1 /*
   2  * Copyright 2005-2008 Sun Microsystems, Inc.  All Rights Reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
  20  * CA 95054 USA or visit www.sun.com if you need additional information or
  21  * have any questions.
  22  *
  23  */
  24 
  25 #include "incls/_precompiled.incl"
  26 #include "incls/_c1_LinearScan.cpp.incl"
  27 
  28 
  29 #ifndef PRODUCT
  30 
  31   static LinearScanStatistic _stat_before_alloc;
  32   static LinearScanStatistic _stat_after_asign;
  33   static LinearScanStatistic _stat_final;
  34 
  35   static LinearScanTimers _total_timer;
  36 
  37   // helper macro for short definition of timer
  38   #define TIME_LINEAR_SCAN(timer_name)  TraceTime _block_timer("", _total_timer.timer(LinearScanTimers::timer_name), TimeLinearScan || TimeEachLinearScan, Verbose);
  39 
  40   // helper macro for short definition of trace-output inside code
  41   #define TRACE_LINEAR_SCAN(level, code)       \
  42     if (TraceLinearScanLevel >= level) {       \
  43       code;                                    \
  44     }
  45 
  46 #else
  47 
  48   #define TIME_LINEAR_SCAN(timer_name)
  49   #define TRACE_LINEAR_SCAN(level, code)
  50 
  51 #endif
  52 
  53 // Map BasicType to spill size in 32-bit words, matching VMReg's notion of words
  54 #ifdef _LP64
  55 static int type2spill_size[T_CONFLICT+1]={ -1, 0, 0, 0, 1, 1, 1, 2, 1, 1, 1, 2, 2, 2, 0, 1, -1};
  56 #else
  57 static int type2spill_size[T_CONFLICT+1]={ -1, 0, 0, 0, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 0, 1, -1};
  58 #endif
  59 
  60 
  61 // Implementation of LinearScan
  62 
  63 LinearScan::LinearScan(IR* ir, LIRGenerator* gen, FrameMap* frame_map)
  64  : _compilation(ir->compilation())
  65  , _ir(ir)
  66  , _gen(gen)
  67  , _frame_map(frame_map)
  68  , _num_virtual_regs(gen->max_virtual_register_number())
  69  , _has_fpu_registers(false)
  70  , _num_calls(-1)
  71  , _max_spills(0)
  72  , _unused_spill_slot(-1)
  73  , _intervals(0)   // initialized later with correct length
  74  , _new_intervals_from_allocation(new IntervalList())
  75  , _sorted_intervals(NULL)
  76  , _lir_ops(0)     // initialized later with correct length
  77  , _block_of_op(0) // initialized later with correct length
  78  , _has_info(0)
  79  , _has_call(0)
  80  , _scope_value_cache(0) // initialized later with correct length
  81  , _interval_in_loop(0, 0) // initialized later with correct length
  82  , _cached_blocks(*ir->linear_scan_order())
  83 #ifdef X86
  84  , _fpu_stack_allocator(NULL)
  85 #endif
  86 {
  87   // note: to use more than on instance of LinearScan at a time this function call has to
  88   //       be moved somewhere outside of this constructor:
  89   Interval::initialize();
  90 
  91   assert(this->ir() != NULL,          "check if valid");
  92   assert(this->compilation() != NULL, "check if valid");
  93   assert(this->gen() != NULL,         "check if valid");
  94   assert(this->frame_map() != NULL,   "check if valid");
  95 }
  96 
  97 
  98 // ********** functions for converting LIR-Operands to register numbers
  99 //
 100 // Emulate a flat register file comprising physical integer registers,
 101 // physical floating-point registers and virtual registers, in that order.
 102 // Virtual registers already have appropriate numbers, since V0 is
 103 // the number of physical registers.
 104 // Returns -1 for hi word if opr is a single word operand.
 105 //
 106 // Note: the inverse operation (calculating an operand for register numbers)
 107 //       is done in calc_operand_for_interval()
 108 
 109 int LinearScan::reg_num(LIR_Opr opr) {
 110   assert(opr->is_register(), "should not call this otherwise");
 111 
 112   if (opr->is_virtual_register()) {
 113     assert(opr->vreg_number() >= nof_regs, "found a virtual register with a fixed-register number");
 114     return opr->vreg_number();
 115   } else if (opr->is_single_cpu()) {
 116     return opr->cpu_regnr();
 117   } else if (opr->is_double_cpu()) {
 118     return opr->cpu_regnrLo();
 119 #ifdef X86
 120   } else if (opr->is_single_xmm()) {
 121     return opr->fpu_regnr() + pd_first_xmm_reg;
 122   } else if (opr->is_double_xmm()) {
 123     return opr->fpu_regnrLo() + pd_first_xmm_reg;
 124 #endif
 125   } else if (opr->is_single_fpu()) {
 126     return opr->fpu_regnr() + pd_first_fpu_reg;
 127   } else if (opr->is_double_fpu()) {
 128     return opr->fpu_regnrLo() + pd_first_fpu_reg;
 129   } else {
 130     ShouldNotReachHere();
 131     return -1;
 132   }
 133 }
 134 
 135 int LinearScan::reg_numHi(LIR_Opr opr) {
 136   assert(opr->is_register(), "should not call this otherwise");
 137 
 138   if (opr->is_virtual_register()) {
 139     return -1;
 140   } else if (opr->is_single_cpu()) {
 141     return -1;
 142   } else if (opr->is_double_cpu()) {
 143     return opr->cpu_regnrHi();
 144 #ifdef X86
 145   } else if (opr->is_single_xmm()) {
 146     return -1;
 147   } else if (opr->is_double_xmm()) {
 148     return -1;
 149 #endif
 150   } else if (opr->is_single_fpu()) {
 151     return -1;
 152   } else if (opr->is_double_fpu()) {
 153     return opr->fpu_regnrHi() + pd_first_fpu_reg;
 154   } else {
 155     ShouldNotReachHere();
 156     return -1;
 157   }
 158 }
 159 
 160 
 161 // ********** functions for classification of intervals
 162 
 163 bool LinearScan::is_precolored_interval(const Interval* i) {
 164   return i->reg_num() < LinearScan::nof_regs;
 165 }
 166 
 167 bool LinearScan::is_virtual_interval(const Interval* i) {
 168   return i->reg_num() >= LIR_OprDesc::vreg_base;
 169 }
 170 
 171 bool LinearScan::is_precolored_cpu_interval(const Interval* i) {
 172   return i->reg_num() < LinearScan::nof_cpu_regs;
 173 }
 174 
 175 bool LinearScan::is_virtual_cpu_interval(const Interval* i) {
 176   return i->reg_num() >= LIR_OprDesc::vreg_base && (i->type() != T_FLOAT && i->type() != T_DOUBLE);
 177 }
 178 
 179 bool LinearScan::is_precolored_fpu_interval(const Interval* i) {
 180   return i->reg_num() >= LinearScan::nof_cpu_regs && i->reg_num() < LinearScan::nof_regs;
 181 }
 182 
 183 bool LinearScan::is_virtual_fpu_interval(const Interval* i) {
 184   return i->reg_num() >= LIR_OprDesc::vreg_base && (i->type() == T_FLOAT || i->type() == T_DOUBLE);
 185 }
 186 
 187 bool LinearScan::is_in_fpu_register(const Interval* i) {
 188   // fixed intervals not needed for FPU stack allocation
 189   return i->reg_num() >= nof_regs && pd_first_fpu_reg <= i->assigned_reg() && i->assigned_reg() <= pd_last_fpu_reg;
 190 }
 191 
 192 bool LinearScan::is_oop_interval(const Interval* i) {
 193   // fixed intervals never contain oops
 194   return i->reg_num() >= nof_regs && i->type() == T_OBJECT;
 195 }
 196 
 197 
 198 // ********** General helper functions
 199 
 200 // compute next unused stack index that can be used for spilling
 201 int LinearScan::allocate_spill_slot(bool double_word) {
 202   int spill_slot;
 203   if (double_word) {
 204     if ((_max_spills & 1) == 1) {
 205       // alignment of double-word values
 206       // the hole because of the alignment is filled with the next single-word value
 207       assert(_unused_spill_slot == -1, "wasting a spill slot");
 208       _unused_spill_slot = _max_spills;
 209       _max_spills++;
 210     }
 211     spill_slot = _max_spills;
 212     _max_spills += 2;
 213 
 214   } else if (_unused_spill_slot != -1) {
 215     // re-use hole that was the result of a previous double-word alignment
 216     spill_slot = _unused_spill_slot;
 217     _unused_spill_slot = -1;
 218 
 219   } else {
 220     spill_slot = _max_spills;
 221     _max_spills++;
 222   }
 223 
 224   int result = spill_slot + LinearScan::nof_regs + frame_map()->argcount();
 225 
 226   // the class OopMapValue uses only 11 bits for storing the name of the
 227   // oop location. So a stack slot bigger than 2^11 leads to an overflow
 228   // that is not reported in product builds. Prevent this by checking the
 229   // spill slot here (altough this value and the later used location name
 230   // are slightly different)
 231   if (result > 2000) {
 232     bailout("too many stack slots used");
 233   }
 234 
 235   return result;
 236 }
 237 
 238 void LinearScan::assign_spill_slot(Interval* it) {
 239   // assign the canonical spill slot of the parent (if a part of the interval
 240   // is already spilled) or allocate a new spill slot
 241   if (it->canonical_spill_slot() >= 0) {
 242     it->assign_reg(it->canonical_spill_slot());
 243   } else {
 244     int spill = allocate_spill_slot(type2spill_size[it->type()] == 2);
 245     it->set_canonical_spill_slot(spill);
 246     it->assign_reg(spill);
 247   }
 248 }
 249 
 250 void LinearScan::propagate_spill_slots() {
 251   if (!frame_map()->finalize_frame(max_spills())) {
 252     bailout("frame too large");
 253   }
 254 }
 255 
 256 // create a new interval with a predefined reg_num
 257 // (only used for parent intervals that are created during the building phase)
 258 Interval* LinearScan::create_interval(int reg_num) {
 259   assert(_intervals.at(reg_num) == NULL, "overwriting exisiting interval");
 260 
 261   Interval* interval = new Interval(reg_num);
 262   _intervals.at_put(reg_num, interval);
 263 
 264   // assign register number for precolored intervals
 265   if (reg_num < LIR_OprDesc::vreg_base) {
 266     interval->assign_reg(reg_num);
 267   }
 268   return interval;
 269 }
 270 
 271 // assign a new reg_num to the interval and append it to the list of intervals
 272 // (only used for child intervals that are created during register allocation)
 273 void LinearScan::append_interval(Interval* it) {
 274   it->set_reg_num(_intervals.length());
 275   _intervals.append(it);
 276   _new_intervals_from_allocation->append(it);
 277 }
 278 
 279 // copy the vreg-flags if an interval is split
 280 void LinearScan::copy_register_flags(Interval* from, Interval* to) {
 281   if (gen()->is_vreg_flag_set(from->reg_num(), LIRGenerator::byte_reg)) {
 282     gen()->set_vreg_flag(to->reg_num(), LIRGenerator::byte_reg);
 283   }
 284   if (gen()->is_vreg_flag_set(from->reg_num(), LIRGenerator::callee_saved)) {
 285     gen()->set_vreg_flag(to->reg_num(), LIRGenerator::callee_saved);
 286   }
 287 
 288   // Note: do not copy the must_start_in_memory flag because it is not necessary for child
 289   //       intervals (only the very beginning of the interval must be in memory)
 290 }
 291 
 292 
 293 // ********** spill move optimization
 294 // eliminate moves from register to stack if stack slot is known to be correct
 295 
 296 // called during building of intervals
 297 void LinearScan::change_spill_definition_pos(Interval* interval, int def_pos) {
 298   assert(interval->is_split_parent(), "can only be called for split parents");
 299 
 300   switch (interval->spill_state()) {
 301     case noDefinitionFound:
 302       assert(interval->spill_definition_pos() == -1, "must no be set before");
 303       interval->set_spill_definition_pos(def_pos);
 304       interval->set_spill_state(oneDefinitionFound);
 305       break;
 306 
 307     case oneDefinitionFound:
 308       assert(def_pos <= interval->spill_definition_pos(), "positions are processed in reverse order when intervals are created");
 309       if (def_pos < interval->spill_definition_pos() - 2) {
 310         // second definition found, so no spill optimization possible for this interval
 311         interval->set_spill_state(noOptimization);
 312       } else {
 313         // two consecutive definitions (because of two-operand LIR form)
 314         assert(block_of_op_with_id(def_pos) == block_of_op_with_id(interval->spill_definition_pos()), "block must be equal");
 315       }
 316       break;
 317 
 318     case noOptimization:
 319       // nothing to do
 320       break;
 321 
 322     default:
 323       assert(false, "other states not allowed at this time");
 324   }
 325 }
 326 
 327 // called during register allocation
 328 void LinearScan::change_spill_state(Interval* interval, int spill_pos) {
 329   switch (interval->spill_state()) {
 330     case oneDefinitionFound: {
 331       int def_loop_depth = block_of_op_with_id(interval->spill_definition_pos())->loop_depth();
 332       int spill_loop_depth = block_of_op_with_id(spill_pos)->loop_depth();
 333 
 334       if (def_loop_depth < spill_loop_depth) {
 335         // the loop depth of the spilling position is higher then the loop depth
 336         // at the definition of the interval -> move write to memory out of loop
 337         // by storing at definitin of the interval
 338         interval->set_spill_state(storeAtDefinition);
 339       } else {
 340         // the interval is currently spilled only once, so for now there is no
 341         // reason to store the interval at the definition
 342         interval->set_spill_state(oneMoveInserted);
 343       }
 344       break;
 345     }
 346 
 347     case oneMoveInserted: {
 348       // the interval is spilled more then once, so it is better to store it to
 349       // memory at the definition
 350       interval->set_spill_state(storeAtDefinition);
 351       break;
 352     }
 353 
 354     case storeAtDefinition:
 355     case startInMemory:
 356     case noOptimization:
 357     case noDefinitionFound:
 358       // nothing to do
 359       break;
 360 
 361     default:
 362       assert(false, "other states not allowed at this time");
 363   }
 364 }
 365 
 366 
 367 bool LinearScan::must_store_at_definition(const Interval* i) {
 368   return i->is_split_parent() && i->spill_state() == storeAtDefinition;
 369 }
 370 
 371 // called once before asignment of register numbers
 372 void LinearScan::eliminate_spill_moves() {
 373   TIME_LINEAR_SCAN(timer_eliminate_spill_moves);
 374   TRACE_LINEAR_SCAN(3, tty->print_cr("***** Eliminating unnecessary spill moves"));
 375 
 376   // collect all intervals that must be stored after their definion.
 377   // the list is sorted by Interval::spill_definition_pos
 378   Interval* interval;
 379   Interval* temp_list;
 380   create_unhandled_lists(&interval, &temp_list, must_store_at_definition, NULL);
 381 
 382 #ifdef ASSERT
 383   Interval* prev = NULL;
 384   Interval* temp = interval;
 385   while (temp != Interval::end()) {
 386     assert(temp->spill_definition_pos() > 0, "invalid spill definition pos");
 387     if (prev != NULL) {
 388       assert(temp->from() >= prev->from(), "intervals not sorted");
 389       assert(temp->spill_definition_pos() >= prev->spill_definition_pos(), "when intervals are sorted by from, then they must also be sorted by spill_definition_pos");
 390     }
 391 
 392     assert(temp->canonical_spill_slot() >= LinearScan::nof_regs, "interval has no spill slot assigned");
 393     assert(temp->spill_definition_pos() >= temp->from(), "invalid order");
 394     assert(temp->spill_definition_pos() <= temp->from() + 2, "only intervals defined once at their start-pos can be optimized");
 395 
 396     TRACE_LINEAR_SCAN(4, tty->print_cr("interval %d (from %d to %d) must be stored at %d", temp->reg_num(), temp->from(), temp->to(), temp->spill_definition_pos()));
 397 
 398     temp = temp->next();
 399   }
 400 #endif
 401 
 402   LIR_InsertionBuffer insertion_buffer;
 403   int num_blocks = block_count();
 404   for (int i = 0; i < num_blocks; i++) {
 405     BlockBegin* block = block_at(i);
 406     LIR_OpList* instructions = block->lir()->instructions_list();
 407     int         num_inst = instructions->length();
 408     bool        has_new = false;
 409 
 410     // iterate all instructions of the block. skip the first because it is always a label
 411     for (int j = 1; j < num_inst; j++) {
 412       LIR_Op* op = instructions->at(j);
 413       int op_id = op->id();
 414 
 415       if (op_id == -1) {
 416         // remove move from register to stack if the stack slot is guaranteed to be correct.
 417         // only moves that have been inserted by LinearScan can be removed.
 418         assert(op->code() == lir_move, "only moves can have a op_id of -1");
 419         assert(op->as_Op1() != NULL, "move must be LIR_Op1");
 420         assert(op->as_Op1()->result_opr()->is_virtual(), "LinearScan inserts only moves to virtual registers");
 421 
 422         LIR_Op1* op1 = (LIR_Op1*)op;
 423         Interval* interval = interval_at(op1->result_opr()->vreg_number());
 424 
 425         if (interval->assigned_reg() >= LinearScan::nof_regs && interval->always_in_memory()) {
 426           // move target is a stack slot that is always correct, so eliminate instruction
 427           TRACE_LINEAR_SCAN(4, tty->print_cr("eliminating move from interval %d to %d", op1->in_opr()->vreg_number(), op1->result_opr()->vreg_number()));
 428           instructions->at_put(j, NULL); // NULL-instructions are deleted by assign_reg_num
 429         }
 430 
 431       } else {
 432         // insert move from register to stack just after the beginning of the interval
 433         assert(interval == Interval::end() || interval->spill_definition_pos() >= op_id, "invalid order");
 434         assert(interval == Interval::end() || (interval->is_split_parent() && interval->spill_state() == storeAtDefinition), "invalid interval");
 435 
 436         while (interval != Interval::end() && interval->spill_definition_pos() == op_id) {
 437           if (!has_new) {
 438             // prepare insertion buffer (appended when all instructions of the block are processed)
 439             insertion_buffer.init(block->lir());
 440             has_new = true;
 441           }
 442 
 443           LIR_Opr from_opr = operand_for_interval(interval);
 444           LIR_Opr to_opr = canonical_spill_opr(interval);
 445           assert(from_opr->is_fixed_cpu() || from_opr->is_fixed_fpu(), "from operand must be a register");
 446           assert(to_opr->is_stack(), "to operand must be a stack slot");
 447 
 448           insertion_buffer.move(j, from_opr, to_opr);
 449           TRACE_LINEAR_SCAN(4, tty->print_cr("inserting move after definition of interval %d to stack slot %d at op_id %d", interval->reg_num(), interval->canonical_spill_slot() - LinearScan::nof_regs, op_id));
 450 
 451           interval = interval->next();
 452         }
 453       }
 454     } // end of instruction iteration
 455 
 456     if (has_new) {
 457       block->lir()->append(&insertion_buffer);
 458     }
 459   } // end of block iteration
 460 
 461   assert(interval == Interval::end(), "missed an interval");
 462 }
 463 
 464 
 465 // ********** Phase 1: number all instructions in all blocks
 466 // Compute depth-first and linear scan block orders, and number LIR_Op nodes for linear scan.
 467 
 468 void LinearScan::number_instructions() {
 469   {
 470     // dummy-timer to measure the cost of the timer itself
 471     // (this time is then subtracted from all other timers to get the real value)
 472     TIME_LINEAR_SCAN(timer_do_nothing);
 473   }
 474   TIME_LINEAR_SCAN(timer_number_instructions);
 475 
 476   // Assign IDs to LIR nodes and build a mapping, lir_ops, from ID to LIR_Op node.
 477   int num_blocks = block_count();
 478   int num_instructions = 0;
 479   int i;
 480   for (i = 0; i < num_blocks; i++) {
 481     num_instructions += block_at(i)->lir()->instructions_list()->length();
 482   }
 483 
 484   // initialize with correct length
 485   _lir_ops = LIR_OpArray(num_instructions);
 486   _block_of_op = BlockBeginArray(num_instructions);
 487 
 488   int op_id = 0;
 489   int idx = 0;
 490 
 491   for (i = 0; i < num_blocks; i++) {
 492     BlockBegin* block = block_at(i);
 493     block->set_first_lir_instruction_id(op_id);
 494     LIR_OpList* instructions = block->lir()->instructions_list();
 495 
 496     int num_inst = instructions->length();
 497     for (int j = 0; j < num_inst; j++) {
 498       LIR_Op* op = instructions->at(j);
 499       op->set_id(op_id);
 500 
 501       _lir_ops.at_put(idx, op);
 502       _block_of_op.at_put(idx, block);
 503       assert(lir_op_with_id(op_id) == op, "must match");
 504 
 505       idx++;
 506       op_id += 2; // numbering of lir_ops by two
 507     }
 508     block->set_last_lir_instruction_id(op_id - 2);
 509   }
 510   assert(idx == num_instructions, "must match");
 511   assert(idx * 2 == op_id, "must match");
 512 
 513   _has_call = BitMap(num_instructions); _has_call.clear();
 514   _has_info = BitMap(num_instructions); _has_info.clear();
 515 }
 516 
 517 
 518 // ********** Phase 2: compute local live sets separately for each block
 519 // (sets live_gen and live_kill for each block)
 520 
 521 void LinearScan::set_live_gen_kill(Value value, LIR_Op* op, BitMap& live_gen, BitMap& live_kill) {
 522   LIR_Opr opr = value->operand();
 523   Constant* con = value->as_Constant();
 524 
 525   // check some asumptions about debug information
 526   assert(!value->type()->is_illegal(), "if this local is used by the interpreter it shouldn't be of indeterminate type");
 527   assert(con == NULL || opr->is_virtual() || opr->is_constant() || opr->is_illegal(), "asumption: Constant instructions have only constant operands");
 528   assert(con != NULL || opr->is_virtual(), "asumption: non-Constant instructions have only virtual operands");
 529 
 530   if ((con == NULL || con->is_pinned()) && opr->is_register()) {
 531     assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
 532     int reg = opr->vreg_number();
 533     if (!live_kill.at(reg)) {
 534       live_gen.set_bit(reg);
 535       TRACE_LINEAR_SCAN(4, tty->print_cr("  Setting live_gen for value %c%d, LIR op_id %d, register number %d", value->type()->tchar(), value->id(), op->id(), reg));
 536     }
 537   }
 538 }
 539 
 540 
 541 void LinearScan::compute_local_live_sets() {
 542   TIME_LINEAR_SCAN(timer_compute_local_live_sets);
 543 
 544   int  num_blocks = block_count();
 545   int  live_size = live_set_size();
 546   bool local_has_fpu_registers = false;
 547   int  local_num_calls = 0;
 548   LIR_OpVisitState visitor;
 549 
 550   BitMap2D local_interval_in_loop = BitMap2D(_num_virtual_regs, num_loops());
 551   local_interval_in_loop.clear();
 552 
 553   // iterate all blocks
 554   for (int i = 0; i < num_blocks; i++) {
 555     BlockBegin* block = block_at(i);
 556 
 557     BitMap live_gen(live_size);  live_gen.clear();
 558     BitMap live_kill(live_size); live_kill.clear();
 559 
 560     if (block->is_set(BlockBegin::exception_entry_flag)) {
 561       // Phi functions at the begin of an exception handler are
 562       // implicitly defined (= killed) at the beginning of the block.
 563       for_each_phi_fun(block, phi,
 564         live_kill.set_bit(phi->operand()->vreg_number())
 565       );
 566     }
 567 
 568     LIR_OpList* instructions = block->lir()->instructions_list();
 569     int num_inst = instructions->length();
 570 
 571     // iterate all instructions of the block. skip the first because it is always a label
 572     assert(visitor.no_operands(instructions->at(0)), "first operation must always be a label");
 573     for (int j = 1; j < num_inst; j++) {
 574       LIR_Op* op = instructions->at(j);
 575 
 576       // visit operation to collect all operands
 577       visitor.visit(op);
 578 
 579       if (visitor.has_call()) {
 580         _has_call.set_bit(op->id() >> 1);
 581         local_num_calls++;
 582       }
 583       if (visitor.info_count() > 0) {
 584         _has_info.set_bit(op->id() >> 1);
 585       }
 586 
 587       // iterate input operands of instruction
 588       int k, n, reg;
 589       n = visitor.opr_count(LIR_OpVisitState::inputMode);
 590       for (k = 0; k < n; k++) {
 591         LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::inputMode, k);
 592         assert(opr->is_register(), "visitor should only return register operands");
 593 
 594         if (opr->is_virtual_register()) {
 595           assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
 596           reg = opr->vreg_number();
 597           if (!live_kill.at(reg)) {
 598             live_gen.set_bit(reg);
 599             TRACE_LINEAR_SCAN(4, tty->print_cr("  Setting live_gen for register %d at instruction %d", reg, op->id()));
 600           }
 601           if (block->loop_index() >= 0) {
 602             local_interval_in_loop.set_bit(reg, block->loop_index());
 603           }
 604           local_has_fpu_registers = local_has_fpu_registers || opr->is_virtual_fpu();
 605         }
 606 
 607 #ifdef ASSERT
 608         // fixed intervals are never live at block boundaries, so
 609         // they need not be processed in live sets.
 610         // this is checked by these assertions to be sure about it.
 611         // the entry block may have incoming values in registers, which is ok.
 612         if (!opr->is_virtual_register() && block != ir()->start()) {
 613           reg = reg_num(opr);
 614           if (is_processed_reg_num(reg)) {
 615             assert(live_kill.at(reg), "using fixed register that is not defined in this block");
 616           }
 617           reg = reg_numHi(opr);
 618           if (is_valid_reg_num(reg) && is_processed_reg_num(reg)) {
 619             assert(live_kill.at(reg), "using fixed register that is not defined in this block");
 620           }
 621         }
 622 #endif
 623       }
 624 
 625       // Add uses of live locals from interpreter's point of view for proper debug information generation
 626       n = visitor.info_count();
 627       for (k = 0; k < n; k++) {
 628         CodeEmitInfo* info = visitor.info_at(k);
 629         ValueStack* stack = info->stack();
 630         for_each_state_value(stack, value,
 631           set_live_gen_kill(value, op, live_gen, live_kill)
 632         );
 633       }
 634 
 635       // iterate temp operands of instruction
 636       n = visitor.opr_count(LIR_OpVisitState::tempMode);
 637       for (k = 0; k < n; k++) {
 638         LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::tempMode, k);
 639         assert(opr->is_register(), "visitor should only return register operands");
 640 
 641         if (opr->is_virtual_register()) {
 642           assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
 643           reg = opr->vreg_number();
 644           live_kill.set_bit(reg);
 645           if (block->loop_index() >= 0) {
 646             local_interval_in_loop.set_bit(reg, block->loop_index());
 647           }
 648           local_has_fpu_registers = local_has_fpu_registers || opr->is_virtual_fpu();
 649         }
 650 
 651 #ifdef ASSERT
 652         // fixed intervals are never live at block boundaries, so
 653         // they need not be processed in live sets
 654         // process them only in debug mode so that this can be checked
 655         if (!opr->is_virtual_register()) {
 656           reg = reg_num(opr);
 657           if (is_processed_reg_num(reg)) {
 658             live_kill.set_bit(reg_num(opr));
 659           }
 660           reg = reg_numHi(opr);
 661           if (is_valid_reg_num(reg) && is_processed_reg_num(reg)) {
 662             live_kill.set_bit(reg);
 663           }
 664         }
 665 #endif
 666       }
 667 
 668       // iterate output operands of instruction
 669       n = visitor.opr_count(LIR_OpVisitState::outputMode);
 670       for (k = 0; k < n; k++) {
 671         LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::outputMode, k);
 672         assert(opr->is_register(), "visitor should only return register operands");
 673 
 674         if (opr->is_virtual_register()) {
 675           assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
 676           reg = opr->vreg_number();
 677           live_kill.set_bit(reg);
 678           if (block->loop_index() >= 0) {
 679             local_interval_in_loop.set_bit(reg, block->loop_index());
 680           }
 681           local_has_fpu_registers = local_has_fpu_registers || opr->is_virtual_fpu();
 682         }
 683 
 684 #ifdef ASSERT
 685         // fixed intervals are never live at block boundaries, so
 686         // they need not be processed in live sets
 687         // process them only in debug mode so that this can be checked
 688         if (!opr->is_virtual_register()) {
 689           reg = reg_num(opr);
 690           if (is_processed_reg_num(reg)) {
 691             live_kill.set_bit(reg_num(opr));
 692           }
 693           reg = reg_numHi(opr);
 694           if (is_valid_reg_num(reg) && is_processed_reg_num(reg)) {
 695             live_kill.set_bit(reg);
 696           }
 697         }
 698 #endif
 699       }
 700     } // end of instruction iteration
 701 
 702     block->set_live_gen (live_gen);
 703     block->set_live_kill(live_kill);
 704     block->set_live_in  (BitMap(live_size)); block->live_in().clear();
 705     block->set_live_out (BitMap(live_size)); block->live_out().clear();
 706 
 707     TRACE_LINEAR_SCAN(4, tty->print("live_gen  B%d ", block->block_id()); print_bitmap(block->live_gen()));
 708     TRACE_LINEAR_SCAN(4, tty->print("live_kill B%d ", block->block_id()); print_bitmap(block->live_kill()));
 709   } // end of block iteration
 710 
 711   // propagate local calculated information into LinearScan object
 712   _has_fpu_registers = local_has_fpu_registers;
 713   compilation()->set_has_fpu_code(local_has_fpu_registers);
 714 
 715   _num_calls = local_num_calls;
 716   _interval_in_loop = local_interval_in_loop;
 717 }
 718 
 719 
 720 // ********** Phase 3: perform a backward dataflow analysis to compute global live sets
 721 // (sets live_in and live_out for each block)
 722 
 723 void LinearScan::compute_global_live_sets() {
 724   TIME_LINEAR_SCAN(timer_compute_global_live_sets);
 725 
 726   int  num_blocks = block_count();
 727   bool change_occurred;
 728   bool change_occurred_in_block;
 729   int  iteration_count = 0;
 730   BitMap live_out(live_set_size()); live_out.clear(); // scratch set for calculations
 731 
 732   // Perform a backward dataflow analysis to compute live_out and live_in for each block.
 733   // The loop is executed until a fixpoint is reached (no changes in an iteration)
 734   // Exception handlers must be processed because not all live values are
 735   // present in the state array, e.g. because of global value numbering
 736   do {
 737     change_occurred = false;
 738 
 739     // iterate all blocks in reverse order
 740     for (int i = num_blocks - 1; i >= 0; i--) {
 741       BlockBegin* block = block_at(i);
 742 
 743       change_occurred_in_block = false;
 744 
 745       // live_out(block) is the union of live_in(sux), for successors sux of block
 746       int n = block->number_of_sux();
 747       int e = block->number_of_exception_handlers();
 748       if (n + e > 0) {
 749         // block has successors
 750         if (n > 0) {
 751           live_out.set_from(block->sux_at(0)->live_in());
 752           for (int j = 1; j < n; j++) {
 753             live_out.set_union(block->sux_at(j)->live_in());
 754           }
 755         } else {
 756           live_out.clear();
 757         }
 758         for (int j = 0; j < e; j++) {
 759           live_out.set_union(block->exception_handler_at(j)->live_in());
 760         }
 761 
 762         if (!block->live_out().is_same(live_out)) {
 763           // A change occurred.  Swap the old and new live out sets to avoid copying.
 764           BitMap temp = block->live_out();
 765           block->set_live_out(live_out);
 766           live_out = temp;
 767 
 768           change_occurred = true;
 769           change_occurred_in_block = true;
 770         }
 771       }
 772 
 773       if (iteration_count == 0 || change_occurred_in_block) {
 774         // live_in(block) is the union of live_gen(block) with (live_out(block) & !live_kill(block))
 775         // note: live_in has to be computed only in first iteration or if live_out has changed!
 776         BitMap live_in = block->live_in();
 777         live_in.set_from(block->live_out());
 778         live_in.set_difference(block->live_kill());
 779         live_in.set_union(block->live_gen());
 780       }
 781 
 782 #ifndef PRODUCT
 783       if (TraceLinearScanLevel >= 4) {
 784         char c = ' ';
 785         if (iteration_count == 0 || change_occurred_in_block) {
 786           c = '*';
 787         }
 788         tty->print("(%d) live_in%c  B%d ", iteration_count, c, block->block_id()); print_bitmap(block->live_in());
 789         tty->print("(%d) live_out%c B%d ", iteration_count, c, block->block_id()); print_bitmap(block->live_out());
 790       }
 791 #endif
 792     }
 793     iteration_count++;
 794 
 795     if (change_occurred && iteration_count > 50) {
 796       BAILOUT("too many iterations in compute_global_live_sets");
 797     }
 798   } while (change_occurred);
 799 
 800 
 801 #ifdef ASSERT
 802   // check that fixed intervals are not live at block boundaries
 803   // (live set must be empty at fixed intervals)
 804   for (int i = 0; i < num_blocks; i++) {
 805     BlockBegin* block = block_at(i);
 806     for (int j = 0; j < LIR_OprDesc::vreg_base; j++) {
 807       assert(block->live_in().at(j)  == false, "live_in  set of fixed register must be empty");
 808       assert(block->live_out().at(j) == false, "live_out set of fixed register must be empty");
 809       assert(block->live_gen().at(j) == false, "live_gen set of fixed register must be empty");
 810     }
 811   }
 812 #endif
 813 
 814   // check that the live_in set of the first block is empty
 815   BitMap live_in_args(ir()->start()->live_in().size());
 816   live_in_args.clear();
 817   if (!ir()->start()->live_in().is_same(live_in_args)) {
 818 #ifdef ASSERT
 819     tty->print_cr("Error: live_in set of first block must be empty (when this fails, virtual registers are used before they are defined)");
 820     tty->print_cr("affected registers:");
 821     print_bitmap(ir()->start()->live_in());
 822 
 823     // print some additional information to simplify debugging
 824     for (unsigned int i = 0; i < ir()->start()->live_in().size(); i++) {
 825       if (ir()->start()->live_in().at(i)) {
 826         Instruction* instr = gen()->instruction_for_vreg(i);
 827         tty->print_cr("* vreg %d (HIR instruction %c%d)", i, instr == NULL ? ' ' : instr->type()->tchar(), instr == NULL ? 0 : instr->id());
 828 
 829         for (int j = 0; j < num_blocks; j++) {
 830           BlockBegin* block = block_at(j);
 831           if (block->live_gen().at(i)) {
 832             tty->print_cr("  used in block B%d", block->block_id());
 833           }
 834           if (block->live_kill().at(i)) {
 835             tty->print_cr("  defined in block B%d", block->block_id());
 836           }
 837         }
 838       }
 839     }
 840 
 841 #endif
 842     // when this fails, virtual registers are used before they are defined.
 843     assert(false, "live_in set of first block must be empty");
 844     // bailout of if this occurs in product mode.
 845     bailout("live_in set of first block not empty");
 846   }
 847 }
 848 
 849 
 850 // ********** Phase 4: build intervals
 851 // (fills the list _intervals)
 852 
 853 void LinearScan::add_use(Value value, int from, int to, IntervalUseKind use_kind) {
 854   assert(!value->type()->is_illegal(), "if this value is used by the interpreter it shouldn't be of indeterminate type");
 855   LIR_Opr opr = value->operand();
 856   Constant* con = value->as_Constant();
 857 
 858   if ((con == NULL || con->is_pinned()) && opr->is_register()) {
 859     assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
 860     add_use(opr, from, to, use_kind);
 861   }
 862 }
 863 
 864 
 865 void LinearScan::add_def(LIR_Opr opr, int def_pos, IntervalUseKind use_kind) {
 866   TRACE_LINEAR_SCAN(2, tty->print(" def "); opr->print(tty); tty->print_cr(" def_pos %d (%d)", def_pos, use_kind));
 867   assert(opr->is_register(), "should not be called otherwise");
 868 
 869   if (opr->is_virtual_register()) {
 870     assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
 871     add_def(opr->vreg_number(), def_pos, use_kind, opr->type_register());
 872 
 873   } else {
 874     int reg = reg_num(opr);
 875     if (is_processed_reg_num(reg)) {
 876       add_def(reg, def_pos, use_kind, opr->type_register());
 877     }
 878     reg = reg_numHi(opr);
 879     if (is_valid_reg_num(reg) && is_processed_reg_num(reg)) {
 880       add_def(reg, def_pos, use_kind, opr->type_register());
 881     }
 882   }
 883 }
 884 
 885 void LinearScan::add_use(LIR_Opr opr, int from, int to, IntervalUseKind use_kind) {
 886   TRACE_LINEAR_SCAN(2, tty->print(" use "); opr->print(tty); tty->print_cr(" from %d to %d (%d)", from, to, use_kind));
 887   assert(opr->is_register(), "should not be called otherwise");
 888 
 889   if (opr->is_virtual_register()) {
 890     assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
 891     add_use(opr->vreg_number(), from, to, use_kind, opr->type_register());
 892 
 893   } else {
 894     int reg = reg_num(opr);
 895     if (is_processed_reg_num(reg)) {
 896       add_use(reg, from, to, use_kind, opr->type_register());
 897     }
 898     reg = reg_numHi(opr);
 899     if (is_valid_reg_num(reg) && is_processed_reg_num(reg)) {
 900       add_use(reg, from, to, use_kind, opr->type_register());
 901     }
 902   }
 903 }
 904 
 905 void LinearScan::add_temp(LIR_Opr opr, int temp_pos, IntervalUseKind use_kind) {
 906   TRACE_LINEAR_SCAN(2, tty->print(" temp "); opr->print(tty); tty->print_cr(" temp_pos %d (%d)", temp_pos, use_kind));
 907   assert(opr->is_register(), "should not be called otherwise");
 908 
 909   if (opr->is_virtual_register()) {
 910     assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
 911     add_temp(opr->vreg_number(), temp_pos, use_kind, opr->type_register());
 912 
 913   } else {
 914     int reg = reg_num(opr);
 915     if (is_processed_reg_num(reg)) {
 916       add_temp(reg, temp_pos, use_kind, opr->type_register());
 917     }
 918     reg = reg_numHi(opr);
 919     if (is_valid_reg_num(reg) && is_processed_reg_num(reg)) {
 920       add_temp(reg, temp_pos, use_kind, opr->type_register());
 921     }
 922   }
 923 }
 924 
 925 
 926 void LinearScan::add_def(int reg_num, int def_pos, IntervalUseKind use_kind, BasicType type) {
 927   Interval* interval = interval_at(reg_num);
 928   if (interval != NULL) {
 929     assert(interval->reg_num() == reg_num, "wrong interval");
 930 
 931     if (type != T_ILLEGAL) {
 932       interval->set_type(type);
 933     }
 934 
 935     Range* r = interval->first();
 936     if (r->from() <= def_pos) {
 937       // Update the starting point (when a range is first created for a use, its
 938       // start is the beginning of the current block until a def is encountered.)
 939       r->set_from(def_pos);
 940       interval->add_use_pos(def_pos, use_kind);
 941 
 942     } else {
 943       // Dead value - make vacuous interval
 944       // also add use_kind for dead intervals
 945       interval->add_range(def_pos, def_pos + 1);
 946       interval->add_use_pos(def_pos, use_kind);
 947       TRACE_LINEAR_SCAN(2, tty->print_cr("Warning: def of reg %d at %d occurs without use", reg_num, def_pos));
 948     }
 949 
 950   } else {
 951     // Dead value - make vacuous interval
 952     // also add use_kind for dead intervals
 953     interval = create_interval(reg_num);
 954     if (type != T_ILLEGAL) {
 955       interval->set_type(type);
 956     }
 957 
 958     interval->add_range(def_pos, def_pos + 1);
 959     interval->add_use_pos(def_pos, use_kind);
 960     TRACE_LINEAR_SCAN(2, tty->print_cr("Warning: dead value %d at %d in live intervals", reg_num, def_pos));
 961   }
 962 
 963   change_spill_definition_pos(interval, def_pos);
 964   if (use_kind == noUse && interval->spill_state() <= startInMemory) {
 965         // detection of method-parameters and roundfp-results
 966         // TODO: move this directly to position where use-kind is computed
 967     interval->set_spill_state(startInMemory);
 968   }
 969 }
 970 
 971 void LinearScan::add_use(int reg_num, int from, int to, IntervalUseKind use_kind, BasicType type) {
 972   Interval* interval = interval_at(reg_num);
 973   if (interval == NULL) {
 974     interval = create_interval(reg_num);
 975   }
 976   assert(interval->reg_num() == reg_num, "wrong interval");
 977 
 978   if (type != T_ILLEGAL) {
 979     interval->set_type(type);
 980   }
 981 
 982   interval->add_range(from, to);
 983   interval->add_use_pos(to, use_kind);
 984 }
 985 
 986 void LinearScan::add_temp(int reg_num, int temp_pos, IntervalUseKind use_kind, BasicType type) {
 987   Interval* interval = interval_at(reg_num);
 988   if (interval == NULL) {
 989     interval = create_interval(reg_num);
 990   }
 991   assert(interval->reg_num() == reg_num, "wrong interval");
 992 
 993   if (type != T_ILLEGAL) {
 994     interval->set_type(type);
 995   }
 996 
 997   interval->add_range(temp_pos, temp_pos + 1);
 998   interval->add_use_pos(temp_pos, use_kind);
 999 }
1000 
1001 
1002 // the results of this functions are used for optimizing spilling and reloading
1003 // if the functions return shouldHaveRegister and the interval is spilled,
1004 // it is not reloaded to a register.
1005 IntervalUseKind LinearScan::use_kind_of_output_operand(LIR_Op* op, LIR_Opr opr) {
1006   if (op->code() == lir_move) {
1007     assert(op->as_Op1() != NULL, "lir_move must be LIR_Op1");
1008     LIR_Op1* move = (LIR_Op1*)op;
1009     LIR_Opr res = move->result_opr();
1010     bool result_in_memory = res->is_virtual() && gen()->is_vreg_flag_set(res->vreg_number(), LIRGenerator::must_start_in_memory);
1011 
1012     if (result_in_memory) {
1013       // Begin of an interval with must_start_in_memory set.
1014       // This interval will always get a stack slot first, so return noUse.
1015       return noUse;
1016 
1017     } else if (move->in_opr()->is_stack()) {
1018       // method argument (condition must be equal to handle_method_arguments)
1019       return noUse;
1020 
1021     } else if (move->in_opr()->is_register() && move->result_opr()->is_register()) {
1022       // Move from register to register
1023       if (block_of_op_with_id(op->id())->is_set(BlockBegin::osr_entry_flag)) {
1024         // special handling of phi-function moves inside osr-entry blocks
1025         // input operand must have a register instead of output operand (leads to better register allocation)
1026         return shouldHaveRegister;
1027       }
1028     }
1029   }
1030 
1031   if (opr->is_virtual() &&
1032       gen()->is_vreg_flag_set(opr->vreg_number(), LIRGenerator::must_start_in_memory)) {
1033     // result is a stack-slot, so prevent immediate reloading
1034     return noUse;
1035   }
1036 
1037   // all other operands require a register
1038   return mustHaveRegister;
1039 }
1040 
1041 IntervalUseKind LinearScan::use_kind_of_input_operand(LIR_Op* op, LIR_Opr opr) {
1042   if (op->code() == lir_move) {
1043     assert(op->as_Op1() != NULL, "lir_move must be LIR_Op1");
1044     LIR_Op1* move = (LIR_Op1*)op;
1045     LIR_Opr res = move->result_opr();
1046     bool result_in_memory = res->is_virtual() && gen()->is_vreg_flag_set(res->vreg_number(), LIRGenerator::must_start_in_memory);
1047 
1048     if (result_in_memory) {
1049       // Move to an interval with must_start_in_memory set.
1050       // To avoid moves from stack to stack (not allowed) force the input operand to a register
1051       return mustHaveRegister;
1052 
1053     } else if (move->in_opr()->is_register() && move->result_opr()->is_register()) {
1054       // Move from register to register
1055       if (block_of_op_with_id(op->id())->is_set(BlockBegin::osr_entry_flag)) {
1056         // special handling of phi-function moves inside osr-entry blocks
1057         // input operand must have a register instead of output operand (leads to better register allocation)
1058         return mustHaveRegister;
1059       }
1060 
1061       // The input operand is not forced to a register (moves from stack to register are allowed),
1062       // but it is faster if the input operand is in a register
1063       return shouldHaveRegister;
1064     }
1065   }
1066 
1067 
1068 #ifdef X86
1069   if (op->code() == lir_cmove) {
1070     // conditional moves can handle stack operands
1071     assert(op->result_opr()->is_register(), "result must always be in a register");
1072     return shouldHaveRegister;
1073   }
1074 
1075   // optimizations for second input operand of arithmehtic operations on Intel
1076   // this operand is allowed to be on the stack in some cases
1077   BasicType opr_type = opr->type_register();
1078   if (opr_type == T_FLOAT || opr_type == T_DOUBLE) {
1079     if ((UseSSE == 1 && opr_type == T_FLOAT) || UseSSE >= 2) {
1080       // SSE float instruction (T_DOUBLE only supported with SSE2)
1081       switch (op->code()) {
1082         case lir_cmp:
1083         case lir_add:
1084         case lir_sub:
1085         case lir_mul:
1086         case lir_div:
1087         {
1088           assert(op->as_Op2() != NULL, "must be LIR_Op2");
1089           LIR_Op2* op2 = (LIR_Op2*)op;
1090           if (op2->in_opr1() != op2->in_opr2() && op2->in_opr2() == opr) {
1091             assert((op2->result_opr()->is_register() || op->code() == lir_cmp) && op2->in_opr1()->is_register(), "cannot mark second operand as stack if others are not in register");
1092             return shouldHaveRegister;
1093           }
1094         }
1095       }
1096     } else {
1097       // FPU stack float instruction
1098       switch (op->code()) {
1099         case lir_add:
1100         case lir_sub:
1101         case lir_mul:
1102         case lir_div:
1103         {
1104           assert(op->as_Op2() != NULL, "must be LIR_Op2");
1105           LIR_Op2* op2 = (LIR_Op2*)op;
1106           if (op2->in_opr1() != op2->in_opr2() && op2->in_opr2() == opr) {
1107             assert((op2->result_opr()->is_register() || op->code() == lir_cmp) && op2->in_opr1()->is_register(), "cannot mark second operand as stack if others are not in register");
1108             return shouldHaveRegister;
1109           }
1110         }
1111       }
1112     }
1113 
1114   } else if (opr_type != T_LONG) {
1115     // integer instruction (note: long operands must always be in register)
1116     switch (op->code()) {
1117       case lir_cmp:
1118       case lir_add:
1119       case lir_sub:
1120       case lir_logic_and:
1121       case lir_logic_or:
1122       case lir_logic_xor:
1123       {
1124         assert(op->as_Op2() != NULL, "must be LIR_Op2");
1125         LIR_Op2* op2 = (LIR_Op2*)op;
1126         if (op2->in_opr1() != op2->in_opr2() && op2->in_opr2() == opr) {
1127           assert((op2->result_opr()->is_register() || op->code() == lir_cmp) && op2->in_opr1()->is_register(), "cannot mark second operand as stack if others are not in register");
1128           return shouldHaveRegister;
1129         }
1130       }
1131     }
1132   }
1133 #endif // X86
1134 
1135   // all other operands require a register
1136   return mustHaveRegister;
1137 }
1138 
1139 
1140 void LinearScan::handle_method_arguments(LIR_Op* op) {
1141   // special handling for method arguments (moves from stack to virtual register):
1142   // the interval gets no register assigned, but the stack slot.
1143   // it is split before the first use by the register allocator.
1144 
1145   if (op->code() == lir_move) {
1146     assert(op->as_Op1() != NULL, "must be LIR_Op1");
1147     LIR_Op1* move = (LIR_Op1*)op;
1148 
1149     if (move->in_opr()->is_stack()) {
1150 #ifdef ASSERT
1151       int arg_size = compilation()->method()->arg_size();
1152       LIR_Opr o = move->in_opr();
1153       if (o->is_single_stack()) {
1154         assert(o->single_stack_ix() >= 0 && o->single_stack_ix() < arg_size, "out of range");
1155       } else if (o->is_double_stack()) {
1156         assert(o->double_stack_ix() >= 0 && o->double_stack_ix() < arg_size, "out of range");
1157       } else {
1158         ShouldNotReachHere();
1159       }
1160 
1161       assert(move->id() > 0, "invalid id");
1162       assert(block_of_op_with_id(move->id())->number_of_preds() == 0, "move from stack must be in first block");
1163       assert(move->result_opr()->is_virtual(), "result of move must be a virtual register");
1164 
1165       TRACE_LINEAR_SCAN(4, tty->print_cr("found move from stack slot %d to vreg %d", o->is_single_stack() ? o->single_stack_ix() : o->double_stack_ix(), reg_num(move->result_opr())));
1166 #endif
1167 
1168       Interval* interval = interval_at(reg_num(move->result_opr()));
1169 
1170       int stack_slot = LinearScan::nof_regs + (move->in_opr()->is_single_stack() ? move->in_opr()->single_stack_ix() : move->in_opr()->double_stack_ix());
1171       interval->set_canonical_spill_slot(stack_slot);
1172       interval->assign_reg(stack_slot);
1173     }
1174   }
1175 }
1176 
1177 void LinearScan::handle_doubleword_moves(LIR_Op* op) {
1178   // special handling for doubleword move from memory to register:
1179   // in this case the registers of the input address and the result
1180   // registers must not overlap -> add a temp range for the input registers
1181   if (op->code() == lir_move) {
1182     assert(op->as_Op1() != NULL, "must be LIR_Op1");
1183     LIR_Op1* move = (LIR_Op1*)op;
1184 
1185     if (move->result_opr()->is_double_cpu() && move->in_opr()->is_pointer()) {
1186       LIR_Address* address = move->in_opr()->as_address_ptr();
1187       if (address != NULL) {
1188         if (address->base()->is_valid()) {
1189           add_temp(address->base(), op->id(), noUse);
1190         }
1191         if (address->index()->is_valid()) {
1192           add_temp(address->index(), op->id(), noUse);
1193         }
1194       }
1195     }
1196   }
1197 }
1198 
1199 void LinearScan::add_register_hints(LIR_Op* op) {
1200   switch (op->code()) {
1201     case lir_move:      // fall through
1202     case lir_convert: {
1203       assert(op->as_Op1() != NULL, "lir_move, lir_convert must be LIR_Op1");
1204       LIR_Op1* move = (LIR_Op1*)op;
1205 
1206       LIR_Opr move_from = move->in_opr();
1207       LIR_Opr move_to = move->result_opr();
1208 
1209       if (move_to->is_register() && move_from->is_register()) {
1210         Interval* from = interval_at(reg_num(move_from));
1211         Interval* to = interval_at(reg_num(move_to));
1212         if (from != NULL && to != NULL) {
1213           to->set_register_hint(from);
1214           TRACE_LINEAR_SCAN(4, tty->print_cr("operation at op_id %d: added hint from interval %d to %d", move->id(), from->reg_num(), to->reg_num()));
1215         }
1216       }
1217       break;
1218     }
1219     case lir_cmove: {
1220       assert(op->as_Op2() != NULL, "lir_cmove must be LIR_Op2");
1221       LIR_Op2* cmove = (LIR_Op2*)op;
1222 
1223       LIR_Opr move_from = cmove->in_opr1();
1224       LIR_Opr move_to = cmove->result_opr();
1225 
1226       if (move_to->is_register() && move_from->is_register()) {
1227         Interval* from = interval_at(reg_num(move_from));
1228         Interval* to = interval_at(reg_num(move_to));
1229         if (from != NULL && to != NULL) {
1230           to->set_register_hint(from);
1231           TRACE_LINEAR_SCAN(4, tty->print_cr("operation at op_id %d: added hint from interval %d to %d", cmove->id(), from->reg_num(), to->reg_num()));
1232         }
1233       }
1234       break;
1235     }
1236   }
1237 }
1238 
1239 
1240 void LinearScan::build_intervals() {
1241   TIME_LINEAR_SCAN(timer_build_intervals);
1242 
1243   // initialize interval list with expected number of intervals
1244   // (32 is added to have some space for split children without having to resize the list)
1245   _intervals = IntervalList(num_virtual_regs() + 32);
1246   // initialize all slots that are used by build_intervals
1247   _intervals.at_put_grow(num_virtual_regs() - 1, NULL, NULL);
1248 
1249   // create a list with all caller-save registers (cpu, fpu, xmm)
1250   // when an instruction is a call, a temp range is created for all these registers
1251   int num_caller_save_registers = 0;
1252   int caller_save_registers[LinearScan::nof_regs];
1253 
1254   int i;
1255   for (i = 0; i < FrameMap::nof_caller_save_cpu_regs; i++) {
1256     LIR_Opr opr = FrameMap::caller_save_cpu_reg_at(i);
1257     assert(opr->is_valid() && opr->is_register(), "FrameMap should not return invalid operands");
1258     assert(reg_numHi(opr) == -1, "missing addition of range for hi-register");
1259     caller_save_registers[num_caller_save_registers++] = reg_num(opr);
1260   }
1261 
1262   // temp ranges for fpu registers are only created when the method has
1263   // virtual fpu operands. Otherwise no allocation for fpu registers is
1264   // perfomed and so the temp ranges would be useless
1265   if (has_fpu_registers()) {
1266 #ifdef X86
1267     if (UseSSE < 2) {
1268 #endif
1269       for (i = 0; i < FrameMap::nof_caller_save_fpu_regs; i++) {
1270         LIR_Opr opr = FrameMap::caller_save_fpu_reg_at(i);
1271         assert(opr->is_valid() && opr->is_register(), "FrameMap should not return invalid operands");
1272         assert(reg_numHi(opr) == -1, "missing addition of range for hi-register");
1273         caller_save_registers[num_caller_save_registers++] = reg_num(opr);
1274       }
1275 #ifdef X86
1276     }
1277     if (UseSSE > 0) {
1278       for (i = 0; i < FrameMap::nof_caller_save_xmm_regs; i++) {
1279         LIR_Opr opr = FrameMap::caller_save_xmm_reg_at(i);
1280         assert(opr->is_valid() && opr->is_register(), "FrameMap should not return invalid operands");
1281         assert(reg_numHi(opr) == -1, "missing addition of range for hi-register");
1282         caller_save_registers[num_caller_save_registers++] = reg_num(opr);
1283       }
1284     }
1285 #endif
1286   }
1287   assert(num_caller_save_registers <= LinearScan::nof_regs, "out of bounds");
1288 
1289 
1290   LIR_OpVisitState visitor;
1291 
1292   // iterate all blocks in reverse order
1293   for (i = block_count() - 1; i >= 0; i--) {
1294     BlockBegin* block = block_at(i);
1295     LIR_OpList* instructions = block->lir()->instructions_list();
1296     int         block_from =   block->first_lir_instruction_id();
1297     int         block_to =     block->last_lir_instruction_id();
1298 
1299     assert(block_from == instructions->at(0)->id(), "must be");
1300     assert(block_to   == instructions->at(instructions->length() - 1)->id(), "must be");
1301 
1302     // Update intervals for registers live at the end of this block;
1303     BitMap live = block->live_out();
1304     int size = (int)live.size();
1305     for (int number = (int)live.get_next_one_offset(0, size); number < size; number = (int)live.get_next_one_offset(number + 1, size)) {
1306       assert(live.at(number), "should not stop here otherwise");
1307       assert(number >= LIR_OprDesc::vreg_base, "fixed intervals must not be live on block bounds");
1308       TRACE_LINEAR_SCAN(2, tty->print_cr("live in %d to %d", number, block_to + 2));
1309 
1310       add_use(number, block_from, block_to + 2, noUse, T_ILLEGAL);
1311 
1312       // add special use positions for loop-end blocks when the
1313       // interval is used anywhere inside this loop.  It's possible
1314       // that the block was part of a non-natural loop, so it might
1315       // have an invalid loop index.
1316       if (block->is_set(BlockBegin::linear_scan_loop_end_flag) &&
1317           block->loop_index() != -1 &&
1318           is_interval_in_loop(number, block->loop_index())) {
1319         interval_at(number)->add_use_pos(block_to + 1, loopEndMarker);
1320       }
1321     }
1322 
1323     // iterate all instructions of the block in reverse order.
1324     // skip the first instruction because it is always a label
1325     // definitions of intervals are processed before uses
1326     assert(visitor.no_operands(instructions->at(0)), "first operation must always be a label");
1327     for (int j = instructions->length() - 1; j >= 1; j--) {
1328       LIR_Op* op = instructions->at(j);
1329       int op_id = op->id();
1330 
1331       // visit operation to collect all operands
1332       visitor.visit(op);
1333 
1334       // add a temp range for each register if operation destroys caller-save registers
1335       if (visitor.has_call()) {
1336         for (int k = 0; k < num_caller_save_registers; k++) {
1337           add_temp(caller_save_registers[k], op_id, noUse, T_ILLEGAL);
1338         }
1339         TRACE_LINEAR_SCAN(4, tty->print_cr("operation destroys all caller-save registers"));
1340       }
1341 
1342       // Add any platform dependent temps
1343       pd_add_temps(op);
1344 
1345       // visit definitions (output and temp operands)
1346       int k, n;
1347       n = visitor.opr_count(LIR_OpVisitState::outputMode);
1348       for (k = 0; k < n; k++) {
1349         LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::outputMode, k);
1350         assert(opr->is_register(), "visitor should only return register operands");
1351         add_def(opr, op_id, use_kind_of_output_operand(op, opr));
1352       }
1353 
1354       n = visitor.opr_count(LIR_OpVisitState::tempMode);
1355       for (k = 0; k < n; k++) {
1356         LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::tempMode, k);
1357         assert(opr->is_register(), "visitor should only return register operands");
1358         add_temp(opr, op_id, mustHaveRegister);
1359       }
1360 
1361       // visit uses (input operands)
1362       n = visitor.opr_count(LIR_OpVisitState::inputMode);
1363       for (k = 0; k < n; k++) {
1364         LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::inputMode, k);
1365         assert(opr->is_register(), "visitor should only return register operands");
1366         add_use(opr, block_from, op_id, use_kind_of_input_operand(op, opr));
1367       }
1368 
1369       // Add uses of live locals from interpreter's point of view for proper
1370       // debug information generation
1371       // Treat these operands as temp values (if the life range is extended
1372       // to a call site, the value would be in a register at the call otherwise)
1373       n = visitor.info_count();
1374       for (k = 0; k < n; k++) {
1375         CodeEmitInfo* info = visitor.info_at(k);
1376         ValueStack* stack = info->stack();
1377         for_each_state_value(stack, value,
1378           add_use(value, block_from, op_id + 1, noUse);
1379         );
1380       }
1381 
1382       // special steps for some instructions (especially moves)
1383       handle_method_arguments(op);
1384       handle_doubleword_moves(op);
1385       add_register_hints(op);
1386 
1387     } // end of instruction iteration
1388   } // end of block iteration
1389 
1390 
1391   // add the range [0, 1[ to all fixed intervals
1392   // -> the register allocator need not handle unhandled fixed intervals
1393   for (int n = 0; n < LinearScan::nof_regs; n++) {
1394     Interval* interval = interval_at(n);
1395     if (interval != NULL) {
1396       interval->add_range(0, 1);
1397     }
1398   }
1399 }
1400 
1401 
1402 // ********** Phase 5: actual register allocation
1403 
1404 int LinearScan::interval_cmp(Interval** a, Interval** b) {
1405   if (*a != NULL) {
1406     if (*b != NULL) {
1407       return (*a)->from() - (*b)->from();
1408     } else {
1409       return -1;
1410     }
1411   } else {
1412     if (*b != NULL) {
1413       return 1;
1414     } else {
1415       return 0;
1416     }
1417   }
1418 }
1419 
1420 #ifndef PRODUCT
1421 bool LinearScan::is_sorted(IntervalArray* intervals) {
1422   int from = -1;
1423   int i, j;
1424   for (i = 0; i < intervals->length(); i ++) {
1425     Interval* it = intervals->at(i);
1426     if (it != NULL) {
1427       if (from > it->from()) {
1428         assert(false, "");
1429         return false;
1430       }
1431       from = it->from();
1432     }
1433   }
1434 
1435   // check in both directions if sorted list and unsorted list contain same intervals
1436   for (i = 0; i < interval_count(); i++) {
1437     if (interval_at(i) != NULL) {
1438       int num_found = 0;
1439       for (j = 0; j < intervals->length(); j++) {
1440         if (interval_at(i) == intervals->at(j)) {
1441           num_found++;
1442         }
1443       }
1444       assert(num_found == 1, "lists do not contain same intervals");
1445     }
1446   }
1447   for (j = 0; j < intervals->length(); j++) {
1448     int num_found = 0;
1449     for (i = 0; i < interval_count(); i++) {
1450       if (interval_at(i) == intervals->at(j)) {
1451         num_found++;
1452       }
1453     }
1454     assert(num_found == 1, "lists do not contain same intervals");
1455   }
1456 
1457   return true;
1458 }
1459 #endif
1460 
1461 void LinearScan::add_to_list(Interval** first, Interval** prev, Interval* interval) {
1462   if (*prev != NULL) {
1463     (*prev)->set_next(interval);
1464   } else {
1465     *first = interval;
1466   }
1467   *prev = interval;
1468 }
1469 
1470 void LinearScan::create_unhandled_lists(Interval** list1, Interval** list2, bool (is_list1)(const Interval* i), bool (is_list2)(const Interval* i)) {
1471   assert(is_sorted(_sorted_intervals), "interval list is not sorted");
1472 
1473   *list1 = *list2 = Interval::end();
1474 
1475   Interval* list1_prev = NULL;
1476   Interval* list2_prev = NULL;
1477   Interval* v;
1478 
1479   const int n = _sorted_intervals->length();
1480   for (int i = 0; i < n; i++) {
1481     v = _sorted_intervals->at(i);
1482     if (v == NULL) continue;
1483 
1484     if (is_list1(v)) {
1485       add_to_list(list1, &list1_prev, v);
1486     } else if (is_list2 == NULL || is_list2(v)) {
1487       add_to_list(list2, &list2_prev, v);
1488     }
1489   }
1490 
1491   if (list1_prev != NULL) list1_prev->set_next(Interval::end());
1492   if (list2_prev != NULL) list2_prev->set_next(Interval::end());
1493 
1494   assert(list1_prev == NULL || list1_prev->next() == Interval::end(), "linear list ends not with sentinel");
1495   assert(list2_prev == NULL || list2_prev->next() == Interval::end(), "linear list ends not with sentinel");
1496 }
1497 
1498 
1499 void LinearScan::sort_intervals_before_allocation() {
1500   TIME_LINEAR_SCAN(timer_sort_intervals_before);
1501 
1502   IntervalList* unsorted_list = &_intervals;
1503   int unsorted_len = unsorted_list->length();
1504   int sorted_len = 0;
1505   int unsorted_idx;
1506   int sorted_idx = 0;
1507   int sorted_from_max = -1;
1508 
1509   // calc number of items for sorted list (sorted list must not contain NULL values)
1510   for (unsorted_idx = 0; unsorted_idx < unsorted_len; unsorted_idx++) {
1511     if (unsorted_list->at(unsorted_idx) != NULL) {
1512       sorted_len++;
1513     }
1514   }
1515   IntervalArray* sorted_list = new IntervalArray(sorted_len);
1516 
1517   // special sorting algorithm: the original interval-list is almost sorted,
1518   // only some intervals are swapped. So this is much faster than a complete QuickSort
1519   for (unsorted_idx = 0; unsorted_idx < unsorted_len; unsorted_idx++) {
1520     Interval* cur_interval = unsorted_list->at(unsorted_idx);
1521 
1522     if (cur_interval != NULL) {
1523       int cur_from = cur_interval->from();
1524 
1525       if (sorted_from_max <= cur_from) {
1526         sorted_list->at_put(sorted_idx++, cur_interval);
1527         sorted_from_max = cur_interval->from();
1528       } else {
1529         // the asumption that the intervals are already sorted failed,
1530         // so this interval must be sorted in manually
1531         int j;
1532         for (j = sorted_idx - 1; j >= 0 && cur_from < sorted_list->at(j)->from(); j--) {
1533           sorted_list->at_put(j + 1, sorted_list->at(j));
1534         }
1535         sorted_list->at_put(j + 1, cur_interval);
1536         sorted_idx++;
1537       }
1538     }
1539   }
1540   _sorted_intervals = sorted_list;
1541 }
1542 
1543 void LinearScan::sort_intervals_after_allocation() {
1544   TIME_LINEAR_SCAN(timer_sort_intervals_after);
1545 
1546   IntervalArray* old_list      = _sorted_intervals;
1547   IntervalList*  new_list      = _new_intervals_from_allocation;
1548   int old_len = old_list->length();
1549   int new_len = new_list->length();
1550 
1551   if (new_len == 0) {
1552     // no intervals have been added during allocation, so sorted list is already up to date
1553     return;
1554   }
1555 
1556   // conventional sort-algorithm for new intervals
1557   new_list->sort(interval_cmp);
1558 
1559   // merge old and new list (both already sorted) into one combined list
1560   IntervalArray* combined_list = new IntervalArray(old_len + new_len);
1561   int old_idx = 0;
1562   int new_idx = 0;
1563 
1564   while (old_idx + new_idx < old_len + new_len) {
1565     if (new_idx >= new_len || (old_idx < old_len && old_list->at(old_idx)->from() <= new_list->at(new_idx)->from())) {
1566       combined_list->at_put(old_idx + new_idx, old_list->at(old_idx));
1567       old_idx++;
1568     } else {
1569       combined_list->at_put(old_idx + new_idx, new_list->at(new_idx));
1570       new_idx++;
1571     }
1572   }
1573 
1574   _sorted_intervals = combined_list;
1575 }
1576 
1577 
1578 void LinearScan::allocate_registers() {
1579   TIME_LINEAR_SCAN(timer_allocate_registers);
1580 
1581   Interval* precolored_cpu_intervals, *not_precolored_cpu_intervals;
1582   Interval* precolored_fpu_intervals, *not_precolored_fpu_intervals;
1583 
1584   create_unhandled_lists(&precolored_cpu_intervals, &not_precolored_cpu_intervals, is_precolored_cpu_interval, is_virtual_cpu_interval);
1585   if (has_fpu_registers()) {
1586     create_unhandled_lists(&precolored_fpu_intervals, &not_precolored_fpu_intervals, is_precolored_fpu_interval, is_virtual_fpu_interval);
1587 #ifdef ASSERT
1588   } else {
1589     // fpu register allocation is omitted because no virtual fpu registers are present
1590     // just check this again...
1591     create_unhandled_lists(&precolored_fpu_intervals, &not_precolored_fpu_intervals, is_precolored_fpu_interval, is_virtual_fpu_interval);
1592     assert(not_precolored_fpu_intervals == Interval::end(), "missed an uncolored fpu interval");
1593 #endif
1594   }
1595 
1596   // allocate cpu registers
1597   LinearScanWalker cpu_lsw(this, precolored_cpu_intervals, not_precolored_cpu_intervals);
1598   cpu_lsw.walk();
1599   cpu_lsw.finish_allocation();
1600 
1601   if (has_fpu_registers()) {
1602     // allocate fpu registers
1603     LinearScanWalker fpu_lsw(this, precolored_fpu_intervals, not_precolored_fpu_intervals);
1604     fpu_lsw.walk();
1605     fpu_lsw.finish_allocation();
1606   }
1607 }
1608 
1609 
1610 // ********** Phase 6: resolve data flow
1611 // (insert moves at edges between blocks if intervals have been split)
1612 
1613 // wrapper for Interval::split_child_at_op_id that performs a bailout in product mode
1614 // instead of returning NULL
1615 Interval* LinearScan::split_child_at_op_id(Interval* interval, int op_id, LIR_OpVisitState::OprMode mode) {
1616   Interval* result = interval->split_child_at_op_id(op_id, mode);
1617   if (result != NULL) {
1618     return result;
1619   }
1620 
1621   assert(false, "must find an interval, but do a clean bailout in product mode");
1622   result = new Interval(LIR_OprDesc::vreg_base);
1623   result->assign_reg(0);
1624   result->set_type(T_INT);
1625   BAILOUT_("LinearScan: interval is NULL", result);
1626 }
1627 
1628 
1629 Interval* LinearScan::interval_at_block_begin(BlockBegin* block, int reg_num) {
1630   assert(LinearScan::nof_regs <= reg_num && reg_num < num_virtual_regs(), "register number out of bounds");
1631   assert(interval_at(reg_num) != NULL, "no interval found");
1632 
1633   return split_child_at_op_id(interval_at(reg_num), block->first_lir_instruction_id(), LIR_OpVisitState::outputMode);
1634 }
1635 
1636 Interval* LinearScan::interval_at_block_end(BlockBegin* block, int reg_num) {
1637   assert(LinearScan::nof_regs <= reg_num && reg_num < num_virtual_regs(), "register number out of bounds");
1638   assert(interval_at(reg_num) != NULL, "no interval found");
1639 
1640   return split_child_at_op_id(interval_at(reg_num), block->last_lir_instruction_id() + 1, LIR_OpVisitState::outputMode);
1641 }
1642 
1643 Interval* LinearScan::interval_at_op_id(int reg_num, int op_id) {
1644   assert(LinearScan::nof_regs <= reg_num && reg_num < num_virtual_regs(), "register number out of bounds");
1645   assert(interval_at(reg_num) != NULL, "no interval found");
1646 
1647   return split_child_at_op_id(interval_at(reg_num), op_id, LIR_OpVisitState::inputMode);
1648 }
1649 
1650 
1651 void LinearScan::resolve_collect_mappings(BlockBegin* from_block, BlockBegin* to_block, MoveResolver &move_resolver) {
1652   DEBUG_ONLY(move_resolver.check_empty());
1653 
1654   const int num_regs = num_virtual_regs();
1655   const int size = live_set_size();
1656   const BitMap live_at_edge = to_block->live_in();
1657 
1658   // visit all registers where the live_at_edge bit is set
1659   for (int r = (int)live_at_edge.get_next_one_offset(0, size); r < size; r = (int)live_at_edge.get_next_one_offset(r + 1, size)) {
1660     assert(r < num_regs, "live information set for not exisiting interval");
1661     assert(from_block->live_out().at(r) && to_block->live_in().at(r), "interval not live at this edge");
1662 
1663     Interval* from_interval = interval_at_block_end(from_block, r);
1664     Interval* to_interval = interval_at_block_begin(to_block, r);
1665 
1666     if (from_interval != to_interval && (from_interval->assigned_reg() != to_interval->assigned_reg() || from_interval->assigned_regHi() != to_interval->assigned_regHi())) {
1667       // need to insert move instruction
1668       move_resolver.add_mapping(from_interval, to_interval);
1669     }
1670   }
1671 }
1672 
1673 
1674 void LinearScan::resolve_find_insert_pos(BlockBegin* from_block, BlockBegin* to_block, MoveResolver &move_resolver) {
1675   if (from_block->number_of_sux() <= 1) {
1676     TRACE_LINEAR_SCAN(4, tty->print_cr("inserting moves at end of from_block B%d", from_block->block_id()));
1677 
1678     LIR_OpList* instructions = from_block->lir()->instructions_list();
1679     LIR_OpBranch* branch = instructions->last()->as_OpBranch();
1680     if (branch != NULL) {
1681       // insert moves before branch
1682       assert(branch->cond() == lir_cond_always, "block does not end with an unconditional jump");
1683       move_resolver.set_insert_position(from_block->lir(), instructions->length() - 2);
1684     } else {
1685       move_resolver.set_insert_position(from_block->lir(), instructions->length() - 1);
1686     }
1687 
1688   } else {
1689     TRACE_LINEAR_SCAN(4, tty->print_cr("inserting moves at beginning of to_block B%d", to_block->block_id()));
1690 #ifdef ASSERT
1691     assert(from_block->lir()->instructions_list()->at(0)->as_OpLabel() != NULL, "block does not start with a label");
1692 
1693     // because the number of predecessor edges matches the number of
1694     // successor edges, blocks which are reached by switch statements
1695     // may have be more than one predecessor but it will be guaranteed
1696     // that all predecessors will be the same.
1697     for (int i = 0; i < to_block->number_of_preds(); i++) {
1698       assert(from_block == to_block->pred_at(i), "all critical edges must be broken");
1699     }
1700 #endif
1701 
1702     move_resolver.set_insert_position(to_block->lir(), 0);
1703   }
1704 }
1705 
1706 
1707 // insert necessary moves (spilling or reloading) at edges between blocks if interval has been split
1708 void LinearScan::resolve_data_flow() {
1709   TIME_LINEAR_SCAN(timer_resolve_data_flow);
1710 
1711   int num_blocks = block_count();
1712   MoveResolver move_resolver(this);
1713   BitMap block_completed(num_blocks);  block_completed.clear();
1714   BitMap already_resolved(num_blocks); already_resolved.clear();
1715 
1716   int i;
1717   for (i = 0; i < num_blocks; i++) {
1718     BlockBegin* block = block_at(i);
1719 
1720     // check if block has only one predecessor and only one successor
1721     if (block->number_of_preds() == 1 && block->number_of_sux() == 1 && block->number_of_exception_handlers() == 0) {
1722       LIR_OpList* instructions = block->lir()->instructions_list();
1723       assert(instructions->at(0)->code() == lir_label, "block must start with label");
1724       assert(instructions->last()->code() == lir_branch, "block with successors must end with branch");
1725       assert(instructions->last()->as_OpBranch()->cond() == lir_cond_always, "block with successor must end with unconditional branch");
1726 
1727       // check if block is empty (only label and branch)
1728       if (instructions->length() == 2) {
1729         BlockBegin* pred = block->pred_at(0);
1730         BlockBegin* sux = block->sux_at(0);
1731 
1732         // prevent optimization of two consecutive blocks
1733         if (!block_completed.at(pred->linear_scan_number()) && !block_completed.at(sux->linear_scan_number())) {
1734           TRACE_LINEAR_SCAN(3, tty->print_cr("**** optimizing empty block B%d (pred: B%d, sux: B%d)", block->block_id(), pred->block_id(), sux->block_id()));
1735           block_completed.set_bit(block->linear_scan_number());
1736 
1737           // directly resolve between pred and sux (without looking at the empty block between)
1738           resolve_collect_mappings(pred, sux, move_resolver);
1739           if (move_resolver.has_mappings()) {
1740             move_resolver.set_insert_position(block->lir(), 0);
1741             move_resolver.resolve_and_append_moves();
1742           }
1743         }
1744       }
1745     }
1746   }
1747 
1748 
1749   for (i = 0; i < num_blocks; i++) {
1750     if (!block_completed.at(i)) {
1751       BlockBegin* from_block = block_at(i);
1752       already_resolved.set_from(block_completed);
1753 
1754       int num_sux = from_block->number_of_sux();
1755       for (int s = 0; s < num_sux; s++) {
1756         BlockBegin* to_block = from_block->sux_at(s);
1757 
1758         // check for duplicate edges between the same blocks (can happen with switch blocks)
1759         if (!already_resolved.at(to_block->linear_scan_number())) {
1760           TRACE_LINEAR_SCAN(3, tty->print_cr("**** processing edge between B%d and B%d", from_block->block_id(), to_block->block_id()));
1761           already_resolved.set_bit(to_block->linear_scan_number());
1762 
1763           // collect all intervals that have been split between from_block and to_block
1764           resolve_collect_mappings(from_block, to_block, move_resolver);
1765           if (move_resolver.has_mappings()) {
1766             resolve_find_insert_pos(from_block, to_block, move_resolver);
1767             move_resolver.resolve_and_append_moves();
1768           }
1769         }
1770       }
1771     }
1772   }
1773 }
1774 
1775 
1776 void LinearScan::resolve_exception_entry(BlockBegin* block, int reg_num, MoveResolver &move_resolver) {
1777   if (interval_at(reg_num) == NULL) {
1778     // if a phi function is never used, no interval is created -> ignore this
1779     return;
1780   }
1781 
1782   Interval* interval = interval_at_block_begin(block, reg_num);
1783   int reg = interval->assigned_reg();
1784   int regHi = interval->assigned_regHi();
1785 
1786   if ((reg < nof_regs && interval->always_in_memory()) ||
1787       (use_fpu_stack_allocation() && reg >= pd_first_fpu_reg && reg <= pd_last_fpu_reg)) {
1788     // the interval is split to get a short range that is located on the stack
1789     // in the following two cases:
1790     // * the interval started in memory (e.g. method parameter), but is currently in a register
1791     //   this is an optimization for exception handling that reduces the number of moves that
1792     //   are necessary for resolving the states when an exception uses this exception handler
1793     // * the interval would be on the fpu stack at the begin of the exception handler
1794     //   this is not allowed because of the complicated fpu stack handling on Intel
1795 
1796     // range that will be spilled to memory
1797     int from_op_id = block->first_lir_instruction_id();
1798     int to_op_id = from_op_id + 1;  // short live range of length 1
1799     assert(interval->from() <= from_op_id && interval->to() >= to_op_id,
1800            "no split allowed between exception entry and first instruction");
1801 
1802     if (interval->from() != from_op_id) {
1803       // the part before from_op_id is unchanged
1804       interval = interval->split(from_op_id);
1805       interval->assign_reg(reg, regHi);
1806       append_interval(interval);
1807     }
1808     assert(interval->from() == from_op_id, "must be true now");
1809 
1810     Interval* spilled_part = interval;
1811     if (interval->to() != to_op_id) {
1812       // the part after to_op_id is unchanged
1813       spilled_part = interval->split_from_start(to_op_id);
1814       append_interval(spilled_part);
1815       move_resolver.add_mapping(spilled_part, interval);
1816     }
1817     assign_spill_slot(spilled_part);
1818 
1819     assert(spilled_part->from() == from_op_id && spilled_part->to() == to_op_id, "just checking");
1820   }
1821 }
1822 
1823 void LinearScan::resolve_exception_entry(BlockBegin* block, MoveResolver &move_resolver) {
1824   assert(block->is_set(BlockBegin::exception_entry_flag), "should not call otherwise");
1825   DEBUG_ONLY(move_resolver.check_empty());
1826 
1827   // visit all registers where the live_in bit is set
1828   int size = live_set_size();
1829   for (int r = (int)block->live_in().get_next_one_offset(0, size); r < size; r = (int)block->live_in().get_next_one_offset(r + 1, size)) {
1830     resolve_exception_entry(block, r, move_resolver);
1831   }
1832 
1833   // the live_in bits are not set for phi functions of the xhandler entry, so iterate them separately
1834   for_each_phi_fun(block, phi,
1835     resolve_exception_entry(block, phi->operand()->vreg_number(), move_resolver)
1836   );
1837 
1838   if (move_resolver.has_mappings()) {
1839     // insert moves after first instruction
1840     move_resolver.set_insert_position(block->lir(), 1);
1841     move_resolver.resolve_and_append_moves();
1842   }
1843 }
1844 
1845 
1846 void LinearScan::resolve_exception_edge(XHandler* handler, int throwing_op_id, int reg_num, Phi* phi, MoveResolver &move_resolver) {
1847   if (interval_at(reg_num) == NULL) {
1848     // if a phi function is never used, no interval is created -> ignore this
1849     return;
1850   }
1851 
1852   // the computation of to_interval is equal to resolve_collect_mappings,
1853   // but from_interval is more complicated because of phi functions
1854   BlockBegin* to_block = handler->entry_block();
1855   Interval* to_interval = interval_at_block_begin(to_block, reg_num);
1856 
1857   if (phi != NULL) {
1858     // phi function of the exception entry block
1859     // no moves are created for this phi function in the LIR_Generator, so the
1860     // interval at the throwing instruction must be searched using the operands
1861     // of the phi function
1862     Value from_value = phi->operand_at(handler->phi_operand());
1863 
1864     // with phi functions it can happen that the same from_value is used in
1865     // multiple mappings, so notify move-resolver that this is allowed
1866     move_resolver.set_multiple_reads_allowed();
1867 
1868     Constant* con = from_value->as_Constant();
1869     if (con != NULL && !con->is_pinned()) {
1870       // unpinned constants may have no register, so add mapping from constant to interval
1871       move_resolver.add_mapping(LIR_OprFact::value_type(con->type()), to_interval);
1872     } else {
1873       // search split child at the throwing op_id
1874       Interval* from_interval = interval_at_op_id(from_value->operand()->vreg_number(), throwing_op_id);
1875       move_resolver.add_mapping(from_interval, to_interval);
1876     }
1877 
1878   } else {
1879     // no phi function, so use reg_num also for from_interval
1880     // search split child at the throwing op_id
1881     Interval* from_interval = interval_at_op_id(reg_num, throwing_op_id);
1882     if (from_interval != to_interval) {
1883       // optimization to reduce number of moves: when to_interval is on stack and
1884       // the stack slot is known to be always correct, then no move is necessary
1885       if (!from_interval->always_in_memory() || from_interval->canonical_spill_slot() != to_interval->assigned_reg()) {
1886         move_resolver.add_mapping(from_interval, to_interval);
1887       }
1888     }
1889   }
1890 }
1891 
1892 void LinearScan::resolve_exception_edge(XHandler* handler, int throwing_op_id, MoveResolver &move_resolver) {
1893   TRACE_LINEAR_SCAN(4, tty->print_cr("resolving exception handler B%d: throwing_op_id=%d", handler->entry_block()->block_id(), throwing_op_id));
1894 
1895   DEBUG_ONLY(move_resolver.check_empty());
1896   assert(handler->lir_op_id() == -1, "already processed this xhandler");
1897   DEBUG_ONLY(handler->set_lir_op_id(throwing_op_id));
1898   assert(handler->entry_code() == NULL, "code already present");
1899 
1900   // visit all registers where the live_in bit is set
1901   BlockBegin* block = handler->entry_block();
1902   int size = live_set_size();
1903   for (int r = (int)block->live_in().get_next_one_offset(0, size); r < size; r = (int)block->live_in().get_next_one_offset(r + 1, size)) {
1904     resolve_exception_edge(handler, throwing_op_id, r, NULL, move_resolver);
1905   }
1906 
1907   // the live_in bits are not set for phi functions of the xhandler entry, so iterate them separately
1908   for_each_phi_fun(block, phi,
1909     resolve_exception_edge(handler, throwing_op_id, phi->operand()->vreg_number(), phi, move_resolver)
1910   );
1911 
1912   if (move_resolver.has_mappings()) {
1913     LIR_List* entry_code = new LIR_List(compilation());
1914     move_resolver.set_insert_position(entry_code, 0);
1915     move_resolver.resolve_and_append_moves();
1916 
1917     entry_code->jump(handler->entry_block());
1918     handler->set_entry_code(entry_code);
1919   }
1920 }
1921 
1922 
1923 void LinearScan::resolve_exception_handlers() {
1924   MoveResolver move_resolver(this);
1925   LIR_OpVisitState visitor;
1926   int num_blocks = block_count();
1927 
1928   int i;
1929   for (i = 0; i < num_blocks; i++) {
1930     BlockBegin* block = block_at(i);
1931     if (block->is_set(BlockBegin::exception_entry_flag)) {
1932       resolve_exception_entry(block, move_resolver);
1933     }
1934   }
1935 
1936   for (i = 0; i < num_blocks; i++) {
1937     BlockBegin* block = block_at(i);
1938     LIR_List* ops = block->lir();
1939     int num_ops = ops->length();
1940 
1941     // iterate all instructions of the block. skip the first because it is always a label
1942     assert(visitor.no_operands(ops->at(0)), "first operation must always be a label");
1943     for (int j = 1; j < num_ops; j++) {
1944       LIR_Op* op = ops->at(j);
1945       int op_id = op->id();
1946 
1947       if (op_id != -1 && has_info(op_id)) {
1948         // visit operation to collect all operands
1949         visitor.visit(op);
1950         assert(visitor.info_count() > 0, "should not visit otherwise");
1951 
1952         XHandlers* xhandlers = visitor.all_xhandler();
1953         int n = xhandlers->length();
1954         for (int k = 0; k < n; k++) {
1955           resolve_exception_edge(xhandlers->handler_at(k), op_id, move_resolver);
1956         }
1957 
1958 #ifdef ASSERT
1959       } else {
1960         visitor.visit(op);
1961         assert(visitor.all_xhandler()->length() == 0, "missed exception handler");
1962 #endif
1963       }
1964     }
1965   }
1966 }
1967 
1968 
1969 // ********** Phase 7: assign register numbers back to LIR
1970 // (includes computation of debug information and oop maps)
1971 
1972 VMReg LinearScan::vm_reg_for_interval(Interval* interval) {
1973   VMReg reg = interval->cached_vm_reg();
1974   if (!reg->is_valid() ) {
1975     reg = vm_reg_for_operand(operand_for_interval(interval));
1976     interval->set_cached_vm_reg(reg);
1977   }
1978   assert(reg == vm_reg_for_operand(operand_for_interval(interval)), "wrong cached value");
1979   return reg;
1980 }
1981 
1982 VMReg LinearScan::vm_reg_for_operand(LIR_Opr opr) {
1983   assert(opr->is_oop(), "currently only implemented for oop operands");
1984   return frame_map()->regname(opr);
1985 }
1986 
1987 
1988 LIR_Opr LinearScan::operand_for_interval(Interval* interval) {
1989   LIR_Opr opr = interval->cached_opr();
1990   if (opr->is_illegal()) {
1991     opr = calc_operand_for_interval(interval);
1992     interval->set_cached_opr(opr);
1993   }
1994 
1995   assert(opr == calc_operand_for_interval(interval), "wrong cached value");
1996   return opr;
1997 }
1998 
1999 LIR_Opr LinearScan::calc_operand_for_interval(const Interval* interval) {
2000   int assigned_reg = interval->assigned_reg();
2001   BasicType type = interval->type();
2002 
2003   if (assigned_reg >= nof_regs) {
2004     // stack slot
2005     assert(interval->assigned_regHi() == any_reg, "must not have hi register");
2006     return LIR_OprFact::stack(assigned_reg - nof_regs, type);
2007 
2008   } else {
2009     // register
2010     switch (type) {
2011       case T_OBJECT: {
2012         assert(assigned_reg >= pd_first_cpu_reg && assigned_reg <= pd_last_cpu_reg, "no cpu register");
2013         assert(interval->assigned_regHi() == any_reg, "must not have hi register");
2014         return LIR_OprFact::single_cpu_oop(assigned_reg);
2015       }
2016 
2017       case T_INT: {
2018         assert(assigned_reg >= pd_first_cpu_reg && assigned_reg <= pd_last_cpu_reg, "no cpu register");
2019         assert(interval->assigned_regHi() == any_reg, "must not have hi register");
2020         return LIR_OprFact::single_cpu(assigned_reg);
2021       }
2022 
2023       case T_LONG: {
2024         int assigned_regHi = interval->assigned_regHi();
2025         assert(assigned_reg >= pd_first_cpu_reg && assigned_reg <= pd_last_cpu_reg, "no cpu register");
2026         assert(num_physical_regs(T_LONG) == 1 ||
2027                (assigned_regHi >= pd_first_cpu_reg && assigned_regHi <= pd_last_cpu_reg), "no cpu register");
2028 
2029         assert(assigned_reg != assigned_regHi, "invalid allocation");
2030         assert(num_physical_regs(T_LONG) == 1 || assigned_reg < assigned_regHi,
2031                "register numbers must be sorted (ensure that e.g. a move from eax,ebx to ebx,eax can not occur)");
2032         assert((assigned_regHi != any_reg) ^ (num_physical_regs(T_LONG) == 1), "must be match");
2033         if (requires_adjacent_regs(T_LONG)) {
2034           assert(assigned_reg % 2 == 0 && assigned_reg + 1 == assigned_regHi, "must be sequential and even");
2035         }
2036 
2037 #ifdef _LP64
2038         return LIR_OprFact::double_cpu(assigned_reg, assigned_reg);
2039 #else
2040 #ifdef SPARC
2041         return LIR_OprFact::double_cpu(assigned_regHi, assigned_reg);
2042 #else
2043         return LIR_OprFact::double_cpu(assigned_reg, assigned_regHi);
2044 #endif // SPARC
2045 #endif // LP64
2046       }
2047 
2048       case T_FLOAT: {
2049 #ifdef X86
2050         if (UseSSE >= 1) {
2051           assert(assigned_reg >= pd_first_xmm_reg && assigned_reg <= pd_last_xmm_reg, "no xmm register");
2052           assert(interval->assigned_regHi() == any_reg, "must not have hi register");
2053           return LIR_OprFact::single_xmm(assigned_reg - pd_first_xmm_reg);
2054         }
2055 #endif
2056 
2057         assert(assigned_reg >= pd_first_fpu_reg && assigned_reg <= pd_last_fpu_reg, "no fpu register");
2058         assert(interval->assigned_regHi() == any_reg, "must not have hi register");
2059         return LIR_OprFact::single_fpu(assigned_reg - pd_first_fpu_reg);
2060       }
2061 
2062       case T_DOUBLE: {
2063 #ifdef X86
2064         if (UseSSE >= 2) {
2065           assert(assigned_reg >= pd_first_xmm_reg && assigned_reg <= pd_last_xmm_reg, "no xmm register");
2066           assert(interval->assigned_regHi() == any_reg, "must not have hi register (double xmm values are stored in one register)");
2067           return LIR_OprFact::double_xmm(assigned_reg - pd_first_xmm_reg);
2068         }
2069 #endif
2070 
2071 #ifdef SPARC
2072         assert(assigned_reg >= pd_first_fpu_reg && assigned_reg <= pd_last_fpu_reg, "no fpu register");
2073         assert(interval->assigned_regHi() >= pd_first_fpu_reg && interval->assigned_regHi() <= pd_last_fpu_reg, "no fpu register");
2074         assert(assigned_reg % 2 == 0 && assigned_reg + 1 == interval->assigned_regHi(), "must be sequential and even");
2075         LIR_Opr result = LIR_OprFact::double_fpu(interval->assigned_regHi() - pd_first_fpu_reg, assigned_reg - pd_first_fpu_reg);
2076 #else
2077         assert(assigned_reg >= pd_first_fpu_reg && assigned_reg <= pd_last_fpu_reg, "no fpu register");
2078         assert(interval->assigned_regHi() == any_reg, "must not have hi register (double fpu values are stored in one register on Intel)");
2079         LIR_Opr result = LIR_OprFact::double_fpu(assigned_reg - pd_first_fpu_reg);
2080 #endif
2081         return result;
2082       }
2083 
2084       default: {
2085         ShouldNotReachHere();
2086         return LIR_OprFact::illegalOpr;
2087       }
2088     }
2089   }
2090 }
2091 
2092 LIR_Opr LinearScan::canonical_spill_opr(Interval* interval) {
2093   assert(interval->canonical_spill_slot() >= nof_regs, "canonical spill slot not set");
2094   return LIR_OprFact::stack(interval->canonical_spill_slot() - nof_regs, interval->type());
2095 }
2096 
2097 LIR_Opr LinearScan::color_lir_opr(LIR_Opr opr, int op_id, LIR_OpVisitState::OprMode mode) {
2098   assert(opr->is_virtual(), "should not call this otherwise");
2099 
2100   Interval* interval = interval_at(opr->vreg_number());
2101   assert(interval != NULL, "interval must exist");
2102 
2103   if (op_id != -1) {
2104 #ifdef ASSERT
2105     BlockBegin* block = block_of_op_with_id(op_id);
2106     if (block->number_of_sux() <= 1 && op_id == block->last_lir_instruction_id()) {
2107       // check if spill moves could have been appended at the end of this block, but
2108       // before the branch instruction. So the split child information for this branch would
2109       // be incorrect.
2110       LIR_OpBranch* branch = block->lir()->instructions_list()->last()->as_OpBranch();
2111       if (branch != NULL) {
2112         if (block->live_out().at(opr->vreg_number())) {
2113           assert(branch->cond() == lir_cond_always, "block does not end with an unconditional jump");
2114           assert(false, "can't get split child for the last branch of a block because the information would be incorrect (moves are inserted before the branch in resolve_data_flow)");
2115         }
2116       }
2117     }
2118 #endif
2119 
2120     // operands are not changed when an interval is split during allocation,
2121     // so search the right interval here
2122     interval = split_child_at_op_id(interval, op_id, mode);
2123   }
2124 
2125   LIR_Opr res = operand_for_interval(interval);
2126 
2127 #ifdef X86
2128   // new semantic for is_last_use: not only set on definite end of interval,
2129   // but also before hole
2130   // This may still miss some cases (e.g. for dead values), but it is not necessary that the
2131   // last use information is completely correct
2132   // information is only needed for fpu stack allocation
2133   if (res->is_fpu_register()) {
2134     if (opr->is_last_use() || op_id == interval->to() || (op_id != -1 && interval->has_hole_between(op_id, op_id + 1))) {
2135       assert(op_id == -1 || !is_block_begin(op_id), "holes at begin of block may also result from control flow");
2136       res = res->make_last_use();
2137     }
2138   }
2139 #endif
2140 
2141   assert(!gen()->is_vreg_flag_set(opr->vreg_number(), LIRGenerator::callee_saved) || !FrameMap::is_caller_save_register(res), "bad allocation");
2142 
2143   return res;
2144 }
2145 
2146 
2147 #ifdef ASSERT
2148 // some methods used to check correctness of debug information
2149 
2150 void assert_no_register_values(GrowableArray<ScopeValue*>* values) {
2151   if (values == NULL) {
2152     return;
2153   }
2154 
2155   for (int i = 0; i < values->length(); i++) {
2156     ScopeValue* value = values->at(i);
2157 
2158     if (value->is_location()) {
2159       Location location = ((LocationValue*)value)->location();
2160       assert(location.where() == Location::on_stack, "value is in register");
2161     }
2162   }
2163 }
2164 
2165 void assert_no_register_values(GrowableArray<MonitorValue*>* values) {
2166   if (values == NULL) {
2167     return;
2168   }
2169 
2170   for (int i = 0; i < values->length(); i++) {
2171     MonitorValue* value = values->at(i);
2172 
2173     if (value->owner()->is_location()) {
2174       Location location = ((LocationValue*)value->owner())->location();
2175       assert(location.where() == Location::on_stack, "owner is in register");
2176     }
2177     assert(value->basic_lock().where() == Location::on_stack, "basic_lock is in register");
2178   }
2179 }
2180 
2181 void assert_equal(Location l1, Location l2) {
2182   assert(l1.where() == l2.where() && l1.type() == l2.type() && l1.offset() == l2.offset(), "");
2183 }
2184 
2185 void assert_equal(ScopeValue* v1, ScopeValue* v2) {
2186   if (v1->is_location()) {
2187     assert(v2->is_location(), "");
2188     assert_equal(((LocationValue*)v1)->location(), ((LocationValue*)v2)->location());
2189   } else if (v1->is_constant_int()) {
2190     assert(v2->is_constant_int(), "");
2191     assert(((ConstantIntValue*)v1)->value() == ((ConstantIntValue*)v2)->value(), "");
2192   } else if (v1->is_constant_double()) {
2193     assert(v2->is_constant_double(), "");
2194     assert(((ConstantDoubleValue*)v1)->value() == ((ConstantDoubleValue*)v2)->value(), "");
2195   } else if (v1->is_constant_long()) {
2196     assert(v2->is_constant_long(), "");
2197     assert(((ConstantLongValue*)v1)->value() == ((ConstantLongValue*)v2)->value(), "");
2198   } else if (v1->is_constant_oop()) {
2199     assert(v2->is_constant_oop(), "");
2200     assert(((ConstantOopWriteValue*)v1)->value() == ((ConstantOopWriteValue*)v2)->value(), "");
2201   } else {
2202     ShouldNotReachHere();
2203   }
2204 }
2205 
2206 void assert_equal(MonitorValue* m1, MonitorValue* m2) {
2207   assert_equal(m1->owner(), m2->owner());
2208   assert_equal(m1->basic_lock(), m2->basic_lock());
2209 }
2210 
2211 void assert_equal(IRScopeDebugInfo* d1, IRScopeDebugInfo* d2) {
2212   assert(d1->scope() == d2->scope(), "not equal");
2213   assert(d1->bci() == d2->bci(), "not equal");
2214 
2215   if (d1->locals() != NULL) {
2216     assert(d1->locals() != NULL && d2->locals() != NULL, "not equal");
2217     assert(d1->locals()->length() == d2->locals()->length(), "not equal");
2218     for (int i = 0; i < d1->locals()->length(); i++) {
2219       assert_equal(d1->locals()->at(i), d2->locals()->at(i));
2220     }
2221   } else {
2222     assert(d1->locals() == NULL && d2->locals() == NULL, "not equal");
2223   }
2224 
2225   if (d1->expressions() != NULL) {
2226     assert(d1->expressions() != NULL && d2->expressions() != NULL, "not equal");
2227     assert(d1->expressions()->length() == d2->expressions()->length(), "not equal");
2228     for (int i = 0; i < d1->expressions()->length(); i++) {
2229       assert_equal(d1->expressions()->at(i), d2->expressions()->at(i));
2230     }
2231   } else {
2232     assert(d1->expressions() == NULL && d2->expressions() == NULL, "not equal");
2233   }
2234 
2235   if (d1->monitors() != NULL) {
2236     assert(d1->monitors() != NULL && d2->monitors() != NULL, "not equal");
2237     assert(d1->monitors()->length() == d2->monitors()->length(), "not equal");
2238     for (int i = 0; i < d1->monitors()->length(); i++) {
2239       assert_equal(d1->monitors()->at(i), d2->monitors()->at(i));
2240     }
2241   } else {
2242     assert(d1->monitors() == NULL && d2->monitors() == NULL, "not equal");
2243   }
2244 
2245   if (d1->caller() != NULL) {
2246     assert(d1->caller() != NULL && d2->caller() != NULL, "not equal");
2247     assert_equal(d1->caller(), d2->caller());
2248   } else {
2249     assert(d1->caller() == NULL && d2->caller() == NULL, "not equal");
2250   }
2251 }
2252 
2253 void check_stack_depth(CodeEmitInfo* info, int stack_end) {
2254   if (info->bci() != SynchronizationEntryBCI && !info->scope()->method()->is_native()) {
2255     Bytecodes::Code code = info->scope()->method()->java_code_at_bci(info->bci());
2256     switch (code) {
2257       case Bytecodes::_ifnull    : // fall through
2258       case Bytecodes::_ifnonnull : // fall through
2259       case Bytecodes::_ifeq      : // fall through
2260       case Bytecodes::_ifne      : // fall through
2261       case Bytecodes::_iflt      : // fall through
2262       case Bytecodes::_ifge      : // fall through
2263       case Bytecodes::_ifgt      : // fall through
2264       case Bytecodes::_ifle      : // fall through
2265       case Bytecodes::_if_icmpeq : // fall through
2266       case Bytecodes::_if_icmpne : // fall through
2267       case Bytecodes::_if_icmplt : // fall through
2268       case Bytecodes::_if_icmpge : // fall through
2269       case Bytecodes::_if_icmpgt : // fall through
2270       case Bytecodes::_if_icmple : // fall through
2271       case Bytecodes::_if_acmpeq : // fall through
2272       case Bytecodes::_if_acmpne :
2273         assert(stack_end >= -Bytecodes::depth(code), "must have non-empty expression stack at if bytecode");
2274         break;
2275     }
2276   }
2277 }
2278 
2279 #endif // ASSERT
2280 
2281 
2282 IntervalWalker* LinearScan::init_compute_oop_maps() {
2283   // setup lists of potential oops for walking
2284   Interval* oop_intervals;
2285   Interval* non_oop_intervals;
2286 
2287   create_unhandled_lists(&oop_intervals, &non_oop_intervals, is_oop_interval, NULL);
2288 
2289   // intervals that have no oops inside need not to be processed
2290   // to ensure a walking until the last instruction id, add a dummy interval
2291   // with a high operation id
2292   non_oop_intervals = new Interval(any_reg);
2293   non_oop_intervals->add_range(max_jint - 2, max_jint - 1);
2294 
2295   return new IntervalWalker(this, oop_intervals, non_oop_intervals);
2296 }
2297 
2298 
2299 OopMap* LinearScan::compute_oop_map(IntervalWalker* iw, LIR_Op* op, CodeEmitInfo* info, bool is_call_site) {
2300   TRACE_LINEAR_SCAN(3, tty->print_cr("creating oop map at op_id %d", op->id()));
2301 
2302   // walk before the current operation -> intervals that start at
2303   // the operation (= output operands of the operation) are not
2304   // included in the oop map
2305   iw->walk_before(op->id());
2306 
2307   int frame_size = frame_map()->framesize();
2308   int arg_count = frame_map()->oop_map_arg_count();
2309   OopMap* map = new OopMap(frame_size, arg_count);
2310 
2311   // Check if this is a patch site.
2312   bool is_patch_info = false;
2313   if (op->code() == lir_move) {
2314     assert(!is_call_site, "move must not be a call site");
2315     assert(op->as_Op1() != NULL, "move must be LIR_Op1");
2316     LIR_Op1* move = (LIR_Op1*)op;
2317 
2318     is_patch_info = move->patch_code() != lir_patch_none;
2319   }
2320 
2321   // Iterate through active intervals
2322   for (Interval* interval = iw->active_first(fixedKind); interval != Interval::end(); interval = interval->next()) {
2323     int assigned_reg = interval->assigned_reg();
2324 
2325     assert(interval->current_from() <= op->id() && op->id() <= interval->current_to(), "interval should not be active otherwise");
2326     assert(interval->assigned_regHi() == any_reg, "oop must be single word");
2327     assert(interval->reg_num() >= LIR_OprDesc::vreg_base, "fixed interval found");
2328 
2329     // Check if this range covers the instruction. Intervals that
2330     // start or end at the current operation are not included in the
2331     // oop map, except in the case of patching moves.  For patching
2332     // moves, any intervals which end at this instruction are included
2333     // in the oop map since we may safepoint while doing the patch
2334     // before we've consumed the inputs.
2335     if (is_patch_info || op->id() < interval->current_to()) {
2336 
2337       // caller-save registers must not be included into oop-maps at calls
2338       assert(!is_call_site || assigned_reg >= nof_regs || !is_caller_save(assigned_reg), "interval is in a caller-save register at a call -> register will be overwritten");
2339 
2340       VMReg name = vm_reg_for_interval(interval);
2341       map->set_oop(name);
2342 
2343       // Spill optimization: when the stack value is guaranteed to be always correct,
2344       // then it must be added to the oop map even if the interval is currently in a register
2345       if (interval->always_in_memory() &&
2346           op->id() > interval->spill_definition_pos() &&
2347           interval->assigned_reg() != interval->canonical_spill_slot()) {
2348         assert(interval->spill_definition_pos() > 0, "position not set correctly");
2349         assert(interval->canonical_spill_slot() >= LinearScan::nof_regs, "no spill slot assigned");
2350         assert(interval->assigned_reg() < LinearScan::nof_regs, "interval is on stack, so stack slot is registered twice");
2351 
2352         map->set_oop(frame_map()->slot_regname(interval->canonical_spill_slot() - LinearScan::nof_regs));
2353       }
2354     }
2355   }
2356 
2357   // add oops from lock stack
2358   assert(info->stack() != NULL, "CodeEmitInfo must always have a stack");
2359   int locks_count = info->stack()->locks_size();
2360   for (int i = 0; i < locks_count; i++) {
2361     map->set_oop(frame_map()->monitor_object_regname(i));
2362   }
2363 
2364   return map;
2365 }
2366 
2367 
2368 void LinearScan::compute_oop_map(IntervalWalker* iw, const LIR_OpVisitState &visitor, LIR_Op* op) {
2369   assert(visitor.info_count() > 0, "no oop map needed");
2370 
2371   // compute oop_map only for first CodeEmitInfo
2372   // because it is (in most cases) equal for all other infos of the same operation
2373   CodeEmitInfo* first_info = visitor.info_at(0);
2374   OopMap* first_oop_map = compute_oop_map(iw, op, first_info, visitor.has_call());
2375 
2376   for (int i = 0; i < visitor.info_count(); i++) {
2377     CodeEmitInfo* info = visitor.info_at(i);
2378     OopMap* oop_map = first_oop_map;
2379 
2380     if (info->stack()->locks_size() != first_info->stack()->locks_size()) {
2381       // this info has a different number of locks then the precomputed oop map
2382       // (possible for lock and unlock instructions) -> compute oop map with
2383       // correct lock information
2384       oop_map = compute_oop_map(iw, op, info, visitor.has_call());
2385     }
2386 
2387     if (info->_oop_map == NULL) {
2388       info->_oop_map = oop_map;
2389     } else {
2390       // a CodeEmitInfo can not be shared between different LIR-instructions
2391       // because interval splitting can occur anywhere between two instructions
2392       // and so the oop maps must be different
2393       // -> check if the already set oop_map is exactly the one calculated for this operation
2394       assert(info->_oop_map == oop_map, "same CodeEmitInfo used for multiple LIR instructions");
2395     }
2396   }
2397 }
2398 
2399 
2400 // frequently used constants
2401 ConstantOopWriteValue LinearScan::_oop_null_scope_value = ConstantOopWriteValue(NULL);
2402 ConstantIntValue      LinearScan::_int_m1_scope_value = ConstantIntValue(-1);
2403 ConstantIntValue      LinearScan::_int_0_scope_value =  ConstantIntValue(0);
2404 ConstantIntValue      LinearScan::_int_1_scope_value =  ConstantIntValue(1);
2405 ConstantIntValue      LinearScan::_int_2_scope_value =  ConstantIntValue(2);
2406 LocationValue         _illegal_value = LocationValue(Location());
2407 
2408 void LinearScan::init_compute_debug_info() {
2409   // cache for frequently used scope values
2410   // (cpu registers and stack slots)
2411   _scope_value_cache = ScopeValueArray((LinearScan::nof_cpu_regs + frame_map()->argcount() + max_spills()) * 2, NULL);
2412 }
2413 
2414 MonitorValue* LinearScan::location_for_monitor_index(int monitor_index) {
2415   Location loc;
2416   if (!frame_map()->location_for_monitor_object(monitor_index, &loc)) {
2417     bailout("too large frame");
2418   }
2419   ScopeValue* object_scope_value = new LocationValue(loc);
2420 
2421   if (!frame_map()->location_for_monitor_lock(monitor_index, &loc)) {
2422     bailout("too large frame");
2423   }
2424   return new MonitorValue(object_scope_value, loc);
2425 }
2426 
2427 LocationValue* LinearScan::location_for_name(int name, Location::Type loc_type) {
2428   Location loc;
2429   if (!frame_map()->locations_for_slot(name, loc_type, &loc)) {
2430     bailout("too large frame");
2431   }
2432   return new LocationValue(loc);
2433 }
2434 
2435 
2436 int LinearScan::append_scope_value_for_constant(LIR_Opr opr, GrowableArray<ScopeValue*>* scope_values) {
2437   assert(opr->is_constant(), "should not be called otherwise");
2438 
2439   LIR_Const* c = opr->as_constant_ptr();
2440   BasicType t = c->type();
2441   switch (t) {
2442     case T_OBJECT: {
2443       jobject value = c->as_jobject();
2444       if (value == NULL) {
2445         scope_values->append(&_oop_null_scope_value);
2446       } else {
2447         scope_values->append(new ConstantOopWriteValue(c->as_jobject()));
2448       }
2449       return 1;
2450     }
2451 
2452     case T_INT: // fall through
2453     case T_FLOAT: {
2454       int value = c->as_jint_bits();
2455       switch (value) {
2456         case -1: scope_values->append(&_int_m1_scope_value); break;
2457         case 0:  scope_values->append(&_int_0_scope_value); break;
2458         case 1:  scope_values->append(&_int_1_scope_value); break;
2459         case 2:  scope_values->append(&_int_2_scope_value); break;
2460         default: scope_values->append(new ConstantIntValue(c->as_jint_bits())); break;
2461       }
2462       return 1;
2463     }
2464 
2465     case T_LONG: // fall through
2466     case T_DOUBLE: {
2467       if (hi_word_offset_in_bytes > lo_word_offset_in_bytes) {
2468         scope_values->append(new ConstantIntValue(c->as_jint_hi_bits()));
2469         scope_values->append(new ConstantIntValue(c->as_jint_lo_bits()));
2470       } else {
2471         scope_values->append(new ConstantIntValue(c->as_jint_lo_bits()));
2472         scope_values->append(new ConstantIntValue(c->as_jint_hi_bits()));
2473       }
2474 
2475       return 2;
2476     }
2477 
2478     default:
2479       ShouldNotReachHere();
2480       return -1;
2481   }
2482 }
2483 
2484 int LinearScan::append_scope_value_for_operand(LIR_Opr opr, GrowableArray<ScopeValue*>* scope_values) {
2485   if (opr->is_single_stack()) {
2486     int stack_idx = opr->single_stack_ix();
2487     bool is_oop = opr->is_oop_register();
2488     int cache_idx = (stack_idx + LinearScan::nof_cpu_regs) * 2 + (is_oop ? 1 : 0);
2489 
2490     ScopeValue* sv = _scope_value_cache.at(cache_idx);
2491     if (sv == NULL) {
2492       Location::Type loc_type = is_oop ? Location::oop : Location::normal;
2493       sv = location_for_name(stack_idx, loc_type);
2494       _scope_value_cache.at_put(cache_idx, sv);
2495     }
2496 
2497     // check if cached value is correct
2498     DEBUG_ONLY(assert_equal(sv, location_for_name(stack_idx, is_oop ? Location::oop : Location::normal)));
2499 
2500     scope_values->append(sv);
2501     return 1;
2502 
2503   } else if (opr->is_single_cpu()) {
2504     bool is_oop = opr->is_oop_register();
2505     int cache_idx = opr->cpu_regnr() * 2 + (is_oop ? 1 : 0);
2506 
2507     ScopeValue* sv = _scope_value_cache.at(cache_idx);
2508     if (sv == NULL) {
2509       Location::Type loc_type = is_oop ? Location::oop : Location::normal;
2510       VMReg rname = frame_map()->regname(opr);
2511       sv = new LocationValue(Location::new_reg_loc(loc_type, rname));
2512       _scope_value_cache.at_put(cache_idx, sv);
2513     }
2514 
2515     // check if cached value is correct
2516     DEBUG_ONLY(assert_equal(sv, new LocationValue(Location::new_reg_loc(is_oop ? Location::oop : Location::normal, frame_map()->regname(opr)))));
2517 
2518     scope_values->append(sv);
2519     return 1;
2520 
2521 #ifdef X86
2522   } else if (opr->is_single_xmm()) {
2523     VMReg rname = opr->as_xmm_float_reg()->as_VMReg();
2524     LocationValue* sv = new LocationValue(Location::new_reg_loc(Location::normal, rname));
2525 
2526     scope_values->append(sv);
2527     return 1;
2528 #endif
2529 
2530   } else if (opr->is_single_fpu()) {
2531 #ifdef X86
2532     // the exact location of fpu stack values is only known
2533     // during fpu stack allocation, so the stack allocator object
2534     // must be present
2535     assert(use_fpu_stack_allocation(), "should not have float stack values without fpu stack allocation (all floats must be SSE2)");
2536     assert(_fpu_stack_allocator != NULL, "must be present");
2537     opr = _fpu_stack_allocator->to_fpu_stack(opr);
2538 #endif
2539 
2540     Location::Type loc_type = float_saved_as_double ? Location::float_in_dbl : Location::normal;
2541     VMReg rname = frame_map()->fpu_regname(opr->fpu_regnr());
2542     LocationValue* sv = new LocationValue(Location::new_reg_loc(loc_type, rname));
2543 
2544     scope_values->append(sv);
2545     return 1;
2546 
2547   } else {
2548     // double-size operands
2549 
2550     ScopeValue* first;
2551     ScopeValue* second;
2552 
2553     if (opr->is_double_stack()) {
2554 #ifdef _LP64
2555       Location loc1;
2556       Location::Type loc_type = opr->type() == T_LONG ? Location::lng : Location::dbl;
2557       if (!frame_map()->locations_for_slot(opr->double_stack_ix(), loc_type, &loc1, NULL)) {
2558         bailout("too large frame");
2559       }
2560       // Does this reverse on x86 vs. sparc?
2561       first =  new LocationValue(loc1);
2562       second = &_int_0_scope_value;
2563 #else
2564       Location loc1, loc2;
2565       if (!frame_map()->locations_for_slot(opr->double_stack_ix(), Location::normal, &loc1, &loc2)) {
2566         bailout("too large frame");
2567       }
2568       first =  new LocationValue(loc1);
2569       second = new LocationValue(loc2);
2570 #endif // _LP64
2571 
2572     } else if (opr->is_double_cpu()) {
2573 #ifdef _LP64
2574       VMReg rname_first = opr->as_register_lo()->as_VMReg();
2575       first = new LocationValue(Location::new_reg_loc(Location::lng, rname_first));
2576       second = &_int_0_scope_value;
2577 #else
2578       VMReg rname_first = opr->as_register_lo()->as_VMReg();
2579       VMReg rname_second = opr->as_register_hi()->as_VMReg();
2580 
2581       if (hi_word_offset_in_bytes < lo_word_offset_in_bytes) {
2582         // lo/hi and swapped relative to first and second, so swap them
2583         VMReg tmp = rname_first;
2584         rname_first = rname_second;
2585         rname_second = tmp;
2586       }
2587 
2588       first = new LocationValue(Location::new_reg_loc(Location::normal, rname_first));
2589       second = new LocationValue(Location::new_reg_loc(Location::normal, rname_second));
2590 #endif //_LP64
2591 
2592 
2593 #ifdef X86
2594     } else if (opr->is_double_xmm()) {
2595       assert(opr->fpu_regnrLo() == opr->fpu_regnrHi(), "assumed in calculation");
2596       VMReg rname_first  = opr->as_xmm_double_reg()->as_VMReg();
2597       first = new LocationValue(Location::new_reg_loc(Location::normal, rname_first));
2598       // %%% This is probably a waste but we'll keep things as they were for now
2599       if (true) {
2600         VMReg rname_second = rname_first->next();
2601         second = new LocationValue(Location::new_reg_loc(Location::normal, rname_second));
2602       }
2603 #endif
2604 
2605     } else if (opr->is_double_fpu()) {
2606       // On SPARC, fpu_regnrLo/fpu_regnrHi represents the two halves of
2607       // the double as float registers in the native ordering. On X86,
2608       // fpu_regnrLo is a FPU stack slot whose VMReg represents
2609       // the low-order word of the double and fpu_regnrLo + 1 is the
2610       // name for the other half.  *first and *second must represent the
2611       // least and most significant words, respectively.
2612 
2613 #ifdef X86
2614       // the exact location of fpu stack values is only known
2615       // during fpu stack allocation, so the stack allocator object
2616       // must be present
2617       assert(use_fpu_stack_allocation(), "should not have float stack values without fpu stack allocation (all floats must be SSE2)");
2618       assert(_fpu_stack_allocator != NULL, "must be present");
2619       opr = _fpu_stack_allocator->to_fpu_stack(opr);
2620 
2621       assert(opr->fpu_regnrLo() == opr->fpu_regnrHi(), "assumed in calculation (only fpu_regnrHi is used)");
2622 #endif
2623 #ifdef SPARC
2624       assert(opr->fpu_regnrLo() == opr->fpu_regnrHi() + 1, "assumed in calculation (only fpu_regnrHi is used)");
2625 #endif
2626 
2627       VMReg rname_first = frame_map()->fpu_regname(opr->fpu_regnrHi());
2628 
2629       first = new LocationValue(Location::new_reg_loc(Location::normal, rname_first));
2630       // %%% This is probably a waste but we'll keep things as they were for now
2631       if (true) {
2632         VMReg rname_second = rname_first->next();
2633         second = new LocationValue(Location::new_reg_loc(Location::normal, rname_second));
2634       }
2635 
2636     } else {
2637       ShouldNotReachHere();
2638       first = NULL;
2639       second = NULL;
2640     }
2641 
2642     assert(first != NULL && second != NULL, "must be set");
2643     // The convention the interpreter uses is that the second local
2644     // holds the first raw word of the native double representation.
2645     // This is actually reasonable, since locals and stack arrays
2646     // grow downwards in all implementations.
2647     // (If, on some machine, the interpreter's Java locals or stack
2648     // were to grow upwards, the embedded doubles would be word-swapped.)
2649     scope_values->append(second);
2650     scope_values->append(first);
2651     return 2;
2652   }
2653 }
2654 
2655 
2656 int LinearScan::append_scope_value(int op_id, Value value, GrowableArray<ScopeValue*>* scope_values) {
2657   if (value != NULL) {
2658     LIR_Opr opr = value->operand();
2659     Constant* con = value->as_Constant();
2660 
2661     assert(con == NULL || opr->is_virtual() || opr->is_constant() || opr->is_illegal(), "asumption: Constant instructions have only constant operands (or illegal if constant is optimized away)");
2662     assert(con != NULL || opr->is_virtual(), "asumption: non-Constant instructions have only virtual operands");
2663 
2664     if (con != NULL && !con->is_pinned() && !opr->is_constant()) {
2665       // Unpinned constants may have a virtual operand for a part of the lifetime
2666       // or may be illegal when it was optimized away,
2667       // so always use a constant operand
2668       opr = LIR_OprFact::value_type(con->type());
2669     }
2670     assert(opr->is_virtual() || opr->is_constant(), "other cases not allowed here");
2671 
2672     if (opr->is_virtual()) {
2673       LIR_OpVisitState::OprMode mode = LIR_OpVisitState::inputMode;
2674 
2675       BlockBegin* block = block_of_op_with_id(op_id);
2676       if (block->number_of_sux() == 1 && op_id == block->last_lir_instruction_id()) {
2677         // generating debug information for the last instruction of a block.
2678         // if this instruction is a branch, spill moves are inserted before this branch
2679         // and so the wrong operand would be returned (spill moves at block boundaries are not
2680         // considered in the live ranges of intervals)
2681         // Solution: use the first op_id of the branch target block instead.
2682         if (block->lir()->instructions_list()->last()->as_OpBranch() != NULL) {
2683           if (block->live_out().at(opr->vreg_number())) {
2684             op_id = block->sux_at(0)->first_lir_instruction_id();
2685             mode = LIR_OpVisitState::outputMode;
2686           }
2687         }
2688       }
2689 
2690       // Get current location of operand
2691       // The operand must be live because debug information is considered when building the intervals
2692       // if the interval is not live, color_lir_opr will cause an assertion failure
2693       opr = color_lir_opr(opr, op_id, mode);
2694       assert(!has_call(op_id) || opr->is_stack() || !is_caller_save(reg_num(opr)), "can not have caller-save register operands at calls");
2695 
2696       // Append to ScopeValue array
2697       return append_scope_value_for_operand(opr, scope_values);
2698 
2699     } else {
2700       assert(value->as_Constant() != NULL, "all other instructions have only virtual operands");
2701       assert(opr->is_constant(), "operand must be constant");
2702 
2703       return append_scope_value_for_constant(opr, scope_values);
2704     }
2705   } else {
2706     // append a dummy value because real value not needed
2707     scope_values->append(&_illegal_value);
2708     return 1;
2709   }
2710 }
2711 
2712 
2713 IRScopeDebugInfo* LinearScan::compute_debug_info_for_scope(int op_id, IRScope* cur_scope, ValueStack* cur_state, ValueStack* innermost_state, int cur_bci, int stack_end, int locks_end) {
2714   IRScopeDebugInfo* caller_debug_info = NULL;
2715   int stack_begin, locks_begin;
2716 
2717   ValueStack* caller_state = cur_scope->caller_state();
2718   if (caller_state != NULL) {
2719     // process recursively to compute outermost scope first
2720     stack_begin = caller_state->stack_size();
2721     locks_begin = caller_state->locks_size();
2722     caller_debug_info = compute_debug_info_for_scope(op_id, cur_scope->caller(), caller_state, innermost_state, cur_scope->caller_bci(), stack_begin, locks_begin);
2723   } else {
2724     stack_begin = 0;
2725     locks_begin = 0;
2726   }
2727 
2728   // initialize these to null.
2729   // If we don't need deopt info or there are no locals, expressions or monitors,
2730   // then these get recorded as no information and avoids the allocation of 0 length arrays.
2731   GrowableArray<ScopeValue*>*   locals      = NULL;
2732   GrowableArray<ScopeValue*>*   expressions = NULL;
2733   GrowableArray<MonitorValue*>* monitors    = NULL;
2734 
2735   // describe local variable values
2736   int nof_locals = cur_scope->method()->max_locals();
2737   if (nof_locals > 0) {
2738     locals = new GrowableArray<ScopeValue*>(nof_locals);
2739 
2740     int pos = 0;
2741     while (pos < nof_locals) {
2742       assert(pos < cur_state->locals_size(), "why not?");
2743 
2744       Value local = cur_state->local_at(pos);
2745       pos += append_scope_value(op_id, local, locals);
2746 
2747       assert(locals->length() == pos, "must match");
2748     }
2749     assert(locals->length() == cur_scope->method()->max_locals(), "wrong number of locals");
2750     assert(locals->length() == cur_state->locals_size(), "wrong number of locals");
2751   }
2752 
2753 
2754   // describe expression stack
2755   //
2756   // When we inline methods containing exception handlers, the
2757   // "lock_stacks" are changed to preserve expression stack values
2758   // in caller scopes when exception handlers are present. This
2759   // can cause callee stacks to be smaller than caller stacks.
2760   if (stack_end > innermost_state->stack_size()) {
2761     stack_end = innermost_state->stack_size();
2762   }
2763 
2764 
2765 
2766   int nof_stack = stack_end - stack_begin;
2767   if (nof_stack > 0) {
2768     expressions = new GrowableArray<ScopeValue*>(nof_stack);
2769 
2770     int pos = stack_begin;
2771     while (pos < stack_end) {
2772       Value expression = innermost_state->stack_at_inc(pos);
2773       append_scope_value(op_id, expression, expressions);
2774 
2775       assert(expressions->length() + stack_begin == pos, "must match");
2776     }
2777   }
2778 
2779   // describe monitors
2780   assert(locks_begin <= locks_end, "error in scope iteration");
2781   int nof_locks = locks_end - locks_begin;
2782   if (nof_locks > 0) {
2783     monitors = new GrowableArray<MonitorValue*>(nof_locks);
2784     for (int i = locks_begin; i < locks_end; i++) {
2785       monitors->append(location_for_monitor_index(i));
2786     }
2787   }
2788 
2789   return new IRScopeDebugInfo(cur_scope, cur_bci, locals, expressions, monitors, caller_debug_info);
2790 }
2791 
2792 
2793 void LinearScan::compute_debug_info(CodeEmitInfo* info, int op_id) {
2794   if (!compilation()->needs_debug_information()) {
2795     return;
2796   }
2797   TRACE_LINEAR_SCAN(3, tty->print_cr("creating debug information at op_id %d", op_id));
2798 
2799   IRScope* innermost_scope = info->scope();
2800   ValueStack* innermost_state = info->stack();
2801 
2802   assert(innermost_scope != NULL && innermost_state != NULL, "why is it missing?");
2803 
2804   int stack_end = innermost_state->stack_size();
2805   int locks_end = innermost_state->locks_size();
2806 
2807   DEBUG_ONLY(check_stack_depth(info, stack_end));
2808 
2809   if (info->_scope_debug_info == NULL) {
2810     // compute debug information
2811     info->_scope_debug_info = compute_debug_info_for_scope(op_id, innermost_scope, innermost_state, innermost_state, info->bci(), stack_end, locks_end);
2812   } else {
2813     // debug information already set. Check that it is correct from the current point of view
2814     DEBUG_ONLY(assert_equal(info->_scope_debug_info, compute_debug_info_for_scope(op_id, innermost_scope, innermost_state, innermost_state, info->bci(), stack_end, locks_end)));
2815   }
2816 }
2817 
2818 
2819 void LinearScan::assign_reg_num(LIR_OpList* instructions, IntervalWalker* iw) {
2820   LIR_OpVisitState visitor;
2821   int num_inst = instructions->length();
2822   bool has_dead = false;
2823 
2824   for (int j = 0; j < num_inst; j++) {
2825     LIR_Op* op = instructions->at(j);
2826     if (op == NULL) {  // this can happen when spill-moves are removed in eliminate_spill_moves
2827       has_dead = true;
2828       continue;
2829     }
2830     int op_id = op->id();
2831 
2832     // visit instruction to get list of operands
2833     visitor.visit(op);
2834 
2835     // iterate all modes of the visitor and process all virtual operands
2836     for_each_visitor_mode(mode) {
2837       int n = visitor.opr_count(mode);
2838       for (int k = 0; k < n; k++) {
2839         LIR_Opr opr = visitor.opr_at(mode, k);
2840         if (opr->is_virtual_register()) {
2841           visitor.set_opr_at(mode, k, color_lir_opr(opr, op_id, mode));
2842         }
2843       }
2844     }
2845 
2846     if (visitor.info_count() > 0) {
2847       // exception handling
2848       if (compilation()->has_exception_handlers()) {
2849         XHandlers* xhandlers = visitor.all_xhandler();
2850         int n = xhandlers->length();
2851         for (int k = 0; k < n; k++) {
2852           XHandler* handler = xhandlers->handler_at(k);
2853           if (handler->entry_code() != NULL) {
2854             assign_reg_num(handler->entry_code()->instructions_list(), NULL);
2855           }
2856         }
2857       } else {
2858         assert(visitor.all_xhandler()->length() == 0, "missed exception handler");
2859       }
2860 
2861       // compute oop map
2862       assert(iw != NULL, "needed for compute_oop_map");
2863       compute_oop_map(iw, visitor, op);
2864 
2865       // compute debug information
2866       if (!use_fpu_stack_allocation()) {
2867         // compute debug information if fpu stack allocation is not needed.
2868         // when fpu stack allocation is needed, the debug information can not
2869         // be computed here because the exact location of fpu operands is not known
2870         // -> debug information is created inside the fpu stack allocator
2871         int n = visitor.info_count();
2872         for (int k = 0; k < n; k++) {
2873           compute_debug_info(visitor.info_at(k), op_id);
2874         }
2875       }
2876     }
2877 
2878 #ifdef ASSERT
2879     // make sure we haven't made the op invalid.
2880     op->verify();
2881 #endif
2882 
2883     // remove useless moves
2884     if (op->code() == lir_move) {
2885       assert(op->as_Op1() != NULL, "move must be LIR_Op1");
2886       LIR_Op1* move = (LIR_Op1*)op;
2887       LIR_Opr src = move->in_opr();
2888       LIR_Opr dst = move->result_opr();
2889       if (dst == src ||
2890           !dst->is_pointer() && !src->is_pointer() &&
2891           src->is_same_register(dst)) {
2892         instructions->at_put(j, NULL);
2893         has_dead = true;
2894       }
2895     }
2896   }
2897 
2898   if (has_dead) {
2899     // iterate all instructions of the block and remove all null-values.
2900     int insert_point = 0;
2901     for (int j = 0; j < num_inst; j++) {
2902       LIR_Op* op = instructions->at(j);
2903       if (op != NULL) {
2904         if (insert_point != j) {
2905           instructions->at_put(insert_point, op);
2906         }
2907         insert_point++;
2908       }
2909     }
2910     instructions->truncate(insert_point);
2911   }
2912 }
2913 
2914 void LinearScan::assign_reg_num() {
2915   TIME_LINEAR_SCAN(timer_assign_reg_num);
2916 
2917   init_compute_debug_info();
2918   IntervalWalker* iw = init_compute_oop_maps();
2919 
2920   int num_blocks = block_count();
2921   for (int i = 0; i < num_blocks; i++) {
2922     BlockBegin* block = block_at(i);
2923     assign_reg_num(block->lir()->instructions_list(), iw);
2924   }
2925 }
2926 
2927 
2928 void LinearScan::do_linear_scan() {
2929   NOT_PRODUCT(_total_timer.begin_method());
2930 
2931   number_instructions();
2932 
2933   NOT_PRODUCT(print_lir(1, "Before Register Allocation"));
2934 
2935   compute_local_live_sets();
2936   compute_global_live_sets();
2937   CHECK_BAILOUT();
2938 
2939   build_intervals();
2940   CHECK_BAILOUT();
2941   sort_intervals_before_allocation();
2942 
2943   NOT_PRODUCT(print_intervals("Before Register Allocation"));
2944   NOT_PRODUCT(LinearScanStatistic::compute(this, _stat_before_alloc));
2945 
2946   allocate_registers();
2947   CHECK_BAILOUT();
2948 
2949   resolve_data_flow();
2950   if (compilation()->has_exception_handlers()) {
2951     resolve_exception_handlers();
2952   }
2953   // fill in number of spill slots into frame_map
2954   propagate_spill_slots();
2955   CHECK_BAILOUT();
2956 
2957   NOT_PRODUCT(print_intervals("After Register Allocation"));
2958   NOT_PRODUCT(print_lir(2, "LIR after register allocation:"));
2959   DEBUG_ONLY(verify());
2960 
2961   sort_intervals_after_allocation();
2962   eliminate_spill_moves();
2963   assign_reg_num();
2964   CHECK_BAILOUT();
2965 
2966   NOT_PRODUCT(print_lir(2, "LIR after assignment of register numbers:"));
2967   NOT_PRODUCT(LinearScanStatistic::compute(this, _stat_after_asign));
2968 
2969   { TIME_LINEAR_SCAN(timer_allocate_fpu_stack);
2970 
2971     if (use_fpu_stack_allocation()) {
2972       allocate_fpu_stack(); // Only has effect on Intel
2973       NOT_PRODUCT(print_lir(2, "LIR after FPU stack allocation:"));
2974     }
2975   }
2976 
2977   { TIME_LINEAR_SCAN(timer_optimize_lir);
2978 
2979     EdgeMoveOptimizer::optimize(ir()->code());
2980     ControlFlowOptimizer::optimize(ir()->code());
2981     // check that cfg is still correct after optimizations
2982     ir()->verify();
2983   }
2984 
2985   NOT_PRODUCT(print_lir(1, "Before Code Generation", false));
2986   NOT_PRODUCT(LinearScanStatistic::compute(this, _stat_final));
2987   NOT_PRODUCT(_total_timer.end_method(this));
2988 }
2989 
2990 
2991 // ********** Printing functions
2992 
2993 #ifndef PRODUCT
2994 
2995 void LinearScan::print_timers(double total) {
2996   _total_timer.print(total);
2997 }
2998 
2999 void LinearScan::print_statistics() {
3000   _stat_before_alloc.print("before allocation");
3001   _stat_after_asign.print("after assignment of register");
3002   _stat_final.print("after optimization");
3003 }
3004 
3005 void LinearScan::print_bitmap(BitMap& b) {
3006   for (unsigned int i = 0; i < b.size(); i++) {
3007     if (b.at(i)) tty->print("%d ", i);
3008   }
3009   tty->cr();
3010 }
3011 
3012 void LinearScan::print_intervals(const char* label) {
3013   if (TraceLinearScanLevel >= 1) {
3014     int i;
3015     tty->cr();
3016     tty->print_cr("%s", label);
3017 
3018     for (i = 0; i < interval_count(); i++) {
3019       Interval* interval = interval_at(i);
3020       if (interval != NULL) {
3021         interval->print();
3022       }
3023     }
3024 
3025     tty->cr();
3026     tty->print_cr("--- Basic Blocks ---");
3027     for (i = 0; i < block_count(); i++) {
3028       BlockBegin* block = block_at(i);
3029       tty->print("B%d [%d, %d, %d, %d] ", block->block_id(), block->first_lir_instruction_id(), block->last_lir_instruction_id(), block->loop_index(), block->loop_depth());
3030     }
3031     tty->cr();
3032     tty->cr();
3033   }
3034 
3035   if (PrintCFGToFile) {
3036     CFGPrinter::print_intervals(&_intervals, label);
3037   }
3038 }
3039 
3040 void LinearScan::print_lir(int level, const char* label, bool hir_valid) {
3041   if (TraceLinearScanLevel >= level) {
3042     tty->cr();
3043     tty->print_cr("%s", label);
3044     print_LIR(ir()->linear_scan_order());
3045     tty->cr();
3046   }
3047 
3048   if (level == 1 && PrintCFGToFile) {
3049     CFGPrinter::print_cfg(ir()->linear_scan_order(), label, hir_valid, true);
3050   }
3051 }
3052 
3053 #endif //PRODUCT
3054 
3055 
3056 // ********** verification functions for allocation
3057 // (check that all intervals have a correct register and that no registers are overwritten)
3058 #ifdef ASSERT
3059 
3060 void LinearScan::verify() {
3061   TRACE_LINEAR_SCAN(2, tty->print_cr("********* verifying intervals ******************************************"));
3062   verify_intervals();
3063 
3064   TRACE_LINEAR_SCAN(2, tty->print_cr("********* verifying that no oops are in fixed intervals ****************"));
3065   verify_no_oops_in_fixed_intervals();
3066 
3067   TRACE_LINEAR_SCAN(2, tty->print_cr("********* verifying that unpinned constants are not alive across block boundaries"));
3068   verify_constants();
3069 
3070   TRACE_LINEAR_SCAN(2, tty->print_cr("********* verifying register allocation ********************************"));
3071   verify_registers();
3072 
3073   TRACE_LINEAR_SCAN(2, tty->print_cr("********* no errors found **********************************************"));
3074 }
3075 
3076 void LinearScan::verify_intervals() {
3077   int len = interval_count();
3078   bool has_error = false;
3079 
3080   for (int i = 0; i < len; i++) {
3081     Interval* i1 = interval_at(i);
3082     if (i1 == NULL) continue;
3083 
3084     i1->check_split_children();
3085 
3086     if (i1->reg_num() != i) {
3087       tty->print_cr("Interval %d is on position %d in list", i1->reg_num(), i); i1->print(); tty->cr();
3088       has_error = true;
3089     }
3090 
3091     if (i1->reg_num() >= LIR_OprDesc::vreg_base && i1->type() == T_ILLEGAL) {
3092       tty->print_cr("Interval %d has no type assigned", i1->reg_num()); i1->print(); tty->cr();
3093       has_error = true;
3094     }
3095 
3096     if (i1->assigned_reg() == any_reg) {
3097       tty->print_cr("Interval %d has no register assigned", i1->reg_num()); i1->print(); tty->cr();
3098       has_error = true;
3099     }
3100 
3101     if (i1->assigned_reg() == i1->assigned_regHi()) {
3102       tty->print_cr("Interval %d: low and high register equal", i1->reg_num()); i1->print(); tty->cr();
3103       has_error = true;
3104     }
3105 
3106     if (!is_processed_reg_num(i1->assigned_reg())) {
3107       tty->print_cr("Can not have an Interval for an ignored register"); i1->print(); tty->cr();
3108       has_error = true;
3109     }
3110 
3111     if (i1->first() == Range::end()) {
3112       tty->print_cr("Interval %d has no Range", i1->reg_num()); i1->print(); tty->cr();
3113       has_error = true;
3114     }
3115 
3116     for (Range* r = i1->first(); r != Range::end(); r = r->next()) {
3117       if (r->from() >= r->to()) {
3118         tty->print_cr("Interval %d has zero length range", i1->reg_num()); i1->print(); tty->cr();
3119         has_error = true;
3120       }
3121     }
3122 
3123     for (int j = i + 1; j < len; j++) {
3124       Interval* i2 = interval_at(j);
3125       if (i2 == NULL) continue;
3126 
3127       // special intervals that are created in MoveResolver
3128       // -> ignore them because the range information has no meaning there
3129       if (i1->from() == 1 && i1->to() == 2) continue;
3130       if (i2->from() == 1 && i2->to() == 2) continue;
3131 
3132       int r1 = i1->assigned_reg();
3133       int r1Hi = i1->assigned_regHi();
3134       int r2 = i2->assigned_reg();
3135       int r2Hi = i2->assigned_regHi();
3136       if (i1->intersects(i2) && (r1 == r2 || r1 == r2Hi || (r1Hi != any_reg && (r1Hi == r2 || r1Hi == r2Hi)))) {
3137         tty->print_cr("Intervals %d and %d overlap and have the same register assigned", i1->reg_num(), i2->reg_num());
3138         i1->print(); tty->cr();
3139         i2->print(); tty->cr();
3140         has_error = true;
3141       }
3142     }
3143   }
3144 
3145   assert(has_error == false, "register allocation invalid");
3146 }
3147 
3148 
3149 void LinearScan::verify_no_oops_in_fixed_intervals() {
3150   LIR_OpVisitState visitor;
3151   for (int i = 0; i < block_count(); i++) {
3152     BlockBegin* block = block_at(i);
3153 
3154     LIR_OpList* instructions = block->lir()->instructions_list();
3155 
3156     for (int j = 0; j < instructions->length(); j++) {
3157       LIR_Op* op = instructions->at(j);
3158       int op_id = op->id();
3159 
3160       visitor.visit(op);
3161 
3162       // oop-maps at calls do not contain registers, so check is not needed
3163       if (!visitor.has_call()) {
3164 
3165         for_each_visitor_mode(mode) {
3166           int n = visitor.opr_count(mode);
3167           for (int k = 0; k < n; k++) {
3168             LIR_Opr opr = visitor.opr_at(mode, k);
3169 
3170             if (opr->is_fixed_cpu() && opr->is_oop()) {
3171               // operand is a non-virtual cpu register and contains an oop
3172               TRACE_LINEAR_SCAN(4, op->print_on(tty); tty->print("checking operand "); opr->print(); tty->cr());
3173 
3174               Interval* interval = interval_at(reg_num(opr));
3175               assert(interval != NULL, "no interval");
3176 
3177               if (mode == LIR_OpVisitState::inputMode) {
3178                 if (interval->to() >= op_id + 1) {
3179                   assert(interval->to() < op_id + 2 ||
3180                          interval->has_hole_between(op_id, op_id + 2),
3181                          "oop input operand live after instruction");
3182                 }
3183               } else if (mode == LIR_OpVisitState::outputMode) {
3184                 if (interval->from() <= op_id - 1) {
3185                   assert(interval->has_hole_between(op_id - 1, op_id),
3186                          "oop input operand live after instruction");
3187                 }
3188               }
3189             }
3190           }
3191         }
3192       }
3193     }
3194   }
3195 }
3196 
3197 
3198 void LinearScan::verify_constants() {
3199   int num_regs = num_virtual_regs();
3200   int size = live_set_size();
3201   int num_blocks = block_count();
3202 
3203   for (int i = 0; i < num_blocks; i++) {
3204     BlockBegin* block = block_at(i);
3205     BitMap live_at_edge = block->live_in();
3206 
3207     // visit all registers where the live_at_edge bit is set
3208     for (int r = (int)live_at_edge.get_next_one_offset(0, size); r < size; r = (int)live_at_edge.get_next_one_offset(r + 1, size)) {
3209       TRACE_LINEAR_SCAN(4, tty->print("checking interval %d of block B%d", r, block->block_id()));
3210 
3211       Value value = gen()->instruction_for_vreg(r);
3212 
3213       assert(value != NULL, "all intervals live across block boundaries must have Value");
3214       assert(value->operand()->is_register() && value->operand()->is_virtual(), "value must have virtual operand");
3215       assert(value->operand()->vreg_number() == r, "register number must match");
3216       // TKR assert(value->as_Constant() == NULL || value->is_pinned(), "only pinned constants can be alive accross block boundaries");
3217     }
3218   }
3219 }
3220 
3221 
3222 class RegisterVerifier: public StackObj {
3223  private:
3224   LinearScan*   _allocator;
3225   BlockList     _work_list;      // all blocks that must be processed
3226   IntervalsList _saved_states;   // saved information of previous check
3227 
3228   // simplified access to methods of LinearScan
3229   Compilation*  compilation() const              { return _allocator->compilation(); }
3230   Interval*     interval_at(int reg_num) const   { return _allocator->interval_at(reg_num); }
3231   int           reg_num(LIR_Opr opr) const       { return _allocator->reg_num(opr); }
3232 
3233   // currently, only registers are processed
3234   int           state_size()                     { return LinearScan::nof_regs; }
3235 
3236   // accessors
3237   IntervalList* state_for_block(BlockBegin* block) { return _saved_states.at(block->block_id()); }
3238   void          set_state_for_block(BlockBegin* block, IntervalList* saved_state) { _saved_states.at_put(block->block_id(), saved_state); }
3239   void          add_to_work_list(BlockBegin* block) { if (!_work_list.contains(block)) _work_list.append(block); }
3240 
3241   // helper functions
3242   IntervalList* copy(IntervalList* input_state);
3243   void          state_put(IntervalList* input_state, int reg, Interval* interval);
3244   bool          check_state(IntervalList* input_state, int reg, Interval* interval);
3245 
3246   void process_block(BlockBegin* block);
3247   void process_xhandler(XHandler* xhandler, IntervalList* input_state);
3248   void process_successor(BlockBegin* block, IntervalList* input_state);
3249   void process_operations(LIR_List* ops, IntervalList* input_state);
3250 
3251  public:
3252   RegisterVerifier(LinearScan* allocator)
3253     : _allocator(allocator)
3254     , _work_list(16)
3255     , _saved_states(BlockBegin::number_of_blocks(), NULL)
3256   { }
3257 
3258   void verify(BlockBegin* start);
3259 };
3260 
3261 
3262 // entry function from LinearScan that starts the verification
3263 void LinearScan::verify_registers() {
3264   RegisterVerifier verifier(this);
3265   verifier.verify(block_at(0));
3266 }
3267 
3268 
3269 void RegisterVerifier::verify(BlockBegin* start) {
3270   // setup input registers (method arguments) for first block
3271   IntervalList* input_state = new IntervalList(state_size(), NULL);
3272   CallingConvention* args = compilation()->frame_map()->incoming_arguments();
3273   for (int n = 0; n < args->length(); n++) {
3274     LIR_Opr opr = args->at(n);
3275     if (opr->is_register()) {
3276       Interval* interval = interval_at(reg_num(opr));
3277 
3278       if (interval->assigned_reg() < state_size()) {
3279         input_state->at_put(interval->assigned_reg(), interval);
3280       }
3281       if (interval->assigned_regHi() != LinearScan::any_reg && interval->assigned_regHi() < state_size()) {
3282         input_state->at_put(interval->assigned_regHi(), interval);
3283       }
3284     }
3285   }
3286 
3287   set_state_for_block(start, input_state);
3288   add_to_work_list(start);
3289 
3290   // main loop for verification
3291   do {
3292     BlockBegin* block = _work_list.at(0);
3293     _work_list.remove_at(0);
3294 
3295     process_block(block);
3296   } while (!_work_list.is_empty());
3297 }
3298 
3299 void RegisterVerifier::process_block(BlockBegin* block) {
3300   TRACE_LINEAR_SCAN(2, tty->cr(); tty->print_cr("process_block B%d", block->block_id()));
3301 
3302   // must copy state because it is modified
3303   IntervalList* input_state = copy(state_for_block(block));
3304 
3305   if (TraceLinearScanLevel >= 4) {
3306     tty->print_cr("Input-State of intervals:");
3307     tty->print("    ");
3308     for (int i = 0; i < state_size(); i++) {
3309       if (input_state->at(i) != NULL) {
3310         tty->print(" %4d", input_state->at(i)->reg_num());
3311       } else {
3312         tty->print("   __");
3313       }
3314     }
3315     tty->cr();
3316     tty->cr();
3317   }
3318 
3319   // process all operations of the block
3320   process_operations(block->lir(), input_state);
3321 
3322   // iterate all successors
3323   for (int i = 0; i < block->number_of_sux(); i++) {
3324     process_successor(block->sux_at(i), input_state);
3325   }
3326 }
3327 
3328 void RegisterVerifier::process_xhandler(XHandler* xhandler, IntervalList* input_state) {
3329   TRACE_LINEAR_SCAN(2, tty->print_cr("process_xhandler B%d", xhandler->entry_block()->block_id()));
3330 
3331   // must copy state because it is modified
3332   input_state = copy(input_state);
3333 
3334   if (xhandler->entry_code() != NULL) {
3335     process_operations(xhandler->entry_code(), input_state);
3336   }
3337   process_successor(xhandler->entry_block(), input_state);
3338 }
3339 
3340 void RegisterVerifier::process_successor(BlockBegin* block, IntervalList* input_state) {
3341   IntervalList* saved_state = state_for_block(block);
3342 
3343   if (saved_state != NULL) {
3344     // this block was already processed before.
3345     // check if new input_state is consistent with saved_state
3346 
3347     bool saved_state_correct = true;
3348     for (int i = 0; i < state_size(); i++) {
3349       if (input_state->at(i) != saved_state->at(i)) {
3350         // current input_state and previous saved_state assume a different
3351         // interval in this register -> assume that this register is invalid
3352         if (saved_state->at(i) != NULL) {
3353           // invalidate old calculation only if it assumed that
3354           // register was valid. when the register was already invalid,
3355           // then the old calculation was correct.
3356           saved_state_correct = false;
3357           saved_state->at_put(i, NULL);
3358 
3359           TRACE_LINEAR_SCAN(4, tty->print_cr("process_successor B%d: invalidating slot %d", block->block_id(), i));
3360         }
3361       }
3362     }
3363 
3364     if (saved_state_correct) {
3365       // already processed block with correct input_state
3366       TRACE_LINEAR_SCAN(2, tty->print_cr("process_successor B%d: previous visit already correct", block->block_id()));
3367     } else {
3368       // must re-visit this block
3369       TRACE_LINEAR_SCAN(2, tty->print_cr("process_successor B%d: must re-visit because input state changed", block->block_id()));
3370       add_to_work_list(block);
3371     }
3372 
3373   } else {
3374     // block was not processed before, so set initial input_state
3375     TRACE_LINEAR_SCAN(2, tty->print_cr("process_successor B%d: initial visit", block->block_id()));
3376 
3377     set_state_for_block(block, copy(input_state));
3378     add_to_work_list(block);
3379   }
3380 }
3381 
3382 
3383 IntervalList* RegisterVerifier::copy(IntervalList* input_state) {
3384   IntervalList* copy_state = new IntervalList(input_state->length());
3385   copy_state->push_all(input_state);
3386   return copy_state;
3387 }
3388 
3389 void RegisterVerifier::state_put(IntervalList* input_state, int reg, Interval* interval) {
3390   if (reg != LinearScan::any_reg && reg < state_size()) {
3391     if (interval != NULL) {
3392       TRACE_LINEAR_SCAN(4, tty->print_cr("        reg[%d] = %d", reg, interval->reg_num()));
3393     } else if (input_state->at(reg) != NULL) {
3394       TRACE_LINEAR_SCAN(4, tty->print_cr("        reg[%d] = NULL", reg));
3395     }
3396 
3397     input_state->at_put(reg, interval);
3398   }
3399 }
3400 
3401 bool RegisterVerifier::check_state(IntervalList* input_state, int reg, Interval* interval) {
3402   if (reg != LinearScan::any_reg && reg < state_size()) {
3403     if (input_state->at(reg) != interval) {
3404       tty->print_cr("!! Error in register allocation: register %d does not contain interval %d", reg, interval->reg_num());
3405       return true;
3406     }
3407   }
3408   return false;
3409 }
3410 
3411 void RegisterVerifier::process_operations(LIR_List* ops, IntervalList* input_state) {
3412   // visit all instructions of the block
3413   LIR_OpVisitState visitor;
3414   bool has_error = false;
3415 
3416   for (int i = 0; i < ops->length(); i++) {
3417     LIR_Op* op = ops->at(i);
3418     visitor.visit(op);
3419 
3420     TRACE_LINEAR_SCAN(4, op->print_on(tty));
3421 
3422     // check if input operands are correct
3423     int j;
3424     int n = visitor.opr_count(LIR_OpVisitState::inputMode);
3425     for (j = 0; j < n; j++) {
3426       LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::inputMode, j);
3427       if (opr->is_register() && LinearScan::is_processed_reg_num(reg_num(opr))) {
3428         Interval* interval = interval_at(reg_num(opr));
3429         if (op->id() != -1) {
3430           interval = interval->split_child_at_op_id(op->id(), LIR_OpVisitState::inputMode);
3431         }
3432 
3433         has_error |= check_state(input_state, interval->assigned_reg(),   interval->split_parent());
3434         has_error |= check_state(input_state, interval->assigned_regHi(), interval->split_parent());
3435 
3436         // When an operand is marked with is_last_use, then the fpu stack allocator
3437         // removes the register from the fpu stack -> the register contains no value
3438         if (opr->is_last_use()) {
3439           state_put(input_state, interval->assigned_reg(),   NULL);
3440           state_put(input_state, interval->assigned_regHi(), NULL);
3441         }
3442       }
3443     }
3444 
3445     // invalidate all caller save registers at calls
3446     if (visitor.has_call()) {
3447       for (j = 0; j < FrameMap::nof_caller_save_cpu_regs; j++) {
3448         state_put(input_state, reg_num(FrameMap::caller_save_cpu_reg_at(j)), NULL);
3449       }
3450       for (j = 0; j < FrameMap::nof_caller_save_fpu_regs; j++) {
3451         state_put(input_state, reg_num(FrameMap::caller_save_fpu_reg_at(j)), NULL);
3452       }
3453 
3454 #ifdef X86
3455       for (j = 0; j < FrameMap::nof_caller_save_xmm_regs; j++) {
3456         state_put(input_state, reg_num(FrameMap::caller_save_xmm_reg_at(j)), NULL);
3457       }
3458 #endif
3459     }
3460 
3461     // process xhandler before output and temp operands
3462     XHandlers* xhandlers = visitor.all_xhandler();
3463     n = xhandlers->length();
3464     for (int k = 0; k < n; k++) {
3465       process_xhandler(xhandlers->handler_at(k), input_state);
3466     }
3467 
3468     // set temp operands (some operations use temp operands also as output operands, so can't set them NULL)
3469     n = visitor.opr_count(LIR_OpVisitState::tempMode);
3470     for (j = 0; j < n; j++) {
3471       LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::tempMode, j);
3472       if (opr->is_register() && LinearScan::is_processed_reg_num(reg_num(opr))) {
3473         Interval* interval = interval_at(reg_num(opr));
3474         if (op->id() != -1) {
3475           interval = interval->split_child_at_op_id(op->id(), LIR_OpVisitState::tempMode);
3476         }
3477 
3478         state_put(input_state, interval->assigned_reg(),   interval->split_parent());
3479         state_put(input_state, interval->assigned_regHi(), interval->split_parent());
3480       }
3481     }
3482 
3483     // set output operands
3484     n = visitor.opr_count(LIR_OpVisitState::outputMode);
3485     for (j = 0; j < n; j++) {
3486       LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::outputMode, j);
3487       if (opr->is_register() && LinearScan::is_processed_reg_num(reg_num(opr))) {
3488         Interval* interval = interval_at(reg_num(opr));
3489         if (op->id() != -1) {
3490           interval = interval->split_child_at_op_id(op->id(), LIR_OpVisitState::outputMode);
3491         }
3492 
3493         state_put(input_state, interval->assigned_reg(),   interval->split_parent());
3494         state_put(input_state, interval->assigned_regHi(), interval->split_parent());
3495       }
3496     }
3497   }
3498   assert(has_error == false, "Error in register allocation");
3499 }
3500 
3501 #endif // ASSERT
3502 
3503 
3504 
3505 // **** Implementation of MoveResolver ******************************
3506 
3507 MoveResolver::MoveResolver(LinearScan* allocator) :
3508   _allocator(allocator),
3509   _multiple_reads_allowed(false),
3510   _mapping_from(8),
3511   _mapping_from_opr(8),
3512   _mapping_to(8),
3513   _insert_list(NULL),
3514   _insert_idx(-1),
3515   _insertion_buffer()
3516 {
3517   for (int i = 0; i < LinearScan::nof_regs; i++) {
3518     _register_blocked[i] = 0;
3519   }
3520   DEBUG_ONLY(check_empty());
3521 }
3522 
3523 
3524 #ifdef ASSERT
3525 
3526 void MoveResolver::check_empty() {
3527   assert(_mapping_from.length() == 0 && _mapping_from_opr.length() == 0 && _mapping_to.length() == 0, "list must be empty before and after processing");
3528   for (int i = 0; i < LinearScan::nof_regs; i++) {
3529     assert(register_blocked(i) == 0, "register map must be empty before and after processing");
3530   }
3531   assert(_multiple_reads_allowed == false, "must have default value");
3532 }
3533 
3534 void MoveResolver::verify_before_resolve() {
3535   assert(_mapping_from.length() == _mapping_from_opr.length(), "length must be equal");
3536   assert(_mapping_from.length() == _mapping_to.length(), "length must be equal");
3537   assert(_insert_list != NULL && _insert_idx != -1, "insert position not set");
3538 
3539   int i, j;
3540   if (!_multiple_reads_allowed) {
3541     for (i = 0; i < _mapping_from.length(); i++) {
3542       for (j = i + 1; j < _mapping_from.length(); j++) {
3543         assert(_mapping_from.at(i) == NULL || _mapping_from.at(i) != _mapping_from.at(j), "cannot read from same interval twice");
3544       }
3545     }
3546   }
3547 
3548   for (i = 0; i < _mapping_to.length(); i++) {
3549     for (j = i + 1; j < _mapping_to.length(); j++) {
3550       assert(_mapping_to.at(i) != _mapping_to.at(j), "cannot write to same interval twice");
3551     }
3552   }
3553 
3554 
3555   BitMap used_regs(LinearScan::nof_regs + allocator()->frame_map()->argcount() + allocator()->max_spills());
3556   used_regs.clear();
3557   if (!_multiple_reads_allowed) {
3558     for (i = 0; i < _mapping_from.length(); i++) {
3559       Interval* it = _mapping_from.at(i);
3560       if (it != NULL) {
3561         assert(!used_regs.at(it->assigned_reg()), "cannot read from same register twice");
3562         used_regs.set_bit(it->assigned_reg());
3563 
3564         if (it->assigned_regHi() != LinearScan::any_reg) {
3565           assert(!used_regs.at(it->assigned_regHi()), "cannot read from same register twice");
3566           used_regs.set_bit(it->assigned_regHi());
3567         }
3568       }
3569     }
3570   }
3571 
3572   used_regs.clear();
3573   for (i = 0; i < _mapping_to.length(); i++) {
3574     Interval* it = _mapping_to.at(i);
3575     assert(!used_regs.at(it->assigned_reg()), "cannot write to same register twice");
3576     used_regs.set_bit(it->assigned_reg());
3577 
3578     if (it->assigned_regHi() != LinearScan::any_reg) {
3579       assert(!used_regs.at(it->assigned_regHi()), "cannot write to same register twice");
3580       used_regs.set_bit(it->assigned_regHi());
3581     }
3582   }
3583 
3584   used_regs.clear();
3585   for (i = 0; i < _mapping_from.length(); i++) {
3586     Interval* it = _mapping_from.at(i);
3587     if (it != NULL && it->assigned_reg() >= LinearScan::nof_regs) {
3588       used_regs.set_bit(it->assigned_reg());
3589     }
3590   }
3591   for (i = 0; i < _mapping_to.length(); i++) {
3592     Interval* it = _mapping_to.at(i);
3593     assert(!used_regs.at(it->assigned_reg()) || it->assigned_reg() == _mapping_from.at(i)->assigned_reg(), "stack slots used in _mapping_from must be disjoint to _mapping_to");
3594   }
3595 }
3596 
3597 #endif // ASSERT
3598 
3599 
3600 // mark assigned_reg and assigned_regHi of the interval as blocked
3601 void MoveResolver::block_registers(Interval* it) {
3602   int reg = it->assigned_reg();
3603   if (reg < LinearScan::nof_regs) {
3604     assert(_multiple_reads_allowed || register_blocked(reg) == 0, "register already marked as used");
3605     set_register_blocked(reg, 1);
3606   }
3607   reg = it->assigned_regHi();
3608   if (reg != LinearScan::any_reg && reg < LinearScan::nof_regs) {
3609     assert(_multiple_reads_allowed || register_blocked(reg) == 0, "register already marked as used");
3610     set_register_blocked(reg, 1);
3611   }
3612 }
3613 
3614 // mark assigned_reg and assigned_regHi of the interval as unblocked
3615 void MoveResolver::unblock_registers(Interval* it) {
3616   int reg = it->assigned_reg();
3617   if (reg < LinearScan::nof_regs) {
3618     assert(register_blocked(reg) > 0, "register already marked as unused");
3619     set_register_blocked(reg, -1);
3620   }
3621   reg = it->assigned_regHi();
3622   if (reg != LinearScan::any_reg && reg < LinearScan::nof_regs) {
3623     assert(register_blocked(reg) > 0, "register already marked as unused");
3624     set_register_blocked(reg, -1);
3625   }
3626 }
3627 
3628 // check if assigned_reg and assigned_regHi of the to-interval are not blocked (or only blocked by from)
3629 bool MoveResolver::save_to_process_move(Interval* from, Interval* to) {
3630   int from_reg = -1;
3631   int from_regHi = -1;
3632   if (from != NULL) {
3633     from_reg = from->assigned_reg();
3634     from_regHi = from->assigned_regHi();
3635   }
3636 
3637   int reg = to->assigned_reg();
3638   if (reg < LinearScan::nof_regs) {
3639     if (register_blocked(reg) > 1 || (register_blocked(reg) == 1 && reg != from_reg && reg != from_regHi)) {
3640       return false;
3641     }
3642   }
3643   reg = to->assigned_regHi();
3644   if (reg != LinearScan::any_reg && reg < LinearScan::nof_regs) {
3645     if (register_blocked(reg) > 1 || (register_blocked(reg) == 1 && reg != from_reg && reg != from_regHi)) {
3646       return false;
3647     }
3648   }
3649 
3650   return true;
3651 }
3652 
3653 
3654 void MoveResolver::create_insertion_buffer(LIR_List* list) {
3655   assert(!_insertion_buffer.initialized(), "overwriting existing buffer");
3656   _insertion_buffer.init(list);
3657 }
3658 
3659 void MoveResolver::append_insertion_buffer() {
3660   if (_insertion_buffer.initialized()) {
3661     _insertion_buffer.lir_list()->append(&_insertion_buffer);
3662   }
3663   assert(!_insertion_buffer.initialized(), "must be uninitialized now");
3664 
3665   _insert_list = NULL;
3666   _insert_idx = -1;
3667 }
3668 
3669 void MoveResolver::insert_move(Interval* from_interval, Interval* to_interval) {
3670   assert(from_interval->reg_num() != to_interval->reg_num(), "from and to interval equal");
3671   assert(from_interval->type() == to_interval->type(), "move between different types");
3672   assert(_insert_list != NULL && _insert_idx != -1, "must setup insert position first");
3673   assert(_insertion_buffer.lir_list() == _insert_list, "wrong insertion buffer");
3674 
3675   LIR_Opr from_opr = LIR_OprFact::virtual_register(from_interval->reg_num(), from_interval->type());
3676   LIR_Opr to_opr = LIR_OprFact::virtual_register(to_interval->reg_num(), to_interval->type());
3677 
3678   if (!_multiple_reads_allowed) {
3679     // the last_use flag is an optimization for FPU stack allocation. When the same
3680     // input interval is used in more than one move, then it is too difficult to determine
3681     // if this move is really the last use.
3682     from_opr = from_opr->make_last_use();
3683   }
3684   _insertion_buffer.move(_insert_idx, from_opr, to_opr);
3685 
3686   TRACE_LINEAR_SCAN(4, tty->print_cr("MoveResolver: inserted move from register %d (%d, %d) to %d (%d, %d)", from_interval->reg_num(), from_interval->assigned_reg(), from_interval->assigned_regHi(), to_interval->reg_num(), to_interval->assigned_reg(), to_interval->assigned_regHi()));
3687 }
3688 
3689 void MoveResolver::insert_move(LIR_Opr from_opr, Interval* to_interval) {
3690   assert(from_opr->type() == to_interval->type(), "move between different types");
3691   assert(_insert_list != NULL && _insert_idx != -1, "must setup insert position first");
3692   assert(_insertion_buffer.lir_list() == _insert_list, "wrong insertion buffer");
3693 
3694   LIR_Opr to_opr = LIR_OprFact::virtual_register(to_interval->reg_num(), to_interval->type());
3695   _insertion_buffer.move(_insert_idx, from_opr, to_opr);
3696 
3697   TRACE_LINEAR_SCAN(4, tty->print("MoveResolver: inserted move from constant "); from_opr->print(); tty->print_cr("  to %d (%d, %d)", to_interval->reg_num(), to_interval->assigned_reg(), to_interval->assigned_regHi()));
3698 }
3699 
3700 
3701 void MoveResolver::resolve_mappings() {
3702   TRACE_LINEAR_SCAN(4, tty->print_cr("MoveResolver: resolving mappings for Block B%d, index %d", _insert_list->block() != NULL ? _insert_list->block()->block_id() : -1, _insert_idx));
3703   DEBUG_ONLY(verify_before_resolve());
3704 
3705   // Block all registers that are used as input operands of a move.
3706   // When a register is blocked, no move to this register is emitted.
3707   // This is necessary for detecting cycles in moves.
3708   int i;
3709   for (i = _mapping_from.length() - 1; i >= 0; i--) {
3710     Interval* from_interval = _mapping_from.at(i);
3711     if (from_interval != NULL) {
3712       block_registers(from_interval);
3713     }
3714   }
3715 
3716   int spill_candidate = -1;
3717   while (_mapping_from.length() > 0) {
3718     bool processed_interval = false;
3719 
3720     for (i = _mapping_from.length() - 1; i >= 0; i--) {
3721       Interval* from_interval = _mapping_from.at(i);
3722       Interval* to_interval = _mapping_to.at(i);
3723 
3724       if (save_to_process_move(from_interval, to_interval)) {
3725         // this inverval can be processed because target is free
3726         if (from_interval != NULL) {
3727           insert_move(from_interval, to_interval);
3728           unblock_registers(from_interval);
3729         } else {
3730           insert_move(_mapping_from_opr.at(i), to_interval);
3731         }
3732         _mapping_from.remove_at(i);
3733         _mapping_from_opr.remove_at(i);
3734         _mapping_to.remove_at(i);
3735 
3736         processed_interval = true;
3737       } else if (from_interval != NULL && from_interval->assigned_reg() < LinearScan::nof_regs) {
3738         // this interval cannot be processed now because target is not free
3739         // it starts in a register, so it is a possible candidate for spilling
3740         spill_candidate = i;
3741       }
3742     }
3743 
3744     if (!processed_interval) {
3745       // no move could be processed because there is a cycle in the move list
3746       // (e.g. r1 -> r2, r2 -> r1), so one interval must be spilled to memory
3747       assert(spill_candidate != -1, "no interval in register for spilling found");
3748 
3749       // create a new spill interval and assign a stack slot to it
3750       Interval* from_interval = _mapping_from.at(spill_candidate);
3751       Interval* spill_interval = new Interval(-1);
3752       spill_interval->set_type(from_interval->type());
3753 
3754       // add a dummy range because real position is difficult to calculate
3755       // Note: this range is a special case when the integrity of the allocation is checked
3756       spill_interval->add_range(1, 2);
3757 
3758       //       do not allocate a new spill slot for temporary interval, but
3759       //       use spill slot assigned to from_interval. Otherwise moves from
3760       //       one stack slot to another can happen (not allowed by LIR_Assembler
3761       int spill_slot = from_interval->canonical_spill_slot();
3762       if (spill_slot < 0) {
3763         spill_slot = allocator()->allocate_spill_slot(type2spill_size[spill_interval->type()] == 2);
3764         from_interval->set_canonical_spill_slot(spill_slot);
3765       }
3766       spill_interval->assign_reg(spill_slot);
3767       allocator()->append_interval(spill_interval);
3768 
3769       TRACE_LINEAR_SCAN(4, tty->print_cr("created new Interval %d for spilling", spill_interval->reg_num()));
3770 
3771       // insert a move from register to stack and update the mapping
3772       insert_move(from_interval, spill_interval);
3773       _mapping_from.at_put(spill_candidate, spill_interval);
3774       unblock_registers(from_interval);
3775     }
3776   }
3777 
3778   // reset to default value
3779   _multiple_reads_allowed = false;
3780 
3781   // check that all intervals have been processed
3782   DEBUG_ONLY(check_empty());
3783 }
3784 
3785 
3786 void MoveResolver::set_insert_position(LIR_List* insert_list, int insert_idx) {
3787   TRACE_LINEAR_SCAN(4, tty->print_cr("MoveResolver: setting insert position to Block B%d, index %d", insert_list->block() != NULL ? insert_list->block()->block_id() : -1, insert_idx));
3788   assert(_insert_list == NULL && _insert_idx == -1, "use move_insert_position instead of set_insert_position when data already set");
3789 
3790   create_insertion_buffer(insert_list);
3791   _insert_list = insert_list;
3792   _insert_idx = insert_idx;
3793 }
3794 
3795 void MoveResolver::move_insert_position(LIR_List* insert_list, int insert_idx) {
3796   TRACE_LINEAR_SCAN(4, tty->print_cr("MoveResolver: moving insert position to Block B%d, index %d", insert_list->block() != NULL ? insert_list->block()->block_id() : -1, insert_idx));
3797 
3798   if (_insert_list != NULL && (insert_list != _insert_list || insert_idx != _insert_idx)) {
3799     // insert position changed -> resolve current mappings
3800     resolve_mappings();
3801   }
3802 
3803   if (insert_list != _insert_list) {
3804     // block changed -> append insertion_buffer because it is
3805     // bound to a specific block and create a new insertion_buffer
3806     append_insertion_buffer();
3807     create_insertion_buffer(insert_list);
3808   }
3809 
3810   _insert_list = insert_list;
3811   _insert_idx = insert_idx;
3812 }
3813 
3814 void MoveResolver::add_mapping(Interval* from_interval, Interval* to_interval) {
3815   TRACE_LINEAR_SCAN(4, tty->print_cr("MoveResolver: adding mapping from %d (%d, %d) to %d (%d, %d)", from_interval->reg_num(), from_interval->assigned_reg(), from_interval->assigned_regHi(), to_interval->reg_num(), to_interval->assigned_reg(), to_interval->assigned_regHi()));
3816 
3817   _mapping_from.append(from_interval);
3818   _mapping_from_opr.append(LIR_OprFact::illegalOpr);
3819   _mapping_to.append(to_interval);
3820 }
3821 
3822 
3823 void MoveResolver::add_mapping(LIR_Opr from_opr, Interval* to_interval) {
3824   TRACE_LINEAR_SCAN(4, tty->print("MoveResolver: adding mapping from "); from_opr->print(); tty->print_cr(" to %d (%d, %d)", to_interval->reg_num(), to_interval->assigned_reg(), to_interval->assigned_regHi()));
3825   assert(from_opr->is_constant(), "only for constants");
3826 
3827   _mapping_from.append(NULL);
3828   _mapping_from_opr.append(from_opr);
3829   _mapping_to.append(to_interval);
3830 }
3831 
3832 void MoveResolver::resolve_and_append_moves() {
3833   if (has_mappings()) {
3834     resolve_mappings();
3835   }
3836   append_insertion_buffer();
3837 }
3838 
3839 
3840 
3841 // **** Implementation of Range *************************************
3842 
3843 Range::Range(int from, int to, Range* next) :
3844   _from(from),
3845   _to(to),
3846   _next(next)
3847 {
3848 }
3849 
3850 // initialize sentinel
3851 Range* Range::_end = NULL;
3852 void Range::initialize() {
3853   _end = new Range(max_jint, max_jint, NULL);
3854 }
3855 
3856 int Range::intersects_at(Range* r2) const {
3857   const Range* r1 = this;
3858 
3859   assert(r1 != NULL && r2 != NULL, "null ranges not allowed");
3860   assert(r1 != _end && r2 != _end, "empty ranges not allowed");
3861 
3862   do {
3863     if (r1->from() < r2->from()) {
3864       if (r1->to() <= r2->from()) {
3865         r1 = r1->next(); if (r1 == _end) return -1;
3866       } else {
3867         return r2->from();
3868       }
3869     } else if (r2->from() < r1->from()) {
3870       if (r2->to() <= r1->from()) {
3871         r2 = r2->next(); if (r2 == _end) return -1;
3872       } else {
3873         return r1->from();
3874       }
3875     } else { // r1->from() == r2->from()
3876       if (r1->from() == r1->to()) {
3877         r1 = r1->next(); if (r1 == _end) return -1;
3878       } else if (r2->from() == r2->to()) {
3879         r2 = r2->next(); if (r2 == _end) return -1;
3880       } else {
3881         return r1->from();
3882       }
3883     }
3884   } while (true);
3885 }
3886 
3887 #ifndef PRODUCT
3888 void Range::print(outputStream* out) const {
3889   out->print("[%d, %d[ ", _from, _to);
3890 }
3891 #endif
3892 
3893 
3894 
3895 // **** Implementation of Interval **********************************
3896 
3897 // initialize sentinel
3898 Interval* Interval::_end = NULL;
3899 void Interval::initialize() {
3900   Range::initialize();
3901   _end = new Interval(-1);
3902 }
3903 
3904 Interval::Interval(int reg_num) :
3905   _reg_num(reg_num),
3906   _type(T_ILLEGAL),
3907   _first(Range::end()),
3908   _use_pos_and_kinds(12),
3909   _current(Range::end()),
3910   _next(_end),
3911   _state(invalidState),
3912   _assigned_reg(LinearScan::any_reg),
3913   _assigned_regHi(LinearScan::any_reg),
3914   _cached_to(-1),
3915   _cached_opr(LIR_OprFact::illegalOpr),
3916   _cached_vm_reg(VMRegImpl::Bad()),
3917   _split_children(0),
3918   _canonical_spill_slot(-1),
3919   _insert_move_when_activated(false),
3920   _register_hint(NULL),
3921   _spill_state(noDefinitionFound),
3922   _spill_definition_pos(-1)
3923 {
3924   _split_parent = this;
3925   _current_split_child = this;
3926 }
3927 
3928 int Interval::calc_to() {
3929   assert(_first != Range::end(), "interval has no range");
3930 
3931   Range* r = _first;
3932   while (r->next() != Range::end()) {
3933     r = r->next();
3934   }
3935   return r->to();
3936 }
3937 
3938 
3939 #ifdef ASSERT
3940 // consistency check of split-children
3941 void Interval::check_split_children() {
3942   if (_split_children.length() > 0) {
3943     assert(is_split_parent(), "only split parents can have children");
3944 
3945     for (int i = 0; i < _split_children.length(); i++) {
3946       Interval* i1 = _split_children.at(i);
3947 
3948       assert(i1->split_parent() == this, "not a split child of this interval");
3949       assert(i1->type() == type(), "must be equal for all split children");
3950       assert(i1->canonical_spill_slot() == canonical_spill_slot(), "must be equal for all split children");
3951 
3952       for (int j = i + 1; j < _split_children.length(); j++) {
3953         Interval* i2 = _split_children.at(j);
3954 
3955         assert(i1->reg_num() != i2->reg_num(), "same register number");
3956 
3957         if (i1->from() < i2->from()) {
3958           assert(i1->to() <= i2->from() && i1->to() < i2->to(), "intervals overlapping");
3959         } else {
3960           assert(i2->from() < i1->from(), "intervals start at same op_id");
3961           assert(i2->to() <= i1->from() && i2->to() < i1->to(), "intervals overlapping");
3962         }
3963       }
3964     }
3965   }
3966 }
3967 #endif // ASSERT
3968 
3969 Interval* Interval::register_hint(bool search_split_child) const {
3970   if (!search_split_child) {
3971     return _register_hint;
3972   }
3973 
3974   if (_register_hint != NULL) {
3975     assert(_register_hint->is_split_parent(), "ony split parents are valid hint registers");
3976 
3977     if (_register_hint->assigned_reg() >= 0 && _register_hint->assigned_reg() < LinearScan::nof_regs) {
3978       return _register_hint;
3979 
3980     } else if (_register_hint->_split_children.length() > 0) {
3981       // search the first split child that has a register assigned
3982       int len = _register_hint->_split_children.length();
3983       for (int i = 0; i < len; i++) {
3984         Interval* cur = _register_hint->_split_children.at(i);
3985 
3986         if (cur->assigned_reg() >= 0 && cur->assigned_reg() < LinearScan::nof_regs) {
3987           return cur;
3988         }
3989       }
3990     }
3991   }
3992 
3993   // no hint interval found that has a register assigned
3994   return NULL;
3995 }
3996 
3997 
3998 Interval* Interval::split_child_at_op_id(int op_id, LIR_OpVisitState::OprMode mode) {
3999   assert(is_split_parent(), "can only be called for split parents");
4000   assert(op_id >= 0, "invalid op_id (method can not be called for spill moves)");
4001 
4002   Interval* result;
4003   if (_split_children.length() == 0) {
4004     result = this;
4005   } else {
4006     result = NULL;
4007     int len = _split_children.length();
4008 
4009     // in outputMode, the end of the interval (op_id == cur->to()) is not valid
4010     int to_offset = (mode == LIR_OpVisitState::outputMode ? 0 : 1);
4011 
4012     int i;
4013     for (i = 0; i < len; i++) {
4014       Interval* cur = _split_children.at(i);
4015       if (cur->from() <= op_id && op_id < cur->to() + to_offset) {
4016         if (i > 0) {
4017           // exchange current split child to start of list (faster access for next call)
4018           _split_children.at_put(i, _split_children.at(0));
4019           _split_children.at_put(0, cur);
4020         }
4021 
4022         // interval found
4023         result = cur;
4024         break;
4025       }
4026     }
4027 
4028 #ifdef ASSERT
4029     for (i = 0; i < len; i++) {
4030       Interval* tmp = _split_children.at(i);
4031       if (tmp != result && tmp->from() <= op_id && op_id < tmp->to() + to_offset) {
4032         tty->print_cr("two valid result intervals found for op_id %d: %d and %d", op_id, result->reg_num(), tmp->reg_num());
4033         result->print();
4034         tmp->print();
4035         assert(false, "two valid result intervals found");
4036       }
4037     }
4038 #endif
4039   }
4040 
4041   assert(result != NULL, "no matching interval found");
4042   assert(result->covers(op_id, mode), "op_id not covered by interval");
4043 
4044   return result;
4045 }
4046 
4047 
4048 // returns the last split child that ends before the given op_id
4049 Interval* Interval::split_child_before_op_id(int op_id) {
4050   assert(op_id >= 0, "invalid op_id");
4051 
4052   Interval* parent = split_parent();
4053   Interval* result = NULL;
4054 
4055   int len = parent->_split_children.length();
4056   assert(len > 0, "no split children available");
4057 
4058   for (int i = len - 1; i >= 0; i--) {
4059     Interval* cur = parent->_split_children.at(i);
4060     if (cur->to() <= op_id && (result == NULL || result->to() < cur->to())) {
4061       result = cur;
4062     }
4063   }
4064 
4065   assert(result != NULL, "no split child found");
4066   return result;
4067 }
4068 
4069 
4070 // checks if op_id is covered by any split child
4071 bool Interval::split_child_covers(int op_id, LIR_OpVisitState::OprMode mode) {
4072   assert(is_split_parent(), "can only be called for split parents");
4073   assert(op_id >= 0, "invalid op_id (method can not be called for spill moves)");
4074 
4075   if (_split_children.length() == 0) {
4076     // simple case if interval was not split
4077     return covers(op_id, mode);
4078 
4079   } else {
4080     // extended case: check all split children
4081     int len = _split_children.length();
4082     for (int i = 0; i < len; i++) {
4083       Interval* cur = _split_children.at(i);
4084       if (cur->covers(op_id, mode)) {
4085         return true;
4086       }
4087     }
4088     return false;
4089   }
4090 }
4091 
4092 
4093 // Note: use positions are sorted descending -> first use has highest index
4094 int Interval::first_usage(IntervalUseKind min_use_kind) const {
4095   assert(LinearScan::is_virtual_interval(this), "cannot access use positions for fixed intervals");
4096 
4097   for (int i = _use_pos_and_kinds.length() - 2; i >= 0; i -= 2) {
4098     if (_use_pos_and_kinds.at(i + 1) >= min_use_kind) {
4099       return _use_pos_and_kinds.at(i);
4100     }
4101   }
4102   return max_jint;
4103 }
4104 
4105 int Interval::next_usage(IntervalUseKind min_use_kind, int from) const {
4106   assert(LinearScan::is_virtual_interval(this), "cannot access use positions for fixed intervals");
4107 
4108   for (int i = _use_pos_and_kinds.length() - 2; i >= 0; i -= 2) {
4109     if (_use_pos_and_kinds.at(i) >= from && _use_pos_and_kinds.at(i + 1) >= min_use_kind) {
4110       return _use_pos_and_kinds.at(i);
4111     }
4112   }
4113   return max_jint;
4114 }
4115 
4116 int Interval::next_usage_exact(IntervalUseKind exact_use_kind, int from) const {
4117   assert(LinearScan::is_virtual_interval(this), "cannot access use positions for fixed intervals");
4118 
4119   for (int i = _use_pos_and_kinds.length() - 2; i >= 0; i -= 2) {
4120     if (_use_pos_and_kinds.at(i) >= from && _use_pos_and_kinds.at(i + 1) == exact_use_kind) {
4121       return _use_pos_and_kinds.at(i);
4122     }
4123   }
4124   return max_jint;
4125 }
4126 
4127 int Interval::previous_usage(IntervalUseKind min_use_kind, int from) const {
4128   assert(LinearScan::is_virtual_interval(this), "cannot access use positions for fixed intervals");
4129 
4130   int prev = 0;
4131   for (int i = _use_pos_and_kinds.length() - 2; i >= 0; i -= 2) {
4132     if (_use_pos_and_kinds.at(i) > from) {
4133       return prev;
4134     }
4135     if (_use_pos_and_kinds.at(i + 1) >= min_use_kind) {
4136       prev = _use_pos_and_kinds.at(i);
4137     }
4138   }
4139   return prev;
4140 }
4141 
4142 void Interval::add_use_pos(int pos, IntervalUseKind use_kind) {
4143   assert(covers(pos, LIR_OpVisitState::inputMode), "use position not covered by live range");
4144 
4145   // do not add use positions for precolored intervals because
4146   // they are never used
4147   if (use_kind != noUse && reg_num() >= LIR_OprDesc::vreg_base) {
4148 #ifdef ASSERT
4149     assert(_use_pos_and_kinds.length() % 2 == 0, "must be");
4150     for (int i = 0; i < _use_pos_and_kinds.length(); i += 2) {
4151       assert(pos <= _use_pos_and_kinds.at(i), "already added a use-position with lower position");
4152       assert(_use_pos_and_kinds.at(i + 1) >= firstValidKind && _use_pos_and_kinds.at(i + 1) <= lastValidKind, "invalid use kind");
4153       if (i > 0) {
4154         assert(_use_pos_and_kinds.at(i) < _use_pos_and_kinds.at(i - 2), "not sorted descending");
4155       }
4156     }
4157 #endif
4158 
4159     // Note: add_use is called in descending order, so list gets sorted
4160     //       automatically by just appending new use positions
4161     int len = _use_pos_and_kinds.length();
4162     if (len == 0 || _use_pos_and_kinds.at(len - 2) > pos) {
4163       _use_pos_and_kinds.append(pos);
4164       _use_pos_and_kinds.append(use_kind);
4165     } else if (_use_pos_and_kinds.at(len - 1) < use_kind) {
4166       assert(_use_pos_and_kinds.at(len - 2) == pos, "list not sorted correctly");
4167       _use_pos_and_kinds.at_put(len - 1, use_kind);
4168     }
4169   }
4170 }
4171 
4172 void Interval::add_range(int from, int to) {
4173   assert(from < to, "invalid range");
4174   assert(first() == Range::end() || to < first()->next()->from(), "not inserting at begin of interval");
4175   assert(from <= first()->to(), "not inserting at begin of interval");
4176 
4177   if (first()->from() <= to) {
4178     // join intersecting ranges
4179     first()->set_from(MIN2(from, first()->from()));
4180     first()->set_to  (MAX2(to,   first()->to()));
4181   } else {
4182     // insert new range
4183     _first = new Range(from, to, first());
4184   }
4185 }
4186 
4187 Interval* Interval::new_split_child() {
4188   // allocate new interval
4189   Interval* result = new Interval(-1);
4190   result->set_type(type());
4191 
4192   Interval* parent = split_parent();
4193   result->_split_parent = parent;
4194   result->set_register_hint(parent);
4195 
4196   // insert new interval in children-list of parent
4197   if (parent->_split_children.length() == 0) {
4198     assert(is_split_parent(), "list must be initialized at first split");
4199 
4200     parent->_split_children = IntervalList(4);
4201     parent->_split_children.append(this);
4202   }
4203   parent->_split_children.append(result);
4204 
4205   return result;
4206 }
4207 
4208 // split this interval at the specified position and return
4209 // the remainder as a new interval.
4210 //
4211 // when an interval is split, a bi-directional link is established between the original interval
4212 // (the split parent) and the intervals that are split off this interval (the split children)
4213 // When a split child is split again, the new created interval is also a direct child
4214 // of the original parent (there is no tree of split children stored, but a flat list)
4215 // All split children are spilled to the same stack slot (stored in _canonical_spill_slot)
4216 //
4217 // Note: The new interval has no valid reg_num
4218 Interval* Interval::split(int split_pos) {
4219   assert(LinearScan::is_virtual_interval(this), "cannot split fixed intervals");
4220 
4221   // allocate new interval
4222   Interval* result = new_split_child();
4223 
4224   // split the ranges
4225   Range* prev = NULL;
4226   Range* cur = _first;
4227   while (cur != Range::end() && cur->to() <= split_pos) {
4228     prev = cur;
4229     cur = cur->next();
4230   }
4231   assert(cur != Range::end(), "split interval after end of last range");
4232 
4233   if (cur->from() < split_pos) {
4234     result->_first = new Range(split_pos, cur->to(), cur->next());
4235     cur->set_to(split_pos);
4236     cur->set_next(Range::end());
4237 
4238   } else {
4239     assert(prev != NULL, "split before start of first range");
4240     result->_first = cur;
4241     prev->set_next(Range::end());
4242   }
4243   result->_current = result->_first;
4244   _cached_to = -1; // clear cached value
4245 
4246   // split list of use positions
4247   int total_len = _use_pos_and_kinds.length();
4248   int start_idx = total_len - 2;
4249   while (start_idx >= 0 && _use_pos_and_kinds.at(start_idx) < split_pos) {
4250     start_idx -= 2;
4251   }
4252 
4253   intStack new_use_pos_and_kinds(total_len - start_idx);
4254   int i;
4255   for (i = start_idx + 2; i < total_len; i++) {
4256     new_use_pos_and_kinds.append(_use_pos_and_kinds.at(i));
4257   }
4258 
4259   _use_pos_and_kinds.truncate(start_idx + 2);
4260   result->_use_pos_and_kinds = _use_pos_and_kinds;
4261   _use_pos_and_kinds = new_use_pos_and_kinds;
4262 
4263 #ifdef ASSERT
4264   assert(_use_pos_and_kinds.length() % 2 == 0, "must have use kind for each use pos");
4265   assert(result->_use_pos_and_kinds.length() % 2 == 0, "must have use kind for each use pos");
4266   assert(_use_pos_and_kinds.length() + result->_use_pos_and_kinds.length() == total_len, "missed some entries");
4267 
4268   for (i = 0; i < _use_pos_and_kinds.length(); i += 2) {
4269     assert(_use_pos_and_kinds.at(i) < split_pos, "must be");
4270     assert(_use_pos_and_kinds.at(i + 1) >= firstValidKind && _use_pos_and_kinds.at(i + 1) <= lastValidKind, "invalid use kind");
4271   }
4272   for (i = 0; i < result->_use_pos_and_kinds.length(); i += 2) {
4273     assert(result->_use_pos_and_kinds.at(i) >= split_pos, "must be");
4274     assert(result->_use_pos_and_kinds.at(i + 1) >= firstValidKind && result->_use_pos_and_kinds.at(i + 1) <= lastValidKind, "invalid use kind");
4275   }
4276 #endif
4277 
4278   return result;
4279 }
4280 
4281 // split this interval at the specified position and return
4282 // the head as a new interval (the original interval is the tail)
4283 //
4284 // Currently, only the first range can be split, and the new interval
4285 // must not have split positions
4286 Interval* Interval::split_from_start(int split_pos) {
4287   assert(LinearScan::is_virtual_interval(this), "cannot split fixed intervals");
4288   assert(split_pos > from() && split_pos < to(), "can only split inside interval");
4289   assert(split_pos > _first->from() && split_pos <= _first->to(), "can only split inside first range");
4290   assert(first_usage(noUse) > split_pos, "can not split when use positions are present");
4291 
4292   // allocate new interval
4293   Interval* result = new_split_child();
4294 
4295   // the new created interval has only one range (checked by assertion above),
4296   // so the splitting of the ranges is very simple
4297   result->add_range(_first->from(), split_pos);
4298 
4299   if (split_pos == _first->to()) {
4300     assert(_first->next() != Range::end(), "must not be at end");
4301     _first = _first->next();
4302   } else {
4303     _first->set_from(split_pos);
4304   }
4305 
4306   return result;
4307 }
4308 
4309 
4310 // returns true if the op_id is inside the interval
4311 bool Interval::covers(int op_id, LIR_OpVisitState::OprMode mode) const {
4312   Range* cur  = _first;
4313 
4314   while (cur != Range::end() && cur->to() < op_id) {
4315     cur = cur->next();
4316   }
4317   if (cur != Range::end()) {
4318     assert(cur->to() != cur->next()->from(), "ranges not separated");
4319 
4320     if (mode == LIR_OpVisitState::outputMode) {
4321       return cur->from() <= op_id && op_id < cur->to();
4322     } else {
4323       return cur->from() <= op_id && op_id <= cur->to();
4324     }
4325   }
4326   return false;
4327 }
4328 
4329 // returns true if the interval has any hole between hole_from and hole_to
4330 // (even if the hole has only the length 1)
4331 bool Interval::has_hole_between(int hole_from, int hole_to) {
4332   assert(hole_from < hole_to, "check");
4333   assert(from() <= hole_from && hole_to <= to(), "index out of interval");
4334 
4335   Range* cur  = _first;
4336   while (cur != Range::end()) {
4337     assert(cur->to() < cur->next()->from(), "no space between ranges");
4338 
4339     // hole-range starts before this range -> hole
4340     if (hole_from < cur->from()) {
4341       return true;
4342 
4343     // hole-range completely inside this range -> no hole
4344     } else if (hole_to <= cur->to()) {
4345       return false;
4346 
4347     // overlapping of hole-range with this range -> hole
4348     } else if (hole_from <= cur->to()) {
4349       return true;
4350     }
4351 
4352     cur = cur->next();
4353   }
4354 
4355   return false;
4356 }
4357 
4358 
4359 #ifndef PRODUCT
4360 void Interval::print(outputStream* out) const {
4361   const char* SpillState2Name[] = { "no definition", "no spill store", "one spill store", "store at definition", "start in memory", "no optimization" };
4362   const char* UseKind2Name[] = { "N", "L", "S", "M" };
4363 
4364   const char* type_name;
4365   LIR_Opr opr = LIR_OprFact::illegal();
4366   if (reg_num() < LIR_OprDesc::vreg_base) {
4367     type_name = "fixed";
4368     // need a temporary operand for fixed intervals because type() cannot be called
4369     if (assigned_reg() >= pd_first_cpu_reg && assigned_reg() <= pd_last_cpu_reg) {
4370       opr = LIR_OprFact::single_cpu(assigned_reg());
4371     } else if (assigned_reg() >= pd_first_fpu_reg && assigned_reg() <= pd_last_fpu_reg) {
4372       opr = LIR_OprFact::single_fpu(assigned_reg() - pd_first_fpu_reg);
4373 #ifdef X86
4374     } else if (assigned_reg() >= pd_first_xmm_reg && assigned_reg() <= pd_last_xmm_reg) {
4375       opr = LIR_OprFact::single_xmm(assigned_reg() - pd_first_xmm_reg);
4376 #endif
4377     } else {
4378       ShouldNotReachHere();
4379     }
4380   } else {
4381     type_name = type2name(type());
4382     if (assigned_reg() != -1) {
4383       opr = LinearScan::calc_operand_for_interval(this);
4384     }
4385   }
4386 
4387   out->print("%d %s ", reg_num(), type_name);
4388   if (opr->is_valid()) {
4389     out->print("\"");
4390     opr->print(out);
4391     out->print("\" ");
4392   }
4393   out->print("%d %d ", split_parent()->reg_num(), (register_hint(false) != NULL ? register_hint(false)->reg_num() : -1));
4394 
4395   // print ranges
4396   Range* cur = _first;
4397   while (cur != Range::end()) {
4398     cur->print(out);
4399     cur = cur->next();
4400     assert(cur != NULL, "range list not closed with range sentinel");
4401   }
4402 
4403   // print use positions
4404   int prev = 0;
4405   assert(_use_pos_and_kinds.length() % 2 == 0, "must be");
4406   for (int i =_use_pos_and_kinds.length() - 2; i >= 0; i -= 2) {
4407     assert(_use_pos_and_kinds.at(i + 1) >= firstValidKind && _use_pos_and_kinds.at(i + 1) <= lastValidKind, "invalid use kind");
4408     assert(prev < _use_pos_and_kinds.at(i), "use positions not sorted");
4409 
4410     out->print("%d %s ", _use_pos_and_kinds.at(i), UseKind2Name[_use_pos_and_kinds.at(i + 1)]);
4411     prev = _use_pos_and_kinds.at(i);
4412   }
4413 
4414   out->print(" \"%s\"", SpillState2Name[spill_state()]);
4415   out->cr();
4416 }
4417 #endif
4418 
4419 
4420 
4421 // **** Implementation of IntervalWalker ****************************
4422 
4423 IntervalWalker::IntervalWalker(LinearScan* allocator, Interval* unhandled_fixed_first, Interval* unhandled_any_first)
4424  : _compilation(allocator->compilation())
4425  , _allocator(allocator)
4426 {
4427   _unhandled_first[fixedKind] = unhandled_fixed_first;
4428   _unhandled_first[anyKind]   = unhandled_any_first;
4429   _active_first[fixedKind]    = Interval::end();
4430   _inactive_first[fixedKind]  = Interval::end();
4431   _active_first[anyKind]      = Interval::end();
4432   _inactive_first[anyKind]    = Interval::end();
4433   _current_position = -1;
4434   _current = NULL;
4435   next_interval();
4436 }
4437 
4438 
4439 // append interval at top of list
4440 void IntervalWalker::append_unsorted(Interval** list, Interval* interval) {
4441   interval->set_next(*list); *list = interval;
4442 }
4443 
4444 
4445 // append interval in order of current range from()
4446 void IntervalWalker::append_sorted(Interval** list, Interval* interval) {
4447   Interval* prev = NULL;
4448   Interval* cur  = *list;
4449   while (cur->current_from() < interval->current_from()) {
4450     prev = cur; cur = cur->next();
4451   }
4452   if (prev == NULL) {
4453     *list = interval;
4454   } else {
4455     prev->set_next(interval);
4456   }
4457   interval->set_next(cur);
4458 }
4459 
4460 void IntervalWalker::append_to_unhandled(Interval** list, Interval* interval) {
4461   assert(interval->from() >= current()->current_from(), "cannot append new interval before current walk position");
4462 
4463   Interval* prev = NULL;
4464   Interval* cur  = *list;
4465   while (cur->from() < interval->from() || (cur->from() == interval->from() && cur->first_usage(noUse) < interval->first_usage(noUse))) {
4466     prev = cur; cur = cur->next();
4467   }
4468   if (prev == NULL) {
4469     *list = interval;
4470   } else {
4471     prev->set_next(interval);
4472   }
4473   interval->set_next(cur);
4474 }
4475 
4476 
4477 inline bool IntervalWalker::remove_from_list(Interval** list, Interval* i) {
4478   while (*list != Interval::end() && *list != i) {
4479     list = (*list)->next_addr();
4480   }
4481   if (*list != Interval::end()) {
4482     assert(*list == i, "check");
4483     *list = (*list)->next();
4484     return true;
4485   } else {
4486     return false;
4487   }
4488 }
4489 
4490 void IntervalWalker::remove_from_list(Interval* i) {
4491   bool deleted;
4492 
4493   if (i->state() == activeState) {
4494     deleted = remove_from_list(active_first_addr(anyKind), i);
4495   } else {
4496     assert(i->state() == inactiveState, "invalid state");
4497     deleted = remove_from_list(inactive_first_addr(anyKind), i);
4498   }
4499 
4500   assert(deleted, "interval has not been found in list");
4501 }
4502 
4503 
4504 void IntervalWalker::walk_to(IntervalState state, int from) {
4505   assert (state == activeState || state == inactiveState, "wrong state");
4506   for_each_interval_kind(kind) {
4507     Interval** prev = state == activeState ? active_first_addr(kind) : inactive_first_addr(kind);
4508     Interval* next   = *prev;
4509     while (next->current_from() <= from) {
4510       Interval* cur = next;
4511       next = cur->next();
4512 
4513       bool range_has_changed = false;
4514       while (cur->current_to() <= from) {
4515         cur->next_range();
4516         range_has_changed = true;
4517       }
4518 
4519       // also handle move from inactive list to active list
4520       range_has_changed = range_has_changed || (state == inactiveState && cur->current_from() <= from);
4521 
4522       if (range_has_changed) {
4523         // remove cur from list
4524         *prev = next;
4525         if (cur->current_at_end()) {
4526           // move to handled state (not maintained as a list)
4527           cur->set_state(handledState);
4528           interval_moved(cur, kind, state, handledState);
4529         } else if (cur->current_from() <= from){
4530           // sort into active list
4531           append_sorted(active_first_addr(kind), cur);
4532           cur->set_state(activeState);
4533           if (*prev == cur) {
4534             assert(state == activeState, "check");
4535             prev = cur->next_addr();
4536           }
4537           interval_moved(cur, kind, state, activeState);
4538         } else {
4539           // sort into inactive list
4540           append_sorted(inactive_first_addr(kind), cur);
4541           cur->set_state(inactiveState);
4542           if (*prev == cur) {
4543             assert(state == inactiveState, "check");
4544             prev = cur->next_addr();
4545           }
4546           interval_moved(cur, kind, state, inactiveState);
4547         }
4548       } else {
4549         prev = cur->next_addr();
4550         continue;
4551       }
4552     }
4553   }
4554 }
4555 
4556 
4557 void IntervalWalker::next_interval() {
4558   IntervalKind kind;
4559   Interval* any   = _unhandled_first[anyKind];
4560   Interval* fixed = _unhandled_first[fixedKind];
4561 
4562   if (any != Interval::end()) {
4563     // intervals may start at same position -> prefer fixed interval
4564     kind = fixed != Interval::end() && fixed->from() <= any->from() ? fixedKind : anyKind;
4565 
4566     assert (kind == fixedKind && fixed->from() <= any->from() ||
4567             kind == anyKind   && any->from() <= fixed->from(), "wrong interval!!!");
4568     assert(any == Interval::end() || fixed == Interval::end() || any->from() != fixed->from() || kind == fixedKind, "if fixed and any-Interval start at same position, fixed must be processed first");
4569 
4570   } else if (fixed != Interval::end()) {
4571     kind = fixedKind;
4572   } else {
4573     _current = NULL; return;
4574   }
4575   _current_kind = kind;
4576   _current = _unhandled_first[kind];
4577   _unhandled_first[kind] = _current->next();
4578   _current->set_next(Interval::end());
4579   _current->rewind_range();
4580 }
4581 
4582 
4583 void IntervalWalker::walk_to(int lir_op_id) {
4584   assert(_current_position <= lir_op_id, "can not walk backwards");
4585   while (current() != NULL) {
4586     bool is_active = current()->from() <= lir_op_id;
4587     int id = is_active ? current()->from() : lir_op_id;
4588 
4589     TRACE_LINEAR_SCAN(2, if (_current_position < id) { tty->cr(); tty->print_cr("walk_to(%d) **************************************************************", id); })
4590 
4591     // set _current_position prior to call of walk_to
4592     _current_position = id;
4593 
4594     // call walk_to even if _current_position == id
4595     walk_to(activeState, id);
4596     walk_to(inactiveState, id);
4597 
4598     if (is_active) {
4599       current()->set_state(activeState);
4600       if (activate_current()) {
4601         append_sorted(active_first_addr(current_kind()), current());
4602         interval_moved(current(), current_kind(), unhandledState, activeState);
4603       }
4604 
4605       next_interval();
4606     } else {
4607       return;
4608     }
4609   }
4610 }
4611 
4612 void IntervalWalker::interval_moved(Interval* interval, IntervalKind kind, IntervalState from, IntervalState to) {
4613 #ifndef PRODUCT
4614   if (TraceLinearScanLevel >= 4) {
4615     #define print_state(state) \
4616     switch(state) {\
4617       case unhandledState: tty->print("unhandled"); break;\
4618       case activeState: tty->print("active"); break;\
4619       case inactiveState: tty->print("inactive"); break;\
4620       case handledState: tty->print("handled"); break;\
4621       default: ShouldNotReachHere(); \
4622     }
4623 
4624     print_state(from); tty->print(" to "); print_state(to);
4625     tty->fill_to(23);
4626     interval->print();
4627 
4628     #undef print_state
4629   }
4630 #endif
4631 }
4632 
4633 
4634 
4635 // **** Implementation of LinearScanWalker **************************
4636 
4637 LinearScanWalker::LinearScanWalker(LinearScan* allocator, Interval* unhandled_fixed_first, Interval* unhandled_any_first)
4638   : IntervalWalker(allocator, unhandled_fixed_first, unhandled_any_first)
4639   , _move_resolver(allocator)
4640 {
4641   for (int i = 0; i < LinearScan::nof_regs; i++) {
4642     _spill_intervals[i] = new IntervalList(2);
4643   }
4644 }
4645 
4646 
4647 inline void LinearScanWalker::init_use_lists(bool only_process_use_pos) {
4648   for (int i = _first_reg; i <= _last_reg; i++) {
4649     _use_pos[i] = max_jint;
4650 
4651     if (!only_process_use_pos) {
4652       _block_pos[i] = max_jint;
4653       _spill_intervals[i]->clear();
4654     }
4655   }
4656 }
4657 
4658 inline void LinearScanWalker::exclude_from_use(int reg) {
4659   assert(reg < LinearScan::nof_regs, "interval must have a register assigned (stack slots not allowed)");
4660   if (reg >= _first_reg && reg <= _last_reg) {
4661     _use_pos[reg] = 0;
4662   }
4663 }
4664 inline void LinearScanWalker::exclude_from_use(Interval* i) {
4665   assert(i->assigned_reg() != any_reg, "interval has no register assigned");
4666 
4667   exclude_from_use(i->assigned_reg());
4668   exclude_from_use(i->assigned_regHi());
4669 }
4670 
4671 inline void LinearScanWalker::set_use_pos(int reg, Interval* i, int use_pos, bool only_process_use_pos) {
4672   assert(use_pos != 0, "must use exclude_from_use to set use_pos to 0");
4673 
4674   if (reg >= _first_reg && reg <= _last_reg) {
4675     if (_use_pos[reg] > use_pos) {
4676       _use_pos[reg] = use_pos;
4677     }
4678     if (!only_process_use_pos) {
4679       _spill_intervals[reg]->append(i);
4680     }
4681   }
4682 }
4683 inline void LinearScanWalker::set_use_pos(Interval* i, int use_pos, bool only_process_use_pos) {
4684   assert(i->assigned_reg() != any_reg, "interval has no register assigned");
4685   if (use_pos != -1) {
4686     set_use_pos(i->assigned_reg(), i, use_pos, only_process_use_pos);
4687     set_use_pos(i->assigned_regHi(), i, use_pos, only_process_use_pos);
4688   }
4689 }
4690 
4691 inline void LinearScanWalker::set_block_pos(int reg, Interval* i, int block_pos) {
4692   if (reg >= _first_reg && reg <= _last_reg) {
4693     if (_block_pos[reg] > block_pos) {
4694       _block_pos[reg] = block_pos;
4695     }
4696     if (_use_pos[reg] > block_pos) {
4697       _use_pos[reg] = block_pos;
4698     }
4699   }
4700 }
4701 inline void LinearScanWalker::set_block_pos(Interval* i, int block_pos) {
4702   assert(i->assigned_reg() != any_reg, "interval has no register assigned");
4703   if (block_pos != -1) {
4704     set_block_pos(i->assigned_reg(), i, block_pos);
4705     set_block_pos(i->assigned_regHi(), i, block_pos);
4706   }
4707 }
4708 
4709 
4710 void LinearScanWalker::free_exclude_active_fixed() {
4711   Interval* list = active_first(fixedKind);
4712   while (list != Interval::end()) {
4713     assert(list->assigned_reg() < LinearScan::nof_regs, "active interval must have a register assigned");
4714     exclude_from_use(list);
4715     list = list->next();
4716   }
4717 }
4718 
4719 void LinearScanWalker::free_exclude_active_any() {
4720   Interval* list = active_first(anyKind);
4721   while (list != Interval::end()) {
4722     exclude_from_use(list);
4723     list = list->next();
4724   }
4725 }
4726 
4727 void LinearScanWalker::free_collect_inactive_fixed(Interval* cur) {
4728   Interval* list = inactive_first(fixedKind);
4729   while (list != Interval::end()) {
4730     if (cur->to() <= list->current_from()) {
4731       assert(list->current_intersects_at(cur) == -1, "must not intersect");
4732       set_use_pos(list, list->current_from(), true);
4733     } else {
4734       set_use_pos(list, list->current_intersects_at(cur), true);
4735     }
4736     list = list->next();
4737   }
4738 }
4739 
4740 void LinearScanWalker::free_collect_inactive_any(Interval* cur) {
4741   Interval* list = inactive_first(anyKind);
4742   while (list != Interval::end()) {
4743     set_use_pos(list, list->current_intersects_at(cur), true);
4744     list = list->next();
4745   }
4746 }
4747 
4748 void LinearScanWalker::free_collect_unhandled(IntervalKind kind, Interval* cur) {
4749   Interval* list = unhandled_first(kind);
4750   while (list != Interval::end()) {
4751     set_use_pos(list, list->intersects_at(cur), true);
4752     if (kind == fixedKind && cur->to() <= list->from()) {
4753       set_use_pos(list, list->from(), true);
4754     }
4755     list = list->next();
4756   }
4757 }
4758 
4759 void LinearScanWalker::spill_exclude_active_fixed() {
4760   Interval* list = active_first(fixedKind);
4761   while (list != Interval::end()) {
4762     exclude_from_use(list);
4763     list = list->next();
4764   }
4765 }
4766 
4767 void LinearScanWalker::spill_block_unhandled_fixed(Interval* cur) {
4768   Interval* list = unhandled_first(fixedKind);
4769   while (list != Interval::end()) {
4770     set_block_pos(list, list->intersects_at(cur));
4771     list = list->next();
4772   }
4773 }
4774 
4775 void LinearScanWalker::spill_block_inactive_fixed(Interval* cur) {
4776   Interval* list = inactive_first(fixedKind);
4777   while (list != Interval::end()) {
4778     if (cur->to() > list->current_from()) {
4779       set_block_pos(list, list->current_intersects_at(cur));
4780     } else {
4781       assert(list->current_intersects_at(cur) == -1, "invalid optimization: intervals intersect");
4782     }
4783 
4784     list = list->next();
4785   }
4786 }
4787 
4788 void LinearScanWalker::spill_collect_active_any() {
4789   Interval* list = active_first(anyKind);
4790   while (list != Interval::end()) {
4791     set_use_pos(list, MIN2(list->next_usage(loopEndMarker, _current_position), list->to()), false);
4792     list = list->next();
4793   }
4794 }
4795 
4796 void LinearScanWalker::spill_collect_inactive_any(Interval* cur) {
4797   Interval* list = inactive_first(anyKind);
4798   while (list != Interval::end()) {
4799     if (list->current_intersects(cur)) {
4800       set_use_pos(list, MIN2(list->next_usage(loopEndMarker, _current_position), list->to()), false);
4801     }
4802     list = list->next();
4803   }
4804 }
4805 
4806 
4807 void LinearScanWalker::insert_move(int op_id, Interval* src_it, Interval* dst_it) {
4808   // output all moves here. When source and target are equal, the move is
4809   // optimized away later in assign_reg_nums
4810 
4811   op_id = (op_id + 1) & ~1;
4812   BlockBegin* op_block = allocator()->block_of_op_with_id(op_id);
4813   assert(op_id > 0 && allocator()->block_of_op_with_id(op_id - 2) == op_block, "cannot insert move at block boundary");
4814 
4815   // calculate index of instruction inside instruction list of current block
4816   // the minimal index (for a block with no spill moves) can be calculated because the
4817   // numbering of instructions is known.
4818   // When the block already contains spill moves, the index must be increased until the
4819   // correct index is reached.
4820   LIR_OpList* list = op_block->lir()->instructions_list();
4821   int index = (op_id - list->at(0)->id()) / 2;
4822   assert(list->at(index)->id() <= op_id, "error in calculation");
4823 
4824   while (list->at(index)->id() != op_id) {
4825     index++;
4826     assert(0 <= index && index < list->length(), "index out of bounds");
4827   }
4828   assert(1 <= index && index < list->length(), "index out of bounds");
4829   assert(list->at(index)->id() == op_id, "error in calculation");
4830 
4831   // insert new instruction before instruction at position index
4832   _move_resolver.move_insert_position(op_block->lir(), index - 1);
4833   _move_resolver.add_mapping(src_it, dst_it);
4834 }
4835 
4836 
4837 int LinearScanWalker::find_optimal_split_pos(BlockBegin* min_block, BlockBegin* max_block, int max_split_pos) {
4838   int from_block_nr = min_block->linear_scan_number();
4839   int to_block_nr = max_block->linear_scan_number();
4840 
4841   assert(0 <= from_block_nr && from_block_nr < block_count(), "out of range");
4842   assert(0 <= to_block_nr && to_block_nr < block_count(), "out of range");
4843   assert(from_block_nr < to_block_nr, "must cross block boundary");
4844 
4845   // Try to split at end of max_block. If this would be after
4846   // max_split_pos, then use the begin of max_block
4847   int optimal_split_pos = max_block->last_lir_instruction_id() + 2;
4848   if (optimal_split_pos > max_split_pos) {
4849     optimal_split_pos = max_block->first_lir_instruction_id();
4850   }
4851 
4852   int min_loop_depth = max_block->loop_depth();
4853   for (int i = to_block_nr - 1; i >= from_block_nr; i--) {
4854     BlockBegin* cur = block_at(i);
4855 
4856     if (cur->loop_depth() < min_loop_depth) {
4857       // block with lower loop-depth found -> split at the end of this block
4858       min_loop_depth = cur->loop_depth();
4859       optimal_split_pos = cur->last_lir_instruction_id() + 2;
4860     }
4861   }
4862   assert(optimal_split_pos > allocator()->max_lir_op_id() || allocator()->is_block_begin(optimal_split_pos), "algorithm must move split pos to block boundary");
4863 
4864   return optimal_split_pos;
4865 }
4866 
4867 
4868 int LinearScanWalker::find_optimal_split_pos(Interval* it, int min_split_pos, int max_split_pos, bool do_loop_optimization) {
4869   int optimal_split_pos = -1;
4870   if (min_split_pos == max_split_pos) {
4871     // trivial case, no optimization of split position possible
4872     TRACE_LINEAR_SCAN(4, tty->print_cr("      min-pos and max-pos are equal, no optimization possible"));
4873     optimal_split_pos = min_split_pos;
4874 
4875   } else {
4876     assert(min_split_pos < max_split_pos, "must be true then");
4877     assert(min_split_pos > 0, "cannot access min_split_pos - 1 otherwise");
4878 
4879     // reason for using min_split_pos - 1: when the minimal split pos is exactly at the
4880     // beginning of a block, then min_split_pos is also a possible split position.
4881     // Use the block before as min_block, because then min_block->last_lir_instruction_id() + 2 == min_split_pos
4882     BlockBegin* min_block = allocator()->block_of_op_with_id(min_split_pos - 1);
4883 
4884     // reason for using max_split_pos - 1: otherwise there would be an assertion failure
4885     // when an interval ends at the end of the last block of the method
4886     // (in this case, max_split_pos == allocator()->max_lir_op_id() + 2, and there is no
4887     // block at this op_id)
4888     BlockBegin* max_block = allocator()->block_of_op_with_id(max_split_pos - 1);
4889 
4890     assert(min_block->linear_scan_number() <= max_block->linear_scan_number(), "invalid order");
4891     if (min_block == max_block) {
4892       // split position cannot be moved to block boundary, so split as late as possible
4893       TRACE_LINEAR_SCAN(4, tty->print_cr("      cannot move split pos to block boundary because min_pos and max_pos are in same block"));
4894       optimal_split_pos = max_split_pos;
4895 
4896     } else if (it->has_hole_between(max_split_pos - 1, max_split_pos) && !allocator()->is_block_begin(max_split_pos)) {
4897       // Do not move split position if the interval has a hole before max_split_pos.
4898       // Intervals resulting from Phi-Functions have more than one definition (marked
4899       // as mustHaveRegister) with a hole before each definition. When the register is needed
4900       // for the second definition, an earlier reloading is unnecessary.
4901       TRACE_LINEAR_SCAN(4, tty->print_cr("      interval has hole just before max_split_pos, so splitting at max_split_pos"));
4902       optimal_split_pos = max_split_pos;
4903 
4904     } else {
4905       // seach optimal block boundary between min_split_pos and max_split_pos
4906       TRACE_LINEAR_SCAN(4, tty->print_cr("      moving split pos to optimal block boundary between block B%d and B%d", min_block->block_id(), max_block->block_id()));
4907 
4908       if (do_loop_optimization) {
4909         // Loop optimization: if a loop-end marker is found between min- and max-position,
4910         // then split before this loop
4911         int loop_end_pos = it->next_usage_exact(loopEndMarker, min_block->last_lir_instruction_id() + 2);
4912         TRACE_LINEAR_SCAN(4, tty->print_cr("      loop optimization: loop end found at pos %d", loop_end_pos));
4913 
4914         assert(loop_end_pos > min_split_pos, "invalid order");
4915         if (loop_end_pos < max_split_pos) {
4916           // loop-end marker found between min- and max-position
4917           // if it is not the end marker for the same loop as the min-position, then move
4918           // the max-position to this loop block.
4919           // Desired result: uses tagged as shouldHaveRegister inside a loop cause a reloading
4920           // of the interval (normally, only mustHaveRegister causes a reloading)
4921           BlockBegin* loop_block = allocator()->block_of_op_with_id(loop_end_pos);
4922 
4923           TRACE_LINEAR_SCAN(4, tty->print_cr("      interval is used in loop that ends in block B%d, so trying to move max_block back from B%d to B%d", loop_block->block_id(), max_block->block_id(), loop_block->block_id()));
4924           assert(loop_block != min_block, "loop_block and min_block must be different because block boundary is needed between");
4925 
4926           optimal_split_pos = find_optimal_split_pos(min_block, loop_block, loop_block->last_lir_instruction_id() + 2);
4927           if (optimal_split_pos == loop_block->last_lir_instruction_id() + 2) {
4928             optimal_split_pos = -1;
4929             TRACE_LINEAR_SCAN(4, tty->print_cr("      loop optimization not necessary"));
4930           } else {
4931             TRACE_LINEAR_SCAN(4, tty->print_cr("      loop optimization successful"));
4932           }
4933         }
4934       }
4935 
4936       if (optimal_split_pos == -1) {
4937         // not calculated by loop optimization
4938         optimal_split_pos = find_optimal_split_pos(min_block, max_block, max_split_pos);
4939       }
4940     }
4941   }
4942   TRACE_LINEAR_SCAN(4, tty->print_cr("      optimal split position: %d", optimal_split_pos));
4943 
4944   return optimal_split_pos;
4945 }
4946 
4947 
4948 /*
4949   split an interval at the optimal position between min_split_pos and
4950   max_split_pos in two parts:
4951   1) the left part has already a location assigned
4952   2) the right part is sorted into to the unhandled-list
4953 */
4954 void LinearScanWalker::split_before_usage(Interval* it, int min_split_pos, int max_split_pos) {
4955   TRACE_LINEAR_SCAN(2, tty->print   ("----- splitting interval: "); it->print());
4956   TRACE_LINEAR_SCAN(2, tty->print_cr("      between %d and %d", min_split_pos, max_split_pos));
4957 
4958   assert(it->from() < min_split_pos,         "cannot split at start of interval");
4959   assert(current_position() < min_split_pos, "cannot split before current position");
4960   assert(min_split_pos <= max_split_pos,     "invalid order");
4961   assert(max_split_pos <= it->to(),          "cannot split after end of interval");
4962 
4963   int optimal_split_pos = find_optimal_split_pos(it, min_split_pos, max_split_pos, true);
4964 
4965   assert(min_split_pos <= optimal_split_pos && optimal_split_pos <= max_split_pos, "out of range");
4966   assert(optimal_split_pos <= it->to(),  "cannot split after end of interval");
4967   assert(optimal_split_pos > it->from(), "cannot split at start of interval");
4968 
4969   if (optimal_split_pos == it->to() && it->next_usage(mustHaveRegister, min_split_pos) == max_jint) {
4970     // the split position would be just before the end of the interval
4971     // -> no split at all necessary
4972     TRACE_LINEAR_SCAN(4, tty->print_cr("      no split necessary because optimal split position is at end of interval"));
4973     return;
4974   }
4975 
4976   // must calculate this before the actual split is performed and before split position is moved to odd op_id
4977   bool move_necessary = !allocator()->is_block_begin(optimal_split_pos) && !it->has_hole_between(optimal_split_pos - 1, optimal_split_pos);
4978 
4979   if (!allocator()->is_block_begin(optimal_split_pos)) {
4980     // move position before actual instruction (odd op_id)
4981     optimal_split_pos = (optimal_split_pos - 1) | 1;
4982   }
4983 
4984   TRACE_LINEAR_SCAN(4, tty->print_cr("      splitting at position %d", optimal_split_pos));
4985   assert(allocator()->is_block_begin(optimal_split_pos) || (optimal_split_pos % 2 == 1), "split pos must be odd when not on block boundary");
4986   assert(!allocator()->is_block_begin(optimal_split_pos) || (optimal_split_pos % 2 == 0), "split pos must be even on block boundary");
4987 
4988   Interval* split_part = it->split(optimal_split_pos);
4989 
4990   allocator()->append_interval(split_part);
4991   allocator()->copy_register_flags(it, split_part);
4992   split_part->set_insert_move_when_activated(move_necessary);
4993   append_to_unhandled(unhandled_first_addr(anyKind), split_part);
4994 
4995   TRACE_LINEAR_SCAN(2, tty->print_cr("      split interval in two parts (insert_move_when_activated: %d)", move_necessary));
4996   TRACE_LINEAR_SCAN(2, tty->print   ("      "); it->print());
4997   TRACE_LINEAR_SCAN(2, tty->print   ("      "); split_part->print());
4998 }
4999 
5000 /*
5001   split an interval at the optimal position between min_split_pos and
5002   max_split_pos in two parts:
5003   1) the left part has already a location assigned
5004   2) the right part is always on the stack and therefore ignored in further processing
5005 */
5006 void LinearScanWalker::split_for_spilling(Interval* it) {
5007   // calculate allowed range of splitting position
5008   int max_split_pos = current_position();
5009   int min_split_pos = MAX2(it->previous_usage(shouldHaveRegister, max_split_pos) + 1, it->from());
5010 
5011   TRACE_LINEAR_SCAN(2, tty->print   ("----- splitting and spilling interval: "); it->print());
5012   TRACE_LINEAR_SCAN(2, tty->print_cr("      between %d and %d", min_split_pos, max_split_pos));
5013 
5014   assert(it->state() == activeState,     "why spill interval that is not active?");
5015   assert(it->from() <= min_split_pos,    "cannot split before start of interval");
5016   assert(min_split_pos <= max_split_pos, "invalid order");
5017   assert(max_split_pos < it->to(),       "cannot split at end end of interval");
5018   assert(current_position() < it->to(),  "interval must not end before current position");
5019 
5020   if (min_split_pos == it->from()) {
5021     // the whole interval is never used, so spill it entirely to memory
5022     TRACE_LINEAR_SCAN(2, tty->print_cr("      spilling entire interval because split pos is at beginning of interval"));
5023     assert(it->first_usage(shouldHaveRegister) > current_position(), "interval must not have use position before current_position");
5024 
5025     allocator()->assign_spill_slot(it);
5026     allocator()->change_spill_state(it, min_split_pos);
5027 
5028     // Also kick parent intervals out of register to memory when they have no use
5029     // position. This avoids short interval in register surrounded by intervals in
5030     // memory -> avoid useless moves from memory to register and back
5031     Interval* parent = it;
5032     while (parent != NULL && parent->is_split_child()) {
5033       parent = parent->split_child_before_op_id(parent->from());
5034 
5035       if (parent->assigned_reg() < LinearScan::nof_regs) {
5036         if (parent->first_usage(shouldHaveRegister) == max_jint) {
5037           // parent is never used, so kick it out of its assigned register
5038           TRACE_LINEAR_SCAN(4, tty->print_cr("      kicking out interval %d out of its register because it is never used", parent->reg_num()));
5039           allocator()->assign_spill_slot(parent);
5040         } else {
5041           // do not go further back because the register is actually used by the interval
5042           parent = NULL;
5043         }
5044       }
5045     }
5046 
5047   } else {
5048     // search optimal split pos, split interval and spill only the right hand part
5049     int optimal_split_pos = find_optimal_split_pos(it, min_split_pos, max_split_pos, false);
5050 
5051     assert(min_split_pos <= optimal_split_pos && optimal_split_pos <= max_split_pos, "out of range");
5052     assert(optimal_split_pos < it->to(), "cannot split at end of interval");
5053     assert(optimal_split_pos >= it->from(), "cannot split before start of interval");
5054 
5055     if (!allocator()->is_block_begin(optimal_split_pos)) {
5056       // move position before actual instruction (odd op_id)
5057       optimal_split_pos = (optimal_split_pos - 1) | 1;
5058     }
5059 
5060     TRACE_LINEAR_SCAN(4, tty->print_cr("      splitting at position %d", optimal_split_pos));
5061     assert(allocator()->is_block_begin(optimal_split_pos)  || (optimal_split_pos % 2 == 1), "split pos must be odd when not on block boundary");
5062     assert(!allocator()->is_block_begin(optimal_split_pos) || (optimal_split_pos % 2 == 0), "split pos must be even on block boundary");
5063 
5064     Interval* spilled_part = it->split(optimal_split_pos);
5065     allocator()->append_interval(spilled_part);
5066     allocator()->assign_spill_slot(spilled_part);
5067     allocator()->change_spill_state(spilled_part, optimal_split_pos);
5068 
5069     if (!allocator()->is_block_begin(optimal_split_pos)) {
5070       TRACE_LINEAR_SCAN(4, tty->print_cr("      inserting move from interval %d to %d", it->reg_num(), spilled_part->reg_num()));
5071       insert_move(optimal_split_pos, it, spilled_part);
5072     }
5073 
5074     // the current_split_child is needed later when moves are inserted for reloading
5075     assert(spilled_part->current_split_child() == it, "overwriting wrong current_split_child");
5076     spilled_part->make_current_split_child();
5077 
5078     TRACE_LINEAR_SCAN(2, tty->print_cr("      split interval in two parts"));
5079     TRACE_LINEAR_SCAN(2, tty->print   ("      "); it->print());
5080     TRACE_LINEAR_SCAN(2, tty->print   ("      "); spilled_part->print());
5081   }
5082 }
5083 
5084 
5085 void LinearScanWalker::split_stack_interval(Interval* it) {
5086   int min_split_pos = current_position() + 1;
5087   int max_split_pos = MIN2(it->first_usage(shouldHaveRegister), it->to());
5088 
5089   split_before_usage(it, min_split_pos, max_split_pos);
5090 }
5091 
5092 void LinearScanWalker::split_when_partial_register_available(Interval* it, int register_available_until) {
5093   int min_split_pos = MAX2(it->previous_usage(shouldHaveRegister, register_available_until), it->from() + 1);
5094   int max_split_pos = register_available_until;
5095 
5096   split_before_usage(it, min_split_pos, max_split_pos);
5097 }
5098 
5099 void LinearScanWalker::split_and_spill_interval(Interval* it) {
5100   assert(it->state() == activeState || it->state() == inactiveState, "other states not allowed");
5101 
5102   int current_pos = current_position();
5103   if (it->state() == inactiveState) {
5104     // the interval is currently inactive, so no spill slot is needed for now.
5105     // when the split part is activated, the interval has a new chance to get a register,
5106     // so in the best case no stack slot is necessary
5107     assert(it->has_hole_between(current_pos - 1, current_pos + 1), "interval can not be inactive otherwise");
5108     split_before_usage(it, current_pos + 1, current_pos + 1);
5109 
5110   } else {
5111     // search the position where the interval must have a register and split
5112     // at the optimal position before.
5113     // The new created part is added to the unhandled list and will get a register
5114     // when it is activated
5115     int min_split_pos = current_pos + 1;
5116     int max_split_pos = MIN2(it->next_usage(mustHaveRegister, min_split_pos), it->to());
5117 
5118     split_before_usage(it, min_split_pos, max_split_pos);
5119 
5120     assert(it->next_usage(mustHaveRegister, current_pos) == max_jint, "the remaining part is spilled to stack and therefore has no register");
5121     split_for_spilling(it);
5122   }
5123 }
5124 
5125 
5126 int LinearScanWalker::find_free_reg(int reg_needed_until, int interval_to, int hint_reg, int ignore_reg, bool* need_split) {
5127   int min_full_reg = any_reg;
5128   int max_partial_reg = any_reg;
5129 
5130   for (int i = _first_reg; i <= _last_reg; i++) {
5131     if (i == ignore_reg) {
5132       // this register must be ignored
5133 
5134     } else if (_use_pos[i] >= interval_to) {
5135       // this register is free for the full interval
5136       if (min_full_reg == any_reg || i == hint_reg || (_use_pos[i] < _use_pos[min_full_reg] && min_full_reg != hint_reg)) {
5137         min_full_reg = i;
5138       }
5139     } else if (_use_pos[i] > reg_needed_until) {
5140       // this register is at least free until reg_needed_until
5141       if (max_partial_reg == any_reg || i == hint_reg || (_use_pos[i] > _use_pos[max_partial_reg] && max_partial_reg != hint_reg)) {
5142         max_partial_reg = i;
5143       }
5144     }
5145   }
5146 
5147   if (min_full_reg != any_reg) {
5148     return min_full_reg;
5149   } else if (max_partial_reg != any_reg) {
5150     *need_split = true;
5151     return max_partial_reg;
5152   } else {
5153     return any_reg;
5154   }
5155 }
5156 
5157 int LinearScanWalker::find_free_double_reg(int reg_needed_until, int interval_to, int hint_reg, bool* need_split) {
5158   assert((_last_reg - _first_reg + 1) % 2 == 0, "adjust algorithm");
5159 
5160   int min_full_reg = any_reg;
5161   int max_partial_reg = any_reg;
5162 
5163   for (int i = _first_reg; i < _last_reg; i+=2) {
5164     if (_use_pos[i] >= interval_to && _use_pos[i + 1] >= interval_to) {
5165       // this register is free for the full interval
5166       if (min_full_reg == any_reg || i == hint_reg || (_use_pos[i] < _use_pos[min_full_reg] && min_full_reg != hint_reg)) {
5167         min_full_reg = i;
5168       }
5169     } else if (_use_pos[i] > reg_needed_until && _use_pos[i + 1] > reg_needed_until) {
5170       // this register is at least free until reg_needed_until
5171       if (max_partial_reg == any_reg || i == hint_reg || (_use_pos[i] > _use_pos[max_partial_reg] && max_partial_reg != hint_reg)) {
5172         max_partial_reg = i;
5173       }
5174     }
5175   }
5176 
5177   if (min_full_reg != any_reg) {
5178     return min_full_reg;
5179   } else if (max_partial_reg != any_reg) {
5180     *need_split = true;
5181     return max_partial_reg;
5182   } else {
5183     return any_reg;
5184   }
5185 }
5186 
5187 
5188 bool LinearScanWalker::alloc_free_reg(Interval* cur) {
5189   TRACE_LINEAR_SCAN(2, tty->print("trying to find free register for "); cur->print());
5190 
5191   init_use_lists(true);
5192   free_exclude_active_fixed();
5193   free_exclude_active_any();
5194   free_collect_inactive_fixed(cur);
5195   free_collect_inactive_any(cur);
5196 //  free_collect_unhandled(fixedKind, cur);
5197   assert(unhandled_first(fixedKind) == Interval::end(), "must not have unhandled fixed intervals because all fixed intervals have a use at position 0");
5198 
5199   // _use_pos contains the start of the next interval that has this register assigned
5200   // (either as a fixed register or a normal allocated register in the past)
5201   // only intervals overlapping with cur are processed, non-overlapping invervals can be ignored safely
5202   TRACE_LINEAR_SCAN(4, tty->print_cr("      state of registers:"));
5203   TRACE_LINEAR_SCAN(4, for (int i = _first_reg; i <= _last_reg; i++) tty->print_cr("      reg %d: use_pos: %d", i, _use_pos[i]));
5204 
5205   int hint_reg, hint_regHi;
5206   Interval* register_hint = cur->register_hint();
5207   if (register_hint != NULL) {
5208     hint_reg = register_hint->assigned_reg();
5209     hint_regHi = register_hint->assigned_regHi();
5210 
5211     if (allocator()->is_precolored_cpu_interval(register_hint)) {
5212       assert(hint_reg != any_reg && hint_regHi == any_reg, "must be for fixed intervals");
5213       hint_regHi = hint_reg + 1;  // connect e.g. eax-edx
5214     }
5215     TRACE_LINEAR_SCAN(4, tty->print("      hint registers %d, %d from interval ", hint_reg, hint_regHi); register_hint->print());
5216 
5217   } else {
5218     hint_reg = any_reg;
5219     hint_regHi = any_reg;
5220   }
5221   assert(hint_reg == any_reg || hint_reg != hint_regHi, "hint reg and regHi equal");
5222   assert(cur->assigned_reg() == any_reg && cur->assigned_regHi() == any_reg, "register already assigned to interval");
5223 
5224   // the register must be free at least until this position
5225   int reg_needed_until = cur->from() + 1;
5226   int interval_to = cur->to();
5227 
5228   bool need_split = false;
5229   int split_pos = -1;
5230   int reg = any_reg;
5231   int regHi = any_reg;
5232 
5233   if (_adjacent_regs) {
5234     reg = find_free_double_reg(reg_needed_until, interval_to, hint_reg, &need_split);
5235     regHi = reg + 1;
5236     if (reg == any_reg) {
5237       return false;
5238     }
5239     split_pos = MIN2(_use_pos[reg], _use_pos[regHi]);
5240 
5241   } else {
5242     reg = find_free_reg(reg_needed_until, interval_to, hint_reg, any_reg, &need_split);
5243     if (reg == any_reg) {
5244       return false;
5245     }
5246     split_pos = _use_pos[reg];
5247 
5248     if (_num_phys_regs == 2) {
5249       regHi = find_free_reg(reg_needed_until, interval_to, hint_regHi, reg, &need_split);
5250 
5251       if (_use_pos[reg] < interval_to && regHi == any_reg) {
5252         // do not split interval if only one register can be assigned until the split pos
5253         // (when one register is found for the whole interval, split&spill is only
5254         // performed for the hi register)
5255         return false;
5256 
5257       } else if (regHi != any_reg) {
5258         split_pos = MIN2(split_pos, _use_pos[regHi]);
5259 
5260         // sort register numbers to prevent e.g. a move from eax,ebx to ebx,eax
5261         if (reg > regHi) {
5262           int temp = reg;
5263           reg = regHi;
5264           regHi = temp;
5265         }
5266       }
5267     }
5268   }
5269 
5270   cur->assign_reg(reg, regHi);
5271   TRACE_LINEAR_SCAN(2, tty->print_cr("selected register %d, %d", reg, regHi));
5272 
5273   assert(split_pos > 0, "invalid split_pos");
5274   if (need_split) {
5275     // register not available for full interval, so split it
5276     split_when_partial_register_available(cur, split_pos);
5277   }
5278 
5279   // only return true if interval is completely assigned
5280   return _num_phys_regs == 1 || regHi != any_reg;
5281 }
5282 
5283 
5284 int LinearScanWalker::find_locked_reg(int reg_needed_until, int interval_to, int hint_reg, int ignore_reg, bool* need_split) {
5285   int max_reg = any_reg;
5286 
5287   for (int i = _first_reg; i <= _last_reg; i++) {
5288     if (i == ignore_reg) {
5289       // this register must be ignored
5290 
5291     } else if (_use_pos[i] > reg_needed_until) {
5292       if (max_reg == any_reg || i == hint_reg || (_use_pos[i] > _use_pos[max_reg] && max_reg != hint_reg)) {
5293         max_reg = i;
5294       }
5295     }
5296   }
5297 
5298   if (max_reg != any_reg && _block_pos[max_reg] <= interval_to) {
5299     *need_split = true;
5300   }
5301 
5302   return max_reg;
5303 }
5304 
5305 int LinearScanWalker::find_locked_double_reg(int reg_needed_until, int interval_to, int hint_reg, bool* need_split) {
5306   assert((_last_reg - _first_reg + 1) % 2 == 0, "adjust algorithm");
5307 
5308   int max_reg = any_reg;
5309 
5310   for (int i = _first_reg; i < _last_reg; i+=2) {
5311     if (_use_pos[i] > reg_needed_until && _use_pos[i + 1] > reg_needed_until) {
5312       if (max_reg == any_reg || _use_pos[i] > _use_pos[max_reg]) {
5313         max_reg = i;
5314       }
5315     }
5316   }
5317 
5318   if (_block_pos[max_reg] <= interval_to || _block_pos[max_reg + 1] <= interval_to) {
5319     *need_split = true;
5320   }
5321 
5322   return max_reg;
5323 }
5324 
5325 void LinearScanWalker::split_and_spill_intersecting_intervals(int reg, int regHi) {
5326   assert(reg != any_reg, "no register assigned");
5327 
5328   for (int i = 0; i < _spill_intervals[reg]->length(); i++) {
5329     Interval* it = _spill_intervals[reg]->at(i);
5330     remove_from_list(it);
5331     split_and_spill_interval(it);
5332   }
5333 
5334   if (regHi != any_reg) {
5335     IntervalList* processed = _spill_intervals[reg];
5336     for (int i = 0; i < _spill_intervals[regHi]->length(); i++) {
5337       Interval* it = _spill_intervals[regHi]->at(i);
5338       if (processed->index_of(it) == -1) {
5339         remove_from_list(it);
5340         split_and_spill_interval(it);
5341       }
5342     }
5343   }
5344 }
5345 
5346 
5347 // Split an Interval and spill it to memory so that cur can be placed in a register
5348 void LinearScanWalker::alloc_locked_reg(Interval* cur) {
5349   TRACE_LINEAR_SCAN(2, tty->print("need to split and spill to get register for "); cur->print());
5350 
5351   // collect current usage of registers
5352   init_use_lists(false);
5353   spill_exclude_active_fixed();
5354 //  spill_block_unhandled_fixed(cur);
5355   assert(unhandled_first(fixedKind) == Interval::end(), "must not have unhandled fixed intervals because all fixed intervals have a use at position 0");
5356   spill_block_inactive_fixed(cur);
5357   spill_collect_active_any();
5358   spill_collect_inactive_any(cur);
5359 
5360 #ifndef PRODUCT
5361   if (TraceLinearScanLevel >= 4) {
5362     tty->print_cr("      state of registers:");
5363     for (int i = _first_reg; i <= _last_reg; i++) {
5364       tty->print("      reg %d: use_pos: %d, block_pos: %d, intervals: ", i, _use_pos[i], _block_pos[i]);
5365       for (int j = 0; j < _spill_intervals[i]->length(); j++) {
5366         tty->print("%d ", _spill_intervals[i]->at(j)->reg_num());
5367       }
5368       tty->cr();
5369     }
5370   }
5371 #endif
5372 
5373   // the register must be free at least until this position
5374   int reg_needed_until = MIN2(cur->first_usage(mustHaveRegister), cur->from() + 1);
5375   int interval_to = cur->to();
5376   assert (reg_needed_until > 0 && reg_needed_until < max_jint, "interval has no use");
5377 
5378   int split_pos = 0;
5379   int use_pos = 0;
5380   bool need_split = false;
5381   int reg, regHi;
5382 
5383   if (_adjacent_regs) {
5384     reg = find_locked_double_reg(reg_needed_until, interval_to, any_reg, &need_split);
5385     regHi = reg + 1;
5386 
5387     if (reg != any_reg) {
5388       use_pos = MIN2(_use_pos[reg], _use_pos[regHi]);
5389       split_pos = MIN2(_block_pos[reg], _block_pos[regHi]);
5390     }
5391   } else {
5392     reg = find_locked_reg(reg_needed_until, interval_to, any_reg, cur->assigned_reg(), &need_split);
5393     regHi = any_reg;
5394 
5395     if (reg != any_reg) {
5396       use_pos = _use_pos[reg];
5397       split_pos = _block_pos[reg];
5398 
5399       if (_num_phys_regs == 2) {
5400         if (cur->assigned_reg() != any_reg) {
5401           regHi = reg;
5402           reg = cur->assigned_reg();
5403         } else {
5404           regHi = find_locked_reg(reg_needed_until, interval_to, any_reg, reg, &need_split);
5405           if (regHi != any_reg) {
5406             use_pos = MIN2(use_pos, _use_pos[regHi]);
5407             split_pos = MIN2(split_pos, _block_pos[regHi]);
5408           }
5409         }
5410 
5411         if (regHi != any_reg && reg > regHi) {
5412           // sort register numbers to prevent e.g. a move from eax,ebx to ebx,eax
5413           int temp = reg;
5414           reg = regHi;
5415           regHi = temp;
5416         }
5417       }
5418     }
5419   }
5420 
5421   if (reg == any_reg || (_num_phys_regs == 2 && regHi == any_reg) || use_pos <= cur->first_usage(mustHaveRegister)) {
5422     // the first use of cur is later than the spilling position -> spill cur
5423     TRACE_LINEAR_SCAN(4, tty->print_cr("able to spill current interval. first_usage(register): %d, use_pos: %d", cur->first_usage(mustHaveRegister), use_pos));
5424 
5425     if (cur->first_usage(mustHaveRegister) <= cur->from() + 1) {
5426       assert(false, "cannot spill interval that is used in first instruction (possible reason: no register found)");
5427       // assign a reasonable register and do a bailout in product mode to avoid errors
5428       allocator()->assign_spill_slot(cur);
5429       BAILOUT("LinearScan: no register found");
5430     }
5431 
5432     split_and_spill_interval(cur);
5433   } else {
5434     TRACE_LINEAR_SCAN(4, tty->print_cr("decided to use register %d, %d", reg, regHi));
5435     assert(reg != any_reg && (_num_phys_regs == 1 || regHi != any_reg), "no register found");
5436     assert(split_pos > 0, "invalid split_pos");
5437     assert(need_split == false || split_pos > cur->from(), "splitting interval at from");
5438 
5439     cur->assign_reg(reg, regHi);
5440     if (need_split) {
5441       // register not available for full interval, so split it
5442       split_when_partial_register_available(cur, split_pos);
5443     }
5444 
5445     // perform splitting and spilling for all affected intervalls
5446     split_and_spill_intersecting_intervals(reg, regHi);
5447   }
5448 }
5449 
5450 bool LinearScanWalker::no_allocation_possible(Interval* cur) {
5451 #ifdef X86
5452   // fast calculation of intervals that can never get a register because the
5453   // the next instruction is a call that blocks all registers
5454   // Note: this does not work if callee-saved registers are available (e.g. on Sparc)
5455 
5456   // check if this interval is the result of a split operation
5457   // (an interval got a register until this position)
5458   int pos = cur->from();
5459   if ((pos & 1) == 1) {
5460     // the current instruction is a call that blocks all registers
5461     if (pos < allocator()->max_lir_op_id() && allocator()->has_call(pos + 1)) {
5462       TRACE_LINEAR_SCAN(4, tty->print_cr("      free register cannot be available because all registers blocked by following call"));
5463 
5464       // safety check that there is really no register available
5465       assert(alloc_free_reg(cur) == false, "found a register for this interval");
5466       return true;
5467     }
5468 
5469   }
5470 #endif
5471   return false;
5472 }
5473 
5474 void LinearScanWalker::init_vars_for_alloc(Interval* cur) {
5475   BasicType type = cur->type();
5476   _num_phys_regs = LinearScan::num_physical_regs(type);
5477   _adjacent_regs = LinearScan::requires_adjacent_regs(type);
5478 
5479   if (pd_init_regs_for_alloc(cur)) {
5480     // the appropriate register range was selected.
5481   } else if (type == T_FLOAT || type == T_DOUBLE) {
5482     _first_reg = pd_first_fpu_reg;
5483     _last_reg = pd_last_fpu_reg;
5484   } else {
5485     _first_reg = pd_first_cpu_reg;
5486     _last_reg = pd_last_cpu_reg;
5487   }
5488 
5489   assert(0 <= _first_reg && _first_reg < LinearScan::nof_regs, "out of range");
5490   assert(0 <= _last_reg && _last_reg < LinearScan::nof_regs, "out of range");
5491 }
5492 
5493 
5494 bool LinearScanWalker::is_move(LIR_Op* op, Interval* from, Interval* to) {
5495   if (op->code() != lir_move) {
5496     return false;
5497   }
5498   assert(op->as_Op1() != NULL, "move must be LIR_Op1");
5499 
5500   LIR_Opr in = ((LIR_Op1*)op)->in_opr();
5501   LIR_Opr res = ((LIR_Op1*)op)->result_opr();
5502   return in->is_virtual() && res->is_virtual() && in->vreg_number() == from->reg_num() && res->vreg_number() == to->reg_num();
5503 }
5504 
5505 // optimization (especially for phi functions of nested loops):
5506 // assign same spill slot to non-intersecting intervals
5507 void LinearScanWalker::combine_spilled_intervals(Interval* cur) {
5508   if (cur->is_split_child()) {
5509     // optimization is only suitable for split parents
5510     return;
5511   }
5512 
5513   Interval* register_hint = cur->register_hint(false);
5514   if (register_hint == NULL) {
5515     // cur is not the target of a move, otherwise register_hint would be set
5516     return;
5517   }
5518   assert(register_hint->is_split_parent(), "register hint must be split parent");
5519 
5520   if (cur->spill_state() != noOptimization || register_hint->spill_state() != noOptimization) {
5521     // combining the stack slots for intervals where spill move optimization is applied
5522     // is not benefitial and would cause problems
5523     return;
5524   }
5525 
5526   int begin_pos = cur->from();
5527   int end_pos = cur->to();
5528   if (end_pos > allocator()->max_lir_op_id() || (begin_pos & 1) != 0 || (end_pos & 1) != 0) {
5529     // safety check that lir_op_with_id is allowed
5530     return;
5531   }
5532 
5533   if (!is_move(allocator()->lir_op_with_id(begin_pos), register_hint, cur) || !is_move(allocator()->lir_op_with_id(end_pos), cur, register_hint)) {
5534     // cur and register_hint are not connected with two moves
5535     return;
5536   }
5537 
5538   Interval* begin_hint = register_hint->split_child_at_op_id(begin_pos, LIR_OpVisitState::inputMode);
5539   Interval* end_hint = register_hint->split_child_at_op_id(end_pos, LIR_OpVisitState::outputMode);
5540   if (begin_hint == end_hint || begin_hint->to() != begin_pos || end_hint->from() != end_pos) {
5541     // register_hint must be split, otherwise the re-writing of use positions does not work
5542     return;
5543   }
5544 
5545   assert(begin_hint->assigned_reg() != any_reg, "must have register assigned");
5546   assert(end_hint->assigned_reg() == any_reg, "must not have register assigned");
5547   assert(cur->first_usage(mustHaveRegister) == begin_pos, "must have use position at begin of interval because of move");
5548   assert(end_hint->first_usage(mustHaveRegister) == end_pos, "must have use position at begin of interval because of move");
5549 
5550   if (begin_hint->assigned_reg() < LinearScan::nof_regs) {
5551     // register_hint is not spilled at begin_pos, so it would not be benefitial to immediately spill cur
5552     return;
5553   }
5554   assert(register_hint->canonical_spill_slot() != -1, "must be set when part of interval was spilled");
5555 
5556   // modify intervals such that cur gets the same stack slot as register_hint
5557   // delete use positions to prevent the intervals to get a register at beginning
5558   cur->set_canonical_spill_slot(register_hint->canonical_spill_slot());
5559   cur->remove_first_use_pos();
5560   end_hint->remove_first_use_pos();
5561 }
5562 
5563 
5564 // allocate a physical register or memory location to an interval
5565 bool LinearScanWalker::activate_current() {
5566   Interval* cur = current();
5567   bool result = true;
5568 
5569   TRACE_LINEAR_SCAN(2, tty->print   ("+++++ activating interval "); cur->print());
5570   TRACE_LINEAR_SCAN(4, tty->print_cr("      split_parent: %d, insert_move_when_activated: %d", cur->split_parent()->reg_num(), cur->insert_move_when_activated()));
5571 
5572   if (cur->assigned_reg() >= LinearScan::nof_regs) {
5573     // activating an interval that has a stack slot assigned -> split it at first use position
5574     // used for method parameters
5575     TRACE_LINEAR_SCAN(4, tty->print_cr("      interval has spill slot assigned (method parameter) -> split it before first use"));
5576 
5577     split_stack_interval(cur);
5578     result = false;
5579 
5580   } else if (allocator()->gen()->is_vreg_flag_set(cur->reg_num(), LIRGenerator::must_start_in_memory)) {
5581     // activating an interval that must start in a stack slot, but may get a register later
5582     // used for lir_roundfp: rounding is done by store to stack and reload later
5583     TRACE_LINEAR_SCAN(4, tty->print_cr("      interval must start in stack slot -> split it before first use"));
5584     assert(cur->assigned_reg() == any_reg && cur->assigned_regHi() == any_reg, "register already assigned");
5585 
5586     allocator()->assign_spill_slot(cur);
5587     split_stack_interval(cur);
5588     result = false;
5589 
5590   } else if (cur->assigned_reg() == any_reg) {
5591     // interval has not assigned register -> normal allocation
5592     // (this is the normal case for most intervals)
5593     TRACE_LINEAR_SCAN(4, tty->print_cr("      normal allocation of register"));
5594 
5595     // assign same spill slot to non-intersecting intervals
5596     combine_spilled_intervals(cur);
5597 
5598     init_vars_for_alloc(cur);
5599     if (no_allocation_possible(cur) || !alloc_free_reg(cur)) {
5600       // no empty register available.
5601       // split and spill another interval so that this interval gets a register
5602       alloc_locked_reg(cur);
5603     }
5604 
5605     // spilled intervals need not be move to active-list
5606     if (cur->assigned_reg() >= LinearScan::nof_regs) {
5607       result = false;
5608     }
5609   }
5610 
5611   // load spilled values that become active from stack slot to register
5612   if (cur->insert_move_when_activated()) {
5613     assert(cur->is_split_child(), "must be");
5614     assert(cur->current_split_child() != NULL, "must be");
5615     assert(cur->current_split_child()->reg_num() != cur->reg_num(), "cannot insert move between same interval");
5616     TRACE_LINEAR_SCAN(4, tty->print_cr("Inserting move from interval %d to %d because insert_move_when_activated is set", cur->current_split_child()->reg_num(), cur->reg_num()));
5617 
5618     insert_move(cur->from(), cur->current_split_child(), cur);
5619   }
5620   cur->make_current_split_child();
5621 
5622   return result; // true = interval is moved to active list
5623 }
5624 
5625 
5626 // Implementation of EdgeMoveOptimizer
5627 
5628 EdgeMoveOptimizer::EdgeMoveOptimizer() :
5629   _edge_instructions(4),
5630   _edge_instructions_idx(4)
5631 {
5632 }
5633 
5634 void EdgeMoveOptimizer::optimize(BlockList* code) {
5635   EdgeMoveOptimizer optimizer = EdgeMoveOptimizer();
5636 
5637   // ignore the first block in the list (index 0 is not processed)
5638   for (int i = code->length() - 1; i >= 1; i--) {
5639     BlockBegin* block = code->at(i);
5640 
5641     if (block->number_of_preds() > 1 && !block->is_set(BlockBegin::exception_entry_flag)) {
5642       optimizer.optimize_moves_at_block_end(block);
5643     }
5644     if (block->number_of_sux() == 2) {
5645       optimizer.optimize_moves_at_block_begin(block);
5646     }
5647   }
5648 }
5649 
5650 
5651 // clear all internal data structures
5652 void EdgeMoveOptimizer::init_instructions() {
5653   _edge_instructions.clear();
5654   _edge_instructions_idx.clear();
5655 }
5656 
5657 // append a lir-instruction-list and the index of the current operation in to the list
5658 void EdgeMoveOptimizer::append_instructions(LIR_OpList* instructions, int instructions_idx) {
5659   _edge_instructions.append(instructions);
5660   _edge_instructions_idx.append(instructions_idx);
5661 }
5662 
5663 // return the current operation of the given edge (predecessor or successor)
5664 LIR_Op* EdgeMoveOptimizer::instruction_at(int edge) {
5665   LIR_OpList* instructions = _edge_instructions.at(edge);
5666   int idx = _edge_instructions_idx.at(edge);
5667 
5668   if (idx < instructions->length()) {
5669     return instructions->at(idx);
5670   } else {
5671     return NULL;
5672   }
5673 }
5674 
5675 // removes the current operation of the given edge (predecessor or successor)
5676 void EdgeMoveOptimizer::remove_cur_instruction(int edge, bool decrement_index) {
5677   LIR_OpList* instructions = _edge_instructions.at(edge);
5678   int idx = _edge_instructions_idx.at(edge);
5679   instructions->remove_at(idx);
5680 
5681   if (decrement_index) {
5682     _edge_instructions_idx.at_put(edge, idx - 1);
5683   }
5684 }
5685 
5686 
5687 bool EdgeMoveOptimizer::operations_different(LIR_Op* op1, LIR_Op* op2) {
5688   if (op1 == NULL || op2 == NULL) {
5689     // at least one block is already empty -> no optimization possible
5690     return true;
5691   }
5692 
5693   if (op1->code() == lir_move && op2->code() == lir_move) {
5694     assert(op1->as_Op1() != NULL, "move must be LIR_Op1");
5695     assert(op2->as_Op1() != NULL, "move must be LIR_Op1");
5696     LIR_Op1* move1 = (LIR_Op1*)op1;
5697     LIR_Op1* move2 = (LIR_Op1*)op2;
5698     if (move1->info() == move2->info() && move1->in_opr() == move2->in_opr() && move1->result_opr() == move2->result_opr()) {
5699       // these moves are exactly equal and can be optimized
5700       return false;
5701     }
5702 
5703   } else if (op1->code() == lir_fxch && op2->code() == lir_fxch) {
5704     assert(op1->as_Op1() != NULL, "fxch must be LIR_Op1");
5705     assert(op2->as_Op1() != NULL, "fxch must be LIR_Op1");
5706     LIR_Op1* fxch1 = (LIR_Op1*)op1;
5707     LIR_Op1* fxch2 = (LIR_Op1*)op2;
5708     if (fxch1->in_opr()->as_jint() == fxch2->in_opr()->as_jint()) {
5709       // equal FPU stack operations can be optimized
5710       return false;
5711     }
5712 
5713   } else if (op1->code() == lir_fpop_raw && op2->code() == lir_fpop_raw) {
5714     // equal FPU stack operations can be optimized
5715     return false;
5716   }
5717 
5718   // no optimization possible
5719   return true;
5720 }
5721 
5722 void EdgeMoveOptimizer::optimize_moves_at_block_end(BlockBegin* block) {
5723   TRACE_LINEAR_SCAN(4, tty->print_cr("optimizing moves at end of block B%d", block->block_id()));
5724 
5725   if (block->is_predecessor(block)) {
5726     // currently we can't handle this correctly.
5727     return;
5728   }
5729 
5730   init_instructions();
5731   int num_preds = block->number_of_preds();
5732   assert(num_preds > 1, "do not call otherwise");
5733   assert(!block->is_set(BlockBegin::exception_entry_flag), "exception handlers not allowed");
5734 
5735   // setup a list with the lir-instructions of all predecessors
5736   int i;
5737   for (i = 0; i < num_preds; i++) {
5738     BlockBegin* pred = block->pred_at(i);
5739     LIR_OpList* pred_instructions = pred->lir()->instructions_list();
5740 
5741     if (pred->number_of_sux() != 1) {
5742       // this can happen with switch-statements where multiple edges are between
5743       // the same blocks.
5744       return;
5745     }
5746 
5747     assert(pred->number_of_sux() == 1, "can handle only one successor");
5748     assert(pred->sux_at(0) == block, "invalid control flow");
5749     assert(pred_instructions->last()->code() == lir_branch, "block with successor must end with branch");
5750     assert(pred_instructions->last()->as_OpBranch() != NULL, "branch must be LIR_OpBranch");
5751     assert(pred_instructions->last()->as_OpBranch()->cond() == lir_cond_always, "block must end with unconditional branch");
5752 
5753     if (pred_instructions->last()->info() != NULL) {
5754       // can not optimize instructions when debug info is needed
5755       return;
5756     }
5757 
5758     // ignore the unconditional branch at the end of the block
5759     append_instructions(pred_instructions, pred_instructions->length() - 2);
5760   }
5761 
5762 
5763   // process lir-instructions while all predecessors end with the same instruction
5764   while (true) {
5765     LIR_Op* op = instruction_at(0);
5766     for (i = 1; i < num_preds; i++) {
5767       if (operations_different(op, instruction_at(i))) {
5768         // these instructions are different and cannot be optimized ->
5769         // no further optimization possible
5770         return;
5771       }
5772     }
5773 
5774     TRACE_LINEAR_SCAN(4, tty->print("found instruction that is equal in all %d predecessors: ", num_preds); op->print());
5775 
5776     // insert the instruction at the beginning of the current block
5777     block->lir()->insert_before(1, op);
5778 
5779     // delete the instruction at the end of all predecessors
5780     for (i = 0; i < num_preds; i++) {
5781       remove_cur_instruction(i, true);
5782     }
5783   }
5784 }
5785 
5786 
5787 void EdgeMoveOptimizer::optimize_moves_at_block_begin(BlockBegin* block) {
5788   TRACE_LINEAR_SCAN(4, tty->print_cr("optimization moves at begin of block B%d", block->block_id()));
5789 
5790   init_instructions();
5791   int num_sux = block->number_of_sux();
5792 
5793   LIR_OpList* cur_instructions = block->lir()->instructions_list();
5794 
5795   assert(num_sux == 2, "method should not be called otherwise");
5796   assert(cur_instructions->last()->code() == lir_branch, "block with successor must end with branch");
5797   assert(cur_instructions->last()->as_OpBranch() != NULL, "branch must be LIR_OpBranch");
5798   assert(cur_instructions->last()->as_OpBranch()->cond() == lir_cond_always, "block must end with unconditional branch");
5799 
5800   if (cur_instructions->last()->info() != NULL) {
5801     // can no optimize instructions when debug info is needed
5802     return;
5803   }
5804 
5805   LIR_Op* branch = cur_instructions->at(cur_instructions->length() - 2);
5806   if (branch->info() != NULL || (branch->code() != lir_branch && branch->code() != lir_cond_float_branch)) {
5807     // not a valid case for optimization
5808     // currently, only blocks that end with two branches (conditional branch followed
5809     // by unconditional branch) are optimized
5810     return;
5811   }
5812 
5813   // now it is guaranteed that the block ends with two branch instructions.
5814   // the instructions are inserted at the end of the block before these two branches
5815   int insert_idx = cur_instructions->length() - 2;
5816 
5817   int i;
5818 #ifdef ASSERT
5819   for (i = insert_idx - 1; i >= 0; i--) {
5820     LIR_Op* op = cur_instructions->at(i);
5821     if ((op->code() == lir_branch || op->code() == lir_cond_float_branch) && ((LIR_OpBranch*)op)->block() != NULL) {
5822       assert(false, "block with two successors can have only two branch instructions");
5823     }
5824   }
5825 #endif
5826 
5827   // setup a list with the lir-instructions of all successors
5828   for (i = 0; i < num_sux; i++) {
5829     BlockBegin* sux = block->sux_at(i);
5830     LIR_OpList* sux_instructions = sux->lir()->instructions_list();
5831 
5832     assert(sux_instructions->at(0)->code() == lir_label, "block must start with label");
5833 
5834     if (sux->number_of_preds() != 1) {
5835       // this can happen with switch-statements where multiple edges are between
5836       // the same blocks.
5837       return;
5838     }
5839     assert(sux->pred_at(0) == block, "invalid control flow");
5840     assert(!sux->is_set(BlockBegin::exception_entry_flag), "exception handlers not allowed");
5841 
5842     // ignore the label at the beginning of the block
5843     append_instructions(sux_instructions, 1);
5844   }
5845 
5846   // process lir-instructions while all successors begin with the same instruction
5847   while (true) {
5848     LIR_Op* op = instruction_at(0);
5849     for (i = 1; i < num_sux; i++) {
5850       if (operations_different(op, instruction_at(i))) {
5851         // these instructions are different and cannot be optimized ->
5852         // no further optimization possible
5853         return;
5854       }
5855     }
5856 
5857     TRACE_LINEAR_SCAN(4, tty->print("----- found instruction that is equal in all %d successors: ", num_sux); op->print());
5858 
5859     // insert instruction at end of current block
5860     block->lir()->insert_before(insert_idx, op);
5861     insert_idx++;
5862 
5863     // delete the instructions at the beginning of all successors
5864     for (i = 0; i < num_sux; i++) {
5865       remove_cur_instruction(i, false);
5866     }
5867   }
5868 }
5869 
5870 
5871 // Implementation of ControlFlowOptimizer
5872 
5873 ControlFlowOptimizer::ControlFlowOptimizer() :
5874   _original_preds(4)
5875 {
5876 }
5877 
5878 void ControlFlowOptimizer::optimize(BlockList* code) {
5879   ControlFlowOptimizer optimizer = ControlFlowOptimizer();
5880 
5881   // push the OSR entry block to the end so that we're not jumping over it.
5882   BlockBegin* osr_entry = code->at(0)->end()->as_Base()->osr_entry();
5883   if (osr_entry) {
5884     int index = osr_entry->linear_scan_number();
5885     assert(code->at(index) == osr_entry, "wrong index");
5886     code->remove_at(index);
5887     code->append(osr_entry);
5888   }
5889 
5890   optimizer.reorder_short_loops(code);
5891   optimizer.delete_empty_blocks(code);
5892   optimizer.delete_unnecessary_jumps(code);
5893   optimizer.delete_jumps_to_return(code);
5894 }
5895 
5896 void ControlFlowOptimizer::reorder_short_loop(BlockList* code, BlockBegin* header_block, int header_idx) {
5897   int i = header_idx + 1;
5898   int max_end = MIN2(header_idx + ShortLoopSize, code->length());
5899   while (i < max_end && code->at(i)->loop_depth() >= header_block->loop_depth()) {
5900     i++;
5901   }
5902 
5903   if (i == code->length() || code->at(i)->loop_depth() < header_block->loop_depth()) {
5904     int end_idx = i - 1;
5905     BlockBegin* end_block = code->at(end_idx);
5906 
5907     if (end_block->number_of_sux() == 1 && end_block->sux_at(0) == header_block) {
5908       // short loop from header_idx to end_idx found -> reorder blocks such that
5909       // the header_block is the last block instead of the first block of the loop
5910       TRACE_LINEAR_SCAN(1, tty->print_cr("Reordering short loop: length %d, header B%d, end B%d",
5911                                          end_idx - header_idx + 1,
5912                                          header_block->block_id(), end_block->block_id()));
5913 
5914       for (int j = header_idx; j < end_idx; j++) {
5915         code->at_put(j, code->at(j + 1));
5916       }
5917       code->at_put(end_idx, header_block);
5918 
5919       // correct the flags so that any loop alignment occurs in the right place.
5920       assert(code->at(end_idx)->is_set(BlockBegin::backward_branch_target_flag), "must be backward branch target");
5921       code->at(end_idx)->clear(BlockBegin::backward_branch_target_flag);
5922       code->at(header_idx)->set(BlockBegin::backward_branch_target_flag);
5923     }
5924   }
5925 }
5926 
5927 void ControlFlowOptimizer::reorder_short_loops(BlockList* code) {
5928   for (int i = code->length() - 1; i >= 0; i--) {
5929     BlockBegin* block = code->at(i);
5930 
5931     if (block->is_set(BlockBegin::linear_scan_loop_header_flag)) {
5932       reorder_short_loop(code, block, i);
5933     }
5934   }
5935 
5936   DEBUG_ONLY(verify(code));
5937 }
5938 
5939 // only blocks with exactly one successor can be deleted. Such blocks
5940 // must always end with an unconditional branch to this successor
5941 bool ControlFlowOptimizer::can_delete_block(BlockBegin* block) {
5942   if (block->number_of_sux() != 1 || block->number_of_exception_handlers() != 0 || block->is_entry_block()) {
5943     return false;
5944   }
5945 
5946   LIR_OpList* instructions = block->lir()->instructions_list();
5947 
5948   assert(instructions->length() >= 2, "block must have label and branch");
5949   assert(instructions->at(0)->code() == lir_label, "first instruction must always be a label");
5950   assert(instructions->last()->as_OpBranch() != NULL, "last instrcution must always be a branch");
5951   assert(instructions->last()->as_OpBranch()->cond() == lir_cond_always, "branch must be unconditional");
5952   assert(instructions->last()->as_OpBranch()->block() == block->sux_at(0), "branch target must be the successor");
5953 
5954   // block must have exactly one successor
5955 
5956   if (instructions->length() == 2 && instructions->last()->info() == NULL) {
5957     return true;
5958   }
5959   return false;
5960 }
5961 
5962 // substitute branch targets in all branch-instructions of this blocks
5963 void ControlFlowOptimizer::substitute_branch_target(BlockBegin* block, BlockBegin* target_from, BlockBegin* target_to) {
5964   TRACE_LINEAR_SCAN(3, tty->print_cr("Deleting empty block: substituting from B%d to B%d inside B%d", target_from->block_id(), target_to->block_id(), block->block_id()));
5965 
5966   LIR_OpList* instructions = block->lir()->instructions_list();
5967 
5968   assert(instructions->at(0)->code() == lir_label, "first instruction must always be a label");
5969   for (int i = instructions->length() - 1; i >= 1; i--) {
5970     LIR_Op* op = instructions->at(i);
5971 
5972     if (op->code() == lir_branch || op->code() == lir_cond_float_branch) {
5973       assert(op->as_OpBranch() != NULL, "branch must be of type LIR_OpBranch");
5974       LIR_OpBranch* branch = (LIR_OpBranch*)op;
5975 
5976       if (branch->block() == target_from) {
5977         branch->change_block(target_to);
5978       }
5979       if (branch->ublock() == target_from) {
5980         branch->change_ublock(target_to);
5981       }
5982     }
5983   }
5984 }
5985 
5986 void ControlFlowOptimizer::delete_empty_blocks(BlockList* code) {
5987   int old_pos = 0;
5988   int new_pos = 0;
5989   int num_blocks = code->length();
5990 
5991   while (old_pos < num_blocks) {
5992     BlockBegin* block = code->at(old_pos);
5993 
5994     if (can_delete_block(block)) {
5995       BlockBegin* new_target = block->sux_at(0);
5996 
5997       // propagate backward branch target flag for correct code alignment
5998       if (block->is_set(BlockBegin::backward_branch_target_flag)) {
5999         new_target->set(BlockBegin::backward_branch_target_flag);
6000       }
6001 
6002       // collect a list with all predecessors that contains each predecessor only once
6003       // the predecessors of cur are changed during the substitution, so a copy of the
6004       // predecessor list is necessary
6005       int j;
6006       _original_preds.clear();
6007       for (j = block->number_of_preds() - 1; j >= 0; j--) {
6008         BlockBegin* pred = block->pred_at(j);
6009         if (_original_preds.index_of(pred) == -1) {
6010           _original_preds.append(pred);
6011         }
6012       }
6013 
6014       for (j = _original_preds.length() - 1; j >= 0; j--) {
6015         BlockBegin* pred = _original_preds.at(j);
6016         substitute_branch_target(pred, block, new_target);
6017         pred->substitute_sux(block, new_target);
6018       }
6019     } else {
6020       // adjust position of this block in the block list if blocks before
6021       // have been deleted
6022       if (new_pos != old_pos) {
6023         code->at_put(new_pos, code->at(old_pos));
6024       }
6025       new_pos++;
6026     }
6027     old_pos++;
6028   }
6029   code->truncate(new_pos);
6030 
6031   DEBUG_ONLY(verify(code));
6032 }
6033 
6034 void ControlFlowOptimizer::delete_unnecessary_jumps(BlockList* code) {
6035   // skip the last block because there a branch is always necessary
6036   for (int i = code->length() - 2; i >= 0; i--) {
6037     BlockBegin* block = code->at(i);
6038     LIR_OpList* instructions = block->lir()->instructions_list();
6039 
6040     LIR_Op* last_op = instructions->last();
6041     if (last_op->code() == lir_branch) {
6042       assert(last_op->as_OpBranch() != NULL, "branch must be of type LIR_OpBranch");
6043       LIR_OpBranch* last_branch = (LIR_OpBranch*)last_op;
6044 
6045       assert(last_branch->block() != NULL, "last branch must always have a block as target");
6046       assert(last_branch->label() == last_branch->block()->label(), "must be equal");
6047 
6048       if (last_branch->info() == NULL) {
6049         if (last_branch->block() == code->at(i + 1)) {
6050 
6051           TRACE_LINEAR_SCAN(3, tty->print_cr("Deleting unconditional branch at end of block B%d", block->block_id()));
6052 
6053           // delete last branch instruction
6054           instructions->truncate(instructions->length() - 1);
6055 
6056         } else {
6057           LIR_Op* prev_op = instructions->at(instructions->length() - 2);
6058           if (prev_op->code() == lir_branch || prev_op->code() == lir_cond_float_branch) {
6059             assert(prev_op->as_OpBranch() != NULL, "branch must be of type LIR_OpBranch");
6060             LIR_OpBranch* prev_branch = (LIR_OpBranch*)prev_op;
6061 
6062             if (prev_branch->block() == code->at(i + 1) && prev_branch->info() == NULL) {
6063 
6064               TRACE_LINEAR_SCAN(3, tty->print_cr("Negating conditional branch and deleting unconditional branch at end of block B%d", block->block_id()));
6065 
6066               // eliminate a conditional branch to the immediate successor
6067               prev_branch->change_block(last_branch->block());
6068               prev_branch->negate_cond();
6069               instructions->truncate(instructions->length() - 1);
6070             }
6071           }
6072         }
6073       }
6074     }
6075   }
6076 
6077   DEBUG_ONLY(verify(code));
6078 }
6079 
6080 void ControlFlowOptimizer::delete_jumps_to_return(BlockList* code) {
6081 #ifdef ASSERT
6082   BitMap return_converted(BlockBegin::number_of_blocks());
6083   return_converted.clear();
6084 #endif
6085 
6086   for (int i = code->length() - 1; i >= 0; i--) {
6087     BlockBegin* block = code->at(i);
6088     LIR_OpList* cur_instructions = block->lir()->instructions_list();
6089     LIR_Op*     cur_last_op = cur_instructions->last();
6090 
6091     assert(cur_instructions->at(0)->code() == lir_label, "first instruction must always be a label");
6092     if (cur_instructions->length() == 2 && cur_last_op->code() == lir_return) {
6093       // the block contains only a label and a return
6094       // if a predecessor ends with an unconditional jump to this block, then the jump
6095       // can be replaced with a return instruction
6096       //
6097       // Note: the original block with only a return statement cannot be deleted completely
6098       //       because the predecessors might have other (conditional) jumps to this block
6099       //       -> this may lead to unnecesary return instructions in the final code
6100 
6101       assert(cur_last_op->info() == NULL, "return instructions do not have debug information");
6102       assert(block->number_of_sux() == 0 ||
6103              (return_converted.at(block->block_id()) && block->number_of_sux() == 1),
6104              "blocks that end with return must not have successors");
6105 
6106       assert(cur_last_op->as_Op1() != NULL, "return must be LIR_Op1");
6107       LIR_Opr return_opr = ((LIR_Op1*)cur_last_op)->in_opr();
6108 
6109       for (int j = block->number_of_preds() - 1; j >= 0; j--) {
6110         BlockBegin* pred = block->pred_at(j);
6111         LIR_OpList* pred_instructions = pred->lir()->instructions_list();
6112         LIR_Op*     pred_last_op = pred_instructions->last();
6113 
6114         if (pred_last_op->code() == lir_branch) {
6115           assert(pred_last_op->as_OpBranch() != NULL, "branch must be LIR_OpBranch");
6116           LIR_OpBranch* pred_last_branch = (LIR_OpBranch*)pred_last_op;
6117 
6118           if (pred_last_branch->block() == block && pred_last_branch->cond() == lir_cond_always && pred_last_branch->info() == NULL) {
6119             // replace the jump to a return with a direct return
6120             // Note: currently the edge between the blocks is not deleted
6121             pred_instructions->at_put(pred_instructions->length() - 1, new LIR_Op1(lir_return, return_opr));
6122 #ifdef ASSERT
6123             return_converted.set_bit(pred->block_id());
6124 #endif
6125           }
6126         }
6127       }
6128     }
6129   }
6130 }
6131 
6132 
6133 #ifdef ASSERT
6134 void ControlFlowOptimizer::verify(BlockList* code) {
6135   for (int i = 0; i < code->length(); i++) {
6136     BlockBegin* block = code->at(i);
6137     LIR_OpList* instructions = block->lir()->instructions_list();
6138 
6139     int j;
6140     for (j = 0; j < instructions->length(); j++) {
6141       LIR_OpBranch* op_branch = instructions->at(j)->as_OpBranch();
6142 
6143       if (op_branch != NULL) {
6144         assert(op_branch->block() == NULL || code->index_of(op_branch->block()) != -1, "branch target not valid");
6145         assert(op_branch->ublock() == NULL || code->index_of(op_branch->ublock()) != -1, "branch target not valid");
6146       }
6147     }
6148 
6149     for (j = 0; j < block->number_of_sux() - 1; j++) {
6150       BlockBegin* sux = block->sux_at(j);
6151       assert(code->index_of(sux) != -1, "successor not valid");
6152     }
6153 
6154     for (j = 0; j < block->number_of_preds() - 1; j++) {
6155       BlockBegin* pred = block->pred_at(j);
6156       assert(code->index_of(pred) != -1, "successor not valid");
6157     }
6158   }
6159 }
6160 #endif
6161 
6162 
6163 #ifndef PRODUCT
6164 
6165 // Implementation of LinearStatistic
6166 
6167 const char* LinearScanStatistic::counter_name(int counter_idx) {
6168   switch (counter_idx) {
6169     case counter_method:          return "compiled methods";
6170     case counter_fpu_method:      return "methods using fpu";
6171     case counter_loop_method:     return "methods with loops";
6172     case counter_exception_method:return "methods with xhandler";
6173 
6174     case counter_loop:            return "loops";
6175     case counter_block:           return "blocks";
6176     case counter_loop_block:      return "blocks inside loop";
6177     case counter_exception_block: return "exception handler entries";
6178     case counter_interval:        return "intervals";
6179     case counter_fixed_interval:  return "fixed intervals";
6180     case counter_range:           return "ranges";
6181     case counter_fixed_range:     return "fixed ranges";
6182     case counter_use_pos:         return "use positions";
6183     case counter_fixed_use_pos:   return "fixed use positions";
6184     case counter_spill_slots:     return "spill slots";
6185 
6186     // counter for classes of lir instructions
6187     case counter_instruction:     return "total instructions";
6188     case counter_label:           return "labels";
6189     case counter_entry:           return "method entries";
6190     case counter_return:          return "method returns";
6191     case counter_call:            return "method calls";
6192     case counter_move:            return "moves";
6193     case counter_cmp:             return "compare";
6194     case counter_cond_branch:     return "conditional branches";
6195     case counter_uncond_branch:   return "unconditional branches";
6196     case counter_stub_branch:     return "branches to stub";
6197     case counter_alu:             return "artithmetic + logic";
6198     case counter_alloc:           return "allocations";
6199     case counter_sync:            return "synchronisation";
6200     case counter_throw:           return "throw";
6201     case counter_unwind:          return "unwind";
6202     case counter_typecheck:       return "type+null-checks";
6203     case counter_fpu_stack:       return "fpu-stack";
6204     case counter_misc_inst:       return "other instructions";
6205     case counter_other_inst:      return "misc. instructions";
6206 
6207     // counter for different types of moves
6208     case counter_move_total:      return "total moves";
6209     case counter_move_reg_reg:    return "register->register";
6210     case counter_move_reg_stack:  return "register->stack";
6211     case counter_move_stack_reg:  return "stack->register";
6212     case counter_move_stack_stack:return "stack->stack";
6213     case counter_move_reg_mem:    return "register->memory";
6214     case counter_move_mem_reg:    return "memory->register";
6215     case counter_move_const_any:  return "constant->any";
6216 
6217     case blank_line_1:            return "";
6218     case blank_line_2:            return "";
6219 
6220     default: ShouldNotReachHere(); return "";
6221   }
6222 }
6223 
6224 LinearScanStatistic::Counter LinearScanStatistic::base_counter(int counter_idx) {
6225   if (counter_idx == counter_fpu_method || counter_idx == counter_loop_method || counter_idx == counter_exception_method) {
6226     return counter_method;
6227   } else if (counter_idx == counter_loop_block || counter_idx == counter_exception_block) {
6228     return counter_block;
6229   } else if (counter_idx >= counter_instruction && counter_idx <= counter_other_inst) {
6230     return counter_instruction;
6231   } else if (counter_idx >= counter_move_total && counter_idx <= counter_move_const_any) {
6232     return counter_move_total;
6233   }
6234   return invalid_counter;
6235 }
6236 
6237 LinearScanStatistic::LinearScanStatistic() {
6238   for (int i = 0; i < number_of_counters; i++) {
6239     _counters_sum[i] = 0;
6240     _counters_max[i] = -1;
6241   }
6242 
6243 }
6244 
6245 // add the method-local numbers to the total sum
6246 void LinearScanStatistic::sum_up(LinearScanStatistic &method_statistic) {
6247   for (int i = 0; i < number_of_counters; i++) {
6248     _counters_sum[i] += method_statistic._counters_sum[i];
6249     _counters_max[i] = MAX2(_counters_max[i], method_statistic._counters_sum[i]);
6250   }
6251 }
6252 
6253 void LinearScanStatistic::print(const char* title) {
6254   if (CountLinearScan || TraceLinearScanLevel > 0) {
6255     tty->cr();
6256     tty->print_cr("***** LinearScan statistic - %s *****", title);
6257 
6258     for (int i = 0; i < number_of_counters; i++) {
6259       if (_counters_sum[i] > 0 || _counters_max[i] >= 0) {
6260         tty->print("%25s: %8d", counter_name(i), _counters_sum[i]);
6261 
6262         if (base_counter(i) != invalid_counter) {
6263           tty->print("  (%5.1f%%) ", _counters_sum[i] * 100.0 / _counters_sum[base_counter(i)]);
6264         } else {
6265           tty->print("           ");
6266         }
6267 
6268         if (_counters_max[i] >= 0) {
6269           tty->print("%8d", _counters_max[i]);
6270         }
6271       }
6272       tty->cr();
6273     }
6274   }
6275 }
6276 
6277 void LinearScanStatistic::collect(LinearScan* allocator) {
6278   inc_counter(counter_method);
6279   if (allocator->has_fpu_registers()) {
6280     inc_counter(counter_fpu_method);
6281   }
6282   if (allocator->num_loops() > 0) {
6283     inc_counter(counter_loop_method);
6284   }
6285   inc_counter(counter_loop, allocator->num_loops());
6286   inc_counter(counter_spill_slots, allocator->max_spills());
6287 
6288   int i;
6289   for (i = 0; i < allocator->interval_count(); i++) {
6290     Interval* cur = allocator->interval_at(i);
6291 
6292     if (cur != NULL) {
6293       inc_counter(counter_interval);
6294       inc_counter(counter_use_pos, cur->num_use_positions());
6295       if (LinearScan::is_precolored_interval(cur)) {
6296         inc_counter(counter_fixed_interval);
6297         inc_counter(counter_fixed_use_pos, cur->num_use_positions());
6298       }
6299 
6300       Range* range = cur->first();
6301       while (range != Range::end()) {
6302         inc_counter(counter_range);
6303         if (LinearScan::is_precolored_interval(cur)) {
6304           inc_counter(counter_fixed_range);
6305         }
6306         range = range->next();
6307       }
6308     }
6309   }
6310 
6311   bool has_xhandlers = false;
6312   // Note: only count blocks that are in code-emit order
6313   for (i = 0; i < allocator->ir()->code()->length(); i++) {
6314     BlockBegin* cur = allocator->ir()->code()->at(i);
6315 
6316     inc_counter(counter_block);
6317     if (cur->loop_depth() > 0) {
6318       inc_counter(counter_loop_block);
6319     }
6320     if (cur->is_set(BlockBegin::exception_entry_flag)) {
6321       inc_counter(counter_exception_block);
6322       has_xhandlers = true;
6323     }
6324 
6325     LIR_OpList* instructions = cur->lir()->instructions_list();
6326     for (int j = 0; j < instructions->length(); j++) {
6327       LIR_Op* op = instructions->at(j);
6328 
6329       inc_counter(counter_instruction);
6330 
6331       switch (op->code()) {
6332         case lir_label:           inc_counter(counter_label); break;
6333         case lir_std_entry:
6334         case lir_osr_entry:       inc_counter(counter_entry); break;
6335         case lir_return:          inc_counter(counter_return); break;
6336 
6337         case lir_rtcall:
6338         case lir_static_call:
6339         case lir_optvirtual_call:
6340         case lir_virtual_call:    inc_counter(counter_call); break;
6341 
6342         case lir_move: {
6343           inc_counter(counter_move);
6344           inc_counter(counter_move_total);
6345 
6346           LIR_Opr in = op->as_Op1()->in_opr();
6347           LIR_Opr res = op->as_Op1()->result_opr();
6348           if (in->is_register()) {
6349             if (res->is_register()) {
6350               inc_counter(counter_move_reg_reg);
6351             } else if (res->is_stack()) {
6352               inc_counter(counter_move_reg_stack);
6353             } else if (res->is_address()) {
6354               inc_counter(counter_move_reg_mem);
6355             } else {
6356               ShouldNotReachHere();
6357             }
6358           } else if (in->is_stack()) {
6359             if (res->is_register()) {
6360               inc_counter(counter_move_stack_reg);
6361             } else {
6362               inc_counter(counter_move_stack_stack);
6363             }
6364           } else if (in->is_address()) {
6365             assert(res->is_register(), "must be");
6366             inc_counter(counter_move_mem_reg);
6367           } else if (in->is_constant()) {
6368             inc_counter(counter_move_const_any);
6369           } else {
6370             ShouldNotReachHere();
6371           }
6372           break;
6373         }
6374 
6375         case lir_cmp:             inc_counter(counter_cmp); break;
6376 
6377         case lir_branch:
6378         case lir_cond_float_branch: {
6379           LIR_OpBranch* branch = op->as_OpBranch();
6380           if (branch->block() == NULL) {
6381             inc_counter(counter_stub_branch);
6382           } else if (branch->cond() == lir_cond_always) {
6383             inc_counter(counter_uncond_branch);
6384           } else {
6385             inc_counter(counter_cond_branch);
6386           }
6387           break;
6388         }
6389 
6390         case lir_neg:
6391         case lir_add:
6392         case lir_sub:
6393         case lir_mul:
6394         case lir_mul_strictfp:
6395         case lir_div:
6396         case lir_div_strictfp:
6397         case lir_rem:
6398         case lir_sqrt:
6399         case lir_sin:
6400         case lir_cos:
6401         case lir_abs:
6402         case lir_log10:
6403         case lir_log:
6404         case lir_logic_and:
6405         case lir_logic_or:
6406         case lir_logic_xor:
6407         case lir_shl:
6408         case lir_shr:
6409         case lir_ushr:            inc_counter(counter_alu); break;
6410 
6411         case lir_alloc_object:
6412         case lir_alloc_array:     inc_counter(counter_alloc); break;
6413 
6414         case lir_monaddr:
6415         case lir_lock:
6416         case lir_unlock:          inc_counter(counter_sync); break;
6417 
6418         case lir_throw:           inc_counter(counter_throw); break;
6419 
6420         case lir_unwind:          inc_counter(counter_unwind); break;
6421 
6422         case lir_null_check:
6423         case lir_leal:
6424         case lir_instanceof:
6425         case lir_checkcast:
6426         case lir_store_check:     inc_counter(counter_typecheck); break;
6427 
6428         case lir_fpop_raw:
6429         case lir_fxch:
6430         case lir_fld:             inc_counter(counter_fpu_stack); break;
6431 
6432         case lir_nop:
6433         case lir_push:
6434         case lir_pop:
6435         case lir_convert:
6436         case lir_roundfp:
6437         case lir_cmove:           inc_counter(counter_misc_inst); break;
6438 
6439         default:                  inc_counter(counter_other_inst); break;
6440       }
6441     }
6442   }
6443 
6444   if (has_xhandlers) {
6445     inc_counter(counter_exception_method);
6446   }
6447 }
6448 
6449 void LinearScanStatistic::compute(LinearScan* allocator, LinearScanStatistic &global_statistic) {
6450   if (CountLinearScan || TraceLinearScanLevel > 0) {
6451 
6452     LinearScanStatistic local_statistic = LinearScanStatistic();
6453 
6454     local_statistic.collect(allocator);
6455     global_statistic.sum_up(local_statistic);
6456 
6457     if (TraceLinearScanLevel > 2) {
6458       local_statistic.print("current local statistic");
6459     }
6460   }
6461 }
6462 
6463 
6464 // Implementation of LinearTimers
6465 
6466 LinearScanTimers::LinearScanTimers() {
6467   for (int i = 0; i < number_of_timers; i++) {
6468     timer(i)->reset();
6469   }
6470 }
6471 
6472 const char* LinearScanTimers::timer_name(int idx) {
6473   switch (idx) {
6474     case timer_do_nothing:               return "Nothing (Time Check)";
6475     case timer_number_instructions:      return "Number Instructions";
6476     case timer_compute_local_live_sets:  return "Local Live Sets";
6477     case timer_compute_global_live_sets: return "Global Live Sets";
6478     case timer_build_intervals:          return "Build Intervals";
6479     case timer_sort_intervals_before:    return "Sort Intervals Before";
6480     case timer_allocate_registers:       return "Allocate Registers";
6481     case timer_resolve_data_flow:        return "Resolve Data Flow";
6482     case timer_sort_intervals_after:     return "Sort Intervals After";
6483     case timer_eliminate_spill_moves:    return "Spill optimization";
6484     case timer_assign_reg_num:           return "Assign Reg Num";
6485     case timer_allocate_fpu_stack:       return "Allocate FPU Stack";
6486     case timer_optimize_lir:             return "Optimize LIR";
6487     default: ShouldNotReachHere();       return "";
6488   }
6489 }
6490 
6491 void LinearScanTimers::begin_method() {
6492   if (TimeEachLinearScan) {
6493     // reset all timers to measure only current method
6494     for (int i = 0; i < number_of_timers; i++) {
6495       timer(i)->reset();
6496     }
6497   }
6498 }
6499 
6500 void LinearScanTimers::end_method(LinearScan* allocator) {
6501   if (TimeEachLinearScan) {
6502 
6503     double c = timer(timer_do_nothing)->seconds();
6504     double total = 0;
6505     for (int i = 1; i < number_of_timers; i++) {
6506       total += timer(i)->seconds() - c;
6507     }
6508 
6509     if (total >= 0.0005) {
6510       // print all information in one line for automatic processing
6511       tty->print("@"); allocator->compilation()->method()->print_name();
6512 
6513       tty->print("@ %d ", allocator->compilation()->method()->code_size());
6514       tty->print("@ %d ", allocator->block_at(allocator->block_count() - 1)->last_lir_instruction_id() / 2);
6515       tty->print("@ %d ", allocator->block_count());
6516       tty->print("@ %d ", allocator->num_virtual_regs());
6517       tty->print("@ %d ", allocator->interval_count());
6518       tty->print("@ %d ", allocator->_num_calls);
6519       tty->print("@ %d ", allocator->num_loops());
6520 
6521       tty->print("@ %6.6f ", total);
6522       for (int i = 1; i < number_of_timers; i++) {
6523         tty->print("@ %4.1f ", ((timer(i)->seconds() - c) / total) * 100);
6524       }
6525       tty->cr();
6526     }
6527   }
6528 }
6529 
6530 void LinearScanTimers::print(double total_time) {
6531   if (TimeLinearScan) {
6532     // correction value: sum of dummy-timer that only measures the time that
6533     // is necesary to start and stop itself
6534     double c = timer(timer_do_nothing)->seconds();
6535 
6536     for (int i = 0; i < number_of_timers; i++) {
6537       double t = timer(i)->seconds();
6538       tty->print_cr("    %25s: %6.3f s (%4.1f%%)  corrected: %6.3f s (%4.1f%%)", timer_name(i), t, (t / total_time) * 100.0, t - c, (t - c) / (total_time - 2 * number_of_timers * c) * 100);
6539     }
6540   }
6541 }
6542 
6543 #endif // #ifndef PRODUCT