1 /*
   2  * Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "gc/shared/barrierSet.hpp"
  27 #include "gc/shared/c2/barrierSetC2.hpp"
  28 #include "memory/allocation.inline.hpp"
  29 #include "memory/resourceArea.hpp"
  30 #include "opto/block.hpp"
  31 #include "opto/callnode.hpp"
  32 #include "opto/castnode.hpp"
  33 #include "opto/cfgnode.hpp"
  34 #include "opto/idealGraphPrinter.hpp"
  35 #include "opto/loopnode.hpp"
  36 #include "opto/machnode.hpp"
  37 #include "opto/opcodes.hpp"
  38 #include "opto/phaseX.hpp"
  39 #include "opto/regalloc.hpp"
  40 #include "opto/rootnode.hpp"
  41 #include "utilities/macros.hpp"
  42 
  43 //=============================================================================
  44 #define NODE_HASH_MINIMUM_SIZE    255
  45 //------------------------------NodeHash---------------------------------------
  46 NodeHash::NodeHash(uint est_max_size) :
  47   _a(Thread::current()->resource_area()),
  48   _max( round_up(est_max_size < NODE_HASH_MINIMUM_SIZE ? NODE_HASH_MINIMUM_SIZE : est_max_size) ),
  49   _inserts(0), _insert_limit( insert_limit() ),
  50   _table( NEW_ARENA_ARRAY( _a , Node* , _max ) ) // (Node**)_a->Amalloc(_max * sizeof(Node*)) ),
  51 #ifndef PRODUCT
  52   , _grows(0),_look_probes(0), _lookup_hits(0), _lookup_misses(0),
  53   _insert_probes(0), _delete_probes(0), _delete_hits(0), _delete_misses(0),
  54    _total_inserts(0), _total_insert_probes(0)
  55 #endif
  56 {
  57   // _sentinel must be in the current node space
  58   _sentinel = new ProjNode(NULL, TypeFunc::Control);
  59   memset(_table,0,sizeof(Node*)*_max);
  60 }
  61 
  62 //------------------------------NodeHash---------------------------------------
  63 NodeHash::NodeHash(Arena *arena, uint est_max_size) :
  64   _a(arena),
  65   _max( round_up(est_max_size < NODE_HASH_MINIMUM_SIZE ? NODE_HASH_MINIMUM_SIZE : est_max_size) ),
  66   _inserts(0), _insert_limit( insert_limit() ),
  67   _table( NEW_ARENA_ARRAY( _a , Node* , _max ) )
  68 #ifndef PRODUCT
  69   , _grows(0),_look_probes(0), _lookup_hits(0), _lookup_misses(0),
  70   _insert_probes(0), _delete_probes(0), _delete_hits(0), _delete_misses(0),
  71    _total_inserts(0), _total_insert_probes(0)
  72 #endif
  73 {
  74   // _sentinel must be in the current node space
  75   _sentinel = new ProjNode(NULL, TypeFunc::Control);
  76   memset(_table,0,sizeof(Node*)*_max);
  77 }
  78 
  79 //------------------------------NodeHash---------------------------------------
  80 NodeHash::NodeHash(NodeHash *nh) {
  81   debug_only(_table = (Node**)badAddress);   // interact correctly w/ operator=
  82   // just copy in all the fields
  83   *this = *nh;
  84   // nh->_sentinel must be in the current node space
  85 }
  86 
  87 void NodeHash::replace_with(NodeHash *nh) {
  88   debug_only(_table = (Node**)badAddress);   // interact correctly w/ operator=
  89   // just copy in all the fields
  90   *this = *nh;
  91   // nh->_sentinel must be in the current node space
  92 }
  93 
  94 //------------------------------hash_find--------------------------------------
  95 // Find in hash table
  96 Node *NodeHash::hash_find( const Node *n ) {
  97   // ((Node*)n)->set_hash( n->hash() );
  98   uint hash = n->hash();
  99   if (hash == Node::NO_HASH) {
 100     NOT_PRODUCT( _lookup_misses++ );
 101     return NULL;
 102   }
 103   uint key = hash & (_max-1);
 104   uint stride = key | 0x01;
 105   NOT_PRODUCT( _look_probes++ );
 106   Node *k = _table[key];        // Get hashed value
 107   if( !k ) {                    // ?Miss?
 108     NOT_PRODUCT( _lookup_misses++ );
 109     return NULL;                // Miss!
 110   }
 111 
 112   int op = n->Opcode();
 113   uint req = n->req();
 114   while( 1 ) {                  // While probing hash table
 115     if( k->req() == req &&      // Same count of inputs
 116         k->Opcode() == op ) {   // Same Opcode
 117       for( uint i=0; i<req; i++ )
 118         if( n->in(i)!=k->in(i)) // Different inputs?
 119           goto collision;       // "goto" is a speed hack...
 120       if( n->cmp(*k) ) {        // Check for any special bits
 121         NOT_PRODUCT( _lookup_hits++ );
 122         return k;               // Hit!
 123       }
 124     }
 125   collision:
 126     NOT_PRODUCT( _look_probes++ );
 127     key = (key + stride/*7*/) & (_max-1); // Stride through table with relative prime
 128     k = _table[key];            // Get hashed value
 129     if( !k ) {                  // ?Miss?
 130       NOT_PRODUCT( _lookup_misses++ );
 131       return NULL;              // Miss!
 132     }
 133   }
 134   ShouldNotReachHere();
 135   return NULL;
 136 }
 137 
 138 //------------------------------hash_find_insert-------------------------------
 139 // Find in hash table, insert if not already present
 140 // Used to preserve unique entries in hash table
 141 Node *NodeHash::hash_find_insert( Node *n ) {
 142   // n->set_hash( );
 143   uint hash = n->hash();
 144   if (hash == Node::NO_HASH) {
 145     NOT_PRODUCT( _lookup_misses++ );
 146     return NULL;
 147   }
 148   uint key = hash & (_max-1);
 149   uint stride = key | 0x01;     // stride must be relatively prime to table siz
 150   uint first_sentinel = 0;      // replace a sentinel if seen.
 151   NOT_PRODUCT( _look_probes++ );
 152   Node *k = _table[key];        // Get hashed value
 153   if( !k ) {                    // ?Miss?
 154     NOT_PRODUCT( _lookup_misses++ );
 155     _table[key] = n;            // Insert into table!
 156     debug_only(n->enter_hash_lock()); // Lock down the node while in the table.
 157     check_grow();               // Grow table if insert hit limit
 158     return NULL;                // Miss!
 159   }
 160   else if( k == _sentinel ) {
 161     first_sentinel = key;      // Can insert here
 162   }
 163 
 164   int op = n->Opcode();
 165   uint req = n->req();
 166   while( 1 ) {                  // While probing hash table
 167     if( k->req() == req &&      // Same count of inputs
 168         k->Opcode() == op ) {   // Same Opcode
 169       for( uint i=0; i<req; i++ )
 170         if( n->in(i)!=k->in(i)) // Different inputs?
 171           goto collision;       // "goto" is a speed hack...
 172       if( n->cmp(*k) ) {        // Check for any special bits
 173         NOT_PRODUCT( _lookup_hits++ );
 174         return k;               // Hit!
 175       }
 176     }
 177   collision:
 178     NOT_PRODUCT( _look_probes++ );
 179     key = (key + stride) & (_max-1); // Stride through table w/ relative prime
 180     k = _table[key];            // Get hashed value
 181     if( !k ) {                  // ?Miss?
 182       NOT_PRODUCT( _lookup_misses++ );
 183       key = (first_sentinel == 0) ? key : first_sentinel; // ?saw sentinel?
 184       _table[key] = n;          // Insert into table!
 185       debug_only(n->enter_hash_lock()); // Lock down the node while in the table.
 186       check_grow();             // Grow table if insert hit limit
 187       return NULL;              // Miss!
 188     }
 189     else if( first_sentinel == 0 && k == _sentinel ) {
 190       first_sentinel = key;    // Can insert here
 191     }
 192 
 193   }
 194   ShouldNotReachHere();
 195   return NULL;
 196 }
 197 
 198 //------------------------------hash_insert------------------------------------
 199 // Insert into hash table
 200 void NodeHash::hash_insert( Node *n ) {
 201   // // "conflict" comments -- print nodes that conflict
 202   // bool conflict = false;
 203   // n->set_hash();
 204   uint hash = n->hash();
 205   if (hash == Node::NO_HASH) {
 206     return;
 207   }
 208   check_grow();
 209   uint key = hash & (_max-1);
 210   uint stride = key | 0x01;
 211 
 212   while( 1 ) {                  // While probing hash table
 213     NOT_PRODUCT( _insert_probes++ );
 214     Node *k = _table[key];      // Get hashed value
 215     if( !k || (k == _sentinel) ) break;       // Found a slot
 216     assert( k != n, "already inserted" );
 217     // if( PrintCompilation && PrintOptoStatistics && Verbose ) { tty->print("  conflict: "); k->dump(); conflict = true; }
 218     key = (key + stride) & (_max-1); // Stride through table w/ relative prime
 219   }
 220   _table[key] = n;              // Insert into table!
 221   debug_only(n->enter_hash_lock()); // Lock down the node while in the table.
 222   // if( conflict ) { n->dump(); }
 223 }
 224 
 225 //------------------------------hash_delete------------------------------------
 226 // Replace in hash table with sentinel
 227 bool NodeHash::hash_delete( const Node *n ) {
 228   Node *k;
 229   uint hash = n->hash();
 230   if (hash == Node::NO_HASH) {
 231     NOT_PRODUCT( _delete_misses++ );
 232     return false;
 233   }
 234   uint key = hash & (_max-1);
 235   uint stride = key | 0x01;
 236   debug_only( uint counter = 0; );
 237   for( ; /* (k != NULL) && (k != _sentinel) */; ) {
 238     debug_only( counter++ );
 239     NOT_PRODUCT( _delete_probes++ );
 240     k = _table[key];            // Get hashed value
 241     if( !k ) {                  // Miss?
 242       NOT_PRODUCT( _delete_misses++ );
 243 #ifdef ASSERT
 244       if( VerifyOpto ) {
 245         for( uint i=0; i < _max; i++ )
 246           assert( _table[i] != n, "changed edges with rehashing" );
 247       }
 248 #endif
 249       return false;             // Miss! Not in chain
 250     }
 251     else if( n == k ) {
 252       NOT_PRODUCT( _delete_hits++ );
 253       _table[key] = _sentinel;  // Hit! Label as deleted entry
 254       debug_only(((Node*)n)->exit_hash_lock()); // Unlock the node upon removal from table.
 255       return true;
 256     }
 257     else {
 258       // collision: move through table with prime offset
 259       key = (key + stride/*7*/) & (_max-1);
 260       assert( counter <= _insert_limit, "Cycle in hash-table");
 261     }
 262   }
 263   ShouldNotReachHere();
 264   return false;
 265 }
 266 
 267 //------------------------------round_up---------------------------------------
 268 // Round up to nearest power of 2
 269 uint NodeHash::round_up( uint x ) {
 270   x += (x>>2);                  // Add 25% slop
 271   if( x <16 ) return 16;        // Small stuff
 272   uint i=16;
 273   while( i < x ) i <<= 1;       // Double to fit
 274   return i;                     // Return hash table size
 275 }
 276 
 277 //------------------------------grow-------------------------------------------
 278 // Grow _table to next power of 2 and insert old entries
 279 void  NodeHash::grow() {
 280   // Record old state
 281   uint   old_max   = _max;
 282   Node **old_table = _table;
 283   // Construct new table with twice the space
 284 #ifndef PRODUCT
 285   _grows++;
 286   _total_inserts       += _inserts;
 287   _total_insert_probes += _insert_probes;
 288   _insert_probes   = 0;
 289 #endif
 290   _inserts         = 0;
 291   _max     = _max << 1;
 292   _table   = NEW_ARENA_ARRAY( _a , Node* , _max ); // (Node**)_a->Amalloc( _max * sizeof(Node*) );
 293   memset(_table,0,sizeof(Node*)*_max);
 294   _insert_limit = insert_limit();
 295   // Insert old entries into the new table
 296   for( uint i = 0; i < old_max; i++ ) {
 297     Node *m = *old_table++;
 298     if( !m || m == _sentinel ) continue;
 299     debug_only(m->exit_hash_lock()); // Unlock the node upon removal from old table.
 300     hash_insert(m);
 301   }
 302 }
 303 
 304 //------------------------------clear------------------------------------------
 305 // Clear all entries in _table to NULL but keep storage
 306 void  NodeHash::clear() {
 307 #ifdef ASSERT
 308   // Unlock all nodes upon removal from table.
 309   for (uint i = 0; i < _max; i++) {
 310     Node* n = _table[i];
 311     if (!n || n == _sentinel)  continue;
 312     n->exit_hash_lock();
 313   }
 314 #endif
 315 
 316   memset( _table, 0, _max * sizeof(Node*) );
 317 }
 318 
 319 //-----------------------remove_useless_nodes----------------------------------
 320 // Remove useless nodes from value table,
 321 // implementation does not depend on hash function
 322 void NodeHash::remove_useless_nodes(VectorSet &useful) {
 323 
 324   // Dead nodes in the hash table inherited from GVN should not replace
 325   // existing nodes, remove dead nodes.
 326   uint max = size();
 327   Node *sentinel_node = sentinel();
 328   for( uint i = 0; i < max; ++i ) {
 329     Node *n = at(i);
 330     if(n != NULL && n != sentinel_node && !useful.test(n->_idx)) {
 331       debug_only(n->exit_hash_lock()); // Unlock the node when removed
 332       _table[i] = sentinel_node;       // Replace with placeholder
 333     }
 334   }
 335 }
 336 
 337 
 338 void NodeHash::check_no_speculative_types() {
 339 #ifdef ASSERT
 340   uint max = size();
 341   Node *sentinel_node = sentinel();
 342   for (uint i = 0; i < max; ++i) {
 343     Node *n = at(i);
 344     if(n != NULL && n != sentinel_node && n->is_Type() && n->outcnt() > 0) {
 345       TypeNode* tn = n->as_Type();
 346       const Type* t = tn->type();
 347       const Type* t_no_spec = t->remove_speculative();
 348       assert(t == t_no_spec, "dead node in hash table or missed node during speculative cleanup");
 349     }
 350   }
 351 #endif
 352 }
 353 
 354 #ifndef PRODUCT
 355 //------------------------------dump-------------------------------------------
 356 // Dump statistics for the hash table
 357 void NodeHash::dump() {
 358   _total_inserts       += _inserts;
 359   _total_insert_probes += _insert_probes;
 360   if (PrintCompilation && PrintOptoStatistics && Verbose && (_inserts > 0)) {
 361     if (WizardMode) {
 362       for (uint i=0; i<_max; i++) {
 363         if (_table[i])
 364           tty->print("%d/%d/%d ",i,_table[i]->hash()&(_max-1),_table[i]->_idx);
 365       }
 366     }
 367     tty->print("\nGVN Hash stats:  %d grows to %d max_size\n", _grows, _max);
 368     tty->print("  %d/%d (%8.1f%% full)\n", _inserts, _max, (double)_inserts/_max*100.0);
 369     tty->print("  %dp/(%dh+%dm) (%8.2f probes/lookup)\n", _look_probes, _lookup_hits, _lookup_misses, (double)_look_probes/(_lookup_hits+_lookup_misses));
 370     tty->print("  %dp/%di (%8.2f probes/insert)\n", _total_insert_probes, _total_inserts, (double)_total_insert_probes/_total_inserts);
 371     // sentinels increase lookup cost, but not insert cost
 372     assert((_lookup_misses+_lookup_hits)*4+100 >= _look_probes, "bad hash function");
 373     assert( _inserts+(_inserts>>3) < _max, "table too full" );
 374     assert( _inserts*3+100 >= _insert_probes, "bad hash function" );
 375   }
 376 }
 377 
 378 Node *NodeHash::find_index(uint idx) { // For debugging
 379   // Find an entry by its index value
 380   for( uint i = 0; i < _max; i++ ) {
 381     Node *m = _table[i];
 382     if( !m || m == _sentinel ) continue;
 383     if( m->_idx == (uint)idx ) return m;
 384   }
 385   return NULL;
 386 }
 387 #endif
 388 
 389 #ifdef ASSERT
 390 NodeHash::~NodeHash() {
 391   // Unlock all nodes upon destruction of table.
 392   if (_table != (Node**)badAddress)  clear();
 393 }
 394 
 395 void NodeHash::operator=(const NodeHash& nh) {
 396   // Unlock all nodes upon replacement of table.
 397   if (&nh == this)  return;
 398   if (_table != (Node**)badAddress)  clear();
 399   memcpy((void*)this, (void*)&nh, sizeof(*this));
 400   // Do not increment hash_lock counts again.
 401   // Instead, be sure we never again use the source table.
 402   ((NodeHash*)&nh)->_table = (Node**)badAddress;
 403 }
 404 
 405 
 406 #endif
 407 
 408 
 409 //=============================================================================
 410 //------------------------------PhaseRemoveUseless-----------------------------
 411 // 1) Use a breadthfirst walk to collect useful nodes reachable from root.
 412 PhaseRemoveUseless::PhaseRemoveUseless(PhaseGVN *gvn, Unique_Node_List *worklist, PhaseNumber phase_num) : Phase(phase_num),
 413   _useful(Thread::current()->resource_area()) {
 414 
 415   // Implementation requires 'UseLoopSafepoints == true' and an edge from root
 416   // to each SafePointNode at a backward branch.  Inserted in add_safepoint().
 417   if( !UseLoopSafepoints || !OptoRemoveUseless ) return;
 418 
 419   // Identify nodes that are reachable from below, useful.
 420   C->identify_useful_nodes(_useful);
 421   // Update dead node list
 422   C->update_dead_node_list(_useful);
 423 
 424   // Remove all useless nodes from PhaseValues' recorded types
 425   // Must be done before disconnecting nodes to preserve hash-table-invariant
 426   gvn->remove_useless_nodes(_useful.member_set());
 427 
 428   // Remove all useless nodes from future worklist
 429   worklist->remove_useless_nodes(_useful.member_set());
 430 
 431   // Disconnect 'useless' nodes that are adjacent to useful nodes
 432   C->remove_useless_nodes(_useful);
 433 }
 434 
 435 //=============================================================================
 436 //------------------------------PhaseRenumberLive------------------------------
 437 // First, remove useless nodes (equivalent to identifying live nodes).
 438 // Then, renumber live nodes.
 439 //
 440 // The set of live nodes is returned by PhaseRemoveUseless in the _useful structure.
 441 // If the number of live nodes is 'x' (where 'x' == _useful.size()), then the
 442 // PhaseRenumberLive updates the node ID of each node (the _idx field) with a unique
 443 // value in the range [0, x).
 444 //
 445 // At the end of the PhaseRenumberLive phase, the compiler's count of unique nodes is
 446 // updated to 'x' and the list of dead nodes is reset (as there are no dead nodes).
 447 //
 448 // The PhaseRenumberLive phase updates two data structures with the new node IDs.
 449 // (1) The worklist is used by the PhaseIterGVN phase to identify nodes that must be
 450 // processed. A new worklist (with the updated node IDs) is returned in 'new_worklist'.
 451 // (2) Type information (the field PhaseGVN::_types) maps type information to each
 452 // node ID. The mapping is updated to use the new node IDs as well. Updated type
 453 // information is returned in PhaseGVN::_types.
 454 //
 455 // The PhaseRenumberLive phase does not preserve the order of elements in the worklist.
 456 //
 457 // Other data structures used by the compiler are not updated. The hash table for value
 458 // numbering (the field PhaseGVN::_table) is not updated because computing the hash
 459 // values is not based on node IDs. The field PhaseGVN::_nodes is not updated either
 460 // because it is empty wherever PhaseRenumberLive is used.
 461 PhaseRenumberLive::PhaseRenumberLive(PhaseGVN* gvn,
 462                                      Unique_Node_List* worklist, Unique_Node_List* new_worklist,
 463                                      PhaseNumber phase_num) :
 464   PhaseRemoveUseless(gvn, worklist, Remove_Useless_And_Renumber_Live),
 465   _new_type_array(C->comp_arena()),
 466   _old2new_map(C->unique(), C->unique(), -1),
 467   _delayed(Thread::current()->resource_area()),
 468   _is_pass_finished(false),
 469   _live_node_count(C->live_nodes())
 470 {
 471   assert(RenumberLiveNodes, "RenumberLiveNodes must be set to true for node renumbering to take place");
 472   assert(C->live_nodes() == _useful.size(), "the number of live nodes must match the number of useful nodes");
 473   assert(gvn->nodes_size() == 0, "GVN must not contain any nodes at this point");
 474   assert(_delayed.size() == 0, "should be empty");
 475 
 476   uint worklist_size = worklist->size();
 477 
 478   // Iterate over the set of live nodes.
 479   for (uint current_idx = 0; current_idx < _useful.size(); current_idx++) {
 480     Node* n = _useful.at(current_idx);
 481 
 482     bool in_worklist = false;
 483     if (worklist->member(n)) {
 484       in_worklist = true;
 485     }
 486 
 487     const Type* type = gvn->type_or_null(n);
 488     _new_type_array.map(current_idx, type);
 489 
 490     assert(_old2new_map.at(n->_idx) == -1, "already seen");
 491     _old2new_map.at_put(n->_idx, current_idx);
 492 
 493     n->set_idx(current_idx); // Update node ID.
 494 
 495     if (in_worklist) {
 496       new_worklist->push(n);
 497     }
 498 
 499     if (update_embedded_ids(n) < 0) {
 500       _delayed.push(n); // has embedded IDs; handle later
 501     }
 502   }
 503 
 504   assert(worklist_size == new_worklist->size(), "the new worklist must have the same size as the original worklist");
 505   assert(_live_node_count == _useful.size(), "all live nodes must be processed");
 506 
 507   _is_pass_finished = true; // pass finished; safe to process delayed updates
 508 
 509   while (_delayed.size() > 0) {
 510     Node* n = _delayed.pop();
 511     int no_of_updates = update_embedded_ids(n);
 512     assert(no_of_updates > 0, "should be updated");
 513   }
 514 
 515   // Replace the compiler's type information with the updated type information.
 516   gvn->replace_types(_new_type_array);
 517 
 518   // Update the unique node count of the compilation to the number of currently live nodes.
 519   C->set_unique(_live_node_count);
 520 
 521   // Set the dead node count to 0 and reset dead node list.
 522   C->reset_dead_node_list();
 523 }
 524 
 525 int PhaseRenumberLive::new_index(int old_idx) {
 526   assert(_is_pass_finished, "not finished");
 527   if (_old2new_map.at(old_idx) == -1) { // absent
 528     // Allocate a placeholder to preserve uniqueness
 529     _old2new_map.at_put(old_idx, _live_node_count);
 530     _live_node_count++;
 531   }
 532   return _old2new_map.at(old_idx);
 533 }
 534 
 535 int PhaseRenumberLive::update_embedded_ids(Node* n) {
 536   int no_of_updates = 0;
 537   if (n->is_Phi()) {
 538     PhiNode* phi = n->as_Phi();
 539     if (phi->_inst_id != -1) {
 540       if (!_is_pass_finished) {
 541         return -1; // delay
 542       }
 543       int new_idx = new_index(phi->_inst_id);
 544       assert(new_idx != -1, "");
 545       phi->_inst_id = new_idx;
 546       no_of_updates++;
 547     }
 548     if (phi->_inst_mem_id != -1) {
 549       if (!_is_pass_finished) {
 550         return -1; // delay
 551       }
 552       int new_idx = new_index(phi->_inst_mem_id);
 553       assert(new_idx != -1, "");
 554       phi->_inst_mem_id = new_idx;
 555       no_of_updates++;
 556     }
 557   }
 558 
 559   const Type* type = _new_type_array.fast_lookup(n->_idx);
 560   if (type != NULL && type->isa_oopptr() && type->is_oopptr()->is_known_instance()) {
 561     if (!_is_pass_finished) {
 562         return -1; // delay
 563     }
 564     int old_idx = type->is_oopptr()->instance_id();
 565     int new_idx = new_index(old_idx);
 566     const Type* new_type = type->is_oopptr()->with_instance_id(new_idx);
 567     _new_type_array.map(n->_idx, new_type);
 568     no_of_updates++;
 569   }
 570 
 571   return no_of_updates;
 572 }
 573 
 574 //=============================================================================
 575 //------------------------------PhaseTransform---------------------------------
 576 PhaseTransform::PhaseTransform( PhaseNumber pnum ) : Phase(pnum),
 577   _arena(Thread::current()->resource_area()),
 578   _nodes(_arena),
 579   _types(_arena)
 580 {
 581   init_con_caches();
 582 #ifndef PRODUCT
 583   clear_progress();
 584   clear_transforms();
 585   set_allow_progress(true);
 586 #endif
 587   // Force allocation for currently existing nodes
 588   _types.map(C->unique(), NULL);
 589 }
 590 
 591 //------------------------------PhaseTransform---------------------------------
 592 PhaseTransform::PhaseTransform( Arena *arena, PhaseNumber pnum ) : Phase(pnum),
 593   _arena(arena),
 594   _nodes(arena),
 595   _types(arena)
 596 {
 597   init_con_caches();
 598 #ifndef PRODUCT
 599   clear_progress();
 600   clear_transforms();
 601   set_allow_progress(true);
 602 #endif
 603   // Force allocation for currently existing nodes
 604   _types.map(C->unique(), NULL);
 605 }
 606 
 607 //------------------------------PhaseTransform---------------------------------
 608 // Initialize with previously generated type information
 609 PhaseTransform::PhaseTransform( PhaseTransform *pt, PhaseNumber pnum ) : Phase(pnum),
 610   _arena(pt->_arena),
 611   _nodes(pt->_nodes),
 612   _types(pt->_types)
 613 {
 614   init_con_caches();
 615 #ifndef PRODUCT
 616   clear_progress();
 617   clear_transforms();
 618   set_allow_progress(true);
 619 #endif
 620 }
 621 
 622 void PhaseTransform::init_con_caches() {
 623   memset(_icons,0,sizeof(_icons));
 624   memset(_lcons,0,sizeof(_lcons));
 625   memset(_zcons,0,sizeof(_zcons));
 626 }
 627 
 628 
 629 //--------------------------------find_int_type--------------------------------
 630 const TypeInt* PhaseTransform::find_int_type(Node* n) {
 631   if (n == NULL)  return NULL;
 632   // Call type_or_null(n) to determine node's type since we might be in
 633   // parse phase and call n->Value() may return wrong type.
 634   // (For example, a phi node at the beginning of loop parsing is not ready.)
 635   const Type* t = type_or_null(n);
 636   if (t == NULL)  return NULL;
 637   return t->isa_int();
 638 }
 639 
 640 
 641 //-------------------------------find_long_type--------------------------------
 642 const TypeLong* PhaseTransform::find_long_type(Node* n) {
 643   if (n == NULL)  return NULL;
 644   // (See comment above on type_or_null.)
 645   const Type* t = type_or_null(n);
 646   if (t == NULL)  return NULL;
 647   return t->isa_long();
 648 }
 649 
 650 
 651 #ifndef PRODUCT
 652 void PhaseTransform::dump_old2new_map() const {
 653   _nodes.dump();
 654 }
 655 
 656 void PhaseTransform::dump_new( uint nidx ) const {
 657   for( uint i=0; i<_nodes.Size(); i++ )
 658     if( _nodes[i] && _nodes[i]->_idx == nidx ) {
 659       _nodes[i]->dump();
 660       tty->cr();
 661       tty->print_cr("Old index= %d",i);
 662       return;
 663     }
 664   tty->print_cr("Node %d not found in the new indices", nidx);
 665 }
 666 
 667 //------------------------------dump_types-------------------------------------
 668 void PhaseTransform::dump_types( ) const {
 669   _types.dump();
 670 }
 671 
 672 //------------------------------dump_nodes_and_types---------------------------
 673 void PhaseTransform::dump_nodes_and_types(const Node *root, uint depth, bool only_ctrl) {
 674   VectorSet visited(Thread::current()->resource_area());
 675   dump_nodes_and_types_recur( root, depth, only_ctrl, visited );
 676 }
 677 
 678 //------------------------------dump_nodes_and_types_recur---------------------
 679 void PhaseTransform::dump_nodes_and_types_recur( const Node *n, uint depth, bool only_ctrl, VectorSet &visited) {
 680   if( !n ) return;
 681   if( depth == 0 ) return;
 682   if( visited.test_set(n->_idx) ) return;
 683   for( uint i=0; i<n->len(); i++ ) {
 684     if( only_ctrl && !(n->is_Region()) && i != TypeFunc::Control ) continue;
 685     dump_nodes_and_types_recur( n->in(i), depth-1, only_ctrl, visited );
 686   }
 687   n->dump();
 688   if (type_or_null(n) != NULL) {
 689     tty->print("      "); type(n)->dump(); tty->cr();
 690   }
 691 }
 692 
 693 #endif
 694 
 695 
 696 //=============================================================================
 697 //------------------------------PhaseValues------------------------------------
 698 // Set minimum table size to "255"
 699 PhaseValues::PhaseValues( Arena *arena, uint est_max_size ) : PhaseTransform(arena, GVN), _table(arena, est_max_size) {
 700   NOT_PRODUCT( clear_new_values(); )
 701 }
 702 
 703 //------------------------------PhaseValues------------------------------------
 704 // Set minimum table size to "255"
 705 PhaseValues::PhaseValues( PhaseValues *ptv ) : PhaseTransform( ptv, GVN ),
 706   _table(&ptv->_table) {
 707   NOT_PRODUCT( clear_new_values(); )
 708 }
 709 
 710 //------------------------------PhaseValues------------------------------------
 711 // Used by +VerifyOpto.  Clear out hash table but copy _types array.
 712 PhaseValues::PhaseValues( PhaseValues *ptv, const char *dummy ) : PhaseTransform( ptv, GVN ),
 713   _table(ptv->arena(),ptv->_table.size()) {
 714   NOT_PRODUCT( clear_new_values(); )
 715 }
 716 
 717 //------------------------------~PhaseValues-----------------------------------
 718 #ifndef PRODUCT
 719 PhaseValues::~PhaseValues() {
 720   _table.dump();
 721 
 722   // Statistics for value progress and efficiency
 723   if( PrintCompilation && Verbose && WizardMode ) {
 724     tty->print("\n%sValues: %d nodes ---> %d/%d (%d)",
 725       is_IterGVN() ? "Iter" : "    ", C->unique(), made_progress(), made_transforms(), made_new_values());
 726     if( made_transforms() != 0 ) {
 727       tty->print_cr("  ratio %f", made_progress()/(float)made_transforms() );
 728     } else {
 729       tty->cr();
 730     }
 731   }
 732 }
 733 #endif
 734 
 735 //------------------------------makecon----------------------------------------
 736 ConNode* PhaseTransform::makecon(const Type *t) {
 737   assert(t->singleton(), "must be a constant");
 738   assert(!t->empty() || t == Type::TOP, "must not be vacuous range");
 739   switch (t->base()) {  // fast paths
 740   case Type::Half:
 741   case Type::Top:  return (ConNode*) C->top();
 742   case Type::Int:  return intcon( t->is_int()->get_con() );
 743   case Type::Long: return longcon( t->is_long()->get_con() );
 744   default:         break;
 745   }
 746   if (t->is_zero_type())
 747     return zerocon(t->basic_type());
 748   return uncached_makecon(t);
 749 }
 750 
 751 //--------------------------uncached_makecon-----------------------------------
 752 // Make an idealized constant - one of ConINode, ConPNode, etc.
 753 ConNode* PhaseValues::uncached_makecon(const Type *t) {
 754   assert(t->singleton(), "must be a constant");
 755   ConNode* x = ConNode::make(t);
 756   ConNode* k = (ConNode*)hash_find_insert(x); // Value numbering
 757   if (k == NULL) {
 758     set_type(x, t);             // Missed, provide type mapping
 759     GrowableArray<Node_Notes*>* nna = C->node_note_array();
 760     if (nna != NULL) {
 761       Node_Notes* loc = C->locate_node_notes(nna, x->_idx, true);
 762       loc->clear(); // do not put debug info on constants
 763     }
 764   } else {
 765     x->destruct();              // Hit, destroy duplicate constant
 766     x = k;                      // use existing constant
 767   }
 768   return x;
 769 }
 770 
 771 //------------------------------intcon-----------------------------------------
 772 // Fast integer constant.  Same as "transform(new ConINode(TypeInt::make(i)))"
 773 ConINode* PhaseTransform::intcon(jint i) {
 774   // Small integer?  Check cache! Check that cached node is not dead
 775   if (i >= _icon_min && i <= _icon_max) {
 776     ConINode* icon = _icons[i-_icon_min];
 777     if (icon != NULL && icon->in(TypeFunc::Control) != NULL)
 778       return icon;
 779   }
 780   ConINode* icon = (ConINode*) uncached_makecon(TypeInt::make(i));
 781   assert(icon->is_Con(), "");
 782   if (i >= _icon_min && i <= _icon_max)
 783     _icons[i-_icon_min] = icon;   // Cache small integers
 784   return icon;
 785 }
 786 
 787 //------------------------------longcon----------------------------------------
 788 // Fast long constant.
 789 ConLNode* PhaseTransform::longcon(jlong l) {
 790   // Small integer?  Check cache! Check that cached node is not dead
 791   if (l >= _lcon_min && l <= _lcon_max) {
 792     ConLNode* lcon = _lcons[l-_lcon_min];
 793     if (lcon != NULL && lcon->in(TypeFunc::Control) != NULL)
 794       return lcon;
 795   }
 796   ConLNode* lcon = (ConLNode*) uncached_makecon(TypeLong::make(l));
 797   assert(lcon->is_Con(), "");
 798   if (l >= _lcon_min && l <= _lcon_max)
 799     _lcons[l-_lcon_min] = lcon;      // Cache small integers
 800   return lcon;
 801 }
 802 
 803 //------------------------------zerocon-----------------------------------------
 804 // Fast zero or null constant. Same as "transform(ConNode::make(Type::get_zero_type(bt)))"
 805 ConNode* PhaseTransform::zerocon(BasicType bt) {
 806   assert((uint)bt <= _zcon_max, "domain check");
 807   ConNode* zcon = _zcons[bt];
 808   if (zcon != NULL && zcon->in(TypeFunc::Control) != NULL)
 809     return zcon;
 810   zcon = (ConNode*) uncached_makecon(Type::get_zero_type(bt));
 811   _zcons[bt] = zcon;
 812   return zcon;
 813 }
 814 
 815 
 816 
 817 //=============================================================================
 818 Node* PhaseGVN::apply_ideal(Node* k, bool can_reshape) {
 819   Node* i = BarrierSet::barrier_set()->barrier_set_c2()->ideal_node(this, k, can_reshape);
 820   if (i == NULL) {
 821     i = k->Ideal(this, can_reshape);
 822   }
 823   return i;
 824 }
 825 
 826 Node* PhaseGVN::apply_identity(Node* k) {
 827   Node* i = BarrierSet::barrier_set()->barrier_set_c2()->identity_node(this, k);
 828   if (i == k) {
 829     i = k->Identity(this);
 830   }
 831   return i;
 832 }
 833 
 834 //------------------------------transform--------------------------------------
 835 // Return a node which computes the same function as this node, but in a
 836 // faster or cheaper fashion.
 837 Node *PhaseGVN::transform( Node *n ) {
 838   return transform_no_reclaim(n);
 839 }
 840 
 841 //------------------------------transform--------------------------------------
 842 // Return a node which computes the same function as this node, but
 843 // in a faster or cheaper fashion.
 844 Node *PhaseGVN::transform_no_reclaim( Node *n ) {
 845   NOT_PRODUCT( set_transforms(); )
 846 
 847   // Apply the Ideal call in a loop until it no longer applies
 848   Node *k = n;
 849   NOT_PRODUCT( uint loop_count = 0; )
 850   while( 1 ) {
 851     Node *i = apply_ideal(k, /*can_reshape=*/false);
 852     if( !i ) break;
 853     assert( i->_idx >= k->_idx, "Idealize should return new nodes, use Identity to return old nodes" );
 854     k = i;
 855     assert(loop_count++ < K, "infinite loop in PhaseGVN::transform");
 856   }
 857   NOT_PRODUCT( if( loop_count != 0 ) { set_progress(); } )
 858 
 859 
 860   // If brand new node, make space in type array.
 861   ensure_type_or_null(k);
 862 
 863   // Since I just called 'Value' to compute the set of run-time values
 864   // for this Node, and 'Value' is non-local (and therefore expensive) I'll
 865   // cache Value.  Later requests for the local phase->type of this Node can
 866   // use the cached Value instead of suffering with 'bottom_type'.
 867   const Type *t = k->Value(this); // Get runtime Value set
 868   assert(t != NULL, "value sanity");
 869   if (type_or_null(k) != t) {
 870 #ifndef PRODUCT
 871     // Do not count initial visit to node as a transformation
 872     if (type_or_null(k) == NULL) {
 873       inc_new_values();
 874       set_progress();
 875     }
 876 #endif
 877     set_type(k, t);
 878     // If k is a TypeNode, capture any more-precise type permanently into Node
 879     k->raise_bottom_type(t);
 880   }
 881 
 882   if( t->singleton() && !k->is_Con() ) {
 883     NOT_PRODUCT( set_progress(); )
 884     return makecon(t);          // Turn into a constant
 885   }
 886 
 887   // Now check for Identities
 888   Node *i = apply_identity(k);  // Look for a nearby replacement
 889   if( i != k ) {                // Found? Return replacement!
 890     NOT_PRODUCT( set_progress(); )
 891     return i;
 892   }
 893 
 894   // Global Value Numbering
 895   i = hash_find_insert(k);      // Insert if new
 896   if( i && (i != k) ) {
 897     // Return the pre-existing node
 898     NOT_PRODUCT( set_progress(); )
 899     return i;
 900   }
 901 
 902   // Return Idealized original
 903   return k;
 904 }
 905 
 906 bool PhaseGVN::is_dominator_helper(Node *d, Node *n, bool linear_only) {
 907   if (d->is_top() || n->is_top()) {
 908     return false;
 909   }
 910   assert(d->is_CFG() && n->is_CFG(), "must have CFG nodes");
 911   int i = 0;
 912   while (d != n) {
 913     n = IfNode::up_one_dom(n, linear_only);
 914     i++;
 915     if (n == NULL || i >= 10) {
 916       return false;
 917     }
 918   }
 919   return true;
 920 }
 921 
 922 #ifdef ASSERT
 923 //------------------------------dead_loop_check--------------------------------
 924 // Check for a simple dead loop when a data node references itself directly
 925 // or through an other data node excluding cons and phis.
 926 void PhaseGVN::dead_loop_check( Node *n ) {
 927   // Phi may reference itself in a loop
 928   if (n != NULL && !n->is_dead_loop_safe() && !n->is_CFG()) {
 929     // Do 2 levels check and only data inputs.
 930     bool no_dead_loop = true;
 931     uint cnt = n->req();
 932     for (uint i = 1; i < cnt && no_dead_loop; i++) {
 933       Node *in = n->in(i);
 934       if (in == n) {
 935         no_dead_loop = false;
 936       } else if (in != NULL && !in->is_dead_loop_safe()) {
 937         uint icnt = in->req();
 938         for (uint j = 1; j < icnt && no_dead_loop; j++) {
 939           if (in->in(j) == n || in->in(j) == in)
 940             no_dead_loop = false;
 941         }
 942       }
 943     }
 944     if (!no_dead_loop) n->dump(3);
 945     assert(no_dead_loop, "dead loop detected");
 946   }
 947 }
 948 #endif
 949 
 950 //=============================================================================
 951 //------------------------------PhaseIterGVN-----------------------------------
 952 // Initialize hash table to fresh and clean for +VerifyOpto
 953 PhaseIterGVN::PhaseIterGVN( PhaseIterGVN *igvn, const char *dummy ) : PhaseGVN(igvn,dummy),
 954                                                                       _delay_transform(false),
 955                                                                       _stack(C->live_nodes() >> 1),
 956                                                                       _worklist( ) {
 957 }
 958 
 959 //------------------------------PhaseIterGVN-----------------------------------
 960 // Initialize with previous PhaseIterGVN info; used by PhaseCCP
 961 PhaseIterGVN::PhaseIterGVN( PhaseIterGVN *igvn ) : PhaseGVN(igvn),
 962                                                    _delay_transform(igvn->_delay_transform),
 963                                                    _stack( igvn->_stack ),
 964                                                    _worklist( igvn->_worklist )
 965 {
 966 }
 967 
 968 //------------------------------PhaseIterGVN-----------------------------------
 969 // Initialize with previous PhaseGVN info from Parser
 970 PhaseIterGVN::PhaseIterGVN( PhaseGVN *gvn ) : PhaseGVN(gvn),
 971                                               _delay_transform(false),
 972 // TODO: Before incremental inlining it was allocated only once and it was fine. Now that
 973 //       the constructor is used in incremental inlining, this consumes too much memory:
 974 //                                            _stack(C->live_nodes() >> 1),
 975 //       So, as a band-aid, we replace this by:
 976                                               _stack(C->comp_arena(), 32),
 977                                               _worklist(*C->for_igvn())
 978 {
 979   uint max;
 980 
 981   // Dead nodes in the hash table inherited from GVN were not treated as
 982   // roots during def-use info creation; hence they represent an invisible
 983   // use.  Clear them out.
 984   max = _table.size();
 985   for( uint i = 0; i < max; ++i ) {
 986     Node *n = _table.at(i);
 987     if(n != NULL && n != _table.sentinel() && n->outcnt() == 0) {
 988       if( n->is_top() ) continue;
 989       assert( false, "Parse::remove_useless_nodes missed this node");
 990       hash_delete(n);
 991     }
 992   }
 993 
 994   // Any Phis or Regions on the worklist probably had uses that could not
 995   // make more progress because the uses were made while the Phis and Regions
 996   // were in half-built states.  Put all uses of Phis and Regions on worklist.
 997   max = _worklist.size();
 998   for( uint j = 0; j < max; j++ ) {
 999     Node *n = _worklist.at(j);
1000     uint uop = n->Opcode();
1001     if( uop == Op_Phi || uop == Op_Region ||
1002         n->is_Type() ||
1003         n->is_Mem() )
1004       add_users_to_worklist(n);
1005   }
1006 }
1007 
1008 /**
1009  * Initialize worklist for each node.
1010  */
1011 void PhaseIterGVN::init_worklist(Node* first) {
1012   Unique_Node_List to_process;
1013   to_process.push(first);
1014 
1015   while (to_process.size() > 0) {
1016     Node* n = to_process.pop();
1017     if (!_worklist.member(n)) {
1018       _worklist.push(n);
1019 
1020       uint cnt = n->req();
1021       for(uint i = 0; i < cnt; i++) {
1022         Node* m = n->in(i);
1023         if (m != NULL) {
1024           to_process.push(m);
1025         }
1026       }
1027     }
1028   }
1029 }
1030 
1031 #ifndef PRODUCT
1032 void PhaseIterGVN::verify_step(Node* n) {
1033   if (VerifyIterativeGVN) {
1034     _verify_window[_verify_counter % _verify_window_size] = n;
1035     ++_verify_counter;
1036     ResourceMark rm;
1037     ResourceArea* area = Thread::current()->resource_area();
1038     VectorSet old_space(area), new_space(area);
1039     if (C->unique() < 1000 ||
1040         0 == _verify_counter % (C->unique() < 10000 ? 10 : 100)) {
1041       ++_verify_full_passes;
1042       Node::verify_recur(C->root(), -1, old_space, new_space);
1043     }
1044     const int verify_depth = 4;
1045     for ( int i = 0; i < _verify_window_size; i++ ) {
1046       Node* n = _verify_window[i];
1047       if ( n == NULL )  continue;
1048       if( n->in(0) == NodeSentinel ) {  // xform_idom
1049         _verify_window[i] = n->in(1);
1050         --i; continue;
1051       }
1052       // Typical fanout is 1-2, so this call visits about 6 nodes.
1053       Node::verify_recur(n, verify_depth, old_space, new_space);
1054     }
1055   }
1056 }
1057 
1058 void PhaseIterGVN::trace_PhaseIterGVN(Node* n, Node* nn, const Type* oldtype) {
1059   if (TraceIterativeGVN) {
1060     uint wlsize = _worklist.size();
1061     const Type* newtype = type_or_null(n);
1062     if (nn != n) {
1063       // print old node
1064       tty->print("< ");
1065       if (oldtype != newtype && oldtype != NULL) {
1066         oldtype->dump();
1067       }
1068       do { tty->print("\t"); } while (tty->position() < 16);
1069       tty->print("<");
1070       n->dump();
1071     }
1072     if (oldtype != newtype || nn != n) {
1073       // print new node and/or new type
1074       if (oldtype == NULL) {
1075         tty->print("* ");
1076       } else if (nn != n) {
1077         tty->print("> ");
1078       } else {
1079         tty->print("= ");
1080       }
1081       if (newtype == NULL) {
1082         tty->print("null");
1083       } else {
1084         newtype->dump();
1085       }
1086       do { tty->print("\t"); } while (tty->position() < 16);
1087       nn->dump();
1088     }
1089     if (Verbose && wlsize < _worklist.size()) {
1090       tty->print("  Push {");
1091       while (wlsize != _worklist.size()) {
1092         Node* pushed = _worklist.at(wlsize++);
1093         tty->print(" %d", pushed->_idx);
1094       }
1095       tty->print_cr(" }");
1096     }
1097     if (nn != n) {
1098       // ignore n, it might be subsumed
1099       verify_step((Node*) NULL);
1100     }
1101   }
1102 }
1103 
1104 void PhaseIterGVN::init_verifyPhaseIterGVN() {
1105   _verify_counter = 0;
1106   _verify_full_passes = 0;
1107   for (int i = 0; i < _verify_window_size; i++) {
1108     _verify_window[i] = NULL;
1109   }
1110 #ifdef ASSERT
1111   // Verify that all modified nodes are on _worklist
1112   Unique_Node_List* modified_list = C->modified_nodes();
1113   while (modified_list != NULL && modified_list->size()) {
1114     Node* n = modified_list->pop();
1115     if (n->outcnt() != 0 && !n->is_Con() && !_worklist.member(n)) {
1116       n->dump();
1117       assert(false, "modified node is not on IGVN._worklist");
1118     }
1119   }
1120 #endif
1121 }
1122 
1123 void PhaseIterGVN::verify_PhaseIterGVN() {
1124 #ifdef ASSERT
1125   // Verify nodes with changed inputs.
1126   Unique_Node_List* modified_list = C->modified_nodes();
1127   while (modified_list != NULL && modified_list->size()) {
1128     Node* n = modified_list->pop();
1129     if (n->outcnt() != 0 && !n->is_Con()) { // skip dead and Con nodes
1130       n->dump();
1131       assert(false, "modified node was not processed by IGVN.transform_old()");
1132     }
1133   }
1134 #endif
1135 
1136   C->verify_graph_edges();
1137   if( VerifyOpto && allow_progress() ) {
1138     // Must turn off allow_progress to enable assert and break recursion
1139     C->root()->verify();
1140     { // Check if any progress was missed using IterGVN
1141       // Def-Use info enables transformations not attempted in wash-pass
1142       // e.g. Region/Phi cleanup, ...
1143       // Null-check elision -- may not have reached fixpoint
1144       //                       do not propagate to dominated nodes
1145       ResourceMark rm;
1146       PhaseIterGVN igvn2(this,"Verify"); // Fresh and clean!
1147       // Fill worklist completely
1148       igvn2.init_worklist(C->root());
1149 
1150       igvn2.set_allow_progress(false);
1151       igvn2.optimize();
1152       igvn2.set_allow_progress(true);
1153     }
1154   }
1155   if (VerifyIterativeGVN && PrintOpto) {
1156     if (_verify_counter == _verify_full_passes) {
1157       tty->print_cr("VerifyIterativeGVN: %d transforms and verify passes",
1158                     (int) _verify_full_passes);
1159     } else {
1160       tty->print_cr("VerifyIterativeGVN: %d transforms, %d full verify passes",
1161                   (int) _verify_counter, (int) _verify_full_passes);
1162     }
1163   }
1164 
1165 #ifdef ASSERT
1166   while (modified_list->size()) {
1167     Node* n = modified_list->pop();
1168     n->dump();
1169     assert(false, "VerifyIterativeGVN: new modified node was added");
1170   }
1171 #endif
1172 }
1173 #endif /* PRODUCT */
1174 
1175 #ifdef ASSERT
1176 /**
1177  * Dumps information that can help to debug the problem. A debug
1178  * build fails with an assert.
1179  */
1180 void PhaseIterGVN::dump_infinite_loop_info(Node* n) {
1181   n->dump(4);
1182   _worklist.dump();
1183   assert(false, "infinite loop in PhaseIterGVN::optimize");
1184 }
1185 
1186 /**
1187  * Prints out information about IGVN if the 'verbose' option is used.
1188  */
1189 void PhaseIterGVN::trace_PhaseIterGVN_verbose(Node* n, int num_processed) {
1190   if (TraceIterativeGVN && Verbose) {
1191     tty->print("  Pop ");
1192     n->dump();
1193     if ((num_processed % 100) == 0) {
1194       _worklist.print_set();
1195     }
1196   }
1197 }
1198 #endif /* ASSERT */
1199 
1200 void PhaseIterGVN::optimize() {
1201   DEBUG_ONLY(uint num_processed  = 0;)
1202   NOT_PRODUCT(init_verifyPhaseIterGVN();)
1203 
1204   uint loop_count = 0;
1205   // Pull from worklist and transform the node. If the node has changed,
1206   // update edge info and put uses on worklist.
1207   while(_worklist.size()) {
1208     if (C->check_node_count(NodeLimitFudgeFactor * 2, "Out of nodes")) {
1209       return;
1210     }
1211     Node* n  = _worklist.pop();
1212     if (++loop_count >= K * C->live_nodes()) {
1213       DEBUG_ONLY(dump_infinite_loop_info(n);)
1214       C->record_method_not_compilable("infinite loop in PhaseIterGVN::optimize");
1215       return;
1216     }
1217     DEBUG_ONLY(trace_PhaseIterGVN_verbose(n, num_processed++);)
1218     if (n->outcnt() != 0) {
1219       NOT_PRODUCT(const Type* oldtype = type_or_null(n));
1220       // Do the transformation
1221       Node* nn = transform_old(n);
1222       NOT_PRODUCT(trace_PhaseIterGVN(n, nn, oldtype);)
1223     } else if (!n->is_top()) {
1224       remove_dead_node(n);
1225     }
1226   }
1227   NOT_PRODUCT(verify_PhaseIterGVN();)
1228 }
1229 
1230 
1231 /**
1232  * Register a new node with the optimizer.  Update the types array, the def-use
1233  * info.  Put on worklist.
1234  */
1235 Node* PhaseIterGVN::register_new_node_with_optimizer(Node* n, Node* orig) {
1236   set_type_bottom(n);
1237   _worklist.push(n);
1238   if (orig != NULL)  C->copy_node_notes_to(n, orig);
1239   return n;
1240 }
1241 
1242 //------------------------------transform--------------------------------------
1243 // Non-recursive: idealize Node 'n' with respect to its inputs and its value
1244 Node *PhaseIterGVN::transform( Node *n ) {
1245   if (_delay_transform) {
1246     // Register the node but don't optimize for now
1247     register_new_node_with_optimizer(n);
1248     return n;
1249   }
1250 
1251   // If brand new node, make space in type array, and give it a type.
1252   ensure_type_or_null(n);
1253   if (type_or_null(n) == NULL) {
1254     set_type_bottom(n);
1255   }
1256 
1257   return transform_old(n);
1258 }
1259 
1260 Node *PhaseIterGVN::transform_old(Node* n) {
1261   DEBUG_ONLY(uint loop_count = 0;);
1262   NOT_PRODUCT(set_transforms());
1263 
1264   // Remove 'n' from hash table in case it gets modified
1265   _table.hash_delete(n);
1266   if (VerifyIterativeGVN) {
1267    assert(!_table.find_index(n->_idx), "found duplicate entry in table");
1268   }
1269 
1270   // Apply the Ideal call in a loop until it no longer applies
1271   Node* k = n;
1272   DEBUG_ONLY(dead_loop_check(k);)
1273   DEBUG_ONLY(bool is_new = (k->outcnt() == 0);)
1274   C->remove_modified_node(k);
1275   Node* i = apply_ideal(k, /*can_reshape=*/true);
1276   assert(i != k || is_new || i->outcnt() > 0, "don't return dead nodes");
1277 #ifndef PRODUCT
1278   verify_step(k);
1279   if (i && VerifyOpto ) {
1280     if (!allow_progress()) {
1281       if (i->is_Add() && (i->outcnt() == 1)) {
1282         // Switched input to left side because this is the only use
1283       } else if (i->is_If() && (i->in(0) == NULL)) {
1284         // This IF is dead because it is dominated by an equivalent IF When
1285         // dominating if changed, info is not propagated sparsely to 'this'
1286         // Propagating this info further will spuriously identify other
1287         // progress.
1288         return i;
1289       } else
1290         set_progress();
1291     } else {
1292       set_progress();
1293     }
1294   }
1295 #endif
1296 
1297   while (i != NULL) {
1298 #ifdef ASSERT
1299     if (loop_count >= K) {
1300       dump_infinite_loop_info(i);
1301     }
1302     loop_count++;
1303 #endif
1304     assert((i->_idx >= k->_idx) || i->is_top(), "Idealize should return new nodes, use Identity to return old nodes");
1305     // Made a change; put users of original Node on worklist
1306     add_users_to_worklist(k);
1307     // Replacing root of transform tree?
1308     if (k != i) {
1309       // Make users of old Node now use new.
1310       subsume_node(k, i);
1311       k = i;
1312     }
1313     DEBUG_ONLY(dead_loop_check(k);)
1314     // Try idealizing again
1315     DEBUG_ONLY(is_new = (k->outcnt() == 0);)
1316     C->remove_modified_node(k);
1317     i = apply_ideal(k, /*can_reshape=*/true);
1318     assert(i != k || is_new || (i->outcnt() > 0), "don't return dead nodes");
1319 #ifndef PRODUCT
1320     verify_step(k);
1321     if (i && VerifyOpto) {
1322       set_progress();
1323     }
1324 #endif
1325   }
1326 
1327   // If brand new node, make space in type array.
1328   ensure_type_or_null(k);
1329 
1330   // See what kind of values 'k' takes on at runtime
1331   const Type* t = k->Value(this);
1332   assert(t != NULL, "value sanity");
1333 
1334   // Since I just called 'Value' to compute the set of run-time values
1335   // for this Node, and 'Value' is non-local (and therefore expensive) I'll
1336   // cache Value.  Later requests for the local phase->type of this Node can
1337   // use the cached Value instead of suffering with 'bottom_type'.
1338   if (type_or_null(k) != t) {
1339 #ifndef PRODUCT
1340     inc_new_values();
1341     set_progress();
1342 #endif
1343     set_type(k, t);
1344     // If k is a TypeNode, capture any more-precise type permanently into Node
1345     k->raise_bottom_type(t);
1346     // Move users of node to worklist
1347     add_users_to_worklist(k);
1348   }
1349   // If 'k' computes a constant, replace it with a constant
1350   if (t->singleton() && !k->is_Con()) {
1351     NOT_PRODUCT(set_progress();)
1352     Node* con = makecon(t);     // Make a constant
1353     add_users_to_worklist(k);
1354     subsume_node(k, con);       // Everybody using k now uses con
1355     return con;
1356   }
1357 
1358   // Now check for Identities
1359   i = apply_identity(k);      // Look for a nearby replacement
1360   if (i != k) {                // Found? Return replacement!
1361     NOT_PRODUCT(set_progress();)
1362     add_users_to_worklist(k);
1363     subsume_node(k, i);       // Everybody using k now uses i
1364     return i;
1365   }
1366 
1367   // Global Value Numbering
1368   i = hash_find_insert(k);      // Check for pre-existing node
1369   if (i && (i != k)) {
1370     // Return the pre-existing node if it isn't dead
1371     NOT_PRODUCT(set_progress();)
1372     add_users_to_worklist(k);
1373     subsume_node(k, i);       // Everybody using k now uses i
1374     return i;
1375   }
1376 
1377   // Return Idealized original
1378   return k;
1379 }
1380 
1381 //---------------------------------saturate------------------------------------
1382 const Type* PhaseIterGVN::saturate(const Type* new_type, const Type* old_type,
1383                                    const Type* limit_type) const {
1384   return new_type->narrow(old_type);
1385 }
1386 
1387 //------------------------------remove_globally_dead_node----------------------
1388 // Kill a globally dead Node.  All uses are also globally dead and are
1389 // aggressively trimmed.
1390 void PhaseIterGVN::remove_globally_dead_node( Node *dead ) {
1391   enum DeleteProgress {
1392     PROCESS_INPUTS,
1393     PROCESS_OUTPUTS
1394   };
1395   assert(_stack.is_empty(), "not empty");
1396   _stack.push(dead, PROCESS_INPUTS);
1397 
1398   while (_stack.is_nonempty()) {
1399     dead = _stack.node();
1400     if (dead->Opcode() == Op_SafePoint) {
1401       dead->as_SafePoint()->disconnect_from_root(this);
1402     }
1403     uint progress_state = _stack.index();
1404     assert(dead != C->root(), "killing root, eh?");
1405     assert(!dead->is_top(), "add check for top when pushing");
1406     NOT_PRODUCT( set_progress(); )
1407     if (progress_state == PROCESS_INPUTS) {
1408       // After following inputs, continue to outputs
1409       _stack.set_index(PROCESS_OUTPUTS);
1410       if (!dead->is_Con()) { // Don't kill cons but uses
1411         bool recurse = false;
1412         // Remove from hash table
1413         _table.hash_delete( dead );
1414         // Smash all inputs to 'dead', isolating him completely
1415         for (uint i = 0; i < dead->req(); i++) {
1416           Node *in = dead->in(i);
1417           if (in != NULL && in != C->top()) {  // Points to something?
1418             int nrep = dead->replace_edge(in, NULL);  // Kill edges
1419             assert((nrep > 0), "sanity");
1420             if (in->outcnt() == 0) { // Made input go dead?
1421               _stack.push(in, PROCESS_INPUTS); // Recursively remove
1422               recurse = true;
1423             } else if (in->outcnt() == 1 &&
1424                        in->has_special_unique_user()) {
1425               _worklist.push(in->unique_out());
1426             } else if (in->outcnt() <= 2 && dead->is_Phi()) {
1427               if (in->Opcode() == Op_Region) {
1428                 _worklist.push(in);
1429               } else if (in->is_Store()) {
1430                 DUIterator_Fast imax, i = in->fast_outs(imax);
1431                 _worklist.push(in->fast_out(i));
1432                 i++;
1433                 if (in->outcnt() == 2) {
1434                   _worklist.push(in->fast_out(i));
1435                   i++;
1436                 }
1437                 assert(!(i < imax), "sanity");
1438               }
1439             } else {
1440               BarrierSet::barrier_set()->barrier_set_c2()->enqueue_useful_gc_barrier(this, in);
1441             }
1442             if (ReduceFieldZeroing && dead->is_Load() && i == MemNode::Memory &&
1443                 in->is_Proj() && in->in(0) != NULL && in->in(0)->is_Initialize()) {
1444               // A Load that directly follows an InitializeNode is
1445               // going away. The Stores that follow are candidates
1446               // again to be captured by the InitializeNode.
1447               for (DUIterator_Fast jmax, j = in->fast_outs(jmax); j < jmax; j++) {
1448                 Node *n = in->fast_out(j);
1449                 if (n->is_Store()) {
1450                   _worklist.push(n);
1451                 }
1452               }
1453             }
1454           } // if (in != NULL && in != C->top())
1455         } // for (uint i = 0; i < dead->req(); i++)
1456         if (recurse) {
1457           continue;
1458         }
1459       } // if (!dead->is_Con())
1460     } // if (progress_state == PROCESS_INPUTS)
1461 
1462     // Aggressively kill globally dead uses
1463     // (Rather than pushing all the outs at once, we push one at a time,
1464     // plus the parent to resume later, because of the indefinite number
1465     // of edge deletions per loop trip.)
1466     if (dead->outcnt() > 0) {
1467       // Recursively remove output edges
1468       _stack.push(dead->raw_out(0), PROCESS_INPUTS);
1469     } else {
1470       // Finished disconnecting all input and output edges.
1471       _stack.pop();
1472       // Remove dead node from iterative worklist
1473       _worklist.remove(dead);
1474       C->remove_modified_node(dead);
1475       // Constant node that has no out-edges and has only one in-edge from
1476       // root is usually dead. However, sometimes reshaping walk makes
1477       // it reachable by adding use edges. So, we will NOT count Con nodes
1478       // as dead to be conservative about the dead node count at any
1479       // given time.
1480       if (!dead->is_Con()) {
1481         C->record_dead_node(dead->_idx);
1482       }
1483       if (dead->is_macro()) {
1484         C->remove_macro_node(dead);
1485       }
1486       if (dead->is_expensive()) {
1487         C->remove_expensive_node(dead);
1488       }
1489       CastIINode* cast = dead->isa_CastII();
1490       if (cast != NULL && cast->has_range_check()) {
1491         C->remove_range_check_cast(cast);
1492       }
1493       if (dead->Opcode() == Op_Opaque4) {
1494         C->remove_opaque4_node(dead);
1495       }
1496       BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
1497       bs->unregister_potential_barrier_node(dead);
1498     }
1499   } // while (_stack.is_nonempty())
1500 }
1501 
1502 //------------------------------subsume_node-----------------------------------
1503 // Remove users from node 'old' and add them to node 'nn'.
1504 void PhaseIterGVN::subsume_node( Node *old, Node *nn ) {
1505   if (old->Opcode() == Op_SafePoint) {
1506     old->as_SafePoint()->disconnect_from_root(this);
1507   }
1508   assert( old != hash_find(old), "should already been removed" );
1509   assert( old != C->top(), "cannot subsume top node");
1510   // Copy debug or profile information to the new version:
1511   C->copy_node_notes_to(nn, old);
1512   // Move users of node 'old' to node 'nn'
1513   for (DUIterator_Last imin, i = old->last_outs(imin); i >= imin; ) {
1514     Node* use = old->last_out(i);  // for each use...
1515     // use might need re-hashing (but it won't if it's a new node)
1516     rehash_node_delayed(use);
1517     // Update use-def info as well
1518     // We remove all occurrences of old within use->in,
1519     // so as to avoid rehashing any node more than once.
1520     // The hash table probe swamps any outer loop overhead.
1521     uint num_edges = 0;
1522     for (uint jmax = use->len(), j = 0; j < jmax; j++) {
1523       if (use->in(j) == old) {
1524         use->set_req(j, nn);
1525         ++num_edges;
1526       }
1527     }
1528     i -= num_edges;    // we deleted 1 or more copies of this edge
1529   }
1530 
1531   // Search for instance field data PhiNodes in the same region pointing to the old
1532   // memory PhiNode and update their instance memory ids to point to the new node.
1533   if (old->is_Phi() && old->as_Phi()->type()->has_memory() && old->in(0) != NULL) {
1534     Node* region = old->in(0);
1535     for (DUIterator_Fast imax, i = region->fast_outs(imax); i < imax; i++) {
1536       PhiNode* phi = region->fast_out(i)->isa_Phi();
1537       if (phi != NULL && phi->inst_mem_id() == (int)old->_idx) {
1538         phi->set_inst_mem_id((int)nn->_idx);
1539       }
1540     }
1541   }
1542 
1543   // Smash all inputs to 'old', isolating him completely
1544   Node *temp = new Node(1);
1545   temp->init_req(0,nn);     // Add a use to nn to prevent him from dying
1546   remove_dead_node( old );
1547   temp->del_req(0);         // Yank bogus edge
1548 #ifndef PRODUCT
1549   if( VerifyIterativeGVN ) {
1550     for ( int i = 0; i < _verify_window_size; i++ ) {
1551       if ( _verify_window[i] == old )
1552         _verify_window[i] = nn;
1553     }
1554   }
1555 #endif
1556   _worklist.remove(temp);   // this can be necessary
1557   temp->destruct();         // reuse the _idx of this little guy
1558 }
1559 
1560 //------------------------------add_users_to_worklist--------------------------
1561 void PhaseIterGVN::add_users_to_worklist0( Node *n ) {
1562   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1563     _worklist.push(n->fast_out(i));  // Push on worklist
1564   }
1565 }
1566 
1567 // Return counted loop Phi if as a counted loop exit condition, cmp
1568 // compares the the induction variable with n
1569 static PhiNode* countedloop_phi_from_cmp(CmpINode* cmp, Node* n) {
1570   for (DUIterator_Fast imax, i = cmp->fast_outs(imax); i < imax; i++) {
1571     Node* bol = cmp->fast_out(i);
1572     for (DUIterator_Fast i2max, i2 = bol->fast_outs(i2max); i2 < i2max; i2++) {
1573       Node* iff = bol->fast_out(i2);
1574       if (iff->is_CountedLoopEnd()) {
1575         CountedLoopEndNode* cle = iff->as_CountedLoopEnd();
1576         if (cle->limit() == n) {
1577           PhiNode* phi = cle->phi();
1578           if (phi != NULL) {
1579             return phi;
1580           }
1581         }
1582       }
1583     }
1584   }
1585   return NULL;
1586 }
1587 
1588 void PhaseIterGVN::add_users_to_worklist( Node *n ) {
1589   add_users_to_worklist0(n);
1590 
1591   // Move users of node to worklist
1592   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1593     Node* use = n->fast_out(i); // Get use
1594 
1595     if( use->is_Multi() ||      // Multi-definer?  Push projs on worklist
1596         use->is_Store() )       // Enable store/load same address
1597       add_users_to_worklist0(use);
1598 
1599     // If we changed the receiver type to a call, we need to revisit
1600     // the Catch following the call.  It's looking for a non-NULL
1601     // receiver to know when to enable the regular fall-through path
1602     // in addition to the NullPtrException path.
1603     if (use->is_CallDynamicJava() && n == use->in(TypeFunc::Parms)) {
1604       Node* p = use->as_CallDynamicJava()->proj_out_or_null(TypeFunc::Control);
1605       if (p != NULL) {
1606         add_users_to_worklist0(p);
1607       }
1608     }
1609 
1610     uint use_op = use->Opcode();
1611     if(use->is_Cmp()) {       // Enable CMP/BOOL optimization
1612       add_users_to_worklist(use); // Put Bool on worklist
1613       if (use->outcnt() > 0) {
1614         Node* bol = use->raw_out(0);
1615         if (bol->outcnt() > 0) {
1616           Node* iff = bol->raw_out(0);
1617           if (iff->outcnt() == 2) {
1618             // Look for the 'is_x2logic' pattern: "x ? : 0 : 1" and put the
1619             // phi merging either 0 or 1 onto the worklist
1620             Node* ifproj0 = iff->raw_out(0);
1621             Node* ifproj1 = iff->raw_out(1);
1622             if (ifproj0->outcnt() > 0 && ifproj1->outcnt() > 0) {
1623               Node* region0 = ifproj0->raw_out(0);
1624               Node* region1 = ifproj1->raw_out(0);
1625               if( region0 == region1 )
1626                 add_users_to_worklist0(region0);
1627             }
1628           }
1629         }
1630       }
1631       if (use_op == Op_CmpI) {
1632         Node* phi = countedloop_phi_from_cmp((CmpINode*)use, n);
1633         if (phi != NULL) {
1634           // If an opaque node feeds into the limit condition of a
1635           // CountedLoop, we need to process the Phi node for the
1636           // induction variable when the opaque node is removed:
1637           // the range of values taken by the Phi is now known and
1638           // so its type is also known.
1639           _worklist.push(phi);
1640         }
1641         Node* in1 = use->in(1);
1642         for (uint i = 0; i < in1->outcnt(); i++) {
1643           if (in1->raw_out(i)->Opcode() == Op_CastII) {
1644             Node* castii = in1->raw_out(i);
1645             if (castii->in(0) != NULL && castii->in(0)->in(0) != NULL && castii->in(0)->in(0)->is_If()) {
1646               Node* ifnode = castii->in(0)->in(0);
1647               if (ifnode->in(1) != NULL && ifnode->in(1)->is_Bool() && ifnode->in(1)->in(1) == use) {
1648                 // Reprocess a CastII node that may depend on an
1649                 // opaque node value when the opaque node is
1650                 // removed. In case it carries a dependency we can do
1651                 // a better job of computing its type.
1652                 _worklist.push(castii);
1653               }
1654             }
1655           }
1656         }
1657       }
1658     }
1659 
1660     // If changed Cast input, check Phi users for simple cycles
1661     if (use->is_ConstraintCast()) {
1662       for (DUIterator_Fast i2max, i2 = use->fast_outs(i2max); i2 < i2max; i2++) {
1663         Node* u = use->fast_out(i2);
1664         if (u->is_Phi())
1665           _worklist.push(u);
1666       }
1667     }
1668     // If changed LShift inputs, check RShift users for useless sign-ext
1669     if( use_op == Op_LShiftI ) {
1670       for (DUIterator_Fast i2max, i2 = use->fast_outs(i2max); i2 < i2max; i2++) {
1671         Node* u = use->fast_out(i2);
1672         if (u->Opcode() == Op_RShiftI)
1673           _worklist.push(u);
1674       }
1675     }
1676     // If changed AddI/SubI inputs, check CmpU for range check optimization.
1677     if (use_op == Op_AddI || use_op == Op_SubI) {
1678       for (DUIterator_Fast i2max, i2 = use->fast_outs(i2max); i2 < i2max; i2++) {
1679         Node* u = use->fast_out(i2);
1680         if (u->is_Cmp() && (u->Opcode() == Op_CmpU)) {
1681           _worklist.push(u);
1682         }
1683       }
1684     }
1685     // If changed AddP inputs, check Stores for loop invariant
1686     if( use_op == Op_AddP ) {
1687       for (DUIterator_Fast i2max, i2 = use->fast_outs(i2max); i2 < i2max; i2++) {
1688         Node* u = use->fast_out(i2);
1689         if (u->is_Mem())
1690           _worklist.push(u);
1691       }
1692     }
1693     // If changed initialization activity, check dependent Stores
1694     if (use_op == Op_Allocate || use_op == Op_AllocateArray) {
1695       InitializeNode* init = use->as_Allocate()->initialization();
1696       if (init != NULL) {
1697         Node* imem = init->proj_out_or_null(TypeFunc::Memory);
1698         if (imem != NULL)  add_users_to_worklist0(imem);
1699       }
1700     }
1701     if (use_op == Op_Initialize) {
1702       Node* imem = use->as_Initialize()->proj_out_or_null(TypeFunc::Memory);
1703       if (imem != NULL)  add_users_to_worklist0(imem);
1704     }
1705     // Loading the java mirror from a Klass requires two loads and the type
1706     // of the mirror load depends on the type of 'n'. See LoadNode::Value().
1707     //   LoadBarrier?(LoadP(LoadP(AddP(foo:Klass, #java_mirror))))
1708     BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
1709     bool has_load_barriers = bs->has_load_barriers();
1710 
1711     if (use_op == Op_LoadP && use->bottom_type()->isa_rawptr()) {
1712       for (DUIterator_Fast i2max, i2 = use->fast_outs(i2max); i2 < i2max; i2++) {
1713         Node* u = use->fast_out(i2);
1714         const Type* ut = u->bottom_type();
1715         if (u->Opcode() == Op_LoadP && ut->isa_instptr()) {
1716           if (has_load_barriers) {
1717             // Search for load barriers behind the load
1718             for (DUIterator_Fast i3max, i3 = u->fast_outs(i3max); i3 < i3max; i3++) {
1719               Node* b = u->fast_out(i3);
1720               if (bs->is_gc_barrier_node(b)) {
1721                 _worklist.push(b);
1722               }
1723             }
1724           }
1725           _worklist.push(u);
1726         }
1727       }
1728     }
1729 
1730     BarrierSet::barrier_set()->barrier_set_c2()->igvn_add_users_to_worklist(this, use);
1731   }
1732 }
1733 
1734 /**
1735  * Remove the speculative part of all types that we know of
1736  */
1737 void PhaseIterGVN::remove_speculative_types()  {
1738   assert(UseTypeSpeculation, "speculation is off");
1739   for (uint i = 0; i < _types.Size(); i++)  {
1740     const Type* t = _types.fast_lookup(i);
1741     if (t != NULL) {
1742       _types.map(i, t->remove_speculative());
1743     }
1744   }
1745   _table.check_no_speculative_types();
1746 }
1747 
1748 //=============================================================================
1749 #ifndef PRODUCT
1750 uint PhaseCCP::_total_invokes   = 0;
1751 uint PhaseCCP::_total_constants = 0;
1752 #endif
1753 //------------------------------PhaseCCP---------------------------------------
1754 // Conditional Constant Propagation, ala Wegman & Zadeck
1755 PhaseCCP::PhaseCCP( PhaseIterGVN *igvn ) : PhaseIterGVN(igvn) {
1756   NOT_PRODUCT( clear_constants(); )
1757   assert( _worklist.size() == 0, "" );
1758   // Clear out _nodes from IterGVN.  Must be clear to transform call.
1759   _nodes.clear();               // Clear out from IterGVN
1760   analyze();
1761 }
1762 
1763 #ifndef PRODUCT
1764 //------------------------------~PhaseCCP--------------------------------------
1765 PhaseCCP::~PhaseCCP() {
1766   inc_invokes();
1767   _total_constants += count_constants();
1768 }
1769 #endif
1770 
1771 
1772 #ifdef ASSERT
1773 static bool ccp_type_widens(const Type* t, const Type* t0) {
1774   assert(t->meet(t0) == t, "Not monotonic");
1775   switch (t->base() == t0->base() ? t->base() : Type::Top) {
1776   case Type::Int:
1777     assert(t0->isa_int()->_widen <= t->isa_int()->_widen, "widen increases");
1778     break;
1779   case Type::Long:
1780     assert(t0->isa_long()->_widen <= t->isa_long()->_widen, "widen increases");
1781     break;
1782   default:
1783     break;
1784   }
1785   return true;
1786 }
1787 #endif //ASSERT
1788 
1789 //------------------------------analyze----------------------------------------
1790 void PhaseCCP::analyze() {
1791   // Initialize all types to TOP, optimistic analysis
1792   for (int i = C->unique() - 1; i >= 0; i--)  {
1793     _types.map(i,Type::TOP);
1794   }
1795 
1796   // Push root onto worklist
1797   Unique_Node_List worklist;
1798   worklist.push(C->root());
1799 
1800   // Pull from worklist; compute new value; push changes out.
1801   // This loop is the meat of CCP.
1802   while( worklist.size() ) {
1803     Node *n = worklist.pop();
1804     const Type *t = n->Value(this);
1805     if (t != type(n)) {
1806       assert(ccp_type_widens(t, type(n)), "ccp type must widen");
1807 #ifndef PRODUCT
1808       if( TracePhaseCCP ) {
1809         t->dump();
1810         do { tty->print("\t"); } while (tty->position() < 16);
1811         n->dump();
1812       }
1813 #endif
1814       set_type(n, t);
1815       for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1816         Node* m = n->fast_out(i);   // Get user
1817         if (m->is_Region()) {  // New path to Region?  Must recheck Phis too
1818           for (DUIterator_Fast i2max, i2 = m->fast_outs(i2max); i2 < i2max; i2++) {
1819             Node* p = m->fast_out(i2); // Propagate changes to uses
1820             if (p->bottom_type() != type(p)) { // If not already bottomed out
1821               worklist.push(p); // Propagate change to user
1822             }
1823           }
1824         }
1825         // If we changed the receiver type to a call, we need to revisit
1826         // the Catch following the call.  It's looking for a non-NULL
1827         // receiver to know when to enable the regular fall-through path
1828         // in addition to the NullPtrException path
1829         if (m->is_Call()) {
1830           for (DUIterator_Fast i2max, i2 = m->fast_outs(i2max); i2 < i2max; i2++) {
1831             Node* p = m->fast_out(i2);  // Propagate changes to uses
1832             if (p->is_Proj() && p->as_Proj()->_con == TypeFunc::Control && p->outcnt() == 1) {
1833               worklist.push(p->unique_out());
1834             }
1835           }
1836         }
1837         if (m->bottom_type() != type(m)) { // If not already bottomed out
1838           worklist.push(m);     // Propagate change to user
1839         }
1840 
1841         // CmpU nodes can get their type information from two nodes up in the
1842         // graph (instead of from the nodes immediately above). Make sure they
1843         // are added to the worklist if nodes they depend on are updated, since
1844         // they could be missed and get wrong types otherwise.
1845         uint m_op = m->Opcode();
1846         if (m_op == Op_AddI || m_op == Op_SubI) {
1847           for (DUIterator_Fast i2max, i2 = m->fast_outs(i2max); i2 < i2max; i2++) {
1848             Node* p = m->fast_out(i2); // Propagate changes to uses
1849             if (p->Opcode() == Op_CmpU) {
1850               // Got a CmpU which might need the new type information from node n.
1851               if(p->bottom_type() != type(p)) { // If not already bottomed out
1852                 worklist.push(p); // Propagate change to user
1853               }
1854             }
1855           }
1856         }
1857         // If n is used in a counted loop exit condition then the type
1858         // of the counted loop's Phi depends on the type of n. See
1859         // PhiNode::Value().
1860         if (m_op == Op_CmpI) {
1861           PhiNode* phi = countedloop_phi_from_cmp((CmpINode*)m, n);
1862           if (phi != NULL) {
1863             worklist.push(phi);
1864           }
1865         }
1866         // Loading the java mirror from a Klass requires two loads and the type
1867         // of the mirror load depends on the type of 'n'. See LoadNode::Value().
1868         BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
1869         bool has_load_barriers = bs->has_load_barriers();
1870 
1871         if (m_op == Op_LoadP && m->bottom_type()->isa_rawptr()) {
1872           for (DUIterator_Fast i2max, i2 = m->fast_outs(i2max); i2 < i2max; i2++) {
1873             Node* u = m->fast_out(i2);
1874             const Type* ut = u->bottom_type();
1875             if (u->Opcode() == Op_LoadP && ut->isa_instptr() && ut != type(u)) {
1876               if (has_load_barriers) {
1877                 // Search for load barriers behind the load
1878                 for (DUIterator_Fast i3max, i3 = u->fast_outs(i3max); i3 < i3max; i3++) {
1879                   Node* b = u->fast_out(i3);
1880                   if (bs->is_gc_barrier_node(b)) {
1881                     worklist.push(b);
1882                   }
1883                 }
1884               }
1885               worklist.push(u);
1886             }
1887           }
1888         }
1889 
1890         BarrierSet::barrier_set()->barrier_set_c2()->ccp_analyze(this, worklist, m);
1891       }
1892     }
1893   }
1894 }
1895 
1896 //------------------------------do_transform-----------------------------------
1897 // Top level driver for the recursive transformer
1898 void PhaseCCP::do_transform() {
1899   // Correct leaves of new-space Nodes; they point to old-space.
1900   C->set_root( transform(C->root())->as_Root() );
1901   assert( C->top(),  "missing TOP node" );
1902   assert( C->root(), "missing root" );
1903 }
1904 
1905 //------------------------------transform--------------------------------------
1906 // Given a Node in old-space, clone him into new-space.
1907 // Convert any of his old-space children into new-space children.
1908 Node *PhaseCCP::transform( Node *n ) {
1909   Node *new_node = _nodes[n->_idx]; // Check for transformed node
1910   if( new_node != NULL )
1911     return new_node;                // Been there, done that, return old answer
1912   new_node = transform_once(n);     // Check for constant
1913   _nodes.map( n->_idx, new_node );  // Flag as having been cloned
1914 
1915   // Allocate stack of size _nodes.Size()/2 to avoid frequent realloc
1916   GrowableArray <Node *> trstack(C->live_nodes() >> 1);
1917 
1918   trstack.push(new_node);           // Process children of cloned node
1919   while ( trstack.is_nonempty() ) {
1920     Node *clone = trstack.pop();
1921     uint cnt = clone->req();
1922     for( uint i = 0; i < cnt; i++ ) {          // For all inputs do
1923       Node *input = clone->in(i);
1924       if( input != NULL ) {                    // Ignore NULLs
1925         Node *new_input = _nodes[input->_idx]; // Check for cloned input node
1926         if( new_input == NULL ) {
1927           new_input = transform_once(input);   // Check for constant
1928           _nodes.map( input->_idx, new_input );// Flag as having been cloned
1929           trstack.push(new_input);
1930         }
1931         assert( new_input == clone->in(i), "insanity check");
1932       }
1933     }
1934   }
1935   return new_node;
1936 }
1937 
1938 
1939 //------------------------------transform_once---------------------------------
1940 // For PhaseCCP, transformation is IDENTITY unless Node computed a constant.
1941 Node *PhaseCCP::transform_once( Node *n ) {
1942   const Type *t = type(n);
1943   // Constant?  Use constant Node instead
1944   if( t->singleton() ) {
1945     Node *nn = n;               // Default is to return the original constant
1946     if( t == Type::TOP ) {
1947       // cache my top node on the Compile instance
1948       if( C->cached_top_node() == NULL || C->cached_top_node()->in(0) == NULL ) {
1949         C->set_cached_top_node(ConNode::make(Type::TOP));
1950         set_type(C->top(), Type::TOP);
1951       }
1952       nn = C->top();
1953     }
1954     if( !n->is_Con() ) {
1955       if( t != Type::TOP ) {
1956         nn = makecon(t);        // ConNode::make(t);
1957         NOT_PRODUCT( inc_constants(); )
1958       } else if( n->is_Region() ) { // Unreachable region
1959         // Note: nn == C->top()
1960         n->set_req(0, NULL);        // Cut selfreference
1961         bool progress = true;
1962         uint max = n->outcnt();
1963         DUIterator i;
1964         while (progress) {
1965           progress = false;
1966           // Eagerly remove dead phis to avoid phis copies creation.
1967           for (i = n->outs(); n->has_out(i); i++) {
1968             Node* m = n->out(i);
1969             if (m->is_Phi()) {
1970               assert(type(m) == Type::TOP, "Unreachable region should not have live phis.");
1971               replace_node(m, nn);
1972               if (max != n->outcnt()) {
1973                 progress = true;
1974                 i = n->refresh_out_pos(i);
1975                 max = n->outcnt();
1976               }
1977             }
1978           }
1979         }
1980       }
1981       replace_node(n,nn);       // Update DefUse edges for new constant
1982     }
1983     return nn;
1984   }
1985 
1986   // If x is a TypeNode, capture any more-precise type permanently into Node
1987   if (t != n->bottom_type()) {
1988     hash_delete(n);             // changing bottom type may force a rehash
1989     n->raise_bottom_type(t);
1990     _worklist.push(n);          // n re-enters the hash table via the worklist
1991   }
1992 
1993   // TEMPORARY fix to ensure that 2nd GVN pass eliminates NULL checks
1994   switch( n->Opcode() ) {
1995   case Op_FastLock:      // Revisit FastLocks for lock coarsening
1996   case Op_If:
1997   case Op_CountedLoopEnd:
1998   case Op_Region:
1999   case Op_Loop:
2000   case Op_CountedLoop:
2001   case Op_Conv2B:
2002   case Op_Opaque1:
2003   case Op_Opaque2:
2004     _worklist.push(n);
2005     break;
2006   default:
2007     break;
2008   }
2009 
2010   return  n;
2011 }
2012 
2013 //---------------------------------saturate------------------------------------
2014 const Type* PhaseCCP::saturate(const Type* new_type, const Type* old_type,
2015                                const Type* limit_type) const {
2016   const Type* wide_type = new_type->widen(old_type, limit_type);
2017   if (wide_type != new_type) {          // did we widen?
2018     // If so, we may have widened beyond the limit type.  Clip it back down.
2019     new_type = wide_type->filter(limit_type);
2020   }
2021   return new_type;
2022 }
2023 
2024 //------------------------------print_statistics-------------------------------
2025 #ifndef PRODUCT
2026 void PhaseCCP::print_statistics() {
2027   tty->print_cr("CCP: %d  constants found: %d", _total_invokes, _total_constants);
2028 }
2029 #endif
2030 
2031 
2032 //=============================================================================
2033 #ifndef PRODUCT
2034 uint PhasePeephole::_total_peepholes = 0;
2035 #endif
2036 //------------------------------PhasePeephole----------------------------------
2037 // Conditional Constant Propagation, ala Wegman & Zadeck
2038 PhasePeephole::PhasePeephole( PhaseRegAlloc *regalloc, PhaseCFG &cfg )
2039   : PhaseTransform(Peephole), _regalloc(regalloc), _cfg(cfg) {
2040   NOT_PRODUCT( clear_peepholes(); )
2041 }
2042 
2043 #ifndef PRODUCT
2044 //------------------------------~PhasePeephole---------------------------------
2045 PhasePeephole::~PhasePeephole() {
2046   _total_peepholes += count_peepholes();
2047 }
2048 #endif
2049 
2050 //------------------------------transform--------------------------------------
2051 Node *PhasePeephole::transform( Node *n ) {
2052   ShouldNotCallThis();
2053   return NULL;
2054 }
2055 
2056 //------------------------------do_transform-----------------------------------
2057 void PhasePeephole::do_transform() {
2058   bool method_name_not_printed = true;
2059 
2060   // Examine each basic block
2061   for (uint block_number = 1; block_number < _cfg.number_of_blocks(); ++block_number) {
2062     Block* block = _cfg.get_block(block_number);
2063     bool block_not_printed = true;
2064 
2065     // and each instruction within a block
2066     uint end_index = block->number_of_nodes();
2067     // block->end_idx() not valid after PhaseRegAlloc
2068     for( uint instruction_index = 1; instruction_index < end_index; ++instruction_index ) {
2069       Node     *n = block->get_node(instruction_index);
2070       if( n->is_Mach() ) {
2071         MachNode *m = n->as_Mach();
2072         int deleted_count = 0;
2073         // check for peephole opportunities
2074         MachNode *m2 = m->peephole(block, instruction_index, _regalloc, deleted_count);
2075         if( m2 != NULL ) {
2076 #ifndef PRODUCT
2077           if( PrintOptoPeephole ) {
2078             // Print method, first time only
2079             if( C->method() && method_name_not_printed ) {
2080               C->method()->print_short_name(); tty->cr();
2081               method_name_not_printed = false;
2082             }
2083             // Print this block
2084             if( Verbose && block_not_printed) {
2085               tty->print_cr("in block");
2086               block->dump();
2087               block_not_printed = false;
2088             }
2089             // Print instructions being deleted
2090             for( int i = (deleted_count - 1); i >= 0; --i ) {
2091               block->get_node(instruction_index-i)->as_Mach()->format(_regalloc); tty->cr();
2092             }
2093             tty->print_cr("replaced with");
2094             // Print new instruction
2095             m2->format(_regalloc);
2096             tty->print("\n\n");
2097           }
2098 #endif
2099           // Remove old nodes from basic block and update instruction_index
2100           // (old nodes still exist and may have edges pointing to them
2101           //  as register allocation info is stored in the allocator using
2102           //  the node index to live range mappings.)
2103           uint safe_instruction_index = (instruction_index - deleted_count);
2104           for( ; (instruction_index > safe_instruction_index); --instruction_index ) {
2105             block->remove_node( instruction_index );
2106           }
2107           // install new node after safe_instruction_index
2108           block->insert_node(m2, safe_instruction_index + 1);
2109           end_index = block->number_of_nodes() - 1; // Recompute new block size
2110           NOT_PRODUCT( inc_peepholes(); )
2111         }
2112       }
2113     }
2114   }
2115 }
2116 
2117 //------------------------------print_statistics-------------------------------
2118 #ifndef PRODUCT
2119 void PhasePeephole::print_statistics() {
2120   tty->print_cr("Peephole: peephole rules applied: %d",  _total_peepholes);
2121 }
2122 #endif
2123 
2124 
2125 //=============================================================================
2126 //------------------------------set_req_X--------------------------------------
2127 void Node::set_req_X( uint i, Node *n, PhaseIterGVN *igvn ) {
2128   assert( is_not_dead(n), "can not use dead node");
2129   assert( igvn->hash_find(this) != this, "Need to remove from hash before changing edges" );
2130   Node *old = in(i);
2131   set_req(i, n);
2132 
2133   // old goes dead?
2134   if( old ) {
2135     switch (old->outcnt()) {
2136     case 0:
2137       // Put into the worklist to kill later. We do not kill it now because the
2138       // recursive kill will delete the current node (this) if dead-loop exists
2139       if (!old->is_top())
2140         igvn->_worklist.push( old );
2141       break;
2142     case 1:
2143       if( old->is_Store() || old->has_special_unique_user() )
2144         igvn->add_users_to_worklist( old );
2145       break;
2146     case 2:
2147       if( old->is_Store() )
2148         igvn->add_users_to_worklist( old );
2149       if( old->Opcode() == Op_Region )
2150         igvn->_worklist.push(old);
2151       break;
2152     case 3:
2153       if( old->Opcode() == Op_Region ) {
2154         igvn->_worklist.push(old);
2155         igvn->add_users_to_worklist( old );
2156       }
2157       break;
2158     default:
2159       break;
2160     }
2161 
2162     BarrierSet::barrier_set()->barrier_set_c2()->enqueue_useful_gc_barrier(igvn, old);
2163   }
2164 
2165 }
2166 
2167 //-------------------------------replace_by-----------------------------------
2168 // Using def-use info, replace one node for another.  Follow the def-use info
2169 // to all users of the OLD node.  Then make all uses point to the NEW node.
2170 void Node::replace_by(Node *new_node) {
2171   assert(!is_top(), "top node has no DU info");
2172   for (DUIterator_Last imin, i = last_outs(imin); i >= imin; ) {
2173     Node* use = last_out(i);
2174     uint uses_found = 0;
2175     for (uint j = 0; j < use->len(); j++) {
2176       if (use->in(j) == this) {
2177         if (j < use->req())
2178               use->set_req(j, new_node);
2179         else  use->set_prec(j, new_node);
2180         uses_found++;
2181       }
2182     }
2183     i -= uses_found;    // we deleted 1 or more copies of this edge
2184   }
2185 }
2186 
2187 //=============================================================================
2188 //-----------------------------------------------------------------------------
2189 void Type_Array::grow( uint i ) {
2190   if( !_max ) {
2191     _max = 1;
2192     _types = (const Type**)_a->Amalloc( _max * sizeof(Type*) );
2193     _types[0] = NULL;
2194   }
2195   uint old = _max;
2196   while( i >= _max ) _max <<= 1;        // Double to fit
2197   _types = (const Type**)_a->Arealloc( _types, old*sizeof(Type*),_max*sizeof(Type*));
2198   memset( &_types[old], 0, (_max-old)*sizeof(Type*) );
2199 }
2200 
2201 //------------------------------dump-------------------------------------------
2202 #ifndef PRODUCT
2203 void Type_Array::dump() const {
2204   uint max = Size();
2205   for( uint i = 0; i < max; i++ ) {
2206     if( _types[i] != NULL ) {
2207       tty->print("  %d\t== ", i); _types[i]->dump(); tty->cr();
2208     }
2209   }
2210 }
2211 #endif