1 /*
   2  * Copyright 2000-2009 Sun Microsystems, Inc.  All Rights Reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
  20  * CA 95054 USA or visit www.sun.com if you need additional information or
  21  * have any questions.
  22  *
  23  */
  24 
  25 #include "incls/_precompiled.incl"
  26 #include "incls/_ciTypeFlow.cpp.incl"
  27 
  28 // ciTypeFlow::JsrSet
  29 //
  30 // A JsrSet represents some set of JsrRecords.  This class
  31 // is used to record a set of all jsr routines which we permit
  32 // execution to return (ret) from.
  33 //
  34 // During abstract interpretation, JsrSets are used to determine
  35 // whether two paths which reach a given block are unique, and
  36 // should be cloned apart, or are compatible, and should merge
  37 // together.
  38 
  39 // ------------------------------------------------------------------
  40 // ciTypeFlow::JsrSet::JsrSet
  41 ciTypeFlow::JsrSet::JsrSet(Arena* arena, int default_len) {
  42   if (arena != NULL) {
  43     // Allocate growable array in Arena.
  44     _set = new (arena) GrowableArray<JsrRecord*>(arena, default_len, 0, NULL);
  45   } else {
  46     // Allocate growable array in current ResourceArea.
  47     _set = new GrowableArray<JsrRecord*>(4, 0, NULL, false);
  48   }
  49 }
  50 
  51 // ------------------------------------------------------------------
  52 // ciTypeFlow::JsrSet::copy_into
  53 void ciTypeFlow::JsrSet::copy_into(JsrSet* jsrs) {
  54   int len = size();
  55   jsrs->_set->clear();
  56   for (int i = 0; i < len; i++) {
  57     jsrs->_set->append(_set->at(i));
  58   }
  59 }
  60 
  61 // ------------------------------------------------------------------
  62 // ciTypeFlow::JsrSet::is_compatible_with
  63 //
  64 // !!!! MISGIVINGS ABOUT THIS... disregard
  65 //
  66 // Is this JsrSet compatible with some other JsrSet?
  67 //
  68 // In set-theoretic terms, a JsrSet can be viewed as a partial function
  69 // from entry addresses to return addresses.  Two JsrSets A and B are
  70 // compatible iff
  71 //
  72 //   For any x,
  73 //   A(x) defined and B(x) defined implies A(x) == B(x)
  74 //
  75 // Less formally, two JsrSets are compatible when they have identical
  76 // return addresses for any entry addresses they share in common.
  77 bool ciTypeFlow::JsrSet::is_compatible_with(JsrSet* other) {
  78   // Walk through both sets in parallel.  If the same entry address
  79   // appears in both sets, then the return address must match for
  80   // the sets to be compatible.
  81   int size1 = size();
  82   int size2 = other->size();
  83 
  84   // Special case.  If nothing is on the jsr stack, then there can
  85   // be no ret.
  86   if (size2 == 0) {
  87     return true;
  88   } else if (size1 != size2) {
  89     return false;
  90   } else {
  91     for (int i = 0; i < size1; i++) {
  92       JsrRecord* record1 = record_at(i);
  93       JsrRecord* record2 = other->record_at(i);
  94       if (record1->entry_address() != record2->entry_address() ||
  95           record1->return_address() != record2->return_address()) {
  96         return false;
  97       }
  98     }
  99     return true;
 100   }
 101 
 102 #if 0
 103   int pos1 = 0;
 104   int pos2 = 0;
 105   int size1 = size();
 106   int size2 = other->size();
 107   while (pos1 < size1 && pos2 < size2) {
 108     JsrRecord* record1 = record_at(pos1);
 109     JsrRecord* record2 = other->record_at(pos2);
 110     int entry1 = record1->entry_address();
 111     int entry2 = record2->entry_address();
 112     if (entry1 < entry2) {
 113       pos1++;
 114     } else if (entry1 > entry2) {
 115       pos2++;
 116     } else {
 117       if (record1->return_address() == record2->return_address()) {
 118         pos1++;
 119         pos2++;
 120       } else {
 121         // These two JsrSets are incompatible.
 122         return false;
 123       }
 124     }
 125   }
 126   // The two JsrSets agree.
 127   return true;
 128 #endif
 129 }
 130 
 131 // ------------------------------------------------------------------
 132 // ciTypeFlow::JsrSet::insert_jsr_record
 133 //
 134 // Insert the given JsrRecord into the JsrSet, maintaining the order
 135 // of the set and replacing any element with the same entry address.
 136 void ciTypeFlow::JsrSet::insert_jsr_record(JsrRecord* record) {
 137   int len = size();
 138   int entry = record->entry_address();
 139   int pos = 0;
 140   for ( ; pos < len; pos++) {
 141     JsrRecord* current = record_at(pos);
 142     if (entry == current->entry_address()) {
 143       // Stomp over this entry.
 144       _set->at_put(pos, record);
 145       assert(size() == len, "must be same size");
 146       return;
 147     } else if (entry < current->entry_address()) {
 148       break;
 149     }
 150   }
 151 
 152   // Insert the record into the list.
 153   JsrRecord* swap = record;
 154   JsrRecord* temp = NULL;
 155   for ( ; pos < len; pos++) {
 156     temp = _set->at(pos);
 157     _set->at_put(pos, swap);
 158     swap = temp;
 159   }
 160   _set->append(swap);
 161   assert(size() == len+1, "must be larger");
 162 }
 163 
 164 // ------------------------------------------------------------------
 165 // ciTypeFlow::JsrSet::remove_jsr_record
 166 //
 167 // Remove the JsrRecord with the given return address from the JsrSet.
 168 void ciTypeFlow::JsrSet::remove_jsr_record(int return_address) {
 169   int len = size();
 170   for (int i = 0; i < len; i++) {
 171     if (record_at(i)->return_address() == return_address) {
 172       // We have found the proper entry.  Remove it from the
 173       // JsrSet and exit.
 174       for (int j = i+1; j < len ; j++) {
 175         _set->at_put(j-1, _set->at(j));
 176       }
 177       _set->trunc_to(len-1);
 178       assert(size() == len-1, "must be smaller");
 179       return;
 180     }
 181   }
 182   assert(false, "verify: returning from invalid subroutine");
 183 }
 184 
 185 // ------------------------------------------------------------------
 186 // ciTypeFlow::JsrSet::apply_control
 187 //
 188 // Apply the effect of a control-flow bytecode on the JsrSet.  The
 189 // only bytecodes that modify the JsrSet are jsr and ret.
 190 void ciTypeFlow::JsrSet::apply_control(ciTypeFlow* analyzer,
 191                                        ciBytecodeStream* str,
 192                                        ciTypeFlow::StateVector* state) {
 193   Bytecodes::Code code = str->cur_bc();
 194   if (code == Bytecodes::_jsr) {
 195     JsrRecord* record =
 196       analyzer->make_jsr_record(str->get_dest(), str->next_bci());
 197     insert_jsr_record(record);
 198   } else if (code == Bytecodes::_jsr_w) {
 199     JsrRecord* record =
 200       analyzer->make_jsr_record(str->get_far_dest(), str->next_bci());
 201     insert_jsr_record(record);
 202   } else if (code == Bytecodes::_ret) {
 203     Cell local = state->local(str->get_index());
 204     ciType* return_address = state->type_at(local);
 205     assert(return_address->is_return_address(), "verify: wrong type");
 206     if (size() == 0) {
 207       // Ret-state underflow:  Hit a ret w/o any previous jsrs.  Bail out.
 208       // This can happen when a loop is inside a finally clause (4614060).
 209       analyzer->record_failure("OSR in finally clause");
 210       return;
 211     }
 212     remove_jsr_record(return_address->as_return_address()->bci());
 213   }
 214 }
 215 
 216 #ifndef PRODUCT
 217 // ------------------------------------------------------------------
 218 // ciTypeFlow::JsrSet::print_on
 219 void ciTypeFlow::JsrSet::print_on(outputStream* st) const {
 220   st->print("{ ");
 221   int num_elements = size();
 222   if (num_elements > 0) {
 223     int i = 0;
 224     for( ; i < num_elements - 1; i++) {
 225       _set->at(i)->print_on(st);
 226       st->print(", ");
 227     }
 228     _set->at(i)->print_on(st);
 229     st->print(" ");
 230   }
 231   st->print("}");
 232 }
 233 #endif
 234 
 235 // ciTypeFlow::StateVector
 236 //
 237 // A StateVector summarizes the type information at some point in
 238 // the program.
 239 
 240 // ------------------------------------------------------------------
 241 // ciTypeFlow::StateVector::type_meet
 242 //
 243 // Meet two types.
 244 //
 245 // The semi-lattice of types use by this analysis are modeled on those
 246 // of the verifier.  The lattice is as follows:
 247 //
 248 //        top_type() >= all non-extremal types >= bottom_type
 249 //                             and
 250 //   Every primitive type is comparable only with itself.  The meet of
 251 //   reference types is determined by their kind: instance class,
 252 //   interface, or array class.  The meet of two types of the same
 253 //   kind is their least common ancestor.  The meet of two types of
 254 //   different kinds is always java.lang.Object.
 255 ciType* ciTypeFlow::StateVector::type_meet_internal(ciType* t1, ciType* t2, ciTypeFlow* analyzer) {
 256   assert(t1 != t2, "checked in caller");
 257   if (t1->equals(top_type())) {
 258     return t2;
 259   } else if (t2->equals(top_type())) {
 260     return t1;
 261   } else if (t1->is_primitive_type() || t2->is_primitive_type()) {
 262     // Special case null_type.  null_type meet any reference type T
 263     // is T.  null_type meet null_type is null_type.
 264     if (t1->equals(null_type())) {
 265       if (!t2->is_primitive_type() || t2->equals(null_type())) {
 266         return t2;
 267       }
 268     } else if (t2->equals(null_type())) {
 269       if (!t1->is_primitive_type()) {
 270         return t1;
 271       }
 272     }
 273 
 274     // At least one of the two types is a non-top primitive type.
 275     // The other type is not equal to it.  Fall to bottom.
 276     return bottom_type();
 277   } else {
 278     // Both types are non-top non-primitive types.  That is,
 279     // both types are either instanceKlasses or arrayKlasses.
 280     ciKlass* object_klass = analyzer->env()->Object_klass();
 281     ciKlass* k1 = t1->as_klass();
 282     ciKlass* k2 = t2->as_klass();
 283     if (k1->equals(object_klass) || k2->equals(object_klass)) {
 284       return object_klass;
 285     } else if (!k1->is_loaded() || !k2->is_loaded()) {
 286       // Unloaded classes fall to java.lang.Object at a merge.
 287       return object_klass;
 288     } else if (k1->is_interface() != k2->is_interface()) {
 289       // When an interface meets a non-interface, we get Object;
 290       // This is what the verifier does.
 291       return object_klass;
 292     } else if (k1->is_array_klass() || k2->is_array_klass()) {
 293       // When an array meets a non-array, we get Object.
 294       // When objArray meets typeArray, we also get Object.
 295       // And when typeArray meets different typeArray, we again get Object.
 296       // But when objArray meets objArray, we look carefully at element types.
 297       if (k1->is_obj_array_klass() && k2->is_obj_array_klass()) {
 298         // Meet the element types, then construct the corresponding array type.
 299         ciKlass* elem1 = k1->as_obj_array_klass()->element_klass();
 300         ciKlass* elem2 = k2->as_obj_array_klass()->element_klass();
 301         ciKlass* elem  = type_meet_internal(elem1, elem2, analyzer)->as_klass();
 302         // Do an easy shortcut if one type is a super of the other.
 303         if (elem == elem1) {
 304           assert(k1 == ciObjArrayKlass::make(elem), "shortcut is OK");
 305           return k1;
 306         } else if (elem == elem2) {
 307           assert(k2 == ciObjArrayKlass::make(elem), "shortcut is OK");
 308           return k2;
 309         } else {
 310           return ciObjArrayKlass::make(elem);
 311         }
 312       } else {
 313         return object_klass;
 314       }
 315     } else {
 316       // Must be two plain old instance klasses.
 317       assert(k1->is_instance_klass(), "previous cases handle non-instances");
 318       assert(k2->is_instance_klass(), "previous cases handle non-instances");
 319       return k1->least_common_ancestor(k2);
 320     }
 321   }
 322 }
 323 
 324 
 325 // ------------------------------------------------------------------
 326 // ciTypeFlow::StateVector::StateVector
 327 //
 328 // Build a new state vector
 329 ciTypeFlow::StateVector::StateVector(ciTypeFlow* analyzer) {
 330   _outer = analyzer;
 331   _stack_size = -1;
 332   _monitor_count = -1;
 333   // Allocate the _types array
 334   int max_cells = analyzer->max_cells();
 335   _types = (ciType**)analyzer->arena()->Amalloc(sizeof(ciType*) * max_cells);
 336   for (int i=0; i<max_cells; i++) {
 337     _types[i] = top_type();
 338   }
 339   _trap_bci = -1;
 340   _trap_index = 0;
 341   _def_locals.clear();
 342 }
 343 
 344 
 345 // ------------------------------------------------------------------
 346 // ciTypeFlow::get_start_state
 347 //
 348 // Set this vector to the method entry state.
 349 const ciTypeFlow::StateVector* ciTypeFlow::get_start_state() {
 350   StateVector* state = new StateVector(this);
 351   if (is_osr_flow()) {
 352     ciTypeFlow* non_osr_flow = method()->get_flow_analysis();
 353     if (non_osr_flow->failing()) {
 354       record_failure(non_osr_flow->failure_reason());
 355       return NULL;
 356     }
 357     JsrSet* jsrs = new JsrSet(NULL, 16);
 358     Block* non_osr_block = non_osr_flow->existing_block_at(start_bci(), jsrs);
 359     if (non_osr_block == NULL) {
 360       record_failure("cannot reach OSR point");
 361       return NULL;
 362     }
 363     // load up the non-OSR state at this point
 364     non_osr_block->copy_state_into(state);
 365     int non_osr_start = non_osr_block->start();
 366     if (non_osr_start != start_bci()) {
 367       // must flow forward from it
 368       if (CITraceTypeFlow) {
 369         tty->print_cr(">> Interpreting pre-OSR block %d:", non_osr_start);
 370       }
 371       Block* block = block_at(non_osr_start, jsrs);
 372       assert(block->limit() == start_bci(), "must flow forward to start");
 373       flow_block(block, state, jsrs);
 374     }
 375     return state;
 376     // Note:  The code below would be an incorrect for an OSR flow,
 377     // even if it were possible for an OSR entry point to be at bci zero.
 378   }
 379   // "Push" the method signature into the first few locals.
 380   state->set_stack_size(-max_locals());
 381   if (!method()->is_static()) {
 382     state->push(method()->holder());
 383     assert(state->tos() == state->local(0), "");
 384   }
 385   for (ciSignatureStream str(method()->signature());
 386        !str.at_return_type();
 387        str.next()) {
 388     state->push_translate(str.type());
 389   }
 390   // Set the rest of the locals to bottom.
 391   Cell cell = state->next_cell(state->tos());
 392   state->set_stack_size(0);
 393   int limit = state->limit_cell();
 394   for (; cell < limit; cell = state->next_cell(cell)) {
 395     state->set_type_at(cell, state->bottom_type());
 396   }
 397   // Lock an object, if necessary.
 398   state->set_monitor_count(method()->is_synchronized() ? 1 : 0);
 399   return state;
 400 }
 401 
 402 // ------------------------------------------------------------------
 403 // ciTypeFlow::StateVector::copy_into
 404 //
 405 // Copy our value into some other StateVector
 406 void ciTypeFlow::StateVector::copy_into(ciTypeFlow::StateVector* copy)
 407 const {
 408   copy->set_stack_size(stack_size());
 409   copy->set_monitor_count(monitor_count());
 410   Cell limit = limit_cell();
 411   for (Cell c = start_cell(); c < limit; c = next_cell(c)) {
 412     copy->set_type_at(c, type_at(c));
 413   }
 414 }
 415 
 416 // ------------------------------------------------------------------
 417 // ciTypeFlow::StateVector::meet
 418 //
 419 // Meets this StateVector with another, destructively modifying this
 420 // one.  Returns true if any modification takes place.
 421 bool ciTypeFlow::StateVector::meet(const ciTypeFlow::StateVector* incoming) {
 422   if (monitor_count() == -1) {
 423     set_monitor_count(incoming->monitor_count());
 424   }
 425   assert(monitor_count() == incoming->monitor_count(), "monitors must match");
 426 
 427   if (stack_size() == -1) {
 428     set_stack_size(incoming->stack_size());
 429     Cell limit = limit_cell();
 430     #ifdef ASSERT
 431     { for (Cell c = start_cell(); c < limit; c = next_cell(c)) {
 432         assert(type_at(c) == top_type(), "");
 433     } }
 434     #endif
 435     // Make a simple copy of the incoming state.
 436     for (Cell c = start_cell(); c < limit; c = next_cell(c)) {
 437       set_type_at(c, incoming->type_at(c));
 438     }
 439     return true;  // it is always different the first time
 440   }
 441 #ifdef ASSERT
 442   if (stack_size() != incoming->stack_size()) {
 443     _outer->method()->print_codes();
 444     tty->print_cr("!!!! Stack size conflict");
 445     tty->print_cr("Current state:");
 446     print_on(tty);
 447     tty->print_cr("Incoming state:");
 448     ((StateVector*)incoming)->print_on(tty);
 449   }
 450 #endif
 451   assert(stack_size() == incoming->stack_size(), "sanity");
 452 
 453   bool different = false;
 454   Cell limit = limit_cell();
 455   for (Cell c = start_cell(); c < limit; c = next_cell(c)) {
 456     ciType* t1 = type_at(c);
 457     ciType* t2 = incoming->type_at(c);
 458     if (!t1->equals(t2)) {
 459       ciType* new_type = type_meet(t1, t2);
 460       if (!t1->equals(new_type)) {
 461         set_type_at(c, new_type);
 462         different = true;
 463       }
 464     }
 465   }
 466   return different;
 467 }
 468 
 469 // ------------------------------------------------------------------
 470 // ciTypeFlow::StateVector::meet_exception
 471 //
 472 // Meets this StateVector with another, destructively modifying this
 473 // one.  The incoming state is coming via an exception.  Returns true
 474 // if any modification takes place.
 475 bool ciTypeFlow::StateVector::meet_exception(ciInstanceKlass* exc,
 476                                      const ciTypeFlow::StateVector* incoming) {
 477   if (monitor_count() == -1) {
 478     set_monitor_count(incoming->monitor_count());
 479   }
 480   assert(monitor_count() == incoming->monitor_count(), "monitors must match");
 481 
 482   if (stack_size() == -1) {
 483     set_stack_size(1);
 484   }
 485 
 486   assert(stack_size() ==  1, "must have one-element stack");
 487 
 488   bool different = false;
 489 
 490   // Meet locals from incoming array.
 491   Cell limit = local(_outer->max_locals()-1);
 492   for (Cell c = start_cell(); c <= limit; c = next_cell(c)) {
 493     ciType* t1 = type_at(c);
 494     ciType* t2 = incoming->type_at(c);
 495     if (!t1->equals(t2)) {
 496       ciType* new_type = type_meet(t1, t2);
 497       if (!t1->equals(new_type)) {
 498         set_type_at(c, new_type);
 499         different = true;
 500       }
 501     }
 502   }
 503 
 504   // Handle stack separately.  When an exception occurs, the
 505   // only stack entry is the exception instance.
 506   ciType* tos_type = type_at_tos();
 507   if (!tos_type->equals(exc)) {
 508     ciType* new_type = type_meet(tos_type, exc);
 509     if (!tos_type->equals(new_type)) {
 510       set_type_at_tos(new_type);
 511       different = true;
 512     }
 513   }
 514 
 515   return different;
 516 }
 517 
 518 // ------------------------------------------------------------------
 519 // ciTypeFlow::StateVector::push_translate
 520 void ciTypeFlow::StateVector::push_translate(ciType* type) {
 521   BasicType basic_type = type->basic_type();
 522   if (basic_type == T_BOOLEAN || basic_type == T_CHAR ||
 523       basic_type == T_BYTE    || basic_type == T_SHORT) {
 524     push_int();
 525   } else {
 526     push(type);
 527     if (type->is_two_word()) {
 528       push(half_type(type));
 529     }
 530   }
 531 }
 532 
 533 // ------------------------------------------------------------------
 534 // ciTypeFlow::StateVector::do_aaload
 535 void ciTypeFlow::StateVector::do_aaload(ciBytecodeStream* str) {
 536   pop_int();
 537   ciObjArrayKlass* array_klass = pop_objArray();
 538   if (array_klass == NULL) {
 539     // Did aaload on a null reference; push a null and ignore the exception.
 540     // This instruction will never continue normally.  All we have to do
 541     // is report a value that will meet correctly with any downstream
 542     // reference types on paths that will truly be executed.  This null type
 543     // meets with any reference type to yield that same reference type.
 544     // (The compiler will generate an unconditional exception here.)
 545     push(null_type());
 546     return;
 547   }
 548   if (!array_klass->is_loaded()) {
 549     // Only fails for some -Xcomp runs
 550     trap(str, array_klass,
 551          Deoptimization::make_trap_request
 552          (Deoptimization::Reason_unloaded,
 553           Deoptimization::Action_reinterpret));
 554     return;
 555   }
 556   ciKlass* element_klass = array_klass->element_klass();
 557   if (!element_klass->is_loaded() && element_klass->is_instance_klass()) {
 558     Untested("unloaded array element class in ciTypeFlow");
 559     trap(str, element_klass,
 560          Deoptimization::make_trap_request
 561          (Deoptimization::Reason_unloaded,
 562           Deoptimization::Action_reinterpret));
 563   } else {
 564     push_object(element_klass);
 565   }
 566 }
 567 
 568 
 569 // ------------------------------------------------------------------
 570 // ciTypeFlow::StateVector::do_checkcast
 571 void ciTypeFlow::StateVector::do_checkcast(ciBytecodeStream* str) {
 572   bool will_link;
 573   ciKlass* klass = str->get_klass(will_link);
 574   if (!will_link) {
 575     // VM's interpreter will not load 'klass' if object is NULL.
 576     // Type flow after this block may still be needed in two situations:
 577     // 1) C2 uses do_null_assert() and continues compilation for later blocks
 578     // 2) C2 does an OSR compile in a later block (see bug 4778368).
 579     pop_object();
 580     do_null_assert(klass);
 581   } else {
 582     pop_object();
 583     push_object(klass);
 584   }
 585 }
 586 
 587 // ------------------------------------------------------------------
 588 // ciTypeFlow::StateVector::do_getfield
 589 void ciTypeFlow::StateVector::do_getfield(ciBytecodeStream* str) {
 590   // could add assert here for type of object.
 591   pop_object();
 592   do_getstatic(str);
 593 }
 594 
 595 // ------------------------------------------------------------------
 596 // ciTypeFlow::StateVector::do_getstatic
 597 void ciTypeFlow::StateVector::do_getstatic(ciBytecodeStream* str) {
 598   bool will_link;
 599   ciField* field = str->get_field(will_link);
 600   if (!will_link) {
 601     trap(str, field->holder(), str->get_field_holder_index());
 602   } else {
 603     ciType* field_type = field->type();
 604     if (!field_type->is_loaded()) {
 605       // Normally, we need the field's type to be loaded if we are to
 606       // do anything interesting with its value.
 607       // We used to do this:  trap(str, str->get_field_signature_index());
 608       //
 609       // There is one good reason not to trap here.  Execution can
 610       // get past this "getfield" or "getstatic" if the value of
 611       // the field is null.  As long as the value is null, the class
 612       // does not need to be loaded!  The compiler must assume that
 613       // the value of the unloaded class reference is null; if the code
 614       // ever sees a non-null value, loading has occurred.
 615       //
 616       // This actually happens often enough to be annoying.  If the
 617       // compiler throws an uncommon trap at this bytecode, you can
 618       // get an endless loop of recompilations, when all the code
 619       // needs to do is load a series of null values.  Also, a trap
 620       // here can make an OSR entry point unreachable, triggering the
 621       // assert on non_osr_block in ciTypeFlow::get_start_state.
 622       // (See bug 4379915.)
 623       do_null_assert(field_type->as_klass());
 624     } else {
 625       push_translate(field_type);
 626     }
 627   }
 628 }
 629 
 630 // ------------------------------------------------------------------
 631 // ciTypeFlow::StateVector::do_invoke
 632 void ciTypeFlow::StateVector::do_invoke(ciBytecodeStream* str,
 633                                         bool has_receiver) {
 634   bool will_link;
 635   ciMethod* method = str->get_method(will_link);
 636   if (!will_link) {
 637     // We weren't able to find the method.
 638     ciKlass* unloaded_holder = method->holder();
 639     trap(str, unloaded_holder, str->get_method_holder_index());
 640   } else {
 641     ciSignature* signature = method->signature();
 642     ciSignatureStream sigstr(signature);
 643     int arg_size = signature->size();
 644     int stack_base = stack_size() - arg_size;
 645     int i = 0;
 646     for( ; !sigstr.at_return_type(); sigstr.next()) {
 647       ciType* type = sigstr.type();
 648       ciType* stack_type = type_at(stack(stack_base + i++));
 649       // Do I want to check this type?
 650       // assert(stack_type->is_subtype_of(type), "bad type for field value");
 651       if (type->is_two_word()) {
 652         ciType* stack_type2 = type_at(stack(stack_base + i++));
 653         assert(stack_type2->equals(half_type(type)), "must be 2nd half");
 654       }
 655     }
 656     assert(arg_size == i, "must match");
 657     for (int j = 0; j < arg_size; j++) {
 658       pop();
 659     }
 660     if (has_receiver) {
 661       // Check this?
 662       pop_object();
 663     }
 664     assert(!sigstr.is_done(), "must have return type");
 665     ciType* return_type = sigstr.type();
 666     if (!return_type->is_void()) {
 667       if (!return_type->is_loaded()) {
 668         // As in do_getstatic(), generally speaking, we need the return type to
 669         // be loaded if we are to do anything interesting with its value.
 670         // We used to do this:  trap(str, str->get_method_signature_index());
 671         //
 672         // We do not trap here since execution can get past this invoke if
 673         // the return value is null.  As long as the value is null, the class
 674         // does not need to be loaded!  The compiler must assume that
 675         // the value of the unloaded class reference is null; if the code
 676         // ever sees a non-null value, loading has occurred.
 677         //
 678         // See do_getstatic() for similar explanation, as well as bug 4684993.
 679         do_null_assert(return_type->as_klass());
 680       } else {
 681         push_translate(return_type);
 682       }
 683     }
 684   }
 685 }
 686 
 687 // ------------------------------------------------------------------
 688 // ciTypeFlow::StateVector::do_jsr
 689 void ciTypeFlow::StateVector::do_jsr(ciBytecodeStream* str) {
 690   push(ciReturnAddress::make(str->next_bci()));
 691 }
 692 
 693 // ------------------------------------------------------------------
 694 // ciTypeFlow::StateVector::do_ldc
 695 void ciTypeFlow::StateVector::do_ldc(ciBytecodeStream* str) {
 696   ciConstant con = str->get_constant();
 697   BasicType basic_type = con.basic_type();
 698   if (basic_type == T_ILLEGAL) {
 699     // OutOfMemoryError in the CI while loading constant
 700     push_null();
 701     outer()->record_failure("ldc did not link");
 702     return;
 703   }
 704   if (basic_type == T_OBJECT || basic_type == T_ARRAY) {
 705     ciObject* obj = con.as_object();
 706     if (obj->is_null_object()) {
 707       push_null();
 708     } else if (obj->is_klass()) {
 709       // The type of ldc <class> is java.lang.Class
 710       push_object(outer()->env()->Class_klass());
 711     } else {
 712       push_object(obj->klass());
 713     }
 714   } else {
 715     push_translate(ciType::make(basic_type));
 716   }
 717 }
 718 
 719 // ------------------------------------------------------------------
 720 // ciTypeFlow::StateVector::do_multianewarray
 721 void ciTypeFlow::StateVector::do_multianewarray(ciBytecodeStream* str) {
 722   int dimensions = str->get_dimensions();
 723   bool will_link;
 724   ciArrayKlass* array_klass = str->get_klass(will_link)->as_array_klass();
 725   if (!will_link) {
 726     trap(str, array_klass, str->get_klass_index());
 727   } else {
 728     for (int i = 0; i < dimensions; i++) {
 729       pop_int();
 730     }
 731     push_object(array_klass);
 732   }
 733 }
 734 
 735 // ------------------------------------------------------------------
 736 // ciTypeFlow::StateVector::do_new
 737 void ciTypeFlow::StateVector::do_new(ciBytecodeStream* str) {
 738   bool will_link;
 739   ciKlass* klass = str->get_klass(will_link);
 740   if (!will_link || str->is_unresolved_klass()) {
 741     trap(str, klass, str->get_klass_index());
 742   } else {
 743     push_object(klass);
 744   }
 745 }
 746 
 747 // ------------------------------------------------------------------
 748 // ciTypeFlow::StateVector::do_newarray
 749 void ciTypeFlow::StateVector::do_newarray(ciBytecodeStream* str) {
 750   pop_int();
 751   ciKlass* klass = ciTypeArrayKlass::make((BasicType)str->get_index());
 752   push_object(klass);
 753 }
 754 
 755 // ------------------------------------------------------------------
 756 // ciTypeFlow::StateVector::do_putfield
 757 void ciTypeFlow::StateVector::do_putfield(ciBytecodeStream* str) {
 758   do_putstatic(str);
 759   if (_trap_bci != -1)  return;  // unloaded field holder, etc.
 760   // could add assert here for type of object.
 761   pop_object();
 762 }
 763 
 764 // ------------------------------------------------------------------
 765 // ciTypeFlow::StateVector::do_putstatic
 766 void ciTypeFlow::StateVector::do_putstatic(ciBytecodeStream* str) {
 767   bool will_link;
 768   ciField* field = str->get_field(will_link);
 769   if (!will_link) {
 770     trap(str, field->holder(), str->get_field_holder_index());
 771   } else {
 772     ciType* field_type = field->type();
 773     ciType* type = pop_value();
 774     // Do I want to check this type?
 775     //      assert(type->is_subtype_of(field_type), "bad type for field value");
 776     if (field_type->is_two_word()) {
 777       ciType* type2 = pop_value();
 778       assert(type2->is_two_word(), "must be 2nd half");
 779       assert(type == half_type(type2), "must be 2nd half");
 780     }
 781   }
 782 }
 783 
 784 // ------------------------------------------------------------------
 785 // ciTypeFlow::StateVector::do_ret
 786 void ciTypeFlow::StateVector::do_ret(ciBytecodeStream* str) {
 787   Cell index = local(str->get_index());
 788 
 789   ciType* address = type_at(index);
 790   assert(address->is_return_address(), "bad return address");
 791   set_type_at(index, bottom_type());
 792 }
 793 
 794 // ------------------------------------------------------------------
 795 // ciTypeFlow::StateVector::trap
 796 //
 797 // Stop interpretation of this path with a trap.
 798 void ciTypeFlow::StateVector::trap(ciBytecodeStream* str, ciKlass* klass, int index) {
 799   _trap_bci = str->cur_bci();
 800   _trap_index = index;
 801 
 802   // Log information about this trap:
 803   CompileLog* log = outer()->env()->log();
 804   if (log != NULL) {
 805     int mid = log->identify(outer()->method());
 806     int kid = (klass == NULL)? -1: log->identify(klass);
 807     log->begin_elem("uncommon_trap method='%d' bci='%d'", mid, str->cur_bci());
 808     char buf[100];
 809     log->print(" %s", Deoptimization::format_trap_request(buf, sizeof(buf),
 810                                                           index));
 811     if (kid >= 0)
 812       log->print(" klass='%d'", kid);
 813     log->end_elem();
 814   }
 815 }
 816 
 817 // ------------------------------------------------------------------
 818 // ciTypeFlow::StateVector::do_null_assert
 819 // Corresponds to graphKit::do_null_assert.
 820 void ciTypeFlow::StateVector::do_null_assert(ciKlass* unloaded_klass) {
 821   if (unloaded_klass->is_loaded()) {
 822     // We failed to link, but we can still compute with this class,
 823     // since it is loaded somewhere.  The compiler will uncommon_trap
 824     // if the object is not null, but the typeflow pass can not assume
 825     // that the object will be null, otherwise it may incorrectly tell
 826     // the parser that an object is known to be null. 4761344, 4807707
 827     push_object(unloaded_klass);
 828   } else {
 829     // The class is not loaded anywhere.  It is safe to model the
 830     // null in the typestates, because we can compile in a null check
 831     // which will deoptimize us if someone manages to load the
 832     // class later.
 833     push_null();
 834   }
 835 }
 836 
 837 
 838 // ------------------------------------------------------------------
 839 // ciTypeFlow::StateVector::apply_one_bytecode
 840 //
 841 // Apply the effect of one bytecode to this StateVector
 842 bool ciTypeFlow::StateVector::apply_one_bytecode(ciBytecodeStream* str) {
 843   _trap_bci = -1;
 844   _trap_index = 0;
 845 
 846   if (CITraceTypeFlow) {
 847     tty->print_cr(">> Interpreting bytecode %d:%s", str->cur_bci(),
 848                   Bytecodes::name(str->cur_bc()));
 849   }
 850 
 851   switch(str->cur_bc()) {
 852   case Bytecodes::_aaload: do_aaload(str);                       break;
 853 
 854   case Bytecodes::_aastore:
 855     {
 856       pop_object();
 857       pop_int();
 858       pop_objArray();
 859       break;
 860     }
 861   case Bytecodes::_aconst_null:
 862     {
 863       push_null();
 864       break;
 865     }
 866   case Bytecodes::_aload:   load_local_object(str->get_index());    break;
 867   case Bytecodes::_aload_0: load_local_object(0);                   break;
 868   case Bytecodes::_aload_1: load_local_object(1);                   break;
 869   case Bytecodes::_aload_2: load_local_object(2);                   break;
 870   case Bytecodes::_aload_3: load_local_object(3);                   break;
 871 
 872   case Bytecodes::_anewarray:
 873     {
 874       pop_int();
 875       bool will_link;
 876       ciKlass* element_klass = str->get_klass(will_link);
 877       if (!will_link) {
 878         trap(str, element_klass, str->get_klass_index());
 879       } else {
 880         push_object(ciObjArrayKlass::make(element_klass));
 881       }
 882       break;
 883     }
 884   case Bytecodes::_areturn:
 885   case Bytecodes::_ifnonnull:
 886   case Bytecodes::_ifnull:
 887     {
 888       pop_object();
 889       break;
 890     }
 891   case Bytecodes::_monitorenter:
 892     {
 893       pop_object();
 894       set_monitor_count(monitor_count() + 1);
 895       break;
 896     }
 897   case Bytecodes::_monitorexit:
 898     {
 899       pop_object();
 900       assert(monitor_count() > 0, "must be a monitor to exit from");
 901       set_monitor_count(monitor_count() - 1);
 902       break;
 903     }
 904   case Bytecodes::_arraylength:
 905     {
 906       pop_array();
 907       push_int();
 908       break;
 909     }
 910   case Bytecodes::_astore:   store_local_object(str->get_index());  break;
 911   case Bytecodes::_astore_0: store_local_object(0);                 break;
 912   case Bytecodes::_astore_1: store_local_object(1);                 break;
 913   case Bytecodes::_astore_2: store_local_object(2);                 break;
 914   case Bytecodes::_astore_3: store_local_object(3);                 break;
 915 
 916   case Bytecodes::_athrow:
 917     {
 918       NEEDS_CLEANUP;
 919       pop_object();
 920       break;
 921     }
 922   case Bytecodes::_baload:
 923   case Bytecodes::_caload:
 924   case Bytecodes::_iaload:
 925   case Bytecodes::_saload:
 926     {
 927       pop_int();
 928       ciTypeArrayKlass* array_klass = pop_typeArray();
 929       // Put assert here for right type?
 930       push_int();
 931       break;
 932     }
 933   case Bytecodes::_bastore:
 934   case Bytecodes::_castore:
 935   case Bytecodes::_iastore:
 936   case Bytecodes::_sastore:
 937     {
 938       pop_int();
 939       pop_int();
 940       pop_typeArray();
 941       // assert here?
 942       break;
 943     }
 944   case Bytecodes::_bipush:
 945   case Bytecodes::_iconst_m1:
 946   case Bytecodes::_iconst_0:
 947   case Bytecodes::_iconst_1:
 948   case Bytecodes::_iconst_2:
 949   case Bytecodes::_iconst_3:
 950   case Bytecodes::_iconst_4:
 951   case Bytecodes::_iconst_5:
 952   case Bytecodes::_sipush:
 953     {
 954       push_int();
 955       break;
 956     }
 957   case Bytecodes::_checkcast: do_checkcast(str);                  break;
 958 
 959   case Bytecodes::_d2f:
 960     {
 961       pop_double();
 962       push_float();
 963       break;
 964     }
 965   case Bytecodes::_d2i:
 966     {
 967       pop_double();
 968       push_int();
 969       break;
 970     }
 971   case Bytecodes::_d2l:
 972     {
 973       pop_double();
 974       push_long();
 975       break;
 976     }
 977   case Bytecodes::_dadd:
 978   case Bytecodes::_ddiv:
 979   case Bytecodes::_dmul:
 980   case Bytecodes::_drem:
 981   case Bytecodes::_dsub:
 982     {
 983       pop_double();
 984       pop_double();
 985       push_double();
 986       break;
 987     }
 988   case Bytecodes::_daload:
 989     {
 990       pop_int();
 991       ciTypeArrayKlass* array_klass = pop_typeArray();
 992       // Put assert here for right type?
 993       push_double();
 994       break;
 995     }
 996   case Bytecodes::_dastore:
 997     {
 998       pop_double();
 999       pop_int();
1000       pop_typeArray();
1001       // assert here?
1002       break;
1003     }
1004   case Bytecodes::_dcmpg:
1005   case Bytecodes::_dcmpl:
1006     {
1007       pop_double();
1008       pop_double();
1009       push_int();
1010       break;
1011     }
1012   case Bytecodes::_dconst_0:
1013   case Bytecodes::_dconst_1:
1014     {
1015       push_double();
1016       break;
1017     }
1018   case Bytecodes::_dload:   load_local_double(str->get_index());    break;
1019   case Bytecodes::_dload_0: load_local_double(0);                   break;
1020   case Bytecodes::_dload_1: load_local_double(1);                   break;
1021   case Bytecodes::_dload_2: load_local_double(2);                   break;
1022   case Bytecodes::_dload_3: load_local_double(3);                   break;
1023 
1024   case Bytecodes::_dneg:
1025     {
1026       pop_double();
1027       push_double();
1028       break;
1029     }
1030   case Bytecodes::_dreturn:
1031     {
1032       pop_double();
1033       break;
1034     }
1035   case Bytecodes::_dstore:   store_local_double(str->get_index());  break;
1036   case Bytecodes::_dstore_0: store_local_double(0);                 break;
1037   case Bytecodes::_dstore_1: store_local_double(1);                 break;
1038   case Bytecodes::_dstore_2: store_local_double(2);                 break;
1039   case Bytecodes::_dstore_3: store_local_double(3);                 break;
1040 
1041   case Bytecodes::_dup:
1042     {
1043       push(type_at_tos());
1044       break;
1045     }
1046   case Bytecodes::_dup_x1:
1047     {
1048       ciType* value1 = pop_value();
1049       ciType* value2 = pop_value();
1050       push(value1);
1051       push(value2);
1052       push(value1);
1053       break;
1054     }
1055   case Bytecodes::_dup_x2:
1056     {
1057       ciType* value1 = pop_value();
1058       ciType* value2 = pop_value();
1059       ciType* value3 = pop_value();
1060       push(value1);
1061       push(value3);
1062       push(value2);
1063       push(value1);
1064       break;
1065     }
1066   case Bytecodes::_dup2:
1067     {
1068       ciType* value1 = pop_value();
1069       ciType* value2 = pop_value();
1070       push(value2);
1071       push(value1);
1072       push(value2);
1073       push(value1);
1074       break;
1075     }
1076   case Bytecodes::_dup2_x1:
1077     {
1078       ciType* value1 = pop_value();
1079       ciType* value2 = pop_value();
1080       ciType* value3 = pop_value();
1081       push(value2);
1082       push(value1);
1083       push(value3);
1084       push(value2);
1085       push(value1);
1086       break;
1087     }
1088   case Bytecodes::_dup2_x2:
1089     {
1090       ciType* value1 = pop_value();
1091       ciType* value2 = pop_value();
1092       ciType* value3 = pop_value();
1093       ciType* value4 = pop_value();
1094       push(value2);
1095       push(value1);
1096       push(value4);
1097       push(value3);
1098       push(value2);
1099       push(value1);
1100       break;
1101     }
1102   case Bytecodes::_f2d:
1103     {
1104       pop_float();
1105       push_double();
1106       break;
1107     }
1108   case Bytecodes::_f2i:
1109     {
1110       pop_float();
1111       push_int();
1112       break;
1113     }
1114   case Bytecodes::_f2l:
1115     {
1116       pop_float();
1117       push_long();
1118       break;
1119     }
1120   case Bytecodes::_fadd:
1121   case Bytecodes::_fdiv:
1122   case Bytecodes::_fmul:
1123   case Bytecodes::_frem:
1124   case Bytecodes::_fsub:
1125     {
1126       pop_float();
1127       pop_float();
1128       push_float();
1129       break;
1130     }
1131   case Bytecodes::_faload:
1132     {
1133       pop_int();
1134       ciTypeArrayKlass* array_klass = pop_typeArray();
1135       // Put assert here.
1136       push_float();
1137       break;
1138     }
1139   case Bytecodes::_fastore:
1140     {
1141       pop_float();
1142       pop_int();
1143       ciTypeArrayKlass* array_klass = pop_typeArray();
1144       // Put assert here.
1145       break;
1146     }
1147   case Bytecodes::_fcmpg:
1148   case Bytecodes::_fcmpl:
1149     {
1150       pop_float();
1151       pop_float();
1152       push_int();
1153       break;
1154     }
1155   case Bytecodes::_fconst_0:
1156   case Bytecodes::_fconst_1:
1157   case Bytecodes::_fconst_2:
1158     {
1159       push_float();
1160       break;
1161     }
1162   case Bytecodes::_fload:   load_local_float(str->get_index());     break;
1163   case Bytecodes::_fload_0: load_local_float(0);                    break;
1164   case Bytecodes::_fload_1: load_local_float(1);                    break;
1165   case Bytecodes::_fload_2: load_local_float(2);                    break;
1166   case Bytecodes::_fload_3: load_local_float(3);                    break;
1167 
1168   case Bytecodes::_fneg:
1169     {
1170       pop_float();
1171       push_float();
1172       break;
1173     }
1174   case Bytecodes::_freturn:
1175     {
1176       pop_float();
1177       break;
1178     }
1179   case Bytecodes::_fstore:    store_local_float(str->get_index());   break;
1180   case Bytecodes::_fstore_0:  store_local_float(0);                  break;
1181   case Bytecodes::_fstore_1:  store_local_float(1);                  break;
1182   case Bytecodes::_fstore_2:  store_local_float(2);                  break;
1183   case Bytecodes::_fstore_3:  store_local_float(3);                  break;
1184 
1185   case Bytecodes::_getfield:  do_getfield(str);                      break;
1186   case Bytecodes::_getstatic: do_getstatic(str);                     break;
1187 
1188   case Bytecodes::_goto:
1189   case Bytecodes::_goto_w:
1190   case Bytecodes::_nop:
1191   case Bytecodes::_return:
1192     {
1193       // do nothing.
1194       break;
1195     }
1196   case Bytecodes::_i2b:
1197   case Bytecodes::_i2c:
1198   case Bytecodes::_i2s:
1199   case Bytecodes::_ineg:
1200     {
1201       pop_int();
1202       push_int();
1203       break;
1204     }
1205   case Bytecodes::_i2d:
1206     {
1207       pop_int();
1208       push_double();
1209       break;
1210     }
1211   case Bytecodes::_i2f:
1212     {
1213       pop_int();
1214       push_float();
1215       break;
1216     }
1217   case Bytecodes::_i2l:
1218     {
1219       pop_int();
1220       push_long();
1221       break;
1222     }
1223   case Bytecodes::_iadd:
1224   case Bytecodes::_iand:
1225   case Bytecodes::_idiv:
1226   case Bytecodes::_imul:
1227   case Bytecodes::_ior:
1228   case Bytecodes::_irem:
1229   case Bytecodes::_ishl:
1230   case Bytecodes::_ishr:
1231   case Bytecodes::_isub:
1232   case Bytecodes::_iushr:
1233   case Bytecodes::_ixor:
1234     {
1235       pop_int();
1236       pop_int();
1237       push_int();
1238       break;
1239     }
1240   case Bytecodes::_if_acmpeq:
1241   case Bytecodes::_if_acmpne:
1242     {
1243       pop_object();
1244       pop_object();
1245       break;
1246     }
1247   case Bytecodes::_if_icmpeq:
1248   case Bytecodes::_if_icmpge:
1249   case Bytecodes::_if_icmpgt:
1250   case Bytecodes::_if_icmple:
1251   case Bytecodes::_if_icmplt:
1252   case Bytecodes::_if_icmpne:
1253     {
1254       pop_int();
1255       pop_int();
1256       break;
1257     }
1258   case Bytecodes::_ifeq:
1259   case Bytecodes::_ifle:
1260   case Bytecodes::_iflt:
1261   case Bytecodes::_ifge:
1262   case Bytecodes::_ifgt:
1263   case Bytecodes::_ifne:
1264   case Bytecodes::_ireturn:
1265   case Bytecodes::_lookupswitch:
1266   case Bytecodes::_tableswitch:
1267     {
1268       pop_int();
1269       break;
1270     }
1271   case Bytecodes::_iinc:
1272     {
1273       int lnum = str->get_index();
1274       check_int(local(lnum));
1275       store_to_local(lnum);
1276       break;
1277     }
1278   case Bytecodes::_iload:   load_local_int(str->get_index()); break;
1279   case Bytecodes::_iload_0: load_local_int(0);                      break;
1280   case Bytecodes::_iload_1: load_local_int(1);                      break;
1281   case Bytecodes::_iload_2: load_local_int(2);                      break;
1282   case Bytecodes::_iload_3: load_local_int(3);                      break;
1283 
1284   case Bytecodes::_instanceof:
1285     {
1286       // Check for uncommon trap:
1287       do_checkcast(str);
1288       pop_object();
1289       push_int();
1290       break;
1291     }
1292   case Bytecodes::_invokeinterface: do_invoke(str, true);           break;
1293   case Bytecodes::_invokespecial:   do_invoke(str, true);           break;
1294   case Bytecodes::_invokestatic:    do_invoke(str, false);          break;
1295 
1296   case Bytecodes::_invokevirtual:   do_invoke(str, true);           break;
1297 
1298   case Bytecodes::_istore:   store_local_int(str->get_index());     break;
1299   case Bytecodes::_istore_0: store_local_int(0);                    break;
1300   case Bytecodes::_istore_1: store_local_int(1);                    break;
1301   case Bytecodes::_istore_2: store_local_int(2);                    break;
1302   case Bytecodes::_istore_3: store_local_int(3);                    break;
1303 
1304   case Bytecodes::_jsr:
1305   case Bytecodes::_jsr_w: do_jsr(str);                              break;
1306 
1307   case Bytecodes::_l2d:
1308     {
1309       pop_long();
1310       push_double();
1311       break;
1312     }
1313   case Bytecodes::_l2f:
1314     {
1315       pop_long();
1316       push_float();
1317       break;
1318     }
1319   case Bytecodes::_l2i:
1320     {
1321       pop_long();
1322       push_int();
1323       break;
1324     }
1325   case Bytecodes::_ladd:
1326   case Bytecodes::_land:
1327   case Bytecodes::_ldiv:
1328   case Bytecodes::_lmul:
1329   case Bytecodes::_lor:
1330   case Bytecodes::_lrem:
1331   case Bytecodes::_lsub:
1332   case Bytecodes::_lxor:
1333     {
1334       pop_long();
1335       pop_long();
1336       push_long();
1337       break;
1338     }
1339   case Bytecodes::_laload:
1340     {
1341       pop_int();
1342       ciTypeArrayKlass* array_klass = pop_typeArray();
1343       // Put assert here for right type?
1344       push_long();
1345       break;
1346     }
1347   case Bytecodes::_lastore:
1348     {
1349       pop_long();
1350       pop_int();
1351       pop_typeArray();
1352       // assert here?
1353       break;
1354     }
1355   case Bytecodes::_lcmp:
1356     {
1357       pop_long();
1358       pop_long();
1359       push_int();
1360       break;
1361     }
1362   case Bytecodes::_lconst_0:
1363   case Bytecodes::_lconst_1:
1364     {
1365       push_long();
1366       break;
1367     }
1368   case Bytecodes::_ldc:
1369   case Bytecodes::_ldc_w:
1370   case Bytecodes::_ldc2_w:
1371     {
1372       do_ldc(str);
1373       break;
1374     }
1375 
1376   case Bytecodes::_lload:   load_local_long(str->get_index());      break;
1377   case Bytecodes::_lload_0: load_local_long(0);                     break;
1378   case Bytecodes::_lload_1: load_local_long(1);                     break;
1379   case Bytecodes::_lload_2: load_local_long(2);                     break;
1380   case Bytecodes::_lload_3: load_local_long(3);                     break;
1381 
1382   case Bytecodes::_lneg:
1383     {
1384       pop_long();
1385       push_long();
1386       break;
1387     }
1388   case Bytecodes::_lreturn:
1389     {
1390       pop_long();
1391       break;
1392     }
1393   case Bytecodes::_lshl:
1394   case Bytecodes::_lshr:
1395   case Bytecodes::_lushr:
1396     {
1397       pop_int();
1398       pop_long();
1399       push_long();
1400       break;
1401     }
1402   case Bytecodes::_lstore:   store_local_long(str->get_index());    break;
1403   case Bytecodes::_lstore_0: store_local_long(0);                   break;
1404   case Bytecodes::_lstore_1: store_local_long(1);                   break;
1405   case Bytecodes::_lstore_2: store_local_long(2);                   break;
1406   case Bytecodes::_lstore_3: store_local_long(3);                   break;
1407 
1408   case Bytecodes::_multianewarray: do_multianewarray(str);          break;
1409 
1410   case Bytecodes::_new:      do_new(str);                           break;
1411 
1412   case Bytecodes::_newarray: do_newarray(str);                      break;
1413 
1414   case Bytecodes::_pop:
1415     {
1416       pop();
1417       break;
1418     }
1419   case Bytecodes::_pop2:
1420     {
1421       pop();
1422       pop();
1423       break;
1424     }
1425 
1426   case Bytecodes::_putfield:       do_putfield(str);                 break;
1427   case Bytecodes::_putstatic:      do_putstatic(str);                break;
1428 
1429   case Bytecodes::_ret: do_ret(str);                                 break;
1430 
1431   case Bytecodes::_swap:
1432     {
1433       ciType* value1 = pop_value();
1434       ciType* value2 = pop_value();
1435       push(value1);
1436       push(value2);
1437       break;
1438     }
1439   case Bytecodes::_wide:
1440   default:
1441     {
1442       // The iterator should skip this.
1443       ShouldNotReachHere();
1444       break;
1445     }
1446   }
1447 
1448   if (CITraceTypeFlow) {
1449     print_on(tty);
1450   }
1451 
1452   return (_trap_bci != -1);
1453 }
1454 
1455 #ifndef PRODUCT
1456 // ------------------------------------------------------------------
1457 // ciTypeFlow::StateVector::print_cell_on
1458 void ciTypeFlow::StateVector::print_cell_on(outputStream* st, Cell c) const {
1459   ciType* type = type_at(c);
1460   if (type == top_type()) {
1461     st->print("top");
1462   } else if (type == bottom_type()) {
1463     st->print("bottom");
1464   } else if (type == null_type()) {
1465     st->print("null");
1466   } else if (type == long2_type()) {
1467     st->print("long2");
1468   } else if (type == double2_type()) {
1469     st->print("double2");
1470   } else if (is_int(type)) {
1471     st->print("int");
1472   } else if (is_long(type)) {
1473     st->print("long");
1474   } else if (is_float(type)) {
1475     st->print("float");
1476   } else if (is_double(type)) {
1477     st->print("double");
1478   } else if (type->is_return_address()) {
1479     st->print("address(%d)", type->as_return_address()->bci());
1480   } else {
1481     if (type->is_klass()) {
1482       type->as_klass()->name()->print_symbol_on(st);
1483     } else {
1484       st->print("UNEXPECTED TYPE");
1485       type->print();
1486     }
1487   }
1488 }
1489 
1490 // ------------------------------------------------------------------
1491 // ciTypeFlow::StateVector::print_on
1492 void ciTypeFlow::StateVector::print_on(outputStream* st) const {
1493   int num_locals   = _outer->max_locals();
1494   int num_stack    = stack_size();
1495   int num_monitors = monitor_count();
1496   st->print_cr("  State : locals %d, stack %d, monitors %d", num_locals, num_stack, num_monitors);
1497   if (num_stack >= 0) {
1498     int i;
1499     for (i = 0; i < num_locals; i++) {
1500       st->print("    local %2d : ", i);
1501       print_cell_on(st, local(i));
1502       st->cr();
1503     }
1504     for (i = 0; i < num_stack; i++) {
1505       st->print("    stack %2d : ", i);
1506       print_cell_on(st, stack(i));
1507       st->cr();
1508     }
1509   }
1510 }
1511 #endif
1512 
1513 
1514 // ------------------------------------------------------------------
1515 // ciTypeFlow::SuccIter::next
1516 //
1517 void ciTypeFlow::SuccIter::next() {
1518   int succ_ct = _pred->successors()->length();
1519   int next = _index + 1;
1520   if (next < succ_ct) {
1521     _index = next;
1522     _succ = _pred->successors()->at(next);
1523     return;
1524   }
1525   for (int i = next - succ_ct; i < _pred->exceptions()->length(); i++) {
1526     // Do not compile any code for unloaded exception types.
1527     // Following compiler passes are responsible for doing this also.
1528     ciInstanceKlass* exception_klass = _pred->exc_klasses()->at(i);
1529     if (exception_klass->is_loaded()) {
1530       _index = next;
1531       _succ = _pred->exceptions()->at(i);
1532       return;
1533     }
1534     next++;
1535   }
1536   _index = -1;
1537   _succ = NULL;
1538 }
1539 
1540 // ------------------------------------------------------------------
1541 // ciTypeFlow::SuccIter::set_succ
1542 //
1543 void ciTypeFlow::SuccIter::set_succ(Block* succ) {
1544   int succ_ct = _pred->successors()->length();
1545   if (_index < succ_ct) {
1546     _pred->successors()->at_put(_index, succ);
1547   } else {
1548     int idx = _index - succ_ct;
1549     _pred->exceptions()->at_put(idx, succ);
1550   }
1551 }
1552 
1553 // ciTypeFlow::Block
1554 //
1555 // A basic block.
1556 
1557 // ------------------------------------------------------------------
1558 // ciTypeFlow::Block::Block
1559 ciTypeFlow::Block::Block(ciTypeFlow* outer,
1560                          ciBlock *ciblk,
1561                          ciTypeFlow::JsrSet* jsrs) {
1562   _ciblock = ciblk;
1563   _exceptions = NULL;
1564   _exc_klasses = NULL;
1565   _successors = NULL;
1566   _state = new (outer->arena()) StateVector(outer);
1567   JsrSet* new_jsrs =
1568     new (outer->arena()) JsrSet(outer->arena(), jsrs->size());
1569   jsrs->copy_into(new_jsrs);
1570   _jsrs = new_jsrs;
1571   _next = NULL;
1572   _on_work_list = false;
1573   _backedge_copy = false;
1574   _exception_entry = false;
1575   _trap_bci = -1;
1576   _trap_index = 0;
1577   df_init();
1578 
1579   if (CITraceTypeFlow) {
1580     tty->print_cr(">> Created new block");
1581     print_on(tty);
1582   }
1583 
1584   assert(this->outer() == outer, "outer link set up");
1585   assert(!outer->have_block_count(), "must not have mapped blocks yet");
1586 }
1587 
1588 // ------------------------------------------------------------------
1589 // ciTypeFlow::Block::df_init
1590 void ciTypeFlow::Block::df_init() {
1591   _pre_order = -1; assert(!has_pre_order(), "");
1592   _post_order = -1; assert(!has_post_order(), "");
1593   _loop = NULL;
1594   _irreducible_entry = false;
1595   _rpo_next = NULL;
1596 }
1597 
1598 // ------------------------------------------------------------------
1599 // ciTypeFlow::Block::successors
1600 //
1601 // Get the successors for this Block.
1602 GrowableArray<ciTypeFlow::Block*>*
1603 ciTypeFlow::Block::successors(ciBytecodeStream* str,
1604                               ciTypeFlow::StateVector* state,
1605                               ciTypeFlow::JsrSet* jsrs) {
1606   if (_successors == NULL) {
1607     if (CITraceTypeFlow) {
1608       tty->print(">> Computing successors for block ");
1609       print_value_on(tty);
1610       tty->cr();
1611     }
1612 
1613     ciTypeFlow* analyzer = outer();
1614     Arena* arena = analyzer->arena();
1615     Block* block = NULL;
1616     bool has_successor = !has_trap() &&
1617                          (control() != ciBlock::fall_through_bci || limit() < analyzer->code_size());
1618     if (!has_successor) {
1619       _successors =
1620         new (arena) GrowableArray<Block*>(arena, 1, 0, NULL);
1621       // No successors
1622     } else if (control() == ciBlock::fall_through_bci) {
1623       assert(str->cur_bci() == limit(), "bad block end");
1624       // This block simply falls through to the next.
1625       _successors =
1626         new (arena) GrowableArray<Block*>(arena, 1, 0, NULL);
1627 
1628       Block* block = analyzer->block_at(limit(), _jsrs);
1629       assert(_successors->length() == FALL_THROUGH, "");
1630       _successors->append(block);
1631     } else {
1632       int current_bci = str->cur_bci();
1633       int next_bci = str->next_bci();
1634       int branch_bci = -1;
1635       Block* target = NULL;
1636       assert(str->next_bci() == limit(), "bad block end");
1637       // This block is not a simple fall-though.  Interpret
1638       // the current bytecode to find our successors.
1639       switch (str->cur_bc()) {
1640       case Bytecodes::_ifeq:         case Bytecodes::_ifne:
1641       case Bytecodes::_iflt:         case Bytecodes::_ifge:
1642       case Bytecodes::_ifgt:         case Bytecodes::_ifle:
1643       case Bytecodes::_if_icmpeq:    case Bytecodes::_if_icmpne:
1644       case Bytecodes::_if_icmplt:    case Bytecodes::_if_icmpge:
1645       case Bytecodes::_if_icmpgt:    case Bytecodes::_if_icmple:
1646       case Bytecodes::_if_acmpeq:    case Bytecodes::_if_acmpne:
1647       case Bytecodes::_ifnull:       case Bytecodes::_ifnonnull:
1648         // Our successors are the branch target and the next bci.
1649         branch_bci = str->get_dest();
1650         _successors =
1651           new (arena) GrowableArray<Block*>(arena, 2, 0, NULL);
1652         assert(_successors->length() == IF_NOT_TAKEN, "");
1653         _successors->append(analyzer->block_at(next_bci, jsrs));
1654         assert(_successors->length() == IF_TAKEN, "");
1655         _successors->append(analyzer->block_at(branch_bci, jsrs));
1656         break;
1657 
1658       case Bytecodes::_goto:
1659         branch_bci = str->get_dest();
1660         _successors =
1661           new (arena) GrowableArray<Block*>(arena, 1, 0, NULL);
1662         assert(_successors->length() == GOTO_TARGET, "");
1663         _successors->append(analyzer->block_at(branch_bci, jsrs));
1664         break;
1665 
1666       case Bytecodes::_jsr:
1667         branch_bci = str->get_dest();
1668         _successors =
1669           new (arena) GrowableArray<Block*>(arena, 1, 0, NULL);
1670         assert(_successors->length() == GOTO_TARGET, "");
1671         _successors->append(analyzer->block_at(branch_bci, jsrs));
1672         break;
1673 
1674       case Bytecodes::_goto_w:
1675       case Bytecodes::_jsr_w:
1676         _successors =
1677           new (arena) GrowableArray<Block*>(arena, 1, 0, NULL);
1678         assert(_successors->length() == GOTO_TARGET, "");
1679         _successors->append(analyzer->block_at(str->get_far_dest(), jsrs));
1680         break;
1681 
1682       case Bytecodes::_tableswitch:  {
1683         Bytecode_tableswitch *tableswitch =
1684           Bytecode_tableswitch_at(str->cur_bcp());
1685 
1686         int len = tableswitch->length();
1687         _successors =
1688           new (arena) GrowableArray<Block*>(arena, len+1, 0, NULL);
1689         int bci = current_bci + tableswitch->default_offset();
1690         Block* block = analyzer->block_at(bci, jsrs);
1691         assert(_successors->length() == SWITCH_DEFAULT, "");
1692         _successors->append(block);
1693         while (--len >= 0) {
1694           int bci = current_bci + tableswitch->dest_offset_at(len);
1695           block = analyzer->block_at(bci, jsrs);
1696           assert(_successors->length() >= SWITCH_CASES, "");
1697           _successors->append_if_missing(block);
1698         }
1699         break;
1700       }
1701 
1702       case Bytecodes::_lookupswitch: {
1703         Bytecode_lookupswitch *lookupswitch =
1704           Bytecode_lookupswitch_at(str->cur_bcp());
1705 
1706         int npairs = lookupswitch->number_of_pairs();
1707         _successors =
1708           new (arena) GrowableArray<Block*>(arena, npairs+1, 0, NULL);
1709         int bci = current_bci + lookupswitch->default_offset();
1710         Block* block = analyzer->block_at(bci, jsrs);
1711         assert(_successors->length() == SWITCH_DEFAULT, "");
1712         _successors->append(block);
1713         while(--npairs >= 0) {
1714           LookupswitchPair *pair = lookupswitch->pair_at(npairs);
1715           int bci = current_bci + pair->offset();
1716           Block* block = analyzer->block_at(bci, jsrs);
1717           assert(_successors->length() >= SWITCH_CASES, "");
1718           _successors->append_if_missing(block);
1719         }
1720         break;
1721       }
1722 
1723       case Bytecodes::_athrow:     case Bytecodes::_ireturn:
1724       case Bytecodes::_lreturn:    case Bytecodes::_freturn:
1725       case Bytecodes::_dreturn:    case Bytecodes::_areturn:
1726       case Bytecodes::_return:
1727         _successors =
1728           new (arena) GrowableArray<Block*>(arena, 1, 0, NULL);
1729         // No successors
1730         break;
1731 
1732       case Bytecodes::_ret: {
1733         _successors =
1734           new (arena) GrowableArray<Block*>(arena, 1, 0, NULL);
1735 
1736         Cell local = state->local(str->get_index());
1737         ciType* return_address = state->type_at(local);
1738         assert(return_address->is_return_address(), "verify: wrong type");
1739         int bci = return_address->as_return_address()->bci();
1740         assert(_successors->length() == GOTO_TARGET, "");
1741         _successors->append(analyzer->block_at(bci, jsrs));
1742         break;
1743       }
1744 
1745       case Bytecodes::_wide:
1746       default:
1747         ShouldNotReachHere();
1748         break;
1749       }
1750     }
1751   }
1752   return _successors;
1753 }
1754 
1755 // ------------------------------------------------------------------
1756 // ciTypeFlow::Block:compute_exceptions
1757 //
1758 // Compute the exceptional successors and types for this Block.
1759 void ciTypeFlow::Block::compute_exceptions() {
1760   assert(_exceptions == NULL && _exc_klasses == NULL, "repeat");
1761 
1762   if (CITraceTypeFlow) {
1763     tty->print(">> Computing exceptions for block ");
1764     print_value_on(tty);
1765     tty->cr();
1766   }
1767 
1768   ciTypeFlow* analyzer = outer();
1769   Arena* arena = analyzer->arena();
1770 
1771   // Any bci in the block will do.
1772   ciExceptionHandlerStream str(analyzer->method(), start());
1773 
1774   // Allocate our growable arrays.
1775   int exc_count = str.count();
1776   _exceptions = new (arena) GrowableArray<Block*>(arena, exc_count, 0, NULL);
1777   _exc_klasses = new (arena) GrowableArray<ciInstanceKlass*>(arena, exc_count,
1778                                                              0, NULL);
1779 
1780   for ( ; !str.is_done(); str.next()) {
1781     ciExceptionHandler* handler = str.handler();
1782     int bci = handler->handler_bci();
1783     ciInstanceKlass* klass = NULL;
1784     if (bci == -1) {
1785       // There is no catch all.  It is possible to exit the method.
1786       break;
1787     }
1788     if (handler->is_catch_all()) {
1789       klass = analyzer->env()->Throwable_klass();
1790     } else {
1791       klass = handler->catch_klass();
1792     }
1793     _exceptions->append(analyzer->block_at(bci, _jsrs));
1794     _exc_klasses->append(klass);
1795   }
1796 }
1797 
1798 // ------------------------------------------------------------------
1799 // ciTypeFlow::Block::set_backedge_copy
1800 // Use this only to make a pre-existing public block into a backedge copy.
1801 void ciTypeFlow::Block::set_backedge_copy(bool z) {
1802   assert(z || (z == is_backedge_copy()), "cannot make a backedge copy public");
1803   _backedge_copy = z;
1804 }
1805 
1806 // ------------------------------------------------------------------
1807 // ciTypeFlow::Block::is_clonable_exit
1808 //
1809 // At most 2 normal successors, one of which continues looping,
1810 // and all exceptional successors must exit.
1811 bool ciTypeFlow::Block::is_clonable_exit(ciTypeFlow::Loop* lp) {
1812   int normal_cnt  = 0;
1813   int in_loop_cnt = 0;
1814   for (SuccIter iter(this); !iter.done(); iter.next()) {
1815     Block* succ = iter.succ();
1816     if (iter.is_normal_ctrl()) {
1817       if (++normal_cnt > 2) return false;
1818       if (lp->contains(succ->loop())) {
1819         if (++in_loop_cnt > 1) return false;
1820       }
1821     } else {
1822       if (lp->contains(succ->loop())) return false;
1823     }
1824   }
1825   return in_loop_cnt == 1;
1826 }
1827 
1828 // ------------------------------------------------------------------
1829 // ciTypeFlow::Block::looping_succ
1830 //
1831 ciTypeFlow::Block* ciTypeFlow::Block::looping_succ(ciTypeFlow::Loop* lp) {
1832   assert(successors()->length() <= 2, "at most 2 normal successors");
1833   for (SuccIter iter(this); !iter.done(); iter.next()) {
1834     Block* succ = iter.succ();
1835     if (lp->contains(succ->loop())) {
1836       return succ;
1837     }
1838   }
1839   return NULL;
1840 }
1841 
1842 #ifndef PRODUCT
1843 // ------------------------------------------------------------------
1844 // ciTypeFlow::Block::print_value_on
1845 void ciTypeFlow::Block::print_value_on(outputStream* st) const {
1846   if (has_pre_order()) st->print("#%-2d ", pre_order());
1847   if (has_rpo())       st->print("rpo#%-2d ", rpo());
1848   st->print("[%d - %d)", start(), limit());
1849   if (is_loop_head()) st->print(" lphd");
1850   if (is_irreducible_entry()) st->print(" irred");
1851   if (_jsrs->size() > 0) { st->print("/");  _jsrs->print_on(st); }
1852   if (is_backedge_copy())  st->print("/backedge_copy");
1853 }
1854 
1855 // ------------------------------------------------------------------
1856 // ciTypeFlow::Block::print_on
1857 void ciTypeFlow::Block::print_on(outputStream* st) const {
1858   if ((Verbose || WizardMode)) {
1859     outer()->method()->print_codes_on(start(), limit(), st);
1860   }
1861   st->print_cr("  ====================================================  ");
1862   st->print ("  ");
1863   print_value_on(st);
1864   st->print(" Stored locals: "); def_locals()->print_on(st, outer()->method()->max_locals()); tty->cr();
1865   if (loop() && loop()->parent() != NULL) {
1866     st->print(" loops:");
1867     Loop* lp = loop();
1868     do {
1869       st->print(" %d<-%d", lp->head()->pre_order(),lp->tail()->pre_order());
1870       if (lp->is_irreducible()) st->print("(ir)");
1871       lp = lp->parent();
1872     } while (lp->parent() != NULL);
1873   }
1874   st->cr();
1875   _state->print_on(st);
1876   if (_successors == NULL) {
1877     st->print_cr("  No successor information");
1878   } else {
1879     int num_successors = _successors->length();
1880     st->print_cr("  Successors : %d", num_successors);
1881     for (int i = 0; i < num_successors; i++) {
1882       Block* successor = _successors->at(i);
1883       st->print("    ");
1884       successor->print_value_on(st);
1885       st->cr();
1886     }
1887   }
1888   if (_exceptions == NULL) {
1889     st->print_cr("  No exception information");
1890   } else {
1891     int num_exceptions = _exceptions->length();
1892     st->print_cr("  Exceptions : %d", num_exceptions);
1893     for (int i = 0; i < num_exceptions; i++) {
1894       Block* exc_succ = _exceptions->at(i);
1895       ciInstanceKlass* exc_klass = _exc_klasses->at(i);
1896       st->print("    ");
1897       exc_succ->print_value_on(st);
1898       st->print(" -- ");
1899       exc_klass->name()->print_symbol_on(st);
1900       st->cr();
1901     }
1902   }
1903   if (has_trap()) {
1904     st->print_cr("  Traps on %d with trap index %d", trap_bci(), trap_index());
1905   }
1906   st->print_cr("  ====================================================  ");
1907 }
1908 #endif
1909 
1910 #ifndef PRODUCT
1911 // ------------------------------------------------------------------
1912 // ciTypeFlow::LocalSet::print_on
1913 void ciTypeFlow::LocalSet::print_on(outputStream* st, int limit) const {
1914   st->print("{");
1915   for (int i = 0; i < max; i++) {
1916     if (test(i)) st->print(" %d", i);
1917   }
1918   if (limit > max) {
1919     st->print(" %d..%d ", max, limit);
1920   }
1921   st->print(" }");
1922 }
1923 #endif
1924 
1925 // ciTypeFlow
1926 //
1927 // This is a pass over the bytecodes which computes the following:
1928 //   basic block structure
1929 //   interpreter type-states (a la the verifier)
1930 
1931 // ------------------------------------------------------------------
1932 // ciTypeFlow::ciTypeFlow
1933 ciTypeFlow::ciTypeFlow(ciEnv* env, ciMethod* method, int osr_bci) {
1934   _env = env;
1935   _method = method;
1936   _methodBlocks = method->get_method_blocks();
1937   _max_locals = method->max_locals();
1938   _max_stack = method->max_stack();
1939   _code_size = method->code_size();
1940   _has_irreducible_entry = false;
1941   _osr_bci = osr_bci;
1942   _failure_reason = NULL;
1943   assert(start_bci() >= 0 && start_bci() < code_size() , "correct osr_bci argument");
1944   _work_list = NULL;
1945 
1946   _ciblock_count = _methodBlocks->num_blocks();
1947   _idx_to_blocklist = NEW_ARENA_ARRAY(arena(), GrowableArray<Block*>*, _ciblock_count);
1948   for (int i = 0; i < _ciblock_count; i++) {
1949     _idx_to_blocklist[i] = NULL;
1950   }
1951   _block_map = NULL;  // until all blocks are seen
1952   _jsr_count = 0;
1953   _jsr_records = NULL;
1954 }
1955 
1956 // ------------------------------------------------------------------
1957 // ciTypeFlow::work_list_next
1958 //
1959 // Get the next basic block from our work list.
1960 ciTypeFlow::Block* ciTypeFlow::work_list_next() {
1961   assert(!work_list_empty(), "work list must not be empty");
1962   Block* next_block = _work_list;
1963   _work_list = next_block->next();
1964   next_block->set_next(NULL);
1965   next_block->set_on_work_list(false);
1966   return next_block;
1967 }
1968 
1969 // ------------------------------------------------------------------
1970 // ciTypeFlow::add_to_work_list
1971 //
1972 // Add a basic block to our work list.
1973 // List is sorted by decreasing postorder sort (same as increasing RPO)
1974 void ciTypeFlow::add_to_work_list(ciTypeFlow::Block* block) {
1975   assert(!block->is_on_work_list(), "must not already be on work list");
1976 
1977   if (CITraceTypeFlow) {
1978     tty->print(">> Adding block ");
1979     block->print_value_on(tty);
1980     tty->print_cr(" to the work list : ");
1981   }
1982 
1983   block->set_on_work_list(true);
1984 
1985   // decreasing post order sort
1986 
1987   Block* prev = NULL;
1988   Block* current = _work_list;
1989   int po = block->post_order();
1990   while (current != NULL) {
1991     if (!current->has_post_order() || po > current->post_order())
1992       break;
1993     prev = current;
1994     current = current->next();
1995   }
1996   if (prev == NULL) {
1997     block->set_next(_work_list);
1998     _work_list = block;
1999   } else {
2000     block->set_next(current);
2001     prev->set_next(block);
2002   }
2003 
2004   if (CITraceTypeFlow) {
2005     tty->cr();
2006   }
2007 }
2008 
2009 // ------------------------------------------------------------------
2010 // ciTypeFlow::block_at
2011 //
2012 // Return the block beginning at bci which has a JsrSet compatible
2013 // with jsrs.
2014 ciTypeFlow::Block* ciTypeFlow::block_at(int bci, ciTypeFlow::JsrSet* jsrs, CreateOption option) {
2015   // First find the right ciBlock.
2016   if (CITraceTypeFlow) {
2017     tty->print(">> Requesting block for %d/", bci);
2018     jsrs->print_on(tty);
2019     tty->cr();
2020   }
2021 
2022   ciBlock* ciblk = _methodBlocks->block_containing(bci);
2023   assert(ciblk->start_bci() == bci, "bad ciBlock boundaries");
2024   Block* block = get_block_for(ciblk->index(), jsrs, option);
2025 
2026   assert(block == NULL? (option == no_create): block->is_backedge_copy() == (option == create_backedge_copy), "create option consistent with result");
2027 
2028   if (CITraceTypeFlow) {
2029     if (block != NULL) {
2030       tty->print(">> Found block ");
2031       block->print_value_on(tty);
2032       tty->cr();
2033     } else {
2034       tty->print_cr(">> No such block.");
2035     }
2036   }
2037 
2038   return block;
2039 }
2040 
2041 // ------------------------------------------------------------------
2042 // ciTypeFlow::make_jsr_record
2043 //
2044 // Make a JsrRecord for a given (entry, return) pair, if such a record
2045 // does not already exist.
2046 ciTypeFlow::JsrRecord* ciTypeFlow::make_jsr_record(int entry_address,
2047                                                    int return_address) {
2048   if (_jsr_records == NULL) {
2049     _jsr_records = new (arena()) GrowableArray<JsrRecord*>(arena(),
2050                                                            _jsr_count,
2051                                                            0,
2052                                                            NULL);
2053   }
2054   JsrRecord* record = NULL;
2055   int len = _jsr_records->length();
2056   for (int i = 0; i < len; i++) {
2057     JsrRecord* record = _jsr_records->at(i);
2058     if (record->entry_address() == entry_address &&
2059         record->return_address() == return_address) {
2060       return record;
2061     }
2062   }
2063 
2064   record = new (arena()) JsrRecord(entry_address, return_address);
2065   _jsr_records->append(record);
2066   return record;
2067 }
2068 
2069 // ------------------------------------------------------------------
2070 // ciTypeFlow::flow_exceptions
2071 //
2072 // Merge the current state into all exceptional successors at the
2073 // current point in the code.
2074 void ciTypeFlow::flow_exceptions(GrowableArray<ciTypeFlow::Block*>* exceptions,
2075                                  GrowableArray<ciInstanceKlass*>* exc_klasses,
2076                                  ciTypeFlow::StateVector* state) {
2077   int len = exceptions->length();
2078   assert(exc_klasses->length() == len, "must have same length");
2079   for (int i = 0; i < len; i++) {
2080     Block* block = exceptions->at(i);
2081     ciInstanceKlass* exception_klass = exc_klasses->at(i);
2082 
2083     if (!exception_klass->is_loaded()) {
2084       // Do not compile any code for unloaded exception types.
2085       // Following compiler passes are responsible for doing this also.
2086       continue;
2087     }
2088 
2089     if (block->meet_exception(exception_klass, state)) {
2090       // Block was modified and has PO.  Add it to the work list.
2091       if (block->has_post_order() &&
2092           !block->is_on_work_list()) {
2093         add_to_work_list(block);
2094       }
2095     }
2096   }
2097 }
2098 
2099 // ------------------------------------------------------------------
2100 // ciTypeFlow::flow_successors
2101 //
2102 // Merge the current state into all successors at the current point
2103 // in the code.
2104 void ciTypeFlow::flow_successors(GrowableArray<ciTypeFlow::Block*>* successors,
2105                                  ciTypeFlow::StateVector* state) {
2106   int len = successors->length();
2107   for (int i = 0; i < len; i++) {
2108     Block* block = successors->at(i);
2109     if (block->meet(state)) {
2110       // Block was modified and has PO.  Add it to the work list.
2111       if (block->has_post_order() &&
2112           !block->is_on_work_list()) {
2113         add_to_work_list(block);
2114       }
2115     }
2116   }
2117 }
2118 
2119 // ------------------------------------------------------------------
2120 // ciTypeFlow::can_trap
2121 //
2122 // Tells if a given instruction is able to generate an exception edge.
2123 bool ciTypeFlow::can_trap(ciBytecodeStream& str) {
2124   // Cf. GenerateOopMap::do_exception_edge.
2125   if (!Bytecodes::can_trap(str.cur_bc()))  return false;
2126 
2127   switch (str.cur_bc()) {
2128     case Bytecodes::_ldc:
2129     case Bytecodes::_ldc_w:
2130     case Bytecodes::_ldc2_w:
2131     case Bytecodes::_aload_0:
2132       // These bytecodes can trap for rewriting.  We need to assume that
2133       // they do not throw exceptions to make the monitor analysis work.
2134       return false;
2135 
2136     case Bytecodes::_ireturn:
2137     case Bytecodes::_lreturn:
2138     case Bytecodes::_freturn:
2139     case Bytecodes::_dreturn:
2140     case Bytecodes::_areturn:
2141     case Bytecodes::_return:
2142       // We can assume the monitor stack is empty in this analysis.
2143       return false;
2144 
2145     case Bytecodes::_monitorexit:
2146       // We can assume monitors are matched in this analysis.
2147       return false;
2148   }
2149 
2150   return true;
2151 }
2152 
2153 // ------------------------------------------------------------------
2154 // ciTypeFlow::clone_loop_heads
2155 //
2156 // Clone the loop heads
2157 bool ciTypeFlow::clone_loop_heads(Loop* lp, StateVector* temp_vector, JsrSet* temp_set) {
2158   bool rslt = false;
2159   for (PreorderLoops iter(loop_tree_root()); !iter.done(); iter.next()) {
2160     lp = iter.current();
2161     Block* head = lp->head();
2162     if (lp == loop_tree_root() ||
2163         lp->is_irreducible() ||
2164         !head->is_clonable_exit(lp))
2165       continue;
2166 
2167     // check not already cloned
2168     if (head->backedge_copy_count() != 0)
2169       continue;
2170 
2171     // check _no_ shared head below us
2172     Loop* ch;
2173     for (ch = lp->child(); ch != NULL && ch->head() != head; ch = ch->sibling());
2174     if (ch != NULL)
2175       continue;
2176 
2177     // Clone head
2178     Block* new_head = head->looping_succ(lp);
2179     Block* clone = clone_loop_head(lp, temp_vector, temp_set);
2180     // Update lp's info
2181     clone->set_loop(lp);
2182     lp->set_head(new_head);
2183     lp->set_tail(clone);
2184     // And move original head into outer loop
2185     head->set_loop(lp->parent());
2186 
2187     rslt = true;
2188   }
2189   return rslt;
2190 }
2191 
2192 // ------------------------------------------------------------------
2193 // ciTypeFlow::clone_loop_head
2194 //
2195 // Clone lp's head and replace tail's successors with clone.
2196 //
2197 //  |
2198 //  v
2199 // head <-> body
2200 //  |
2201 //  v
2202 // exit
2203 //
2204 // new_head
2205 //
2206 //  |
2207 //  v
2208 // head ----------\
2209 //  |             |
2210 //  |             v
2211 //  |  clone <-> body
2212 //  |    |
2213 //  | /--/
2214 //  | |
2215 //  v v
2216 // exit
2217 //
2218 ciTypeFlow::Block* ciTypeFlow::clone_loop_head(Loop* lp, StateVector* temp_vector, JsrSet* temp_set) {
2219   Block* head = lp->head();
2220   Block* tail = lp->tail();
2221   if (CITraceTypeFlow) {
2222     tty->print(">> Requesting clone of loop head "); head->print_value_on(tty);
2223     tty->print("  for predecessor ");                tail->print_value_on(tty);
2224     tty->cr();
2225   }
2226   Block* clone = block_at(head->start(), head->jsrs(), create_backedge_copy);
2227   assert(clone->backedge_copy_count() == 1, "one backedge copy for all back edges");
2228 
2229   assert(!clone->has_pre_order(), "just created");
2230   clone->set_next_pre_order();
2231 
2232   // Insert clone after (orig) tail in reverse post order
2233   clone->set_rpo_next(tail->rpo_next());
2234   tail->set_rpo_next(clone);
2235 
2236   // tail->head becomes tail->clone
2237   for (SuccIter iter(tail); !iter.done(); iter.next()) {
2238     if (iter.succ() == head) {
2239       iter.set_succ(clone);
2240     }
2241   }
2242   flow_block(tail, temp_vector, temp_set);
2243   if (head == tail) {
2244     // For self-loops, clone->head becomes clone->clone
2245     flow_block(clone, temp_vector, temp_set);
2246     for (SuccIter iter(clone); !iter.done(); iter.next()) {
2247       if (iter.succ() == head) {
2248         iter.set_succ(clone);
2249         break;
2250       }
2251     }
2252   }
2253   flow_block(clone, temp_vector, temp_set);
2254 
2255   return clone;
2256 }
2257 
2258 // ------------------------------------------------------------------
2259 // ciTypeFlow::flow_block
2260 //
2261 // Interpret the effects of the bytecodes on the incoming state
2262 // vector of a basic block.  Push the changed state to succeeding
2263 // basic blocks.
2264 void ciTypeFlow::flow_block(ciTypeFlow::Block* block,
2265                             ciTypeFlow::StateVector* state,
2266                             ciTypeFlow::JsrSet* jsrs) {
2267   if (CITraceTypeFlow) {
2268     tty->print("\n>> ANALYZING BLOCK : ");
2269     tty->cr();
2270     block->print_on(tty);
2271   }
2272   assert(block->has_pre_order(), "pre-order is assigned before 1st flow");
2273 
2274   int start = block->start();
2275   int limit = block->limit();
2276   int control = block->control();
2277   if (control != ciBlock::fall_through_bci) {
2278     limit = control;
2279   }
2280 
2281   // Grab the state from the current block.
2282   block->copy_state_into(state);
2283   state->def_locals()->clear();
2284 
2285   GrowableArray<Block*>*           exceptions = block->exceptions();
2286   GrowableArray<ciInstanceKlass*>* exc_klasses = block->exc_klasses();
2287   bool has_exceptions = exceptions->length() > 0;
2288 
2289   bool exceptions_used = false;
2290 
2291   ciBytecodeStream str(method());
2292   str.reset_to_bci(start);
2293   Bytecodes::Code code;
2294   while ((code = str.next()) != ciBytecodeStream::EOBC() &&
2295          str.cur_bci() < limit) {
2296     // Check for exceptional control flow from this point.
2297     if (has_exceptions && can_trap(str)) {
2298       flow_exceptions(exceptions, exc_klasses, state);
2299       exceptions_used = true;
2300     }
2301     // Apply the effects of the current bytecode to our state.
2302     bool res = state->apply_one_bytecode(&str);
2303 
2304     // Watch for bailouts.
2305     if (failing())  return;
2306 
2307     if (res) {
2308 
2309       // We have encountered a trap.  Record it in this block.
2310       block->set_trap(state->trap_bci(), state->trap_index());
2311 
2312       if (CITraceTypeFlow) {
2313         tty->print_cr(">> Found trap");
2314         block->print_on(tty);
2315       }
2316 
2317       // Save set of locals defined in this block
2318       block->def_locals()->add(state->def_locals());
2319 
2320       // Record (no) successors.
2321       block->successors(&str, state, jsrs);
2322 
2323       assert(!has_exceptions || exceptions_used, "Not removing exceptions");
2324 
2325       // Discontinue interpretation of this Block.
2326       return;
2327     }
2328   }
2329 
2330   GrowableArray<Block*>* successors = NULL;
2331   if (control != ciBlock::fall_through_bci) {
2332     // Check for exceptional control flow from this point.
2333     if (has_exceptions && can_trap(str)) {
2334       flow_exceptions(exceptions, exc_klasses, state);
2335       exceptions_used = true;
2336     }
2337 
2338     // Fix the JsrSet to reflect effect of the bytecode.
2339     block->copy_jsrs_into(jsrs);
2340     jsrs->apply_control(this, &str, state);
2341 
2342     // Find successor edges based on old state and new JsrSet.
2343     successors = block->successors(&str, state, jsrs);
2344 
2345     // Apply the control changes to the state.
2346     state->apply_one_bytecode(&str);
2347   } else {
2348     // Fall through control
2349     successors = block->successors(&str, NULL, NULL);
2350   }
2351 
2352   // Save set of locals defined in this block
2353   block->def_locals()->add(state->def_locals());
2354 
2355   // Remove untaken exception paths
2356   if (!exceptions_used)
2357     exceptions->clear();
2358 
2359   // Pass our state to successors.
2360   flow_successors(successors, state);
2361 }
2362 
2363 // ------------------------------------------------------------------
2364 // ciTypeFlow::PostOrderLoops::next
2365 //
2366 // Advance to next loop tree using a postorder, left-to-right traversal.
2367 void ciTypeFlow::PostorderLoops::next() {
2368   assert(!done(), "must not be done.");
2369   if (_current->sibling() != NULL) {
2370     _current = _current->sibling();
2371     while (_current->child() != NULL) {
2372       _current = _current->child();
2373     }
2374   } else {
2375     _current = _current->parent();
2376   }
2377 }
2378 
2379 // ------------------------------------------------------------------
2380 // ciTypeFlow::PreOrderLoops::next
2381 //
2382 // Advance to next loop tree using a preorder, left-to-right traversal.
2383 void ciTypeFlow::PreorderLoops::next() {
2384   assert(!done(), "must not be done.");
2385   if (_current->child() != NULL) {
2386     _current = _current->child();
2387   } else if (_current->sibling() != NULL) {
2388     _current = _current->sibling();
2389   } else {
2390     while (_current != _root && _current->sibling() == NULL) {
2391       _current = _current->parent();
2392     }
2393     if (_current == _root) {
2394       _current = NULL;
2395       assert(done(), "must be done.");
2396     } else {
2397       assert(_current->sibling() != NULL, "must be more to do");
2398       _current = _current->sibling();
2399     }
2400   }
2401 }
2402 
2403 // ------------------------------------------------------------------
2404 // ciTypeFlow::Loop::sorted_merge
2405 //
2406 // Merge the branch lp into this branch, sorting on the loop head
2407 // pre_orders. Returns the leaf of the merged branch.
2408 // Child and sibling pointers will be setup later.
2409 // Sort is (looking from leaf towards the root)
2410 //  descending on primary key: loop head's pre_order, and
2411 //  ascending  on secondary key: loop tail's pre_order.
2412 ciTypeFlow::Loop* ciTypeFlow::Loop::sorted_merge(Loop* lp) {
2413   Loop* leaf = this;
2414   Loop* prev = NULL;
2415   Loop* current = leaf;
2416   while (lp != NULL) {
2417     int lp_pre_order = lp->head()->pre_order();
2418     // Find insertion point for "lp"
2419     while (current != NULL) {
2420       if (current == lp)
2421         return leaf; // Already in list
2422       if (current->head()->pre_order() < lp_pre_order)
2423         break;
2424       if (current->head()->pre_order() == lp_pre_order &&
2425           current->tail()->pre_order() > lp->tail()->pre_order()) {
2426         break;
2427       }
2428       prev = current;
2429       current = current->parent();
2430     }
2431     Loop* next_lp = lp->parent(); // Save future list of items to insert
2432     // Insert lp before current
2433     lp->set_parent(current);
2434     if (prev != NULL) {
2435       prev->set_parent(lp);
2436     } else {
2437       leaf = lp;
2438     }
2439     prev = lp;     // Inserted item is new prev[ious]
2440     lp = next_lp;  // Next item to insert
2441   }
2442   return leaf;
2443 }
2444 
2445 // ------------------------------------------------------------------
2446 // ciTypeFlow::build_loop_tree
2447 //
2448 // Incrementally build loop tree.
2449 void ciTypeFlow::build_loop_tree(Block* blk) {
2450   assert(!blk->is_post_visited(), "precondition");
2451   Loop* innermost = NULL; // merge of loop tree branches over all successors
2452 
2453   for (SuccIter iter(blk); !iter.done(); iter.next()) {
2454     Loop*  lp   = NULL;
2455     Block* succ = iter.succ();
2456     if (!succ->is_post_visited()) {
2457       // Found backedge since predecessor post visited, but successor is not
2458       assert(succ->pre_order() <= blk->pre_order(), "should be backedge");
2459 
2460       // Create a LoopNode to mark this loop.
2461       lp = new (arena()) Loop(succ, blk);
2462       if (succ->loop() == NULL)
2463         succ->set_loop(lp);
2464       // succ->loop will be updated to innermost loop on a later call, when blk==succ
2465 
2466     } else {  // Nested loop
2467       lp = succ->loop();
2468 
2469       // If succ is loop head, find outer loop.
2470       while (lp != NULL && lp->head() == succ) {
2471         lp = lp->parent();
2472       }
2473       if (lp == NULL) {
2474         // Infinite loop, it's parent is the root
2475         lp = loop_tree_root();
2476       }
2477     }
2478 
2479     // Check for irreducible loop.
2480     // Successor has already been visited. If the successor's loop head
2481     // has already been post-visited, then this is another entry into the loop.
2482     while (lp->head()->is_post_visited() && lp != loop_tree_root()) {
2483       _has_irreducible_entry = true;
2484       lp->set_irreducible(succ);
2485       if (!succ->is_on_work_list()) {
2486         // Assume irreducible entries need more data flow
2487         add_to_work_list(succ);
2488       }
2489       Loop* plp = lp->parent();
2490       if (plp == NULL) {
2491         // This only happens for some irreducible cases.  The parent
2492         // will be updated during a later pass.
2493         break;
2494       }
2495       lp = plp;
2496     }
2497 
2498     // Merge loop tree branch for all successors.
2499     innermost = innermost == NULL ? lp : innermost->sorted_merge(lp);
2500 
2501   } // end loop
2502 
2503   if (innermost == NULL) {
2504     assert(blk->successors()->length() == 0, "CFG exit");
2505     blk->set_loop(loop_tree_root());
2506   } else if (innermost->head() == blk) {
2507     // If loop header, complete the tree pointers
2508     if (blk->loop() != innermost) {
2509 #if ASSERT
2510       assert(blk->loop()->head() == innermost->head(), "same head");
2511       Loop* dl;
2512       for (dl = innermost; dl != NULL && dl != blk->loop(); dl = dl->parent());
2513       assert(dl == blk->loop(), "blk->loop() already in innermost list");
2514 #endif
2515       blk->set_loop(innermost);
2516     }
2517     innermost->def_locals()->add(blk->def_locals());
2518     Loop* l = innermost;
2519     Loop* p = l->parent();
2520     while (p && l->head() == blk) {
2521       l->set_sibling(p->child());  // Put self on parents 'next child'
2522       p->set_child(l);             // Make self the first child of parent
2523       p->def_locals()->add(l->def_locals());
2524       l = p;                       // Walk up the parent chain
2525       p = l->parent();
2526     }
2527   } else {
2528     blk->set_loop(innermost);
2529     innermost->def_locals()->add(blk->def_locals());
2530   }
2531 }
2532 
2533 // ------------------------------------------------------------------
2534 // ciTypeFlow::Loop::contains
2535 //
2536 // Returns true if lp is nested loop.
2537 bool ciTypeFlow::Loop::contains(ciTypeFlow::Loop* lp) const {
2538   assert(lp != NULL, "");
2539   if (this == lp || head() == lp->head()) return true;
2540   int depth1 = depth();
2541   int depth2 = lp->depth();
2542   if (depth1 > depth2)
2543     return false;
2544   while (depth1 < depth2) {
2545     depth2--;
2546     lp = lp->parent();
2547   }
2548   return this == lp;
2549 }
2550 
2551 // ------------------------------------------------------------------
2552 // ciTypeFlow::Loop::depth
2553 //
2554 // Loop depth
2555 int ciTypeFlow::Loop::depth() const {
2556   int dp = 0;
2557   for (Loop* lp = this->parent(); lp != NULL; lp = lp->parent())
2558     dp++;
2559   return dp;
2560 }
2561 
2562 #ifndef PRODUCT
2563 // ------------------------------------------------------------------
2564 // ciTypeFlow::Loop::print
2565 void ciTypeFlow::Loop::print(outputStream* st, int indent) const {
2566   for (int i = 0; i < indent; i++) st->print(" ");
2567   st->print("%d<-%d %s",
2568             is_root() ? 0 : this->head()->pre_order(),
2569             is_root() ? 0 : this->tail()->pre_order(),
2570             is_irreducible()?" irr":"");
2571   st->print(" defs: ");
2572   def_locals()->print_on(st, _head->outer()->method()->max_locals());
2573   st->cr();
2574   for (Loop* ch = child(); ch != NULL; ch = ch->sibling())
2575     ch->print(st, indent+2);
2576 }
2577 #endif
2578 
2579 // ------------------------------------------------------------------
2580 // ciTypeFlow::df_flow_types
2581 //
2582 // Perform the depth first type flow analysis. Helper for flow_types.
2583 void ciTypeFlow::df_flow_types(Block* start,
2584                                bool do_flow,
2585                                StateVector* temp_vector,
2586                                JsrSet* temp_set) {
2587   int dft_len = 100;
2588   GrowableArray<Block*> stk(arena(), dft_len, 0, NULL);
2589 
2590   ciBlock* dummy = _methodBlocks->make_dummy_block();
2591   JsrSet* root_set = new JsrSet(NULL, 0);
2592   Block* root_head = new (arena()) Block(this, dummy, root_set);
2593   Block* root_tail = new (arena()) Block(this, dummy, root_set);
2594   root_head->set_pre_order(0);
2595   root_head->set_post_order(0);
2596   root_tail->set_pre_order(max_jint);
2597   root_tail->set_post_order(max_jint);
2598   set_loop_tree_root(new (arena()) Loop(root_head, root_tail));
2599 
2600   stk.push(start);
2601 
2602   _next_pre_order = 0;  // initialize pre_order counter
2603   _rpo_list = NULL;
2604   int next_po = 0;      // initialize post_order counter
2605 
2606   // Compute RPO and the control flow graph
2607   int size;
2608   while ((size = stk.length()) > 0) {
2609     Block* blk = stk.top(); // Leave node on stack
2610     if (!blk->is_visited()) {
2611       // forward arc in graph
2612       assert (!blk->has_pre_order(), "");
2613       blk->set_next_pre_order();
2614 
2615       if (_next_pre_order >= MaxNodeLimit / 2) {
2616         // Too many basic blocks.  Bail out.
2617         // This can happen when try/finally constructs are nested to depth N,
2618         // and there is O(2**N) cloning of jsr bodies.  See bug 4697245!
2619         // "MaxNodeLimit / 2" is used because probably the parser will
2620         // generate at least twice that many nodes and bail out.
2621         record_failure("too many basic blocks");
2622         return;
2623       }
2624       if (do_flow) {
2625         flow_block(blk, temp_vector, temp_set);
2626         if (failing()) return; // Watch for bailouts.
2627       }
2628     } else if (!blk->is_post_visited()) {
2629       // cross or back arc
2630       for (SuccIter iter(blk); !iter.done(); iter.next()) {
2631         Block* succ = iter.succ();
2632         if (!succ->is_visited()) {
2633           stk.push(succ);
2634         }
2635       }
2636       if (stk.length() == size) {
2637         // There were no additional children, post visit node now
2638         stk.pop(); // Remove node from stack
2639 
2640         build_loop_tree(blk);
2641         blk->set_post_order(next_po++);   // Assign post order
2642         prepend_to_rpo_list(blk);
2643         assert(blk->is_post_visited(), "");
2644 
2645         if (blk->is_loop_head() && !blk->is_on_work_list()) {
2646           // Assume loop heads need more data flow
2647           add_to_work_list(blk);
2648         }
2649       }
2650     } else {
2651       stk.pop(); // Remove post-visited node from stack
2652     }
2653   }
2654 }
2655 
2656 // ------------------------------------------------------------------
2657 // ciTypeFlow::flow_types
2658 //
2659 // Perform the type flow analysis, creating and cloning Blocks as
2660 // necessary.
2661 void ciTypeFlow::flow_types() {
2662   ResourceMark rm;
2663   StateVector* temp_vector = new StateVector(this);
2664   JsrSet* temp_set = new JsrSet(NULL, 16);
2665 
2666   // Create the method entry block.
2667   Block* start = block_at(start_bci(), temp_set);
2668 
2669   // Load the initial state into it.
2670   const StateVector* start_state = get_start_state();
2671   if (failing())  return;
2672   start->meet(start_state);
2673 
2674   // Depth first visit
2675   df_flow_types(start, true /*do flow*/, temp_vector, temp_set);
2676 
2677   if (failing())  return;
2678   assert(_rpo_list == start, "must be start");
2679 
2680   // Any loops found?
2681   if (loop_tree_root()->child() != NULL &&
2682       env()->comp_level() >= CompLevel_full_optimization) {
2683       // Loop optimizations are not performed on Tier1 compiles.
2684 
2685     bool changed = clone_loop_heads(loop_tree_root(), temp_vector, temp_set);
2686 
2687     // If some loop heads were cloned, recompute postorder and loop tree
2688     if (changed) {
2689       loop_tree_root()->set_child(NULL);
2690       for (Block* blk = _rpo_list; blk != NULL;) {
2691         Block* next = blk->rpo_next();
2692         blk->df_init();
2693         blk = next;
2694       }
2695       df_flow_types(start, false /*no flow*/, temp_vector, temp_set);
2696     }
2697   }
2698 
2699   if (CITraceTypeFlow) {
2700     tty->print_cr("\nLoop tree");
2701     loop_tree_root()->print();
2702   }
2703 
2704   // Continue flow analysis until fixed point reached
2705 
2706   debug_only(int max_block = _next_pre_order;)
2707 
2708   while (!work_list_empty()) {
2709     Block* blk = work_list_next();
2710     assert (blk->has_post_order(), "post order assigned above");
2711 
2712     flow_block(blk, temp_vector, temp_set);
2713 
2714     assert (max_block == _next_pre_order, "no new blocks");
2715     assert (!failing(), "no more bailouts");
2716   }
2717 }
2718 
2719 // ------------------------------------------------------------------
2720 // ciTypeFlow::map_blocks
2721 //
2722 // Create the block map, which indexes blocks in reverse post-order.
2723 void ciTypeFlow::map_blocks() {
2724   assert(_block_map == NULL, "single initialization");
2725   int block_ct = _next_pre_order;
2726   _block_map = NEW_ARENA_ARRAY(arena(), Block*, block_ct);
2727   assert(block_ct == block_count(), "");
2728 
2729   Block* blk = _rpo_list;
2730   for (int m = 0; m < block_ct; m++) {
2731     int rpo = blk->rpo();
2732     assert(rpo == m, "should be sequential");
2733     _block_map[rpo] = blk;
2734     blk = blk->rpo_next();
2735   }
2736   assert(blk == NULL, "should be done");
2737 
2738   for (int j = 0; j < block_ct; j++) {
2739     assert(_block_map[j] != NULL, "must not drop any blocks");
2740     Block* block = _block_map[j];
2741     // Remove dead blocks from successor lists:
2742     for (int e = 0; e <= 1; e++) {
2743       GrowableArray<Block*>* l = e? block->exceptions(): block->successors();
2744       for (int k = 0; k < l->length(); k++) {
2745         Block* s = l->at(k);
2746         if (!s->has_post_order()) {
2747           if (CITraceTypeFlow) {
2748             tty->print("Removing dead %s successor of #%d: ", (e? "exceptional":  "normal"), block->pre_order());
2749             s->print_value_on(tty);
2750             tty->cr();
2751           }
2752           l->remove(s);
2753           --k;
2754         }
2755       }
2756     }
2757   }
2758 }
2759 
2760 // ------------------------------------------------------------------
2761 // ciTypeFlow::get_block_for
2762 //
2763 // Find a block with this ciBlock which has a compatible JsrSet.
2764 // If no such block exists, create it, unless the option is no_create.
2765 // If the option is create_backedge_copy, always create a fresh backedge copy.
2766 ciTypeFlow::Block* ciTypeFlow::get_block_for(int ciBlockIndex, ciTypeFlow::JsrSet* jsrs, CreateOption option) {
2767   Arena* a = arena();
2768   GrowableArray<Block*>* blocks = _idx_to_blocklist[ciBlockIndex];
2769   if (blocks == NULL) {
2770     // Query only?
2771     if (option == no_create)  return NULL;
2772 
2773     // Allocate the growable array.
2774     blocks = new (a) GrowableArray<Block*>(a, 4, 0, NULL);
2775     _idx_to_blocklist[ciBlockIndex] = blocks;
2776   }
2777 
2778   if (option != create_backedge_copy) {
2779     int len = blocks->length();
2780     for (int i = 0; i < len; i++) {
2781       Block* block = blocks->at(i);
2782       if (!block->is_backedge_copy() && block->is_compatible_with(jsrs)) {
2783         return block;
2784       }
2785     }
2786   }
2787 
2788   // Query only?
2789   if (option == no_create)  return NULL;
2790 
2791   // We did not find a compatible block.  Create one.
2792   Block* new_block = new (a) Block(this, _methodBlocks->block(ciBlockIndex), jsrs);
2793   if (option == create_backedge_copy)  new_block->set_backedge_copy(true);
2794   blocks->append(new_block);
2795   return new_block;
2796 }
2797 
2798 // ------------------------------------------------------------------
2799 // ciTypeFlow::backedge_copy_count
2800 //
2801 int ciTypeFlow::backedge_copy_count(int ciBlockIndex, ciTypeFlow::JsrSet* jsrs) const {
2802   GrowableArray<Block*>* blocks = _idx_to_blocklist[ciBlockIndex];
2803 
2804   if (blocks == NULL) {
2805     return 0;
2806   }
2807 
2808   int count = 0;
2809   int len = blocks->length();
2810   for (int i = 0; i < len; i++) {
2811     Block* block = blocks->at(i);
2812     if (block->is_backedge_copy() && block->is_compatible_with(jsrs)) {
2813       count++;
2814     }
2815   }
2816 
2817   return count;
2818 }
2819 
2820 // ------------------------------------------------------------------
2821 // ciTypeFlow::do_flow
2822 //
2823 // Perform type inference flow analysis.
2824 void ciTypeFlow::do_flow() {
2825   if (CITraceTypeFlow) {
2826     tty->print_cr("\nPerforming flow analysis on method");
2827     method()->print();
2828     if (is_osr_flow())  tty->print(" at OSR bci %d", start_bci());
2829     tty->cr();
2830     method()->print_codes();
2831   }
2832   if (CITraceTypeFlow) {
2833     tty->print_cr("Initial CI Blocks");
2834     print_on(tty);
2835   }
2836   flow_types();
2837   // Watch for bailouts.
2838   if (failing()) {
2839     return;
2840   }
2841 
2842   map_blocks();
2843 
2844   if (CIPrintTypeFlow || CITraceTypeFlow) {
2845     rpo_print_on(tty);
2846   }
2847 }
2848 
2849 // ------------------------------------------------------------------
2850 // ciTypeFlow::record_failure()
2851 // The ciTypeFlow object keeps track of failure reasons separately from the ciEnv.
2852 // This is required because there is not a 1-1 relation between the ciEnv and
2853 // the TypeFlow passes within a compilation task.  For example, if the compiler
2854 // is considering inlining a method, it will request a TypeFlow.  If that fails,
2855 // the compilation as a whole may continue without the inlining.  Some TypeFlow
2856 // requests are not optional; if they fail the requestor is responsible for
2857 // copying the failure reason up to the ciEnv.  (See Parse::Parse.)
2858 void ciTypeFlow::record_failure(const char* reason) {
2859   if (env()->log() != NULL) {
2860     env()->log()->elem("failure reason='%s' phase='typeflow'", reason);
2861   }
2862   if (_failure_reason == NULL) {
2863     // Record the first failure reason.
2864     _failure_reason = reason;
2865   }
2866 }
2867 
2868 #ifndef PRODUCT
2869 // ------------------------------------------------------------------
2870 // ciTypeFlow::print_on
2871 void ciTypeFlow::print_on(outputStream* st) const {
2872   // Walk through CI blocks
2873   st->print_cr("********************************************************");
2874   st->print   ("TypeFlow for ");
2875   method()->name()->print_symbol_on(st);
2876   int limit_bci = code_size();
2877   st->print_cr("  %d bytes", limit_bci);
2878   ciMethodBlocks  *mblks = _methodBlocks;
2879   ciBlock* current = NULL;
2880   for (int bci = 0; bci < limit_bci; bci++) {
2881     ciBlock* blk = mblks->block_containing(bci);
2882     if (blk != NULL && blk != current) {
2883       current = blk;
2884       current->print_on(st);
2885 
2886       GrowableArray<Block*>* blocks = _idx_to_blocklist[blk->index()];
2887       int num_blocks = (blocks == NULL) ? 0 : blocks->length();
2888 
2889       if (num_blocks == 0) {
2890         st->print_cr("  No Blocks");
2891       } else {
2892         for (int i = 0; i < num_blocks; i++) {
2893           Block* block = blocks->at(i);
2894           block->print_on(st);
2895         }
2896       }
2897       st->print_cr("--------------------------------------------------------");
2898       st->cr();
2899     }
2900   }
2901   st->print_cr("********************************************************");
2902   st->cr();
2903 }
2904 
2905 void ciTypeFlow::rpo_print_on(outputStream* st) const {
2906   st->print_cr("********************************************************");
2907   st->print   ("TypeFlow for ");
2908   method()->name()->print_symbol_on(st);
2909   int limit_bci = code_size();
2910   st->print_cr("  %d bytes", limit_bci);
2911   for (Block* blk = _rpo_list; blk != NULL; blk = blk->rpo_next()) {
2912     blk->print_on(st);
2913     st->print_cr("--------------------------------------------------------");
2914     st->cr();
2915   }
2916   st->print_cr("********************************************************");
2917   st->cr();
2918 }
2919 #endif