add_macro_node(n);
 504   if (is_expensive())
 505     C->add_expensive_node(n);
 506   BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
 507   bs->register_potential_barrier_node(n);
 508   // If the cloned node is a range check dependent CastII, add it to the list.
 509   CastIINode* cast = n->isa_CastII();
 510   if (cast != NULL && cast->has_range_check()) {
 511     C->add_range_check_cast(cast);
 512   }
 513   if (n->Opcode() == Op_Opaque4) {
 514     C->add_opaque4_node(n);
 515   }
 516 
 517   n->set_idx(C->next_unique()); // Get new unique index as well
 518   debug_only( n->verify_construction() );
 519   NOT_PRODUCT(nodes_created++);
 520   // Do not patch over the debug_idx of a clone, because it makes it
 521   // impossible to break on the clone's moment of creation.
 522   //debug_only( n->set_debug_idx( debug_idx() ) );
 523 
 524   C->copy_node_notes_to(n, (Node*) this);
 525 
 526   // MachNode clone
 527   uint nopnds;
 528   if (this->is_Mach() && (nopnds = this->as_Mach()->num_opnds()) > 0) {
 529     MachNode *mach  = n->as_Mach();
 530     MachNode *mthis = this->as_Mach();
 531     // Get address of _opnd_array.
 532     // It should be the same offset since it is the clone of this node.
 533     MachOper **from = mthis->_opnds;
 534     MachOper **to = (MachOper **)((size_t)(&mach->_opnds) +
 535                     pointer_delta((const void*)from,
 536                                   (const void*)(&mthis->_opnds), 1));
 537     mach->_opnds = to;
 538     for ( uint i = 0; i < nopnds; ++i ) {
 539       to[i] = from[i]->clone();
 540     }
 541   }
 542   // cloning CallNode may need to clone JVMState
 543   if (n->is_Call()) {
 544     n->as_Call()->clone_jvms(C);
 545   }
 546   if (n->is_SafePoint()) {
 547     n->as_SafePoint()->clone_replaced_nodes();
 548   }
 549   return n;                     // Return the clone
 550 }
 551 
 552 //---------------------------setup_is_top--------------------------------------
 553 // Call this when changing the top node, to reassert the invariants
 554 // required by Node::is_top.  See Compile::set_cached_top_node.
 555 void Node::setup_is_top() {
 556   if (this == (Node*)Compile::current()->top()) {
 557     // This node has just become top.  Kill its out array.
 558     _outcnt = _outmax = 0;
 559     _out = NULL;                           // marker value for top
 560     assert(is_top(), "must be top");
 561   } else {
 562     if (_out == NULL)  _out = NO_OUT_ARRAY;
 563     assert(!is_top(), "must not be top");
 564   }
 565 }
 566 
 567 
 568 //------------------------------~Node------------------------------------------
 569 // Fancy destructor; eagerly attempt to reclaim Node numberings and storage
 570 void Node::destruct() {
 571   // Eagerly reclaim unique Node numberings
 572   Compile* compile = Compile::current();
 573   if ((uint)_idx+1 == compile->unique()) {
 574     compile->set_unique(compile->unique()-1);
 575   }
 576   // Clear debug info:
 577   Node_Notes* nn = compile->node_notes_at(_idx);
 578   if (nn != NULL)  nn->clear();
 579   // Walk the input array, freeing the corresponding output edges
 580   _cnt = _max;  // forget req/prec distinction
 581   uint i;
 582   for( i = 0; i < _max; i++ ) {
 583     set_req(i, NULL);
 584     //assert(def->out(def->outcnt()-1) == (Node *)this,"bad def-use hacking in reclaim");
 585   }
 586   assert(outcnt() == 0, "deleting a node must not leave a dangling use");
 587   // See if the input array was allocated just prior to the object
 588   int edge_size = _max*sizeof(void*);
 589   int out_edge_size = _outmax*sizeof(void*);
 590   char *edge_end = ((char*)_in) + edge_size;
 591   char *out_array = (char*)(_out == NO_OUT_ARRAY? NULL: _out);
 592   int node_size = size_of();
 593 
 594   // Free the output edge array
 595   if (out_edge_size > 0) {
 596     compile->node_arena()->Afree(out_array, out_edge_size);
 597   }
 598 
 599   // Free the input edge array and the node itself
 600   if( edge_end == (char*)this ) {
 601     // It was; free the input array and object all in one hit
 602 #ifndef ASSERT
 603     compile->node_arena()->Afree(_in,edge_size+node_size);
 604 #endif
 605   } else {
 606     // Free just the input array
 607     compile->node_arena()->Afree(_in,edge_size);
 608 
 609     // Free just the object
 610 #ifndef ASSERT
 611     compile->node_arena()->Afree(this,node_size);
 612 #endif
 613   }
 614   if (is_macro()) {
 615     compile->remove_macro_node(this);
 616   }
 617   if (is_expensive()) {
 618     compile->remove_expensive_node(this);
 619   }
 620   CastIINode* cast = isa_CastII();
 621   if (cast != NULL && cast->has_range_check()) {
 622     compile->remove_range_check_cast(cast);
 623   }
 624   if (Opcode() == Op_Opaque4) {
 625     compile->remove_opaque4_node(this);
 626   }
 627 
 628   if (is_SafePoint()) {
 629     as_SafePoint()->delete_replaced_nodes();
 630   }
 631   BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
 632   bs->unregister_potential_barrier_node(this);
 633 #ifdef ASSERT
 634   // We will not actually delete the storage, but we'll make the node unusable.
 635   *(address*)this = badAddress;  // smash the C++ vtbl, probably
 636   _in = _out = (Node**) badAddress;
 637   _max = _cnt = _outmax = _outcnt = 0;
 638   compile->remove_modified_node(this);
 639 #endif
 640 }
 641 
 642 //------------------------------grow-------------------------------------------
 643 // Grow the input array, making space for more edges
 644 void Node::grow( uint len ) {
 645   Arena* arena = Compile::current()->node_arena();
 646   uint new_max = _max;
 647   if( new_max == 0 ) {
 648     _max = 4;
 649     _in = (Node**)arena->Amalloc(4*sizeof(Node*));
 650     Node** to = _in;
 651     to[0] = NULL;
 652     to[1] = NULL;
 653     to[2] = NULL;
 654     to[3] = NULL;
 655     return;
 656   }
 657   while( new_max <= len ) new_max <<= 1; // Find next power-of-2
 658   // Trimming to limit allows a uint8 to handle up to 255 edges.
 659   // Previously I was using only powers-of-2 which peaked at 128 edges.
 660   //if( new_max >= limit ) new_max = limit-1;
 661   _in = (Node**)arena->Arealloc(_in, _max*sizeof(Node*), new_max*sizeof(Node*));
 662   Copy::zero_to_bytes(&_in[_max], (new_max-_max)*sizeof(Node*)); // NULL all new space
 663   _max = new_max;               // Record new max length
 664   // This assertion makes sure that Node::_max is wide enough to
 665   // represent the numerical value of new_max.
 666   assert(_max == new_max && _max > len, "int width of _max is too small");
 667 }
 668 
 669 //-----------------------------out_grow----------------------------------------
 670 // Grow the input array, making space for more edges
 671 void Node::out_grow( uint len ) {
 672   assert(!is_top(), "cannot grow a top node's out array");
 673   Arena* arena = Compile::current()->node_arena();
 674   uint new_max = _outmax;
 675   if( new_max == 0 ) {
 676     _outmax = 4;
 677     _out = (Node **)arena->Amalloc(4*sizeof(Node*));
 678     return;
 679   }
 680   while( new_max <= len ) new_max <<= 1; // Find next power-of-2
 681   // Trimming to limit allows a uint8 to handle up to 255 edges.
 682   // Previously I was using only powers-of-2 which peaked at 128 edges.
 683   //if( new_max >= limit ) new_max = limit-1;
 684   assert(_out != NULL && _out != NO_OUT_ARRAY, "out must have sensible value");
 685   _out = (Node**)arena->Arealloc(_out,_outmax*sizeof(Node*),new_max*sizeof(Node*));
 686   //Copy::zero_to_bytes(&_out[_outmax], (new_max-_outmax)*sizeof(Node*)); // NULL all new space
 687   _outmax = new_max;               // Record new max length
 688   // This assertion makes sure that Node::_max is wide enough to
 689   // represent the numerical value of new_max.
 690   assert(_outmax == new_max && _outmax > len, "int width of _outmax is too small");
 691 }
 692 
 693 #ifdef ASSERT
 694 //------------------------------is_dead----------------------------------------
 695 bool Node::is_dead() const {
 696   // Mach and pinch point nodes may look like dead.
 697   if( is_top() || is_Mach() || (Opcode() == Op_Node && _outcnt > 0) )
 698     return false;
 699   for( uint i = 0; i < _max; i++ )
 700     if( _in[i] != NULL )
 701       return false;
 702   dump();
 703   return true;
 704 }
 705 #endif
 706 
 707 
 708 //------------------------------is_unreachable---------------------------------
 709 bool Node::is_unreachable(PhaseIterGVN &igvn) const {
 710   assert(!is_Mach(), "doesn't work with MachNodes");
 711   return outcnt() == 0 || igvn.type(this) == Type::TOP || (in(0) != NULL && in(0)->is_top());
 712 }
 713 
 714 //------------------------------add_req----------------------------------------
 715 // Add a new required input at the end
 716 void Node::add_req( Node *n ) {
 717   assert( is_not_dead(n), "can not use dead node");
 718 
 719   // Look to see if I can move precedence down one without reallocating
 720   if( (_cnt >= _max) || (in(_max-1) != NULL) )
 721     grow( _max+1 );
 722 
 723   // Find a precedence edge to move
 724   if( in(_cnt) != NULL ) {       // Next precedence edge is busy?
 725     uint i;
 726     for( i=_cnt; i<_max; i++ )
 727       if( in(i) == NULL )       // Find the NULL at end of prec edge list
 728         break;                  // There must be one, since we grew the array
 729     _in[i] = in(_cnt);          // Move prec over, making space for req edge
 730   }
 731   _in[_cnt++] = n;            // Stuff over old prec edge
 732   if (n != NULL) n->add_out((Node *)this);
 733 }
 734 
 735 //---------------------------add_req_batch-------------------------------------
 736 // Add a new required input at the end
 737 void Node::add_req_batch( Node *n, uint m ) {
 738   assert( is_not_dead(n), "can not use dead node");
 739   // check various edge cases
 740   if ((int)m <= 1) {
 741     assert((int)m >= 0, "oob");
 742     if (m != 0)  add_req(n);
 743     return;
 744   }
 745 
 746   // Look to see if I can move precedence down one without reallocating
 747   if( (_cnt+m) > _max || _in[_max-m] )
 748     grow( _max+m );
 749 
 750   // Find a precedence edge to move
 751   if( _in[_cnt] != NULL ) {     // Next precedence edge is busy?
 752     uint i;
 753     for( i=_cnt; i<_max; i++ )
 754       if( _in[i] == NULL )      // Find the NULL at end of prec edge list
 755         break;                  // There must be one, since we grew the array
 756     // Slide all the precs over by m positions (assume #prec << m).
 757     Copy::conjoint_words_to_higher((HeapWord*)&_in[_cnt], (HeapWord*)&_in[_cnt+m], ((i-_cnt)*sizeof(Node*)));
 758   }
 759 
 760   // Stuff over the old prec edges
 761   for(uint i=0; i<m; i++ ) {
 762     _in[_cnt++] = n;
 763   }
 764 
 765   // Insert multiple out edges on the node.
 766   if (n != NULL && !n->is_top()) {
 767     for(uint i=0; i<m; i++ ) {
 768       n->add_out((Node *)this);
 769     }
 770   }
 771 }
 772 
 773 //------------------------------del_req----------------------------------------
 774 // Delete the required edge and compact the edge array
 775 void Node::del_req( uint idx ) {
 776   assert( idx < _cnt, "oob");
 777   assert( !VerifyHashTableKeys || _hash_lock == 0,
 778           "remove node from hash table before modifying it");
 779   // First remove corresponding def-use edge
 780   Node *n = in(idx);
 781   if (n != NULL) n->del_out((Node *)this);
 782   _in[idx] = in(--_cnt); // Compact the array
 783   // Avoid spec violation: Gap in prec edges.
 784   close_prec_gap_at(_cnt);
 785   Compile::current()->record_modified_node(this);
 786 }
 787 
 788 //------------------------------del_req_ordered--------------------------------
 789 // Delete the required edge and compact the edge array with preserved order
 790 void Node::del_req_ordered( uint idx ) {
 791   assert( idx < _cnt, "oob");
 792   assert( !VerifyHashTableKeys || _hash_lock == 0,
 793           "remove node from hash table before modifying it");
 794   // First remove corresponding def-use edge
 795   Node *n = in(idx);
 796   if (n != NULL) n->del_out((Node *)this);
 797   if (idx < --_cnt) {    // Not last edge ?
 798     Copy::conjoint_words_to_lower((HeapWord*)&_in[idx+1], (HeapWord*)&_in[idx], ((_cnt-idx)*sizeof(Node*)));
 799   }
 800   // Avoid spec violation: Gap in prec edges.
 801   close_prec_gap_at(_cnt);
 802   Compile::current()->record_modified_node(this);
 803 }
 804 
 805 //------------------------------ins_req----------------------------------------
 806 // Insert a new required input at the end
 807 void Node::ins_req( uint idx, Node *n ) {
 808   assert( is_not_dead(n), "can not use dead node");
 809   add_req(NULL);                // Make space
 810   assert( idx < _max, "Must have allocated enough space");
 811   // Slide over
 812   if(_cnt-idx-1 > 0) {
 813     Copy::conjoint_words_to_higher((HeapWord*)&_in[idx], (HeapWord*)&_in[idx+1], ((_cnt-idx-1)*sizeof(Node*)));
 814   }
 815   _in[idx] = n;                            // Stuff over old required edge
 816   if (n != NULL) n->add_out((Node *)this); // Add reciprocal def-use edge
 817 }
 818 
 819 //-----------------------------find_edge---------------------------------------
 820 int Node::find_edge(Node* n) {
 821   for (uint i = 0; i < len(); i++) {
 822     if (_in[i] == n)  return i;
 823   }
 824   return -1;
 825 }
 826 
 827 //----------------------------replace_edge-------------------------------------
 828 int Node::replace_edge(Node* old, Node* neww) {
 829   if (old == neww)  return 0;  // nothing to do
 830   uint nrep = 0;
 831   for (uint i = 0; i < len(); i++) {
 832     if (in(i) == old) {
 833       if (i < req()) {
 834         set_req(i, neww);
 835       } else {
 836         assert(find_prec_edge(neww) == -1, "spec violation: duplicated prec edge (node %d -> %d)", _idx, neww->_idx);
 837         set_prec(i, neww);
 838       }
 839       nrep++;
 840     }
 841   }
 842   return nrep;
 843 }
 844 
 845 /**
 846  * Replace input edges in the range pointing to 'old' node.
 847  */
 848 int Node::replace_edges_in_range(Node* old, Node* neww, int start, int end) {
 849   if (old == neww)  return 0;  // nothing to do
 850   uint nrep = 0;
 851   for (int i = start; i < end; i++) {
 852     if (in(i) == old) {
 853       set_req(i, neww);
 854       nrep++;
 855     }
 856   }
 857   return nrep;
 858 }
 859 
 860 //-------------------------disconnect_inputs-----------------------------------
 861 // NULL out all inputs to eliminate incoming Def-Use edges.
 862 // Return the number of edges between 'n' and 'this'
 863 int Node::disconnect_inputs(Node *n, Compile* C) {
 864   int edges_to_n = 0;
 865 
 866   uint cnt = req();
 867   for( uint i = 0; i < cnt; ++i ) {
 868     if( in(i) == 0 ) continue;
 869     if( in(i) == n ) ++edges_to_n;
 870     set_req(i, NULL);
 871   }
 872   // Remove precedence edges if any exist
 873   // Note: Safepoints may have precedence edges, even during parsing
 874   if( (req() != len()) && (in(req()) != NULL) ) {
 875     uint max = len();
 876     for( uint i = 0; i < max; ++i ) {
 877       if( in(i) == 0 ) continue;
 878       if( in(i) == n ) ++edges_to_n;
 879       set_prec(i, NULL);
 880     }
 881   }
 882 
 883   // Node::destruct requires all out edges be deleted first
 884   // debug_only(destruct();)   // no reuse benefit expected
 885   if (edges_to_n == 0) {
 886     C->record_dead_node(_idx);
 887   }
 888   return edges_to_n;
 889 }
 890 
 891 //-----------------------------uncast---------------------------------------
 892 // %%% Temporary, until we sort out CheckCastPP vs. CastPP.
 893 // Strip away casting.  (It is depth-limited.)
 894 // Optionally, keep casts with dependencies.
 895 Node* Node::uncast(bool keep_deps) const {
 896   // Should be inline:
 897   //return is_ConstraintCast() ? uncast_helper(this) : (Node*) this;
 898   if (is_ConstraintCast()) {
 899     return uncast_helper(this, keep_deps);
 900   } else {
 901     return (Node*) this;
 902   }
 903 }
 904 
 905 // Find out of current node that matches opcode.
 906 Node* Node::find_out_with(int opcode) {
 907   for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) {
 908     Node* use = fast_out(i);
 909     if (use->Opcode() == opcode) {
 910       return use;
 911     }
 912   }
 913   return NULL;
 914 }
 915 
 916 // Return true if the current node has an out that matches opcode.
 917 bool Node::has_out_with(int opcode) {
 918   return (find_out_with(opcode) != NULL);
 919 }
 920 
 921 // Return true if the current node has an out that matches any of the opcodes.
 922 bool Node::has_out_with(int opcode1, int opcode2, int opcode3, int opcode4) {
 923   for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) {
 924       int opcode = fast_out(i)->Opcode();
 925       if (opcode == opcode1 || opcode == opcode2 || opcode == opcode3 || opcode == opcode4) {
 926         return true;
 927       }
 928   }
 929   return false;
 930 }
 931 
 932 
 933 //---------------------------uncast_helper-------------------------------------
 934 Node* Node::uncast_helper(const Node* p, bool keep_deps) {
 935 #ifdef ASSERT
 936   uint depth_count = 0;
 937   const Node* orig_p = p;
 938 #endif
 939 
 940   while (true) {
 941 #ifdef ASSERT
 942     if (depth_count >= K) {
 943       orig_p->dump(4);
 944       if (p != orig_p)
 945         p->dump(1);
 946     }
 947     assert(depth_count++ < K, "infinite loop in Node::uncast_helper");
 948 #endif
 949     if (p == NULL || p->req() != 2) {
 950       break;
 951     } else if (p->is_ConstraintCast()) {
 952       if (keep_deps && p->as_ConstraintCast()->carry_dependency()) {
 953         break; // stop at casts with dependencies
 954       }
 955       p = p->in(1);
 956     } else {
 957       break;
 958     }
 959   }
 960   return (Node*) p;
 961 }
 962 
 963 //------------------------------add_prec---------------------------------------
 964 // Add a new precedence input.  Precedence inputs are unordered, with
 965 // duplicates removed and NULLs packed down at the end.
 966 void Node::add_prec( Node *n ) {
 967   assert( is_not_dead(n), "can not use dead node");
 968 
 969   // Check for NULL at end
 970   if( _cnt >= _max || in(_max-1) )
 971     grow( _max+1 );
 972 
 973   // Find a precedence edge to move
 974   uint i = _cnt;
 975   while( in(i) != NULL ) {
 976     if (in(i) == n) return; // Avoid spec violation: duplicated prec edge.
 977     i++;
 978   }
 979   _in[i] = n;                                // Stuff prec edge over NULL
 980   if ( n != NULL) n->add_out((Node *)this);  // Add mirror edge
 981 
 982 #ifdef ASSERT
 983   while ((++i)<_max) { assert(_in[i] == NULL, "spec violation: Gap in prec edges (node %d)", _idx); }
 984 #endif
 985 }
 986 
 987 //------------------------------rm_prec----------------------------------------
 988 // Remove a precedence input.  Precedence inputs are unordered, with
 989 // duplicates removed and NULLs packed down at the end.
 990 void Node::rm_prec( uint j ) {
 991   assert(j < _max, "oob: i=%d, _max=%d", j, _max);
 992   assert(j >= _cnt, "not a precedence edge");
 993   if (_in[j] == NULL) return;   // Avoid spec violation: Gap in prec edges.
 994   _in[j]->del_out((Node *)this);
 995   close_prec_gap_at(j);
 996 }
 997 
 998 //------------------------------size_of----------------------------------------
 999 uint Node::size_of() const { return sizeof(*this); }
1000 
1001 //------------------------------ideal_reg--------------------------------------
1002 uint Node::ideal_reg() const { return 0; }
1003 
1004 //------------------------------jvms-------------------------------------------
1005 JVMState* Node::jvms() const { return NULL; }
1006 
1007 #ifdef ASSERT
1008 //------------------------------jvms-------------------------------------------
1009 bool Node::verify_jvms(const JVMState* using_jvms) const {
1010   for (JVMState* jvms = this->jvms(); jvms != NULL; jvms = jvms->caller()) {
1011     if (jvms == using_jvms)  return true;
1012   }
1013   return false;
1014 }
1015 
1016 //------------------------------init_NodeProperty------------------------------
1017 void Node::init_NodeProperty() {
1018   assert(_max_classes <= max_jushort, "too many NodeProperty classes");
1019   assert(_max_flags <= max_jushort, "too many NodeProperty flags");
1020 }
1021 #endif
1022 
1023 //------------------------------format-----------------------------------------
1024 // Print as assembly
1025 void Node::format( PhaseRegAlloc *, outputStream *st ) const {}
1026 //------------------------------emit-------------------------------------------
1027 // Emit bytes starting at parameter 'ptr'.
1028 void Node::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {}
1029 //------------------------------size-------------------------------------------
1030 // Size of instruction in bytes
1031 uint Node::size(PhaseRegAlloc *ra_) const { return 0; }
1032 
1033 //------------------------------CFG Construction-------------------------------
1034 // Nodes that end basic blocks, e.g. IfTrue/IfFalse, JumpProjNode, Root,
1035 // Goto and Return.
1036 const Node *Node::is_block_proj() const { return 0; }
1037 
1038 // Minimum guaranteed type
1039 const Type *Node::bottom_type() const { return Type::BOTTOM; }
1040 
1041 
1042 //------------------------------raise_bottom_type------------------------------
1043 // Get the worst-case Type output for this Node.
1044 void Node::raise_bottom_type(const Type* new_type) {
1045   if (is_Type()) {
1046     TypeNode *n = this->as_Type();
1047     if (VerifyAliases) {
1048       assert(new_type->higher_equal_speculative(n->type()), "new type must refine old type");
1049     }
1050     n->set_type(new_type);
1051   } else if (is_Load()) {
1052     LoadNode *n = this->as_Load();
1053     if (VerifyAliases) {
1054       assert(new_type->higher_equal_speculative(n->type()), "new type must refine old type");
1055     }
1056     n->set_type(new_type);
1057   }
1058 }
1059 
1060 //------------------------------Identity---------------------------------------
1061 // Return a node that the given node is equivalent to.
1062 Node* Node::Identity(PhaseGVN* phase) {
1063   return this;                  // Default to no identities
1064 }
1065 
1066 //------------------------------Value------------------------------------------
1067 // Compute a new Type for a node using the Type of the inputs.
1068 const Type* Node::Value(PhaseGVN* phase) const {
1069   return bottom_type();         // Default to worst-case Type
1070 }
1071 
1072 //------------------------------Ideal------------------------------------------
1073 //
1074 // 'Idealize' the graph rooted at this Node.
1075 //
1076 // In order to be efficient and flexible there are some subtle invariants
1077 // these Ideal calls need to hold.  Running with '+VerifyIterativeGVN' checks
1078 // these invariants, although its too slow to have on by default.  If you are
1079 // hacking an Ideal call, be sure to test with +VerifyIterativeGVN!
1080 //
1081 // The Ideal call almost arbitrarily reshape the graph rooted at the 'this'
1082 // pointer.  If ANY change is made, it must return the root of the reshaped
1083 // graph - even if the root is the same Node.  Example: swapping the inputs
1084 // to an AddINode gives the same answer and same root, but you still have to
1085 // return the 'this' pointer instead of NULL.
1086 //
1087 // You cannot return an OLD Node, except for the 'this' pointer.  Use the
1088 // Identity call to return an old Node; basically if Identity can find
1089 // another Node have the Ideal call make no change and return NULL.
1090 // Example: AddINode::Ideal must check for add of zero; in this case it
1091 // returns NULL instead of doing any graph reshaping.
1092 //
1093 // You cannot modify any old Nodes except for the 'this' pointer.  Due to
1094 // sharing there may be other users of the old Nodes relying on their current
1095 // semantics.  Modifying them will break the other users.
1096 // Example: when reshape "(X+3)+4" into "X+7" you must leave the Node for
1097 // "X+3" unchanged in case it is shared.
1098 //
1099 // If you modify the 'this' pointer's inputs, you should use
1100 // 'set_req'.  If you are making a new Node (either as the new root or
1101 // some new internal piece) you may use 'init_req' to set the initial
1102 // value.  You can make a new Node with either 'new' or 'clone'.  In
1103 // either case, def-use info is correctly maintained.
1104 //
1105 // Example: reshape "(X+3)+4" into "X+7":
1106 //    set_req(1, in(1)->in(1));
1107 //    set_req(2, phase->intcon(7));
1108 //    return this;
1109 // Example: reshape "X*4" into "X<<2"
1110 //    return new LShiftINode(in(1), phase->intcon(2));
1111 //
1112 // You must call 'phase->transform(X)' on any new Nodes X you make, except
1113 // for the returned root node.  Example: reshape "X*31" with "(X<<5)-X".
1114 //    Node *shift=phase->transform(new LShiftINode(in(1),phase->intcon(5)));
1115 //    return new AddINode(shift, in(1));
1116 //
1117 // When making a Node for a constant use 'phase->makecon' or 'phase->intcon'.
1118 // These forms are faster than 'phase->transform(new ConNode())' and Do
1119 // The Right Thing with def-use info.
1120 //
1121 // You cannot bury the 'this' Node inside of a graph reshape.  If the reshaped
1122 // graph uses the 'this' Node it must be the root.  If you want a Node with
1123 // the same Opcode as the 'this' pointer use 'clone'.
1124 //
1125 Node *Node::Ideal(PhaseGVN *phase, bool can_reshape) {
1126   return NULL;                  // Default to being Ideal already
1127 }
1128 
1129 // Some nodes have specific Ideal subgraph transformations only if they are
1130 // unique users of specific nodes. Such nodes should be put on IGVN worklist
1131 // for the transformations to happen.
1132 bool Node::has_special_unique_user() const {
1133   assert(outcnt() == 1, "match only for unique out");
1134   Node* n = unique_out();
1135   int op  = Opcode();
1136   if (this->is_Store()) {
1137     // Condition for back-to-back stores folding.
1138     return n->Opcode() == op && n->in(MemNode::Memory) == this;
1139   } else if (this->is_Load() || this->is_DecodeN() || this->is_Phi()) {
1140     // Condition for removing an unused LoadNode or DecodeNNode from the MemBarAcquire precedence input
1141     return n->Opcode() == Op_MemBarAcquire;
1142   } else if (op == Op_AddL) {
1143     // Condition for convL2I(addL(x,y)) ==> addI(convL2I(x),convL2I(y))
1144     return n->Opcode() == Op_ConvL2I && n->in(1) == this;
1145   } else if (op == Op_SubI || op == Op_SubL) {
1146     // Condition for subI(x,subI(y,z)) ==> subI(addI(x,z),y)
1147     return n->Opcode() == op && n->in(2) == this;
1148   } else if (is_If() && (n->is_IfFalse() || n->is_IfTrue())) {
1149     // See IfProjNode::Identity()
1150     return true;
1151   } else {
1152     return BarrierSet::barrier_set()->barrier_set_c2()->has_special_unique_user(this);
1153   }
1154 };
1155 
1156 //--------------------------find_exact_control---------------------------------
1157 // Skip Proj and CatchProj nodes chains. Check for Null and Top.
1158 Node* Node::find_exact_control(Node* ctrl) {
1159   if (ctrl == NULL && this->is_Region())
1160     ctrl = this->as_Region()->is_copy();
1161 
1162   if (ctrl != NULL && ctrl->is_CatchProj()) {
1163     if (ctrl->as_CatchProj()->_con == CatchProjNode::fall_through_index)
1164       ctrl = ctrl->in(0);
1165     if (ctrl != NULL && !ctrl->is_top())
1166       ctrl = ctrl->in(0);
1167   }
1168 
1169   if (ctrl != NULL && ctrl->is_Proj())
1170     ctrl = ctrl->in(0);
1171 
1172   return ctrl;
1173 }
1174 
1175 //--------------------------dominates------------------------------------------
1176 // Helper function for MemNode::all_controls_dominate().
1177 // Check if 'this' control node dominates or equal to 'sub' control node.
1178 // We already know that if any path back to Root or Start reaches 'this',
1179 // then all paths so, so this is a simple search for one example,
1180 // not an exhaustive search for a counterexample.
1181 bool Node::dominates(Node* sub, Node_List &nlist) {
1182   assert(this->is_CFG(), "expecting control");
1183   assert(sub != NULL && sub->is_CFG(), "expecting control");
1184 
1185   // detect dead cycle without regions
1186   int iterations_without_region_limit = DominatorSearchLimit;
1187 
1188   Node* orig_sub = sub;
1189   Node* dom      = this;
1190   bool  met_dom  = false;
1191   nlist.clear();
1192 
1193   // Walk 'sub' backward up the chain to 'dom', watching for regions.
1194   // After seeing 'dom', continue up to Root or Start.
1195   // If we hit a region (backward split point), it may be a loop head.
1196   // Keep going through one of the region's inputs.  If we reach the
1197   // same region again, go through a different input.  Eventually we
1198   // will either exit through the loop head, or give up.
1199   // (If we get confused, break out and return a conservative 'false'.)
1200   while (sub != NULL) {
1201     if (sub->is_top())  break; // Conservative answer for dead code.
1202     if (sub == dom) {
1203       if (nlist.size() == 0) {
1204         // No Region nodes except loops were visited before and the EntryControl
1205         // path was taken for loops: it did not walk in a cycle.
1206         return true;
1207       } else if (met_dom) {
1208         break;          // already met before: walk in a cycle
1209       } else {
1210         // Region nodes were visited. Continue walk up to Start or Root
1211         // to make sure that it did not walk in a cycle.
1212         met_dom = true; // first time meet
1213         iterations_without_region_limit = DominatorSearchLimit; // Reset
1214      }
1215     }
1216     if (sub->is_Start() || sub->is_Root()) {
1217       // Success if we met 'dom' along a path to Start or Root.
1218       // We assume there are no alternative paths that avoid 'dom'.
1219       // (This assumption is up to the caller to ensure!)
1220       return met_dom;
1221     }
1222     Node* up = sub->in(0);
1223     // Normalize simple pass-through regions and projections:
1224     up = sub->find_exact_control(up);
1225     // If sub == up, we found a self-loop.  Try to push past it.
1226     if (sub == up && sub->is_Loop()) {
1227       // Take loop entry path on the way up to 'dom'.
1228       up = sub->in(1); // in(LoopNode::EntryControl);
1229     } else if (sub == up && sub->is_Region() && sub->req() != 3) {
1230       // Always take in(1) path on the way up to 'dom' for clone regions
1231       // (with only one input) or regions which merge > 2 paths
1232       // (usually used to merge fast/slow paths).
1233       up = sub->in(1);
1234     } else if (sub == up && sub->is_Region()) {
1235       // Try both paths for Regions with 2 input paths (it may be a loop head).
1236       // It could give conservative 'false' answer without information
1237       // which region's input is the entry path.
1238       iterations_without_region_limit = DominatorSearchLimit; // Reset
1239 
1240       bool region_was_visited_before = false;
1241       // Was this Region node visited before?
1242       // If so, we have reached it because we accidentally took a
1243       // loop-back edge from 'sub' back into the body of the loop,
1244       // and worked our way up again to the loop header 'sub'.
1245       // So, take the first unexplored path on the way up to 'dom'.
1246       for (int j = nlist.size() - 1; j >= 0; j--) {
1247         intptr_t ni = (intptr_t)nlist.at(j);
1248         Node* visited = (Node*)(ni & ~1);
1249         bool  visited_twice_already = ((ni & 1) != 0);
1250         if (visited == sub) {
1251           if (visited_twice_already) {
1252             // Visited 2 paths, but still stuck in loop body.  Give up.
1253             return false;
1254           }
1255           // The Region node was visited before only once.
1256           // (We will repush with the low bit set, below.)
1257           nlist.remove(j);
1258           // We will find a new edge and re-insert.
1259           region_was_visited_before = true;
1260           break;
1261         }
1262       }
1263 
1264       // Find an incoming edge which has not been seen yet; walk through it.
1265       assert(up == sub, "");
1266       uint skip = region_was_visited_before ? 1 : 0;
1267       for (uint i = 1; i < sub->req(); i++) {
1268         Node* in = sub->in(i);
1269         if (in != NULL && !in->is_top() && in != sub) {
1270           if (skip == 0) {
1271             up = in;
1272             break;
1273           }
1274           --skip;               // skip this nontrivial input
1275         }
1276       }
1277 
1278       // Set 0 bit to indicate that both paths were taken.
1279       nlist.push((Node*)((intptr_t)sub + (region_was_visited_before ? 1 : 0)));
1280     }
1281 
1282     if (up == sub) {
1283       break;    // some kind of tight cycle
1284     }
1285     if (up == orig_sub && met_dom) {
1286       // returned back after visiting 'dom'
1287       break;    // some kind of cycle
1288     }
1289     if (--iterations_without_region_limit < 0) {
1290       break;    // dead cycle
1291     }
1292     sub = up;
1293   }
1294 
1295   // Did not meet Root or Start node in pred. chain.
1296   // Conservative answer for dead code.
1297   return false;
1298 }
1299 
1300 //------------------------------remove_dead_region-----------------------------
1301 // This control node is dead.  Follow the subgraph below it making everything
1302 // using it dead as well.  This will happen normally via the usual IterGVN
1303 // worklist but this call is more efficient.  Do not update use-def info
1304 // inside the dead region, just at the borders.
1305 static void kill_dead_code( Node *dead, PhaseIterGVN *igvn ) {
1306   // Con's are a popular node to re-hit in the hash table again.
1307   if( dead->is_Con() ) return;
1308 
1309   // Can't put ResourceMark here since igvn->_worklist uses the same arena
1310   // for verify pass with +VerifyOpto and we add/remove elements in it here.
1311   Node_List  nstack(Thread::current()->resource_area());
1312 
1313   Node *top = igvn->C->top();
1314   nstack.push(dead);
1315   bool has_irreducible_loop = igvn->C->has_irreducible_loop();
1316 
1317   while (nstack.size() > 0) {
1318     dead = nstack.pop();
1319     if (dead->Opcode() == Op_SafePoint) {
1320       dead->as_SafePoint()->disconnect_from_root(igvn);
1321     }
1322     if (dead->outcnt() > 0) {
1323       // Keep dead node on stack until all uses are processed.
1324       nstack.push(dead);
1325       // For all Users of the Dead...    ;-)
1326       for (DUIterator_Last kmin, k = dead->last_outs(kmin); k >= kmin; ) {
1327         Node* use = dead->last_out(k);
1328         igvn->hash_delete(use);       // Yank from hash table prior to mod
1329         if (use->in(0) == dead) {     // Found another dead node
1330           assert (!use->is_Con(), "Control for Con node should be Root node.");
1331           use->set_req(0, top);       // Cut dead edge to prevent processing
1332           nstack.push(use);           // the dead node again.
1333         } else if (!has_irreducible_loop && // Backedge could be alive in irreducible loop
1334                    use->is_Loop() && !use->is_Root() &&       // Don't kill Root (RootNode extends LoopNode)
1335                    use->in(LoopNode::EntryControl) == dead) { // Dead loop if its entry is dead
1336           use->set_req(LoopNode::EntryControl, top);          // Cut dead edge to prevent processing
1337           use->set_req(0, top);       // Cut self edge
1338           nstack.push(use);
1339         } else {                      // Else found a not-dead user
1340           // Dead if all inputs are top or null
1341           bool dead_use = !use->is_Root(); // Keep empty graph alive
1342           for (uint j = 1; j < use->req(); j++) {
1343             Node* in = use->in(j);
1344             if (in == dead) {         // Turn all dead inputs into TOP
1345               use->set_req(j, top);
1346             } else if (in != NULL && !in->is_top()) {
1347               dead_use = false;
1348             }
1349           }
1350           if (dead_use) {
1351             if (use->is_Region()) {
1352               use->set_req(0, top);   // Cut self edge
1353             }
1354             nstack.push(use);
1355           } else {
1356             igvn->_worklist.push(use);
1357           }
1358         }
1359         // Refresh the iterator, since any number of kills might have happened.
1360         k = dead->last_outs(kmin);
1361       }
1362     } else { // (dead->outcnt() == 0)
1363       // Done with outputs.
1364       igvn->hash_delete(dead);
1365       igvn->_worklist.remove(dead);
1366       igvn->C->remove_modified_node(dead);
1367       igvn->set_type(dead, Type::TOP);
1368       if (dead->is_macro()) {
1369         igvn->C->remove_macro_node(dead);
1370       }
1371       if (dead->is_expensive()) {
1372         igvn->C->remove_expensive_node(dead);
1373       }
1374       CastIINode* cast = dead->isa_CastII();
1375       if (cast != NULL && cast->has_range_check()) {
1376         igvn->C->remove_range_check_cast(cast);
1377       }
1378       if (dead->Opcode() == Op_Opaque4) {
1379         igvn->C->remove_opaque4_node(dead);
1380       }
1381       BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
1382       bs->unregister_potential_barrier_node(dead);
1383       igvn->C->record_dead_node(dead->_idx);
1384       // Kill all inputs to the dead guy
1385       for (uint i=0; i < dead->req(); i++) {
1386         Node *n = dead->in(i);      // Get input to dead guy
1387         if (n != NULL && !n->is_top()) { // Input is valid?
1388           dead->set_req(i, top);    // Smash input away
1389           if (n->outcnt() == 0) {   // Input also goes dead?
1390             if (!n->is_Con())
1391               nstack.push(n);       // Clear it out as well
1392           } else if (n->outcnt() == 1 &&
1393                      n->has_special_unique_user()) {
1394             igvn->add_users_to_worklist( n );
1395           } else if (n->outcnt() <= 2 && n->is_Store()) {
1396             // Push store's uses on worklist to enable folding optimization for
1397             // store/store and store/load to the same address.
1398             // The restriction (outcnt() <= 2) is the same as in set_req_X()
1399             // and remove_globally_dead_node().
1400             igvn->add_users_to_worklist( n );
1401           } else {
1402             BarrierSet::barrier_set()->barrier_set_c2()->enqueue_useful_gc_barrier(igvn, n);
1403           }
1404         }
1405       }
1406     } // (dead->outcnt() == 0)
1407   }   // while (nstack.size() > 0) for outputs
1408   return;
1409 }
1410 
1411 //------------------------------remove_dead_region-----------------------------
1412 bool Node::remove_dead_region(PhaseGVN *phase, bool can_reshape) {
1413   Node *n = in(0);
1414   if( !n ) return false;
1415   // Lost control into this guy?  I.e., it became unreachable?
1416   // Aggressively kill all unreachable code.
1417   if (can_reshape && n->is_top()) {
1418     kill_dead_code(this, phase->is_IterGVN());
1419     return false; // Node is dead.
1420   }
1421 
1422   if( n->is_Region() && n->as_Region()->is_copy() ) {
1423     Node *m = n->nonnull_req();
1424     set_req(0, m);
1425     return true;
1426   }
1427   return false;
1428 }
1429 
1430 //------------------------------hash-------------------------------------------
1431 // Hash function over Nodes.
1432 uint Node::hash() const {
1433   uint sum = 0;
1434   for( uint i=0; i<_cnt; i++ )  // Add in all inputs
1435     sum = (sum<<1)-(uintptr_t)in(i);        // Ignore embedded NULLs
1436   return (sum>>2) + _cnt + Opcode();
1437 }
1438 
1439 //------------------------------cmp--------------------------------------------
1440 // Compare special parts of simple Nodes
1441 bool Node::cmp( const Node &n ) const {
1442   return true;                  // Must be same
1443 }
1444 
1445 //------------------------------rematerialize-----------------------------------
1446 // Should we clone rather than spill this instruction?
1447 bool Node::rematerialize() const {
1448   if ( is_Mach() )
1449     return this->as_Mach()->rematerialize();
1450   else
1451     return (_flags & Flag_rematerialize) != 0;
1452 }
1453 
1454 //------------------------------needs_anti_dependence_check---------------------
1455 // Nodes which use memory without consuming it, hence need antidependences.
1456 bool Node::needs_anti_dependence_check() const {
1457   if( req() < 2 || (_flags & Flag_needs_anti_dependence_check) == 0 )
1458     return false;
1459   else
1460     return in(1)->bottom_type()->has_memory();
1461 }
1462 
1463 
1464 // Get an integer constant from a ConNode (or CastIINode).
1465 // Return a default value if there is no apparent constant here.
1466 const TypeInt* Node::find_int_type() const {
1467   if (this->is_Type()) {
1468     return this->as_Type()->type()->isa_int();
1469   } else if (this->is_Con()) {
1470     assert(is_Mach(), "should be ConNode(TypeNode) or else a MachNode");
1471     return this->bottom_type()->isa_int();
1472   }
1473   return NULL;
1474 }
1475 
1476 // Get a pointer constant from a ConstNode.
1477 // Returns the constant if it is a pointer ConstNode
1478 intptr_t Node::get_ptr() const {
1479   assert( Opcode() == Op_ConP, "" );
1480   return ((ConPNode*)this)->type()->is_ptr()->get_con();
1481 }
1482 
1483 // Get a narrow oop constant from a ConNNode.
1484 intptr_t Node::get_narrowcon() const {
1485   assert( Opcode() == Op_ConN, "" );
1486   return ((ConNNode*)this)->type()->is_narrowoop()->get_con();
1487 }
1488 
1489 // Get a long constant from a ConNode.
1490 // Return a default value if there is no apparent constant here.
1491 const TypeLong* Node::find_long_type() const {
1492   if (this->is_Type()) {
1493     return this->as_Type()->type()->isa_long();
1494   } else if (this->is_Con()) {
1495     assert(is_Mach(), "should be ConNode(TypeNode) or else a MachNode");
1496     return this->bottom_type()->isa_long();
1497   }
1498   return NULL;
1499 }
1500 
1501 
1502 /**
1503  * Return a ptr type for nodes which should have it.
1504  */
1505 const TypePtr* Node::get_ptr_type() const {
1506   const TypePtr* tp = this->bottom_type()->make_ptr();
1507 #ifdef ASSERT
1508   if (tp == NULL) {
1509     this->dump(1);
1510     assert((tp != NULL), "unexpected node type");
1511   }
1512 #endif
1513   return tp;
1514 }
1515 
1516 // Get a double constant from a ConstNode.
1517 // Returns the constant if it is a double ConstNode
1518 jdouble Node::getd() const {
1519   assert( Opcode() == Op_ConD, "" );
1520   return ((ConDNode*)this)->type()->is_double_constant()->getd();
1521 }
1522 
1523 // Get a float constant from a ConstNode.
1524 // Returns the constant if it is a float ConstNode
1525 jfloat Node::getf() const {
1526   assert( Opcode() == Op_ConF, "" );
1527   return ((ConFNode*)this)->type()->is_float_constant()->getf();
1528 }
1529 
1530 #ifndef PRODUCT
1531 
1532 //------------------------------find------------------------------------------
1533 // Find a neighbor of this Node with the given _idx
1534 // If idx is negative, find its absolute value, following both _in and _out.
1535 static void find_recur(Compile* C,  Node* &result, Node *n, int idx, bool only_ctrl,
1536                         VectorSet* old_space, VectorSet* new_space ) {
1537   int node_idx = (idx >= 0) ? idx : -idx;
1538   if (NotANode(n))  return;  // Gracefully handle NULL, -1, 0xabababab, etc.
1539   // Contained in new_space or old_space?   Check old_arena first since it's mostly empty.
1540   VectorSet *v = C->old_arena()->contains(n) ? old_space : new_space;
1541   if( v->test(n->_idx) ) return;
1542   if( (int)n->_idx == node_idx
1543       debug_only(|| n->debug_idx() == node_idx) ) {
1544     if (result != NULL)
1545       tty->print("find: " INTPTR_FORMAT " and " INTPTR_FORMAT " both have idx==%d\n",
1546                  (uintptr_t)result, (uintptr_t)n, node_idx);
1547     result = n;
1548   }
1549   v->set(n->_idx);
1550   for( uint i=0; i<n->len(); i++ ) {
1551     if( only_ctrl && !(n->is_Region()) && (n->Opcode() != Op_Root) && (i != TypeFunc::Control) ) continue;
1552     find_recur(C, result, n->in(i), idx, only_ctrl, old_space, new_space );
1553   }
1554   // Search along forward edges also:
1555   if (idx < 0 && !only_ctrl) {
1556     for( uint j=0; j<n->outcnt(); j++ ) {
1557       find_recur(C, result, n->raw_out(j), idx, only_ctrl, old_space, new_space );
1558     }
1559   }
1560 #ifdef ASSERT
1561   // Search along debug_orig edges last, checking for cycles
1562   Node* orig = n->debug_orig();
1563   if (orig != NULL) {
1564     do {
1565       if (NotANode(orig))  break;
1566       find_recur(C, result, orig, idx, only_ctrl, old_space, new_space );
1567       orig = orig->debug_orig();
1568     } while (orig != NULL && orig != n->debug_orig());
1569   }
1570 #endif //ASSERT
1571 }
1572 
1573 // call this from debugger:
1574 Node* find_node(Node* n, int idx) {
1575   return n->find(idx);
1576 }
1577 
1578 //------------------------------find-------------------------------------------
1579 Node* Node::find(int idx) const {
1580   ResourceArea *area = Thread::current()->resource_area();
1581   VectorSet old_space(area), new_space(area);
1582   Node* result = NULL;
1583   find_recur(Compile::current(), result, (Node*) this, idx, false, &old_space, &new_space );
1584   return result;
1585 }
1586 
1587 //------------------------------find_ctrl--------------------------------------
1588 // Find an ancestor to this node in the control history with given _idx
1589 Node* Node::find_ctrl(int idx) const {
1590   ResourceArea *area = Thread::current()->resource_area();
1591   VectorSet old_space(area), new_space(area);
1592   Node* result = NULL;
1593   find_recur(Compile::current(), result, (Node*) this, idx, true, &old_space, &new_space );
1594   return result;
1595 }
1596 #endif
1597 
1598 
1599 
1600 #ifndef PRODUCT
1601 
1602 // -----------------------------Name-------------------------------------------
1603 extern const char *NodeClassNames[];
1604 const char *Node::Name() const { return NodeClassNames[Opcode()]; }
1605 
1606 static bool is_disconnected(const Node* n) {
1607   for (uint i = 0; i < n->req(); i++) {
1608     if (n->in(i) != NULL)  return false;
1609   }
1610   return true;
1611 }
1612 
1613 #ifdef ASSERT
1614 static void dump_orig(Node* orig, outputStream *st) {
1615   Compile* C = Compile::current();
1616   if (NotANode(orig)) orig = NULL;
1617   if (orig != NULL && !C->node_arena()->contains(orig)) orig = NULL;
1618   if (orig == NULL) return;
1619   st->print(" !orig=");
1620   Node* fast = orig->debug_orig(); // tortoise & hare algorithm to detect loops
1621   if (NotANode(fast)) fast = NULL;
1622   while (orig != NULL) {
1623     bool discon = is_disconnected(orig);  // if discon, print [123] else 123
1624     if (discon) st->print("[");
1625     if (!Compile::current()->node_arena()->contains(orig))
1626       st->print("o");
1627     st->print("%d", orig->_idx);
1628     if (discon) st->print("]");
1629     orig = orig->debug_orig();
1630     if (NotANode(orig)) orig = NULL;
1631     if (orig != NULL && !C->node_arena()->contains(orig)) orig = NULL;
1632     if (orig != NULL) st->print(",");
1633     if (fast != NULL) {
1634       // Step fast twice for each single step of orig:
1635       fast = fast->debug_orig();
1636       if (NotANode(fast)) fast = NULL;
1637       if (fast != NULL && fast != orig) {
1638         fast = fast->debug_orig();
1639         if (NotANode(fast)) fast = NULL;
1640       }
1641       if (fast == orig) {
1642         st->print("...");
1643         break;
1644       }
1645     }
1646   }
1647 }
1648 
1649 void Node::set_debug_orig(Node* orig) {
1650   _debug_orig = orig;
1651   if (BreakAtNode == 0)  return;
1652   if (NotANode(orig))  orig = NULL;
1653   int trip = 10;
1654   while (orig != NULL) {
1655     if (orig->debug_idx() == BreakAtNode || (int)orig->_idx == BreakAtNode) {
1656       tty->print_cr("BreakAtNode: _idx=%d _debug_idx=%d orig._idx=%d orig._debug_idx=%d",
1657                     this->_idx, this->debug_idx(), orig->_idx, orig->debug_idx());
1658       BREAKPOINT;
1659     }
1660     orig = orig->debug_orig();
1661     if (NotANode(orig))  orig = NULL;
1662     if (trip-- <= 0)  break;
1663   }
1664 }
1665 #endif //ASSERT
1666 
1667 //------------------------------dump------------------------------------------
1668 // Dump a Node
1669 void Node::dump(const char* suffix, bool mark, outputStream *st) const {
1670   Compile* C = Compile::current();
1671   bool is_new = C->node_arena()->contains(this);
1672   C->_in_dump_cnt++;
1673   st->print("%c%d%s\t%s\t=== ", is_new ? ' ' : 'o', _idx, mark ? " >" : "", Name());
1674 
1675   // Dump the required and precedence inputs
1676   dump_req(st);
1677   dump_prec(st);
1678   // Dump the outputs
1679   dump_out(st);
1680 
1681   if (is_disconnected(this)) {
1682 #ifdef ASSERT
1683     st->print("  [%d]",debug_idx());
1684     dump_orig(debug_orig(), st);
1685 #endif
1686     st->cr();
1687     C->_in_dump_cnt--;
1688     return;                     // don't process dead nodes
1689   }
1690 
1691   if (C->clone_map().value(_idx) != 0) {
1692     C->clone_map().dump(_idx);
1693   }
1694   // Dump node-specific info
1695   dump_spec(st);
1696 #ifdef ASSERT
1697   // Dump the non-reset _debug_idx
1698   if (Verbose && WizardMode) {
1699     st->print("  [%d]",debug_idx());
1700   }
1701 #endif
1702 
1703   const Type *t = bottom_type();
1704 
1705   if (t != NULL && (t->isa_instptr() || t->isa_klassptr())) {
1706     const TypeInstPtr  *toop = t->isa_instptr();
1707     const TypeKlassPtr *tkls = t->isa_klassptr();
1708     ciKlass*           klass = toop ? toop->klass() : (tkls ? tkls->klass() : NULL );
1709     if (klass && klass->is_loaded() && klass->is_interface()) {
1710       st->print("  Interface:");
1711     } else if (toop) {
1712       st->print("  Oop:");
1713     } else if (tkls) {
1714       st->print("  Klass:");
1715     }
1716     t->dump_on(st);
1717   } else if (t == Type::MEMORY) {
1718     st->print("  Memory:");
1719     MemNode::dump_adr_type(this, adr_type(), st);
1720   } else if (Verbose || WizardMode) {
1721     st->print("  Type:");
1722     if (t) {
1723       t->dump_on(st);
1724     } else {
1725       st->print("no type");
1726     }
1727   } else if (t->isa_vect() && this->is_MachSpillCopy()) {
1728     // Dump MachSpillcopy vector type.
1729     t->dump_on(st);
1730   }
1731   if (is_new) {
1732     debug_only(dump_orig(debug_orig(), st));
1733     Node_Notes* nn = C->node_notes_at(_idx);
1734     if (nn != NULL && !nn->is_clear()) {
1735       if (nn->jvms() != NULL) {
1736         st->print(" !jvms:");
1737         nn->jvms()->dump_spec(st);
1738       }
1739     }
1740   }
1741   if (suffix) st->print("%s", suffix);
1742   C->_in_dump_cnt--;
1743 }
1744 
1745 //------------------------------dump_req--------------------------------------
1746 void Node::dump_req(outputStream *st) const {
1747   // Dump the required input edges
1748   for (uint i = 0; i < req(); i++) {    // For all required inputs
1749     Node* d = in(i);
1750     if (d == NULL) {
1751       st->print("_ ");
1752     } else if (NotANode(d)) {
1753       st->print("NotANode ");  // uninitialized, sentinel, garbage, etc.
1754     } else {
1755       st->print("%c%d ", Compile::current()->node_arena()->contains(d) ? ' ' : 'o', d->_idx);
1756     }
1757   }
1758 }
1759 
1760 
1761 //------------------------------dump_prec-------------------------------------
1762 void Node::dump_prec(outputStream *st) const {
1763   // Dump the precedence edges
1764   int any_prec = 0;
1765   for (uint i = req(); i < len(); i++) {       // For all precedence inputs
1766     Node* p = in(i);
1767     if (p != NULL) {
1768       if (!any_prec++) st->print(" |");
1769       if (NotANode(p)) { st->print("NotANode "); continue; }
1770       st->print("%c%d ", Compile::current()->node_arena()->contains(in(i)) ? ' ' : 'o', in(i)->_idx);
1771     }
1772   }
1773 }
1774 
1775 //------------------------------dump_out--------------------------------------
1776 void Node::dump_out(outputStream *st) const {
1777   // Delimit the output edges
1778   st->print(" [[");
1779   // Dump the output edges
1780   for (uint i = 0; i < _outcnt; i++) {    // For all outputs
1781     Node* u = _out[i];
1782     if (u == NULL) {
1783       st->print("_ ");
1784     } else if (NotANode(u)) {
1785       st->print("NotANode ");
1786     } else {
1787       st->print("%c%d ", Compile::current()->node_arena()->contains(u) ? ' ' : 'o', u->_idx);
1788     }
1789   }
1790   st->print("]] ");
1791 }
1792 
1793 //----------------------------collect_nodes_i----------------------------------
1794 // Collects nodes from an Ideal graph, starting from a given start node and
1795 // moving in a given direction until a certain depth (distance from the start
1796 // node) is reached. Duplicates are ignored.
1797 // Arguments:
1798 //   nstack:        the nodes are collected into this array.
1799 //   start:         the node at which to start collecting.
1800 //   direction:     if this is a positive number, collect input nodes; if it is
1801 //                  a negative number, collect output nodes.
1802 //   depth:         collect nodes up to this distance from the start node.
1803 //   include_start: whether to include the start node in the result collection.
1804 //   only_ctrl:     whether to regard control edges only during traversal.
1805 //   only_data:     whether to regard data edges only during traversal.
1806 static void collect_nodes_i(GrowableArray<Node*> *nstack, const Node* start, int direction, uint depth, bool include_start, bool only_ctrl, bool only_data) {
1807   Node* s = (Node*) start; // remove const
1808   nstack->append(s);
1809   int begin = 0;
1810   int end = 0;
1811   for(uint i = 0; i < depth; i++) {
1812     end = nstack->length();
1813     for(int j = begin; j < end; j++) {
1814       Node* tp  = nstack->at(j);
1815       uint limit = direction > 0 ? tp->len() : tp->outcnt();
1816       for(uint k = 0; k < limit; k++) {
1817         Node* n = direction > 0 ? tp->in(k) : tp->raw_out(k);
1818 
1819         if (NotANode(n))  continue;
1820         // do not recurse through top or the root (would reach unrelated stuff)
1821         if (n->is_Root() || n->is_top()) continue;
1822         if (only_ctrl && !n->is_CFG()) continue;
1823         if (only_data && n->is_CFG()) continue;
1824 
1825         bool on_stack = nstack->contains(n);
1826         if (!on_stack) {
1827           nstack->append(n);
1828         }
1829       }
1830     }
1831     begin = end;
1832   }
1833   if (!include_start) {
1834     nstack->remove(s);
1835   }
1836 }
1837 
1838 //------------------------------dump_nodes-------------------------------------
1839 static void dump_nodes(const Node* start, int d, bool only_ctrl) {
1840   if (NotANode(start)) return;
1841 
1842   GrowableArray <Node *> nstack(Compile::current()->live_nodes());
1843   collect_nodes_i(&nstack, start, d, (uint) ABS(d), true, only_ctrl, false);
1844 
1845   int end = nstack.length();
1846   if (d > 0) {
1847     for(int j = end-1; j >= 0; j--) {
1848       nstack.at(j)->dump();
1849     }
1850   } else {
1851     for(int j = 0; j < end; j++) {
1852       nstack.at(j)->dump();
1853     }
1854   }
1855 }
1856 
1857 //------------------------------dump-------------------------------------------
1858 void Node::dump(int d) const {
1859   dump_nodes(this, d, false);
1860 }
1861 
1862 //------------------------------dump_ctrl--------------------------------------
1863 // Dump a Node's control history to depth
1864 void Node::dump_ctrl(int d) const {
1865   dump_nodes(this, d, true);
1866 }
1867 
1868 //-----------------------------dump_compact------------------------------------
1869 void Node::dump_comp() const {
1870   this->dump_comp("\n");
1871 }
1872 
1873 //-----------------------------dump_compact------------------------------------
1874 // Dump a Node in compact representation, i.e., just print its name and index.
1875 // Nodes can specify additional specifics to print in compact representation by
1876 // implementing dump_compact_spec.
1877 void Node::dump_comp(const char* suffix, outputStream *st) const {
1878   Compile* C = Compile::current();
1879   C->_in_dump_cnt++;
1880   st->print("%s(%d)", Name(), _idx);
1881   this->dump_compact_spec(st);
1882   if (suffix) {
1883     st->print("%s", suffix);
1884   }
1885   C->_in_dump_cnt--;
1886 }
1887 
1888 //----------------------------dump_related-------------------------------------
1889 // Dump a Node's related nodes - the notion of "related" depends on the Node at
1890 // hand and is determined by the implementation of the virtual method rel.
1891 void Node::dump_related() const {
1892   Compile* C = Compile::current();
1893   GrowableArray <Node *> in_rel(C->unique());
1894   GrowableArray <Node *> out_rel(C->unique());
1895   this->related(&in_rel, &out_rel, false);
1896   for (int i = in_rel.length() - 1; i >= 0; i--) {
1897     in_rel.at(i)->dump();
1898   }
1899   this->dump("\n", true);
1900   for (int i = 0; i < out_rel.length(); i++) {
1901     out_rel.at(i)->dump();
1902   }
1903 }
1904 
1905 //----------------------------dump_related-------------------------------------
1906 // Dump a Node's related nodes up to a given depth (distance from the start
1907 // node).
1908 // Arguments:
1909 //   d_in:  depth for input nodes.
1910 //   d_out: depth for output nodes (note: this also is a positive number).
1911 void Node::dump_related(uint d_in, uint d_out) const {
1912   Compile* C = Compile::current();
1913   GrowableArray <Node *> in_rel(C->unique());
1914   GrowableArray <Node *> out_rel(C->unique());
1915 
1916   // call collect_nodes_i directly
1917   collect_nodes_i(&in_rel, this, 1, d_in, false, false, false);
1918   collect_nodes_i(&out_rel, this, -1, d_out, false, false, false);
1919 
1920   for (int i = in_rel.length() - 1; i >= 0; i--) {
1921     in_rel.at(i)->dump();
1922   }
1923   this->dump("\n", true);
1924   for (int i = 0; i < out_rel.length(); i++) {
1925     out_rel.at(i)->dump();
1926   }
1927 }
1928 
1929 //------------------------dump_related_compact---------------------------------
1930 // Dump a Node's related nodes in compact representation. The notion of
1931 // "related" depends on the Node at hand and is determined by the implementation
1932 // of the virtual method rel.
1933 void Node::dump_related_compact() const {
1934   Compile* C = Compile::current();
1935   GrowableArray <Node *> in_rel(C->unique());
1936   GrowableArray <Node *> out_rel(C->unique());
1937   this->related(&in_rel, &out_rel, true);
1938   int n_in = in_rel.length();
1939   int n_out = out_rel.length();
1940 
1941   this->dump_comp(n_in == 0 ? "\n" : "  ");
1942   for (int i = 0; i < n_in; i++) {
1943     in_rel.at(i)->dump_comp(i == n_in - 1 ? "\n" : "  ");
1944   }
1945   for (int i = 0; i < n_out; i++) {
1946     out_rel.at(i)->dump_comp(i == n_out - 1 ? "\n" : "  ");
1947   }
1948 }
1949 
1950 //------------------------------related----------------------------------------
1951 // Collect a Node's related nodes. The default behaviour just collects the
1952 // inputs and outputs at depth 1, including both control and data flow edges,
1953 // regardless of whether the presentation is compact or not. For data nodes,
1954 // the default is to collect all data inputs (till level 1 if compact), and
1955 // outputs till level 1.
1956 void Node::related(GrowableArray<Node*> *in_rel, GrowableArray<Node*> *out_rel, bool compact) const {
1957   if (this->is_CFG()) {
1958     collect_nodes_i(in_rel, this, 1, 1, false, false, false);
1959     collect_nodes_i(out_rel, this, -1, 1, false, false, false);
1960   } else {
1961     if (compact) {
1962       this->collect_nodes(in_rel, 1, false, true);
1963     } else {
1964       this->collect_nodes_in_all_data(in_rel, false);
1965     }
1966     this->collect_nodes(out_rel, -1, false, false);
1967   }
1968 }
1969 
1970 //---------------------------collect_nodes-------------------------------------
1971 // An entry point to the low-level node collection facility, to start from a
1972 // given node in the graph. The start node is by default not included in the
1973 // result.
1974 // Arguments:
1975 //   ns:   collect the nodes into this data structure.
1976 //   d:    the depth (distance from start node) to which nodes should be
1977 //         collected. A value >0 indicates input nodes, a value <0, output
1978 //         nodes.
1979 //   ctrl: include only control nodes.
1980 //   data: include only data nodes.
1981 void Node::collect_nodes(GrowableArray<Node*> *ns, int d, bool ctrl, bool data) const {
1982   if (ctrl && data) {
1983     // ignore nonsensical combination
1984     return;
1985   }
1986   collect_nodes_i(ns, this, d, (uint) ABS(d), false, ctrl, data);
1987 }
1988 
1989 //--------------------------collect_nodes_in-----------------------------------
1990 static void collect_nodes_in(Node* start, GrowableArray<Node*> *ns, bool primary_is_data, bool collect_secondary) {
1991   // The maximum depth is determined using a BFS that visits all primary (data
1992   // or control) inputs and increments the depth at each level.
1993   uint d_in = 0;
1994   GrowableArray<Node*> nodes(Compile::current()->unique());
1995   nodes.push(start);
1996   int nodes_at_current_level = 1;
1997   int n_idx = 0;
1998   while (nodes_at_current_level > 0) {
1999     // Add all primary inputs reachable from the current level to the list, and
2000     // increase the depth if there were any.
2001     int nodes_at_next_level = 0;
2002     bool nodes_added = false;
2003     while (nodes_at_current_level > 0) {
2004       nodes_at_current_level--;
2005       Node* current = nodes.at(n_idx++);
2006       for (uint i = 0; i < current->len(); i++) {
2007         Node* n = current->in(i);
2008         if (NotANode(n)) {
2009           continue;
2010         }
2011         if ((primary_is_data && n->is_CFG()) || (!primary_is_data && !n->is_CFG())) {
2012           continue;
2013         }
2014         if (!nodes.contains(n)) {
2015           nodes.push(n);
2016           nodes_added = true;
2017           nodes_at_next_level++;
2018         }
2019       }
2020     }
2021     if (nodes_added) {
2022       d_in++;
2023     }
2024     nodes_at_current_level = nodes_at_next_level;
2025   }
2026   start->collect_nodes(ns, d_in, !primary_is_data, primary_is_data);
2027   if (collect_secondary) {
2028     // Now, iterate over the secondary nodes in ns and add the respective
2029     // boundary reachable from them.
2030     GrowableArray<Node*> sns(Compile::current()->unique());
2031     for (GrowableArrayIterator<Node*> it = ns->begin(); it != ns->end(); ++it) {
2032       Node* n = *it;
2033       n->collect_nodes(&sns, 1, primary_is_data, !primary_is_data);
2034       for (GrowableArrayIterator<Node*> d = sns.begin(); d != sns.end(); ++d) {
2035         ns->append_if_missing(*d);
2036       }
2037       sns.clear();
2038     }
2039   }
2040 }
2041 
2042 //---------------------collect_nodes_in_all_data-------------------------------
2043 // Collect the entire data input graph. Include the control boundary if
2044 // requested.
2045 // Arguments:
2046 //   ns:   collect the nodes into this data structure.
2047 //   ctrl: if true, include the control boundary.
2048 void Node::collect_nodes_in_all_data(GrowableArray<Node*> *ns, bool ctrl) const {
2049   collect_nodes_in((Node*) this, ns, true, ctrl);
2050 }
2051 
2052 //--------------------------collect_nodes_in_all_ctrl--------------------------
2053 // Collect the entire control input graph. Include the data boundary if
2054 // requested.
2055 //   ns:   collect the nodes into this data structure.
2056 //   data: if true, include the control boundary.
2057 void Node::collect_nodes_in_all_ctrl(GrowableArray<Node*> *ns, bool data) const {
2058   collect_nodes_in((Node*) this, ns, false, data);
2059 }
2060 
2061 //------------------collect_nodes_out_all_ctrl_boundary------------------------
2062 // Collect the entire output graph until hitting control node boundaries, and
2063 // include those.
2064 void Node::collect_nodes_out_all_ctrl_boundary(GrowableArray<Node*> *ns) const {
2065   // Perform a BFS and stop at control nodes.
2066   GrowableArray<Node*> nodes(Compile::current()->unique());
2067   nodes.push((Node*) this);
2068   while (nodes.length() > 0) {
2069     Node* current = nodes.pop();
2070     if (NotANode(current)) {
2071       continue;
2072     }
2073     ns->append_if_missing(current);
2074     if (!current->is_CFG()) {
2075       for (DUIterator i = current->outs(); current->has_out(i); i++) {
2076         nodes.push(current->out(i));
2077       }
2078     }
2079   }
2080   ns->remove((Node*) this);
2081 }
2082 
2083 // VERIFICATION CODE
2084 // For each input edge to a node (ie - for each Use-Def edge), verify that
2085 // there is a corresponding Def-Use edge.
2086 //------------------------------verify_edges-----------------------------------
2087 void Node::verify_edges(Unique_Node_List &visited) {
2088   uint i, j, idx;
2089   int  cnt;
2090   Node *n;
2091 
2092   // Recursive termination test
2093   if (visited.member(this))  return;
2094   visited.push(this);
2095 
2096   // Walk over all input edges, checking for correspondence
2097   for( i = 0; i < len(); i++ ) {
2098     n = in(i);
2099     if (n != NULL && !n->is_top()) {
2100       // Count instances of (Node *)this
2101       cnt = 0;
2102       for (idx = 0; idx < n->_outcnt; idx++ ) {
2103         if (n->_out[idx] == (Node *)this)  cnt++;
2104       }
2105       assert( cnt > 0,"Failed to find Def-Use edge." );
2106       // Check for duplicate edges
2107       // walk the input array downcounting the input edges to n
2108       for( j = 0; j < len(); j++ ) {
2109         if( in(j) == n ) cnt--;
2110       }
2111       assert( cnt == 0,"Mismatched edge count.");
2112     } else if (n == NULL) {
2113       assert(i >= req() || i == 0 || is_Region() || is_Phi(), "only regions or phis have null data edges");
2114     } else {
2115       assert(n->is_top(), "sanity");
2116       // Nothing to check.
2117     }
2118   }
2119   // Recursive walk over all input edges
2120   for( i = 0; i < len(); i++ ) {
2121     n = in(i);
2122     if( n != NULL )
2123       in(i)->verify_edges(visited);
2124   }
2125 }
2126 
2127 //------------------------------verify_recur-----------------------------------
2128 static const Node *unique_top = NULL;
2129 
2130 void Node::verify_recur(const Node *n, int verify_depth,
2131                         VectorSet &old_space, VectorSet &new_space) {
2132   if ( verify_depth == 0 )  return;
2133   if (verify_depth > 0)  --verify_depth;
2134 
2135   Compile* C = Compile::current();
2136 
2137   // Contained in new_space or old_space?
2138   VectorSet *v = C->node_arena()->contains(n) ? &new_space : &old_space;
2139   // Check for visited in the proper space.  Numberings are not unique
2140   // across spaces so we need a separate VectorSet for each space.
2141   if( v->test_set(n->_idx) ) return;
2142 
2143   if (n->is_Con() && n->bottom_type() == Type::TOP) {
2144     if (C->cached_top_node() == NULL)
2145       C->set_cached_top_node((Node*)n);
2146     assert(C->cached_top_node() == n, "TOP node must be unique");
2147   }
2148 
2149   for( uint i = 0; i < n->len(); i++ ) {
2150     Node *x = n->in(i);
2151     if (!x || x->is_top()) continue;
2152 
2153     // Verify my input has a def-use edge to me
2154     if (true /*VerifyDefUse*/) {
2155       // Count use-def edges from n to x
2156       int cnt = 0;
2157       for( uint j = 0; j < n->len(); j++ )
2158         if( n->in(j) == x )
2159           cnt++;
2160       // Count def-use edges from x to n
2161       uint max = x->_outcnt;
2162       for( uint k = 0; k < max; k++ )
2163         if (x->_out[k] == n)
2164           cnt--;
2165       assert( cnt == 0, "mismatched def-use edge counts" );
2166     }
2167 
2168     verify_recur(x, verify_depth, old_space, new_space);
2169   }
2170 
2171 }
2172 
2173 //------------------------------verify-----------------------------------------
2174 // Check Def-Use info for my subgraph
2175 void Node::verify() const {
2176   Compile* C = Compile::current();
2177   Node* old_top = C->cached_top_node();
2178   ResourceMark rm;
2179   ResourceArea *area = Thread::current()->resource_area();
2180   VectorSet old_space(area), new_space(area);
2181   verify_recur(this, -1, old_space, new_space);
2182   C->set_cached_top_node(old_top);
2183 }
2184 #endif
2185 
2186 
2187 //------------------------------walk-------------------------------------------
2188 // Graph walk, with both pre-order and post-order functions
2189 void Node::walk(NFunc pre, NFunc post, void *env) {
2190   VectorSet visited(Thread::current()->resource_area()); // Setup for local walk
2191   walk_(pre, post, env, visited);
2192 }
2193 
2194 void Node::walk_(NFunc pre, NFunc post, void *env, VectorSet &visited) {
2195   if( visited.test_set(_idx) ) return;
2196   pre(*this,env);               // Call the pre-order walk function
2197   for( uint i=0; i<_max; i++ )
2198     if( in(i) )                 // Input exists and is not walked?
2199       in(i)->walk_(pre,post,env,visited); // Walk it with pre & post functions
2200   post(*this,env);              // Call the post-order walk function
2201 }
2202 
2203 void Node::nop(Node &, void*) {}
2204 
2205 //------------------------------Registers--------------------------------------
2206 // Do we Match on this edge index or not?  Generally false for Control
2207 // and true for everything else.  Weird for calls & returns.
2208 uint Node::match_edge(uint idx) const {
2209   return idx;                   // True for other than index 0 (control)
2210 }
2211 
2212 static RegMask _not_used_at_all;
2213 // Register classes are defined for specific machines
2214 const RegMask &Node::out_RegMask() const {
2215   ShouldNotCallThis();
2216   return _not_used_at_all;
2217 }
2218 
2219 const RegMask &Node::in_RegMask(uint) const {
2220   ShouldNotCallThis();
2221   return _not_used_at_all;
2222 }
2223 
2224 //=============================================================================
2225 //-----------------------------------------------------------------------------
2226 void Node_Array::reset( Arena *new_arena ) {
2227   _a->Afree(_nodes,_max*sizeof(Node*));
2228   _max   = 0;
2229   _nodes = NULL;
2230   _a     = new_arena;
2231 }
2232 
2233 //------------------------------clear------------------------------------------
2234 // Clear all entries in _nodes to NULL but keep storage
2235 void Node_Array::clear() {
2236   Copy::zero_to_bytes( _nodes, _max*sizeof(Node*) );
2237 }
2238 
2239 //-----------------------------------------------------------------------------
2240 void Node_Array::grow( uint i ) {
2241   if( !_max ) {
2242     _max = 1;
2243     _nodes = (Node**)_a->Amalloc( _max * sizeof(Node*) );
2244     _nodes[0] = NULL;
2245   }
2246   uint old = _max;
2247   while( i >= _max ) _max <<= 1;        // Double to fit
2248   _nodes = (Node**)_a->Arealloc( _nodes, old*sizeof(Node*),_max*sizeof(Node*));
2249   Copy::zero_to_bytes( &_nodes[old], (_max-old)*sizeof(Node*) );
2250 }
2251 
2252 //-----------------------------------------------------------------------------
2253 void Node_Array::insert( uint i, Node *n ) {
2254   if( _nodes[_max-1] ) grow(_max);      // Get more space if full
2255   Copy::conjoint_words_to_higher((HeapWord*)&_nodes[i], (HeapWord*)&_nodes[i+1], ((_max-i-1)*sizeof(Node*)));
2256   _nodes[i] = n;
2257 }
2258 
2259 //-----------------------------------------------------------------------------
2260 void Node_Array::remove( uint i ) {
2261   Copy::conjoint_words_to_lower((HeapWord*)&_nodes[i+1], (HeapWord*)&_nodes[i], ((_max-i-1)*sizeof(Node*)));
2262   _nodes[_max-1] = NULL;
2263 }
2264 
2265 //-----------------------------------------------------------------------------
2266 void Node_Array::sort( C_sort_func_t func) {
2267   qsort( _nodes, _max, sizeof( Node* ), func );
2268 }
2269 
2270 //-----------------------------------------------------------------------------
2271 void Node_Array::dump() const {
2272 #ifndef PRODUCT
2273   for( uint i = 0; i < _max; i++ ) {
2274     Node *nn = _nodes[i];
2275     if( nn != NULL ) {
2276       tty->print("%5d--> ",i); nn->dump();
2277     }
2278   }
2279 #endif
2280 }
2281 
2282 //--------------------------is_iteratively_computed------------------------------
2283 // Operation appears to be iteratively computed (such as an induction variable)
2284 // It is possible for this operation to return false for a loop-varying
2285 // value, if it appears (by local graph inspection) to be computed by a simple conditional.
2286 bool Node::is_iteratively_computed() {
2287   if (ideal_reg()) { // does operation have a result register?
2288     for (uint i = 1; i < req(); i++) {
2289       Node* n = in(i);
2290       if (n != NULL && n->is_Phi()) {
2291         for (uint j = 1; j < n->req(); j++) {
2292           if (n->in(j) == this) {
2293             return true;
2294           }
2295         }
2296       }
2297     }
2298   }
2299   return false;
2300 }
2301 
2302 //--------------------------find_similar------------------------------
2303 // Return a node with opcode "opc" and same inputs as "this" if one can
2304 // be found; Otherwise return NULL;
2305 Node* Node::find_similar(int opc) {
2306   if (req() >= 2) {
2307     Node* def = in(1);
2308     if (def && def->outcnt() >= 2) {
2309       for (DUIterator_Fast dmax, i = def->fast_outs(dmax); i < dmax; i++) {
2310         Node* use = def->fast_out(i);
2311         if (use != this &&
2312             use->Opcode() == opc &&
2313             use->req() == req()) {
2314           uint j;
2315           for (j = 0; j < use->req(); j++) {
2316             if (use->in(j) != in(j)) {
2317               break;
2318             }
2319           }
2320           if (j == use->req()) {
2321             return use;
2322           }
2323         }
2324       }
2325     }
2326   }
2327   return NULL;
2328 }
2329 
2330 
2331 //--------------------------unique_ctrl_out------------------------------
2332 // Return the unique control out if only one. Null if none or more than one.
2333 Node* Node::unique_ctrl_out() const {
2334   Node* found = NULL;
2335   for (uint i = 0; i < outcnt(); i++) {
2336     Node* use = raw_out(i);
2337     if (use->is_CFG() && use != this) {
2338       if (found != NULL) return NULL;
2339       found = use;
2340     }
2341   }
2342   return found;
2343 }
2344 
2345 void Node::ensure_control_or_add_prec(Node* c) {
2346   if (in(0) == NULL) {
2347     set_req(0, c);
2348   } else if (in(0) != c) {
2349     add_prec(c);
2350   }
2351 }
2352 
2353 //=============================================================================
2354 //------------------------------yank-------------------------------------------
2355 // Find and remove
2356 void Node_List::yank( Node *n ) {
2357   uint i;
2358   for( i = 0; i < _cnt; i++ )
2359     if( _nodes[i] == n )
2360       break;
2361 
2362   if( i < _cnt )
2363     _nodes[i] = _nodes[--_cnt];
2364 }
2365 
2366 //------------------------------dump-------------------------------------------
2367 void Node_List::dump() const {
2368 #ifndef PRODUCT
2369   for( uint i = 0; i < _cnt; i++ )
2370     if( _nodes[i] ) {
2371       tty->print("%5d--> ",i);
2372       _nodes[i]->dump();
2373     }
2374 #endif
2375 }
2376 
2377 void Node_List::dump_simple() const {
2378 #ifndef PRODUCT
2379   for( uint i = 0; i < _cnt; i++ )
2380     if( _nodes[i] ) {
2381       tty->print(" %d", _nodes[i]->_idx);
2382     } else {
2383       tty->print(" NULL");
2384     }
2385 #endif
2386 }
2387 
2388 //=============================================================================
2389 //------------------------------remove-----------------------------------------
2390 void Unique_Node_List::remove( Node *n ) {
2391   if( _in_worklist[n->_idx] ) {
2392     for( uint i = 0; i < size(); i++ )
2393       if( _nodes[i] == n ) {
2394         map(i,Node_List::pop());
2395         _in_worklist >>= n->_idx;
2396         return;
2397       }
2398     ShouldNotReachHere();
2399   }
2400 }
2401 
2402 //-----------------------remove_useless_nodes----------------------------------
2403 // Remove useless nodes from worklist
2404 void Unique_Node_List::remove_useless_nodes(VectorSet &useful) {
2405 
2406   for( uint i = 0; i < size(); ++i ) {
2407     Node *n = at(i);
2408     assert( n != NULL, "Did not expect null entries in worklist");
2409     if( ! useful.test(n->_idx) ) {
2410       _in_worklist >>= n->_idx;
2411       map(i,Node_List::pop());
2412       // Node *replacement = Node_List::pop();
2413       // if( i != size() ) { // Check if removing last entry
2414       //   _nodes[i] = replacement;
2415       // }
2416       --i;  // Visit popped node
2417       // If it was last entry, loop terminates since size() was also reduced
2418     }
2419   }
2420 }
2421 
2422 //=============================================================================
2423 void Node_Stack::grow() {
2424   size_t old_top = pointer_delta(_inode_top,_inodes,sizeof(INode)); // save _top
2425   size_t old_max = pointer_delta(_inode_max,_inodes,sizeof(INode));
2426   size_t max = old_max << 1;             // max * 2
2427   _inodes = REALLOC_ARENA_ARRAY(_a, INode, _inodes, old_max, max);
2428   _inode_max = _inodes + max;
2429   _inode_top = _inodes + old_top;        // restore _top
2430 }
2431 
2432 // Node_Stack is used to map nodes.
2433 Node* Node_Stack::find(uint idx) const {
2434   uint sz = size();
2435   for (uint i=0; i < sz; i++) {
2436     if (idx == index_at(i) )
2437       return node_at(i);
2438   }
2439   return NULL;
2440 }
2441 
2442 //=============================================================================
2443 uint TypeNode::size_of() const { return sizeof(*this); }
2444 #ifndef PRODUCT
2445 void TypeNode::dump_spec(outputStream *st) const {
2446   if( !Verbose && !WizardMode ) {
2447     // standard dump does this in Verbose and WizardMode
2448     st->print(" #"); _type->dump_on(st);
2449   }
2450 }
2451 
2452 void TypeNode::dump_compact_spec(outputStream *st) const {
2453   st->print("#");
2454   _type->dump_on(st);
2455 }
2456 #endif
2457 uint TypeNode::hash() const {
2458   return Node::hash() + _type->hash();
2459 }
2460 bool TypeNode::cmp( const Node &n ) const
2461 { return !Type::cmp( _type, ((TypeNode&)n)._type ); }
2462 const Type *TypeNode::bottom_type() const { return _type; }
2463 const Type* TypeNode::Value(PhaseGVN* phase) const { return _type; }
2464 
2465 //------------------------------ideal_reg--------------------------------------
2466 uint TypeNode::ideal_reg() const {
2467   return _type->ideal_reg();
2468 }